1
|
Lo VK, Zillig KW, Cocherell DE, Todgham AE, Fangue NA. Effects of low temperature on growth and metabolism of larval green sturgeon (Acipenser medirostris) across early ontogeny. J Comp Physiol B 2024; 194:427-442. [PMID: 38955877 DOI: 10.1007/s00360-024-01568-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 04/27/2024] [Accepted: 05/13/2024] [Indexed: 07/04/2024]
Abstract
Southern Distinct Population Segment (sDPS) green sturgeon spawn solely in one stretch of the Sacramento River in California. Management of this spawning habitat is complicated by cold water temperature requirements for the conservation of winter-run Chinook salmon. This study assessed whether low incubation and rearing temperatures resulted in carryover effects across embryo to early juvenile life stages on scaling relationships in growth and metabolism in northern DPS green sturgeon used as a proxy for sDPS green sturgeon. Fish were incubated and reared at 11 °C and 15 °C, with a subset experiencing a reciprocal temperature transfer post-hatch, to assess recovery from cold incubation or to simulate a cold-water dam release which would chill rearing larvae. Growth and metabolic rate of embryos and larvae were measured to 118 days post hatch. Reciprocal temperature transfers revealed a greater effect of low temperature exposure during larval rearing rather than during egg incubation. While 11 °C eggs hatched at a smaller length, log-transformed length-weight relationships showed that these differences in developmental trajectory dissipated as individuals achieved juvenile morphology. However, considerable size-at-age differences persisted between rearing temperatures, with 15 °C fish requiring 60 days post-hatch to achieve 1 g in mass, whereas 11 °C fish required 120 days to achieve 1 g, resulting in fish of the same age at the completion of the experiment with a ca. 37-fold difference in weight. Consequently, our study suggests that cold rearing temperatures have far more consequential downstream effects than cold embryo incubation temperatures. Growth delays from 11 °C rearing temperatures would greatly increase the period of vulnerability to predation in larval green sturgeon. The scaling relationship between log-transformed whole-body metabolism and mass exhibited a steeper slope and thus an increased oxygen requirement with size in 11 °C reared fish, potentially indicating an energetically unsustainable situation. Understanding how cold temperatures affect green sturgeon ontogeny is necessary to refine our larval recruitment estimations for this threatened species.
Collapse
Affiliation(s)
- Vanessa K Lo
- Department of Wildlife, Fish and Conservation Biology, University of California Davis, Davis, CA, 95616, USA
| | - Kenneth W Zillig
- Department of Wildlife, Fish and Conservation Biology, University of California Davis, Davis, CA, 95616, USA
| | - Dennis E Cocherell
- Department of Wildlife, Fish and Conservation Biology, University of California Davis, Davis, CA, 95616, USA
| | - Anne E Todgham
- Department of Animal Science, University of California Davis, Davis, CA, 95616, USA
| | - Nann A Fangue
- Department of Wildlife, Fish and Conservation Biology, University of California Davis, Davis, CA, 95616, USA.
| |
Collapse
|
2
|
Gashkina NA. Metal Toxicity: Effects on Energy Metabolism in Fish. Int J Mol Sci 2024; 25:5015. [PMID: 38732234 PMCID: PMC11084289 DOI: 10.3390/ijms25095015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/25/2024] [Accepted: 05/02/2024] [Indexed: 05/13/2024] Open
Abstract
Metals are dispersed in natural environments, particularly in the aquatic environment, and accumulate, causing adverse effects on aquatic life. Moreover, chronic polymetallic water pollution is a common problem, and the biological effects of exposure to complex mixtures of metals are the most difficult to interpret. In this review, metal toxicity is examined with a focus on its impact on energy metabolism. Mechanisms regulating adenosine triphosphate (ATP) production and reactive oxygen species (ROS) emission are considered in their dual roles in the development of cytotoxicity and cytoprotection, and mitochondria may become target organelles of metal toxicity when the transmembrane potential is reduced below its phosphorylation level. One of the main consequences of metal toxicity is additional energy costs, and the metabolic load can lead to the disruption of oxidative metabolism and enhanced anaerobiosis.
Collapse
Affiliation(s)
- Natalia A Gashkina
- Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, 19 Kosygin St., Moscow 119991, Russia
| |
Collapse
|
3
|
Yousaf MN, Røn Ø, Keitel-Gröner F, McGurk C, Obach A. Heart rate as an indicator of stress during the critical swimming speed test of farmed Atlantic salmon (Salmo salar L.). JOURNAL OF FISH BIOLOGY 2024; 104:633-646. [PMID: 37903720 DOI: 10.1111/jfb.15602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/01/2023]
Abstract
A swim tunnel is to fish as a treadmill is to humans, and is a device used for indirect measuring of the metabolic rate. This study aims to explore the fish stress (if any) during the critical swimming test routines (fish handling, confinement, and swimming) using heart rate (fH , heartbeat per minute) bio-loggers in farmed Atlantic salmon (Salmo salar L.). In addition, the recovery dynamics of exercised fish using fH were explored for 48 h post swim tests. Continuous fH data were acquired following the surgical implantation and throughout the trials, such as during fish handling, swim tests (critical swimming speed, Ucrit ), and 48 h post swim tests. After 3 weeks of surgical recovery, fH stabilized at 46.20 ± 1.26 beats min-1 , equalizing a ~38% reduction in fH recorded post-surgical tachycardia (74.13 ± 1.44 beats min-1 ). Interestingly, fH was elevated by ~200% compared to baseline levels not only due to the Ucrit (92.04 ± 0.23 beats min-1 ) but also due to fish handling and confinement in the swim tunnel, which was 66% above the baseline levels (77.48 ± 0.34 beats min-1 ), suggesting fish stress. Moreover, significantly higher plasma cortisol levels (199.56 ± 77.17 ng mL-1 ) corresponding to a ~300% increase compared to baseline levels (47.92 ± 27.70 ng mL-1 ) were identified after Ucrit , predicting post-swim test stress (physiological exhaustion). These findings reinforce the importance of fish acclimation in the swim tunnel prior to the swimming tests. However, fH dropped over the course of the 48-h post-swim test, but remained comparatively higher than the basal levels, suggesting fish should be given at least 48 h to recover from handling stress for better fish welfare. This study further explored the influence of fish tagging on Ucrit , which resulted in reduced swimming capabilities of tagged fish (1.95 ± 0.37 body lengths s-1 ) compared to untagged fish (2.54 ± 0.42 body length s-1 ), although this was not significant (p = 0.06), and therefore future tagging studies are warranted.
Collapse
Affiliation(s)
| | - Øyvind Røn
- Skretting Aquaculture Innovation (Skretting AI), Stavanger, Norway
| | | | - Charles McGurk
- Skretting Aquaculture Innovation (Skretting AI), Stavanger, Norway
| | - Alex Obach
- Skretting Aquaculture Innovation (Skretting AI), Stavanger, Norway
| |
Collapse
|
4
|
Middleton EK, Gilbert MJH, Landry T, Lamarre SG, Speers-Roesch B. Environmental variation associated with overwintering elicits marked metabolic plasticity in a temperate salmonid, Salvelinus fontinalis. J Exp Biol 2024; 227:jeb246743. [PMID: 38235572 PMCID: PMC10911287 DOI: 10.1242/jeb.246743] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/10/2024] [Indexed: 01/19/2024]
Abstract
Poleward winters commonly expose animals, including fish, to frigid temperatures and low food availability. Fishes that remain active over winter must therefore balance trade-offs between conserving energy and maintaining physiological performance in the cold, yet the extent and underlying mechanisms of these trade-offs are not well understood. We investigated the metabolic plasticity of brook char (Salvelinus fontinalis), a temperate salmonid, from the biochemical to whole-animal level in response to cold and food deprivation. Acute cooling (1°C day-1) from 14°C to 2°C had no effect on food consumption but reduced activity by 77%. We then assessed metabolic performance and demand over 90 days with exposure to warm (8°C) or cold winter (2°C) temperatures while fish were fed or starved. Resting metabolic rate (RMR) decreased substantially during initial cooling from 8°C to 2°C (Q10=4.2-4.5) but brook char exhibited remarkable thermal compensation during acclimation (Q10=1.4-1.6). Conversely, RMR was substantially lower (40-48%) in starved fish, conserving energy. Thus, the absolute magnitude of thermal plasticity may be masked or modified under food restriction. This reduction in RMR was associated with atrophy and decreases in in vivo protein synthesis rates, primarily in non-essential tissues. Remarkably, food deprivation had no effect on maximum oxygen uptake rates and thus aerobic capacity, supporting the notion that metabolic capacity can be decoupled from RMR in certain contexts. Overall, our study highlights the multi-faceted energetic flexibility of Salvelinus spp. that likely contributes to their success in harsh and variable environments and may be emblematic of winter-active fishes more broadly.
Collapse
Affiliation(s)
- Ella K. Middleton
- Department of Biological Sciences, University of New Brunswick, Saint John, Canada, E2K 5E2
| | - Matthew J. H. Gilbert
- Department of Biological Sciences, University of New Brunswick, Saint John, Canada, E2K 5E2
| | - Thomas Landry
- Département de Biologie, Université de Moncton, Moncton, Canada, E1A 3E9
| | - Simon G. Lamarre
- Département de Biologie, Université de Moncton, Moncton, Canada, E1A 3E9
| | - Ben Speers-Roesch
- Department of Biological Sciences, University of New Brunswick, Saint John, Canada, E2K 5E2
| |
Collapse
|
5
|
Bergsson H, Svendsen MBS, Steffensen JF. Model of Oxygen Conditions within Aquaculture Sea Cages. BIOLOGY 2023; 12:1408. [PMID: 37998007 PMCID: PMC10669768 DOI: 10.3390/biology12111408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/01/2023] [Accepted: 11/04/2023] [Indexed: 11/25/2023]
Abstract
To ensure optimal feed intake, growth, and general fish health in aquaculture sea cages, interactions between drivers that affect oxygen conditions need to be understood. The main drivers are oxygen consumption and water exchange, caused by flow through the cage. Swimming energetics in rainbow trout (Oncorhynchus mykiss) in normoxia and hypoxia at 10, 15, and 20 °C were determined. Using the determinations, a conceptual model of oxygen conditions within sea cages was created. By applying the model to a case study, results show that with a temperature increase of 10 °C, oxygen concentration will decrease three times faster. To maintain optimal oxygen concentration within the cage, the flow velocity must be increased by a factor of 3.7. The model is highly relevant for current farms since the model predictions can explain why and when suboptimal conditions occur within the cages. Using the same method, the model can be used to estimate the suitability of potential new aquaculture sites.
Collapse
Affiliation(s)
- Heiðrikur Bergsson
- Marine Biological Section, Department of Biology, University of Copenhagen, DK-3000 Elsinore, Denmark; (M.B.S.S.); (J.F.S.)
- Hiddenfjord, Við Ánna 1, FO-512 Norðragøta, Faroe Islands
| | - Morten Bo Søndergaard Svendsen
- Marine Biological Section, Department of Biology, University of Copenhagen, DK-3000 Elsinore, Denmark; (M.B.S.S.); (J.F.S.)
- Copenhagen Academy for Medical Education and Simulation, Rigshospitalet, Capital Region of Denmark, DK-2100 Copenhagen, Denmark
- Department of Computer Science, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - John Fleng Steffensen
- Marine Biological Section, Department of Biology, University of Copenhagen, DK-3000 Elsinore, Denmark; (M.B.S.S.); (J.F.S.)
| |
Collapse
|
6
|
Guscelli E, Noisette F, Chabot D, Blier PU, Hansen T, Cassista-Da Ros M, Pepin P, Skanes KR, Calosi P. Northern shrimp from multiple origins show similar sensitivity to global change drivers, but different cellular energetic capacity. J Exp Biol 2023; 226:jeb245400. [PMID: 37497774 DOI: 10.1242/jeb.245400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 07/19/2023] [Indexed: 07/28/2023]
Abstract
Species with a wide distribution can experience significant regional variation in environmental conditions, to which they can acclimatize or adapt. Consequently, the geographic origin of an organism can influence its responses to environmental changes, and therefore its sensitivity to combined global change drivers. This study aimed at determining the physiological responses of the northern shrimp, Pandalus borealis, at different levels of biological organization and from four different geographic origins, exposed to elevated temperature and low pH to define its sensitivity to future ocean warming and acidification. Shrimp sampled within the northwest Atlantic were exposed for 30 days to combinations of three temperature (2, 6 or 10°C) and two pH levels (7.75 or 7.40). Survival, metabolic rates, whole-organism aerobic performance and cellular energetic capacity were assessed at the end of the exposure. Our results show that shrimp survival was negatively affected by temperature above 6°C and low pH, regardless of their origin. Additionally, shrimp from different origins show overall similar whole-organism performances: aerobic scope increasing with increasing temperature and decreasing with decreasing pH. Finally, the stability of aerobic metabolism appears to be related to cellular adjustments specific to shrimp origin. Our results show that the level of intraspecific variation differs among levels of biological organization: different cellular capacities lead to similar individual performances. Thus, the sensitivity of the northern shrimp to ocean warming and acidification is overall comparable among origins. Nonetheless, shrimp vulnerability to predicted global change scenarios for 2100 could differ among origins owing to different regional environmental conditions.
