1
|
Huang H, Zhang S, Weng Y, Li Z, Wang J, Huang R, Wu H. Characterizing childhood trauma in individuals based on patterns of intrinsic brain connectivity. J Affect Disord 2025; 375:103-117. [PMID: 39842674 DOI: 10.1016/j.jad.2025.01.094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 11/17/2024] [Accepted: 01/18/2025] [Indexed: 01/24/2025]
Abstract
Childhood maltreatment represents a strong psychological stressor that may lead to the development of later psychopathology as well as a heightened risk of health and social problems. Despite a surge of interest in examining behavioral, neurocognitive, and brain connectivity profiles sculpted by such early adversity over the past decades, little is known about the neurobiological substrates underpinning childhood maltreatment. Here, we aim to detect the effects of childhood maltreatment on whole-brain resting-state functional connectivity (RSFC) in a cohort of healthy adults and to explore whether such RSFC profiles can be used to predict the severity of childhood trauma in subjects based on a data-driven connectome-based predictive modeling (CPM). Resting-state functional MRI (rs-fMRI) data were acquired from 97 healthy adults, each of whom was assessed for childhood maltreatment levels using the Childhood Trauma Questionnaire-Short Form (CTQ-SF). CPM was used to examine the association between whole-brain RSFC and childhood maltreatment levels. The results showed that CPM was able to decode individual childhood maltreatment levels from RSFC across multiple neural systems including RSFC between and within limbic and prefrontal systems as well as their connectivity with other networks. Key nodes contributing to the prediction model included the amygdala, prefrontal, and anterior cingulate regions that have been linked to childhood maltreatment. These results remained robust using different validation procedures. Our findings revealed that RSFC among multiple neural systems can be used to predict childhood maltreatment levels in individuals.
Collapse
Affiliation(s)
- Huiyuan Huang
- School of Public Health and Management, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Center for the Study of Applied Psychology & MRI Center, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, School of Psychology, South China Normal University, Guangzhou 510631, China
| | - Shufei Zhang
- Center for the Study of Applied Psychology & MRI Center, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, School of Psychology, South China Normal University, Guangzhou 510631, China
| | - Yihe Weng
- Center for the Study of Applied Psychology & MRI Center, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, School of Psychology, South China Normal University, Guangzhou 510631, China
| | - Zezhi Li
- The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou 510370, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China
| | - Junjing Wang
- Department of Applied Psychology, Guangdong University of Foreign Studies, Guangzhou 510006, China
| | - Ruiwang Huang
- Center for the Study of Applied Psychology & MRI Center, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, School of Psychology, South China Normal University, Guangzhou 510631, China.
| | - Huawang Wu
- The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou 510370, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
2
|
Niu Y, Camacho MC, Wu S, Humphreys KL. The Impact of Early Life Experiences on Stress Neurobiology and the Development of Anxiety. Curr Top Behav Neurosci 2024. [PMID: 39531200 DOI: 10.1007/7854_2024_542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
We examine the association between stress exposure during early development (i.e., the prenatal period through the first two postnatal years) and variation in brain structure and function relevant to anxiety. Evidence of stress-related effects occurring in regions essential for emotional processing and regulation may increase susceptibility to anxiety.
Collapse
Affiliation(s)
- Yanbin Niu
- Vanderbilt University, Nashville, TN, USA
| | | | - Shuang Wu
- Vanderbilt University, Nashville, TN, USA
| | | |
Collapse
|
3
|
Schwartz L, Hayut O, Levy J, Gordon I, Feldman R. Sensitive infant care tunes a frontotemporal interbrain network in adolescence. Sci Rep 2024; 14:22602. [PMID: 39349700 PMCID: PMC11442694 DOI: 10.1038/s41598-024-73630-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/19/2024] [Indexed: 10/04/2024] Open
Abstract
Caregiving plays a critical role in children's cognitive, emotional, and psychological well-being. In the current longitudinal study, we investigated the enduring effects of early maternal behavior on processes of interbrain synchrony in adolescence. Mother-infant naturalistic interactions were filmed when infants were 3-4 months old and interactions were coded for maternal sensitivity and intrusiveness with the Coding Interactive Behavior Manual. In early adolescence (Mean = 12.30, SD = 1.25), mother-adolescent interbrain synchrony was measured using hyperscanning EEG during a naturalistic interaction of positive valence. Guided by previous hyperscanning studies, we focused on interbrain connections within the right frontotemporal interbrain network. Results indicate that maternal sensitivity in early infancy was longitudinally associated with neural synchrony in the right interbrain frontotemporal network. Post-hoc comparisons highlighted enhancement of mother-adolescent frontal-frontal connectivity, a connection that has been implicated in parent-child social communication. In contrast, maternal intrusiveness in infancy was linked with attenuation of interbrain synchrony in the right interbrain frontotemporal network. Sensitivity and intrusiveness are key maternal social orientations that have shown to be individually stable in the mother-child relationship from infancy to adulthood and foreshadow children's positive and negative social-emotional outcomes, respectively. Our findings are the first to demonstrate that these two maternal orientations play a role in enhancing or attenuating the child's interbrain frontotemporal network, which sustains social communication and affiliation. Results suggest that the reported long-term impact of maternal sensitivity and intrusiveness may relate, in part, to its effects on tuning the child's brain to sociality.
Collapse
Affiliation(s)
- Linoy Schwartz
- Center for Developmental Social Neuroscience, Reichman University, Herzliya, 0460101, Israel
| | - Olga Hayut
- Center for Developmental Social Neuroscience, Reichman University, Herzliya, 0460101, Israel
| | - Jonathan Levy
- Center for Developmental Social Neuroscience, Reichman University, Herzliya, 0460101, Israel
- Department of Criminology and Gonda Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | - Ilanit Gordon
- Department of Psychology and Gonda Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
- Child Study Center, Yale University, New Haven, USA
| | - Ruth Feldman
- Center for Developmental Social Neuroscience, Reichman University, Herzliya, 0460101, Israel.
- Child Study Center, Yale University, New Haven, USA.
| |
Collapse
|
4
|
Alex AM, Aguate F, Botteron K, Buss C, Chong YS, Dager SR, Donald KA, Entringer S, Fair DA, Fortier MV, Gaab N, Gilmore JH, Girault JB, Graham AM, Groenewold NA, Hazlett H, Lin W, Meaney MJ, Piven J, Qiu A, Rasmussen JM, Roos A, Schultz RT, Skeide MA, Stein DJ, Styner M, Thompson PM, Turesky TK, Wadhwa PD, Zar HJ, Zöllei L, de Los Campos G, Knickmeyer RC. A global multicohort study to map subcortical brain development and cognition in infancy and early childhood. Nat Neurosci 2024; 27:176-186. [PMID: 37996530 PMCID: PMC10774128 DOI: 10.1038/s41593-023-01501-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 10/16/2023] [Indexed: 11/25/2023]
Abstract
The human brain grows quickly during infancy and early childhood, but factors influencing brain maturation in this period remain poorly understood. To address this gap, we harmonized data from eight diverse cohorts, creating one of the largest pediatric neuroimaging datasets to date focused on birth to 6 years of age. We mapped the developmental trajectory of intracranial and subcortical volumes in ∼2,000 children and studied how sociodemographic factors and adverse birth outcomes influence brain structure and cognition. The amygdala was the first subcortical volume to mature, whereas the thalamus exhibited protracted development. Males had larger brain volumes than females, and children born preterm or with low birthweight showed catch-up growth with age. Socioeconomic factors exerted region- and time-specific effects. Regarding cognition, males scored lower than females; preterm birth affected all developmental areas tested, and socioeconomic factors affected visual reception and receptive language. Brain-cognition correlations revealed region-specific associations.
Collapse
Affiliation(s)
- Ann M Alex
- Institute for Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, MI, USA
| | - Fernando Aguate
- Institute for Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, MI, USA
- Departments of Epidemiology & Biostatistics, Michigan State University, East Lansing, MI, USA
| | - Kelly Botteron
- Mallinickrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Claudia Buss
- Department of Medical Psychology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Pediatrics, University of California Irvine, Irvine, CA, USA
- Development, Health and Disease Research Program, University of California Irvine, Irvine, CA, USA
| | - Yap-Seng Chong
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore, Singapore
| | - Stephen R Dager
- Department of Radiology, University of Washington Medical Center, Seattle, WA, USA
| | - Kirsten A Donald
- Division of Developmental Paediatrics, Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Sonja Entringer
- Department of Medical Psychology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Pediatrics, University of California Irvine, Irvine, CA, USA
- Development, Health and Disease Research Program, University of California Irvine, Irvine, CA, USA
| | - Damien A Fair
- Masonic Institute for the Developing Brain, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Marielle V Fortier
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Diagnostic & Interventional Imaging, KK Women's and Children's Hospital, Singapore, Singapore
| | - Nadine Gaab
- Harvard Graduate School of Education, Harvard University, Cambridge, MA, USA
| | - John H Gilmore
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jessica B Girault
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Carboro, NC, USA
| | - Alice M Graham
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA
| | - Nynke A Groenewold
- Division of Developmental Paediatrics, Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa
- South African Medical Research Council (SA-MRC) Unit on Child & Adolescent Health, University of Cape Town, Cape Town, South Africa
- Department of Psychiatry, University of Cape Town, Cape Town, South Africa
- Department of Paediatrics and Child Health, University of Cape Town, Faculty of Health Sciences, Cape Town, South Africa
| | - Heather Hazlett
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Carboro, NC, USA
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA
| | - Weili Lin
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Michael J Meaney
- Department of Radiology, University of Washington Medical Center, Seattle, WA, USA
| | - Joseph Piven
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Carboro, NC, USA
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA
| | - Anqi Qiu
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
- NUS (Suzhou) Research Institute, National University of Singapore, Suzhou, China
- The N.1 Institute for Health, National University of Singapore, Singapore, Singapore
- Institute of Data Science, National University of Singapore, Singapore, Singapore
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Health Technology and Informatics, Hong Kong Polytechnic University, Hung Hom, China
| | - Jerod M Rasmussen
- Department of Pediatrics, University of California Irvine, Irvine, CA, USA
- Development, Health and Disease Research Program, University of California Irvine, Irvine, CA, USA
| | - Annerine Roos
- Division of Developmental Paediatrics, Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- SAMRC Unit on Risk and Resilience in Mental Disorders, Department of Psychiatry, University of Cape Town, Cape Town, South Africa
| | - Robert T Schultz
- Center for Autism Research, Children's Hospital of Philadelphia and the University of Pennsylvania, Philadelphia, PA, USA
| | - Michael A Skeide
- Research Group Learning in Early Childhood, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Dan J Stein
- Department of Psychiatry, University of Cape Town, Cape Town, South Africa
- SAMRC Unit on Risk and Resilience in Mental Disorders, Department of Psychiatry, University of Cape Town, Cape Town, South Africa
| | - Martin Styner
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Carboro, NC, USA
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Paul M Thompson
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of University of Southern California, Marina del Rey, CA, USA
| | - Ted K Turesky
- Harvard Graduate School of Education, Harvard University, Cambridge, MA, USA
| | - Pathik D Wadhwa
- Department of Pediatrics, University of California Irvine, Irvine, CA, USA
- Development, Health and Disease Research Program, University of California Irvine, Irvine, CA, USA
- Departments of Psychiatry and Human Behavior, Obstetrics & Gynecology, Epidemiology, University of California, Irvine, Irvine, CA, USA
| | - Heather J Zar
- South African Medical Research Council (SA-MRC) Unit on Child & Adolescent Health, University of Cape Town, Cape Town, South Africa
- Department of Paediatrics and Child Health, University of Cape Town, Faculty of Health Sciences, Cape Town, South Africa
| | - Lilla Zöllei
- A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Gustavo de Los Campos
- Institute for Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, MI, USA
- Departments of Epidemiology & Biostatistics, Michigan State University, East Lansing, MI, USA
- Department of Statistics & Probability, Michigan State University, East Lansing, MI, USA
| | - Rebecca C Knickmeyer
- Institute for Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, MI, USA.
- Department of Pediatrics and Human Development, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
5
|
Neudecker V, Perez-Zoghbi JF, Miranda-Domínguez O, Schenning KJ, Ramirez JS, Mitchell AJ, Perrone A, Earl E, Carpenter S, Martin LD, Coleman K, Neuringer M, Kroenke CD, Dissen GA, Fair DA, Brambrink AM. Early-in-life isoflurane exposure alters resting-state functional connectivity in juvenile non-human primates. Br J Anaesth 2023; 131:1030-1042. [PMID: 37714750 PMCID: PMC10687619 DOI: 10.1016/j.bja.2023.07.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/20/2023] [Accepted: 07/26/2023] [Indexed: 09/17/2023] Open
Abstract
BACKGROUND Clinical studies suggest that anaesthesia exposure early in life affects neurobehavioural development. We designed a non-human primate (NHP) study to evaluate cognitive, behavioural, and brain functional and structural alterations after isoflurane exposure during infancy. These NHPs displayed decreased close social behaviour and increased astrogliosis in specific brain regions, most notably in the amygdala. Here we hypothesise that resting-state functional connectivity MRI can detect alterations in connectivity of brain areas that relate to these social behaviours and astrogliosis. METHODS Imaging was performed in 2-yr-old NHPs under light anaesthesia, after early-in-life (postnatal days 6-12) exposure to 5 h of isoflurane either one or three times, or to room air. Brain images were segmented into 82 regions of interest; the amygdala and the posterior cingulate cortex were chosen for a seed-based resting-state functional connectivity MRI analysis. RESULTS We found differences between groups in resting-state functional connectivity of the amygdala and the auditory cortices, medial premotor cortex, and posterior cingulate cortex. There were also alterations in resting-state functional connectivity between the posterior cingulate cortex and secondary auditory, polar prefrontal, and temporal cortices, and the anterior insula. Relationships were identified between resting-state functional connectivity alterations and the decrease in close social behaviour and increased astrogliosis. CONCLUSIONS Early-in-life anaesthesia exposure in NHPs is associated with resting-state functional connectivity alterations of the amygdala and the posterior cingulate cortex with other brain regions, evident at the juvenile age of 2 yr. These changes in resting-state functional connectivity correlate with the decrease in close social behaviour and increased astrogliosis. Using resting-state functional connectivity MRI to study the neuronal underpinnings of early-in-life anaesthesia-induced behavioural alterations could facilitate development of a biomarker for anaesthesia-induced developmental neurotoxicity.
