1
|
Fan C, Yuan P, Yang X, Zhang W, Wang X, Xie J, He J, Chen H, Yan L, Shi Z. Metabolite, immunocyte phenotype, and lymphoma: a Mendelian randomization study. Front Immunol 2024; 15:1431261. [PMID: 39386202 PMCID: PMC11461196 DOI: 10.3389/fimmu.2024.1431261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
Background Recent studies have confirmed that metabolites and immunocyte phenotype may be associated with the risk of lymphoma. However, the bidirectional causality between metabolites, immunocyte phenotype, disease risk, and whether immunity is an intermediate mediator between metabolism and lymphoma causality is still unclear. Objective To elucidate the causal relationship between metabolites, immune cell phenotypes, and lymphomas, we used two-sample Mendelian randomization (MR) and two-step MR analysis. Methods Applying large-scale genome-wide association studies (GWAS) pooled data, we selected 1400 metabolites and 731 immunocyte phenotypes with eight lymphoma subtypes for two-sample bi-directional MR analysis. In addition, we used two-step MR to quantify the proportion of metabolite effects on lymphomas mediated by immunocyte phenotype. Results This study yielded a bidirectional causal relationship between 17 metabolites and lymphoma and a bidirectional causal relationship between 12 immunocyte phenotypes and lymphoma. In addition, we found causal associations between metabolites and lymphomas, three groups of which were mediated by immunocyte phenotypes. Among them, CD27 on plasmablast/plasma cell (PB/PC) was a mediator of the positive association of arginine to glutamate ratio with chronic lymphocytic leukemia, with a mediator ratio of 14.60% (95% CI=1.29-28.00%, P=3.17 × 10-2). Natural killer (NK) cells as a percentage of all lymphocytes(NK %lymphocyte) was a mediator of the negative association of X-18922(unknown metabolite) levels with diffuse large B-cell lymphoma, with a mediation proportion of -8.940% (95% CI=-0.063-(-17.800) %, P=4.84 × 10-2). CD25 on IgD- CD24- B cell was the mediator of the positive association between X-24531(unknown metabolite) levels and diffuse large B-cell lymphoma, with a mediation proportion of 13.200% (95% CI=-0.156-26.200%, P=4.73 × 10-2). Conclusion In the present study, we identified a causal relationship between metabolites and lymphoma, in which immunocyte phenotypes as mediators are involved in only a minor part. The mediators by which most metabolites affect the risk of lymphoma development remain unclear and require further exploration in the future.
Collapse
Affiliation(s)
- Chenyang Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Pengying Yuan
- Hospital of University of International Business and Economics, Beijing, China
| | - Xiangdong Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Weifeng Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Xingli Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Juan Xie
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Jing He
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Haijing Chen
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Lixiang Yan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Zhexin Shi
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| |
Collapse
|
2
|
Qian J, Wang Q, Xu J, Liang S, Zheng Q, Guo X, Luo W, Huang W, Long X, Min J, Wang Y, Wu G, Liang G. Macrophage OTUD1-CARD9 axis drives isoproterenol-induced inflammatory heart remodelling. Clin Transl Med 2024; 14:e1790. [PMID: 39118286 PMCID: PMC11310286 DOI: 10.1002/ctm2.1790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Chronic inflammation contributes to the progression of isoproterenol (ISO)-induced heart failure (HF). Caspase-associated recruitment domain (CARD) families are crucial proteins for initiation of inflammation in innate immunity. Nonetheless, the relevance of CARDs in ISO-driven cardiac remodelling is little explored. METHODS This study utilized Card9-/- mice and reconstituted C57BL/6 mice with either Card9-/- or Otud1-/- marrow-derived cells. Mechanistic studies were conducted in primary macrophages, cardiomyocytes, fibroblasts and HEK-293T cells. RESULTS Here, we demonstrated that CARD9 was substantially upregulated in murine hearts infused with ISO. Either whole-body CARD9 knockout or myeloid-specific CARD9 deletion inhibited ISO-driven murine cardiac inflammation, remodelling and dysfunction. CARD9 deficiency in macrophages prevented ISO-induced inflammation and alleviated remodelling changes in cardiomyocytes and fibroblasts. Mechanistically, we found that ISO enhances the activity of CARD9 by upregulating ovarian tumour deubiquitinase 1 (OTUD1) in macrophages. We further demonstrated that OTUD1 directly binds to the CARD9 and then removes the K33-linked ubiquitin from CARD9 to promote the assembly of the CARD9-BCL10-MALT1 (CBM) complex, without affecting CARD9 stability. The ISO-activated CBM complex results in NF-κB activation and macrophage-based inflammatory gene overproduction, which then enhances cardiomyocyte hypertrophy and fibroblast fibrosis, respectively. Myeloid-specific OTUD1 deletion also attenuated ISO-induced murine cardiac inflammation and remodelling. CONCLUSIONS These results suggested that the OTUD1-CARD9 axis is a new pro-inflammatory signal in ISO-challenged macrophages and targeting this axis has a protective effect against ISO-induced HF. KEY POINTS Macrophage CARD9 was elevated in heart tissues of mice under chronic ISO administration. Either whole-body CARD9 knockout or myeloid-specific CARD9 deficiency protected mice from ISO-induced inflammatory heart remodeling. ISO promoted the assembly of CBM complex and then activated NF-κB signaling in macrophages through OTUD1-mediated deubiquitinating modification. OTUD1 deletion in myeloid cells protected hearts from ISO-induced injuries in mice.
Collapse
Affiliation(s)
- Jinfu Qian
- Department of Cardiologythe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
- Chemical Biology Research CenterSchool of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouChina
| | - Qinyan Wang
- Chemical Biology Research CenterSchool of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouChina
| | - Jiachen Xu
- Department of Cardiologythe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Shiqi Liang
- Chemical Biology Research CenterSchool of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouChina
| | - Qingsong Zheng
- Chemical Biology Research CenterSchool of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouChina
| | - Xiaocheng Guo
- Chemical Biology Research CenterSchool of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouChina
| | - Wu Luo
- Department of Cardiologythe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
- Chemical Biology Research CenterSchool of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouChina
| | - Weijian Huang
- Department of Cardiologythe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Xiaohong Long
- Chemical Biology Research CenterSchool of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouChina
| | - Julian Min
- Chemical Biology Research CenterSchool of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouChina
| | - Yi Wang
- Chemical Biology Research CenterSchool of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouChina
| | - Gaojun Wu
- Department of Cardiologythe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Guang Liang
- Department of Cardiologythe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
- Chemical Biology Research CenterSchool of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouChina
- School of Pharmaceutical SciencesHangzhou Medical CollegeHangzhouChina
| |
Collapse
|
3
|
Tyczyńska M, Hunek G, Szczasny M, Brachet A, Januszewski J, Forma A, Portincasa P, Flieger J, Baj J. Supplementation of Micro- and Macronutrients-A Role of Nutritional Status in Non-Alcoholic Fatty Liver Disease. Int J Mol Sci 2024; 25:4916. [PMID: 38732128 PMCID: PMC11085010 DOI: 10.3390/ijms25094916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a condition in which the pathological cumulation of fat with coexisting inflammation and damage of hepatic cells leads to progressive dysfunctions of the liver. Except for the commonly well-known major causes of NAFLD such as obesity, dyslipidemia, insulin resistance, or diabetes, an unbalanced diet and imbalanced nutritional status should also be taken into consideration. In this narrative review, we summarized the current knowledge regarding the micro- and macronutrient status of patients suffering from NAFLD considering various diets and supplementation of chosen supplements. We aimed to summarize the knowledge indicating which nutritional impairments may be associated with the onset and progression of NAFLD at the same time evaluating the potential therapy targets that could facilitate the healing process. Except for the above-mentioned objectives, one of the most important aspects of this review was to highlight the possible strategies for taking care of NAFLD patients taking into account the challenges and opportunities associated with the micronutrient status of the patients. The current research indicates that a supplementation of chosen vitamins (e.g., vitamin A, B complex, C, or D) as well as chosen elements such as zinc may alleviate the symptoms of NAFLD. However, there is still a lack of sufficient data regarding healthy ranges of dosages; thus, further research is of high importance in this matter.
Collapse
Affiliation(s)
- Magdalena Tyczyńska
- Department of Correct, Clinical and Imaging Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland;
| | - Gabriela Hunek
- Chair and Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (G.H.); (A.B.)
| | - Martyna Szczasny
- Chair and Department of Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland; (M.S.); (J.J.)
| | - Adam Brachet
- Chair and Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (G.H.); (A.B.)
| | - Jacek Januszewski
- Chair and Department of Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland; (M.S.); (J.J.)
| | - Alicja Forma
- Chair and Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (G.H.); (A.B.)
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, 70124 Bari, Italy;
| | - Jolanta Flieger
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland;
| | - Jacek Baj
- Chair and Department of Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland; (M.S.); (J.J.)
| |
Collapse
|
4
|
Tao T, Zhang L, Yu T, Ma J, Lu S, Ren J, Li X, Guo X. Exopolysaccharide production by Lactobacillus plantarum T10 is responsible for the probiotic activity in enhancing intestinal barrier function in vitro and in vivo. Food Funct 2024; 15:3583-3599. [PMID: 38469921 DOI: 10.1039/d4fo00526k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Lactobacillus probiotics exert their effects in a strain-specific and metabolite-specific manner. This study aims to identify lactobacilli that can effectively enhance the intestinal barrier function both in vitro and in vivo and to investigate the underlying metabolite and molecular mechanisms involved. Nine Lactobacillus isolates were evaluated for their ability to enhance the IPEC-J2 cellular barrier function and for their anti-inflammatory and anti-apoptotic effects in IPEC-J2 cells after an enterotoxigenic Escherichia coli challenge. Of the nine isolates, L. plantarum T10 demonstrated significant advantages in enhancing the cellular barrier function and displayed anti-inflammatory and anti-apoptotic activities in vitro. The bioactivities of L. plantarum T10 were primarily attributed to the production of exopolysaccharides, which exerted their effects through the TLR-mediated p38 MAPK pathway in ETEC-challenged IPEC-J2 cells. Furthermore, the production of EPS by L. plantarum T10 led to the alleviation of dextran sulfate sodium-induced colitis by reducing intestinal damage and enhancing the intestinal barrier function in mice. The EPS is classified as a heteropolysaccharide with an average molecular weight of 23.0 kDa. It is primarily composed of mannose, glucose, and ribose. These findings have practical implications for the targeted screening of lactobacilli used in the production of probiotics and postbiotics with strain-specific features of exopolysaccharides.
Collapse
Affiliation(s)
- Ting Tao
- College of Life Science, South-Central Minzu University, No. 182, Minyuan Road, Hongshan District, Wuhan City, 430074, China.
| | - Li Zhang
- College of Life Science, South-Central Minzu University, No. 182, Minyuan Road, Hongshan District, Wuhan City, 430074, China.
| | - Tianfei Yu
- College of Life Science, South-Central Minzu University, No. 182, Minyuan Road, Hongshan District, Wuhan City, 430074, China.
| | - Jiaxue Ma
- College of Life Science, South-Central Minzu University, No. 182, Minyuan Road, Hongshan District, Wuhan City, 430074, China.
| | - Shuang Lu
- College of Life Science, South-Central Minzu University, No. 182, Minyuan Road, Hongshan District, Wuhan City, 430074, China.
| | - Jing Ren
- College of Life Science, South-Central Minzu University, No. 182, Minyuan Road, Hongshan District, Wuhan City, 430074, China.
| | - Xiangyu Li
- Hubei Province Nutrition Chemicals Biosynthetic Engineering Technology Research Center, Wuhan 430073, China
| | - Xiaohua Guo
- College of Life Science, South-Central Minzu University, No. 182, Minyuan Road, Hongshan District, Wuhan City, 430074, China.
| |
Collapse
|
5
|
Gao T, Wang J, Xiao M, Wang J, Wang S, Tang Y, Zhang J, Lu G, Guo H, Guo Y, Liu Q, Li J, Gu J. SESN2-Mediated AKT/GSK-3β/NRF2 Activation to Ameliorate Adriamycin Cardiotoxicity in High-Fat Diet-Induced Obese Mice. Antioxid Redox Signal 2024; 40:598-615. [PMID: 37265150 DOI: 10.1089/ars.2022.0156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Aims: Obese patients are highly sensitive to adriamycin (ADR)-induced cardiotoxicity. However, the potential mechanism of superimposed toxicity remains to be elucidated. Sestrin 2 (SESN2), a potential antioxidant, could attenuate stress-induced cardiomyopathy; therefore, this study aims to explore whether SESN2 enhances cardiac resistance to ADR-induced oxidative damage in high-fat diet (HFD)-induced obese mice. Results: The results revealed that obesity decreased SESN2 expression in ADR-exposed heart. And, HFD mice may predispose to ADR-induced cardiotoxicity, which was probably associated with inhibiting protein kinase B (AKT), glycogen synthase kinase-3 beta (GSK-3β) phosphorylation and subsequently blocking nuclear localization of nuclear factor erythroid-2 related factor 2 (NRF2), ultimately resulting in cardiac oxidative damage. However, these destructive cascades and cardiac oxidative damage effects induced by HFD/sodium palmitate combined with ADR were blocked by overexpression of SESN2. Moreover, the antioxidant effect of SESN2 could be largely abolished by sh-Nrf2 or wortmannin. And sulforaphane, an NRF2 agonist, could remarkably reverse cardiac pathological and functional abnormalities caused by ADR in obese mice. Innovation and Conclusion: This study demonstrated that SESN2 might be a promising therapeutic target for improving anthracycline-related cardiotoxicity in obesity by upregulating activity of NRF2 via AKT/GSK-3β/Src family tyrosine kinase signaling pathway. Antioxid. Redox Signal. 40, 598-615.