Collapse
Affiliation(s)
- Ella Guscelli
- Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, 300 Allée des Ursulines, Rimouski, QC G5L 3A1, Canada
| | - Fanny Noisette
- Institut des sciences de la mer, Université du Québec à Rimouski, 300 Allée des Ursulines, Rimouski, QC G5L 3A1, Canada
| | - Denis Chabot
- Institut Maurice-Lamontagne, Fisheries and Oceans Canada, 850 Rte de la Mer, Mont-Joli, QC G5H 3Z4, Canada
| | - Pierre U Blier
- Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, 300 Allée des Ursulines, Rimouski, QC G5L 3A1, Canada
| | - Tanya Hansen
- Institut Maurice-Lamontagne, Fisheries and Oceans Canada, 850 Rte de la Mer, Mont-Joli, QC G5H 3Z4, Canada
| | | | - Pierre Pepin
- Northwest Atlantic Fisheries Centre, Fisheries and Oceans Canada, 80 E White Hills Rd, St. John's, NL A1C 5X1, Canada
| | - Katherine R Skanes
- Northwest Atlantic Fisheries Centre, Fisheries and Oceans Canada, 80 E White Hills Rd, St. John's, NL A1C 5X1, Canada
| | - Piero Calosi
- Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, 300 Allée des Ursulines, Rimouski, QC G5L 3A1, Canada
| |
Collapse
|
7
|
Zolderdo AJ, Abrams AEI, Lawrence MJ, Reid CH, Suski CD, Gilmour KM, Cooke SJ. Freshwater protected areas can preserve high-performance phenotypes in populations of a popular sportfish. CONSERVATION PHYSIOLOGY 2023; 11:coad004. [PMID: 36937992 PMCID: PMC10019442 DOI: 10.1093/conphys/coad004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 11/24/2022] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
Recreational fishing has the potential to cause evolutionary change in fish populations; a phenomenon referred to as fisheries-induced evolution. However, detecting and quantifying the magnitude of recreational fisheries selection in the wild is inherently difficult, largely owing to the challenges associated with variation in environmental factors and, in most cases, the absence of pre-selection or baseline data against which comparisons can be made. However, exploration of recreational fisheries selection in wild populations may be possible in systems where fisheries exclusion zones exist. Lakes that possess intra-lake freshwater protected areas (FPAs) can provide investigative opportunities to evaluate the evolutionary impact(s) of differing fisheries management strategies within the same waterbody. To address this possibility, we evaluated how two physiological characteristics (metabolic phenotype and stress responsiveness) as well as a proxy for angling vulnerability, catch-per-unit-effort (CPUE), differed between populations of largemouth bass (Micropterus salmoides) inhabiting long-standing (>70 years active) intra-lake FPAs and adjacent, open access, main-lake areas. Fish from FPA populations had significantly higher aerobic scope (AS) capacity (13%) and CPUE rates compared with fish inhabiting the adjacent main-lake areas. These findings are consistent with theory and empirical evidence linking exploitation with reduced metabolic performance, supporting the hypothesis that recreational fishing may be altering the metabolic phenotype of wild fish populations. Reductions in AS are concerning because they suggest a reduced scope for carrying out essential life-history activities, which may result in fitness level implications. Furthermore, these results highlight the potential for unexploited FPA populations to serve as benchmarks to further investigate the evolutionary consequences of recreational fishing on wild fish and to preserve high-performance phenotypes.
Collapse
Affiliation(s)
- A J Zolderdo
- Correspondence: Aaron Zolderdo, Queen's University Biological Station, 280 Queen's University Rd., Elgin, ON, Canada K0G 1E0.
| | - A E I Abrams
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental and Interdisciplinary Science, Carleton University, Ottawa, ON, Canada
| | - M J Lawrence
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental and Interdisciplinary Science, Carleton University, Ottawa, ON, Canada
| | - C H Reid
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental and Interdisciplinary Science, Carleton University, Ottawa, ON, Canada
| | - C D Suski
- Department of Natural Resources and Environmental Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - K M Gilmour
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, Canada
| | - S J Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental and Interdisciplinary Science, Carleton University, Ottawa, ON, Canada
| |
Collapse
|
8
|
Roegner GC, Johnson GE. Export of macroinvertebrate prey from tidal freshwater wetlands provides a significant energy subsidy for outmigrating juvenile salmon. PLoS One 2023; 18:e0282655. [PMID: 36930681 PMCID: PMC10022792 DOI: 10.1371/journal.pone.0282655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/21/2023] [Indexed: 03/18/2023] Open
Abstract
Tidal freshwater wetlands linking terrestrial, riverine, and saline habitats are critical areas for material processing and exchange. Once historically widespread, herbaceous marsh and forested tidal freshwater wetlands especially are now highly degraded worldwide. Additionally, quantitative assessments of hydrology and material exchange from these systems are lacking compared to lotic and estuarine (saltmarsh) habitats. Here we investigate macroinvertebrate and energy export from tidal marsh and forested wetlands and consider potential benefits from this ecological process to endangered Pacific salmon in a large tidal freshwater system, the Columbia River (USA). Macroinvertebrate (salmon prey) concentration, water velocity, and discharge were measured at several wetland habitat types (forested swamp, emergent marsh, and restored marsh). We used these data to compute prey flux and transport metrics. Then, applying literature values to calculate prey energy equivalents and juvenile salmon metabolic requirements, we estimated the potential energy subsidy available to juvenile salmon. Numerically, larval stages of aquatic insects were the predominant type of prey exported from the wetlands, with Diptera chironomid fly abundance exceeding other groups. Energetically, however, non-chironomid dipterans and hemipteran prey comprised most of energy transport due to their higher energetic content (energy density × mean weight). We determined the prey energy transported from the sampled tidal channels was sufficient to meet energetic needs of tens to thousands of juvenile salmon per day, depending on prey production and hydrography. The prey taxonomic composition differed among organisms exiting forested swamp, emergent marsh, and restored marsh habitats with corresponding differences in energy transport, but all habitat types supported similar numbers of juvenile salmon. We conclude that macroinvertebrate prey exported from varied tidal freshwater wetlands likely provide significant benefits to juvenile salmon over a larger ecological footprint than the wetland area would suggest.
Collapse
Affiliation(s)
- G. Curtis Roegner
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Point Adams Research Station, Hammond, Oregon, United States of America
- * E-mail:
| | - Gary E. Johnson
- Coastal Sciences Division, Pacific Northwest National Laboratory, Portland, Oregon, United States of America
| |
Collapse
|
9
|
Cominassi L, Ressel KN, Brooking AA, Marbacher P, Ransdell-Green EC, O'Brien KM. Metabolic rate increases with acclimation temperature and is associated with mitochondrial function in some tissues of threespine stickleback. J Exp Biol 2022; 225:jeb244659. [PMID: 36268761 PMCID: PMC9687547 DOI: 10.1242/jeb.244659] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/07/2022] [Indexed: 11/20/2022]
Abstract
The metabolic rate (ṀO2) of eurythermal fishes changes in response to temperature, yet it is unclear how changes in mitochondrial function contribute to changes in ṀO2. We hypothesized that ṀO2 would increase with acclimation temperature in the threespine stickleback (Gasterosteus aculeatus) in parallel with metabolic remodeling at the cellular level but that changes in metabolism in some tissues, such as liver, would contribute more to changes in ṀO2 than others. Threespine stickleback were acclimated to 5, 12 and 20°C for 7 to 21 weeks. At each temperature, standard and maximum metabolic rate (SMR and MMR, respectively), and absolute aerobic scope (AAS) were quantified, along with mitochondrial respiration rates in liver, oxidative skeletal and cardiac muscles, and the maximal activity of citrate synthase (CS) and lactate dehydrogenase (LDH) in liver, and oxidative and glycolytic skeletal muscles. SMR, MMR and AAS increased with acclimation temperature, along with rates of mitochondrial phosphorylating respiration in all tissues. Low SMR and MMR at 5°C were associated with low or undetectable rates of mitochondrial complex II activity and a greater reliance on complex I activity in liver, oxidative skeletal muscle and heart. SMR was positively correlated with cytochrome c oxidase (CCO) activity in liver and oxidative muscle, but not mitochondrial proton leak, whereas MMR was positively correlated with CCO activity in liver. Overall, the results suggest that changes in ṀO2 in response to temperature are driven by changes in some aspects of mitochondrial function in some, but not all, tissues of threespine stickleback.
Collapse
Affiliation(s)
- Louise Cominassi
- University of Alaska Fairbanks, Institute of Arctic Biology, PO Box 757000 Fairbanks, AK 99775, USA
| | - Kirsten N. Ressel
- University of Alaska Fairbanks, Institute of Arctic Biology, PO Box 757000 Fairbanks, AK 99775, USA
| | - Allison A. Brooking
- University of Alaska Fairbanks, Institute of Arctic Biology, PO Box 757000 Fairbanks, AK 99775, USA
| | - Patrick Marbacher
- University of Alaska Fairbanks, Institute of Arctic Biology, PO Box 757000 Fairbanks, AK 99775, USA
| | | | - Kristin M. O'Brien
- University of Alaska Fairbanks, Institute of Arctic Biology, PO Box 757000 Fairbanks, AK 99775, USA
| |
Collapse
|
10
|
Andrews PLR, Ponte G, Rosas C. Methodological considerations in studying digestive system physiology in octopus: limitations, lacunae and lessons learnt. Front Physiol 2022; 13:928013. [PMID: 36160859 PMCID: PMC9501996 DOI: 10.3389/fphys.2022.928013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Current understanding of cephalopod digestive tract physiology is based on relatively “old” literature and a “mosaic of data” from multiple species. To provide a background to the discussion of methodologies for investigating physiology we first review the anatomy of the cephalopod digestive tract with a focus on Octopus vulgaris, highlighting structure-function relationships and species differences with potential functional consequences (e.g., absence of a crop in cuttlefish and squid; presence of a caecal sac in squid). We caution about extrapolation of data on the digestive system physiology from one cephalopod species to another because of the anatomical differences. The contribution of anatomical and histological techniques (e.g., digestive enzyme histochemistry and neurotransmitter immunohistochemistry) to understanding physiological processes is discussed. For each major digestive tract function we briefly review current knowledge, and then discuss techniques and their limitations for the following parameters: 1) Measuring motility in vitro (e.g., spatiotemporal mapping, tension and pressure), in vivo (labelled food, high resolution ultrasound) and aspects of pharmacology; 2) Measuring food ingestion and the time course of digestion with an emphasis on understanding enzyme function in each gut region with respect to time; 3) Assessing transepithelial transport of nutrients; 4) Measuring the energetic cost of food processing, impact of environmental temperature and metabolic rate (flow-through/intermittent respirometry); 4) Investigating neural (brain, gastric ganglion, enteric) and endocrine control processes with an emphasis on application of molecular techniques to identify receptors and their ligands. A number of major knowledge lacunae are identified where available techniques need to be applied to cephalopods, these include: 1) What is the physiological function of the caecal leaflets and intestinal typhlosoles in octopus? 2) What role does the transepithelial transport in the caecum and intestine play in ion, water and nutrient transport? 3) What information is signalled from the digestive tract to the brain regarding the food ingested and the progress of digestion? It is hoped that by combining discussion of the physiology of the cephalopod digestive system with an overview of techniques and identification of key knowledge gaps that this will encourage a more systematic approach to research in this area.