Collapse
Affiliation(s)
- Viola Neudecker
- Department of Anesthesiology, Columbia University Medical Center, New York, NY, USA
| | - Jose F Perez-Zoghbi
- Department of Anesthesiology, Columbia University Medical Center, New York, NY, USA
| | - Oscar Miranda-Domínguez
- Clinical Behavioral Neuroscience Masonic Institute for the Developing Brain, Minneapolis, MN, USA
| | - Katie J Schenning
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Julian Sb Ramirez
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - A J Mitchell
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Anders Perrone
- Clinical Behavioral Neuroscience Masonic Institute for the Developing Brain, Minneapolis, MN, USA
| | - Eric Earl
- Data Science and Sharing Team, National Institute of Mental Health, Bethesda, MD, USA
| | - Sam Carpenter
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Lauren D Martin
- Animal Resources & Research Support, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Kristine Coleman
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Martha Neuringer
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Christopher D Kroenke
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, USA; Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Gregory A Dissen
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Damien A Fair
- Clinical Behavioral Neuroscience Masonic Institute for the Developing Brain, Minneapolis, MN, USA
| | - Ansgar M Brambrink
- Department of Anesthesiology, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
6
|
Fan F, Tan S, Liu S, Chen S, Huang J, Wang Z, Yang F, Li CSR, Tan Y. Subcortical structures associated with childhood trauma and perceived stress in schizophrenia. Psychol Med 2023; 53:5654-5662. [PMID: 36154670 DOI: 10.1017/s0033291722002860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Childhood trauma influences the clinical features of schizophrenia. In this study, we examined how childhood trauma and perceived stress are associated with clinical manifestations and subcortical gray matter volumes (GMVs) in patients with schizophrenia. METHODS We recruited 127 patients with schizophrenia and 83 healthy controls for assessment of early childhood trauma, perceived stress, and clinical symptoms. With structural brain imaging, we identified the GMVs of subcortical structures and examined the relationships between childhood trauma, perceived stress, clinical symptoms, and subcortical GMVs. RESULTS Compared to controls, patients with schizophrenia showed higher levels of childhood trauma and perceived stress. Patients with schizophrenia showed significantly smaller amygdala and hippocampus GMVs as well as total cortical GMVs than age-matched controls. Childhood trauma score was significantly correlated with the severity of clinical symptoms, depression, perceived stress, and amygdala GMVs. Perceived stress was significantly correlated with clinical symptoms, depression, and hippocampus and amygdala GMVs. Further, the association between childhood trauma (emotional neglect) and stress coping ability was mediated by right amygdala GMV in patients with schizophrenia. CONCLUSIONS Patients with schizophrenia had more exposure to early-life trauma and poorer stress coping. Both childhood trauma and perceived stress were associated with smaller amygdala volumes. The relationship between early-life trauma and perceived stress was mediated by right amygdala GMV in patients with schizophrenia. These findings together suggest the long-term effects of childhood trauma on perceived stress and the subcortical volumetric correlates of the effects in schizophrenia.
Collapse
Affiliation(s)
- Fengmei Fan
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing, P. R. China
| | - Shuping Tan
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing, P. R. China
| | - Shibo Liu
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing, P. R. China
| | - Song Chen
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing, P. R. China
| | - Junchao Huang
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing, P. R. China
| | - Zhiren Wang
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing, P. R. China
| | - Fude Yang
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing, P. R. China
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Yunlong Tan
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing, P. R. China
| |
Collapse
|
7
|
Cohodes EM, McCauley S, Pierre JC, Hodges HR, Haberman JT, Santiuste I, Rogers MK, Wang J, Mandell JD, Gee DG. Development and validation of the Dimensional Inventory of Stress and Trauma Across the Lifespan (DISTAL): A novel assessment tool to facilitate the dimensional study of psychobiological sequelae of exposure to adversity. Dev Psychobiol 2023; 65:e22372. [PMID: 37073593 DOI: 10.1002/dev.22372] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/16/2022] [Accepted: 01/04/2023] [Indexed: 04/20/2023]
Abstract
Decades of research underscore the profound impact of adversity on brain and behavioral development. Recent theoretical models have highlighted the importance of considering specific features of adversity that may have dissociable effects at distinct developmental timepoints. However, existing measures do not query these dimensions in sufficient detail to support the proliferation of this approach. The Dimensional Inventory of Stress and Trauma Across the Lifespan (DISTAL) was developed with the aim to thoroughly and retrospectively assess the timing, severity (of exposure and reaction), type, persons involved, controllability, predictability, threat, deprivation, proximity, betrayal, and discrimination inherent in an individual's exposure to adversity. Here, we introduce this instrument, present descriptive statistics drawn from a sample of N = 187 adults who completed the DISTAL, and provide initial information about its psychometric properties. This novel measure facilitates the expansion of research focused on assessing the relative impact of exposure to key dimensions of adversity on the brain and behavior across development.
Collapse
Affiliation(s)
- Emily M Cohodes
- Department of Psychology, Yale University, New Haven, Connecticut, USA
| | - Sarah McCauley
- Department of Psychology, Yale University, New Haven, Connecticut, USA
| | - Jasmyne C Pierre
- Department of Psychology, Yale University, New Haven, Connecticut, USA
| | - H R Hodges
- Department of Psychology, Yale University, New Haven, Connecticut, USA
| | - Jason T Haberman
- Department of Psychology, Yale University, New Haven, Connecticut, USA
| | - Isabel Santiuste
- Department of Psychology, Yale University, New Haven, Connecticut, USA
| | - Marisa K Rogers
- Department of Psychology, Yale University, New Haven, Connecticut, USA
| | - Jenny Wang
- Department of Psychology, Yale University, New Haven, Connecticut, USA
| | - Jeffrey D Mandell
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut, USA
| | - Dylan G Gee
- Department of Psychology, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
8
|
Smith E, Xiao Y, Xie H, Manwaring SS, Farmer C, Thompson L, D'Souza P, Thurm A, Redcay E. Posterior superior temporal cortex connectivity is related to social communication in toddlers. Infant Behav Dev 2023; 71:101831. [PMID: 37012188 PMCID: PMC10330088 DOI: 10.1016/j.infbeh.2023.101831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 02/17/2023] [Accepted: 02/23/2023] [Indexed: 04/04/2023]
Abstract
The second year of life is a time when social communication skills typically develop, but this growth may be slower in toddlers with language delay. In the current study, we examined how brain functional connectivity is related to social communication abilities in a sample of 12-24 month-old toddlers including those with typical development (TD) and those with language delays (LD). We used an a-priori, seed-based approach to identify regions forming a functional network with the left posterior superior temporal cortex (LpSTC), a region associated with language and social communication in older children and adults. Social communication and language abilities were assessed using the Communication and Symbolic Behavior Scales (CSBS) and Mullen Scales of Early Learning. We found a significant association between concurrent CSBS scores and functional connectivity between the LpSTC and the right posterior superior temporal cortex (RpSTC), with greater connectivity between these regions associated with better social communication abilities. However, functional connectivity was not related to rate of change or language outcomes at 36 months of age. These data suggest an early marker of low communication abilities may be decreased connectivity between the left and right pSTC. Future longitudinal studies should test whether this neurobiological feature is predictive of later social or communication impairments.
Collapse
Affiliation(s)
- Elizabeth Smith
- Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children's Hospital Medical Center, USA
| | - Yaqiong Xiao
- Center for Language and Brain, Shenzhen Institute of Neuroscience, Shenzhen, China; Department of Psychology, University of Maryland, USA
| | - Hua Xie
- Department of Psychology, University of Maryland, USA
| | - Stacy S Manwaring
- Department of Communication Sciences and Disorders, University of Utah, USA
| | - Cristan Farmer
- Neurodevelopmental and Behavioral Phenotyping Service, National Institute of Mental Health, USA
| | - Lauren Thompson
- Department of Speech and Hearing Sciences, Washington State University, USA
| | - Precilla D'Souza
- Office of the Clinical Director, National Human Genome Research Institute, USA
| | - Audrey Thurm
- Neurodevelopmental and Behavioral Phenotyping Service, National Institute of Mental Health, USA
| | | |
Collapse
|
9
|
Nie Z, Xie X, Kang L, Wang W, Xu S, Chen M, Yao L, Gong Q, Zhou E, Li M, Wang H, Bu L, Liu Z. A Cross-Sectional Study: Structural and Related Functional Connectivity Changes in the Brain: Stigmata of Adverse Parenting in Patients with Major Depressive Disorder? Brain Sci 2023; 13:brainsci13040694. [PMID: 37190659 DOI: 10.3390/brainsci13040694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023] Open
Abstract
Background: There is a high correlation between the risk of major depressive disorder (MDD) and adverse childhood experiences (ACEs) such as adverse parenting (AP). While there appears to be an association between ACEs and changes in brain structure and function, there have yet to be multimodal neuroimaging studies of associations between parenting style and brain developmental changes in MDD patients. To explore the effect of AP on brain structure and function. Methods: In this cross-sectional study, 125 MDD outpatients were included in the study and divided into the AP group and the optimal parenting (OP) group. Participants completed self-rating scales to assess depressive severity, symptoms, and their parents' styles. They also completed magnetic resonance imaging within one week of filling out the instruments. The differences between groups of gender, educational level, and medications were analyzed using the chi-squared test and those of age, duration of illness, and scores on scales using the independent samples t-test. Differences in gray matter volume (GMV) and resting-state functional connectivity (RS-FC) were assessed between groups. Results: AP was associated with a significant increase in GMV in the right superior parietal lobule (SPL) and FC between the right SPL and the bilateral medial superior frontal cortex in MDD patients. Limitations: The cross-cultural characteristics of AP will result in the lack of generalizability of the findings. Conclusions: The results support the hypothesis that AP during childhood may imprint the brain and affect depressive symptoms in adulthood. Parents should pay attention to the parenting style and avoid a style that lacks warmth.
Collapse
Affiliation(s)
- Zhaowen Nie
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xinhui Xie
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Lijun Kang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Wei Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Shuxian Xu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Mianmian Chen
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Lihua Yao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Qian Gong
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Enqi Zhou
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Meng Li
- PET/CT/MRI and Molecular Imaging Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Huiling Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Lihong Bu
- PET/CT/MRI and Molecular Imaging Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Zhongchun Liu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
10
|
Holz NE, Berhe O, Sacu S, Schwarz E, Tesarz J, Heim CM, Tost H. Early Social Adversity, Altered Brain Functional Connectivity, and Mental Health. Biol Psychiatry 2023; 93:430-441. [PMID: 36581495 DOI: 10.1016/j.biopsych.2022.10.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 11/11/2022]
Abstract
Early adverse environmental exposures during brain development are widespread risk factors for the onset of severe mental disorders and strong and consistent predictors of stress-related mental and physical illness and reduced life expectancy. Current evidence suggests that early negative experiences alter plasticity processes during developmentally sensitive time windows and affect the regular functional interaction of cortical and subcortical neural networks. This, in turn, may promote a maladapted development with negative consequences on the mental and physical health of exposed individuals. In this review, we discuss the role of functional magnetic resonance imaging-based functional connectivity phenotypes as potential biomarker candidates for the consequences of early environmental exposures-including but not limited to-childhood maltreatment. We take an expanded concept of developmentally relevant adverse experiences from infancy over childhood to adolescence as our starting point and focus our review of functional connectivity studies on a selected subset of functional magnetic resonance imaging-based phenotypes, including connectivity in the limbic and within the frontoparietal as well as default mode networks, for which we believe there is sufficient converging evidence for a more detailed discussion in a developmental context. Furthermore, we address specific methodological challenges and current knowledge gaps that complicate the interpretation of early stress effects on functional connectivity and deserve particular attention in future studies. Finally, we highlight the forthcoming prospects and challenges of this research area with regard to establishing functional connectivity measures as validated biomarkers for brain developmental processes and individual risk stratification and as target phenotypes for mechanism-based interventions.
Collapse
Affiliation(s)
- Nathalie E Holz
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands; Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig Holstein, Kiel University, Kiel, Germany; Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Oksana Berhe
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Seda Sacu
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Emanuel Schwarz
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Jonas Tesarz
- Department of General Internal Medicine and Psychosomatics, University Hospital Heidelberg, Heidelberg, Germany
| | - Christine M Heim
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Psychology, Berlin, Germany; College of Health and Human Development, The Pennsylvania State University, University Park, Pennsylvania
| | - Heike Tost
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.
| |
Collapse
|
11
|
Rajasilta O, Häkkinen S, Björnsdotter M, Scheinin NM, Lehtola SJ, Saunavaara J, Parkkola R, Lähdesmäki T, Karlsson L, Karlsson H, Tuulari JJ. Maternal psychological distress associates with alterations in resting-state low-frequency fluctuations and distal functional connectivity of the neonate medial prefrontal cortex. Eur J Neurosci 2023; 57:242-257. [PMID: 36458867 PMCID: PMC10108202 DOI: 10.1111/ejn.15882] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 11/21/2022] [Indexed: 12/03/2022]
Abstract
Prenatal stress exposure (PSE) has been observed to exert a programming effect on the developing infant brain, possibly with long-lasting consequences on temperament, cognitive functions and the risk for developing psychiatric disorders. Several prior studies have revealed that PSE associates with alterations in neonate functional connectivity in the prefrontal regions and amygdala. In this study, we explored whether maternal psychological symptoms measured during the 24th gestational week had associations with neonate resting-state network metrics. Twenty-one neonates (nine female) underwent resting-state fMRI scanning (mean gestation-corrected age at scan 26.95 days) to assess fractional amplitude of low-frequency fluctuation (fALFF) and regional homogeneity (ReHo). The ReHo/fALFF maps were used in multiple regression analysis to investigate whether maternal self-reported anxiety and/or depressive symptoms associate with neonate functional brain features. Maternal psychological distress (composite score of depressive and anxiety symptoms) was positively associated with fALFF in the neonate medial prefrontal cortex (mPFC). Anxiety and depressive symptoms, assessed separately, exhibited similar but weaker associations. Post hoc seed-based connectivity analyses further showed that distal connectivity of mPFC covaried with PSE. No associations were found between neonate ReHo and PSE. These results offer preliminary evidence that PSE may affect functional features of the developing brain during gestation.
Collapse
Affiliation(s)
- Olli Rajasilta
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, Turku, Finland
| | - Suvi Häkkinen
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, Turku, Finland
| | - Malin Björnsdotter
- The Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Noora M Scheinin
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, Turku, Finland
- Department of Psychiatry, University of Turku and Turku University Hospital, Turku, Finland
| | - Satu J Lehtola
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, Turku, Finland
| | - Jani Saunavaara
- Department of Medical Physics, University of Turku and Turku University Hospital, Turku, Finland
| | - Riitta Parkkola
- Department of Radiology, University of Turku and Turku University Hospital, Turku, Finland
| | - Tuire Lähdesmäki
- Department of Pediatric Neurology, University of Turku and Turku University Hospital, Turku, Finland
| | - Linnea Karlsson
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, Turku, Finland
- Center for Population Health Research, University of Turku and Turku University Hospital, Finland
- Department of Paediatrics and Adolescent Medicine, University of Turku and Turku University Hospital, Turku, Finland
| | - Hasse Karlsson
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, Turku, Finland
- Department of Psychiatry, University of Turku and Turku University Hospital, Turku, Finland
- Center for Population Health Research, University of Turku and Turku University Hospital, Finland
| | - Jetro J Tuulari
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, Turku, Finland
- Department of Psychiatry, University of Turku and Turku University Hospital, Turku, Finland
- Department of Psychiatry, University of Oxford (Sigrid Juselius Fellowship), Oxford, UK
- Turku Collegium for Science and Medicine, University of Turku, Turku, Finland
| |
Collapse
|
12
|
Richmond S, Beare R, Johnson KA, Bray K, Pozzi E, Allen NB, Seal ML, Whittle S. Maternal warmth is associated with network segregation across late childhood: A longitudinal neuroimaging study. Front Psychol 2022; 13:917189. [PMID: 36176802 PMCID: PMC9514138 DOI: 10.3389/fpsyg.2022.917189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 08/22/2022] [Indexed: 12/02/2022] Open
Abstract
The negative impact of adverse experiences in childhood on neurodevelopment is well documented. Less attention however has been given to the impact of variations in “normative” parenting behaviors. The influence of these parenting behaviors is likely to be marked during periods of rapid brain reorganization, such as late childhood. The aim of the current study was to investigate associations between normative parenting behaviors and the development of structural brain networks across late childhood. Data were collected from a longitudinal sample of 114 mother-child dyads (54% female children, M age 8.41 years, SD = 0.32 years), recruited from low socioeconomic areas of Melbourne, Australia. At the first assessment parenting behaviors were coded from two lab-based interaction tasks and structural magnetic resonance imaging (MRI) scans of the children were performed. At the second assessment, approximately 18 months later (M age 9.97 years, SD = 0.37 years) MRI scans were repeated. Cortical thickness (CT) was extracted from T1-weighted images using FreeSurfer. Structural covariance (SC) networks were constructed from partial correlations of CT estimates between brain regions and estimates of network efficiency and modularity were obtained for each time point. The change in these network measures, from Time 1 to Time 2, was also calculated. At Time 2, less positive maternal affective behavior was associated with higher modularity (more segregated networks), while negative maternal affective behavior was not related. No support was found for an association between local or global efficacy and maternal affective behaviors at Time 2. Similarly, no support was demonstrated for associations between maternal affective behaviors and change in network efficiency and modularity, from Time 1 to Time 2. These results indicate that normative variations in parenting may influence the development of structural brain networks in late childhood and extend current knowledge about environmental influences on structural connectivity in a developmental context.