Collapse
Affiliation(s)
- Ting Gao
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jie Wang
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Mengjie Xiao
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jie Wang
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shudong Wang
- Department of Cardiology at the First Hospital of Jilin University, Changchun, China
| | - Yufeng Tang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Jingjing Zhang
- Department of Cardiology at the First Hospital of China Medical University, Shenyang, China
- Department of Cardiology at the People's Hospital of Liaoning Province, Shenyang, China
| | - Guangping Lu
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Hua Guo
- Department of Nursing, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Yuanfang Guo
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qingbo Liu
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jiahao Li
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Junlian Gu
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
6
|
Kowluru A. Regulatory roles of CARD9-BCL10-Rac1 (CBR) signalome in islet β-cell function in health and metabolic stress: Is there room for MALT1? Biochem Pharmacol 2023; 218:115889. [PMID: 37991197 PMCID: PMC10872519 DOI: 10.1016/j.bcp.2023.115889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/23/2023]
Abstract
It is widely accepted that pancreatic islet β-cell failure and the onset of type 2 diabetes (T2DM) constitute an intricate interplay between the genetic expression of the disease and a host of intracellular events including increased metabolic (oxidative, endoplasmic reticulum) stress under the duress of glucolipotoxicity. Emerging evidence implicates unique roles for Caspase Recruitment Domain containing protein 9 (CARD9) in the onset of metabolic diseases, including obesity and insulin resistance. Mechanistically, CARD9 has been implicated in the regulation of p38MAPK and NFkB signaling pathways culminating in cellular dysfunction. Several regulatory factors, including B-cell lymphoma/leukemia 10 (BCL10) have been identified as modulators of CARD9 function in multiple cell types. Despite this evidence on regulatory roles of CARD9-BCL10 signalome in the onset of various pathological states, putative roles of this signaling module in islet β-cell dysfunction in metabolic stress remain less understood. This brief review is aimed at highlighting roles for CARD9 in islet β-cell function under acute (physiological insulin secretion) and long-term (cell dysfunction) exposure to glucose. Emerging roles of other signaling proteins, such as Rac1, BCL10 and MALT1 as contributors to CARD9 signaling in the islet β-cells are also reviewed. Potential avenues for future research toward the development of novel therapeutics for the prevention CARD9-BCL10-Rac1 (CBR) signalome-induced β-cell defects under metabolic stress are discussed.
Collapse
Affiliation(s)
- Anjaneyulu Kowluru
- Biomedical Research Service, John D. Dingell VA Medical Center, and Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA.
| |
Collapse
|
7
|
Li K, Li Y, Ding H, Chen J, Zhang X. Metal-Binding Proteins Cross-Linking with Endoplasmic Reticulum Stress in Cardiovascular Diseases. J Cardiovasc Dev Dis 2023; 10:jcdd10040171. [PMID: 37103050 PMCID: PMC10143100 DOI: 10.3390/jcdd10040171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/11/2023] [Accepted: 04/15/2023] [Indexed: 04/28/2023] Open
Abstract
The endoplasmic reticulum (ER), an essential organelle in eukaryotic cells, is widely distributed in myocardial cells. The ER is where secreted protein synthesis, folding, post-translational modification, and transport are all carried out. It is also where calcium homeostasis, lipid synthesis, and other processes that are crucial for normal biological cell functioning are regulated. We are concerned that ER stress (ERS) is widespread in various damaged cells. To protect cells' function, ERS reduces the accumulation of misfolded proteins by activating the unfolded protein response (UPR) pathway in response to numerous stimulating factors, such as ischemia or hypoxia, metabolic disorders, and inflammation. If these stimulatory factors are not eliminated for a long time, resulting in the persistence of the UPR, it will aggravate cell damage through a series of mechanisms. In the cardiovascular system, it will cause related cardiovascular diseases and seriously endanger human health. Furthermore, there has been a growing number of studies on the antioxidative stress role of metal-binding proteins. We observed that a variety of metal-binding proteins can inhibit ERS and, hence, mitigate myocardial damage.
Collapse
Affiliation(s)
- Kejuan Li
- Department of Cardiology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou 730031, China
| | - Yongnan Li
- Department of Cardiac Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou 730031, China
| | - Hong Ding
- Department of Cardiology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou 730031, China
| | - Jianshu Chen
- Department of Cardiology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou 730031, China
| | - Xiaowei Zhang
- Department of Cardiology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou 730031, China
| |
Collapse
|
8
|
Li J, Lei Y, Zhao Y. Metallothionein-2A Protects Cardiomyocytes from Hypoxia/reper-Fusion through Inhibiting p38. Cell Biochem Biophys 2023; 81:69-75. [PMID: 36445616 DOI: 10.1007/s12013-022-01118-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 11/11/2022] [Indexed: 11/30/2022]
Abstract
The reperfusion of coronary artery blood supply is often accompanied by myocardial hypoxia/reperfusion (H/R) injury, and induced cardiomyocytes apoptosis. The activation of p38 can induce apoptosis, thereby aggravating the myocardial H/R injury. Metallothionein-2A (MT2A) has the functions of anti-apoptosis and protective effect through p38. However, it is not clear that MT2A may protect cardiomyocytes from H/R injury through p38 signaling pathway. Here, we constructed an H/R model for H9c2 cardiomyocytes to explore the protective effect of MT2A on cardiomyocytes apoptosis during the process of H/R through p38 signal pathway. The results revealed that both endogenously overexpressed MT2A and exogenously added MT2A can inhibit the active expression of p-p38 and cleaved caspase-3 under H/R. Based on our results, H/R induced cardiomyocytes apoptosis and activation of p38. And, MT2A can inhibit the active expression of caspase-3 and p38. We found that MT2A can protect cardiomyocytes apoptosis from H/R injury through p38 signaling pathway.
Collapse
Affiliation(s)
- Jike Li
- Cardiovascular Department, Xi'an Hospital of Traditional Chinese Medicine, No. 69, Fengcheng 8th Road, Weiyang District, Xi'an, Shaanxi Province, 710021, China
| | - Yuanlin Lei
- Cardiovascular Department, Xi'an Hospital of Traditional Chinese Medicine, No. 69, Fengcheng 8th Road, Weiyang District, Xi'an, Shaanxi Province, 710021, China
| | - Ying Zhao
- Cardiovascular Surgery Department, First Affiliated Hospital of Hainan Medical University, No. 31, Longhua Road, Haikou, Hainan Province, 570102, China.
| |
Collapse
|
9
|
Zhu Q, Liu X, Wu H, Yang C, Wang M, Chen F, Cui Y, Hao H, Hill MA, Liu Z. CARD9 deficiency improves the recovery of limb ischemia in mice with ambient fine particulate matter exposure. Front Cardiovasc Med 2023; 10:1125717. [PMID: 36860276 PMCID: PMC9968734 DOI: 10.3389/fcvm.2023.1125717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/30/2023] [Indexed: 02/15/2023] Open
Abstract
Background Exposure to fine particulate matter (PM) is a significant risk for cardiovascular diseases largely due to increased reactive oxygen species (ROS) production and inflammation. Caspase recruitment domain (CARD)9 is critically involved in innate immunity and inflammation. The present study was designed to test the hypothesis that CARD9 signaling is critically involved in PM exposure-induced oxidative stress and impaired recovery of limb ischemia. Methods and results Critical limb ischemia (CLI) was created in male wildtype C57BL/6 and age matched CARD9 deficient mice with or without PM (average diameter 2.8 μm) exposure. Mice received intranasal PM exposure for 1 month prior to creation of CLI and continued for the duration of the experiment. Blood flow and mechanical function were evaluated in vivo at baseline and days 3, 7, 14, and 21 post CLI. PM exposure significantly increased ROS production, macrophage infiltration, and CARD9 protein expression in ischemic limbs of C57BL/6 mice in association with decreased recovery of blood flow and mechanical function. CARD9 deficiency effectively prevented PM exposure-induced ROS production and macrophage infiltration and preserved the recovery of ischemic limb with increased capillary density. CARD9 deficiency also significantly attenuated PM exposure-induced increase of circulating CD11b+/F4/80+ macrophages. Conclusion The data indicate that CARD9 signaling plays an important role in PM exposure-induced ROS production and impaired limb recovery following ischemia in mice.
Collapse
Affiliation(s)
- Qiang Zhu
- Center for Precision Medicine, Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, United States
| | - Xuanyou Liu
- Center for Precision Medicine, Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, United States
| | - Hao Wu
- Center for Precision Medicine, Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, United States
| | - Chunlin Yang
- Center for Precision Medicine, Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, United States
| | - Meifang Wang
- Center for Precision Medicine, Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, United States
| | - Feng Chen
- Center for Precision Medicine, Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, United States
| | - Yuqi Cui
- Center for Precision Medicine, Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, United States
| | - Hong Hao
- Center for Precision Medicine, Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, United States
| | - Michael A. Hill
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States
| | - Zhenguo Liu
- Center for Precision Medicine, Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, United States,*Correspondence: Zhenguo Liu ✉
| |
Collapse
|
10
|
Xu Y, Li A, Li X, Deng X, Gao XJ. Zinc Deficiency Induces Inflammation and Apoptosis via Oxidative Stress in the Kidneys of Mice. Biol Trace Elem Res 2023; 201:739-750. [PMID: 35211842 DOI: 10.1007/s12011-022-03166-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 02/14/2022] [Indexed: 01/21/2023]
Abstract
Zinc (Zn) is an essential element that regulates not only cellular immunity but also antioxidant and anti-inflammatory agents. The present study investigated the effect of Zn deficiency on renal cell apoptosis and its mechanism. A Zn-deficient kidney model in mice was created by a Zn-deficient diet. Mice were fed diets with different Zn levels for 41 days as follows: normal-Zn group (NG, 34 mg Zn/kg), low-Zn group (LG, 2 mg Zn/kg), and high-Zn group (HG, 100 mg Zn/kg). H&E staining showed that inflammatory cells and many erythrocytes exuded in the renal tissue space of the low-Zn group, and TUNEL staining indicated massive death of kidney cells in the low-Zn group. In the low-Zn group, the levels of oxygen free radicals (ROS) were significantly increased, the antioxidants were significantly decreased, and the total antioxidant capacity was decreased. Moreover, RT-qPCR and ELISA results showed that inflammatory factors (TNF-α, IL-1β, and IL-6) were significantly increased in the low-Zn group. In addition, the levels of p-IκBα, p-NF-κB p65, p-ERK, p-JNK, and p-p38 were significantly increased in the low-Zn group, indicating that zinc deficiency activates NF-κB and MAPK signalling as well as increases its expression. RT-qPCR analysis of apoptosis-related genes, including Bcl-2 Bax, Caspa8, Caspa6, and Caspa3, demonstrated that the expression levels of proapoptotic genes in mouse kidneys were significantly increased. Importantly, the in vitro results were consistent with the in vivo results. Together, these data suggested that zinc deficiency induces renal oxidative stress to activate NF-κB and MAPK signalling, thereby inducing renal cell apoptosis.
