1
|
Adelman JW, Sukowaty AT, Partridge KJ, Gawrys JE, Terhune SS, Ebert AD. Stabilizing microtubules aids neurite structure and disrupts syncytia formation in human cytomegalovirus-infected human forebrain neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.16.608340. [PMID: 39229072 PMCID: PMC11370344 DOI: 10.1101/2024.08.16.608340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Human cytomegalovirus (HCMV) is a prolific human herpesvirus that infects most individuals by adulthood. While typically asymptomatic in adults, congenital infection can induce serious neurological symptoms including hearing loss, visual deficits, cognitive impairment, and microcephaly in 10-15% of cases. HCMV has been shown to infect most neural cells with our group recently demonstrating this capacity in stem cell-derived forebrain neurons. Infection of neurons induces deleterious effects on calcium dynamics and electrophysiological function paired with gross restructuring of neuronal morphology. Here, we utilize an iPSC-derived model of the human forebrain to demonstrate how HCMV infection induces syncytia, drives neurite retraction, and remodels microtubule networks to promote viral production and release. We establish that HCMV downregulates microtubule associated proteins at 14 days postinfection while simultaneously sparing other cytoskeletal elements, and this includes HCMV-driven alterations to microtubule stability. Further, we pharmacologically modulate microtubule dynamics using paclitaxel (stabilize) and colchicine (destabilize) to examine the effects on neurite structure, syncytial morphology, assembly compartment formation, and viral release. With paclitaxel, we found improvement of neurite outgrowth with a corresponding disruption to HCMV-induced syncytia formation and Golgi network disruptions but with limited impact on viral titers. Together, these data suggest that HCMV infection-induced disruption of microtubules in human cortical neurons can be partially mitigated with microtubule stabilization, suggesting a potential avenue for future neuroprotective therapeutic exploration.
Collapse
Affiliation(s)
- Jacob W Adelman
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Andrew T Sukowaty
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Kaitlyn J Partridge
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jessica E. Gawrys
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Scott S. Terhune
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
- Marquette University and Medical College of Wisconsin Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Allison D. Ebert
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
2
|
Wojnacki J, Quassollo G, Bordenave MD, Unsain N, Martínez GF, Szalai AM, Pertz O, Gundersen GG, Bartolini F, Stefani FD, Cáceres A, Bisbal M. Dual spatio-temporal regulation of axon growth and microtubule dynamics by RhoA signaling pathways. J Cell Sci 2024; 137:jcs261970. [PMID: 38910449 DOI: 10.1242/jcs.261970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 06/17/2024] [Indexed: 06/25/2024] Open
Abstract
RhoA plays a crucial role in neuronal polarization, where its action restraining axon outgrowth has been thoroughly studied. We now report that RhoA has not only an inhibitory but also a stimulatory effect on axon development depending on when and where exerts its action and the downstream effectors involved. In cultured hippocampal neurons, FRET imaging revealed that RhoA activity selectively localized in growth cones of undifferentiated neurites, whereas in developing axons it displayed a biphasic pattern, being low in nascent axons and high in elongating ones. RhoA-Rho kinase (ROCK) signaling prevented axon initiation but had no effect on elongation, whereas formin inhibition reduced axon extension without significantly altering initial outgrowth. In addition, RhoA-mDia signaling promoted axon elongation by stimulating growth cone microtubule stability and assembly, as opposed to RhoA-ROCK signaling, which restrained growth cone microtubule assembly and protrusion.
Collapse
Affiliation(s)
- José Wojnacki
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba 5016, Argentina
| | - Gonzalo Quassollo
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba 5016, Argentina
| | - Martín D Bordenave
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, Ciudad Autónoma de Buenos Aires C1425FQD, Argentina
| | - Nicolás Unsain
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba 5016, Argentina
- Instituto Universitario Ciencias Biomédicas de Córdoba (IUCBC), Córdoba 5016, Argentina
| | - Gaby F Martínez
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba 5016, Argentina
| | - Alan M Szalai
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, Ciudad Autónoma de Buenos Aires C1425FQD, Argentina
| | - Olivier Pertz
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, Bern 3012, Switzerland
| | - Gregg G Gundersen
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Francesca Bartolini
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Fernando D Stefani
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, Ciudad Autónoma de Buenos Aires C1425FQD, Argentina
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Güiraldes 2620, Ciudad Autónoma de Buenos Aires C1428EHA, Argentina
| | - Alfredo Cáceres
- Centro Investigación Medicina Traslacional Severo R Amuchástegui (CIMETSA), Instituto Universitario Ciencias Biomédicas Córdoba (IUCBC), Av. Naciones Unidas 440, Córdoba 5016, Argentina
| | - Mariano Bisbal
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba 5016, Argentina
- Instituto Universitario Ciencias Biomédicas de Córdoba (IUCBC), Córdoba 5016, Argentina
| |
Collapse
|
3
|
Di Gregorio E, Staelens M, Hosseinkhah N, Karimpoor M, Liburd J, Lim L, Shankar K, Tuszyński JA. Raman Spectroscopy Reveals Photobiomodulation-Induced α-Helix to β-Sheet Transition in Tubulins: Potential Implications for Alzheimer's and Other Neurodegenerative Diseases. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1093. [PMID: 38998698 PMCID: PMC11243591 DOI: 10.3390/nano14131093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/03/2024] [Accepted: 06/12/2024] [Indexed: 07/14/2024]
Abstract
In small clinical studies, the application of transcranial photobiomodulation (PBM), which typically delivers low-intensity near-infrared (NIR) to treat the brain, has led to some remarkable results in the treatment of dementia and several neurodegenerative diseases. However, despite the extensive literature detailing the mechanisms of action underlying PBM outcomes, the specific mechanisms affecting neurodegenerative diseases are not entirely clear. While large clinical trials are warranted to validate these findings, evidence of the mechanisms can explain and thus provide credible support for PBM as a potential treatment for these diseases. Tubulin and its polymerized state of microtubules have been known to play important roles in the pathology of Alzheimer's and other neurodegenerative diseases. Thus, we investigated the effects of PBM on these cellular structures in the quest for insights into the underlying therapeutic mechanisms. In this study, we employed a Raman spectroscopic analysis of the amide I band of polymerized samples of tubulin exposed to pulsed low-intensity NIR radiation (810 nm, 10 Hz, 22.5 J/cm2 dose). Peaks in the Raman fingerprint region (300-1900 cm-1)-in particular, in the amide I band (1600-1700 cm-1)-were used to quantify the percentage of protein secondary structures. Under this band, hidden signals of C=O stretching, belonging to different structures, are superimposed, producing a complex signal as a result. An accurate decomposition of the amide I band is therefore required for the reliable analysis of the conformation of proteins, which we achieved through a straightforward method employing a Voigt profile. This approach was validated through secondary structure analyses of unexposed control samples, for which comparisons with other values available in the literature could be conducted. Subsequently, using this validated method, we present novel findings of statistically significant alterations in the secondary structures of polymerized NIR-exposed tubulin, characterized by a notable decrease in α-helix content and a concurrent increase in β-sheets compared to the control samples. This PBM-induced α-helix to β-sheet transition connects to reduced microtubule stability and the introduction of dynamism to allow for the remodeling and, consequently, refreshing of microtubule structures. This newly discovered mechanism could have implications for reducing the risks associated with brain aging, including neurodegenerative diseases like Alzheimer's disease, through the introduction of an intervention following this transition.