Collapse
Affiliation(s)
- Paul L. R. Andrews
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
- *Correspondence: Paul L. R. Andrews,
| | - Giovanna Ponte
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Carlos Rosas
- Unidad Multidisciplinaria de Docencia e Investigación, Facultad de Ciencias, Universidad Nacional Autónoma de México, Sisal, Yucatán, Mexico
| |
Collapse
|
11
|
Monnet G, Rosenfeld JS, Richards JG. Divergence in digestive and metabolic strategies matches habitat differentiation in juvenile salmonids. Ecol Evol 2022; 12:e9280. [PMID: 36110883 PMCID: PMC9465201 DOI: 10.1002/ece3.9280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/01/2022] [Accepted: 08/18/2022] [Indexed: 11/26/2022] Open
Abstract
Divergent energy acquisition and processing strategies associated with using different microhabitats may allow phenotypes to specialize and coexist at small spatial scales. To understand how ecological specialization affects differentiation in energy acquisition and processing strategies, we examined relationships among digestive physiology, growth, and energetics by performing captive experiments on juveniles of wild coho salmon (Oncorhynchus kisutch) and steelhead trout (O. mykiss) that exploit adjacent habitats along natural low-to-high energy flux gradients (i.e., pools versus riffles) in coastal streams. We predicted that: (i) the specialization of steelhead trout to high-velocity, high-energy habitats would result in elevated food intake and growth at the cost of lower growth efficiency relative to coho salmon; (ii) the two species would differentiate along a rate-maximizing (steelhead trout) versus efficiency-maximizing (coho salmon) axis of digestive strategies matching their ecological lifestyle; and (iii) the higher postprandial metabolic demand (i.e., specific dynamic action, SDA) associated with elevated food intake would occupy a greater fraction of the steelhead trout aerobic budget. Relative to coho salmon, steelhead trout presented a pattern of faster growth and higher food intake but lower growth efficiency, supporting the existence of a major growth versus growth efficiency trade-off between species. After accounting for differences in ration size between species, steelhead trout also presented higher SDA than coho salmon, but similar intestinal transit time and lower assimilation efficiency. Both species presented similar aerobic budgets since the elevated SDA of steelhead trout was largely compensated by their higher aerobic scope relative to coho salmon. Our results illustrate the key contribution of digestive physiology to the adaptive differentiation of juvenile growth, energetics, and overall performance of taxa with divergent habitat specializations along a natural productivity gradient.
Collapse
Affiliation(s)
- Gauthier Monnet
- Department of ZoologyThe University of British ColumbiaVancouverBritish ColumbiaCanada
| | - Jordan S. Rosenfeld
- British Columbia Ministry of the EnvironmentVancouverBritish ColumbiaCanada
- Institute for the Oceans and FisheriesThe University of British ColumbiaVancouverBritish ColumbiaCanada
| | - Jeffrey G. Richards
- Department of ZoologyThe University of British ColumbiaVancouverBritish ColumbiaCanada
| |
Collapse
|
12
|
Guitard J, Chrétien E, Bonville JD, Roche DG, Boisclair D, Binning SA. Increased parasite load is associated with reduced metabolic rates and escape responsiveness in pumpkinseed sunfish. J Exp Biol 2022; 225:276167. [PMID: 35818812 DOI: 10.1242/jeb.243160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 07/05/2022] [Indexed: 11/20/2022]
Abstract
Wild animals have parasites that can compromise their physiological and/or behavioural performance. Yet, the extent to which parasite load is related to intraspecific variation in performance traits within wild populations remains relatively unexplored. We used pumpkinseed sunfish (Lepomis gibbosus) and their endoparasites as a model system to explore the effects of infection load on host aerobic metabolism and escape performance. Metabolic traits (standard and maximum metabolic rates, aerobic scope) and fast-start escape responses following a simulated aerial attack by a predator (responsiveness, response latency, and escape distance) were measured in fish from across a gradient of visible (i.e. trematodes causing black spot disease counted on fish surfaces) and non-visible (i.e. cestodes in fish abdominal cavity counted post-mortem) endoparasite infection. We found that a higher infection load of non-visible endoparasites was related to lower standard and maximum metabolic rates, but not aerobic scope in fish. Non-visible endoparasite infection load was also related to decreased responsiveness of the host to a simulated aerial attack. Visible endoparasites were not related to changes in metabolic traits nor fast-start escape responses. Our results suggest that infection with parasites that are inconspicuous to researchers can result in intraspecific variation in physiological and behavioral performance in wild populations, highlighting the need to more explicitly acknowledge and account for the role played by natural infections in studies of wild animal performance.
Collapse
Affiliation(s)
- Joëlle Guitard
- Groupe de recherche interuniversitaire en limnologie et en environnement aquatique (GRIL), Département de sciences biologiques, Université de Montréal, 1375 Av. Thérèse- Lavoie-Roux, Montréal, Québec, H2V 0B3, Canada.,Institut des sciences de la mer (ISMER), Université de Québec à Rimouski, 310 avenue des Ursulines, Rimouski, Québec, G5L 2Z9, Canada
| | - Emmanuelle Chrétien
- Groupe de recherche interuniversitaire en limnologie et en environnement aquatique (GRIL), Département de sciences biologiques, Université de Montréal, 1375 Av. Thérèse- Lavoie-Roux, Montréal, Québec, H2V 0B3, Canada.,Centre eau, terre et environnement, Institut national de la recherche scientifique, Québec, Québec, G1K 9A9, Canada
| | - Jérémy De Bonville
- Groupe de recherche interuniversitaire en limnologie et en environnement aquatique (GRIL), Département de sciences biologiques, Université de Montréal, 1375 Av. Thérèse- Lavoie-Roux, Montréal, Québec, H2V 0B3, Canada
| | - Dominique G Roche
- Institut de biologie, Université de Neuchâtel, Neuchâtel, Switzerland.,Department of Biology and Institute of Environmental and Interdisciplinary Sciences, Carleton University, Ottawa, Ontario, Canada
| | - Daniel Boisclair
- Groupe de recherche interuniversitaire en limnologie et en environnement aquatique (GRIL), Département de sciences biologiques, Université de Montréal, 1375 Av. Thérèse- Lavoie-Roux, Montréal, Québec, H2V 0B3, Canada
| | - Sandra A Binning
- Groupe de recherche interuniversitaire en limnologie et en environnement aquatique (GRIL), Département de sciences biologiques, Université de Montréal, 1375 Av. Thérèse- Lavoie-Roux, Montréal, Québec, H2V 0B3, Canada
| |
Collapse
|
13
|
Alfonso S, Zupa W, Spedicato MT, Lembo G, Carbonara P. Using Telemetry Sensors Mapping the Energetic Costs in European Sea Bass (Dicentrarchus labrax), as a Tool for Welfare Remote Monitoring in Aquaculture. FRONTIERS IN ANIMAL SCIENCE 2022. [DOI: 10.3389/fanim.2022.885850] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Physiological real-time monitoring could help to prevent health and welfare issues in farmed fishes. Among physiological features that can be of interest for such purposes, there is the metabolic rate. Its measurement remains, however, difficult to be implemented in the field. Thus, mapping the fish acceleration recorded by tag with the oxygen consumption rate (MO2) could be promising to counter those limitations and to be used as a proxy for energy expenditure in the aquaculture environments. In this study, we investigated the swimming performance (Ucrit) and the swimming efficiency (Uopt, COTmin), and we estimated the metabolic traits (standard and maximum metabolic rates, SMR and MMR, as well the absolute aerobic scope, AS) of European sea bass (Dicentrarchus labrax; n = 90) in swimming tunnel. Among all tested fish, 40 fishes were implanted with an acoustic transmitter to correlate the acceleration recorded by the sensor with the MO2. In this study, the mean SMR, MMR, and AS values displayed by sea bass were 89.8, 579.2, and 489.4 mgO2 kg−1 h−1, respectively. The Uopt and COTmin estimated for sea bass were on average 1.94 km h−1 and 113.91 mgO2 kg−1 h−1, respectively. Overall, implantation of the sensor did not alter fish swimming performance or induced particular stress, able to increase MO2 or decrease swimming efficiency in tagged fish. Finally, acceleration recorded by tag has been successfully correlated with MO2 and fish mass using a sigmoid function (R2 = 0.88). Overall, such results would help for real-time monitoring of European sea bass health or welfare in the aquaculture environment in a framework of precision livestock farming.
Collapse
|
14
|
Anlauf-Dunn K, Kraskura K, Eliason EJ. Intraspecific variability in thermal tolerance: a case study with coastal cutthroat trout. CONSERVATION PHYSIOLOGY 2022; 10:coac029. [PMID: 35693034 PMCID: PMC9178963 DOI: 10.1093/conphys/coac029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 01/04/2022] [Accepted: 04/15/2022] [Indexed: 05/24/2023]
Abstract
Fish physiological performance is directly regulated by their thermal environment. Intraspecific comparisons are essential to ascertain the vulnerability of fish populations to climate change and to identify which populations may be more susceptible to extirpation and which may be more resilient to continued warming. In this study, we sought to evaluate how thermal performance varies in coastal cutthroat trout (Oncorhynchus clarki clarki) across four distinct watersheds in OR, USA. Specifically, we measured oxygen consumption rates in trout from the four watersheds with variable hydrologic and thermal regimes, comparing three ecologically relevant temperature treatments (ambient, annual maximum and novel warm). Coastal cutthroat trout displayed considerable intraspecific variability in physiological performance and thermal tolerance across the four watersheds. Thermal tolerance matched the historical experience: the coastal watersheds experiencing warmer ambient temperatures had higher critical thermal tolerance compared with the interior, cooler Willamette watersheds. Physiological performance varied across all four watersheds and there was evidence of a trade-off between high aerobic performance and broad thermal tolerance. Given the evidence of climate regime shifts across the globe, the uncertainty in both the rate and extent of warming and species responses in the near and long term, a more nuanced approach to the management and conservation of native fish species must be considered.
Collapse
Affiliation(s)
- Kara Anlauf-Dunn
- Oregon Department of Fish and Wildlife, 28655
Highway 34, Corvallis, OR 97333, USA
| | - Krista Kraskura
- Department of Ecology, Evolution, and Marine Biology,
University of California Santa Barbara, Santa
Barbara, CA 93106, USA
| | - Erika J Eliason
- Department of Ecology, Evolution, and Marine Biology,
University of California Santa Barbara, Santa
Barbara, CA 93106, USA
| |
Collapse
|
15
|
Heinichen M, McManus MC, Lucey SM, Aydin K, Humphries A, Innes-Gold A, Collie J. Incorporating temperature-dependent fish bioenergetics into a Narragansett Bay food web model. Ecol Modell 2022. [DOI: 10.1016/j.ecolmodel.2022.109911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
16
|
Ressel KN, Cominassi L, Sarrimanolis J, O’Brien KM. Aerobic scope is not maintained at low temperature and is associated with cardiac aerobic capacity in the three-spined stickleback Gasterosteus aculeatus. JOURNAL OF FISH BIOLOGY 2022; 100:444-453. [PMID: 34816430 PMCID: PMC8881366 DOI: 10.1111/jfb.14955] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/17/2021] [Accepted: 11/19/2021] [Indexed: 06/13/2023]
Abstract
Metabolic thermal plasticity is central to the survival of fishes in a changing environment. The eurythermal three-spined stickleback Gasterosteus aculeatus displays thermal plasticity at the cellular level with an increase in the activity of key metabolic enzymes in response to cold acclimation. Nonetheless, it is unknown if these changes are sufficient to completely compensate for the depressive effects of cold temperature on whole organismal metabolic rate (ṀO2 ). The authors hypothesized that as a cold-tolerant, eurythermal fish, absolute aerobic scope (AAS), the difference between the maximum metabolic rate (MMR) and standard metabolic rate (SMR), would be maintained in G. aculeatus following acclimation to a range of temperatures that span its habitat temperatures. To test this hypothesis, G. aculeatus were acclimated to 5, 12 and 20°C for 20-32 weeks, and SMR, MMR and aerobic scope (AS) were quantified at each acclimation temperature. The maximal activity of citrate synthase (CS), a marker enzyme of aerobic metabolism, was also quantified in heart ventricles to determine if cardiac aerobic capacity is associated with AS at these temperatures. SMR increased with acclimation temperature and was significantly different among all three temperature groups. MMR was similar between animals at 5 and 12°C and between animals at 12 and 20°C but was 2.6-fold lower in fish at 5°C compared with those at 20°C, resulting in a lower AAS in fish at 5°C compared with those at 12 and 20°C. Correlated with a higher AAS in animals acclimated to 12 and 20°C was a larger relative ventricular mass and higher CS activity per 100 g body mass compared with animals at 5°C. Together, the results indicate that despite their eurythermal nature, AS is not maintained at low temperature but is associated with cardiac aerobic metabolic capacity.