Collapse
Affiliation(s)
- Yueqi Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Ang Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xiang Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xian Deng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xue-Jiao Gao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
11
|
Lin K, Yang N, Luo W, Qian JF, Zhu WW, Ye SJ, Yuan CX, Xu DY, Liang G, Huang WJ, Shan PR. Direct cardio-protection of Dapagliflozin against obesity-related cardiomyopathy via NHE1/MAPK signaling. Acta Pharmacol Sin 2022; 43:2624-2635. [PMID: 35217813 PMCID: PMC9525284 DOI: 10.1038/s41401-022-00885-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 02/06/2022] [Indexed: 12/22/2022] Open
Abstract
Obesity is an important independent risk factor for cardiovascular diseases, remaining an important health concern worldwide. Evidence shows that saturated fatty acid-induced inflammation in cardiomyocytes contributes to obesity-related cardiomyopathy. Dapagliflozin (Dapa), a selective SGLT2 inhibitor, exerts a favorable preventive activity in heart failure. In this study, we investigated the protective effect of Dapa against cardiomyopathy caused by high fat diet-induced obesity in vitro and in vivo. Cultured rat cardiomyocyte H9c2 cells were pretreated with Dapa (1, 2.5 μM) for 1.5 h, followed by treatment with palmitic acid (PA, 200 μM) for 24 h. We showed that Dapa pretreatment concentration-dependently attenuated PA-induced cell hypertrophy, fibrosis and apoptosis. Transcriptome analysis revealed that inhibition of PA-activated MAPK/AP-1 pathway contributed to the protective effect of Dapa in H9c2 cells, and this was confirmed by anti-p-cJUN fluorescence staining assay. Using surface plasmon resonance analysis we found the direct binding of Dapa with NHE1. Gain and loss of function experiments further demonstrated the role of NHE1 in the protection of Dapa. In vivo experiments were conducted in mice fed a high fat diet for 5 months. The mice were administered Dapa (1 mg·kg-1·d-1, i.g.) in the last 2 months. Dapa administration significantly reduced the body weight and improved the serum lipid profiles. Dapa administration also alleviated HFD-induced cardiac dysfunction and cardiac aberrant remodeling via inhibiting MAPK/AP-1 pathway and ameliorating cardiac inflammation. In conclusion, Dapa exerts a direct protective effect against saturated fatty acid-induced cardiomyocyte injury in addition to the lowering effect on serum lipids. The protective effect results from negative regulating MAPK/AP-1 pathway in a NHE1-dependent way. The current study highlights the potential of clinical use of Dapa in the prevention of obesity-related cardiac dysfunction.
Collapse
Affiliation(s)
- Ke Lin
- Department of Cardiology, The Key Lab of Cardiovascular Disease of Wenzhou, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Na Yang
- Department of Cardiology, The Key Lab of Cardiovascular Disease of Wenzhou, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Wu Luo
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Jin-Fu Qian
- Department of Cardiology, The Key Lab of Cardiovascular Disease of Wenzhou, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Wei-Wei Zhu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Shi-Ju Ye
- Department of Cardiology, The Key Lab of Cardiovascular Disease of Wenzhou, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Chen-Xin Yuan
- Department of Cardiology, The Key Lab of Cardiovascular Disease of Wenzhou, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Di-Yun Xu
- Department of Cardiology, The Key Lab of Cardiovascular Disease of Wenzhou, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Wei-Jian Huang
- Department of Cardiology, The Key Lab of Cardiovascular Disease of Wenzhou, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China.
| | - Pei-Ren Shan
- Department of Cardiology, The Key Lab of Cardiovascular Disease of Wenzhou, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
12
|
Koniari I, Velissaris D, Kounis NG, Koufou E, Artopoulou E, de Gregorio C, Mplani V, Paraskevas T, Tsigkas G, Hung MY, Plotas P, Lambadiari V, Ikonomidis I. Anti-Diabetic Therapy, Heart Failure and Oxidative Stress: An Update. J Clin Med 2022; 11:4660. [PMID: 36012897 PMCID: PMC9409680 DOI: 10.3390/jcm11164660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/31/2022] [Accepted: 08/01/2022] [Indexed: 11/17/2022] Open
Abstract
Diabetes mellitus (DM) and heart failure (HF) are two chronic disorders that affect millions worldwide. Hyperglycemia can induce excessive generation of highly reactive free radicals that promote oxidative stress and further exacerbate diabetes progression and its complications. Vascular dysfunction and damage to cellular proteins, membrane lipids and nucleic acids can stem from overproduction and/or insufficient removal of free radicals. The aim of this article is to review the literature regarding the use of antidiabetic drugs and their role in glycemic control in patients with heart failure and oxidative stress. Metformin exerts a minor benefit to these patients. Thiazolidinediones are not recommended in diabetic patients, as they increase the risk of HF. There is a lack of robust evidence on the use of meglinitides and acarbose. Insulin and dipeptidyl peptidase-4 (DPP-4) inhibitors may have a neutral cardiovascular effect on diabetic patients. The majority of current research focuses on sodium glucose cotransporter 2 (SGLT2) inhibitors and glucagon-like peptide 1 (GLP-1) receptor agonists. SGLT2 inhibitors induce positive cardiovascular effects in diabetic patients, leading to a reduction in cardiovascular mortality and HF hospitalization. GLP-1 receptor agonists may also be used in HF patients, but in the case of chronic kidney disease, SLGT2 inhibitors should be preferred.
Collapse
Affiliation(s)
- Ioanna Koniari
- Department of Cardiology, University Hospital of South Manchester NHS Foundation Trust, Manchester M23 9LT, UK
| | - Dimitrios Velissaris
- Department of Internal Medicine, University Hospital of Patras, 26500 Patras, Greece
| | - Nicholas G. Kounis
- Department of Cardiology, University Hospital of Patras, 26500 Patras, Greece
| | - Eleni Koufou
- Department of Cardiology, University Hospital of Patras, 26500 Patras, Greece
| | - Eleni Artopoulou
- Department of Internal Medicine, University Hospital of Patras, 26500 Patras, Greece
| | - Cesare de Gregorio
- Department of Clinical and Experimental Medicine, University of Messina Medical School, 98122 Messina, Italy
| | - Virginia Mplani
- Intensive Care Unit, Patras University Hospital, 26500 Patras, Greece
| | | | - Grigorios Tsigkas
- Department of Cardiology, University Hospital of Patras, 26500 Patras, Greece
| | - Ming-Yow Hung
- Division of Cardiology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Taipei Heart Institute, Taipei Medical University, Taipei 11031, Taiwan
| | - Panagiotis Plotas
- Laboratory Primary Health Care, School of Health Rehabilitation Sciences, University of Patras, 26504 Patras, Greece
| | - Vaia Lambadiari
- Second Department of Internal Medicine, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Ignatios Ikonomidis
- Second Cardiology Department, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| |
Collapse
|
13
|
Laggner M, Oberndorfer F, Golabi B, Bauer J, Zuckermann A, Hacker P, Lang I, Skoro-Sajer N, Gerges C, Taghavi S, Jaksch P, Mildner M, Ankersmit HJ, Moser B. EGR1 Is Implicated in Right Ventricular Cardiac Remodeling Associated with Pulmonary Hypertension. BIOLOGY 2022; 11:biology11050677. [PMID: 35625405 PMCID: PMC9138384 DOI: 10.3390/biology11050677] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 11/16/2022]
Abstract
Background: Pulmonary hypertension (PH) is a vasoconstrictive disease characterized by elevated mean pulmonary arterial pressure (mPAP) at rest. Idiopathic pulmonary arterial hypertension (iPAH) and chronic thromboembolic pulmonary hypertension (CTEPH) represent two distinct subtypes of PH. Persisting PH leads to right ventricular (RV) hypertrophy, heart failure, and death. RV performance predicts survival and surgical interventions re-establishing physiological mPAP reverse cardiac remodeling. Nonetheless, a considerable number of PH patients are deemed inoperable. The underlying mechanism(s) governing cardiac regeneration, however, remain largely elusive. Methods: In a longitudinal approach, we profiled the transcriptional landscapes of hypertrophic RVs and recovered hearts 3 months after surgery of iPAH and CTEPH patients. Results: Genes associated with cellular responses to inflammatory stimuli and metal ions were downregulated, and cardiac muscle tissue development was induced in iPAH after recovery. In CTEPH patients, genes related to muscle cell development were decreased, and genes governing cardiac conduction were upregulated in RVs following regeneration. Intriguingly, early growth response 1 (EGR1), a profibrotic regulator, was identified as a major transcription factor of hypertrophic RVs in iPAH and CTEPH. A histological assessment confirmed our biocomputational results, and suggested a pivotal role for EGR1 in RV vasculopathy. Conclusion: Our findings improved our understanding of the molecular events driving reverse cardiac remodeling following surgery. EGR1 might represent a promising candidate for targeted therapy of PH patients not eligible for surgical treatment.
Collapse
Affiliation(s)
- Maria Laggner
- Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria; (M.L.); (J.B.); (S.T.); (P.J.); (H.J.A.)
- Applied Immunology Laboratory, Medical University of Vienna, 1090 Vienna, Austria
| | - Felicitas Oberndorfer
- Clinical Institute of Pathology, Medical University of Vienna, 1090 Vienna, Austria;
| | - Bahar Golabi
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria; (B.G.); (M.M.)
| | - Jonas Bauer
- Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria; (M.L.); (J.B.); (S.T.); (P.J.); (H.J.A.)
| | - Andreas Zuckermann
- Department of Cardiology, Medical University of Vienna, 1090 Vienna, Austria;
| | - Philipp Hacker
- Department of Oral and Maxillofacial Surgery, University Hospital St. Poelten, 3100 St. Poelten, Austria;
| | - Irene Lang
- Department of Medicine II, Division of Cardiology, Medical University of Vienna, 1090 Vienna, Austria; (I.L.); (N.S.-S.); (C.G.)
| | - Nika Skoro-Sajer
- Department of Medicine II, Division of Cardiology, Medical University of Vienna, 1090 Vienna, Austria; (I.L.); (N.S.-S.); (C.G.)
| | - Christian Gerges
- Department of Medicine II, Division of Cardiology, Medical University of Vienna, 1090 Vienna, Austria; (I.L.); (N.S.-S.); (C.G.)
| | - Shahrokh Taghavi
- Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria; (M.L.); (J.B.); (S.T.); (P.J.); (H.J.A.)
| | - Peter Jaksch
- Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria; (M.L.); (J.B.); (S.T.); (P.J.); (H.J.A.)
| | - Michael Mildner
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria; (B.G.); (M.M.)
| | - Hendrik Jan Ankersmit
- Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria; (M.L.); (J.B.); (S.T.); (P.J.); (H.J.A.)
- Applied Immunology Laboratory, Medical University of Vienna, 1090 Vienna, Austria
| | - Bernhard Moser
- Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria; (M.L.); (J.B.); (S.T.); (P.J.); (H.J.A.)
- Correspondence:
| |
Collapse
|
14
|
Gamage S, Hali M, Chen F, Kowluru A. CARD9 Mediates Pancreatic Islet Beta-Cell Dysfunction Under the Duress of Hyperglycemic Stress. Cell Physiol Biochem 2022; 56:120-137. [PMID: 35362297 PMCID: PMC9150799 DOI: 10.33594/000000508] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND/AIMS Published evidence implicates Caspase recruitment domain containing protein 9 (CARD9) in innate immunity. Given its recently suggested roles in obesity and insulin resistance, we investigated its regulatory role(s) in the onset of islet beta cell dysfunction under chronic hyperglycemic (metabolic stress) conditions. METHODS Islets from mouse pancreas were isolated by the collagenase digestion method. Expression of CARD9 was suppressed in INS-1 832/13 cells by siRNA transfection using the DharmaFect1 reagent. The degree of activation of Rac1 was assessed by a pull-down assay kit. Interactions between CARD9, RhoGDIβ and Rac1 under metabolic stress conditions were determined by co-immunoprecipitation assay. The degree of phosphorylation of stress kinases was assessed using antibodies directed against phosphorylated forms of the respective kinases. RESULTS CARD9 expression is significantly increased following exposure to high glucose, not to mannitol (both at 20 mM; 24 hrs.) in INS-1 832/13 cells. siRNA-mediated knockdown of CARD9 significantly attenuated high glucose-induced activation of Rac1 and phosphorylation of p38MAPK and p65 subunit of NF-κB (RelA), without significantly impacting high glucose-induced effects on JNK1/2 and ERK1/2 activities. CARD9 depletion also suppressed high glucose-induced CHOP expression (a marker for endoplasmic reticulum stress) in these cells. Co-immunoprecipitation studies revealed increased association between CARD9-RhoGDIβ and decreased association between RhoGDIβ-Rac1 in cells cultured under high glucose conditions. CONCLUSION Based on these data, we conclude that CARD9 regulates activation of Rac1-p38MAPK-NFκB signaling pathway leading to functional abnormalities in beta cells under metabolic stress conditions.
Collapse
Affiliation(s)
- Suhadinie Gamage
- Biomedical Research Service, John D. Dingell VA Medical Center, Detroit, MI, USA
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Mirabela Hali
- Biomedical Research Service, John D. Dingell VA Medical Center, Detroit, MI, USA
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Fei Chen
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
- Stony Brook Cancer Center, and Department of Pathology, Stony Brook University, Stony Brook, NY, USA
| | - Anjaneyulu Kowluru
- Biomedical Research Service, John D. Dingell VA Medical Center, Detroit, MI, USA,
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| |
Collapse
|
15
|
Liu X, Jiang B, Hao H, Liu Z. CARD9 Signaling, Inflammation, and Diseases. Front Immunol 2022; 13:880879. [PMID: 35432375 PMCID: PMC9005907 DOI: 10.3389/fimmu.2022.880879] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/07/2022] [Indexed: 12/15/2022] Open
Abstract
Caspase-recruitment domain 9 (CARD9) protein is expressed in many cells especially in immune cells, and is critically involved in the function of the innate and adaptive immune systems through extensive interactions between CARD9 and other signaling molecules including NF-κB and MAPK. CARD9-mediated signaling plays a central role in regulating inflammatory responses and oxidative stress through the productions of important cytokines and chemokines. Abnormalities of CARD9 and CARD9 signaling or CARD9 mutations or polymorphism are associated with a variety of pathological conditions including infections, inflammation, and autoimmune disorders. This review focuses on the function of CARD9 and CARD9-mediated signaling pathways, as well as interactions with other important signaling molecules in different cell types and the relations to specific disease conditions including inflammatory diseases, infections, tumorigenesis, and cardiovascular pathologies.