Collapse
Affiliation(s)
- Sally Richmond
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Parkville, VIC, Australia
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, VIC, Australia
- *Correspondence: Sally Richmond,
| | - Richard Beare
- Developmental Imaging, Murdoch Children’s Research Institute, Parkville, VIC, Australia
| | - Katherine A. Johnson
- Melbourne School of Psychological Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Katherine Bray
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Parkville, VIC, Australia
- Melbourne School of Psychological Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Elena Pozzi
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Parkville, VIC, Australia
| | - Nicholas B. Allen
- Melbourne School of Psychological Sciences, The University of Melbourne, Parkville, VIC, Australia
- Department of Psychology, University of Oregon, Eugene, OR, United States
| | - Marc L. Seal
- Developmental Imaging, Murdoch Children’s Research Institute, Parkville, VIC, Australia
- Department of Pediatrics, The University of Melbourne, Parkville, VIC, Australia
| | - Sarah Whittle
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Parkville, VIC, Australia
| |
Collapse
|
13
|
Davis K, Hirsch E, Gee D, Andover M, Roy AK. Mediating role of the default mode network on parental acceptance/warmth and psychopathology in youth. Brain Imaging Behav 2022; 16:2229-2238. [PMID: 35648269 DOI: 10.1007/s11682-022-00692-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2022] [Indexed: 11/25/2022]
Abstract
Humans are reliant on their caregivers for an extended period of time, offering numerous opportunities for environmental factors, such as parental attitudes and behaviors, to impact brain development. The default mode network is a neural system encompassing the medial prefrontal cortex, posterior cingulate cortex, precuneus, and temporo-parietal junction, which is implicated in aspects of cognition and psychopathology. Delayed default mode network maturation in children and adolescents has been associated with greater general dimensional psychopathology, and positive parenting behaviors have been suggested to serve as protective mechanisms against atypical default mode network development. The current study aimed to extend the existing research by examining whether within- default mode network resting-state functional connectivity would mediate the relation between parental acceptance/warmth and youth psychopathology. Data from the Adolescent Brain and Cognitive Development study, which included a community sample of 9,366 children ages 8.9-10.9 years, were analyzed to test this prediction. Results demonstrated a significant mediation, where greater parental acceptance/warmth predicted greater within- default mode network resting-state functional connectivity, which in turn predicted lower externalizing, but not internalizing symptoms, at baseline and 1-year later. Our study provides preliminary support for the notion that positive parenting behaviors may reduce the risk for psychopathology in youth through their influence on the default mode network.
Collapse
|
14
|
Rebello K, Moura LM, Bueno APA, Picon FA, Pan PM, Gadelha A, Miguel EC, Bressan RA, Rohde LA, Sato JR. Associations between Family Functioning and Maternal Behavior on Default Mode Network Connectivity in School-Age Children. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19106055. [PMID: 35627592 PMCID: PMC9141331 DOI: 10.3390/ijerph19106055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/16/2022] [Accepted: 05/03/2022] [Indexed: 02/04/2023]
Abstract
Background: Most early children's experiences will occur in a family context; therefore, the quality of this environment is critical for development outcomes. Not many studies have assessed the correlations between brain functional connectivity (FC) in important areas such as the default mode network (DMN) and the quality of parent-child relationships in school-age children and early adolescence. The quality of family relationships and maternal behavior have been suggested to modulate DMN FC once they act as external regulators of children's affect and behavior. Objective: We aimed to test the associations between the quality of family environment/maternal behavior and FC within the DMN of school-age children. Method: Resting-state, functional magnetic resonance imaging data, were collected from 615 children (6-12 age range) enrolled in the Brazilian High-Risk Cohort (HRC) study. We assessed DMN intra-connectivity between the medial prefrontal cortex (mPFC), posterior cingulate cortex (PCC), and inferior parietal lobule (IPL-bilateral) regions. The family functioning was assessed by levels of family cohesiveness and conflict and by maternal behavior styles such as maternal responsiveness, maternal stimulus to the child's autonomy, and maternal overprotection. The family environment was assessed with the Family Environment Scale (FES), and maternal behavior was assessed by the mother's self-report. Results: We found that the quality of the family environment was correlated with intra-DMN FC. The more conflicting the family environment was, the greater the FC between the mPFC-left IPL (lIPL), while a more cohesive family functioning was negatively correlated with FC between the PCC-lIPL. On the other hand, when moderated by a positive maternal behavior, cohesive family functioning was associated with increased FC in both regions of the DMN (mPFC-lIPL and PCC-lIPL). Conclusions: Our results highlight that the quality of the family environment might be associated with differences in the intrinsic DMN FC.
Collapse
Affiliation(s)
- Keila Rebello
- Center of Mathematics, Computing and Cognition, Universidade Federal do ABC, Santo André 09210-580, Brazil; (K.R.); (L.M.M.); (A.P.A.B.)
| | - Luciana Monteiro Moura
- Center of Mathematics, Computing and Cognition, Universidade Federal do ABC, Santo André 09210-580, Brazil; (K.R.); (L.M.M.); (A.P.A.B.)
- Interdisciplinary Lab for Clinical Neurosciences, Universidade Federal de São Paulo, São Paulo 04021-001, Brazil; (P.M.P.); (A.G.); (R.A.B.)
- National Institute of Developmental Psychiatry for Children and Adolescents (CNPq), São Paulo 01060-970, Brazil; (F.A.P.); (E.C.M.); (L.A.R.)
| | - Ana Paula Arantes Bueno
- Center of Mathematics, Computing and Cognition, Universidade Federal do ABC, Santo André 09210-580, Brazil; (K.R.); (L.M.M.); (A.P.A.B.)
| | - Felipe Almeida Picon
- National Institute of Developmental Psychiatry for Children and Adolescents (CNPq), São Paulo 01060-970, Brazil; (F.A.P.); (E.C.M.); (L.A.R.)
- ADHD Outpatient Program & Developmental Psychiatry Program, Hospital de Clínicas de Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre 90010-150, Brazil
| | - Pedro Mario Pan
- Interdisciplinary Lab for Clinical Neurosciences, Universidade Federal de São Paulo, São Paulo 04021-001, Brazil; (P.M.P.); (A.G.); (R.A.B.)
- National Institute of Developmental Psychiatry for Children and Adolescents (CNPq), São Paulo 01060-970, Brazil; (F.A.P.); (E.C.M.); (L.A.R.)
| | - Ary Gadelha
- Interdisciplinary Lab for Clinical Neurosciences, Universidade Federal de São Paulo, São Paulo 04021-001, Brazil; (P.M.P.); (A.G.); (R.A.B.)
- National Institute of Developmental Psychiatry for Children and Adolescents (CNPq), São Paulo 01060-970, Brazil; (F.A.P.); (E.C.M.); (L.A.R.)
| | - Euripedes Constatino Miguel
- National Institute of Developmental Psychiatry for Children and Adolescents (CNPq), São Paulo 01060-970, Brazil; (F.A.P.); (E.C.M.); (L.A.R.)
- Department of Psychiatry, School of Medicine, University of São Paulo, São Paulo 05508-070, Brazil
| | - Rodrigo Affonseca Bressan
- Interdisciplinary Lab for Clinical Neurosciences, Universidade Federal de São Paulo, São Paulo 04021-001, Brazil; (P.M.P.); (A.G.); (R.A.B.)
- National Institute of Developmental Psychiatry for Children and Adolescents (CNPq), São Paulo 01060-970, Brazil; (F.A.P.); (E.C.M.); (L.A.R.)
| | - Luis Augusto Rohde
- National Institute of Developmental Psychiatry for Children and Adolescents (CNPq), São Paulo 01060-970, Brazil; (F.A.P.); (E.C.M.); (L.A.R.)
- ADHD Outpatient Program & Developmental Psychiatry Program, Hospital de Clínicas de Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre 90010-150, Brazil
| | - João Ricardo Sato
- Center of Mathematics, Computing and Cognition, Universidade Federal do ABC, Santo André 09210-580, Brazil; (K.R.); (L.M.M.); (A.P.A.B.)
- Interdisciplinary Lab for Clinical Neurosciences, Universidade Federal de São Paulo, São Paulo 04021-001, Brazil; (P.M.P.); (A.G.); (R.A.B.)
- National Institute of Developmental Psychiatry for Children and Adolescents (CNPq), São Paulo 01060-970, Brazil; (F.A.P.); (E.C.M.); (L.A.R.)
- ADHD Outpatient Program & Developmental Psychiatry Program, Hospital de Clínicas de Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre 90010-150, Brazil
- Correspondence:
| |
Collapse
|
15
|
Farber MJ, Gee DG, Hariri AR. Normative range parenting and the developing brain: A scoping review and recommendations for future research. Eur J Neurosci 2022; 55:2341-2358. [PMID: 33051903 PMCID: PMC8044268 DOI: 10.1111/ejn.15003] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/04/2020] [Accepted: 09/30/2020] [Indexed: 12/17/2022]
Abstract
Studies of early adversity such as trauma, abuse, and neglect highlight the critical importance of quality caregiving in brain development and mental health. However, the impact of normative range variability in caregiving on such biobehavioral processes remains poorly understood. Thus, we lack an essential foundation for understanding broader, population-representative developmental mechanisms of risk and resilience. Here, we conduct a scoping review of the extant literature centered on the question, "Is variability in normative range parenting associated with variability in brain structure and function?" After removing duplicates and screening by title, abstract, and full-text, 23 records were included in a qualitative review. The most striking outcome of this review was not only how few studies have explored associations between brain development and normative range parenting, but also how little methodological consistency exists across published studies. In light of these limitations, we propose recommendations for future research on normative range parenting and brain development. In doing so, we hope to facilitate evidence-based research that will help inform policies and practices that yield optimal developmental trajectories and mental health as well as extend the literature on the neurodevelopmental impact of early life stress.
Collapse
Affiliation(s)
- Madeline J. Farber
- Laboratory of NeuroGenetics, Department of Psychology &
Neuroscience, Duke University
| | - Dylan G. Gee
- Clinical Affective Neuroscience & Development
Laboratory, Department of Psychology, Yale University
| | - Ahmad R. Hariri
- Laboratory of NeuroGenetics, Department of Psychology &
Neuroscience, Duke University
| |
Collapse
|
16
|
Parental wellbeing after diagnosing a child with biliary atresia: A prospective cohort study. J Pediatr Surg 2022; 57:649-654. [PMID: 34210523 DOI: 10.1016/j.jpedsurg.2021.05.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/02/2021] [Accepted: 05/30/2021] [Indexed: 11/21/2022]
Abstract
PURPOSE To determine anxiety, stress, and quality of life (QoL) in parents of children who are diagnosed with biliary atresia (BA). METHODS Parents of BA patients (0-3 years) completed validated questionnaires at three time points: at first hospitalization (T0); 1-2 months post diagnosis (T1); and 2-3 years post diagnosis (T2). Results are presented in medians (min-max). RESULTS We included 52 parents (age 31 [24-51 y], 31 females) of 30 BA patients. In fathers, neither anxiety nor stress levels significantly differed from reference values. Mothers reported significantly higher anxiety levels compared to reference values (T0: 48 vs 35, p = 0.001; T1: 43 vs 35, p = 0.03; T2: 37 vs 35, p = 0.04), which significantly decreased over time (-23% between T0 and T2: p = 0.04). Stress in mothers was significantly higher at T1 than at T2 (+35%, p = 0.02), but was not significantly different from reference values at each time point (T0: 17 vs 14, p = 0.07; T1: 18 vs 14, p = 0.09; T2: 13 vs 14, p = 0.52).The overall QoL in mothers and fathers was rather unaffected. CONCLUSIONS Particularly mothers of infants diagnosed with BA report high anxiety levels up to three years after diagnosis. The overall QoL of parents is rather unaffected after diagnosing BA in their child. LEVEL OF EVIDENCE Level 2.
Collapse
|
17
|
Spry EA, Letcher P, Patton GC, Sanson AV, Olsson CA. The developmental origins of stress reactivity: an intergenerational life-course perspective. Curr Opin Behav Sci 2022. [DOI: 10.1016/j.cobeha.2021.10.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
18
|
Abstract
PURPOSE OF REVIEW To evaluate the available literature regarding effects of coronavirus disease 2019 (COVID-19) on newborns, ranging from effects related to in utero and perinatal exposure to maternal severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, to pandemic-related stress and socioeconomic changes. RECENT FINDINGS Several large studies and national registries have shown that the risk of vertical transmission from SARS-CoV-2-infected mothers to newborns is rare and does not appear to be related to postnatal care policies such as mother-newborn separation and breastfeeding. Newborns exposed to SARS-CoV-2 in utero are at higher risk for preterm delivery for reasons still under investigation. When newborns do acquire SARS-CoV-2 infection, their disease course is usually mild. Long-term follow-up data are lacking, but preliminary reports indicate that, similarly to prior natural disasters, being born during the pandemic may be associated with developmental risk. SUMMARY Although risk of vertical or perinatal transmission is low across a range of postnatal care practices, early indicators suggest developmental risk to the generation born during the pandemic. Long-term follow-up data are critically needed to determine the developmental impact of in utero and early life exposure to SARS-CoV-2 and the COVID-19 pandemic.
Collapse
Affiliation(s)
| | - Dani Dumitriu
- Department of Pediatrics
- Department of Psychiatry
- Nurture Science Program, Columbia University Irving Medical Center, New York, New York, USA
| |
Collapse
|
19
|
Ho TC, King LS. Mechanisms of neuroplasticity linking early adversity to depression: developmental considerations. Transl Psychiatry 2021; 11:517. [PMID: 34628465 PMCID: PMC8501358 DOI: 10.1038/s41398-021-01639-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 09/11/2021] [Accepted: 09/23/2021] [Indexed: 12/17/2022] Open
Abstract
Early exposure to psychosocial adversity is among the most potent predictors of depression. Because depression commonly emerges prior to adulthood, we must consider the fundamental principles of developmental neuroscience when examining how experiences of childhood adversity, including abuse and neglect, can lead to depression. Considering that both the environment and the brain are highly dynamic across the period spanning gestation through adolescence, the purpose of this review is to discuss and integrate stress-based models of depression that center developmental processes. We offer a general framework for understanding how psychosocial adversity in early life disrupts or calibrates the biobehavioral systems implicated in depression. Specifically, we propose that the sources and nature of the environmental input shaping the brain, and the mechanisms of neuroplasticity involved, change across development. We contend that the effects of adversity largely depend on the developmental stage of the organism. First, we summarize leading neurobiological models that focus on the effects of adversity on risk for mental disorders, including depression. In particular, we highlight models of allostatic load, acceleration maturation, dimensions of adversity, and sensitive or critical periods. Second, we expound on and review evidence for the formulation that distinct mechanisms of neuroplasticity are implicated depending on the timing of adverse experiences, and that inherent within certain windows of development are constraints on the sources and nature of these experiences. Finally, we consider other important facets of adverse experiences (e.g., environmental unpredictability, perceptions of one's experiences) before discussing promising research directions for the future of the field.