Collapse
Affiliation(s)
- Kirsten N. Ressel
- University of Alaska, Fairbanks, Institute of Arctic Biology, Fairbanks, Alaska, U.S.A
| | - Louise Cominassi
- University of Alaska, Fairbanks, Institute of Arctic Biology, Fairbanks, Alaska, U.S.A
| | - Jon Sarrimanolis
- University of Alaska, Fairbanks, Institute of Arctic Biology, Fairbanks, Alaska, U.S.A
| | - Kristin M. O’Brien
- University of Alaska, Fairbanks, Institute of Arctic Biology, Fairbanks, Alaska, U.S.A
| |
Collapse
|
17
|
Mapping the Energetic Costs of Free-Swimming Gilthead Sea Bream ( Sparus aurata), a Key Species in European Marine Aquaculture. BIOLOGY 2021; 10:biology10121357. [PMID: 34943271 PMCID: PMC8698635 DOI: 10.3390/biology10121357] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 12/19/2022]
Abstract
Simple Summary Assessment of the energetic costs of different living activities is of primary interest among fish biologists. However, assessing energy expenditure in free-swimming fish is challenging owing to the difficulty of performing such measurements in the field. Therefore, the use of implant fish with sensors that transmit signals that serve as a proxy for energy expenditure is a promising method to counter these limitations, allowing remote monitoring in tagged fish. The aim of this study was to correlate the acceleration recorded by the tag with the activities of the red and white muscles and the oxygen consumption rate (MO2), which could serve as a proxy for energy expenditure, in gilthead sea bream (Sparus aurata), a key species in European marine aquaculture. The acceleration recorded by the tag was successfully correlated with MO2. Additionally, through electromyographic analyses, we determined the activities of the red and white muscles, which are indicative of the contributions of aerobic and anaerobic metabolisms during swimming. Finally, the tag implantation did not affect the swimming performance, metabolic traits, and swimming efficiency of the sea bream. By obtaining insights into both aerobic and anaerobic metabolisms, sensor mapping with physiological indicators may be useful for the purposes of aquaculture health/welfare remote monitoring of gilthead sea bream. Abstract Measurement of metabolic rates provides a valuable proxy for the energetic costs of different living activities. However, such measurements are not easy to perform in free-swimming fish. Therefore, mapping acceleration from accelerometer tags with oxygen consumption rates (MO2) is a promising method to counter these limitations and could represent a tool for remotely estimating MO2 in aquaculture environments. In this study, we monitored the swimming performance and MO2 of 79 gilthead sea bream (Sparus aurata; weight range, 219–971 g) during a critical swimming test. Among all the fish challenged, 27 were implanted with electromyography (EMG) electrodes, and 27 were implanted with accelerometer tags to monitor the activation pattern of the red/white muscles during swimming. Additionally, we correlated the acceleration recorded by the tag with the MO2. Overall, we found no significant differences in swimming performance, metabolic traits, and swimming efficiency between the tagged and untagged fish. The acceleration recorded by the tag was successfully correlated with MO2. Additionally, through EMG analyses, we determined the activities of the red and white muscles, which are indicative of the contributions of aerobic and anaerobic metabolisms until reaching critical swimming speed. By obtaining insights into both aerobic and anaerobic metabolisms, sensor mapping with physiological data may be useful for the purposes of aquaculture health/welfare remote monitoring of the gilthead sea bream, a key species in European marine aquaculture.
Collapse
|
18
|
Effects of recent thermal history on thermal behaviour, thermal tolerance and oxygen uptake of Yellowtail Kingfish (Seriola lalandi) juveniles. J Therm Biol 2021; 99:103023. [PMID: 34420646 DOI: 10.1016/j.jtherbio.2021.103023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/13/2021] [Accepted: 05/30/2021] [Indexed: 11/23/2022]
Abstract
This study determined the physiological and metabolic responses of cultivated Yellowtail Kingfish (Seriola lalandi) juveniles in accordance with their recent thermal history. The fish were acclimated at 20, 23, 26, 29 and 32 °C for 21 days to determine the final preferred temperature, thermal tolerance and the effect of acclimation temperatures on their oxygen uptake and aerobic scope. The final preferred temperature of juveniles was established at 26 °C. The critical thermal maximum (CTmax) ranged from 34.2 to 36.9 °C, while the critical thermal minimum (CTmin) ranged from 10.9 to 17.3 °C, depending on acclimation temperature. With the CTmax and CTmin values, the thermal window was determined to have an area of 258°C2, which is characteristic of subtropical organisms. Although, the metabolic rate was relatively constant (ranging 390.6-449.8 mg O2 kg-0.8 h-1) between 20 and 26 °C (Q10 = 1.6, 1.0), an increase to 544.8 mg O2 kg-0.8 h-1 at 29 °C (Q10 = 1.9) and decrease of 478.4 mg O2 kg-0.8 h-1 at 32 °C (Q10 = 0.6) were observed. The maximum value obtained for aerobic scope was 310.9 mg O2 kg-0.8 h-1 at 26 °C. These results suggest that the acclimation temperature of 26 °C is an optimum thermal condition for a physiological and metabolic performance of yellowtail kingfish juveniles. On the contrary, the response observed during the evaluation of critical temperatures, oxygen uptake and aerobic scope indicated that yellowtail kingfish in the juvenile state could be vulnerable when it experiences for long periods (e.g., >21 days) temperatures above 29 °C. According to our results, the thermoregulatory behaviour of yellowtail kingfish in the juvenile stages could be one of the most important mechanisms to maintain its optimal physiological performance by actively selecting a stable thermal environment close to 26 °C. In addition, it was determined the limits of the pejus state of juvenile yellowtail kingfish at 29 °C, where an increase of oxygen uptake to maintain the aerobic energy metabolism was observed, this could certainly affect the growth of juveniles in culture systems if they do not return in a thermal range of 23-26 °C. These results can contribute to infer the different effects of acclimation temperature on the growth, thermal tolerance and respiratory capacity of S. lalandi juveniles on aquaculture systems.
Collapse
|
19
|
Dubuc A, Collins GM, Coleman L, Waltham NJ, Rummer JL, Sheaves M. Association between physiological performance and short temporal changes in habitat utilisation modulated by environmental factors. MARINE ENVIRONMENTAL RESEARCH 2021; 170:105448. [PMID: 34438217 DOI: 10.1016/j.marenvres.2021.105448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
Temporal environmental variability causes behavioural and physiological responses in organisms that can affect their spatial location in time, and ultimately drive changes in population and community dynamics. Linking ecological changes with underlying environmental drivers is a complex task that can however be facilitated through the integration of physiology. Our overarching aim was to investigate the association between physiological performance and habitat utilisation patterns modulated by short temporal fluctuations in environmental factors. We used in situ monitoring data from a system experiencing extreme environmental fluctuations over a few hours and we selected four fish species with different habitat utilisation patterns across dissolved oxygen (DO) fluctuations: two commonly observed species (Siganus lineatus and Acanthopagrus pacificus), including at low DO (40 and 50% saturation, respectively), and two reef species (Heniochus acuminatus and Chaetodon vagabundus) never recorded below 70% saturation. We hypothesised that these patterns were associated to species' physiological performance in hypoxia. Therefore, we measured different metabolic variables (O2crit, incipient lethal oxygen (ILO), time to ILO, index of cumulative ambient oxygen deficit (O2deficit), maximum oxygen supply capacity (α)) using respirometry. Physiological performance differed among species and was intrinsically associated to habitat use patterns. S. lineatus had a lower O2crit than H. acuminatus, A. pacificus and C. vagabundus (13, 18.7, 20 and 20.2% saturation respectively). Additionally, S. lineatus and A. pacificus displayed better capacity for survival below O2crit than C. vagabundus and H. acuminatus (lower ILO, higher O2deficit and longer time to ILO) and higher α. Field monitoring data revealed that DO temporarily falls below species' O2crit and even ILO on most days, suggesting that short temporal variability in DO likely forces species to temporarily avoid harmful conditions, driving important changes in ecosystem structure over a few hours. Our results support the hypothesis that organismal physiology can provide insights into ecological changes occurring over a few hours as a result of environmental variability. Consequently, integrating physiology with ecological data at relevant temporal scales may help predict temporal shifts in ecosystems structure and functions to account for ecological patterns often overlooked and difficult to identify.
Collapse
Affiliation(s)
- Alexia Dubuc
- College of Science and Engineering, James Cook University, Townsville, Qld, Australia.
| | | | - Laura Coleman
- College of Science and Engineering, James Cook University, Townsville, Qld, Australia
| | - Nathan J Waltham
- College of Science and Engineering, James Cook University, Townsville, Qld, Australia; TropWATER, Townsville, Qld, Australia
| | - Jodie L Rummer
- College of Science and Engineering, James Cook University, Townsville, Qld, Australia; ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Qld, Australia
| | - Marcus Sheaves
- College of Science and Engineering, James Cook University, Townsville, Qld, Australia; TropWATER, Townsville, Qld, Australia
| |
Collapse
|
20
|
Calibrating Accelerometer Tags with Oxygen Consumption Rate of Rainbow Trout ( Oncorhynchus mykiss) and Their Use in Aquaculture Facility: A Case Study. Animals (Basel) 2021; 11:ani11061496. [PMID: 34064216 PMCID: PMC8224291 DOI: 10.3390/ani11061496] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/13/2021] [Accepted: 05/17/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Measuring metabolic rates in free-swimming fish would provide valuable insights about the energetic costs of different life activities this is challenging to implement in the field due to the difficulty of performing such measurements. Thus, the calibration of acoustic transmitters with the oxygen consumption rate (MO2) could be promising to counter the limitations observed in the field. In this study, calibrations were performed in rainbow trout (Oncorhynchus mykiss), and a subsample of fish was implanted with such a transmitter and then followed under aquaculture conditions. The use of acoustic transmitters calibrated with MO2 appeared to be a promising tool to estimate energetic costs in free-swimming rainbow trout, and for welfare assessment in the aquaculture industry. Abstract Metabolic rates are linked to the energetic costs of different activities of an animal’s life. However, measuring the metabolic rate in free-swimming fish remains challenging due to the lack of possibilities to perform these direct measurements in the field. Thus, the calibration of acoustic transmitters with the oxygen consumption rate (MO2) could be promising to counter these limitations. In this study, rainbow trout (Oncorhynchus mykiss Walbaum, 1792; n = 40) were challenged in a critical swimming test (Ucrit) to (1) obtain insights about the aerobic and anaerobic metabolism throughout electromyograms; and (2) calibrate acoustic transmitters’ signal with the MO2 to be later used as a proxy of energetic costs. After this calibration, the fish (n = 12) were implanted with the transmitter and were followed during ~50 days in an aquaculture facility, as a case study, to evaluate the potential of such calibration. Accelerometer data gathered from tags over a long time period were converted to estimate the MO2. The MO2 values indicated that all fish were reared under conditions that did not impact their health and welfare. In addition, a diurnal pattern with higher MO2 was observed for the majority of implanted trout. In conclusion, this study provides (1) biological information about the muscular activation pattern of both red and white muscle; and (2) useful tools to estimate the energetic costs in free-ranging rainbow trout. The use of acoustic transmitters calibrated with MO2, as a proxy of energy expenditure, could be promising for welfare assessment in the aquaculture industry.
Collapse
|
21
|
Song J, McDowell JR. Comparative transcriptomics of spotted seatrout ( Cynoscion nebulosus) populations to cold and heat stress. Ecol Evol 2021; 11:1352-1367. [PMID: 33598136 PMCID: PMC7863673 DOI: 10.1002/ece3.7138] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 12/25/2022] Open
Abstract
Resilience to climate change depends on a species' adaptive potential and phenotypic plasticity. The latter can enhance survival of individual organisms during short periods of extreme environmental perturbations, allowing genetic adaptation to take place over generations. Along the U.S. East Coast, estuarine-dependent spotted seatrout (Cynoscion nebulosus) populations span a steep temperature gradient that provides an ideal opportunity to explore the molecular basis of phenotypic plasticity. Genetically distinct spotted seatrout sampled from a northern and a southern population were exposed to acute cold and heat stress (5 biological replicates in each treatment and control group), and their transcriptomic responses were compared using RNA-sequencing (RNA-seq). The southern population showed a larger transcriptomic response to acute cold stress, whereas the northern population showed a larger transcriptomic response to acute heat stress compared with their respective population controls. Shared transcripts showing significant differences in expression levels were predominantly enriched in pathways that included metabolism, transcriptional regulation, and immune response. In response to heat stress, only the northern population significantly upregulated genes in the apoptosis pathway, which could suggest greater vulnerability to future heat waves in this population as compared to the southern population. Genes showing population-specific patterns of expression, including hpt, acot, hspa5, and hsc71, are candidates for future studies aiming to monitor intraspecific differences in temperature stress responses in spotted seatrout. Our findings contribute to the current understanding of phenotypic plasticity and provide a basis for predicting the response of a eurythermal fish species to future extreme temperatures.