Collapse
Affiliation(s)
- Xuanyou Liu
- Center for Precision Medicine and Division of Cardiovascular Medicine, Department of Medicine, School of Medicine, University of Missouri, Columbia, MO, United States
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Bimei Jiang
- Department of Pathophysiology, Central South University, Changsha, China
| | - Hong Hao
- Center for Precision Medicine and Division of Cardiovascular Medicine, Department of Medicine, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Zhenguo Liu
- Center for Precision Medicine and Division of Cardiovascular Medicine, Department of Medicine, School of Medicine, University of Missouri, Columbia, MO, United States
| |
Collapse
|
16
|
Zhou W, Young JL, Men H, Zhang H, Yu H, Lin Q, Xu H, Xu J, Tan Y, Zheng Y, Cai L. Sex differences in the effects of whole-life, low-dose cadmium exposure on postweaning high-fat diet-induced cardiac pathogeneses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 809:152176. [PMID: 34875320 DOI: 10.1016/j.scitotenv.2021.152176] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/17/2021] [Accepted: 11/30/2021] [Indexed: 06/13/2023]
Abstract
We previously showed the development of cardiac remodeling (hypertrophy or fibrosis) in mice with either post-weaning high-fat diet (HFD, 60% kcal fat) feeding or exposure to chronic low-dose cadmium. Here, we determined whether whole-life exposure to environmentally relevant, low-dose cadmium affects the susceptibility of offspring to post-weaning HFD-induced cardiac pathologies and function. Besides, we also determined whether these effects are sex-dependent. Male and female mice were exposed to cadmium-containing (0, 0.5, or 5 parts per million [ppm]) drinking water before breeding; the pregnant mice and dams with offspring continually drank the same cadmium-containing water. After weaning, the offspring were continued on the same regime as their parents and fed either a HFD or normal fat diet for 24 weeks. Cardiac function was examined with echocardiography. Cardiac tissues were used for the histopathological and biochemical (gene and protein expression by real-time PCR and Western blotting) assays. Results showed a dose-dependent cadmium accumulation in the hearts of male and female mice along with decreased cardiac zinc and copper levels only in female offspring. Exposure to 5 ppm, but not 0.5 ppm, cadmium significantly enhanced HFD cardiac effects only in female mice, shown by worsened cardiac systolic and diastolic dysfunction (ejection fraction, mitral E-to-annular e' ratio), increased fibrosis (collagen, fibronectin, collagen1A1), hypertrophy (cardiomyocyte size, atrial natriuretic peptide, β-myosin heavy chain), and inflammation (intercellular adhesion molecule-1, tumor necrosis factor-α, plasminogen activator inhibitor type 1), compared to the HFD group. These synergistic effects were associated with activation of the p38 mitogen-activated protein kinases (MAPK) signaling pathway and increased oxidative stress, shown by 3-nitrotyrosine and malondialdehyde, along with decreased metallothionein expression. These results suggest that whole-life 5 ppm cadmium exposure significantly increases the susceptibility of female offspring to HFD-induced cardiac remodeling and dysfunction. The underlying mechanism and potential intervention will be further explored in the future.
Collapse
Affiliation(s)
- Wenqian Zhou
- Pediatric Research Institute, the Department of Pediatrics of University of Louisville, Louisville, KY 40202, USA; The Center of Cardiovascular Diseases, the First Hospital of Jilin University, Changchun 130021, China.
| | - Jamie L Young
- Pediatric Research Institute, the Department of Pediatrics of University of Louisville, Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA; Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA..
| | - Hongbo Men
- Pediatric Research Institute, the Department of Pediatrics of University of Louisville, Louisville, KY 40202, USA; The Center of Cardiovascular Diseases, the First Hospital of Jilin University, Changchun 130021, China.
| | - Haina Zhang
- Pediatric Research Institute, the Department of Pediatrics of University of Louisville, Louisville, KY 40202, USA; The Center of Cardiovascular Diseases, the First Hospital of Jilin University, Changchun 130021, China.
| | - Haitao Yu
- The Center of Cardiovascular Diseases, the First Hospital of Jilin University, Changchun 130021, China.
| | - Qian Lin
- Pediatric Research Institute, the Department of Pediatrics of University of Louisville, Louisville, KY 40202, USA.
| | - He Xu
- Department of Respiratory Medicine, the First Hospital of Jilin University (Eastern Division), Changchun 130031, China.
| | - Jianxiang Xu
- Pediatric Research Institute, the Department of Pediatrics of University of Louisville, Louisville, KY 40202, USA.
| | - Yi Tan
- Pediatric Research Institute, the Department of Pediatrics of University of Louisville, Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA; Wendy L. Novak Diabetes Care Center, Louisville, KY, USA.
| | - Yang Zheng
- The Center of Cardiovascular Diseases, the First Hospital of Jilin University, Changchun 130021, China.
| | - Lu Cai
- Pediatric Research Institute, the Department of Pediatrics of University of Louisville, Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA; Wendy L. Novak Diabetes Care Center, Louisville, KY, USA.
| |
Collapse
|
17
|
Zhang H, Wang Y, Men H, Zhou W, Zhou S, Liu Q, Cai L. CARD9 Regulation and its Role in Cardiovascular Diseases. Int J Biol Sci 2022; 18:970-982. [PMID: 35173530 PMCID: PMC8771857 DOI: 10.7150/ijbs.65979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 12/04/2021] [Indexed: 01/11/2023] Open
Abstract
Caspase recruitment domain-containing protein 9 (CARD9) is an adaptor protein expressed on myeloid cells and located downstream of pattern recognition receptors (PRRs), which transduces signals involved in innate immunity. CARD9 deficiency is associated with increased susceptibility to various fungal diseases. Increasing evidence shows that CARD9 mediates the activation of p38 MAPK, NF-κB, and NLRP3 inflammasome in various CVDs and then promotes the production of proinflammatory cytokines and chemokines, which contribute to cardiac remodeling and cardiac dysfunction in certain cardiovascular diseases (CVDs). Moreover, CARD9-mediated anti-apoptosis and autophagy are implicated in the progression of CVDs. Here, we summarize the structure and function of CARD9 in innate immunity and its various roles in inflammation, apoptosis, and autophagy in the pathogenesis of CVDs. Furthermore, we discuss the potential therapies targeting CARD9 to prevent CVDs and raise some issues for further exploring the role of CARD9 in CVDs.
Collapse
Affiliation(s)
- Haina Zhang
- Department of Cardiovascular Diseases, First Hospital of Jilin University, Jilin University, Changchun, 130021, China.,Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY, 40202, USA
| | - Yeling Wang
- Department of Cardiovascular Diseases, First Hospital of Jilin University, Jilin University, Changchun, 130021, China
| | - Hongbo Men
- Department of Cardiovascular Diseases, First Hospital of Jilin University, Jilin University, Changchun, 130021, China.,Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY, 40202, USA
| | - Wenqian Zhou
- Department of Cardiovascular Diseases, First Hospital of Jilin University, Jilin University, Changchun, 130021, China.,Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY, 40202, USA
| | - Shanshan Zhou
- Department of Cardiovascular Diseases, First Hospital of Jilin University, Jilin University, Changchun, 130021, China
| | - Quan Liu
- Department of Cardiovascular Diseases, First Hospital of Jilin University, Jilin University, Changchun, 130021, China.,✉ Corresponding authors: Dr. Quan Liu, Department of Cardiovascular Disease, First Hospital of Jilin University, Jilin University, Changchun, Jilin, 130021, China; E-mail: ; Dr. Lu Cai, Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY, 40202, USA; E-mail:
| | - Lu Cai
- Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY, 40202, USA.,Departments of Radiation Oncology, Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA.,✉ Corresponding authors: Dr. Quan Liu, Department of Cardiovascular Disease, First Hospital of Jilin University, Jilin University, Changchun, Jilin, 130021, China; E-mail: ; Dr. Lu Cai, Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY, 40202, USA; E-mail:
| |
Collapse
|
18
|
JNK signaling-dependent regulation of histone acetylation are involved in anacardic acid alleviates cardiomyocyte hypertrophy induced by phenylephrine. PLoS One 2021; 16:e0261388. [PMID: 34914791 PMCID: PMC8675748 DOI: 10.1371/journal.pone.0261388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 11/30/2021] [Indexed: 12/30/2022] Open
Abstract
Cardiac hypertrophy is a complex process induced by the activation of multiple signaling pathways. We previously reported that anacardic acid (AA), a histone acetyltransferase (HAT) inhibitor, attenuates phenylephrine (PE)-induced cardiac hypertrophy by downregulating histone H3 acetylation at lysine 9 (H3K9ac). Unfortunately, the related upstream signaling events remained unknown. The mitogen-activated protein kinase (MAPK) pathway is an important regulator of cardiac hypertrophy. In this study, we explored the role of JNK/MAPK signaling pathway in cardiac hypertrophy induced by PE. The mice cardiomyocyte hypertrophy model was successfully established by treating cells with PE in vitro. This study showed that p-JNK directly interacts with HATs (P300 and P300/CBP-associated factor, PCAF) and alters H3K9ac. In addition, both the JNK inhibitor SP600125 and the HAT inhibitor AA attenuated p-JNK overexpression and H3K9ac hyperacetylation by inhibiting P300 and PCAF during PE-induced cardiomyocyte hypertrophy. Moreover, we demonstrated that both SP600125 and AA attenuate the overexpression of cardiac hypertrophy-related genes (MEF2A, ANP, BNP, and β-MHC), preventing cardiomyocyte hypertrophy and dysfunction. These results revealed a novel mechanism through which AA might protect mice from PE-induced cardiomyocyte hypertrophy. In particular, AA inhibits the effects of JNK signaling on HATs-mediated histone acetylation, and could therefore be used to prevent and treat pathological cardiac hypertrophy.
Collapse
|
19
|
Fang Y, Wang S, Lv J, Zhao Z, Guo N, Wu G, Tong J, Wang Z. Slc39a2-Mediated Zinc Homeostasis Modulates Innate Immune Signaling in Phenylephrine-Induced Cardiomyocyte Hypertrophy. Front Cardiovasc Med 2021; 8:736911. [PMID: 34790705 PMCID: PMC8592093 DOI: 10.3389/fcvm.2021.736911] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/12/2021] [Indexed: 01/05/2023] Open
Abstract
Zinc dyshomeostasis has been involved in the pathogenesis of cardiac hypertrophy; however, the dynamic regulation of intracellular zinc and its downstream signaling in cardiac hypertrophy remain largely unknown. Using Zincpyr1 staining, we found a significant decrease of intracellular Zinc concentration in phenylephrine (PE)-induced hypertrophy of neonatal rat ventricular myocytes (NRVMs). We then screened SLC39 family members responsible for zinc uptake and identified Slc39a2 as the only one altered by PE treatment. Slc39a2 knockdown in NRVMs reduced the intracellular Zinc level, and exacerbated the hypertrophic responses to PE treatment. In contrast, adenovirus-mediated Slc39a2 overexpression enhanced zinc uptake and suppressed PE-induced Nppb expression. RNA sequencing analysis showed a pro-hypertrophic transcriptome reprogramming after Slc39a2 knockdown. Interestingly, the innate immune signaling pathways, including NOD signaling, TOLL-like receptor, NFκB, and IRFs, were remarkably enriched in the Slc39a2-regulated genes. Slc39a2 deficiency enhanced the phosphorylation of P65 NFκB and STAT3, and reduced the expression of IκBα. Finally, the expression of IRF7 was significantly increased by Slc39a2 knockdown, which was in turn suppressed by IRF7 knockdown. Our data demonstrate that zinc homeostasis mediated by a Slc39a2/IRF7 regulatory circuit contributes to the alteration of innate immune signaling in cardiomyocyte hypertrophy.