Collapse
Affiliation(s)
- Tiffany C Ho
- Department of Psychiatry and Behavioral Sciences and Weill Institute for Neurosciences, University of California, San Francisco, CA, USA.
| | - Lucy S King
- Department of Psychiatry and Behavioral Sciences, Tulane University School of Medicine, New Orleans, LA, USA
- Department of Psychology, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
20
|
Nielsen AN, Wakschlag LS, Norton ES. Linking irritability and functional brain networks: A transdiagnostic case for expanding consideration of development and environment in RDoC. Neurosci Biobehav Rev 2021; 129:231-244. [PMID: 34302863 PMCID: PMC8802626 DOI: 10.1016/j.neubiorev.2021.07.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 07/14/2021] [Accepted: 07/17/2021] [Indexed: 01/13/2023]
Abstract
The National Institute of Mental Health Research Domain Criteria (RDoC) framework promotes the dimensional and transdiagnostic operationalization of psychopathology, but consideration of the neurodevelopmental foundations of mental health problems requires deeper examination. Irritability, the dispositional tendency to angry emotion that has both mood and behavioral elements, is dimensional, transdiagnostic, and observable early in life-a promising target for the identification of early neural indicators or risk factors for psychopathology. Here, we examine functional brain networks linked to irritability from preschool to adulthood and discuss how development and early experience may influence these neural substrates. Functional connectivity measured with fMRI varies according to irritability and indicates the atypical coordination of several functional networks involved in emotion generation, emotion perception, attention, internalization, and cognitive control. We lay out an agenda to improve our understanding and detection of atypical brain:behavior patterns through advances in the characterization of both functional networks and irritability as well as the consideration and operationalization of developmental and early life environmental influences on this pathway.
Collapse
Affiliation(s)
- Ashely N Nielsen
- Department of Medical Social Sciences, Northwestern University, Chicago, IL, United States; Institute for Innovations in Developmental Sciences, Northwestern University, Chicago, IL, United States.
| | - Lauren S Wakschlag
- Department of Medical Social Sciences, Northwestern University, Chicago, IL, United States; Institute for Innovations in Developmental Sciences, Northwestern University, Chicago, IL, United States
| | - Elizabeth S Norton
- Institute for Innovations in Developmental Sciences, Northwestern University, Chicago, IL, United States; Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, United States
| |
Collapse
|
21
|
Bhanot S, Bray S, McGirr A, Lee K, Kopala-Sibley DC. A Narrative Review of Methodological Considerations in Magnetic Resonance Imaging of Offspring Brain Development and the Influence of Parenting. Front Hum Neurosci 2021; 15:694845. [PMID: 34489661 PMCID: PMC8417117 DOI: 10.3389/fnhum.2021.694845] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/15/2021] [Indexed: 11/21/2022] Open
Abstract
Parenting has been robustly associated with offspring psychosocial development, and these effects are likely reflected in brain development. This hypothesis is being tested with increasingly rigorous methods and the use of magnetic resonance imaging, a powerful tool for characterizing human brain structure and function. The objective of this narrative review was to examine methodological issues in this field that impact the conclusions that can be drawn and to identify future directions in this field. Studies included were those that examined associations between parenting and offspring brain structure or function. Results show four thematic features in this literature that impact the hypotheses that can be tested, and the conclusions drawn. The first theme is a limited body of studies including repeated sampling of offspring brain structure and function, and therefore an over-reliance on cross-sectional or retrospective associations. The second involves a focus on extremes in early life caregiving, limiting generalizability. The third involves the nature of parenting assessment, predominantly parent- or child-report instead of observational measures which may be more ecologically valid measures of parenting. A closely related fourth consideration is the examination of detrimental versus positive parenting behaviors. While studies with one or more of these thematic limitations provide valuable information, future study design should consider addressing these limitations to determine how parenting shapes offspring brain development.
Collapse
Affiliation(s)
- Shiv Bhanot
- Department of Psychiatry, University of Calgary, Calgary, AB, Canada
| | - Signe Bray
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, Calgary, AB, Canada.,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Alexander McGirr
- Department of Psychiatry, University of Calgary, Calgary, AB, Canada.,Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Kate Lee
- Department of Psychology, York University, Toronto, ON, Canada
| | - Daniel C Kopala-Sibley
- Department of Psychiatry, University of Calgary, Calgary, AB, Canada.,Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, Calgary, AB, Canada.,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
22
|
Phillips ML, Schmithorst VJ, Banihashemi L, Taylor M, Samolyk A, Northrup JB, English GE, Versace A, Stiffler RS, Aslam HA, Bonar L, Panigrahy A, Hipwell AE. Patterns of Infant Amygdala Connectivity Mediate the Impact of High Caregiver Affect on Reducing Infant Smiling: Discovery and Replication. Biol Psychiatry 2021; 90:342-352. [PMID: 34130856 PMCID: PMC8364485 DOI: 10.1016/j.biopsych.2021.03.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 02/13/2021] [Accepted: 03/21/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Behavioral research indicates that caregiver mood disorders and emotional instability in the early months following childbirth are associated with lower positive emotionality and higher negative emotionality in infants, but the neural mechanisms remain understudied. METHODS Using resting-state functional connectivity as a measure of the functional architecture of the early infant brain, we aimed to determine the extent to which connectivity between the amygdala, a key region supporting emotional learning and perception, and large-scale neural networks mediated the association between caregiver affect and anxiety and early infant negative emotionality and positive emotionality. Two samples of infants (first sample: n = 58; second sample: n = 31) 3 months of age underwent magnetic resonance imaging during natural sleep. RESULTS During infancy, greater resting-state functional connectivity between the amygdala and the salience network and, to a lesser extent, lower amygdala and executive control network resting-state functional connectivity mediated the effect of greater caregiver postpartum depression and trait anxiety on reducing infant smiling (familywise error-corrected p < .05). Furthermore, results from the first sample were replicated in the second, independent sample, to a greater extent for caregiver depression than for caregiver anxiety. CONCLUSIONS We provide evidence of early objective neural markers that can help identify infants who are more likely to be at risk from, versus those who might be protected against, the deleterious effects of caregiver depression and anxiety and reduced positive emotionality.
Collapse
Affiliation(s)
- Mary L. Phillips
- University of Pittsburgh School of Medicine, Department of Psychiatry, Pittsburgh, PA
| | - Vincent J. Schmithorst
- UPMC Children’s Hospital of Pittsburgh, Department of Pediatric Radiology, Pittsburgh, PA
| | - Layla Banihashemi
- University of Pittsburgh School of Medicine, Department of Psychiatry, Pittsburgh, PA
| | | | | | - Jessie B. Northrup
- University of Pittsburgh School of Medicine, Department of Psychiatry, Pittsburgh, PA
| | | | - Amelia Versace
- University of Pittsburgh School of Medicine, Department of Psychiatry, Pittsburgh, PA
| | | | | | - Lisa Bonar
- University of Pittsburgh School of Medicine, Department of Psychiatry, Pittsburgh, PA
| | - Ashok Panigrahy
- UPMC Children’s Hospital of Pittsburgh, Department of Pediatric Radiology, Pittsburgh, PA
| | - Alison E. Hipwell
- University of Pittsburgh School of Medicine, Department of Psychiatry, Pittsburgh, PA
| |
Collapse
|
23
|
Dufford AJ, Salzwedel AP, Gilmore JH, Gao W, Kim P. Maternal trait anxiety symptoms, frontolimbic resting-state functional connectivity, and cognitive development in infancy. Dev Psychobiol 2021; 63:e22166. [PMID: 34292595 PMCID: PMC10775911 DOI: 10.1002/dev.22166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 06/13/2021] [Accepted: 06/22/2021] [Indexed: 11/07/2022]
Abstract
Exposure to maternal anxiety symptoms during infancy has been associated with difficulties in development and greater risk for developing anxiety later in life. Although previous studies have examined associations between prenatal maternal distress, infant brain development, and developmental outcomes, it is still largely unclear if there are associations between postnatal anxiety, infant brain development, and cognitive development in infancy. In this study, we used resting-state functional magnetic resonance imaging to examine the association between maternal anxiety symptoms and resting-state functional connectivity in the first year of life. We also examine the association between frontolimbic functional connectivity and infant cognitive development. The sample consisted of 21 infants (mean age = 24.15 months, SD = 4.17) that were scanned during their natural sleep using. We test the associations between maternal trait anxiety symptoms and amygdala-anterior cingulate cortex (ACC) functional connectivity, a neural circuit implicated in early life stress exposure. We also test the associations between amygdala-ACC connectivity and cognitive development. We found a significant negative association between maternal trait anxiety symptoms and left amygdala-right ACC functional connectivity (p < .05, false discovery rate corrected). We found a significant negative association between left amygdala-right ACC functional connectivity and infant cognitive development (p < .05). These findings have potential implications for understanding the role of postpartum maternal anxiety symptoms in functional brain and cognitive development in infancy.
Collapse
Affiliation(s)
| | - Andrew P. Salzwedel
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - John H. Gilmore
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Wei Gao
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Pilyoung Kim
- Department of Psychology, University of Denver, Denver, Colorado, USA
| |
Collapse
|
24
|
Ramirez JSB, Graham AM, Thompson JR, Zhu JY, Sturgeon D, Bagley JL, Thomas E, Papadakis S, Bah M, Perrone A, Earl E, Miranda-Dominguez O, Feczko E, Fombonne EJ, Amaral DG, Nigg JT, Sullivan EL, Fair DA. Maternal Interleukin-6 Is Associated With Macaque Offspring Amygdala Development and Behavior. Cereb Cortex 2021; 30:1573-1585. [PMID: 31665252 DOI: 10.1093/cercor/bhz188] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 07/11/2019] [Accepted: 07/16/2019] [Indexed: 12/20/2022] Open
Abstract
Human and animal cross-sectional studies have shown that maternal levels of the inflammatory cytokine interleukin-6 (IL-6) may compromise brain phenotypes assessed at single time points. However, how maternal IL-6 associates with the trajectory of brain development remains unclear. We investigated whether maternal IL-6 levels during pregnancy relate to offspring amygdala volume development and anxiety-like behavior in Japanese macaques. Magnetic resonance imaging (MRI) was administered to 39 Japanese macaque offspring (Female: 18), providing at least one or more time points at 4, 11, 21, and 36 months of age with a behavioral assessment at 11 months of age. Increased maternal third trimester plasma IL-6 levels were associated with offspring's smaller left amygdala volume at 4 months, but with more rapid amygdala growth from 4 to 36 months. Maternal IL-6 predicted offspring anxiety-like behavior at 11 months, which was mediated by reduced amygdala volumes in the model's intercept (i.e., 4 months). The results increase our understanding of the role of maternal inflammation in the development of neurobehavioral disorders by detailing the associations of a commonly examined inflammatory indicator, IL-6, on amygdala volume growth over time, and anxiety-like behavior.
Collapse
Affiliation(s)
- Julian S B Ramirez
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland OR, USA
| | - Alice M Graham
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland OR, USA
| | - Jacqueline R Thompson
- Divisions of Neuroscience and Cardiometabolic Health, Oregon National Primate Research Center, Beaverton OR, USA
| | - Jennifer Y Zhu
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland OR, USA
| | - Darrick Sturgeon
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland OR, USA
| | - Jennifer L Bagley
- Divisions of Neuroscience and Cardiometabolic Health, Oregon National Primate Research Center, Beaverton OR, USA
| | - Elina Thomas
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland OR, USA
| | - Samantha Papadakis
- Neuroscience Graduate Program, Oregon Health & Science University, Portland OR, USA
| | - Muhammed Bah
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland OR, USA
| | - Anders Perrone
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland OR, USA
| | - Eric Earl
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland OR, USA
| | | | - Eric Feczko
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland OR, USA.,Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland OR, USA
| | - Eric J Fombonne
- Department of Psychiatry, Oregon Health & Science University, Portland OR, USA.,Department of Pediatrics, Oregon Health & Science University, Portland OR, USA.,Institute for Development & Disability, Oregon Health & Science University, Portland OR, USA
| | - David G Amaral
- MIND Institute, University of California Davis, Davis CA, USA.,Department of Psychiatry and Behavioral Sciences, and Center for Neuroscience, University of California Davis, Davis CA, USA.,California National Primate Research Center, University of California Davis, Davis CA, USA
| | - Joel T Nigg
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland OR, USA.,Department of Psychiatry, Oregon Health & Science University, Portland OR, USA
| | - Elinor L Sullivan
- Divisions of Neuroscience and Cardiometabolic Health, Oregon National Primate Research Center, Beaverton OR, USA.,Department of Psychiatry, Oregon Health & Science University, Portland OR, USA.,Department of Human Physiology, University of Oregon, Eugene OR, USA
| | - Damien A Fair
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland OR, USA.,Neuroscience Graduate Program, Oregon Health & Science University, Portland OR, USA.,Department of Psychiatry, Oregon Health & Science University, Portland OR, USA.,Advance Imaging Research Center, Oregon Health & Science University, Portland OR, USA
| |
Collapse
|
25
|
Kelsey CM, Farris K, Grossmann T. Variability in Infants' Functional Brain Network Connectivity Is Associated With Differences in Affect and Behavior. Front Psychiatry 2021; 12:685754. [PMID: 34177669 PMCID: PMC8220897 DOI: 10.3389/fpsyt.2021.685754] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/14/2021] [Indexed: 11/13/2022] Open
Abstract
Variability in functional brain network connectivity has been linked to individual differences in cognitive, affective, and behavioral traits in adults. However, little is known about the developmental origins of such brain-behavior correlations. The current study examined functional brain network connectivity and its link to behavioral temperament in typically developing newborn and 1-month-old infants (M [age] = 25 days; N = 75) using functional near-infrared spectroscopy (fNIRS). Specifically, we measured long-range connectivity between cortical regions approximating fronto-parietal, default mode, and homologous-interhemispheric networks. Our results show that connectivity in these functional brain networks varies across infants and maps onto individual differences in behavioral temperament. Specifically, connectivity in the fronto-parietal network was positively associated with regulation and orienting behaviors, whereas connectivity in the default mode network showed the opposite effect on these behaviors. Our analysis also revealed a significant positive association between the homologous-interhemispheric network and infants' negative affect. The current results suggest that variability in long-range intra-hemispheric and cross-hemispheric functional connectivity between frontal, parietal, and temporal cortex is associated with individual differences in affect and behavior. These findings shed new light on the brain origins of individual differences in early-emerging behavioral traits and thus represent a viable novel approach for investigating developmental trajectories in typical and atypical neurodevelopment.
Collapse
Affiliation(s)
- Caroline M. Kelsey
- Division of Developmental Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, United States
- Department of Psychology, University of Virginia, Charlottesville, VA, United States
| | - Katrina Farris
- Department of Psychology, University of Virginia, Charlottesville, VA, United States
- Department of Psychology, Georgia State University, Atlanta, GA, United States
| | - Tobias Grossmann
- Department of Psychology, University of Virginia, Charlottesville, VA, United States
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
26
|
Abstract
Prenatal alcohol exposure leads to alterations in cognition, behavior and underlying brain architecture. However, prior studies have not integrated structural and functional imaging data in children with prenatal alcohol exposure. The aim of this study was to characterize disruptions in both structural and functional brain network organization after prenatal alcohol exposure in very early life. A group of 11 neonates with prenatal alcohol exposure and 14 unexposed controls were investigated using diffusion weighted structural and resting state functional magnetic resonance imaging. Covariance networks were created using graph theoretical analyses for each data set, controlling for age and sex. Group differences in global hub arrangement and regional connectivity were determined using nonparametric permutation tests. Neonates with prenatal alcohol exposure and controls exhibited similar global structural network organization. However, global functional networks of neonates with prenatal alcohol exposure comprised of temporal and limbic hubs, while hubs were more distributed in controls representing an early default mode network. On a regional level, controls showed prominent structural and functional connectivity in parietal and occipital regions. Neonates with prenatal alcohol exposure showed regionally, predominant structural and functional connectivity in several subcortical regions and occipital regions. The findings suggest early functional disruption on a global and regional level after prenatal alcohol exposure and indicate suboptimal organization of functional networks. These differences likely underlie sensory dysregulation and behavioral difficulties in prenatal alcohol exposure.