Collapse
Affiliation(s)
- Jingwei Song
- Virginia Institute of Marine Science (VIMS)College of William and MaryGloucester PointVAUSA
| | - Jan R. McDowell
- Virginia Institute of Marine Science (VIMS)College of William and MaryGloucester PointVAUSA
| |
Collapse
|
22
|
Blanco E, Reglero P, Ortega A, Folkvord A, de la Gándara F, Hernández de Rojas A, Moyano M. First estimates of metabolic rate in Atlantic bluefin tuna larvae. JOURNAL OF FISH BIOLOGY 2020; 97:1296-1305. [PMID: 32710475 DOI: 10.1111/jfb.14473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/13/2020] [Accepted: 07/24/2020] [Indexed: 06/11/2023]
Abstract
Atlantic bluefin tuna is an iconic scombrid species with a high commercial and ecological value. Despite their importance, many physiological aspects, especially during the larval stages, are still unknown. Metabolic rates are one of the understudied aspects in scombrid larvae, likely due to challenges associated to larval handling before and during respirometry trials. Gaining reliable estimates of metabolic rates is essential to understand how larvae balance their high growth needs and activity and other physiological functions, which can be very useful for fisheries ecology and aquaculture. This is the first study to (a) estimate the relationship between routine metabolic rate (RMR) and larval dry weight (DW) (mass scaling exponent) at a constant temperature of 26°C, (b) measure the RMR under light and darkness and (c) test whether the interindividual differences in the RMR are related to larval nutritional status (RNA/DNA and DNA/DW). The RMR scaled nearly isometrically with body size (b = 0.99, 0.60-31.56 mg DW) in contrast to the allometric relationship observed in most fish larvae (average b = 0.87). The results show no significant differences in larval RMR under light and darkness, suggesting similar larval activity levels in both conditions. The size explained most of the variability in RMR (97%), and nutritional condition was unrelated to the interindividual differences in routine metabolism. This is the first study to report the metabolic rates of Atlantic bluefin tuna larvae and discuss the challenges of performing bioenergetic studies with early life stages of scombrids.
Collapse
Affiliation(s)
- Edurne Blanco
- Instituto Español de Oceanografía, Centre Oceanogràfic de les Balears, Ecosystem Oceanography Group (GRECO), Palma de Mallorca, Spain
- Instituto Español de Oceanografía, Centro Oceanográfico de Murcia, Murcia, Spain
| | - Patricia Reglero
- Instituto Español de Oceanografía, Centre Oceanogràfic de les Balears, Ecosystem Oceanography Group (GRECO), Palma de Mallorca, Spain
| | - Aurelio Ortega
- Instituto Español de Oceanografía, Centro Oceanográfico de Murcia, Murcia, Spain
| | - Arild Folkvord
- Department of Biological Sciences, University of Bergen, Bergen, Norway
- Institute of Marine Research, Bergen, Norway
| | | | | | - Marta Moyano
- Institute of Hydrobiology and Fisheries Science, University of Hamburg, Hamburg, Germany
- Center of Coastal Research, University of Agder, Kristiansand, Norway
| |
Collapse
|
23
|
Nadler LE, Bengston E, Eliason EJ, Hassibi C, Helland‐Riise SH, Johansen IB, Kwan GT, Tresguerres M, Turner AV, Weinersmith KL, Øverli Ø, Hechinger RF. A brain‐infecting parasite impacts host metabolism both during exposure and after infection is established. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13695] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Lauren E. Nadler
- Scripps Institution of Oceanography University of California San Diego San Diego CA USA
- Department of Paraclinical Sciences Norwegian University of Life Sciences Oslo Norway
- Department of Marine and Environmental Sciences Nova Southeastern University Dania Beach FL USA
| | - Erik Bengston
- Scripps Institution of Oceanography University of California San Diego San Diego CA USA
| | - Erika J. Eliason
- Department of Ecology, Evolution, and Marine Biology University of California Santa Barbara Santa Barbara CA USA
| | - Cameron Hassibi
- Scripps Institution of Oceanography University of California San Diego San Diego CA USA
| | - Siri H. Helland‐Riise
- Department of Paraclinical Sciences Norwegian University of Life Sciences Oslo Norway
| | - Ida B. Johansen
- Department of Paraclinical Sciences Norwegian University of Life Sciences Oslo Norway
| | - Garfield T. Kwan
- Scripps Institution of Oceanography University of California San Diego San Diego CA USA
| | - Martin Tresguerres
- Scripps Institution of Oceanography University of California San Diego San Diego CA USA
| | - Andrew V. Turner
- Scripps Institution of Oceanography University of California San Diego San Diego CA USA
| | | | - Øyvind Øverli
- Department of Paraclinical Sciences Norwegian University of Life Sciences Oslo Norway
| | - Ryan F. Hechinger
- Scripps Institution of Oceanography University of California San Diego San Diego CA USA
| |
Collapse
|
24
|
Archer LC, Hutton SA, Harman L, Poole WR, Gargan P, McGinnity P, Reed TE. Metabolic traits in brown trout ( Salmo trutta) vary in response to food restriction and intrinsic factors. CONSERVATION PHYSIOLOGY 2020; 8:coaa096. [PMID: 33093959 PMCID: PMC7566963 DOI: 10.1093/conphys/coaa096] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 09/15/2020] [Accepted: 09/30/2020] [Indexed: 06/11/2023]
Abstract
Metabolic rates vary hugely within and between populations, yet we know relatively little about factors causing intraspecific variation. Since metabolic rate determines the energetic cost of life, uncovering these sources of variation is important to understand and forecast responses to environmental change. Moreover, few studies have examined factors causing intraspecific variation in metabolic flexibility. We explore how extrinsic environmental conditions and intrinsic factors contribute to variation in metabolic traits in brown trout, an iconic and polymorphic species that is threatened across much of its native range. We measured metabolic traits in offspring from two wild populations that naturally show life-history variation in migratory tactics (one anadromous, i.e. sea-migratory, one non-anadromous) that we reared under either optimal food or experimental conditions of long-term food restriction (lasting between 7 and 17 months). Both populations showed decreased standard metabolic rates (SMR-baseline energy requirements) under low food conditions. The anadromous population had higher maximum metabolic rate (MMR) than the non-anadromous population, and marginally higher SMR. The MMR difference was greater than SMR and consequently aerobic scope (AS) was higher in the anadromous population. MMR and AS were both higher in males than females. The anadromous population also had higher AS under low food compared to optimal food conditions, consistent with population-specific effects of food restriction on AS. Our results suggest different components of metabolic rate can vary in their response to environmental conditions, and according to intrinsic (population-background/sex) effects. Populations might further differ in their flexibility of metabolic traits, potentially due to intrinsic factors related to life history (e.g. migratory tactics). More comparisons of populations/individuals with divergent life histories will help to reveal this. Overall, our study suggests that incorporating an understanding of metabolic trait variation and flexibility and linking this to life history and demography will improve our ability to conserve populations experiencing global change.
Collapse
Affiliation(s)
- Louise C Archer
- School of Biological, Earth and Environmental Sciences, University College Cork, Distillery Fields, North Mall, Cork T23 TK30, Ireland
- Environmental Research Institute, University College Cork, Lee Road, Cork T23 XE10, Ireland
| | - Stephen A Hutton
- School of Biological, Earth and Environmental Sciences, University College Cork, Distillery Fields, North Mall, Cork T23 TK30, Ireland
- Environmental Research Institute, University College Cork, Lee Road, Cork T23 XE10, Ireland
| | - Luke Harman
- School of Biological, Earth and Environmental Sciences, University College Cork, Distillery Fields, North Mall, Cork T23 TK30, Ireland
- Environmental Research Institute, University College Cork, Lee Road, Cork T23 XE10, Ireland
| | - W Russell Poole
- Marine Institute, Furnace, Newport, Co. Mayo F28 PF65, Ireland
| | - Patrick Gargan
- Inland Fisheries Ireland, 3044 Lake Drive, Citywest Business Campus, Dublin D24 Y265, Ireland
| | - Philip McGinnity
- School of Biological, Earth and Environmental Sciences, University College Cork, Distillery Fields, North Mall, Cork T23 TK30, Ireland
- Marine Institute, Furnace, Newport, Co. Mayo F28 PF65, Ireland
| | - Thomas E Reed
- School of Biological, Earth and Environmental Sciences, University College Cork, Distillery Fields, North Mall, Cork T23 TK30, Ireland
- Environmental Research Institute, University College Cork, Lee Road, Cork T23 XE10, Ireland
| |
Collapse
|
25
|
Small DP, Bishop CD. Physiological benefits and latent effects of an algal-salamander symbiosis. Comp Biochem Physiol A Mol Integr Physiol 2020; 246:110715. [PMID: 32320756 DOI: 10.1016/j.cbpa.2020.110715] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 11/30/2022]
Abstract
Embryos of the salamander Ambystoma maculatum (Shaw) and the uni-cellular green alga Oophila amblystomatis (Lambert ex Wille) have evolved a resource exchange mutualism. Whereas some of the benefits of the symbiosis to embryos are known, the physiological limitations of the relationship to embryos and carry over or latent effects on larvae are not. To determine the impact of the relationship across life history stages, we measured the growth, survival, and metabolic rate in response to hypoxia of salamander embryos reared under 0-h light (algae absent), 14-h light (control - algae present, fluctuating light conditions) and 24-h light (algae present, chronic light conditions) and the resulting larvae two-weeks post hatch. Embryos reared under 0-h light demonstrated decreased growth and survival compared to 14- and 24-h light, with no effect on metabolic rates or the response of metabolic rates to declining oxygen partial pressure (pO2). Conversely, larvae from embryos reared under 0-h light exhibited compensatory growth during the two-week larval rearing period, with body sizes matching those from the 14-h light treatment. Larvae from embryos reared under 24-h light had lower wet body mass and LT50 values upon starvation compared to those reared under 14-h light. Coupled with the lowest metabolic rates under normoxic pO2 levels, this indicates the presence of negative latent effects. We discuss the findings in relation to the effect of the symbiotic relationship on hypoxia tolerance and larval fitness with respect to the presence of compensatory growth and negative latent effects.
Collapse
Affiliation(s)
- Daniel P Small
- Biology Department, St. Francis Xavier University, 2320 Notre Dame Avenue, Antigonish, Nova Scotia B2G 1S7, Canada; Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, 300 Allée des Ursulines, Rimouski, Québec, G5L 3A1, Canada.
| | - Cory D Bishop
- Biology Department, St. Francis Xavier University, 2320 Notre Dame Avenue, Antigonish, Nova Scotia B2G 1S7, Canada
| |
Collapse
|
26
|
Byrnes EE, Lear KO, Morgan DL, Gleiss AC. Respirometer in a box: development and use of a portable field respirometer for estimating oxygen consumption of large-bodied fishes. JOURNAL OF FISH BIOLOGY 2020; 96:1045-1050. [PMID: 32057104 DOI: 10.1111/jfb.14287] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 02/12/2020] [Indexed: 06/10/2023]
Abstract
This study developed a portable, low-cost field respirometer for measuring oxygen consumption rates of large-bodied fishes. The respirometer performed well in laboratory tests and was used to measure the oxygen consumption rates ( M ˙ O2 ) of bull sharks Carcharhinus leucas (mean: 249.21 ± 58.10 mg O2 kg-1 h-1 at 27.05°C). Interspecific comparisons and assessments of oxygen degradation curves indicated that the respirometer provided reliable measurements of M ˙ O2 . This system presents a field-based alternative to laboratory respirometers, opening opportunities for studies on species in remote localities, increasing the ability to validate physiological field studies.