Collapse
Affiliation(s)
- Yu Fang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, China.,State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shun Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jian Lv
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, China.,State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhenyi Zhao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,School of Pharmacy, Health Science Center, Shenzhen University, Shenzhen, China
| | - Ningning Guo
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, China.,State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Gang Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jingjing Tong
- School of Life Sciences, Central China Normal University, Wuhan, China
| | - Zhihua Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, China.,State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
20
|
Kwak SY, Jang WI, Park S, Cho SS, Lee SB, Kim MJ, Park S, Shim S, Jang H. Metallothionein 2 activation by pravastatin reinforces epithelial integrity and ameliorates radiation-induced enteropathy. EBioMedicine 2021; 73:103641. [PMID: 34688032 PMCID: PMC8546423 DOI: 10.1016/j.ebiom.2021.103641] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/05/2021] [Accepted: 10/07/2021] [Indexed: 01/04/2023] Open
Abstract
Background Radiotherapy or accidental exposure to ionizing radiation causes severe damage of healthy intestinal tissues. Intestinal barrier function is highly sensitive to ionizing radiation, and loss of epithelial integrity results in mucosal inflammation, bacterial translocation, and endotoxemia. Few studies have of epithelial integrity as a therapeutic target to treat radiation toxicity. Here, we examined the effects of pravastatin (PS) and the molecular mechanisms underlying epithelial integrity on radiation-induced enteropathy. Methods The radio-mitigative effects of PS were evaluated in a minipig model by quantifying clinical symptoms, and performing histological and serological analyses and mRNA sequencing in intestinal tissues. To evaluate the role of intercellular junctions on radiation damage, we used tight junction regulator and metallothionein 2 (MT2) as treatments in a mouse model of radiation-induced enteropathy. Caco-2 monolayers were used to examine functional epithelial integrityand intercellular junction expression. Finding Using a minipig model of pharmaceutical oral bioavailability, we found that PS mitigated acute radiation-induced enteropathy. PS-treated irradiated minipigs had mild clinical symptoms, lower intestinal inflammation and endotoxin levels, and improved gastrointestinal integrity, compared with control group animals. The results of mRNA sequencing analysis indicated that PS treatment markedly influenced intercellular junctions by inhibiting p38 MAPK signaling in the irradiated intestinal epithelium. The PS-regulated gene MT2 improved the epithelial barrier via enhancement of intercellular junctions in radiation-induced enteropathy. Interpretation PS regulated epithelial integrity by modulating MT2 in radiation-damaged epithelial cells. These findings suggested that maintenance of epithelial integrity is a novel therapeutic target for treatment of radiation-induced gastrointestinal damage. Funding As stated in the Acknowledgments
Collapse
Affiliation(s)
- Seo Young Kwak
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Won Il Jang
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Seungwoo Park
- Comprehensive Radiation Irradiation Center, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Sang Sik Cho
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea; Department of Surgery, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Seung Bum Lee
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Min-Jung Kim
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Sunhoo Park
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Sehwan Shim
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea.
| | - Hyosun Jang
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea.
| |
Collapse
|
21
|
Ramachandra CJA, Cong S, Chan X, Yap EP, Yu F, Hausenloy DJ. Oxidative stress in cardiac hypertrophy: From molecular mechanisms to novel therapeutic targets. Free Radic Biol Med 2021; 166:297-312. [PMID: 33675957 DOI: 10.1016/j.freeradbiomed.2021.02.040] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 02/11/2021] [Accepted: 02/26/2021] [Indexed: 02/06/2023]
Abstract
When faced with increased workload the heart undergoes remodelling, where it increases its muscle mass in an attempt to preserve normal function. This is referred to as cardiac hypertrophy and if sustained, can lead to impaired contractile function. Experimental evidence supports oxidative stress as a critical inducer of both genetic and acquired forms of cardiac hypertrophy, a finding which is reinforced by elevated levels of circulating oxidative stress markers in patients with cardiac hypertrophy. These observations formed the basis for using antioxidants as a therapeutic means to attenuate cardiac hypertrophy and improve clinical outcomes. However, the use of antioxidant therapies in the clinical setting has been associated with inconsistent results, despite antioxidants having been shown to exert protection in several animal models of cardiac hypertrophy. This has forced us to revaluate the mechanisms, both upstream and downstream of oxidative stress, where recent studies demonstrate that apart from conventional mediators of oxidative stress, metabolic disturbances, mitochondrial dysfunction and inflammation as well as dysregulated autophagy and protein homeostasis contribute to disease pathophysiology through mechanisms involving oxidative stress. Importantly, novel therapeutic targets have been identified to counteract oxidative stress and attenuate cardiac hypertrophy but more interestingly, the repurposing of drugs commonly used to treat metabolic disorders, hypertension, peripheral vascular disease, sleep disorders and arthritis have also been shown to improve cardiac function through suppression of oxidative stress. Here, we review the latest literature on these novel mechanisms and intervention strategies with the aim of better understanding the complexities of oxidative stress for more precise targeted therapeutic approaches to prevent cardiac hypertrophy.
Collapse
Affiliation(s)
- Chrishan J A Ramachandra
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore; Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore.
| | - Shuo Cong
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore; Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore; Yong Loo Lin School of Medicine, National University Singapore, Singapore
| | - Xavier Chan
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore; Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore; Faculty of Science, National University of Singapore, Singapore
| | - En Ping Yap
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore; Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore; Yong Loo Lin School of Medicine, National University Singapore, Singapore
| | - Fan Yu
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore; Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore; Yong Loo Lin School of Medicine, National University Singapore, Singapore
| | - Derek J Hausenloy
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore; Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore; Yong Loo Lin School of Medicine, National University Singapore, Singapore; The Hatter Cardiovascular Institute, University College London, London, UK; Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan
| |
Collapse
|
22
|
Samad N, Sodunke TE, Abubakar AR, Jahan I, Sharma P, Islam S, Dutta S, Haque M. The Implications of Zinc Therapy in Combating the COVID-19 Global Pandemic. J Inflamm Res 2021; 14:527-550. [PMID: 33679136 PMCID: PMC7930604 DOI: 10.2147/jir.s295377] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 01/27/2021] [Indexed: 12/15/2022] Open
Abstract
The global pandemic from COVID-19 infection has generated significant public health concerns, both health-wise and economically. There is no specific pharmacological antiviral therapeutic option to date available for COVID-19 management. Also, there is an urgent need to discover effective medicines, prevention, and control methods because of the harsh death toll from this novel coronavirus infection. Acute respiratory tract infections, significantly lower respiratory tract infections, and pneumonia are the primary cause of millions of deaths worldwide. The role of micronutrients, including trace elements, boosted the human immune system and was well established. Several vitamins such as vitamin A, B6, B12, C, D, E, and folate; microelement including zinc, iron, selenium, magnesium, and copper; omega-3 fatty acids as eicosapentaenoic acid and docosahexaenoic acid plays essential physiological roles in promoting the immune system. Furthermore, zinc is an indispensable microelement essential for a thorough enzymatic physiological process. It also helps regulate gene-transcription such as DNA replication, RNA transcription, cell division, and cell activation in the human biological system. Subsequently, zinc, together with natural scavenger cells and neutrophils, are also involved in developing cells responsible for regulating nonspecific immunity. The modern food habit often promotes zinc deficiency; as such, quite a few COVID-19 patients presented to hospitals were frequently diagnosed as zinc deficient. Earlier studies documented that zinc deficiency predisposes patients to a viral infection such as herpes simplex, common cold, hepatitis C, severe acute respiratory syndrome coronavirus (SARS-CoV-1), the human immunodeficiency virus (HIV) because of reducing antiviral immunity. This manuscript aimed to discuss the various roles played by zinc in the management of COVID-19 infection.
Collapse
Affiliation(s)
- Nandeeta Samad
- Department of Public Health, North South University, Dhaka, 1229, Bangladesh
| | | | - Abdullahi Rabiu Abubakar
- Department of Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Bayero University, Kano, 700233, Nigeria
| | - Iffat Jahan
- Department of Physiology, Eastern Medical College, Cumilla, Bangladesh
| | - Paras Sharma
- Department of Pharmacognosy, BVM College of Pharmacy, Gwalior, India
| | - Salequl Islam
- Department of Microbiology, Jahangirnagar University, Dhaka, 1342, Bangladesh
| | - Siddhartha Dutta
- Department of Pharmacology, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Mainul Haque
- The Unit of Pharmacology, Faculty of Medicine and Defence Health, Universiti Pertahanan Nasional Malaysia (National Defence University of Malaysia), Kuala Lumpur, Malaysia
| |
Collapse
|
23
|
Zhang H, Cai L. Zinc homeostasis plays an important role in the prevention of obesity-induced cardiac inflammation, remodeling and dysfunction. J Trace Elem Med Biol 2020; 62:126615. [PMID: 32683230 DOI: 10.1016/j.jtemb.2020.126615] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 06/09/2020] [Accepted: 07/03/2020] [Indexed: 01/21/2023]
Abstract
Obesity often leads to cardiovascular diseases, such as obesity-related cardiac hypertrophy (ORCH), due to chronic cardiac inflammation. Zinc is structurally and functionally essential for many transcription factors, therefore it not only has anti-inflammatory and anti-oxidative stress functions, but also has insulin-like function, however, its role in the development of obesity-associated cardiac pathogenesis and the potentially underlying mechanism(s) remains unclear. This review aims to summarize the available evidence on the role of zinc homeostasis in the prevention of ORCH. It was recently reported that when four-week old mice were fed either high fat diet (HFD) or normal diet containing deficient, adequate or supplemented zinc, HFD induced obesity and ORCH along with increased phosphorylation of p38 MAPK and increased expression of B-cell lymphoma/ leukemia 10 (BCL10) and caspase recruitment domain family member 9 (CARD9). These effects were further aggravated by zinc deficiency and significantly alleviated by zinc supplementation. Mechanistically administration of a p38 MAPK specific inhibitor in HFD-fed mice for 3 months did not affect HFD-induced obesity and increased expression of BCL10 and CARD9, but completely abolished HFD/obesity-induced cardiac hypertrophy and inflammation. In cultured cardiomyocytes, inhibition of BCL10 expression by siRNA prevented palmitate-induced increased p38 MAPK activation and atrial natriuretic peptide expression. Deletion of metallothionein abolished the protective effect of zinc on palmitate-induced up-regulation of BCL10 and phospho-p38 MAPK. Taken together with other recent studies, we concluded that HFD and zinc deficiency synergistically induce ORCH by increasing oxidative stress-mediated activation of BCL10/CARD9/p38 MAPK signaling. Zinc supplementation ameliorates ORCH through activation of metallothionein to repress oxidative stress-activated BCL10 expression and p38 MAPK activation.
Collapse
Affiliation(s)
- Haina Zhang
- Pediatric Research Institute, Departments of Pediatric, University of Louisville School of Medicine, Louisville, KY, USA; Center of Cardiovascular Disorders, the First Hospital of Jilin University, Changchun, Jilin, China
| | - Lu Cai
- Pediatric Research Institute, Departments of Pediatric, University of Louisville School of Medicine, Louisville, KY, USA; Departments of Radiation Oncology, Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA.
| |
Collapse
|
24
|
Zhu K, Zhao Y, Yang Y, Bai Y, Zhao T. Icariin Alleviates Bisphenol A Induced Disruption of Intestinal Epithelial Barrier by Maintaining Redox Homeostasis In Vivo and In Vitro. ACS OMEGA 2020; 5:20399-20408. [PMID: 32832793 PMCID: PMC7439398 DOI: 10.1021/acsomega.0c02364] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/20/2020] [Indexed: 05/17/2023]
Abstract
Bisphenol A (BPA), a globally prevalent environmental contaminant, has been shown to have the potential to disrupt intestinal barrier function. This study explored the mechanisms of BPA-induced intestinal barrier dysfunction. In addition, the protective effect of the natural product icariin (ICA) on BPA-induced intestinal barrier dysfunction was evaluated. BPA relieved oxidative stress (reactive oxygen species (ROS), reactive nitrogen species (RNS), malondialdehyde (MDA), and hydrogen peroxide (H2O2)), suppressed antioxidant enzyme (superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT), and total antioxidant capacity (T-AOC)) activity, and increased gene expression and protein content of p38 mitogen-activated protein kinase (MAPK), giving rise to the dysfunctional gut in mice. ICA therapy effectively eased intestinal barrier dysfunction caused by BPA in vivo and in vitro. Treatment with p38 MAPK inhibitor (SB203580) significantly rescued the MODE-K cell barrier function disrupted by BPA challenge. However, treatment with p38 MAPK activator (anisomycin) did not attenuate the MODE-K cell barrier function impaired by BPA challenge. Overall, our data suggested that BPA disrupted intestinal barrier function in a p38 MAPK-dependent manner. Furthermore, we demonstrated that ICA regulated the redox equilibrium of intestinal epithelial cells by inhibiting the expression of p38 MAPK, thereby alleviating BPA-induced disruption of intestinal barrier function. These findings contributed to a better understanding of the mechanisms of BPA-induced intestinal barrier dysfunction and provided new insights into the prevention and treatment of BPA-induced intestinal diseases.