Collapse
|
27
|
Graham AM, Marr M, Buss C, Sullivan EL, Fair DA. Understanding Vulnerability and Adaptation in Early Brain Development using Network Neuroscience. Trends Neurosci 2021; 44:276-288. [PMID: 33663814 PMCID: PMC8216738 DOI: 10.1016/j.tins.2021.01.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 10/15/2020] [Accepted: 01/27/2021] [Indexed: 01/07/2023]
Abstract
Early adversity influences brain development and emerging behavioral phenotypes relevant for psychiatric disorders. Understanding the effects of adversity before and after conception on brain development has implications for contextualizing current public health crises and pervasive health inequities. The use of functional magnetic resonance imaging (fMRI) to study the brain at rest has shifted understanding of brain functioning and organization in the earliest periods of life. Here we review applications of this technique to examine effects of early life stress (ELS) on neurodevelopment in infancy, and highlight targets for future research. Building on the foundation of existing work in this area will require tackling significant challenges, including greater inclusion of often marginalized segments of society, and conducting larger, properly powered studies.
Collapse
Affiliation(s)
- Alice M Graham
- Department of Psychiatry, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd., Portland, OR, 97239, USA
| | - Mollie Marr
- Department of Behavioral Neuroscience, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd., Portland, OR, 97239, USA
| | - Claudia Buss
- Department of Medical Psychology, Charité University of Medicine Berlin, Luisenstrasse 57, 10117 Berlin, Germany; Development, Health, and Disease Research Program, University of California, Irvine, 837 Health Sciences Drive, Irvine, California, 92697, USA
| | - Elinor L Sullivan
- Department of Psychiatry, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd., Portland, OR, 97239, USA; Department of Behavioral Neuroscience, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd., Portland, OR, 97239, USA; Division of Neuroscience, Oregon National Primate Research Center, 505 NW 185th Ave., Beaverton, OR, 97006, USA
| | - Damien A Fair
- The Masonic Institute of the Developing Brain, The University of Minnesota, Department of Pediatrics, The University of Minnesota Institute of Child Development, The University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
28
|
Turesky TK, Vanderauwera J, Gaab N. Imaging the rapidly developing brain: Current challenges for MRI studies in the first five years of life. Dev Cogn Neurosci 2021; 47:100893. [PMID: 33341534 PMCID: PMC7750693 DOI: 10.1016/j.dcn.2020.100893] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 10/21/2020] [Accepted: 12/05/2020] [Indexed: 12/20/2022] Open
Abstract
Rapid and widespread changes in brain anatomy and physiology in the first five years of life present substantial challenges for developmental structural, functional, and diffusion MRI studies. One persistent challenge is that methods best suited to earlier developmental stages are suboptimal for later stages, which engenders a trade-off between using different, but age-appropriate, methods for different developmental stages or identical methods across stages. Both options have potential benefits, but also biases, as pipelines for each developmental stage can be matched on methods or the age-appropriateness of methods, but not both. This review describes the data acquisition, processing, and analysis challenges that introduce these potential biases and attempts to elucidate decisions and make recommendations that would optimize developmental comparisons.
Collapse
Affiliation(s)
- Ted K Turesky
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of Medicine, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| | - Jolijn Vanderauwera
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of Medicine, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Psychological Sciences Research Institute, Université Catholique De Louvain, Louvain-la-Neuve, Belgium; Institute of Neuroscience, Université Catholique De Louvain, Louvain-la-Neuve, Belgium
| | - Nadine Gaab
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of Medicine, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| |
Collapse
|
29
|
Ao W, Cheng Y, Chen M, Wei F, Yang G, An Y, Mao F, Zhu X, Mao G. Intrinsic brain abnormalities of irritable bowel syndrome with diarrhea: a preliminary resting-state functional magnetic resonance imaging study. BMC Med Imaging 2021; 21:4. [PMID: 33407222 PMCID: PMC7788841 DOI: 10.1186/s12880-020-00541-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 12/22/2020] [Indexed: 02/08/2023] Open
Abstract
Background The aim of the present study was to explore the brain active characteristics of patients with irritable bowel syndrome with diarrhea (IBS-D) using resting-state functional magnetic resonance imaging technology. Methods Thirteen IBS-D patients and fourteen healthy controls (HC) were enrolled. All subjects underwent head MRI examination during resting state. A voxel-based analysis of fractional amplitude of low frequency fluctuation (fALFF) maps between IBS-D and HC was performed using a two-sample t-test. The relationship between the fALFF values in abnormal brain regions and the scores of Symptom Severity Scale (IBS-SSS) were analyzed using Pearson correlation analysis. Results Compared with HC, IBS-D patients had lower fALFF values in the left medial superior frontal gyrus and higher fALFF values in the left hippocampus and right precuneus. There was a positive correlation between the duration scores of IBS-SSS and fALFF values in the right precuneus. Conclusion The altered fALFF values in the medial superior frontal gyri, left hippocampus and right precuneus revealed changes of intrinsic neuronal activity, further revealing the abnormality of gut-brain axis of IBS-D.
Collapse
Affiliation(s)
- Weiqun Ao
- Department of Radiology, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, Zhejiang Province, China
| | - Yougen Cheng
- Department of Radiology, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, Zhejiang Province, China
| | - Mingxian Chen
- Department of Gastroenterology, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, Zhejiang Province, China
| | - Fuquan Wei
- Department of Radiology, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, Zhejiang Province, China
| | - Guangzhao Yang
- Department of Radiology, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, Zhejiang Province, China
| | - Yongyu An
- Department of Radiology, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, Zhejiang Province, China
| | - Fan Mao
- Department of Radiology, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, Zhejiang Province, China
| | - Xiandi Zhu
- Department of Radiology, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, Zhejiang Province, China
| | - Guoqun Mao
- Department of Radiology, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, Zhejiang Province, China.
| |
Collapse
|
30
|
Zhao H, Dong D, Sun X, Cheng C, Xiong G, Wang X, Yao S. Intrinsic brain network alterations in non-clinical adults with a history of childhood trauma. Eur J Psychotraumatol 2021; 12:1975951. [PMID: 34992756 PMCID: PMC8725707 DOI: 10.1080/20008198.2021.1975951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Childhood trauma is a major social public-health problem worldwide. Previous literature suggests childhood trauma is associated with the development of psychiatric disorders and maladaptive behaviours later in life, but little is known about the neural basis underlying these associations. OBJECTIVE The aim of the current study was to investigate intrinsic brain network alterations in non-clinical adults with childhood trauma. METHODS Resting-state functional magnetic resonance imaging (fMRI) data were collected from 65 non-clinical adults with moderate or severe childhood trauma (CT group), according to the international demarcation criteria of the Childhood Trauma Questionnaire (CTQ), and 73 socio-demographically matched non-clinical controls without childhood trauma (no-CT group). Independent component analysis (ICA) was used to extract subnetworks of the default mode network (DMN), salience network (SN), and central executive network (CEN). RESULTS ICA revealed that the CT group had increased FC of the left medial prefrontal cortex (mPFC) in the anterior DMN (aDMN), increased functional connectivity (FC) of the left anterior insula in the SN, and decreased FC of the inferior parietal gyrus of the right CEN (rCEN). Compared to the controls, the CT group had decreased inter-network FCs between the SN and posterior DMN (pDMN), as well as between the pDMN and rCEN. CONCLUSIONS Impaired FC within the three key brain networks, decreased inter-FC between SN and rCEN, and decreased inter-FC between pDMN and rCEN may reflect biomarkers of childhood trauma.
Collapse
Affiliation(s)
- Haofei Zhao
- Medical Psychological Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, P. R. China.,Affiliated Wuhan Mental Health Center, Tongji Medical College of Huazhong University of Science & Technology, Wuhan, P. R. China
| | - Daifeng Dong
- Medical Psychological Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, P. R. China.,Medical Psychological Institute of Central South University, Changsha, Hunan, P. R. China.,China National Clinical Research Center on Mental Disorders (Xiangya), Changsha, Hunan, P. R. China
| | - Xiaoqiang Sun
- Medical Psychological Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, P. R. China.,Medical Psychological Institute of Central South University, Changsha, Hunan, P. R. China.,China National Clinical Research Center on Mental Disorders (Xiangya), Changsha, Hunan, P. R. China
| | - Chang Cheng
- Medical Psychological Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, P. R. China.,Medical Psychological Institute of Central South University, Changsha, Hunan, P. R. China.,China National Clinical Research Center on Mental Disorders (Xiangya), Changsha, Hunan, P. R. China
| | - Ge Xiong
- Medical Psychological Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, P. R. China.,Medical Psychological Institute of Central South University, Changsha, Hunan, P. R. China.,China National Clinical Research Center on Mental Disorders (Xiangya), Changsha, Hunan, P. R. China
| | - Xiang Wang
- Medical Psychological Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, P. R. China.,Medical Psychological Institute of Central South University, Changsha, Hunan, P. R. China.,China National Clinical Research Center on Mental Disorders (Xiangya), Changsha, Hunan, P. R. China
| | - Shuqiao Yao
- Medical Psychological Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, P. R. China.,Medical Psychological Institute of Central South University, Changsha, Hunan, P. R. China.,China National Clinical Research Center on Mental Disorders (Xiangya), Changsha, Hunan, P. R. China
| |
Collapse
|
31
|
Wakschlag LS, Tandon D, Krogh-Jespersen S, Petitclerc A, Nielsen A, Ghaffari R, Mithal L, Bass M, Ward E, Berken J, Fareedi E, Cummings P, Mestan K, Norton ES, Grobman W, Rogers J, Moskowitz J, Alshurafa N. Moving the dial on prenatal stress mechanisms of neurodevelopmental vulnerability to mental health problems: A personalized prevention proof of concept. Dev Psychobiol 2020; 63:622-640. [PMID: 33225463 DOI: 10.1002/dev.22057] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 12/31/2022]
Abstract
Prenatal stress exposure increases vulnerability to virtually all forms of psychopathology. Based on this robust evidence base, we propose a "Mental Health, Earlier" paradigm shift for prenatal stress research, which moves from the documentation of stress-related outcomes to their prevention, with a focus on infant neurodevelopmental indicators of vulnerability to subsequent mental health problems. Achieving this requires an expansive team science approach. As an exemplar, we introduce the Promoting Healthy Brain Project (PHBP), a randomized trial testing the impact of the Wellness-4-2 personalized prenatal stress-reduction intervention on stress-related alterations in infant neurodevelopmental trajectories in the first year of life. Wellness-4-2 utilizes bio-integrated stress monitoring for just-in-time adaptive intervention. We highlight unique challenges and opportunities this novel team science approach presents in synergizing expertise across predictive analytics, bioengineering, health information technology, prevention science, maternal-fetal medicine, neonatology, pediatrics, and neurodevelopmental science. We discuss how innovations across many areas of study facilitate this personalized preventive approach, using developmentally sensitive brain and behavioral methods to investigate whether altering children's adverse gestational exposures, i.e., maternal stress in the womb, can improve their mental health outlooks. In so doing, we seek to propel developmental SEED research towards preventive applications with the potential to reduce the pernicious effect of prenatal stress on neurodevelopment, mental health, and wellbeing.
Collapse
Affiliation(s)
- Lauren S Wakschlag
- Department of Medical Social Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Institute for Innovations in Developmental Sciences, Northwestern University, Chicago, IL, USA
| | - Darius Tandon
- Department of Medical Social Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Institute for Innovations in Developmental Sciences, Northwestern University, Chicago, IL, USA.,Institute for Public Health & Medicine Center for Community Health, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Sheila Krogh-Jespersen
- Department of Medical Social Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Institute for Innovations in Developmental Sciences, Northwestern University, Chicago, IL, USA
| | - Amelie Petitclerc
- Department of Medical Social Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Institute for Innovations in Developmental Sciences, Northwestern University, Chicago, IL, USA
| | - Ashley Nielsen
- Department of Medical Social Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Institute for Innovations in Developmental Sciences, Northwestern University, Chicago, IL, USA
| | - Rhoozbeh Ghaffari
- Institute for Innovations in Developmental Sciences, Northwestern University, Chicago, IL, USA.,Department of Materials Science & Engineering, McCormick School of Engineering, Northwestern University, Chicago, IL, USA
| | - Leena Mithal
- Department of Materials Science & Engineering, McCormick School of Engineering, Northwestern University, Chicago, IL, USA.,Department of Pediatrics (Infectious Diseases), Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Michael Bass
- Department of Medical Social Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Institute for Innovations in Developmental Sciences, Northwestern University, Chicago, IL, USA
| | - Erin Ward
- Department of Medical Social Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Institute for Innovations in Developmental Sciences, Northwestern University, Chicago, IL, USA.,Institute for Public Health & Medicine Center for Community Health, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Jonathan Berken
- Institute for Innovations in Developmental Sciences, Northwestern University, Chicago, IL, USA.,Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA.,Department of Pediatrics, Feinberg School of Medicine, Chicago, IL, USA
| | - Elveena Fareedi
- Department of Medical Social Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Institute for Innovations in Developmental Sciences, Northwestern University, Chicago, IL, USA
| | - Peter Cummings
- Department of Medical Social Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Institute for Innovations in Developmental Sciences, Northwestern University, Chicago, IL, USA
| | - Karen Mestan
- Institute for Innovations in Developmental Sciences, Northwestern University, Chicago, IL, USA.,Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA.,Department of Pediatrics (Neonatology), Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Elizabeth S Norton
- Institute for Innovations in Developmental Sciences, Northwestern University, Chicago, IL, USA.,Department of Communication Sciences & Disorders, School of Communication, Northwestern University, Chicago, IL, USA
| | - William Grobman
- Institute for Innovations in Developmental Sciences, Northwestern University, Chicago, IL, USA.,Department of Obstetrics & Gynecology (Maternal-Fetal Medicine), Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - John Rogers
- Institute for Innovations in Developmental Sciences, Northwestern University, Chicago, IL, USA.,Department of Materials Science & Engineering, McCormick School of Engineering, Northwestern University, Chicago, IL, USA
| | - Judith Moskowitz
- Department of Medical Social Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Institute for Innovations in Developmental Sciences, Northwestern University, Chicago, IL, USA
| | - Nabil Alshurafa
- Institute for Innovations in Developmental Sciences, Northwestern University, Chicago, IL, USA.,Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Department of Computer Science, McCormick School of Engineering, Northwestern University, Chicago, IL, USA
| |
Collapse
|
32
|
Chen Y, Liu S, Salzwedel A, Stephens R, Cornea E, Goldman BD, Gilmore JH, Gao W. The Subgrouping Structure of Newborns with Heterogenous Brain-Behavior Relationships. Cereb Cortex 2020; 31:301-311. [PMID: 32946557 DOI: 10.1093/cercor/bhaa226] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 12/18/2022] Open
Abstract
The presence of heterogeneity/subgroups in infants and older populations against single-domain brain or behavioral measures has been previously characterized. However, few attempts have been made to explore heterogeneity at the brain-behavior relationship level. Such a hypothesis posits that different subgroups of infants may possess qualitatively different brain-behavior relationships that could ultimately contribute to divergent developmental outcomes even with relatively similar brain phenotypes. In this study, we aimed to explore such relationship-level heterogeneity and delineate the subgrouping structure of newborns with differential brain-behavior associations based on a typically developing sample of 81 infants with 3-week resting-state functional magnetic resonance imaging scans and 4-year intelligence quotient (IQ) measures. Our results not only confirmed the existence of relationship-level heterogeneity in newborns but also revealed divergent developmental outcomes associated with two subgroups showing similar brain functional connectivity but contrasting brain-behavior relationships. Importantly, further analyses unveiled an intriguing pattern that the subgroup with higher 4-year IQ outcomes possessed brain-behavior relationships that were congruent to their functional connectivity pattern in neonates while the subgroup with lower 4-year IQ not, providing potential explanations for the observed IQ differences. The characterization of heterogeneity at the brain-behavior relationship level may not only improve our understanding of the patterned intersubject variability during infancy but could also pave the way for future development of heterogeneity-inspired, personalized, subgroup-specific models for better prediction.