Collapse
Affiliation(s)
- Evan E Byrnes
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Perth, Australia
- College of Science, Health Engineering and Education, Murdoch University, Perth, Australia
| | - Karissa O Lear
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Perth, Australia
- College of Science, Health Engineering and Education, Murdoch University, Perth, Australia
| | - David L Morgan
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Perth, Australia
- College of Science, Health Engineering and Education, Murdoch University, Perth, Australia
| | - Adrian C Gleiss
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Perth, Australia
- College of Science, Health Engineering and Education, Murdoch University, Perth, Australia
| |
Collapse
|
27
|
van der Oost R, McKenzie DJ, Verweij F, Satumalay C, van der Molen N, Winter MJ, Chipman JK. Identifying adverse outcome pathways (AOP) for Amsterdam city fish by integrated field monitoring. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 74:103301. [PMID: 31794920 DOI: 10.1016/j.etap.2019.103301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 11/12/2019] [Accepted: 11/14/2019] [Indexed: 05/23/2023]
Abstract
The European City Fish project aimed to develop a generic methodology for ecological risk assessment for urban rivers. Since traditional methods only consider a small fraction of substances present in the water cycle, biological effect monitoring is required for a more reliable assessment of the pollution status. A major challenge for environmental risk assessment (ERA) is the application of adverse outcome pathways (AOP), i.e. the linking of pollutant exposure via early molecular and biochemical changes to physiological effects and, ultimately, effects on populations and ecosystems. We investigated the linkage between responses at these different levels. Many AOP aspects were investigated, from external and internal exposure to different classes of micropollutants, via molecular key events (MKE) the impacts on organs and organisms (fish physiology), to changes in the population dynamics of fish. Risk assessment procedures were evaluated by comparing environmental quality standards, bioassay responses, biomarkers in caged and feral fish, and the impact on fish populations. Although no complete AOP was observed, indirect relationships linking pollutant exposure via MKE to impaired locomotion were demonstrated at the most polluted site near a landfill for chemical waste. The pathway indicated that several upstream key events requiring energy for stress responses and toxic defence are likely to converge at a single common MKE: increased metabolic demands. Both fish biomarkers and the bioanalytical SIMONI strategy are valuable indicators for micropollutant risks to fish communities.
Collapse
Affiliation(s)
- Ron van der Oost
- Technology, Research & Engineering, Waternet Institute for the Urban Water Cycle, Amsterdam, the Netherlands.
| | - David J McKenzie
- UMR Marbec (CNRS-IRD-Ifremer-Université Montpellier), Montpellier, France
| | - Frank Verweij
- Technology, Research & Engineering, Waternet Institute for the Urban Water Cycle, Amsterdam, the Netherlands
| | - Carl Satumalay
- Technology, Research & Engineering, Waternet Institute for the Urban Water Cycle, Amsterdam, the Netherlands
| | - Natascha van der Molen
- Technology, Research & Engineering, Waternet Institute for the Urban Water Cycle, Amsterdam, the Netherlands
| | - Matthew J Winter
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, Devon, United Kingdom
| | - J Kevin Chipman
- Biosciences, University of Birmingham, B15 2TT, Birmingham, United Kingdom
| |
Collapse
|
28
|
Flikac T, Cook DG, Davison W. The effect of temperature and meal size on the aerobic scope and specific dynamic action of two temperate New Zealand finfish Chrysophrys auratus and Aldrichetta forsteri. J Comp Physiol B 2020; 190:169-183. [PMID: 31996987 DOI: 10.1007/s00360-020-01258-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 12/16/2019] [Accepted: 01/09/2020] [Indexed: 11/30/2022]
Abstract
Shallow coastal and estuarine habitats function as nurseries for many juvenile fish. In this comparative study, metabolic profiles of two New Zealand finfish, snapper (Chrysophrys auratus) and yellow-eyed mullet-YEM (Aldrichetta forsteri) that as juveniles share the same temperate coastal environments, were examined. Metabolic parameters (routine and maximum metabolic rates, and specific dynamic action-SDA) were investigated at a set of temperatures (13, 17, 21 °C) within the range juveniles both species experience annually. SDA was also determined for a range of different feed rations to investigate the effects of meal size on postprandial metabolic response. Temperature was a strong modulator of snapper and YEM metabolic profile (routine and maximum metabolic rates, and absolute and factorial aerobic scope). Metabolic rates increased with temperature in both species as did absolute scope in YEM, though for snapper, it was only greater at the highest temperature. Factorial scope behaved in the same fashion for the two species, being greatest at 13 °C. Both absolute and factorial scope were ~ twofold greater in YEM than in snapper across the entire temperature range. Temperature also affected SDA response in snapper, while in YEM, SDA parameters were largely unaffected when temperature increased from 17 to 21 °C. Snapper were able to consume a large range of meal sizes (0.5-3.0% body mass-BM) with meal sizes > 1% BM having a pronounced effect on numerous SDA parameters, whereas mullet appeared to consume more limited ration sizes (≤ 1.0% BM). In both species, rations ≤ 1% BM produced similar changes in SDA parameters identifying comparable digestive bio-energetics. Overall, our metabolic characterisations demonstrate that both species can adjust to the variable temperate environmental temperatures and manage the energetic costs of digestion and feed assimilation. Yet, despite these general similarities, YEM's greater aerobic scope may point to better physiological adaptation to the highly variable temperate coastal environment than were observed in snapper.
Collapse
Affiliation(s)
- Tomislav Flikac
- Biological Sciences, University of Canterbury, Ilam, Christchurch, 8041, New Zealand.
| | - Denham G Cook
- Seafood Production Group, The New Zealand Institute for Plant and Food Research Limited, 293-297 Akersten Street, Port Nelson, 7043, New Zealand.
| | - William Davison
- Biological Sciences, University of Canterbury, Ilam, Christchurch, 8041, New Zealand
| |
Collapse
|
29
|
Zhang Y, Gilbert MJH, Farrell AP. Finding the peak of dynamic oxygen uptake during fatiguing exercise in fish. ACTA ACUST UNITED AC 2019; 222:jeb.196568. [PMID: 31053645 DOI: 10.1242/jeb.196568] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 04/29/2019] [Indexed: 12/24/2022]
Abstract
As fish approach fatigue at high water velocities in a critical swimming speed (U crit) test, their swimming mode and oxygen cascade typically move to an unsteady state because they adopt an unsteady, burst-and-glide swimming mode despite a constant, imposed workload. However, conventional rate of oxygen uptake (Ṁ O2 ) sampling intervals (5-20 min) tend to smooth any dynamic fluctuations in active Ṁ O2 (Ṁ O2active) and thus likely underestimate the peak Ṁ O2active Here, we used rainbow trout (Oncorhynchus mykiss) to explore the dynamic nature of Ṁ O2active near U crit using various sampling windows and an iterative algorithm. Compared with a conventional interval regression analysis of Ṁ O2active over a 10-min period, our new analytical approach generated a 23% higher peak Ṁ O2active Therefore, we suggest that accounting for such dynamics in Ṁ O2active with this new analytical approach may lead to more accurate estimates of maximum Ṁ O2 in fishes.
Collapse
Affiliation(s)
- Yangfan Zhang
- Department of Zoology & Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada V6T1Z4
| | - Matthew J H Gilbert
- Department of Zoology & Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada V6T1Z4
| | - Anthony P Farrell
- Department of Zoology & Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada V6T1Z4
| |
Collapse
|
30
|
Slesinger E, Andres A, Young R, Seibel B, Saba V, Phelan B, Rosendale J, Wieczorek D, Saba G. The effect of ocean warming on black sea bass (Centropristis striata) aerobic scope and hypoxia tolerance. PLoS One 2019; 14:e0218390. [PMID: 31194841 PMCID: PMC6564031 DOI: 10.1371/journal.pone.0218390] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 05/31/2019] [Indexed: 12/16/2022] Open
Abstract
Over the last decade, ocean temperature on the U.S. Northeast Continental Shelf (U.S. NES) has warmed faster than the global average and is associated with observed distribution changes of the northern stock of black sea bass (Centropristis striata). Mechanistic models based on physiological responses to environmental conditions can improve future habitat suitability projections. We measured maximum, standard metabolic rate, and hypoxia tolerance (Scrit) of the northern adult black sea bass stock to assess performance across the known temperature range of the species. Two methods, chase and swim-flume, were employed to obtain maximum metabolic rate to examine whether the methods varied, and if so, the impact on absolute aerobic scope. A subset of individuals was held at 30°C for one month (30chronic°C) prior to experiments to test acclimation potential. Absolute aerobic scope (maximum–standard metabolic rate) reached a maximum of 367.21 mgO2 kg-1 hr-1 at 24.4°C while Scrit continued to increase in proportion to standard metabolic rate up to 30°C. The 30chronic°C group exhibited a significantly lower maximum metabolic rate and absolute aerobic scope in relation to the short-term acclimated group, but standard metabolic rate or Scrit were not affected. This suggests a decline in performance of oxygen demand processes (e.g. muscle contraction) beyond 24°C despite maintenance of oxygen supply. The Metabolic Index, calculated from Scrit as an estimate of potential aerobic scope, closely matched the measured factorial aerobic scope (maximum / standard metabolic rate) and declined with increasing temperature to a minimum below 3. This may represent a critical threshold value for the species. With temperatures on the U.S. NES projected to increase above 24°C in the next 80-years in the southern portion of the northern stock’s range, it is likely black sea bass range will continue to shift poleward as the ocean continues to warm.
Collapse
Affiliation(s)
- Emily Slesinger
- Center for Ocean Observing Leadership, Department of Marine and Coastal Sciences, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ, United States of America
| | - Alyssa Andres
- College of Marine Science, University of South Florida, St. Petersburg, FL, United States of America
| | - Rachael Young
- Center for Ocean Observing Leadership, Department of Marine and Coastal Sciences, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ, United States of America
| | - Brad Seibel
- College of Marine Science, University of South Florida, St. Petersburg, FL, United States of America
| | - Vincent Saba
- National Oceanic and Atmospheric Administration (NOAA), Northeast Fisheries Science Center, Geophysical Fluid Dynamics Laboratory, Princeton, NJ, United States of America
| | - Beth Phelan
- National Oceanic and Atmospheric Administration (NOAA), Northeast Fisheries Science Center, James J. Howard Laboratory, Highlands, NJ, United States of America
| | - John Rosendale
- National Oceanic and Atmospheric Administration (NOAA), Northeast Fisheries Science Center, James J. Howard Laboratory, Highlands, NJ, United States of America
| | - Daniel Wieczorek
- National Oceanic and Atmospheric Administration (NOAA), Northeast Fisheries Science Center, James J. Howard Laboratory, Highlands, NJ, United States of America
| | - Grace Saba
- Center for Ocean Observing Leadership, Department of Marine and Coastal Sciences, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ, United States of America
- * E-mail:
| |
Collapse
|
31
|
Morozov S, McCairns RJS, Merilä J. FishResp: R package and GUI application for analysis of aquatic respirometry data. CONSERVATION PHYSIOLOGY 2019; 7:coz003. [PMID: 30746152 PMCID: PMC6364290 DOI: 10.1093/conphys/coz003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 12/19/2018] [Accepted: 01/07/2019] [Indexed: 06/09/2023]
Abstract
Intermittent-flow respirometry is widely used to measure oxygen uptake rates and subsequently estimate aerobic metabolic rates of aquatic animals. However, the lack of a standard quality-control software to detect technical problems represents a potential impediment to comparisons across studies in the field of evolutionary and conservation physiology. Here, we introduce 'FishResp', a versatile R package and its graphical implementation for quality-control and filtering of raw respirometry data. Our goal is to provide a straightforward, cross-platform and free software to help improve the quality and comparability of metabolic rate estimates for reducing methodological fragmentation in the field of aquatic respirometry. FishResp accepts data from various respirometry systems, allows users to detect potential mechanical problems which can occur during oxygen uptake measurements (e.g. chamber leaking, poor water circulation), and offers six options to correct raw data for microbial oxygen consumption. The software performs filtering of raw data based on user criteria, and produces accurate and unbiased estimates of absolute and mass-specific metabolic rates. Using data from three-spined sticklebacks (Gasterosteus aculeatus) and Trinidadian guppies (Poecilia reticulata), we demonstrate the virtues of FishResp, highlighting the importance of detecting mechanical problems and correcting measurements for background respiration.