Collapse
Affiliation(s)
- Elisabetta Di Gregorio
- Department of Physics, Faculty of Science, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Department of Mechanical and Aerospace Engineering (DIMEAS), Faculty of Biomedical Engineering, Polytechnic University of Turin, 10129 Turin, Italy
- Department of Physics, Freie Universität Berlin, 14195 Berlin, Germany
| | - Michael Staelens
- Department of Physics, Faculty of Science, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Instituto de Física Corpuscular, CSIC–Universitat de València, Carrer Catedràtic José Beltrán 2, 46980 Paterna, Spain
| | | | | | | | - Lew Lim
- Vielight Inc., Toronto, ON M4Y 2G8, Canada
| | - Karthik Shankar
- Department of Electrical and Computer Engineering, Faculty of Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Jack A. Tuszyński
- Department of Physics, Faculty of Science, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Department of Mechanical and Aerospace Engineering (DIMEAS), Faculty of Biomedical Engineering, Polytechnic University of Turin, 10129 Turin, Italy
- Department of Data Science and Engineering, Silesian University of Technology, 44-100 Gliwice, Poland
| |
Collapse
|
4
|
Brill MS, Fassier C, Song Y. Editorial: Cytoskeletal alterations in aging and disease. Front Cell Dev Biol 2024; 11:1359465. [PMID: 38299006 PMCID: PMC10828968 DOI: 10.3389/fcell.2023.1359465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 02/02/2024] Open
Affiliation(s)
- Monika S. Brill
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Coralie Fassier
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Yuyu Song
- Department of Neurology, Harvard Medical School, Boston, MA, United States
- Department of Neurology, Massachusetts General Hospital, Boston, MA, United States
| |
Collapse
|
5
|
Atta-Ur-Rahman. Protein Folding and Molecular Basis of Memory: Molecular Vibrations and Quantum Entanglement as Basis of Consciousness. Curr Med Chem 2024; 31:258-265. [PMID: 37424348 DOI: 10.2174/0929867331666230707123345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/28/2023] [Accepted: 06/28/2023] [Indexed: 07/11/2023]
Affiliation(s)
- Atta-Ur-Rahman
- Kings College, University of Cambridge, Cambridge CB2 1st, United Kingdom
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| |
Collapse
|
6
|
Lai W, Chen J, Gao X, Jin X, Chen G, Ye L. Design and Synthesis of Novel Chalcone Derivatives: Anti-Breast Cancer Activity Evaluation and Docking Study. Int J Mol Sci 2023; 24:15549. [PMID: 37958533 PMCID: PMC10649752 DOI: 10.3390/ijms242115549] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/06/2023] [Accepted: 10/16/2023] [Indexed: 11/15/2023] Open
Abstract
Chalcone is a common simple fragment of natural products with anticancer activity. In a previous study, the research group discovered a series of chalcone derivatives with stronger anticancer activities. To find better anticancer drugs, novel chalcone derivatives A1-A14, B1-B14 have continuously been designed and synthesized. The antiproliferative activity of these compounds against breast cancer cells (MCF-7) was investigated by the Cell Counting Kit-8 (CCK-8) method with 5-fluorouracil (5-Fu) as the control drug. The results showed that compound A14 exhibited excellent antiproliferative ability compared to the control drug 5-Fu. Scratch experiments and cloning experiments further confirmed that compound A14 could inhibit the proliferation and colony formation activity of MCF-7 cells. In addition, molecular docking primarily explains the interaction between compound and protein. These results suggested that compound A14 could be a promising chalcone derivative for further anti-breast cancer research.
Collapse
Affiliation(s)
- Weihong Lai
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; (W.L.); (J.C.); (X.G.)
| | - Jiaxin Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; (W.L.); (J.C.); (X.G.)
| | - Xinjiao Gao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; (W.L.); (J.C.); (X.G.)
| | - Xiaobao Jin
- Guangdong Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, China;
| | - Gong Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; (W.L.); (J.C.); (X.G.)
| | - Lianbao Ye
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; (W.L.); (J.C.); (X.G.)
| |
Collapse
|
7
|
Smith G, Sweeney ST, O’Kane CJ, Prokop A. How neurons maintain their axons long-term: an integrated view of axon biology and pathology. Front Neurosci 2023; 17:1236815. [PMID: 37564364 PMCID: PMC10410161 DOI: 10.3389/fnins.2023.1236815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/06/2023] [Indexed: 08/12/2023] Open
Abstract
Axons are processes of neurons, up to a metre long, that form the essential biological cables wiring nervous systems. They must survive, often far away from their cell bodies and up to a century in humans. This requires self-sufficient cell biology including structural proteins, organelles, and membrane trafficking, metabolic, signalling, translational, chaperone, and degradation machinery-all maintaining the homeostasis of energy, lipids, proteins, and signalling networks including reactive oxygen species and calcium. Axon maintenance also involves specialised cytoskeleton including the cortical actin-spectrin corset, and bundles of microtubules that provide the highways for motor-driven transport of components and organelles for virtually all the above-mentioned processes. Here, we aim to provide a conceptual overview of key aspects of axon biology and physiology, and the homeostatic networks they form. This homeostasis can be derailed, causing axonopathies through processes of ageing, trauma, poisoning, inflammation or genetic mutations. To illustrate which malfunctions of organelles or cell biological processes can lead to axonopathies, we focus on axonopathy-linked subcellular defects caused by genetic mutations. Based on these descriptions and backed up by our comprehensive data mining of genes linked to neural disorders, we describe the 'dependency cycle of local axon homeostasis' as an integrative model to explain why very different causes can trigger very similar axonopathies, providing new ideas that can drive the quest for strategies able to battle these devastating diseases.