Collapse
Affiliation(s)
- Yuanyuan Chen
- Department of Biomedical Sciences and Imaging, Biomedical Imaging Research Institute (BIRI), Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Shuxin Liu
- Department of Biomedical Sciences and Imaging, Biomedical Imaging Research Institute (BIRI), Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.,School of Educational Sciences, Minnan Normal University, Zhangzhou, Fujian 36300, China
| | - Andrew Salzwedel
- Department of Biomedical Sciences and Imaging, Biomedical Imaging Research Institute (BIRI), Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Rebecca Stephens
- Department of Psychiatry, University of North Carolina Chapel Hill, Chapel Hill, NC 27599, USA
| | - Emil Cornea
- Department of Psychiatry, University of North Carolina Chapel Hill, Chapel Hill, NC 27599, USA
| | - Barbara D Goldman
- Department of Psychology, FPG Child Development Institute, University of North Carolina Chapel Hill, Chapel Hill, NC 27599, USA
| | - John H Gilmore
- Department of Psychiatry, University of North Carolina Chapel Hill, Chapel Hill, NC 27599, USA
| | - Wei Gao
- Department of Biomedical Sciences and Imaging, Biomedical Imaging Research Institute (BIRI), Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.,Department of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
33
|
Camacho MC, King LS, Ojha A, Garcia CM, Sisk LM, Cichocki AC, Humphreys KL, Gotlib IH. Cerebral blood flow in 5- to 8-month-olds: Regional tissue maturity is associated with infant affect. Dev Sci 2020; 23:e12928. [PMID: 31802580 PMCID: PMC8931704 DOI: 10.1111/desc.12928] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 11/20/2019] [Accepted: 12/02/2019] [Indexed: 12/12/2022]
Abstract
Infancy is marked by rapid neural and emotional development. The relation between brain function and emotion in infancy, however, is not well understood. Methods for measuring brain function predominantly rely on the BOLD signal; however, interpretation of the BOLD signal in infancy is challenging because the neuronal-hemodynamic relation is immature. Regional cerebral blood flow (rCBF) provides a context for the infant BOLD signal and can yield insight into the developmental maturity of brain regions that may support affective behaviors. This study aims to elucidate the relations among rCBF, age, and emotion in infancy. One hundred and seven mothers reported their infants' (infant age M ± SD = 6.14 ± 0.51 months) temperament. A subsample of infants completed MRI scans, 38 of whom produced usable perfusion MRI during natural sleep to quantify rCBF. Mother-infant dyads completed the repeated Still-Face Paradigm, from which infant affect reactivity and recovery to stress were quantified. We tested associations of infant age at scan, temperament factor scores, and observed affect reactivity and recovery with voxel-wise rCBF. Infant age was positively associated with CBF in nearly all voxels, with peaks located in sensory cortices and the ventral prefrontal cortex, supporting the formulation that rCBF is an indicator of tissue maturity. Temperamental Negative Affect and recovery of positive affect following a stressor were positively associated with rCBF in several cortical and subcortical limbic regions, including the orbitofrontal cortex and inferior frontal gyrus. This finding yields insight into the nature of affective neurodevelopment during infancy. Specifically, infants with relatively increased prefrontal cortex maturity may evidence a disposition toward greater negative affect and negative reactivity in their daily lives yet show better recovery of positive affect following a social stressor.
Collapse
Affiliation(s)
| | | | - Amar Ojha
- Stanford University, Stanford, CA, USA
| | | | | | | | | | | |
Collapse
|
34
|
Cromwell HC, Abe N, Barrett KC, Caldwell-Harris C, Gendolla GH, Koncz R, Sachdev PS. Mapping the interconnected neural systems underlying motivation and emotion: A key step toward understanding the human affectome. Neurosci Biobehav Rev 2020; 113:204-226. [DOI: 10.1016/j.neubiorev.2020.02.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/22/2020] [Accepted: 02/25/2020] [Indexed: 01/09/2023]
|
35
|
Tamm L, Patel M, Peugh J, Kline-Fath BM, Parikh NA. Early brain abnormalities in infants born very preterm predict under-reactive temperament. Early Hum Dev 2020; 144:104985. [PMID: 32163848 PMCID: PMC7577074 DOI: 10.1016/j.earlhumdev.2020.104985] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/27/2020] [Accepted: 02/13/2020] [Indexed: 01/03/2023]
Abstract
BACKGROUND Early temperament may mediate the association between brain abnormalities following preterm birth and neurodevelopmental outcomes. AIMS This exploratory study investigated whether brain abnormalities in infants born very preterm predicted temperament. STUDY DESIGN Infants born prematurely underwent structural MRI at term. Mother self-reported depression symptoms at the scanning visit, and the Infant Behavior Questionnaire-Revised-Short (IBQ-R-S) about their infant at 3-months corrected age. SUBJECTS Infants (n = 214) born at ≤32 weeks gestation (M = 29.29, SD = 2.60). Average post-menstrual age at the MRI scan was 42.72 weeks (SD = 1.30). The majority of the infants were male (n = 115), and Caucasian (n = 145) or African American (n = 58). The average birthweight in grams was 1289.75 (SD = 448.5). OUTCOME MEASURES Infant Behavior Questionnaire-Revised-Short (IBQ-R-S) subscales. RESULTS Multivariate regression showed white matter abnormalities predicted lower ratings on High Intensity Pleasure and Vocal Reactivity, grey matter abnormalities predicted lower ratings on High Intensity Pleasure and Cuddliness, and cerebellar abnormalities predicted lower ratings on Fear and Sadness IBQ-R-S subscales adjusting for gestational age and sex. The pattern of results was essentially unchanged when maternal depression and socioeconomic status were included in the model. CONCLUSIONS Early MRI-diagnosed brain abnormalities in infants born very preterm were associated less vocalization and engagement during cuddling, decreased ability to take pleasure in stimulating activities, and lower emotionality in fear and sadness domains. Although replication is warranted, an under-reactive temperament in infants born preterm may have a neurobiological basis.
Collapse
Affiliation(s)
- Leanne Tamm
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, MLC 7039, Cincinnati, OH 45229-3039, United States of America; University of Cincinnati College of Medicine, United States of America.
| | - Meera Patel
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, MLC 7039, Cincinnati, OH 45229-3039, United States of America.
| | - James Peugh
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, MLC 7039, Cincinnati, OH 45229-3039, United States of America; University of Cincinnati College of Medicine, United States of America.
| | - Beth M. Kline-Fath
- University of Cincinnati College of Medicine, United States of America,Department of Radiology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave, MLC 7039, Cincinnati, OH 45229-3039, United States of America
| | - Nehal A. Parikh
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave, MLC 7039, Cincinnati, OH 45229-3039, United States of America,University of Cincinnati College of Medicine, United States of America,Correspondence to: N.A. Parikh, Perinatal Institute, Cincinnati Children’s Hospital Med. Center, 3333 Burnet Ave, MLC 7009, Cincinnati, OH 45229-3039, United States of America.
| | | |
Collapse
|
36
|
Cohodes EM, Kitt ER, Baskin-Sommers A, Gee DG. Influences of early-life stress on frontolimbic circuitry: Harnessing a dimensional approach to elucidate the effects of heterogeneity in stress exposure. Dev Psychobiol 2020; 63:153-172. [PMID: 32227350 DOI: 10.1002/dev.21969] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 01/17/2020] [Accepted: 02/26/2020] [Indexed: 12/24/2022]
Abstract
Early-life stress confers profound and lasting risk for developing cognitive, social, emotional, and physical health problems. The effects of stress on the developing brain contribute to this risk, with frontolimbic circuitry particularly susceptible to early experiences, possibly due to its innervation with glucocorticoid receptors and the timing of frontolimbic circuit maturation. To date, the majority of studies on stress and frontolimbic circuitry have employed a categorical approach, comparing stress-exposed versus non-stress-exposed youth. However, there is vast heterogeneity in the nature of stress exposure and in outcomes. Recent forays into understanding the psychobiological effects of stress have employed a dimensional approach focused on experiential, environmental, and temporal factors that influence the association between stress and subsequent vulnerability. This review highlights empirical findings that inform a dimensional approach to understanding the effects of stress on frontolimbic circuitry. We identify the timing, type, severity, controllability, and predictability of stress, and the degree to which a caregiver is involved, as specific features of stress that may play a substantial role in differential outcomes. We propose a framework for the effects of these features of stress on frontolimbic development that may partially determine how heterogeneity in stress exposure influences this circuitry and, ultimately, mental health.
Collapse
Affiliation(s)
- Emily M Cohodes
- Department of Psychology, Yale University, New Haven, CT, USA
| | | | | | - Dylan G Gee
- Department of Psychology, Yale University, New Haven, CT, USA
| |
Collapse
|
37
|
Warren SM, Chou YH, Steklis HD. Potential for Resting-State fMRI of the Amygdala in Elucidating Neural Mechanisms of Adaptive Self-Regulatory Strategies: A Systematic Review. Brain Connect 2020; 10:3-17. [PMID: 31950847 DOI: 10.1089/brain.2019.0700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Evolutionary-developmental theories consider the evolved mechanisms underlying adaptive behavioral strategies shaped in response to early environmental cues. Identifying neural mechanisms mediating processes of conditional adaptation in humans is an active area of research. Resting-state functional magnetic resonance imaging (RS-fMRI) captures functional connectivity theorized to represent the underlying functional architecture of the brain. This allows for investigating how underlying functional brain connections are related to early experiences during development, as well as current traits and behaviors. This review explores the potential of RS-fMRI of the amygdala (AMY) for advancing research on the neural mechanisms underlying adaptive strategies developed in early adverse environments. RS-fMRI studies of early life stress (ELS) and AMY functional connectivity within the frame of evolutionary theories are reviewed, specifically regarding the development of self-regulatory strategies. The potential of RS-fMRI for investigating the effects of ELS on developmental trajectories of self-regulation is discussed.
Collapse
Affiliation(s)
- Shannon M Warren
- Norton School of Family & Consumer Sciences, The University of Arizona, Tucson, Arizona
| | - Ying-Hui Chou
- Department of Psychology, Graduate Interdisciplinary Program in Cognitive Science, Arizona Center on Aging, BIO5 Institute, Evelyn F. McKnight Brain Institute, The University of Arizona, Tucson, Arizona
| | - Horst Dieter Steklis
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, Arizona
| |
Collapse
|
38
|
Kopala-Sibley DC, Cyr M, Finsaas MC, Orawe J, Huang A, Tottenham N, Klein DN. Early Childhood Parenting Predicts Late Childhood Brain Functional Connectivity During Emotion Perception and Reward Processing. Child Dev 2020; 91:110-128. [PMID: 30102429 PMCID: PMC6374219 DOI: 10.1111/cdev.13126] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Seventy-nine 3-year olds and their mothers participated in a laboratory-based task to assess maternal hostility. Mothers also reported their behavioral regulation of their child. Seven years later, functional magnetic resonance imaging data were acquired while viewing emotional faces and completing a reward processing task. Maternal hostility predicted more negative amygdala connectivity during exposure to sad relative to neutral faces with frontal and parietal regions as well as more negative left ventral striatal connectivity during monetary gain relative to loss feedback with the right posterior orbital frontal cortex and right inferior frontal gyrus. In contrast, maternal regulation predicted enhanced cingulo-frontal connectivity during monetary gain relative to loss feedback. Results suggest parenting is associated with alterations in emotion and reward processing circuitry 7-8 years later.
Collapse
Affiliation(s)
| | - Marilyn Cyr
- Department of Psychiatry, New York State Psychiatric Institute, Columbia University, New York, NY
| | - Megan C. Finsaas
- Department of Psychology, Stony Brook University, Stony Brook, NY
| | - Jonathan Orawe
- Department of Psychology, Stony Brook University, Stony Brook, NY
| | - Anna Huang
- Department of Psychology, Stony Brook University, Stony Brook, NY
| | - Nim Tottenham
- Department of Psychology, Columbia University, New York, NY
| | - Daniel N. Klein
- Department of Psychology, Stony Brook University, Stony Brook, NY
- Department of Psychiatry, Stony Brook University, Stony Brook, NY
| |
Collapse
|
39
|
Association between spontaneous activity of the default mode network hubs and leukocyte telomere length in late childhood and early adolescence. J Psychosom Res 2019; 127:109864. [PMID: 31706071 DOI: 10.1016/j.jpsychores.2019.109864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 10/25/2019] [Accepted: 10/25/2019] [Indexed: 12/11/2022]
Abstract
The impact of early life stress on mental health and telomere length shortening have been reported. Changes in brain default mode network (DMN) were found to be related to a myriad of psychiatric conditions in which stress may play a role. In this context, family environment and adverse childhood experiences (ACEs) are potential causes of stress. This is a hypothesis-driven study focused on testing two hypotheses: (i) there is an association between telomere length and the function of two main hubs of DMN: the posterior cingulate cortex (PCC) and the medial prefrontal cortex (mPFC); (ii) this association is modulated by family environment and/or ACEs. To the best of our knowledge, this is the first study investigating these hypotheses. Resting-state functional magnetic resonance imaging data and blood sample were collected from 389 subjects (6-15 age range). We assessed DMN fractional amplitude of low-frequency fluctuations (fALFF) and leukocyte telomere length (LTL). We fitted general linear models to test the main effects of LTL on DMN hubs and the interaction effects with Family Environment Scale (FES) and ACEs. The results did not survive a strict Bonferroni correction. However, uncorrected p-values suggest that LTL was positively correlated with fALFF in PCC and a FES interaction between FES and LTL at mPFC. Although marginal, our results encourage further research on the interaction between DMN hubs, telomere length and family environment, which may play a role on the biological embedding of stress.