Collapse
Affiliation(s)
- Kun Zhu
- Department
of Pharmacy, The Third Hospital of Jilin
University, Xiantai Street
No. 126, Changchun 130021, China
| | - Yanan Zhao
- Department
of Oncology and Hematology, The Third Hospital
of Jilin University, Xiantai Street No. 126, Changchun 130021, China
| | - Yang Yang
- Department
of Oncology and Hematology, The Third Hospital
of Jilin University, Xiantai Street No. 126, Changchun 130021, China
| | - Yuansong Bai
- Department
of Oncology and Hematology, The Third Hospital
of Jilin University, Xiantai Street No. 126, Changchun 130021, China
| | - Tianyu Zhao
- College
of Basic Medical Sciences, Jilin University, Xinmin Street No. 126, Changchun 130021, China
| |
Collapse
|
25
|
Wang Y, Zhang D, Hou Y, Shen S, Wang T. The adaptor protein CARD9, from fungal immunity to tumorigenesis. Am J Cancer Res 2020; 10:2203-2225. [PMID: 32905547 PMCID: PMC7471374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 07/09/2020] [Indexed: 06/11/2023] Open
Abstract
The adaptor protein CARD9 is in charge of mediating signals from PRRs of myeloid cells to downstream transcription factor NF-κB. CARD9 plays an indispensable role in innate immunity. Both mice and humans with CARD9 deficiency show increased susceptibility to fungal and bacterial infections. CARD9 signaling not only activates but also shapes adaptive immune responses. The role of this molecule in tumor progression is increasingly being revealed. Our early study found that CARD9 is associated with the development of colon cancer and functions as a regulator of antitumor immunity. In this review, we focus on the upstream and downstream signaling pathways of CARD9, then we summarize the immunological recognition and responses induced by CARD9 signaling. Furthermore, we review the function of CARD9 in multiple aspects of host immunity, ranging from fungal immunity to tumorigenesis.
Collapse
Affiliation(s)
- Ying Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School of Nanjing UniversityNanjing 210093, China
| | - Di Zhang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School of Nanjing UniversityNanjing 210093, China
| | - Yayi Hou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School of Nanjing UniversityNanjing 210093, China
- Jiangsu Key Laboratory of Molecular MedicineNanjing, China
| | - Sunan Shen
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School of Nanjing UniversityNanjing 210093, China
- Jiangsu Key Laboratory of Molecular MedicineNanjing, China
| | - Tingting Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School of Nanjing UniversityNanjing 210093, China
- Jiangsu Key Laboratory of Molecular MedicineNanjing, China
| |
Collapse
|
26
|
Jia Q, Dahms HU, Wang L. Detection of Metallothionein Proteins by Enzyme-Linked Immunosorbent Assay (ELISA). Curr Pharm Biotechnol 2020; 21:544-554. [DOI: 10.2174/1389201020666191127124629] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/13/2019] [Accepted: 10/25/2019] [Indexed: 02/07/2023]
Abstract
Metallothioneins (MTs) are low-molecular-weight, cysteine-rich proteins that bind to heavy
metals. MTs play a key role in the homeostasis of metal ions, maintaining intracellular redox equilibria
and free radical scavenging. In several studies, under different conditions such as cancer development,
drug therapy and heavy metal stress, the unique structural changes and functional effects of MT were
studied. Although several assays are available to monitor the content and type of Metallothionein (MT)
from environmental samples or in biomedical assays, Enzyme-Linked Immunosorbent Assays (ELISA)
became the preferred method of MT detection. ELISA is low in cost, specific, simple, and efficient.
This review evaluates the advantages and disadvantages of using different types of ELISA in the
detection of metallothioneins from environmental or clinical samples as well as ways of its validation
and cross-validation.
Collapse
Affiliation(s)
- Qingyun Jia
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Hans-Uwe Dahms
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Lan Wang
- School of Life Science, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
27
|
Qi Y, Zhang Z, Liu S, Aluo Z, Zhang L, Yu L, Li Y, Song Z, Zhou L. Zinc Supplementation Alleviates Lipid and Glucose Metabolic Disorders Induced by a High-Fat Diet. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:5189-5200. [PMID: 32290656 DOI: 10.1021/acs.jafc.0c01103] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Zinc deficiency is a risk factor for the development of obesity and diabetes. Studies have shown lower serum zinc levels in obese individuals and those with diabetes. We speculate that zinc supplementation can alleviate obesity and diabetes and, to some extent, their complications. To test our hypothesis, we investigated the effects of zinc supplementation on mice with high-fat diet (HFD)-induced hepatic steatosis in vivo and in vitro by adding zinc to the diet of mice and the medium of HepG2 cells. Both results showed that high levels of zinc could alleviate the glucose and lipid metabolic disorders induced by a HFD. High zinc can reduce glucose production, promote glucose absorption, reduce lipid deposition, improve HFD-induced liver injury, and regulate energy metabolism. This study provides novel insight into the treatment of non-alcoholic fatty liver disease and glucose metabolic disorder.
Collapse
Affiliation(s)
- Yilin Qi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Zhiwang Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Siqi Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Zhier Aluo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Lifang Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Lin Yu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Yixing Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Ziyi Song
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Lei Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| |
Collapse
|
28
|
The Role of CARD9 in Metabolic Diseases. Curr Med Sci 2020; 40:199-205. [DOI: 10.1007/s11596-020-2166-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/16/2020] [Indexed: 01/19/2023]
Abstract
SummaryCaspase recruitment domain containing protein 9 (CARD9) is an adaptor protein that plays a critical role in pattern recognition receptors (PRRs)-mediated activation of NF-?B and mitogen-activated protein kinase (MAPK). This elicits initiation of the pro-inflammatory cytokines and leads to inflammatory responses, which has been recognized as a critical contributor to chronic inflammation. Current researches demonstrate that CARD9 is strongly associated with metabolic diseases, such as obesity, insulin resistance, atherosclerosis and so on. In this review, we summarize CARD9 signaling pathway and the role of CARD9 in metabolic diseases.
Collapse
|
29
|
Xiong W, Huang J, Li X, Zhang Z, Jin M, Wang J, Xu Y, Wang Z. Icariin and its phosphorylated derivatives alleviate intestinal epithelial barrier disruption caused by enterotoxigenic
Escherichia coli
through modulate p38 MAPK in vivo and in vitro. FASEB J 2019; 34:1783-1801. [DOI: 10.1096/fj.201902265r] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/13/2019] [Accepted: 11/23/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Wen Xiong
- College of Animal Science and Technology Southwest University Chongqing China
| | - Jing Huang
- College of Animal Science and Technology Southwest University Chongqing China
| | - Xueying Li
- College of Animal Science and Technology Southwest University Chongqing China
| | - Zhu Zhang
- College of Animal Science and Technology Southwest University Chongqing China
| | - Meilan Jin
- College of Animal Science and Technology Southwest University Chongqing China
| | - Jian Wang
- College of Animal Science and Technology Southwest University Chongqing China
| | - Yuwei Xu
- College of Animal Science and Technology Southwest University Chongqing China
| | - Zili Wang
- College of Animal Science and Technology Southwest University Chongqing China
| |
Collapse
|
30
|
Sun Y, Fan W, Xue R, Dong B, Liang Z, Chen C, Li J, Wang Y, Zhao J, Huang H, Jiang J, Wu Z, Dai G, Fang R, Yan Y, Yang T, Huang ZP, Dong Y, Liu C. Transcribed Ultraconserved Regions, Uc.323, Ameliorates Cardiac Hypertrophy by Regulating the Transcription of CPT1b (Carnitine Palmitoyl transferase 1b). Hypertension 2019; 75:79-90. [PMID: 31735087 DOI: 10.1161/hypertensionaha.119.13173] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Transcribed ultraconserved regions (T-UCRs) are a novel class of long noncoding RNAs transcribed from UCRs, which exhibit 100% DNA sequence conservation among humans, mice, and rats. However, whether T-UCRs regulate cardiac hypertrophy remains unclear. We aimed to explore the effects of T-UCRs on cardiac hypertrophy. First, we performed long noncoding RNA microarray analysis on hearts of mice subjected to sham surgery or aortic banding and found that the T-UCR uc.323 was decreased significantly in mice with aortic banding-induced cardiac hypertrophy. In vitro loss- and gain-of-function experiments demonstrated that uc.323 protected cardiomyocytes against hypertrophy induced by phenylephrine. Additionally, we discovered that mammalian target of rapamycin 1 contributed to phenylephrine-induced uc.323 downregulation and uc.323-mediated cardiomyocyte hypertrophy. We further mapped the possible target genes of uc.323 through global microarray mRNA expression analysis after uc.323 knockdown and found that uc.323 regulated the expression of cardiac hypertrophy-related genes such as CPT1b (Carnitine Palmitoyl transferase 1b). Then, chromatin immunoprecipitation proved that EZH2 (enhancer of zeste homolog 2) bound to the promoter of CPT1b via H3K27me3 (trimethylation of lysine 27 of histone H3) to induce CPT1b downregulation. And overexpression of CPT1b could block uc.323-mediated cardiomyocyte hypertrophy. Finally, we found that uc.323 deficiency induced cardiac hypertrophy. Our results reveal that uc.323 is a conserved T-UCR that inhibits cardiac hypertrophy, potentially by regulating the transcription of CPT1b via interaction with EZH2.
Collapse
Affiliation(s)
- Yu Sun
- From the Department of Cardiology (Y.S., W.F., R.X., B.D., Z.L., C.C., J.L., Y.W., J.Z., H.H., J.J., Z.W., G.D., R.F., Z.-p.H., Y.D., C.L.), the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China.,Department of Cardiology, the Second People's Hospital of Guangdong Province, Guangzhou, Guangdong, China (Y.S.).,NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, Guangdong, China (Y.S., W.F., R.X., B.D., Z.L., C.C., J.L., Y.W., J.Z., H.H., J.J., Z.W., G.D., R.F., Z.-p.H., Y.D., C.L.)
| | - Wendong Fan
- From the Department of Cardiology (Y.S., W.F., R.X., B.D., Z.L., C.C., J.L., Y.W., J.Z., H.H., J.J., Z.W., G.D., R.F., Z.-p.H., Y.D., C.L.), the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China.,NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, Guangdong, China (Y.S., W.F., R.X., B.D., Z.L., C.C., J.L., Y.W., J.Z., H.H., J.J., Z.W., G.D., R.F., Z.-p.H., Y.D., C.L.)
| | - Ruicong Xue
- From the Department of Cardiology (Y.S., W.F., R.X., B.D., Z.L., C.C., J.L., Y.W., J.Z., H.H., J.J., Z.W., G.D., R.F., Z.-p.H., Y.D., C.L.), the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China.,NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, Guangdong, China (Y.S., W.F., R.X., B.D., Z.L., C.C., J.L., Y.W., J.Z., H.H., J.J., Z.W., G.D., R.F., Z.-p.H., Y.D., C.L.)
| | - Bin Dong
- From the Department of Cardiology (Y.S., W.F., R.X., B.D., Z.L., C.C., J.L., Y.W., J.Z., H.H., J.J., Z.W., G.D., R.F., Z.-p.H., Y.D., C.L.), the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China.,NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, Guangdong, China (Y.S., W.F., R.X., B.D., Z.L., C.C., J.L., Y.W., J.Z., H.H., J.J., Z.W., G.D., R.F., Z.-p.H., Y.D., C.L.)
| | - Zhuomin Liang
- From the Department of Cardiology (Y.S., W.F., R.X., B.D., Z.L., C.C., J.L., Y.W., J.Z., H.H., J.J., Z.W., G.D., R.F., Z.-p.H., Y.D., C.L.), the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China.,NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, Guangdong, China (Y.S., W.F., R.X., B.D., Z.L., C.C., J.L., Y.W., J.Z., H.H., J.J., Z.W., G.D., R.F., Z.-p.H., Y.D., C.L.)
| | - Chen Chen
- From the Department of Cardiology (Y.S., W.F., R.X., B.D., Z.L., C.C., J.L., Y.W., J.Z., H.H., J.J., Z.W., G.D., R.F., Z.-p.H., Y.D., C.L.), the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China.,NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, Guangdong, China (Y.S., W.F., R.X., B.D., Z.L., C.C., J.L., Y.W., J.Z., H.H., J.J., Z.W., G.D., R.F., Z.-p.H., Y.D., C.L.)
| | - Jiayong Li
- From the Department of Cardiology (Y.S., W.F., R.X., B.D., Z.L., C.C., J.L., Y.W., J.Z., H.H., J.J., Z.W., G.D., R.F., Z.-p.H., Y.D., C.L.), the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China.,NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, Guangdong, China (Y.S., W.F., R.X., B.D., Z.L., C.C., J.L., Y.W., J.Z., H.H., J.J., Z.W., G.D., R.F., Z.-p.H., Y.D., C.L.)
| | - Yan Wang
- From the Department of Cardiology (Y.S., W.F., R.X., B.D., Z.L., C.C., J.L., Y.W., J.Z., H.H., J.J., Z.W., G.D., R.F., Z.-p.H., Y.D., C.L.), the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China.,NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, Guangdong, China (Y.S., W.F., R.X., B.D., Z.L., C.C., J.L., Y.W., J.Z., H.H., J.J., Z.W., G.D., R.F., Z.-p.H., Y.D., C.L.)