Collapse
Affiliation(s)
- Gaynor Smith
- Cardiff University, School of Medicine, College of Biomedical and Life Sciences, Cardiff, United Kingdom
| | - Sean T. Sweeney
- Department of Biology, University of York and York Biomedical Research Institute, York, United Kingdom
| | - Cahir J. O’Kane
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Andreas Prokop
- Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, School of Biology, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
8
|
Palicha KA, Loganathan P, Sudha V, Harinipriya S. Monte Carlo simulation and experimental validation of plant microtubules cathode in biodegradable battery. Sci Rep 2023; 13:10393. [PMID: 37369685 DOI: 10.1038/s41598-023-36902-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
For the first time, electrochemical methods are utilized to study the response of tubulin monomers (extracted from plant source such as Green Peas: Arachis Hypogea) towards charge perturbations in the form of conductivity, conformational changes via self-assembly and adsorption on Au surface. The obtained dimerization and surface adsorption energetics of the tubulins from Cyclic Voltammetry agree well with the literature value of 6.9 and 14.9 kCal/mol for lateral and longitudinal bond formation energy respectively. In addition to the effects of charge perturbations on change in structure, ionic and electronic conductivity of tubulin with increasing load are investigated and found to be 1.25 Sm-1 and 2.89 mSm-1 respectively. The electronic conductivity is 1.93 times higher than the literature value of 1.5 mSm-1, demonstrating the fact that the microtubules (dimer of tubulins, MTs) from plant source can be used as a semiconductor electrode material in energy conversion and storage applications. Thus, motivated by the Monte Carlo simulation and electrochemical results the MTs extracted from plant source are used as cathode material for energy storage device such as Bio-battery and the Galvanostatic Charge/Discharge studies are carried out in coin cell configuration. The configuration of the bio-battery cell is as follows: Al/CB//PP-1M KCl//MTs/SS; where SS and Al are used as current collectors for cathode and anode respectively, Polypropylene (PP) membrane soaked in 1M KCl as electrolyte and Carbon Black (CB) is the anode material. Another configuration of the cell would be replacement of CB by biopolymer such as ethyl cellulose anode (Al/EC/PP-1M KCl/MTs/SS).
Collapse
Affiliation(s)
- Kaushik A Palicha
- Research and Development Center, Ram Charan Co Pvt Ltd - Entity1, Chennai, Tamilnadu, 600 002, India
| | - Pavithra Loganathan
- Department of Physics and Nanotechnology, SRMIST, Kattankulathur, Chennai, Tamilnadu, 603203, India
| | - V Sudha
- Department of Chemistry, SRMIST, Kattankulathur, Chennai, Tamilnadu, 603203, India.
| | - S Harinipriya
- Research and Development Center, Ram Charan Co Pvt Ltd - Entity1, Chennai, Tamilnadu, 600 002, India.
| |
Collapse
|
9
|
Naren P, Samim KS, Tryphena KP, Vora LK, Srivastava S, Singh SB, Khatri DK. Microtubule acetylation dyshomeostasis in Parkinson's disease. Transl Neurodegener 2023; 12:20. [PMID: 37150812 PMCID: PMC10165769 DOI: 10.1186/s40035-023-00354-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/06/2023] [Indexed: 05/09/2023] Open
Abstract
The inter-neuronal communication occurring in extensively branched neuronal cells is achieved primarily through the microtubule (MT)-mediated axonal transport system. This mechanistically regulated system delivers cargos (proteins, mRNAs and organelles such as mitochondria) back and forth from the soma to the synapse. Motor proteins like kinesins and dynein mechanistically regulate polarized anterograde (from the soma to the synapse) and retrograde (from the synapse to the soma) commute of the cargos, respectively. Proficient axonal transport of such cargos is achieved by altering the microtubule stability via post-translational modifications (PTMs) of α- and β-tubulin heterodimers, core components constructing the MTs. Occurring within the lumen of MTs, K40 acetylation of α-tubulin via α-tubulin acetyl transferase and its subsequent deacetylation by HDAC6 and SIRT2 are widely scrutinized PTMs that make the MTs highly flexible, which in turn promotes their lifespan. The movement of various motor proteins, including kinesin-1 (responsible for axonal mitochondrial commute), is enhanced by this PTM, and dyshomeostasis of neuronal MT acetylation has been observed in a variety of neurodegenerative conditions, including Alzheimer's disease and Parkinson's disease (PD). PD is the second most common neurodegenerative condition and is closely associated with impaired MT dynamics and deregulated tubulin acetylation levels. Although the relationship between status of MT acetylation and progression of PD pathogenesis has become a chicken-and-egg question, our review aims to provide insights into the MT-mediated axonal commute of mitochondria and dyshomeostasis of MT acetylation in PD. The enzymatic regulators of MT acetylation along with their synthetic modulators have also been briefly explored. Moving towards a tubulin-based therapy that enhances MT acetylation could serve as a disease-modifying treatment in neurological conditions that lack it.
Collapse
Affiliation(s)
- Padmashri Naren
- Molecular and Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Khan Sabiya Samim
- Molecular and Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Kamatham Pushpa Tryphena
- Molecular and Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK.
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India.
| | - Shashi Bala Singh
- Molecular and Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Dharmendra Kumar Khatri
- Molecular and Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India.
| |
Collapse
|
10
|
Zupin L, Psilodimitrakopoulos S, Celsi F, Papadimitriou L, Ranella A, Crovella S, Ricci G, Stratakis E, Pascolo L. Upside-Down Preference in the Forskolin-Induced In Vitro Differentiation of 50B11 Sensory Neurons: A Morphological Investigation by Label-Free Non-Linear Microscopy. Int J Mol Sci 2023; 24:ijms24098354. [PMID: 37176061 PMCID: PMC10179713 DOI: 10.3390/ijms24098354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/21/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
In this study, we revealed a peculiar morphological feature of 50B11 nociceptive sensory neurons in in vitro culture related to the forskolin-induced differentiation of these cells growing upside-down on cover glass supports. Multi-photon non-linear microscopy was applied to monitor increased neurite arborization and elongation. Under live and unstained conditions, second harmonic generation (SHG) microscopy could monitor microtubule organization inside the cells while also correlating with the detection of cellular multi-photon autofluorescence, probably derived from mitochondria metabolites. Although the differentiated cells of each compartment did not differ significantly in tubulin or multi-photon autofluorescence contents, the upturned neurons were more elongated, presenting a higher length/width cellular ratio and longer neurites, indicative of differentiated cells. SHG originating from the axons' microtubules represented a proper tool to study neurons' inverted culture in live conditions without exogenous staining. This work represents the first instance of examining neuronal cell lines growing and differentiated in an upside-down orientation, allowing a possible improvement of 50B11 as a model in physiology studies of sensory neurons in peripheric nervous system disease (e.g., Fabry disease, Friedreich ataxia, Charcot-Marie-Tooth, porphyria, type 1 diabetes, Guillain-Barré syndrome in children) and analgesic drug screening.