Collapse
|
40
|
Richmond S, Beare R, Johnson KA, Allen NB, Seal ML, Whittle S. Structural covariance networks in children and their associations with maternal behaviors. Neuroimage 2019; 202:115965. [DOI: 10.1016/j.neuroimage.2019.06.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 04/03/2019] [Accepted: 06/19/2019] [Indexed: 10/26/2022] Open
|
41
|
Turesky TK, Jensen SK, Yu X, Kumar S, Wang Y, Sliva DD, Gagoski B, Sanfilippo J, Zöllei L, Boyd E, Haque R, Hafiz Kakon S, Islam N, Petri WA, Nelson CA, Gaab N. The relationship between biological and psychosocial risk factors and resting-state functional connectivity in 2-month-old Bangladeshi infants: A feasibility and pilot study. Dev Sci 2019; 22:e12841. [PMID: 31016808 PMCID: PMC6713583 DOI: 10.1111/desc.12841] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 01/25/2023]
Abstract
Childhood poverty has been associated with structural and functional alterations in the developing brain. However, poverty does not alter brain development directly, but acts through associated biological or psychosocial risk factors (e.g. malnutrition, family conflict). Yet few studies have investigated risk factors in the context of infant neurodevelopment, and none have done so in low-resource settings such as Bangladesh, where children are exposed to multiple, severe biological and psychosocial hazards. In this feasibility and pilot study, usable resting-state fMRI data were acquired in infants from extremely poor (n = 16) and (relatively) more affluent (n = 16) families in Dhaka, Bangladesh. Whole-brain intrinsic functional connectivity (iFC) was estimated using bilateral seeds in the amygdala, where iFC has shown susceptibility to early life stress, and in sensory areas, which have exhibited less susceptibility to early life hazards. Biological and psychosocial risk factors were examined for associations with iFC. Three resting-state networks were identified in within-group brain maps: medial temporal/striatal, visual, and auditory networks. Infants from extremely poor families compared with those from more affluent families exhibited greater (i.e. less negative) iFC in precuneus for amygdala seeds; however, no group differences in iFC were observed for sensory area seeds. Height-for-age, a proxy for malnutrition/infection, was not associated with amygdala/precuneus iFC, whereas prenatal family conflict was positively correlated. Findings suggest that it is feasible to conduct infant fMRI studies in low-resource settings. Challenges and practical steps for successful implementations are discussed.
Collapse
Affiliation(s)
- Ted K. Turesky
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of MedicineBoston Children’s HospitalBostonMassachusetts
- Harvard Medical SchoolBostonMassachusetts
| | - Sarah K.G. Jensen
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of MedicineBoston Children’s HospitalBostonMassachusetts
- Harvard Medical SchoolBostonMassachusetts
| | - Xi Yu
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of MedicineBoston Children’s HospitalBostonMassachusetts
- Harvard Medical SchoolBostonMassachusetts
| | - Swapna Kumar
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of MedicineBoston Children’s HospitalBostonMassachusetts
| | - Yingying Wang
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of MedicineBoston Children’s HospitalBostonMassachusetts
- Harvard Medical SchoolBostonMassachusetts
- College of Education and Human SciencesUniversity of Nebraska‐LincolnLincolnNebraska
| | - Danielle D. Sliva
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of MedicineBoston Children’s HospitalBostonMassachusetts
- Department of NeuroscienceBrown UniversityProvidenceRhode Island
| | - Borjan Gagoski
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of MedicineBoston Children’s HospitalBostonMassachusetts
- Harvard Medical SchoolBostonMassachusetts
| | - Joseph Sanfilippo
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of MedicineBoston Children’s HospitalBostonMassachusetts
| | - Lilla Zöllei
- A.A. Martinos Center for Biomedical ImagingMassachusetts General HospitalBostonMassachusetts
| | - Emma Boyd
- A.A. Martinos Center for Biomedical ImagingMassachusetts General HospitalBostonMassachusetts
| | - Rashidul Haque
- The International Centre for Diarrhoeal Disease ResearchDhakaBangladesh
| | | | - Nazrul Islam
- National Institute of Neurosciences & HospitalDhakaBangladesh
| | - William A. Petri
- Division of Infectious Diseases and International Health, Department of Medicine, School of MedicineUniversity of VirginiaCharlottesvilleVirginia
| | - Charles A. Nelson
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of MedicineBoston Children’s HospitalBostonMassachusetts
- Harvard Medical SchoolBostonMassachusetts
- Harvard Graduate School of EducationCambridgeMassachusetts
| | - Nadine Gaab
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of MedicineBoston Children’s HospitalBostonMassachusetts
- Harvard Medical SchoolBostonMassachusetts
| |
Collapse
|
42
|
Sato JR, Biazoli CE, Salum GA, Gadelha A, Crossley N, Vieira G, Zugman A, Picon FA, Pan PM, Hoexter MQ, Amaro E, Anés M, Moura LM, Del'Aquilla MAG, Mcguire P, Rohde LA, Miguel EC, Bressan RA, Jackowski AP. Associations between children's family environment, spontaneous brain oscillations, and emotional and behavioral problems. Eur Child Adolesc Psychiatry 2019; 28:835-845. [PMID: 30392120 DOI: 10.1007/s00787-018-1240-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 10/20/2018] [Indexed: 12/31/2022]
Abstract
The family environment in childhood has a strong effect on mental health outcomes throughout life. This effect is thought to depend at least in part on modifications of neurodevelopment trajectories. In this exploratory study, we sought to investigate whether a feasible resting-state fMRI metric of local spontaneous oscillatory neural activity, the fractional amplitude of low-frequency fluctuations (fALFF), is associated with the levels of children's family coherence and conflict. Moreover, we sought to further explore whether spontaneous activity in the brain areas influenced by family environment would also be associated with a mental health outcome, namely the incidence of behavioral and emotional problems. Resting-state fMRI data from 655 children and adolescents (6-15 years old) were examined. The quality of the family environment was found to be positively correlated with fALFF in the left temporal pole and negatively correlated with fALFF in the right orbitofrontal cortex. Remarkably, increased fALFF in the temporal pole was associated with a lower incidence of behavioral and emotional problems, whereas increased fALFF in the orbitofrontal cortex was correlated with a higher incidence.
Collapse
Affiliation(s)
- João Ricardo Sato
- Center of Mathematics, Computation, and Cognition, Universidade Federal do ABC, Av. dos Estados, 5001, Bairro Bangu, Santo André, SP, CEP 09210-580, Brazil. .,Interdisciplinary Lab for Clinical Neurosciences (LiNC), Universidade Federal de Sao Paulo (UNIFESP), São Paulo, Brazil. .,Department of Radiology, School of Medicine, University of Sao Paulo, São Paulo, Brazil. .,National Institute of Developmental Psychiatry for Children and Adolescents (CNPq), São Paulo, Brazil. .,Institute of Radiology (InRad), School of Medicine, University of Sao Paulo, São Paulo, Brazil.
| | - Claudinei Eduardo Biazoli
- Center of Mathematics, Computation, and Cognition, Universidade Federal do ABC, Av. dos Estados, 5001, Bairro Bangu, Santo André, SP, CEP 09210-580, Brazil.,Department of Radiology, School of Medicine, University of Sao Paulo, São Paulo, Brazil
| | - Giovanni Abrahão Salum
- Hospital de Clinicas de Porto Alegre and Department of Psychiatry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,National Institute of Developmental Psychiatry for Children and Adolescents (CNPq), São Paulo, Brazil
| | - Ary Gadelha
- Interdisciplinary Lab for Clinical Neurosciences (LiNC), Universidade Federal de Sao Paulo (UNIFESP), São Paulo, Brazil.,National Institute of Developmental Psychiatry for Children and Adolescents (CNPq), São Paulo, Brazil
| | | | - Gilson Vieira
- Bioinformatics Program, Institute of Mathematics and Statistics, University of Sao Paulo, São Paulo, Brazil.,Department of Radiology, School of Medicine, University of Sao Paulo, São Paulo, Brazil
| | - André Zugman
- Interdisciplinary Lab for Clinical Neurosciences (LiNC), Universidade Federal de Sao Paulo (UNIFESP), São Paulo, Brazil.,National Institute of Developmental Psychiatry for Children and Adolescents (CNPq), São Paulo, Brazil
| | - Felipe Almeida Picon
- Hospital de Clinicas de Porto Alegre and Department of Psychiatry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,National Institute of Developmental Psychiatry for Children and Adolescents (CNPq), São Paulo, Brazil
| | - Pedro Mario Pan
- Interdisciplinary Lab for Clinical Neurosciences (LiNC), Universidade Federal de Sao Paulo (UNIFESP), São Paulo, Brazil.,National Institute of Developmental Psychiatry for Children and Adolescents (CNPq), São Paulo, Brazil
| | - Marcelo Queiroz Hoexter
- Interdisciplinary Lab for Clinical Neurosciences (LiNC), Universidade Federal de Sao Paulo (UNIFESP), São Paulo, Brazil.,Department of Psychiatry, School of Medicine, University of Sao Paulo, São Paulo, Brazil.,National Institute of Developmental Psychiatry for Children and Adolescents (CNPq), São Paulo, Brazil
| | - Edson Amaro
- Institute of Radiology (InRad), School of Medicine, University of Sao Paulo, São Paulo, Brazil
| | - Mauricio Anés
- Hospital de Clinicas de Porto Alegre and Department of Psychiatry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,National Institute of Developmental Psychiatry for Children and Adolescents (CNPq), São Paulo, Brazil
| | - Luciana Monteiro Moura
- Interdisciplinary Lab for Clinical Neurosciences (LiNC), Universidade Federal de Sao Paulo (UNIFESP), São Paulo, Brazil.,National Institute of Developmental Psychiatry for Children and Adolescents (CNPq), São Paulo, Brazil
| | - Marco Antonio Gomes Del'Aquilla
- Interdisciplinary Lab for Clinical Neurosciences (LiNC), Universidade Federal de Sao Paulo (UNIFESP), São Paulo, Brazil.,National Institute of Developmental Psychiatry for Children and Adolescents (CNPq), São Paulo, Brazil
| | - Philip Mcguire
- Institute of Psychiatry, King's College London, London, UK
| | - Luis Augusto Rohde
- Hospital de Clinicas de Porto Alegre and Department of Psychiatry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,National Institute of Developmental Psychiatry for Children and Adolescents (CNPq), São Paulo, Brazil
| | - Euripedes Constantino Miguel
- Department of Psychiatry, School of Medicine, University of Sao Paulo, São Paulo, Brazil.,National Institute of Developmental Psychiatry for Children and Adolescents (CNPq), São Paulo, Brazil
| | - Rodrigo Affonseca Bressan
- Interdisciplinary Lab for Clinical Neurosciences (LiNC), Universidade Federal de Sao Paulo (UNIFESP), São Paulo, Brazil.,National Institute of Developmental Psychiatry for Children and Adolescents (CNPq), São Paulo, Brazil
| | - Andrea Parolin Jackowski
- Interdisciplinary Lab for Clinical Neurosciences (LiNC), Universidade Federal de Sao Paulo (UNIFESP), São Paulo, Brazil.,National Institute of Developmental Psychiatry for Children and Adolescents (CNPq), São Paulo, Brazil
| |
Collapse
|
43
|
Kahr Nilsson K, Landorph S, Houmann T, Olsen EM, Skovgaard AM. Developmental and mental health characteristics of children exposed to psychosocial adversity and stressors at the age of 18-months: Findings from a population-based cohort study. Infant Behav Dev 2019; 57:101319. [PMID: 31154136 DOI: 10.1016/j.infbeh.2019.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 03/02/2019] [Accepted: 04/06/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND Prior research on adverse experiences in early childhood has mainly focused on at-risk populations while studies of unselected populations are scarce. This topic therefore remains to be elucidated in broader child populations. Accordingly, the aim of this study was to examine if and to what extent children from a general population sample are exposed to psychosocial adversity and stressors in early childhood and whether the development and mental health of children with and without such exposure differ at the age of 18-months. METHODS A random sample of the Copenhagen Child Cohort (CCC2000) comprising 210 children and their parents participated in the study when the children were approximately 18-months. Information on exposures was obtained from a semi-structured interview including the Mannheim Parent Interview (MPI) and classified in agreement with the Multiaxial Classification of Child and Adolescent Psychiatric Disorders (ICD-10), and the Diagnostic Classification of Mental Health and Developmental Disorders of Infancy and Early Childhood (DC: 0-3). Child development was assessed with the Bayley Scales of Infant and Toddler Development - Second Edition (BSID-II), while mental health was measured using the Child Behavior Check List (CBCL 1½-5). RESULTS Among the 210 children, 91 (43%) had been exposed to psychosocial adversity and persistent stressors. The exposed children differed from the non-exposed children by poorer cognitive development and behavioral regulation, as well as more attention problems and anxious/depressed symptoms. The children exposed to adverse caregiving environments were specifically more likely to have delayed cognitive development than the rest of the sample. CONCLUSIONS In a general population sample of children aged 18-months, exposure to psychosocial adversity and stressors was associated with poorer development and mental health in cognitive and affective domains. These findings highlight an avenue for further research with potential implications for early preventative practices.
Collapse
Affiliation(s)
- Kristine Kahr Nilsson
- Center for Developmental & Applied Psychological Science (CeDAPS), Department of Communication and Psychology, Aalborg University, Denmark.
| | - Susanne Landorph
- Child and Adolescent Mental Health Centre, Mental Health Services, Capital Region of Denmark, Glostrup, Denmark
| | - Tine Houmann
- Child and Adolescent Mental Health Centre, Mental Health Services, Capital Region of Denmark, Glostrup, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Else Marie Olsen
- Department of Public Health, Section of Epidemiology, University of Copenhagen, Denmark; Center for Clinical Research and Prevention, Capital Region, Copenhagen, Denmark
| | - Anne Mette Skovgaard
- National Institute of Public Health, Faculty of Health Sciences, University of Southern Denmark, Denmark
| |
Collapse
|
44
|
VanTieghem MR, Tottenham N. Neurobiological Programming of Early Life Stress: Functional Development of Amygdala-Prefrontal Circuitry and Vulnerability for Stress-Related Psychopathology. Curr Top Behav Neurosci 2019; 38:117-136. [PMID: 28439771 PMCID: PMC5940575 DOI: 10.1007/7854_2016_42] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Early adverse experiences are associated with heighted vulnerability for stress-related psychopathology across the lifespan. While extensive work has investigated the effects of early adversity on neurobiology in adulthood, developmental approaches can provide further insight on the neurobiological mechanisms that link early experiences and long-term mental health outcomes. In the current review, we discuss the role of emotion regulation circuitry implicated in stress-related psychopathology from a developmental and transdiagnostic perspective. We highlight converging evidence suggesting that multiple forms of early adverse experiences impact the functional development of amygdala-prefrontal circuitry. Next, we discuss how adversity-induced alterations in amygdala-prefrontal development are associated with symptoms of emotion dysregulation and psychopathology. Additionally, we discuss potential mechanisms through which protective factors may buffer the effects of early adversity on amygdala-prefrontal development to confer more adaptive long-term outcomes. Finally, we consider limitations of the existing literature and make suggestions for future longitudinal and translational research that can better elucidate the mechanisms linking early adversity, neurobiology, and emotional phenotypes. Together, these findings may provide further insight into the neuro-developmental mechanisms underlying the emergence of adversity-related emotional disorders and facilitate the development of targeted interventions that can ameliorate risk for psychopathology in youth exposed to early life stress.
Collapse
Affiliation(s)
- Michelle R VanTieghem
- Department of Psychology, Columbia University, 406 Schermerhorn Hall, 1990 Amsterdam Ave, MC 5501, New York, NY, 10027, USA.
| | - Nim Tottenham
- Department of Psychology, Columbia University, 406 Schermerhorn Hall, 1990 Amsterdam Ave, MC 5501, New York, NY, 10027, USA
| |
Collapse
|
45
|
Callaghan B, Meyer H, Opendak M, Van Tieghem M, Harmon C, Li A, Lee FS, Sullivan RM, Tottenham N. Using a Developmental Ecology Framework to Align Fear Neurobiology Across Species. Annu Rev Clin Psychol 2019; 15:345-369. [PMID: 30786246 DOI: 10.1146/annurev-clinpsy-050718-095727] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Children's development is largely dependent on caregiving; when caregiving is disrupted, children are at increased risk for numerous poor outcomes, in particular psychopathology. Therefore, determining how caregivers regulate children's affective neurobiology is essential for understanding psychopathology etiology and prevention. Much of the research on affective functioning uses fear learning to map maturation trajectories, with both rodent and human studies contributing knowledge. Nonetheless, as no standard framework exists through which to interpret developmental effects across species, research often remains siloed, thus contributing to the current therapeutic impasse. Here, we propose a developmental ecology framework that attempts to understand fear in the ecological context of the child: their relationship with their parent. By referring to developmental goals that are shared across species (to attach to, then, ultimately, separate from the parent), this framework provides a common grounding from which fear systems and their dysfunction can be understood, thus advancing research on psychopathologies and their treatment.