| | - Jingjing Zhao
- From the Department of Cardiology (Y.S., W.F., R.X., B.D., Z.L., C.C., J.L., Y.W., J.Z., H.H., J.J., Z.W., G.D., R.F., Z.-p.H., Y.D., C.L.), the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China.,NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, Guangdong, China (Y.S., W.F., R.X., B.D., Z.L., C.C., J.L., Y.W., J.Z., H.H., J.J., Z.W., G.D., R.F., Z.-p.H., Y.D., C.L.)
| | - Huiling Huang
- From the Department of Cardiology (Y.S., W.F., R.X., B.D., Z.L., C.C., J.L., Y.W., J.Z., H.H., J.J., Z.W., G.D., R.F., Z.-p.H., Y.D., C.L.), the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China.,NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, Guangdong, China (Y.S., W.F., R.X., B.D., Z.L., C.C., J.L., Y.W., J.Z., H.H., J.J., Z.W., G.D., R.F., Z.-p.H., Y.D., C.L.)
| | - Jingzhou Jiang
- From the Department of Cardiology (Y.S., W.F., R.X., B.D., Z.L., C.C., J.L., Y.W., J.Z., H.H., J.J., Z.W., G.D., R.F., Z.-p.H., Y.D., C.L.), the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China.,NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, Guangdong, China (Y.S., W.F., R.X., B.D., Z.L., C.C., J.L., Y.W., J.Z., H.H., J.J., Z.W., G.D., R.F., Z.-p.H., Y.D., C.L.)
| | - Zexuan Wu
- From the Department of Cardiology (Y.S., W.F., R.X., B.D., Z.L., C.C., J.L., Y.W., J.Z., H.H., J.J., Z.W., G.D., R.F., Z.-p.H., Y.D., C.L.), the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China.,NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, Guangdong, China (Y.S., W.F., R.X., B.D., Z.L., C.C., J.L., Y.W., J.Z., H.H., J.J., Z.W., G.D., R.F., Z.-p.H., Y.D., C.L.)
| | - Gang Dai
- From the Department of Cardiology (Y.S., W.F., R.X., B.D., Z.L., C.C., J.L., Y.W., J.Z., H.H., J.J., Z.W., G.D., R.F., Z.-p.H., Y.D., C.L.), the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China.,NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, Guangdong, China (Y.S., W.F., R.X., B.D., Z.L., C.C., J.L., Y.W., J.Z., H.H., J.J., Z.W., G.D., R.F., Z.-p.H., Y.D., C.L.)
| | - Rong Fang
- From the Department of Cardiology (Y.S., W.F., R.X., B.D., Z.L., C.C., J.L., Y.W., J.Z., H.H., J.J., Z.W., G.D., R.F., Z.-p.H., Y.D., C.L.), the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China.,NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, Guangdong, China (Y.S., W.F., R.X., B.D., Z.L., C.C., J.L., Y.W., J.Z., H.H., J.J., Z.W., G.D., R.F., Z.-p.H., Y.D., C.L.)
| | - Youchen Yan
- Department of Cardiology, Center for Translational Medicine (Y.Y., T.Y.), the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Tiqun Yang
- Department of Cardiology, Center for Translational Medicine (Y.Y., T.Y.), the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Zhan-Peng Huang
- From the Department of Cardiology (Y.S., W.F., R.X., B.D., Z.L., C.C., J.L., Y.W., J.Z., H.H., J.J., Z.W., G.D., R.F., Z.-p.H., Y.D., C.L.), the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China.,NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, Guangdong, China (Y.S., W.F., R.X., B.D., Z.L., C.C., J.L., Y.W., J.Z., H.H., J.J., Z.W., G.D., R.F., Z.-p.H., Y.D., C.L.)
| | - Yugang Dong
- From the Department of Cardiology (Y.S., W.F., R.X., B.D., Z.L., C.C., J.L., Y.W., J.Z., H.H., J.J., Z.W., G.D., R.F., Z.-p.H., Y.D., C.L.), the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China.,NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, Guangdong, China (Y.S., W.F., R.X., B.D., Z.L., C.C., J.L., Y.W., J.Z., H.H., J.J., Z.W., G.D., R.F., Z.-p.H., Y.D., C.L.)
| | - Chen Liu
- From the Department of Cardiology (Y.S., W.F., R.X., B.D., Z.L., C.C., J.L., Y.W., J.Z., H.H., J.J., Z.W., G.D., R.F., Z.-p.H., Y.D., C.L.), the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China.,NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, Guangdong, China (Y.S., W.F., R.X., B.D., Z.L., C.C., J.L., Y.W., J.Z., H.H., J.J., Z.W., G.D., R.F., Z.-p.H., Y.D., C.L.)
| |
Collapse
|
31
|
Ge T, Yu Y, Cui J, Cai L. The adaptive immune role of metallothioneins in the pathogenesis of diabetic cardiomyopathy: good or bad. Am J Physiol Heart Circ Physiol 2019; 317:H264-H275. [PMID: 31100011 DOI: 10.1152/ajpheart.00123.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Diabetes is a metabolic disorder characterized by hyperglycemia, resulting in low-grade systemic inflammation. Diabetic cardiomyopathy (DCM) is a common complication among diabetic patients, and the mechanism underlying its induction of cardiac remodeling and dysfunction remains unclear. Numerous experimental and clinical studies have suggested that adaptive immunity, especially T lymphocyte-mediated immunity, plays a potentially important role in the pathogenesis of diabetes and DCM. Metallothioneins (MTs), cysteine-rich, metal-binding proteins, have antioxidant properties. Some potential mechanisms underlying the cardioprotective effects of MTs include the role of MTs in calcium regulation, zinc homeostasis, insulin sensitization, and antioxidant activity. Moreover, metal homeostasis, especially MT-regulated zinc homeostasis, is essential for immune function. This review discusses aberrant immune regulation in diabetic heart disease with respect to endothelial insulin resistance and the effects of hyperglycemia and hyperlipidemia on tissues and the different effects of intracellular and extracellular MTs on adaptive immunity. This review shows that intracellular MTs are involved in naïve T-cell activation and reduce regulatory T-cell (Treg) polarization, whereas extracellular MTs promote proliferation and survival in naïve T cells and Treg polarization but inhibit their activation, thus revealing potential therapeutic strategies targeting the regulation of immune cell function by MTs.
Collapse
Affiliation(s)
- Tingwen Ge
- Cancer Center, First Hospital of Jilin University , Changchun, Jilin , China.,Pediatric Research Institute, Department of Pediatrics, University of Louisville, Norton Health Care, Louisville, Kentucky
| | - Youxi Yu
- Pediatric Research Institute, Department of Pediatrics, University of Louisville, Norton Health Care, Louisville, Kentucky.,Department of Hepatobiliary and Pancreatic Surgery, First Hospital of Jilin University , Changchun, Jilin , China
| | - Jiuwei Cui
- Cancer Center, First Hospital of Jilin University , Changchun, Jilin , China
| | - Lu Cai
- Pediatric Research Institute, Department of Pediatrics, University of Louisville, Norton Health Care, Louisville, Kentucky.,Departments of Radiation Oncology, Pharmacology and Toxicology, University of Louisville , Louisville, Kentucky
| |
Collapse
|
32
|
Antioxidative Property and Molecular Mechanisms Underlying Geniposide-Mediated Therapeutic Effects in Diabetes Mellitus and Cardiovascular Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7480512. [PMID: 31089416 PMCID: PMC6476013 DOI: 10.1155/2019/7480512] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 02/07/2019] [Accepted: 02/13/2019] [Indexed: 02/07/2023]
Abstract
Geniposide, an iridoid glucoside, is a major component in the fruit of Gardenia jasminoides Ellis (Gardenia fruits). Geniposide has been experimentally proved to possess multiple pharmacological actions involving antioxidative stress, anti-inflammatory, antiapoptosis, antiangiogenesis, antiendoplasmic reticulum stress (ERS), etc. In vitro and in vivo studies have further identified the value of geniposide in a spectrum of preclinical models of diabetes mellitus (DM) and cardiovascular disorders. The antioxidative property of geniposide should be attributed to the result of either the inhibition of numerous pathological processes or the activation of various proteins associated with cell survival or a combination of both. In this review, we will summarize the available knowledge on the antioxidative property and protective effects of geniposide in DM and cardiovascular disease in the literature and discuss antioxidant mechanisms as well as its potential applications in clinic.
Collapse
|
33
|
Evaluation of metallothioneins, oxidative stress and signs of cytotoxicity in young obese women. UKRAINIAN BIOCHEMICAL JOURNAL 2018. [DOI: 10.15407/ubj90.05.071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
34
|
Holliday MJ, Ferrao R, de Leon Boenig G, Estevez A, Helgason E, Rohou A, Dueber EC, Fairbrother WJ. Picomolar zinc binding modulates formation of Bcl10-nucleating assemblies of the caspase recruitment domain (CARD) of CARD9. J Biol Chem 2018; 293:16803-16817. [PMID: 30206119 DOI: 10.1074/jbc.ra118.004821] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 09/04/2018] [Indexed: 12/28/2022] Open
Abstract
The caspase recruitment domain-containing protein 9 (CARD9)-B-cell lymphoma/leukemia 10 (Bcl10) signaling axis is activated in myeloid cells during the innate immune response to a variety of diverse pathogens. This signaling pathway requires a critical caspase recruitment domain (CARD)-CARD interaction between CARD9 and Bcl10 that promotes downstream activation of factors, including NF-κB and the mitogen-activated protein kinase (MAPK) p38. Despite these insights, CARD9 remains structurally uncharacterized, and little mechanistic understanding of its regulation exists. We unexpectedly found here that the CARD in CARD9 binds to Zn2+ with picomolar affinity-a concentration comparable with the levels of readily accessible Zn2+ in the cytosol. NMR solution structures of the CARD9-CARD in the apo and Zn2+-bound states revealed that Zn2+ has little effect on the ground-state structure of the CARD; yet the stability of the domain increased considerably upon Zn2+ binding, with a concomitant reduction in conformational flexibility. Moreover, Zn2+ binding inhibited polymerization of the CARD9-CARD into helical assemblies. Here, we also present a 20-Å resolution negative-stain EM (NS-EM) structure of these filamentous assemblies and show that they adopt a similar helical symmetry as reported previously for filaments of the Bcl10 CARD. Using both bulk assays and direct NS-EM visualization, we further show that the CARD9-CARD assemblies can directly template and thereby nucleate Bcl10 polymerization, a capacity considered critical to propagation of the CARD9-Bcl10 signaling cascade. Our findings indicate that CARD9 is a potential target of Zn2+-mediated signaling that affects Bcl10 polymerization in innate immune responses.
Collapse
Affiliation(s)
| | - Ryan Ferrao
- Structural Biology Department, Genentech, South San Francisco, California 94080
| | | | - Alberto Estevez
- Structural Biology Department, Genentech, South San Francisco, California 94080
| | | | - Alexis Rohou
- Structural Biology Department, Genentech, South San Francisco, California 94080
| | - Erin C Dueber
- From the Early Discovery Biochemistry Department and
| | | |
Collapse
|
35
|
Nrf2 expression and function, but not MT expression, is indispensable for sulforaphane-mediated protection against intermittent hypoxia-induced cardiomyopathy in mice. Redox Biol 2018; 19:11-21. [PMID: 30096613 PMCID: PMC6086220 DOI: 10.1016/j.redox.2018.07.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/08/2018] [Accepted: 07/19/2018] [Indexed: 12/24/2022] Open
Abstract
We reported previously that nuclear factor erythroid 2-related factor 2 (Nrf2) and metallothionein (MT) play critical roles in preventing intermittent hypoxia (IH)-induced cardiomyopathy. In addition, positive feedback regulation between Nrf2 and MT is required for the efficient compensative responses of the heart to IH. As an activator of Nrf2, sulforaphane (SFN) has attracted attention as a potential protective agent against cardiovascular disease. Here, we investigated whether SFN can up-regulate cardiac Nrf2 expression and function, as well as MT expression, to prevent IH-induced cardiomyopathy, and if so, whether Nrf2 and MT are indispensable for this preventive effect. Nrf2-knock-out (Nrf2-KO) or MT-KO mice and their wild-type (WT) equivalents were exposed to IH for 4 weeks with or without SFN treatment. SFN almost completely prevented IH-induced cardiomyopathy in WT mice, and this preventive effect was abolished in Nrf2-KO mice but retained in MT-KO mice. In IH-exposed WT mice, SFN induced significant increases in the expression levels of Nrf2 and its downstream antioxidant target genes, as well as those of MT, but these effects were not seen in IH-exposed Nrf2-KO mice. By contrast, KO of MT did not affect the ability of SFN to up-regulate the expression of Nrf2 and its downstream antioxidant targets. These results suggest that SFN-induced MT expression is Nrf2-dependent, and SFN prevents IH-induced cardiomyopathy in a Nrf2-dependent manner, for which MT is dispensable. This study provides important information that is relevant to the potential use of SFN to prevent IH-induced cardiomyopathy. Sulforaphane (SFN) protects from intermittent-hypoxia (IH)-induced cardiomyopathy; SFN can increase both Nrf2 and metallothionein (MT) but the latter is Nrf2 dependent. SFN protects the heart from IH in wild-type and MT-KO mice, but not in Nrf2 mice. Nrf2 is indispensable, but not MT, for SFN to protect from IH-induced cardiomyopathy.