Collapse
Affiliation(s)
- Luisa Zupin
- Institute for Maternal and Child Health IRCCS Burlo Garofolo, 34137 Trieste, Italy
| | - Sotiris Psilodimitrakopoulos
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, 70013 Heraklion, Crete, Greece
| | - Fulvio Celsi
- Institute for Maternal and Child Health IRCCS Burlo Garofolo, 34137 Trieste, Italy
| | - Lina Papadimitriou
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, 70013 Heraklion, Crete, Greece
| | - Anthi Ranella
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, 70013 Heraklion, Crete, Greece
| | - Sergio Crovella
- Biological Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, University of Qatar, Doha 2713, Qatar
| | - Giuseppe Ricci
- Institute for Maternal and Child Health IRCCS Burlo Garofolo, 34137 Trieste, Italy
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34129 Trieste, Italy
| | - Emmanuel Stratakis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, 70013 Heraklion, Crete, Greece
- Department of Physics, School of Sciences and Engineering, University of Crete, 71003 Heraklion, Crete, Greece
| | - Lorella Pascolo
- Institute for Maternal and Child Health IRCCS Burlo Garofolo, 34137 Trieste, Italy
| |
Collapse
|
11
|
Liu H, Shima T. Preference of CAMSAP3 for expanded microtubule lattice contributes to stabilization of the minus end. Life Sci Alliance 2023; 6:e202201714. [PMID: 36894175 PMCID: PMC9998277 DOI: 10.26508/lsa.202201714] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 02/15/2023] [Accepted: 02/15/2023] [Indexed: 03/11/2023] Open
Abstract
CAMSAPs are proteins that show microtubule minus-end-specific localization, decoration, and stabilization. Although the mechanism for minus-end recognition via their C-terminal CKK domain has been well described in recent studies, it is unclear how CAMSAPs stabilize microtubules. Our several binding assays revealed that the D2 region of CAMSAP3 specifically binds to microtubules with the expanded lattice. To investigate the relationship between this preference and the stabilization effect of CAMSAP3, we precisely measured individual microtubule lengths and found that D2 binding expanded the microtubule lattice by ∼3%. Consistent with the notion that the expanded lattice is a common feature of stable microtubules, the presence of D2 slowed the microtubule depolymerization rate to ∼1/20, suggesting that the D2-triggered lattice expansion stabilizes microtubules. Combining these results, we propose that CAMSAP3 stabilizes microtubules by lattice expansion upon D2 binding, which further accelerates the recruitment of other CAMSAP3 molecules. Because only CAMSAP3 has D2 and the highest microtubule-stabilizing effect among mammalian CAMSAPs, our model also explains the molecular basis for the functional diversity of CAMSAP family members.
Collapse
Affiliation(s)
- Hanjin Liu
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Tomohiro Shima
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
12
|
Hosseini S, van Ham M, Erck C, Korte M, Michaelsen-Preusse K. The role of α-tubulin tyrosination in controlling the structure and function of hippocampal neurons. Front Mol Neurosci 2022; 15:931859. [PMCID: PMC9627282 DOI: 10.3389/fnmol.2022.931859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
Microtubules (MTs) are central components of the neuronal cytoskeleton and play a critical role in CNS integrity, function, and plasticity. Neuronal MTs are diverse due to extensive post-translational modifications (PTMs), particularly detyrosination/tyrosination, in which the C-terminal tyrosine of α-tubulin is cyclically removed by a carboxypeptidase and reattached by a tubulin-tyrosine ligase (TTL). The detyrosination/tyrosination cycle of MTs has been shown to be an important regulator of MT dynamics in neurons. TTL-null mice exhibit impaired neuronal organization and die immediately after birth, indicating TTL function is vital to the CNS. However, the detailed cellular role of TTL during development and in the adult brain remains elusive. Here, we demonstrate that conditional deletion of TTL in the neocortex and hippocampus during network development results in a pathophysiological phenotype defined by incomplete development of the corpus callosum and anterior commissures due to axonal growth arrest. TTL loss was also associated with a deficit in spatial learning, impaired synaptic plasticity, and reduced number of spines in hippocampal neurons, suggesting that TTL also plays a critical role in hippocampal network development. TTL deletion after postnatal development, specifically in the hippocampus and in cultured hippocampal neurons, led to a loss of spines and impaired spine structural plasticity. This indicates a novel and important function of TTL for synaptic plasticity in the adult brain. In conclusion, this study reveals the importance of α-tubulin tyrosination, which defines the dynamics of MTs, in controlling proper network formation and suggests TTL-mediated tyrosination as a new key determinant of synaptic plasticity in the adult brain.