Collapse
Affiliation(s)
- Sergey Morozov
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - R J Scott McCairns
- ESE, Ecology and Ecosystem Health, INRA, Agrocampus Ouest, Rennes, France
| | - Juha Merilä
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
32
|
Paul N, Novais SC, Lemos MFL, Kunzmann A. Chemical predator signals induce metabolic suppression in rock goby (Gobius paganellus). PLoS One 2018; 13:e0209286. [PMID: 30557310 PMCID: PMC6296658 DOI: 10.1371/journal.pone.0209286] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/03/2018] [Indexed: 11/19/2022] Open
Abstract
In nature, a multitude of both abiotic and biotic stressors influence organisms with regard to their overall fitness. Stress responses that finally impair normal biological functions may ultimately result in consequences for whole populations. This study focused on the metabolic response of the intertidal rock pool fish Gobius paganellus towards simulated predation risk. Individuals were exposed to a mixture of skin extracts from conspecifics and chemical alarm cues from a top predator, Octopus vulgaris. Oxygen consumption rates of single fish were measured to establish standard (SMR) and routine metabolic rates (RMR) of G. paganellus, and to address the direct response towards simulated predation risk, compared to handling and light stress. The SMR of G. paganellus (0.0301 ± 0.0081 mg O2 h-1 g-1 WW) was significantly lower than the RMR (0.0409 ± 0.0078 mg O2 h-1 g-1 WW). In contrast to increased respiration due to handling and light stress, the exposure to chemical predation cues induced a significant reduction in oxygen consumption rates (0.0297 ± 0.0077 mg O2 h-1 g-1 WW). This metabolic suppression was interpreted as a result of the stereotypic freezing behaviour as antipredator response of gobiid fish. Results underline the importance of biotic interactions in environmental stress assessments and predation as a biotic factor that will provide more realistic scenarios when addressing stress impacts in tidal rock pool organisms.
Collapse
Affiliation(s)
- Nina Paul
- Leibniz Centre for Tropical Marine Research (ZMT), Bremen, Germany
- * E-mail:
| | - Sara C. Novais
- MARE–Marine and Environmental Sciences Centre, ESTM, Instituto Politécnico de Leiria, Peniche, Portugal
| | - Marco F. L. Lemos
- MARE–Marine and Environmental Sciences Centre, ESTM, Instituto Politécnico de Leiria, Peniche, Portugal
| | - Andreas Kunzmann
- Leibniz Centre for Tropical Marine Research (ZMT), Bremen, Germany
| |
Collapse
|
33
|
Paschke K, Agüero J, Gebauer P, Díaz F, Mascaró M, López-Ripoll E, Re D, Caamal-Monsreal C, Tremblay N, Pörtner HO, Rosas C. Comparison of Aerobic Scope for Metabolic Activity in Aquatic Ectotherms With Temperature Related Metabolic Stimulation: A Novel Approach for Aerobic Power Budget. Front Physiol 2018; 9:1438. [PMID: 30405425 PMCID: PMC6204536 DOI: 10.3389/fphys.2018.01438] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 09/21/2018] [Indexed: 02/04/2023] Open
Abstract
Considering that swim-flume or chasing methods fail in the estimation of maximum metabolic rate and in the estimation of Aerobic Scope (AS) of sedentary or sluggish aquatic ectotherms, we propose a novel conceptual approach in which high metabolic rates can be obtained through stimulation of organism metabolic activity using high and low non-lethal temperatures that induce high (HMR) and low metabolic rates (LMR), This method was defined as TIMR: Temperature Induced Metabolic Rate, designed to obtain an aerobic power budget based on temperature-induced metabolic scope which may mirror thermal metabolic scope (TMS = HMR—LMR). Prior to use, the researcher should know the critical thermal maximum (CT max) and minimum (CT min) of animals, and calculate temperature TIMR max (at temperatures −5–10% below CT max) and TIMR min (at temperatures +5–10% above CT min), or choose a high and low non-lethal temperature that provoke a higher and lower metabolic rate than observed in routine conditions. Two sets of experiments were carried out. The first compared swim-flume open respirometry and the TIMR protocol using Centropomus undecimalis (snook), an endurance swimmer, acclimated at different temperatures. Results showed that independent of the method used and of the magnitude of the metabolic response, a similar relationship between maximum metabolic budget and acclimation temperature was observed, demonstrating that the TIMR method allows the identification of TMS. The second evaluated the effect of acclimation temperature in snook, semi-sedentary yellow tail (Ocyurus chrysurus), and sedentary clownfish (Amphiprion ocellaris), using TIMR and the chasing method. Both methods produced similar maximum metabolic rates in snook and yellowtail fish, but strong differences became visible in clownfish. In clownfish, the TIMR method led to a significantly higher TMS than the chasing method indicating that chasing may not fully exploit the aerobic power budget in sedentary species. Thus, the TIMR method provides an alternative way to estimate the difference between high and low metabolic activity under different acclimation conditions that, although not equivalent to AS may allow the standardized estimation of TMS that is relevant for sedentary species where measurement of AS via maximal swimming is inappropriate.
Collapse
Affiliation(s)
- Kurt Paschke
- Instituto de Acuicultura, Universidad Austral de Chile, Puerto Montt, Chile.,Centro FONDAP de Investigación en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Punta Arenas, Chile
| | - José Agüero
- Posgrado en Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico
| | | | - Fernando Díaz
- Laboratorio de Ecofisiología de Organismos Acuáticos, Departamento de Biotecnología Marina, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Mexico
| | - Maite Mascaró
- Unidad Multidisciplinaria de Docencia e Investigación, Facultad de Ciencias, Universidad Nacional Autónoma de Mexico, Sisal, Mexico.,Laboratorio de Resiliencia Costera (LANRESC, CONACYT), Sisal, Mexico
| | - Estefany López-Ripoll
- Posgrado en Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico
| | - Denisse Re
- Laboratorio de Ecofisiología de Organismos Acuáticos, Departamento de Biotecnología Marina, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Mexico
| | - Claudia Caamal-Monsreal
- Unidad Multidisciplinaria de Docencia e Investigación, Facultad de Ciencias, Universidad Nacional Autónoma de Mexico, Sisal, Mexico.,Laboratorio de Resiliencia Costera (LANRESC, CONACYT), Sisal, Mexico
| | - Nelly Tremblay
- Unidad Multidisciplinaria de Docencia e Investigación, Facultad de Ciencias, Universidad Nacional Autónoma de Mexico, Sisal, Mexico.,Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Biologische Anstalt Helgoland, Shelf Seas Systems Ecology, Helgoland, Germany
| | - Hans-Otto Pörtner
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Integrative Ecophysiology, Bremerhaven, Germany
| | - Carlos Rosas
- Unidad Multidisciplinaria de Docencia e Investigación, Facultad de Ciencias, Universidad Nacional Autónoma de Mexico, Sisal, Mexico.,Laboratorio de Resiliencia Costera (LANRESC, CONACYT), Sisal, Mexico
| |
Collapse
|
34
|
Nyboer EA, Chapman LJ. Cardiac plasticity influences aerobic performance and thermal tolerance in a tropical, freshwater fish at elevated temperatures. ACTA ACUST UNITED AC 2018; 221:jeb.178087. [PMID: 29895683 DOI: 10.1242/jeb.178087] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 06/04/2018] [Indexed: 01/10/2023]
Abstract
Fishes faced with novel thermal conditions often modify physiological functioning to compensate for elevated temperatures. This physiological plasticity (thermal acclimation) has been shown to improve metabolic performance and extend thermal limits in many species. Adjustments in cardiorespiratory function are often invoked as mechanisms underlying thermal plasticity because limitations in oxygen supply have been predicted to define thermal optima in fishes; however, few studies have explicitly linked cardiorespiratory plasticity to metabolic compensation. Here, we quantified thermal acclimation capacity in the commercially harvested Nile perch (Lates niloticus) of East Africa, and investigated mechanisms underlying observed changes. We reared juvenile Nile perch for 3 months under two temperature regimes, and then measured a series of metabolic traits (e.g. aerobic scope) and critical thermal maximum (CTmax) upon acute exposure to a range of experimental temperatures. We also measured morphological traits of heart ventricles, gills and brains to identify potential mechanisms for compensation. We found that long-term (3 month) exposure to elevated temperature induced compensation in upper thermal tolerance (CTmax) and metabolic performance (standard and maximum metabolic rate, and aerobic scope), and induced cardiac remodeling in Nile perch. Furthermore, variation in heart morphology influenced variations in metabolic function and thermal tolerance. These results indicate that plastic changes enacted over longer exposures lead to differences in metabolic flexibility when organisms are acutely exposed to temperature variation. Furthermore, we established functional links between cardiac plasticity, metabolic performance and thermal tolerance, providing evidence that plasticity in cardiac capacity may be one mechanism for coping with climate change.
Collapse
Affiliation(s)
- Elizabeth A Nyboer
- Department of Biology, McGill University, Office N3/11, Stewart Biology Building, 1205 Avenue Docteur Penfield, Montreal, Quebec, Canada, H3A 1B1
| | - Lauren J Chapman
- Department of Biology, McGill University, Office N3/11, Stewart Biology Building, 1205 Avenue Docteur Penfield, Montreal, Quebec, Canada, H3A 1B1
| |
Collapse
|
35
|
Yuan M, Chen Y, Huang Y, Lu W. Behavioral and Metabolic Phenotype Indicate Personality in Zebrafish ( Danio rerio). Front Physiol 2018; 9:653. [PMID: 29899710 PMCID: PMC5988878 DOI: 10.3389/fphys.2018.00653] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 05/14/2018] [Indexed: 11/13/2022] Open
Abstract
Consistency of individual differences of animal behavior and personality in reactions to various environmental stresses among their life stages could reflect basic divergences in coping style which may affect survival, social rank, and reproductive success in the wild. However, the physiological mechanisms determining personality remain poorly understood. In order to study whether behavior, metabolism and physiological stress responses relate to the personality, we employed post-stress recovery assays to separate zebrafish into two behavioral types (proactive and reactive). The results demonstrated consistent difference among personality, behavior and metabolism in which proactive individuals were more aggressive, had higher standard metabolic rates and showed lower shuttled frequencies between dark and light compartments than the reactive ones. The behavioral variations were also linked to divergent acute salinity stress responses: proactive individuals adopted a swift locomotion behavior in response to acute salinity challenge while reactive individuals remain unchanged. Our results provide useful insight into how personality acts on correlated traits and the importance of a holistic approach to understanding the mechanisms driving persistent inter-individual differences.
Collapse
Affiliation(s)
- Mingzhe Yuan
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.,The Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai, China
| | - Yan Chen
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Yingying Huang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Weiqun Lu
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.,The Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai, China.,International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China
| |
Collapse
|
36
|
Zhang Y, Gilbert MJH. Comment on 'Measurement and relevance of maximum metabolic rate in fishes by Norin & Clark (2016)'. JOURNAL OF FISH BIOLOGY 2017; 91:397-402. [PMID: 28776701 DOI: 10.1111/jfb.13291] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 02/01/2017] [Indexed: 06/07/2023]
Affiliation(s)
- Y Zhang
- Faculty of Land and Food Systems, University of British Columbia, 2357 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - M J H Gilbert
- Department of Zoology, University of British Columbia, 6270 University Boulevard, Vancouver, BC, V6T 1Z4 Canada
| |
Collapse
|
37
|
Alexandre CM, Palstra AP. Effect of short-term regulated temperature variations on the swimming economy of Atlantic salmon smolts. CONSERVATION PHYSIOLOGY 2017; 5:cox025. [PMID: 28480037 PMCID: PMC5417060 DOI: 10.1093/conphys/cox025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 03/29/2017] [Accepted: 04/11/2017] [Indexed: 06/07/2023]
Abstract
Migratory species travelling long distances between habitats to spawn or feed are well adapted to optimize their swimming economy. However, human activities, such as river regulation, represent potential threats to fish migration by changing environmental parameters that will have impact on their metabolism. The main objective of this study was to evaluate the changes in the swimming energetics of a salmonid species, Atlantic salmon (Salmo salar L.), caused by short-term temperature variations that usually result from the operation of hydroelectrical dams. Intermittent flow respirometry in swim tunnels allows to obtain high resolution data on oxygen consumption of swimming fish which can reflect aerobic and anaerobic metabolism. This method was used to compare the metabolic rates of oxygen consumption before, during and after sudden thermal change. Control (no temperature variation) and experimental (temperature variation of approximately 4°C in 1 h) swimming trials were conducted to achieve the following objectives: (i) quantify the variations in oxygen consumption associated with abrupt temperature decrease, and (ii) assess if the tested fish return quickly to initial oxygen consumption rates. Main results revealed that Atlantic salmon smolts show a strong response to sudden temperature variation, significantly reducing the oxygen consumption rate up to a seven-fold change. Fish quickly returned to initial swimming costs shortly after reestablishment of temperature values. Results from this study can be used to evaluate the species-specific effects of the applied operation modes by hydroelectrical dams and to increase the success of conservation and management actions directed to fish species inhabiting regulated rivers.