Collapse
Affiliation(s)
- Bridget Callaghan
- Department of Psychology, Columbia University, New York, NY 10027, USA; , , , .,Department of Psychiatry, Melbourne University, Melbourne, Victoria 3010, Australia
| | - Heidi Meyer
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA; , ,
| | - Maya Opendak
- Department of Child and Adolescent Psychiatry, New York University, Langone Medical Center, New York, NY 10016, USA; .,Nathan S. Klein Institute for Psychiatric Research, Orangeburg, New York 10962, USA;
| | | | - Chelsea Harmon
- Department of Psychology, Columbia University, New York, NY 10027, USA; , , ,
| | - Anfei Li
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA; , ,
| | - Francis S Lee
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA; , ,
| | - Regina M Sullivan
- Department of Child and Adolescent Psychiatry, New York University, Langone Medical Center, New York, NY 10016, USA; .,Nathan S. Klein Institute for Psychiatric Research, Orangeburg, New York 10962, USA;
| | - Nim Tottenham
- Department of Psychology, Columbia University, New York, NY 10027, USA; , , ,
| |
Collapse
|
46
|
Graham AM, Rasmussen JM, Entringer S, Ben Ward E, Rudolph MD, Gilmore JH, Styner M, Wadhwa PD, Fair DA, Buss C. Maternal Cortisol Concentrations During Pregnancy and Sex-Specific Associations With Neonatal Amygdala Connectivity and Emerging Internalizing Behaviors. Biol Psychiatry 2019; 85:172-181. [PMID: 30122286 PMCID: PMC6632079 DOI: 10.1016/j.biopsych.2018.06.023] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 06/06/2018] [Accepted: 06/22/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND Maternal cortisol during pregnancy has the potential to influence rapidly developing fetal brain systems that are commonly altered in neurodevelopmental and psychiatric disorders. Research examining maternal cortisol concentrations across pregnancy and offspring neurodevelopment proximal to birth is needed to advance understanding in this area and lead to insight into the etiology of these disorders. METHODS Participants were 70 adult women recruited during early pregnancy and their infants born after 34 weeks gestation. Maternal cortisol concentrations were assessed serially over 4 days in early, mid, and late gestation. Resting state functional connectivity magnetic resonance imaging of the neonatal amygdala was examined. Mothers reported on children's internalizing behavior problems at 24 months of age. RESULTS Maternal cortisol concentrations during pregnancy were significantly associated with neonatal amygdala connectivity in a sex-specific manner. Elevated maternal cortisol was associated with stronger amygdala connectivity to brain regions involved in sensory processing and integration, as well as the default mode network in girls, and with weaker connectivity to these brain regions in boys. Elevated maternal cortisol was associated with higher internalizing symptoms in girls only, and this association was mediated by stronger neonatal amygdala connectivity. CONCLUSIONS Normative variation in maternal cortisol during pregnancy is associated with the coordinated functioning of the amygdala soon after birth in a sex-specific manner. The identified pathway from maternal cortisol to higher internalizing symptoms in girls via alterations in neonatal amygdala connectivity may be relevant for the etiology of sex differences in internalizing psychiatric disorders, which are more prevalent in women.
Collapse
Affiliation(s)
- Alice M Graham
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon
| | - Jerod M Rasmussen
- Development, Health and Disease Research Program, University of California, Irvine, Irvine, California
| | - Sonja Entringer
- Development, Health and Disease Research Program, University of California, Irvine, Irvine, California; Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Medical Psychology, Berlin, Germany
| | - Elizabeth Ben Ward
- Department of Computer Science, University of California, Irvine, Irvine, California
| | - Marc D Rudolph
- Department of Psychology and Neuroscience, University of North Carolina, Chapel Hill, North Carolina
| | - John H Gilmore
- Department of Psychiatry, University of North Carolina, Chapel Hill, North Carolina
| | - Martin Styner
- Department of Psychiatry, University of North Carolina, Chapel Hill, North Carolina
| | - Pathik D Wadhwa
- Development, Health and Disease Research Program, University of California, Irvine, Irvine, California.
| | - Damien A Fair
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon; Advanced Imaging Research Center, Oregon Health & Science University, Portland, Oregon
| | - Claudia Buss
- Development, Health and Disease Research Program, University of California, Irvine, Irvine, California; Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Medical Psychology, Berlin, Germany
| |
Collapse
|
47
|
Rasmussen JM, Graham AM, Entringer S, Gilmore JH, Styner M, Fair DA, Wadhwa PD, Buss C. Maternal Interleukin-6 concentration during pregnancy is associated with variation in frontolimbic white matter and cognitive development in early life. Neuroimage 2019; 185:825-835. [PMID: 29654875 PMCID: PMC6181792 DOI: 10.1016/j.neuroimage.2018.04.020] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 03/08/2018] [Accepted: 04/09/2018] [Indexed: 01/21/2023] Open
Abstract
Maternal inflammation during pregnancy can alter the trajectory of fetal brain development and increase risk for offspring psychiatric disorders. However, the majority of relevant research to date has been conducted in animal models. Here, in humans, we focus on the structural connectivity of frontolimbic circuitry as it is both critical for socioemotional and cognitive development, and commonly altered in a range of psychiatric disorders associated with intrauterine inflammation. Specifically, we test the hypothesis that elevated maternal concentration of the proinflammatory cytokine interleukin-6 (IL-6) during pregnancy will be associated with variation in microstructural properties of this circuitry in the neonatal period and across the first year of life. Pregnant mothers were recruited in early pregnancy and maternal blood samples were obtained for assessment of maternal IL-6 concentrations in early (12.6 ± 2.8 weeks [S.D.]), mid (20.4 ± 1.5 weeks [S.D.]) and late (30.3 ± 1.3 weeks [S.D.]) gestation. Offspring brain MRI scans were acquired shortly after birth (N = 86, scan age = 3.7 ± 1.7 weeks [S.D.]) and again at 12-mo age (N = 32, scan age = 54.0 ± 3.1 weeks [S.D.]). Diffusion Tensor Imaging (DTI) was used to characterize fractional anisotropy (FA) along the left and right uncinate fasciculus (UF), representing the main frontolimbic fiber tract. In N = 30 of the infants with serial MRI data at birth and 12-mo age, cognitive and socioemotional developmental status was characterized using the Bayley Scales of Infant Development. All analyses tested for potentially confounding influences of household income, prepregnancy Body-Mass-Index, obstetric risk, smoking during pregnancy, and infant sex, and outcomes at 12-mo age were additionally adjusted for the quality of the postnatal caregiving environment. Maternal IL-6 concentration (averaged across pregnancy) was prospectively and inversely associated with FA (suggestive of reduced integrity under high inflammatory conditions) in the newborn offspring (bi-lateral, p < 0.01) in the central portion of the UF proximal to the amygdala. Furthermore, maternal IL-6 concentration was positively associated with rate of FA increase across the first year of life (bi-lateral, p < 0.05), resulting in a null association between maternal IL-6 and UF FA at 12-mo age. Maternal IL-6 was also inversely associated with offspring cognition at 12-mo age, and this association was mediated by FA growth across the first year of postnatal life. Findings from the current study support the premise that susceptibility for cognitive impairment and potentially psychiatric disorders may be affected in utero, and that maternal inflammation may constitute an intrauterine condition of particular importance in this context.
Collapse
Affiliation(s)
- Jerod M Rasmussen
- Development, Health and Disease Research Program, University of California, 92697, Irvine, CA, USA; Department of Pediatrics, University of California, 92697, Irvine, CA, USA.
| | - Alice M Graham
- Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, United States
| | - Sonja Entringer
- Development, Health and Disease Research Program, University of California, 92697, Irvine, CA, USA; Department of Pediatrics, University of California, 92697, Irvine, CA, USA; Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Institute of Medical Psychology, Berlin, Germany
| | - John H Gilmore
- Department of Psychiatry, University of North Carolina at Chapel Hill, 27599, North Carolina, USA
| | - Martin Styner
- Department of Computer Science, University of North Carolina at Chapel Hill, 27599, North Carolina, USA
| | - Damien A Fair
- Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, United States
| | - Pathik D Wadhwa
- Development, Health and Disease Research Program, University of California, 92697, Irvine, CA, USA; Department of Pediatrics, University of California, 92697, Irvine, CA, USA; Departments of Psychiatry and Human Behavior, Obstetrics & Gynecology, Epidemiology, University of California, 92697, Irvine, CA, USA
| | - Claudia Buss
- Development, Health and Disease Research Program, University of California, 92697, Irvine, CA, USA; Department of Pediatrics, University of California, 92697, Irvine, CA, USA; Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Institute of Medical Psychology, Berlin, Germany.
| |
Collapse
|
48
|
Rebello K, Moura LM, Pinaya WHL, Rohde LA, Sato JR. Default Mode Network Maturation and Environmental Adversities During Childhood. ACTA ACUST UNITED AC 2018; 2:2470547018808295. [PMID: 32440587 PMCID: PMC7219900 DOI: 10.1177/2470547018808295] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 09/28/2018] [Indexed: 12/14/2022]
Abstract
Default mode network (DMN) plays a central role in cognition and brain disorders.
It has been shown that adverse environmental conditions impact neurodevelopment,
but how these conditions impact in DMN maturation is still poorly understood.
This article reviews representative neuroimaging functional studies addressing
the interactions between DMN development and environmental factors, focusing on
early life adversities, a critical period for brain changes. Studies focused on
this period of life offer a special challenge: to disentangle the
neurodevelopmental connectivity changes from those related to environmental
conditions. We first summarized the literature on DMN maturation, providing an
overview of both typical and atypical development patterns in childhood and
early adolescence. Afterward, we focused on DMN changes associated with chronic
exposure to environmental adversities during childhood. This summary suggests
that changes in DMN development could be a potential allostatic neural feature
associated with an embodiment of environmental circumstances. Finally, we
discuss about some key methodological issues that should be considered in
paradigms addressing environmental adversities and open questions for future
investigations.
Collapse
Affiliation(s)
- Keila Rebello
- Center of Mathematics, Computing and Cognition, Universidade Federal do ABC, Brazil
| | - Luciana M Moura
- Center of Mathematics, Computing and Cognition, Universidade Federal do ABC, Brazil
| | - Walter H L Pinaya
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Luis A Rohde
- Department of Psychiatry, Federal University of Rio Grande do Sul, Brazil
| | - João R Sato
- Center of Mathematics, Computing and Cognition, Universidade Federal do ABC, Brazil
| |
Collapse
|
49
|
Hanford LC, Schmithorst VJ, Panigrahy A, Lee V, Ridley J, Bonar L, Versace A, Hipwell AE, Phillips ML. The Impact of Caregiving on the Association Between Infant Emotional Behavior and Resting State Neural Network Functional Topology. Front Psychol 2018; 9:1968. [PMID: 30374323 PMCID: PMC6196255 DOI: 10.3389/fpsyg.2018.01968] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 09/25/2018] [Indexed: 11/13/2022] Open
Abstract
The extent to which neural networks underlying emotional behavior in infancy serve as precursors of later behavioral and emotional problems is unclear. Even less is known about caregiving influences on these early brain-behavior relationships. To study brain-emotional behavior relationships in infants, we examined resting-state functional network metrics and infant emotional behavior in the context of early maternal caregiving. We assessed 46 3-month-old infants and their mothers from a community sample. Infants underwent functional MRI during sleep. Resting-state data were processed using graph theory techniques to examine specific nodal metrics as indicators of network functionality. Infant positive and negative emotional behaviors, and positive, negative and mental-state talk (MST) indices of maternal caregiving were coded independently from filmed interactions. Regression analyses tested associations among nodal metrics and infant emotionality, and the moderating effects of maternal behavior on these relationships. All results were FDR corrected at alpha = 0.05. While relationships between infant emotional behavior or maternal caregiving, and nodal metrics were weak, higher levels of maternal MST strengthened associations between infant positive emotionality and nodal metrics within prefrontal (p < 0.0001), and occipital (p < 0.0001) cortices more generally. Positive and negative aspects of maternal caregiving had little effect. Our findings suggest that maternal MST may play an important role in strengthening links between emotion regulation neural circuitry and early infant positive behavior. They also provide objective neural markers that could inform and monitor caregiving-based interventions designed to improve the health and well-being of vulnerable infants at-risk for behavioral and emotional problems.
Collapse
Affiliation(s)
- Lindsay C. Hanford
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, United States
| | - Vincent J. Schmithorst
- Department of Pediatric Radiology, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA, United States
| | - Ashok Panigrahy
- Department of Pediatric Radiology, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA, United States
| | - Vincent Lee
- Department of Pediatric Radiology, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA, United States
| | - Julia Ridley
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, United States
| | - Lisa Bonar
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, United States
| | - Amelia Versace
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, United States
| | - Alison E. Hipwell
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, United States
| | - Mary L. Phillips
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
50
|
Dégeilh F, Bernier A, Leblanc É, Daneault V, Beauchamp MH. Quality of maternal behaviour during infancy predicts functional connectivity between default mode network and salience network 9 years later. Dev Cogn Neurosci 2018; 34:53-62. [PMID: 30056292 PMCID: PMC6969303 DOI: 10.1016/j.dcn.2018.06.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 04/30/2018] [Accepted: 06/27/2018] [Indexed: 01/05/2023] Open
Abstract
The relation between parenting and children’s brain networks connectivity was examined. Higher-quality maternal behaviour during infancy predicted child DMN-SN connectivity. Maternal behaviour may affect brain maturation via experience-dependent processes. Experiences provided by positive maternal behaviour may promote DMN-SN connectivity.
Infants’ experiences are considered to determine to a large degree the strength and effectiveness of neural connections and fine tune the development of brain networks. As one of the most pervasive and potent relational experiences of infancy, parent-child relationships appear to be prime candidates to account for experience-driven differences in children’s brain development. Yet, studies linking parenting and functional connectivity are surprisingly scarce, and restricted to the connectivity of limbic structures. Accordingly, this longitudinal study explored whether normative variation in the quality of early maternal behaviour predicts the functional connectivity of large-scale brain networks in late childhood. Maternal mind-mindedness and autonomy support were assessed with 28 children when they were 13 and 15 months old respectively. When children were 10 years of age, children underwent a resting-state functional MRI exam. Functional connectivity was assessed between key regions of the default mode network (DMN), salience network (SN), and frontal-parietal central executive network (CEN). Results revealed that higher mind-mindedness and autonomy support predicted stronger negative connectivity between DMN and SN regions. These findings are the first to provide preliminary evidence suggestive of a long-lasting impact of variation within the normative range of early maternal behaviour on functional connectivity between large-scale brain networks.
Collapse
Affiliation(s)
- Fanny Dégeilh
- Department of Psychology, University of Montreal, Quebec, Canada; Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Annie Bernier
- Department of Psychology, University of Montreal, Quebec, Canada.
| | - Élizabel Leblanc
- Department of Psychology, University of Montreal, Quebec, Canada
| | - Véronique Daneault
- Department of Psychology, University of Montreal, Quebec, Canada; Functional Neuroimaging Unit, Montreal Geriatric University Institute, Quebec, Canada; Center for Advanced Research in Sleep Medicine, Montreal Sacré-Cœur Hospital, Quebec, Canada
| | - Miriam H Beauchamp
- Department of Psychology, University of Montreal, Quebec, Canada; Sainte-Justine Research Center, Montreal, Quebec, Canada
| |
Collapse
|