Collapse
Affiliation(s)
- Shirin Hosseini
- Department of Cellular Neurobiology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
- Research Group Neuroinflammation and Neurodegeneration, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Marco van Ham
- Research Group Cellular Proteome Research, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Christian Erck
- Research Group Cellular Proteome Research, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Martin Korte
- Department of Cellular Neurobiology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
- Research Group Neuroinflammation and Neurodegeneration, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Kristin Michaelsen-Preusse
- Department of Cellular Neurobiology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
- *Correspondence: Kristin Michaelsen-Preusse,
| |
Collapse
|
13
|
Lin G, Lin H, Zhuo R, He W, Ma C, Liu Y, Liu M. GCN5/KAT2A contributes to axon growth and neurogenesis. Neurosci Lett 2022; 784:136742. [PMID: 35716963 DOI: 10.1016/j.neulet.2022.136742] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 05/31/2022] [Accepted: 06/13/2022] [Indexed: 10/18/2022]
Abstract
Posttranslational modification (PTM) of tubulin proteins is involved in microtubule dynamics. Acetylation, an important alpha-tubulin PTM, which is regarded as a hallmark event of stable microtubules, often occurs in neurogenesis and axon outgrowth. GCN5/KAT2A is a well-known histone acetyltransferase and has also been reported to hold the activity of nonhistone acetyltransferases, such as acetylated tubulin (Ace-tubulin). In this study, we investigated the role of GCN5/KAT2A in axon growth and neurogenesis. E18 cortical neurons obtained from day 18 embryos of pregnant Sprague-Dawley (SD) rats were cultured and transfected with GCN5 siRNA or treated with the GCN5 inhibitor MB-3. Neural stem cells (NSCs) derived from the cerebral cortexes of E14 SD rats were cultured and differentiated. During differentiation, MB-3 was applied to investigate the effect of GCN5 dysfunction on neurogenesis. The axonal length and the ratio and distribution of acetylated and tyrosinated tubulin (Tyr-tubulin) were evaluated by immunostaining assay. The expression levels of Nestin, Tuj1, acetylated tubulin, and tyrosinated tubulin proteins were analyzed by Western blotting assays. In primary neurons, both GCN5 siRNA and MB-3 treatment reduced acetylated tubulin protein, changed the ratio of acetylated and tyrosinated tubulin, and decreased axonal length. During NSC differentiation, MB-3 application reduced axon outgrowth, decreased acetylated tubulin and altered the distribution of acetylated tubulin and tyrosinated tubulin. This study revealed for the first time that the acetyltransferase GCN5/KAT2A could contribute to axon outgrowth by altering the ratio and distribution of acetylated tubulin.
Collapse
Affiliation(s)
- Ge Lin
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, China
| | - Haixu Lin
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, China
| | - Run Zhuo
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, China
| | - Wei He
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, China
| | - Chao Ma
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, China
| | - Yan Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, China.
| | - Mei Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, China.
| |
Collapse
|
14
|
Shared pathophysiology: Understanding stroke and Alzheimer’s disease. Clin Neurol Neurosurg 2022; 218:107306. [PMID: 35636382 DOI: 10.1016/j.clineuro.2022.107306] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/03/2022] [Accepted: 05/19/2022] [Indexed: 12/17/2022]
|
15
|
Tau as a Biomarker of Neurodegeneration. Int J Mol Sci 2022; 23:ijms23137307. [PMID: 35806324 PMCID: PMC9266883 DOI: 10.3390/ijms23137307] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 06/29/2022] [Accepted: 06/29/2022] [Indexed: 12/13/2022] Open
Abstract
Less than 50 years since tau was first isolated from a porcine brain, its detection in femtolitre concentrations in biological fluids is revolutionizing the diagnosis of neurodegenerative diseases. This review highlights the molecular and technological advances that have catapulted tau from obscurity to the forefront of biomarker diagnostics. Comprehensive updates are provided describing the burgeoning clinical applications of tau as a biomarker of neurodegeneration. For the clinician, tau not only enhances diagnostic accuracy, but holds promise as a predictor of clinical progression, phenotype, and response to drug therapy. For patients living with neurodegenerative disorders, characterization of tau dysregulation could provide much-needed clarity to a notoriously murky diagnostic landscape.
Collapse
|
16
|
Hoff KJ, Aiken JE, Gutierrez MA, Franco SJ, Moore JK. Tubulinopathy mutations in TUBA1A that disrupt neuronal morphogenesis and migration override XMAP215/Stu2 regulation of microtubule dynamics. eLife 2022; 11:76189. [PMID: 35511030 PMCID: PMC9236607 DOI: 10.7554/elife.76189] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/29/2022] [Indexed: 11/13/2022] Open
Abstract
Heterozygous, missense mutations in α- or β-tubulin genes are associated with a wide range of human brain malformations, known as tubulinopathies. We seek to understand whether a mutation’s impact at the molecular and cellular levels scale with the severity of brain malformation. Here, we focus on two mutations at the valine 409 residue of TUBA1A, V409I, and V409A, identified in patients with pachygyria or lissencephaly, respectively. We find that ectopic expression of TUBA1A-V409I/A mutants disrupt neuronal migration in mice and promote excessive neurite branching and a decrease in the number of neurite retraction events in primary rat neuronal cultures. These neuronal phenotypes are accompanied by increased microtubule acetylation and polymerization rates. To determine the molecular mechanisms, we modeled the V409I/A mutants in budding yeast and found that they promote intrinsically faster microtubule polymerization rates in cells and in reconstitution experiments with purified tubulin. In addition, V409I/A mutants decrease the recruitment of XMAP215/Stu2 to plus ends in budding yeast and ablate tubulin binding to TOG (tumor overexpressed gene) domains. In each assay tested, the TUBA1A-V409I mutant exhibits an intermediate phenotype between wild type and the more severe TUBA1A-V409A, reflecting the severity observed in brain malformations. Together, our data support a model in which the V409I/A mutations disrupt microtubule regulation typically conferred by XMAP215 proteins during neuronal morphogenesis and migration, and this impact on tubulin activity at the molecular level scales with the impact at the cellular and tissue levels. Proteins are molecules made up of long chains of building blocks called amino acids. When a mutation changes one of these amino acids, it can lead to the protein malfunctioning, which can have many effects at the cell and tissue level. Given that human proteins are made up of 20 different amino acids, each building block in a protein could mutate to any of the other 19 amino acids, and each mutations could have different effects. Tubulins are proteins that form microtubules, thin tubes that help give cells their shape and allow them to migrate. These proteins are added or removed to microtubules depending on the cell’s needs, meaning that microtubules can grow or shrink depending on the situation. Mutations in the tubulin proteins have been linked to malformations of varying severities involving the formation of ridges and folds on the surface of the brain, including lissencephaly, pachygyria or polymicrogyria. Hoff et al. wanted to establish links between tubulin mutations and the effects observed at both cell and tissue level in the brain. They focused on two mutations in the tubulin protein TUBA1A that affect the amino acid in position 409 in the protein, which is normally a valine. One of the mutations turns this valine into an amino acid called isoleucine. This mutation is associated with pachygyria, which leads to the brain developing few ridges that are broad and flat. The second mutation turns the valine into an alanine, and is linked to lissencephaly, a more severe condition in which the brain develops no ridges, appearing smooth. Hoff et al. found that both mutations interfere with the development of the brain by stopping neurons from migrating properly, which prevents them from forming the folds in the brain correctly. At the cellular level, the mutations lead to tubulins becoming harder to remove from microtubules, making microtubules more stable than usual. This results in longer microtubules that are harder for the cell to shorten or destroy as needed. Additionally, Hoff et al. showed that the mutant versions of TUBA1A have weaker interactions with a protein called XMAP215, which controls the addition of tubulin to microtubules. This causes the microtubules to grow uncontrollably. Hoff et al. also established that the magnitude of the effects of each mutation on microtubule growth scale with the severity of the disorder they cause. Specifically, cells in which TUBA1A is not mutated have microtubules that grow at a normal rate, and lead to typical brain development. Meanwhile, cells carrying the mutation that turns a valine into an alanine, which is linked to the more severe condition lissencephaly, have microtubules that grow very fast. Finally, cells in which the valine is mutated to an isoleucine – the mutation associated with the less severe malformation pachygyria – have microtubules that grow at an intermediate rate. These findings provide a link between mutations in tubulin proteins and larger effects on cell movement that lead to brain malformations. Additionally, they also link the severity of the malformation to the severity of the microtubule defect caused by each mutation. Further work could examine whether microtubule stabilization is also seen in other similar diseases, which, in the long term, could reveal ways to detect and treat these illnesses.