Collapse
|
36
|
Use of Plant and Herb Derived Medicine for Therapeutic Usage in Cardiology. MEDICINES 2018; 5:medicines5020038. [PMID: 29690545 PMCID: PMC6023439 DOI: 10.3390/medicines5020038] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/16/2018] [Accepted: 04/19/2018] [Indexed: 02/02/2023]
Abstract
Cardiovascular diseases (CVDs) have become prominent in mortality and morbidity rates. Prevalent cardiovascular conditions, such as hypertension, atherosclerosis and oxidative stress, are increasing at an alarming rate. Conventional drugs have been associated with adverse effects, suggesting a need for an alternative measure to ameliorate CVD. A number of plant- and herb-derived preventative food and therapeutic drugs for cardiovascular conditions are progressively used for their various benefits. Naturally derived food and drugs have fewer side effects because they come from natural elements; preventative food, such as grape seed, inhibits changes of histopathology and biomarkers in vital organs whereas therapeutic drugs, for instance Xanthone, improve heart functions by suppressing oxidative stress of myocyte. This review closely examines the various plant- and herb-derived drugs that have assumed an essential role in treating inflammation and oxidative stress for prevalent cardiovascular conditions. Furthermore, the use of plant-derived medicine with other synthetic particles, such as nanoparticles, for targeted therapy is investigated for its effective clinical use in the future.
Collapse
|
37
|
Zeng X, Du X, Zhang J, Jiang S, Liu J, Xie Y, Shan W, He G, Sun Q, Zhao J. The essential function of CARD9 in diet-induced inflammation and metabolic disorders in mice. J Cell Mol Med 2018; 22:2993-3004. [PMID: 29575791 PMCID: PMC5980191 DOI: 10.1111/jcmm.13494] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 11/07/2017] [Indexed: 12/13/2022] Open
Abstract
Inflammation and metabolic disorder are common pathophysiological conditions, which play a vital role in the development of obesity and type 2 diabetes. The purpose of this study was to explore the effects of caspase recruitment domain (CARD) 9 in the high fat diet (HFD)‐treated mice and attempt to find a molecular therapeutic target for obesity development and treatment. Sixteen male CARD9−/− and corresponding male WT mice were fed with normal diet or high fat diet, respectively, for 12 weeks. Glucose tolerance, insulin resistance, oxygen consumption and heat production of the mice were detected. The CARD9/MAPK pathway‐related gene and protein were determined in insulin‐responsive organs using Western blotting and quantitative PCR. The results showed that HFD‐induced insulin resistance and impairment of glucose tolerance were more severe in WT mice than that in the CARD9−/− mice. CARD9 absence significantly modified O2 consumption, CO2 production and heat production. CARD9−/− mice displayed the lower expression of p38 MAPK, JNK and ERK when compared to the WT mice in both HFD‐ and ND‐treated groups. HFD induced the increase of p38 MAPK, JNK and ERK in WT mice but not in the CARD9−/− mice. The results indicated that CARD9 absence could be a vital protective factor in diet‐induced obesity via the CARD9/MAPK pathway, which may provide new insights into the development of gene knockout to improving diet‐induced obesity and metabolism disorder.
Collapse
Affiliation(s)
- Xuejiao Zeng
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai, China.,The Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, China
| | - Xihao Du
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai, China.,The Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, China
| | - Jia Zhang
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai, China.,The Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, China
| | - Shuo Jiang
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai, China.,The Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, China
| | - Jie Liu
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai, China.,The Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, China
| | - Yuquan Xie
- Department of Cardiology, School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Shan
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China.,Ministry of Education, Fudan University, Shanghai, China
| | - Guanglong He
- College of Health Sciences, University of Wyoming School of Pharmacy, Laramie, WY, USA
| | - Qinghua Sun
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH, USA
| | - Jinzhuo Zhao
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai, China.,The Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Meteorology and Health, Shanghai, China
| |
Collapse
|
38
|
Sun W, Yang J, Wang W, Hou J, Cheng Y, Fu Y, Xu Z, Cai L. The beneficial effects of Zn on Akt-mediated insulin and cell survival signaling pathways in diabetes. J Trace Elem Med Biol 2018; 46:117-127. [PMID: 29413101 DOI: 10.1016/j.jtemb.2017.12.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 12/06/2017] [Accepted: 12/21/2017] [Indexed: 12/11/2022]
Abstract
Zinc is one of the essential trace elements and participates in numerous physiological processes. Abnormalities in zinc homeostasis often result in the pathogenesis of various chronic metabolic disorders, such as diabetes and its complications. Zinc has insulin-mimetic and anti-diabetic effects and deficiency has been shown to aggravate diabetes-induced oxidative stress and tissue injury in diabetic rodent models and human subjects with diabetes. Akt signaling pathway plays a central role in insulin-stimulated glucose metabolism and cell survival. Anti-diabetic effects of zinc are largely dependent on the activation of Akt signaling. Zn is also an inducer of metallothionein that plays important role in anti-oxidative stress and damage. However, the exact molecular mechanisms underlying zinc-induced activation of Akt signaling pathway remains to be elucidated. This review summarizes the recent advances in deciphering the possible mechanisms of zinc on Akt-mediated insulin and cell survival signaling pathways in diabetes conditions. Insights into the effects of zinc on epigenetic regulation and autophagy in diabetic nephropathy are also discussed in the latter part of this review.
Collapse
Affiliation(s)
- Weixia Sun
- Department of Nephrology, The First Hospital of Jilin University, Changchun, Jilin, 130021, China.
| | - Jiaxing Yang
- Department of Gastrointestinal Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Wanning Wang
- Department of Nephrology, The First Hospital of Jilin University, Changchun, Jilin, 130021, China; Pediatric Research Institute, The Departments of Pediatrics, Radiation Oncology, Pharmacology and Toxicology, The University of Louisville, Louisville, KY 40202, USA
| | - Jie Hou
- Department of Nephrology, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Yanli Cheng
- Department of Nephrology, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Yaowen Fu
- Department of Nephrology, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Zhonggao Xu
- Department of Nephrology, The First Hospital of Jilin University, Changchun, Jilin, 130021, China.
| | - Lu Cai
- Pediatric Research Institute, The Departments of Pediatrics, Radiation Oncology, Pharmacology and Toxicology, The University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
39
|
Gu J, Wang S, Guo H, Tan Y, Liang Y, Feng A, Liu Q, Damodaran C, Zhang Z, Keller BB, Zhang C, Cai L. Inhibition of p53 prevents diabetic cardiomyopathy by preventing early-stage apoptosis and cell senescence, reduced glycolysis, and impaired angiogenesis. Cell Death Dis 2018; 9:82. [PMID: 29362483 PMCID: PMC5833384 DOI: 10.1038/s41419-017-0093-5] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 10/01/2017] [Accepted: 10/09/2017] [Indexed: 02/08/2023]
Abstract
Elevated tumor suppressor p53 expression has been associated with heart diseases, including the diabetic heart. However, its precise role in the pathogenesis of diabetic cardiomyopathy (DCM) remains unclear. We hypothesized that the development of DCM is attributed to up-regulated p53-mediated both early cardiac cell death and persistent cell senescence, glycolytic and angiogenetic dysfunctions. The present study investigated the effect of p53 inhibition with its specific inhibitor pifithrin-α (PFT-α) on the pathogenesis of DCM and its associated mechanisms. Type 1 diabetes was induced with multiple low doses of streptozotocin. Both hyperglycemic and age-matched control mice were treated with and without PFT-α five times a week for 2 months and then sacrificed at 3 and 6 months post-diabetes. Treatment with PFT-α significantly prevented the progression of diabetes-induced cardiac remodeling and dysfunction (i.e., DCM). Mechanistically, the inhibition of p53 prevented the cardiac apoptosis during early-stage diabetes (0.5 month), attenuated diabetes-induced cell senescence (3 and 6 months), and improved both glycolytic and angiogenic defects by increasing hypoxia-induced factor (HIF)-1α protein stability and upregulating HIF-1α transcription of specific target genes at 3 and 6 months after diabetes. Therefore, the targeted inhibition of p53 in diabetic individuals may provide a novel approach for the prevention of DCM.
Collapse
Affiliation(s)
- Junlian Gu
- Ruian Center of Chinese-American Research Institute for Diabetic Complications, the Third Affiliated Hospital of the Wenzhou Medical University, Ruian, China.,Chinese-American Research Institute for Diabetic Complications, the School of Pharmaceutical Sciences of the Wenzhou Medical University, Wenzhou, China.,the Department of Pediatrics of the University of Louisville, Pediatrics Research Institute, Louisville, KY, 40202, USA
| | - Shudong Wang
- Department of Cardiology, the First Hospital of Jilin University, Changchun, 130021, China
| | - Hua Guo
- the Department of Pediatrics of the University of Louisville, Pediatrics Research Institute, Louisville, KY, 40202, USA
| | - Yi Tan
- Ruian Center of Chinese-American Research Institute for Diabetic Complications, the Third Affiliated Hospital of the Wenzhou Medical University, Ruian, China.,Chinese-American Research Institute for Diabetic Complications, the School of Pharmaceutical Sciences of the Wenzhou Medical University, Wenzhou, China.,the Department of Pediatrics of the University of Louisville, Pediatrics Research Institute, Louisville, KY, 40202, USA
| | - Yaqin Liang
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Anyun Feng
- Ruian Center of Chinese-American Research Institute for Diabetic Complications, the Third Affiliated Hospital of the Wenzhou Medical University, Ruian, China
| | - Qiuju Liu
- Department of Hematology, the First Hospital of Jilin University, Changchun, 130021, China
| | - Chendil Damodaran
- Department of Urology, the University of Louisville, Louisville, KY, USA
| | - Zhiguo Zhang
- Department of Cardiology, the First Hospital of Jilin University, Changchun, 130021, China
| | - Bradley B Keller
- the Department of Pediatrics of the University of Louisville, Pediatrics Research Institute, Louisville, KY, 40202, USA.,Kosair Charities Pediatric Heart Research Program, Cardiovascular Innovation Institute, University of Louisville, Louisville, KY, 40202, USA
| | - Chi Zhang
- Ruian Center of Chinese-American Research Institute for Diabetic Complications, the Third Affiliated Hospital of the Wenzhou Medical University, Ruian, China. .,Chinese-American Research Institute for Diabetic Complications, the School of Pharmaceutical Sciences of the Wenzhou Medical University, Wenzhou, China.
| | - Lu Cai
- Ruian Center of Chinese-American Research Institute for Diabetic Complications, the Third Affiliated Hospital of the Wenzhou Medical University, Ruian, China.,Chinese-American Research Institute for Diabetic Complications, the School of Pharmaceutical Sciences of the Wenzhou Medical University, Wenzhou, China.,the Department of Pediatrics of the University of Louisville, Pediatrics Research Institute, Louisville, KY, 40202, USA
| |
Collapse
|
40
|
Zhong X, Chen B, Yang L, Yang Z. Molecular and physiological roles of the adaptor protein CARD9 in immunity. Cell Death Dis 2018; 9:52. [PMID: 29352133 PMCID: PMC5833731 DOI: 10.1038/s41419-017-0084-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/11/2017] [Accepted: 10/16/2017] [Indexed: 12/11/2022]
Abstract
CARD9 is a caspase recruitment domain-containing signaling protein that plays a critical role in innate and adaptive immunity. It has been widely demonstrated that CARD9 adaptor allows pattern recognition receptors to induce NF-κB and MAPK activation, which initiates a “downstream” inflammation cytokine cascade and provides effective protection against microbial invasion, especially fungal infection. Here our aim is to update existing paradigms and summarize the most recent findings on the CARD9 signaling pathway, revealing significant mechanistic insights into the pathogenesis of CARD9 deficiency. We also discuss the effect of CARD9 genetic mutations on the in vivo immune response, and highlight clinical advances in non-infection inflammation.
Collapse
Affiliation(s)
| | - Bin Chen
- Surgery Department, First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, China
| | - Liang Yang
- Fuzhou Medical College of Nanchang University, Jiangxi, China
| | - Zhiwen Yang
- Department of Pharmacy, Songjiang Hospital Affiliated Shanghai First People's Hospital, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
41
|
Ganesan K, Sukalingam K, Xu B. Impact of consumption and cooking manners of vegetable oils on cardiovascular diseases- A critical review. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2017.11.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|