Collapse
Affiliation(s)
- C. M. Alexandre
- MARE—Centro de Ciências do Mar e do Ambiente, Universidade de Évora, Largo dos Colegiais 2, 7004-516Évora, Portugal
| | - A. P. Palstra
- Wageningen Marine Research, Wageningen University and Research, Korringaweg 5, 4401 NT Yerseke, The Netherlands
- Wageningen Livestock Research, Animal Breeding and Genomics, Wageningen University and Research, PO Box 338, 6700 AH Wageningen, The Netherlands
| |
Collapse
|
38
|
Veillard MF, Ruppert JL, Tierney K, Watkinson DA, Poesch M. Comparative swimming and station-holding ability of the threatened Rocky Mountain Sculpin ( Cottus sp.) from four hydrologically distinct rivers. CONSERVATION PHYSIOLOGY 2017; 5:cox026. [PMID: 28480038 PMCID: PMC5417056 DOI: 10.1093/conphys/cox026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 03/29/2017] [Accepted: 04/24/2017] [Indexed: 06/07/2023]
Abstract
Hydrologic alterations, such as dams, culverts or diversions, can introduce new selection pressures on freshwater fishes, where they are required to adapt to novel environmental conditions. Our study investigated how species adapt to natural and altered stream flow, where we use the threatened Rocky Mountain Sculpin (Cottus sp.) as a model organism. We compared the swimming and station-holding performance of Rocky Mountain Sculpin from four different hydrologic regimes in Alberta and British Columbia, including the North Milk River, a system that experiences increased flows from a large-scale diversion. We measured the slip (Uslip) and failure (Uburst) velocities over three constant acceleration test trials. Uslip was defined as the point at which individuals required the addition of bursting or swimming to maintain position. Uburst was defined as the point at which individuals were unable to hold position in the swimming chamber through swimming, bursting or holding techniques without fully or partially resting on the electrified back plate. We found individuals from the Flathead River in British Columbia (with the highest natural flow) failed at significantly higher Uburst velocities than fish from the southern Albertan populations. However, there was no relationship between peak hydrologic flow from the natal river and Uburst or Uslip. Further, Uburst velocities decreased from 51.8 cm s-1 (7.2 BL s-1) to 45.6 cm s-1 (6.3 BL s-1) by the third consecutive test suggesting the use of anaerobic metabolism. Uslip was not different between trials suggesting the use of aerobic metabolism in station-holding behaviours (Uslip). Moreover, we found no significant differences in individuals from the altered North Milk River system. Finally, individual caudal morphological characteristics were related to both slip and failure velocities. Our study contributes to the conservation of Rocky Mountain Sculpin by providing the first documentation of swimming and station-holding abilities of this benthic fish.
Collapse
Affiliation(s)
- Marie F. Veillard
- Department of Renewable Resources, University of Alberta, 751 General Services Building, Edmonton, Alberta, Canada T6G 2H1
| | - Jonathan L.W. Ruppert
- Department of Renewable Resources, University of Alberta, 751 General Services Building, Edmonton, Alberta, Canada T6G 2H1
| | - Keith Tierney
- Department of Biological Sciences, University of Alberta, G408 Biological Sciences Building, Edmonton, Alberta, Canada T6G 2E9
| | - Douglas A. Watkinson
- Fisheries and Oceans Canada, Central and Arctic Region, 501 University Crescent, Winnipeg, Manitoba, Canada R3T 2NG
| | - Mark Poesch
- Department of Renewable Resources, University of Alberta, 751 General Services Building, Edmonton, Alberta, Canada T6G 2H1
| |
Collapse
|
39
|
Habary A, Johansen JL, Nay TJ, Steffensen JF, Rummer JL. Adapt, move or die - how will tropical coral reef fishes cope with ocean warming? GLOBAL CHANGE BIOLOGY 2017; 23:566-577. [PMID: 27593976 DOI: 10.1111/gcb.13488] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 08/17/2016] [Accepted: 08/17/2016] [Indexed: 06/06/2023]
Abstract
Previous studies hailed thermal tolerance and the capacity for organisms to acclimate and adapt as the primary pathways for species survival under climate change. Here we challenge this theory. Over the past decade, more than 365 tropical stenothermal fish species have been documented moving poleward, away from ocean warming hotspots where temperatures 2-3 °C above long-term annual means can compromise critical physiological processes. We examined the capacity of a model species - a thermally sensitive coral reef fish, Chromis viridis (Pomacentridae) - to use preference behaviour to regulate its body temperature. Movement could potentially circumvent the physiological stress response associated with elevated temperatures and may be a strategy relied upon before genetic adaptation can be effectuated. Individuals were maintained at one of six temperatures (23, 25, 27, 29, 31 and 33 °C) for at least 6 weeks. We compared the relative importance of acclimation temperature to changes in upper critical thermal limits, aerobic metabolic scope and thermal preference. While acclimation temperature positively affected the upper critical thermal limit, neither aerobic metabolic scope nor thermal preference exhibited such plasticity. Importantly, when given the choice to stay in a habitat reflecting their acclimation temperatures or relocate, fish acclimated to end-of-century predicted temperatures (i.e. 31 or 33 °C) preferentially sought out cooler temperatures, those equivalent to long-term summer averages in their natural habitats (~29 °C). This was also the temperature providing the greatest aerobic metabolic scope and body condition across all treatments. Consequently, acclimation can confer plasticity in some performance traits, but may be an unreliable indicator of the ultimate survival and distribution of mobile stenothermal species under global warming. Conversely, thermal preference can arise long before, and remain long after, the harmful effects of elevated ocean temperatures take hold and may be the primary driver of the escalating poleward migration of species.
Collapse
Affiliation(s)
- Adam Habary
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, 4811, Australia
- Marine Biological Section, Department of Biology, University of Copenhagen, Strandpromenaden 5, DK-3000, Helsingør, Denmark
| | - Jacob L Johansen
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, 4811, Australia
- Marine Science Institute, University of Texas at Austin, Port Aransas, TX, 78373, USA
| | - Tiffany J Nay
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, 4811, Australia
| | - John F Steffensen
- Marine Biological Section, Department of Biology, University of Copenhagen, Strandpromenaden 5, DK-3000, Helsingør, Denmark
| | - Jodie L Rummer
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, 4811, Australia
| |
Collapse
|
40
|
McKenzie DJ, Axelsson M, Chabot D, Claireaux G, Cooke SJ, Corner RA, De Boeck G, Domenici P, Guerreiro PM, Hamer B, Jørgensen C, Killen SS, Lefevre S, Marras S, Michaelidis B, Nilsson GE, Peck MA, Perez-Ruzafa A, Rijnsdorp AD, Shiels HA, Steffensen JF, Svendsen JC, Svendsen MBS, Teal LR, van der Meer J, Wang T, Wilson JM, Wilson RW, Metcalfe JD. Conservation physiology of marine fishes: state of the art and prospects for policy. CONSERVATION PHYSIOLOGY 2016; 4:cow046. [PMID: 27766156 PMCID: PMC5070530 DOI: 10.1093/conphys/cow046] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 08/17/2016] [Accepted: 09/13/2016] [Indexed: 05/24/2023]
Abstract
The state of the art of research on the environmental physiology of marine fishes is reviewed from the perspective of how it can contribute to conservation of biodiversity and fishery resources. A major constraint to application of physiological knowledge for conservation of marine fishes is the limited knowledge base; international collaboration is needed to study the environmental physiology of a wider range of species. Multifactorial field and laboratory studies on biomarkers hold promise to relate ecophysiology directly to habitat quality and population status. The 'Fry paradigm' could have broad applications for conservation physiology research if it provides a universal mechanism to link physiological function with ecological performance and population dynamics of fishes, through effects of abiotic conditions on aerobic metabolic scope. The available data indicate, however, that the paradigm is not universal, so further research is required on a wide diversity of species. Fish physiologists should interact closely with researchers developing ecological models, in order to investigate how integrating physiological information improves confidence in projecting effects of global change; for example, with mechanistic models that define habitat suitability based upon potential for aerobic scope or outputs of a dynamic energy budget. One major challenge to upscaling from physiology of individuals to the level of species and communities is incorporating intraspecific variation, which could be a crucial component of species' resilience to global change. Understanding what fishes do in the wild is also a challenge, but techniques of biotelemetry and biologging are providing novel information towards effective conservation. Overall, fish physiologists must strive to render research outputs more applicable to management and decision-making. There are various potential avenues for information flow, in the shorter term directly through biomarker studies and in the longer term by collaborating with modellers and fishery biologists.
Collapse
Affiliation(s)
- David J. McKenzie
- Centre for Marine Biodiversity Exploitation and Conservation, UMR MARBEC (CNRS, IRD, IFREMER, UM), Place E. Bataillon cc 093, 34095 Montpellier, France
| | - Michael Axelsson
- Department of Biological and Environmental Sciences, University of Gothenburg, Medicinaregatan 18, 413 90 Gothenburg, Sweden
| | - Denis Chabot
- Fisheries and Oceans Canada, Institut Maurice-Lamontagne, Mont-Joli, QC, CanadaG5H 3Z4
| | - Guy Claireaux
- Université de Bretagne Occidentale, UMR LEMAR, Unité PFOM-ARN, Centre Ifremer de Bretagne, ZI Pointe du Diable. CS 10070, 29280 Plouzané, France
| | - Steven J. Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, Ottawa, ON, CanadaK1S 5B6
| | | | - Gudrun De Boeck
- Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - Paolo Domenici
- CNR–IAMC, Istituto per l'Ambiente Marino Costiero, 09072 Torregrande, Oristano, Italy
| | - Pedro M. Guerreiro
- CCMAR – Centre for Marine Sciences, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Bojan Hamer
- Center for Marine Research, Ruder Boskovic Institute, Giordano Paliaga 5, 52210 Rovinj, Croatia
| | - Christian Jørgensen
- Department of Biology and Hjort Centre for Marine Ecosystem Dynamics, University of Bergen, 5020 Bergen, Norway
| | - Shaun S. Killen
- Institute of Biodiversity,Animal Health and Comparative Medicine, College of Medical,Veterinary and Life Sciences, Graham Kerr Building, University of Glasgow, Glasgow G12 8QQ, UK
| | - Sjannie Lefevre
- Department of Biosciences, University of Oslo, PO Box 1066,NO-0316 Oslo,Norway
| | - Stefano Marras
- CNR–IAMC, Istituto per l'Ambiente Marino Costiero, 09072 Torregrande, Oristano, Italy
| | - Basile Michaelidis
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Göran E. Nilsson
- Department of Biosciences, University of Oslo, PO Box 1066,NO-0316 Oslo,Norway
| | - Myron A. Peck
- Institute for Hydrobiology and Fisheries Science, University of Hamburg, Olbersweg 24, Hamburg 22767, Germany
| | - Angel Perez-Ruzafa
- Department of Ecology and Hydrology, Faculty of Biology, Espinardo, Regional Campus of International Excellence ‘Campus Mare Nostrum’, University of Murcia, Murcia, Spain
| | - Adriaan D. Rijnsdorp
- IMARES, Institute for Marine Resources and Ecosystem Studies, PO Box 68, 1970 AB IJmuiden, The Netherlands
| | - Holly A. Shiels
- Core Technology Facility, The University of Manchester, 46 Grafton Street, Manchester M13 9NT, UK
| | - John F. Steffensen
- Marine Biological Section, Department of Biology, University of Copenhagen, Strandpromenaden 5, DK-3000 Helsingør, Denmark
| | - Jon C. Svendsen
- Section for Ecosystem-based Marine Management, National Institute of Aquatic Resources (DTU-Aqua), Technical University of Denmark, Jægersborg Allé 1, DK-2920 Charlottenlund, Denmark
| | - Morten B. S. Svendsen
- Marine Biological Section, Department of Biology, University of Copenhagen, Strandpromenaden 5, DK-3000 Helsingør, Denmark
| | - Lorna R. Teal
- IMARES, Institute for Marine Resources and Ecosystem Studies, PO Box 68, 1970 AB IJmuiden, The Netherlands
| | - Jaap van der Meer
- Department of Coastal Systems, NIOZ Royal Netherlands Institute for Sea Research and Utrecht University, PO Box 59, 1790 AB Den Burg, Texel, The Netherlands
| | - Tobias Wang
- Department of Zoophysiology, Aarhus University, 8000 Aarhus C, Denmark
| | - Jonathan M. Wilson
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, 4050-123 Porto, Portugal
| | - Rod W. Wilson
- Biosciences, College of Life & Environmental Sciences, University of Exeter, ExeterEX4 4QD, UK
| | - Julian D. Metcalfe
- Centre for Environment,Fisheries and Aquaculture Science (Cefas), Lowestoft Laboratory, Suffolk NR33 0HT, UK
| |
Collapse
|