Collapse
Affiliation(s)
- Katelyn J Hoff
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, United States
| | - Jayne E Aiken
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, United States
| | - Mark A Gutierrez
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, United States
| | - Santos J Franco
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, United States
| | - Jeffrey K Moore
- University of Colorado School of Medicine, Aurora, United States
| |
Collapse
|
17
|
Zheng R, Du Y, Wang X, Liao T, Zhang Z, Wang N, Li X, Shen Y, Shi L, Luo J, Xia J, Wang Z, Xu J. KIF2C regulates synaptic plasticity and cognition in mice through dynamic microtubule depolymerization. eLife 2022; 11:72483. [PMID: 35138249 PMCID: PMC8828051 DOI: 10.7554/elife.72483] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 02/01/2022] [Indexed: 11/13/2022] Open
Abstract
Dynamic microtubules play a critical role in cell structure and function. In nervous system, microtubules are the major route for cargo protein trafficking and they specially extend into and out of synapses to regulate synaptic development and plasticity. However, the detailed depolymerization mechanism that regulates dynamic microtubules in synapses and dendrites is still unclear. In this study, we find that KIF2C, a dynamic microtubule depolymerization protein without known function in the nervous system, plays a pivotal role in the structural and functional plasticity of synapses and regulates cognitive function in mice. Through its microtubule depolymerization capability, KIF2C regulates microtubule dynamics in dendrites, and regulates microtubule invasion of spines in neurons in a neuronal activity-dependent manner. Using RNAi knockdown and conditional knockout approaches, we showed that KIF2C regulates spine morphology and synaptic membrane expression of AMPA receptors. Moreover, KIF2C deficiency leads to impaired excitatory transmission, long-term potentiation, and altered cognitive behaviors in mice. Collectively, our study explores a novel function of KIF2C in the nervous system and provides an important regulatory mechanism on how activity-dependent microtubule dynamic regulates synaptic plasticity and cognition behaviors.
Collapse
Affiliation(s)
- Rui Zheng
- Department of Neurobiology and Department of Rehabilitation of the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, Ministry of Education Frontier Science Center for Brain Research and Brain Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Yonglan Du
- Department of Neurobiology and Department of Rehabilitation of the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, Ministry of Education Frontier Science Center for Brain Research and Brain Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Xintai Wang
- NHC and CAMS Key Laboratory of Medical Neurobiology, Ministry of Education Frontier Science Center for Brain Research and Brain Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Tailin Liao
- Department of Neurobiology and Department of Rehabilitation of the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, Ministry of Education Frontier Science Center for Brain Research and Brain Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Zhe Zhang
- Department of Neurobiology and Department of Rehabilitation of the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, Ministry of Education Frontier Science Center for Brain Research and Brain Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Na Wang
- Department of Neurobiology and Department of Rehabilitation of the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, Ministry of Education Frontier Science Center for Brain Research and Brain Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Xiumao Li
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ying Shen
- Department of Physiology and Department of Neurology of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lei Shi
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, Jinan University, Guanzhou, China
| | - Jianhong Luo
- Department of Neurobiology and Department of Rehabilitation of the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, Ministry of Education Frontier Science Center for Brain Research and Brain Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Jun Xia
- Division of Life Science and The Brain and Intelligence Research Institute, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Ziyi Wang
- Innovative Institute of Basic Medical Sciences of Zhejiang University (Yuhang), Hangzhou, China
| | - Junyu Xu
- Department of Neurobiology and Department of Rehabilitation of the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, Ministry of Education Frontier Science Center for Brain Research and Brain Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
18
|
Buscaglia G, Northington KR, Aiken J, Hoff KJ, Bates EA. Bridging the Gap: The Importance of TUBA1A α-Tubulin in Forming Midline Commissures. Front Cell Dev Biol 2022; 9:789438. [PMID: 35127710 PMCID: PMC8807549 DOI: 10.3389/fcell.2021.789438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/20/2021] [Indexed: 11/13/2022] Open
Abstract
Developing neurons undergo dramatic morphological changes to appropriately migrate and extend axons to make synaptic connections. The microtubule cytoskeleton, made of α/β-tubulin dimers, drives neurite outgrowth, promotes neuronal growth cone responses, and facilitates intracellular transport of critical cargoes during neurodevelopment. TUBA1A constitutes the majority of α-tubulin in the developing brain and mutations to TUBA1A in humans cause severe brain malformations accompanied by varying neurological defects, collectively termed tubulinopathies. Studies of TUBA1A function in mammalian cells have been limited by the presence of multiple genes encoding highly similar tubulin proteins, which leads to α-tubulin antibody promiscuity and makes genetic manipulation challenging. Here, we test mutant tubulin levels and assembly activity and analyze the impact of TUBA1A reduction on growth cone composition, neurite extension, and commissural axon architecture during brain development. We present a novel tagging method for studying and manipulating TUBA1A in cells without impairing tubulin function. Using this tool, we show that a TUBA1A loss-of-function mutation TUBA1A N102D (TUBA1A ND ), reduces TUBA1A protein levels and prevents incorporation of TUBA1A into microtubule polymers. Reduced Tuba1a α-tubulin in heterozygous Tuba1a ND/+ mice leads to grossly normal brain formation except a significant impact on axon extension and impaired formation of forebrain commissures. Neurons with reduced Tuba1a as a result of the Tuba1a ND mutation exhibit slower neuron outgrowth compared to controls. Neurons deficient in Tuba1a failed to localize microtubule associated protein-1b (Map1b) to the developing growth cone, likely impacting stabilization of microtubules. Overall, we show that reduced Tuba1a is sufficient to support neuronal migration and cortex development but not commissure formation, and provide mechanistic insight as to how TUBA1A tunes microtubule function to support neurodevelopment.
Collapse
Affiliation(s)
- Georgia Buscaglia
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Kyle R. Northington
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Jayne Aiken
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Katelyn J. Hoff
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Emily A. Bates
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
19
|
Mahmoodi N, Ai J, Hassannejad Z, Ebrahimi-Barough S, Hasanzadeh E, Nekounam H, Vaccaro AR, Rahimi-Movaghar V. Improving motor neuron-like cell differentiation of hEnSCs by the combination of epothilone B loaded PCL microspheres in optimized 3D collagen hydrogel. Sci Rep 2021; 11:21722. [PMID: 34741076 PMCID: PMC8571364 DOI: 10.1038/s41598-021-01071-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/22/2021] [Indexed: 12/28/2022] Open
Abstract
Spinal cord regeneration is limited due to various obstacles and complex pathophysiological events after injury. Combination therapy is one approach that recently garnered attention for spinal cord injury (SCI) recovery. A composite of three-dimensional (3D) collagen hydrogel containing epothilone B (EpoB)-loaded polycaprolactone (PCL) microspheres (2.5 ng/mg, 10 ng/mg, and 40 ng/mg EpoB/PCL) were fabricated and optimized to improve motor neuron (MN) differentiation efficacy of human endometrial stem cells (hEnSCs). The microspheres were characterized using liquid chromatography-mass/mass spectrometry (LC-mas/mas) to assess the drug release and scanning electron microscope (SEM) for morphological assessment. hEnSCs were isolated, then characterized by flow cytometry, and seeded on the optimized 3D composite. Based on cell morphology and proliferation, cross-linked collagen hydrogels with and without 2.5 ng/mg EpoB loaded PCL microspheres were selected as the optimized formulations to compare the effect of EpoB release on MN differentiation. After differentiation, the expression of MN markers was estimated by real-time PCR and immunofluorescence (IF). The collagen hydrogel containing the EpoB group had the highest HB9 and ISL-1 expression and the longest neurite elongation. Providing a 3D permissive environment with EpoB, significantly improves MN-like cell differentiation and maturation of hEnSCs and is a promising approach to replace lost neurons after SCI.
Collapse
Affiliation(s)
- Narges Mahmoodi
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Jafar Ai
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Hassannejad
- Pediatric Urology and Regenerative Medicine Research Center, Tissue, Cell and Gene Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Ebrahimi-Barough
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Hasanzadeh
- Immunogenetics Research Center, Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Houra Nekounam
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Alexander R Vaccaro
- Department of Orthopedic Surgery, Rothman Institute, Thomas Jefferson University, Philadelphia, PA, USA
| | - Vafa Rahimi-Movaghar
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
20
|
Wu Y, Lv X, Wang H, Qian K, Ding J, Wang J, Hua S, Sun T, Zhou Y, Yu L, Qiu S. Adaptor protein APPL1 links neuronal activity to chromatin remodeling in cultured hippocampal neurons. J Mol Cell Biol 2021; 13:335-346. [PMID: 33104190 PMCID: PMC8373263 DOI: 10.1093/jmcb/mjaa058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/29/2020] [Accepted: 08/25/2020] [Indexed: 11/15/2022] Open
Abstract
Local signaling events at synapses or axon terminals are communicated to the nucleus to elicit transcriptional responses, and thereby translate information about the external environment into internal neuronal representations. This retrograde signaling is critical to dendritic growth, synapse development, and neuronal plasticity. Here, we demonstrate that neuronal activity induces retrograde translocation and nuclear accumulation of endosomal adaptor APPL1. Disrupting the interaction of APPL1 with Importin α1 abolishes nuclear accumulation of APPL1, which in turn decreases the levels of histone acetylation. We further demonstrate that retrograde translocation of APPL1 is required for the regulation of gene transcription and then maintenance of hippocampal late-phase long-term potentiation. Thus, these results illustrate an APPL1-mediated pathway that contributes to the modulation of synaptic plasticity via coupling neuronal activity with chromatin remodeling.
Collapse
Affiliation(s)
- Yu Wu
- Department of Neurobiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.,Department of Anesthesiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xinyou Lv
- Department of Neurobiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.,Department of Anesthesiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Haiting Wang
- Department of Neurobiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.,Department of Anesthesiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Kai Qian
- Department of Neurobiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.,Department of Anesthesiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jinjun Ding
- Department of Neurobiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.,Department of Anesthesiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jiejie Wang
- Department of Neurobiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.,Department of Anesthesiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Shushan Hua
- Department of Neurobiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.,Department of Anesthesiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Tiancheng Sun
- Department of Neurobiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.,Department of Anesthesiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yiting Zhou
- Department of Biochemistry, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.,Department of Orthopaedic Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Lina Yu
- Department of Neurobiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.,Department of Anesthesiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Shuang Qiu
- Department of Neurobiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.,Department of Anesthesiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
21
|
Sonawane SK, Chinnathambi S. Epigallocatechin-3-gallate modulates Tau Post-translational modifications and cytoskeletal network. Oncotarget 2021; 12:1083-1099. [PMID: 34084282 PMCID: PMC8169072 DOI: 10.18632/oncotarget.27963] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 05/05/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Alzheimer's disease is a type of dementia denoted by progressive neuronal death due to the accumulation of proteinaceous aggregates of Tau. Post-translational modifications like hyperphosphorylation, truncation, glycation, etc. play a pivotal role in Tau pathogenesis. Glycation of Tau aids in paired helical filament formation and abates its microtubule-binding function. The chemical modulators of Tau PTMs, such as kinase inhibitors and antibody-based therapeutics, have been developed, but natural compounds, as modulators of Tau PTMs are not much explored. MATERIALS AND METHODS We applied biophysical and biochemical techniques like fluorescence kinetics, oligomerization analysis and transmission electron microscopy to investigate the impact of EGCG on Tau glycation in vitro. The effect of glycation on cytoskeleton instability and its EGCG-mediated rescue were studied by immunofluorescence microscopy in neuroblastoma cells. RESULTS EGCG inhibited methyl glyoxal (MG)-induced Tau glycation in vitro. EGCG potently inhibited MG-induced advanced glycation endproducts formation in neuroblastoma cells as well modulated the localization of AT100 phosphorylated Tau in the cells. In addition to preventing the glycation, EGCG enhanced actin-rich neuritic extensions and rescued actin and tubulin cytoskeleton severely disrupted by MG. EGCG maintained the integrity of the Microtubule Organizing Center (MTOC) stabilized microtubules by Microtubule-associated protein RP/EB family member 1 (EB1). CONCLUSIONS We report EGCG, a green tea polyphenol, as a modulator of in vitro methylglyoxal-induced Tau glycation and its impact on reducing advanced glycation end products in neuroblastoma cells. We unravel unprecedented function of EGCG in remodeling neuronal cytoskeletal integrity.
Collapse
Affiliation(s)
- Shweta Kishor Sonawane
- Neurobiology Group, Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Subashchandrabose Chinnathambi
- Neurobiology Group, Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
22
|
Cuveillier C, Boulan B, Ravanello C, Denarier E, Deloulme JC, Gory-Fauré S, Delphin C, Bosc C, Arnal I, Andrieux A. Beyond Neuronal Microtubule Stabilization: MAP6 and CRMPS, Two Converging Stories. Front Mol Neurosci 2021; 14:665693. [PMID: 34025352 PMCID: PMC8131560 DOI: 10.3389/fnmol.2021.665693] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/09/2021] [Indexed: 12/21/2022] Open
Abstract
The development and function of the central nervous system rely on the microtubule (MT) and actin cytoskeletons and their respective effectors. Although the structural role of the cytoskeleton has long been acknowledged in neuronal morphology and activity, it was recently recognized to play the role of a signaling platform. Following this recognition, research into Microtubule Associated Proteins (MAPs) diversified. Indeed, historically, structural MAPs—including MAP1B, MAP2, Tau, and MAP6 (also known as STOP);—were identified and described as MT-binding and -stabilizing proteins. Extensive data obtained over the last 20 years indicated that these structural MAPs could also contribute to a variety of other molecular roles. Among multi-role MAPs, MAP6 provides a striking example illustrating the diverse molecular and cellular properties of MAPs and showing how their functional versatility contributes to the central nervous system. In this review, in addition to MAP6’s effect on microtubules, we describe its impact on the actin cytoskeleton, on neuroreceptor homeostasis, and its involvement in signaling pathways governing neuron development and maturation. We also discuss its roles in synaptic plasticity, brain connectivity, and cognitive abilities, as well as the potential relationships between the integrated brain functions of MAP6 and its molecular activities. In parallel, the Collapsin Response Mediator Proteins (CRMPs) are presented as examples of how other proteins, not initially identified as MAPs, fall into the broader MAP family. These proteins bind MTs as well as exhibiting molecular and cellular properties very similar to MAP6. Finally, we briefly summarize the multiple similarities between other classical structural MAPs and MAP6 or CRMPs.In summary, this review revisits the molecular properties and the cellular and neuronal roles of the classical MAPs, broadening our definition of what constitutes a MAP.
Collapse
|
23
|
Bornert A, Boscher J, Pertuy F, Eckly A, Stegner D, Strassel C, Gachet C, Lanza F, Léon C. Cytoskeletal-based mechanisms differently regulate in vivo and in vitro proplatelet formation. Haematologica 2021; 106:1368-1380. [PMID: 32327502 PMCID: PMC8094084 DOI: 10.3324/haematol.2019.239111] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Indexed: 12/23/2022] Open
Abstract
Platelets are produced by bone marrow megakaryocytes through cytoplasmic protrusions, named native proplatelets (nPPT), into blood vessels. Proplatelets also refer to protrusions observed in megakaryocyte culture (cultured proplatelets [cPPT]) which are morphologically different. Contrary to cPPT, the mechanisms of nPPT formation are poorly understood. We show here in living mice that nPPT elongation is in equilibrium between protrusion and retraction forces mediated by myosin-IIA. We also found, using wild-type and b1-tubulin-deficient mice, that microtubule behavior differs between cPPT and nPPT, being absolutely required in vitro, while less critical in vivo. Remarkably, microtubule depolymerization in myosin-deficient mice did not affect nPPT elongation. We then calculated that blood Stokes’ forces may be sufficient to promote nPPT extension, independently of myosin and microtubules. Together, we propose a new mechanism for nPPT extension that might explain contradictions between severely affected cPPT production and moderate platelet count defects in some patients and animal models.
Collapse
Affiliation(s)
- Alicia Bornert
- Université de Strasbourg, INSERM, EFS Grand Est, BPPS UMR-S 1255, FMTS, Strasbourg, France
| | - Julie Boscher
- Université de Strasbourg, INSERM, EFS Grand Est, BPPS UMR-S 1255, FMTS, Strasbourg, France
| | - Fabien Pertuy
- Université de Strasbourg, INSERM, EFS Grand Est, BPPS UMR-S 1255, FMTS, Strasbourg, France
| | - Anita Eckly
- Université de Strasbourg, INSERM, EFS Grand Est, BPPS UMR-S 1255, FMTS, Strasbourg, France
| | - David Stegner
- University Hospital Würzburg and Rudolf Virchow Center for Experimental Biomedicine, Germany
| | - Catherine Strassel
- Université de Strasbourg, INSERM, EFS Grand Est, BPPS UMR-S 1255, FMTS, Strasbourg, France
| | - Christian Gachet
- Université de Strasbourg, INSERM, EFS Grand Est, BPPS UMR-S 1255, FMTS, Strasbourg, France
| | - François Lanza
- Université de Strasbourg, INSERM, EFS Grand Est, BPPS UMR-S 1255, FMTS, Strasbourg, France
| | - Catherine Léon
- Université de Strasbourg, INSERM, EFS Grand Est, BPPS UMR-S 1255, FMTS, Strasbourg, France
| |
Collapse
|
24
|
Jangampalli Adi P, Reddy PH. Phosphorylated tau targeted small-molecule PROTACs for the treatment of Alzheimer's disease and tauopathies. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166162. [PMID: 33940164 DOI: 10.1016/j.bbadis.2021.166162] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/24/2021] [Accepted: 04/26/2021] [Indexed: 10/21/2022]
Abstract
Tau is a microtubule-stabilizing protein that plays an important role in the formation of axonal microtubules in neurons. Phosphorylated tau (p-Tau) has received great attention in the field of Alzheimer's disease (AD) as a potential therapeutic target due to its involvement with synaptic damage and neuronal dysfunction. Mounting evidence suggests that amyloid beta (Aβ)-targeted clinical trials continuously failed; therefore, it is important to consider alternative therapeutic strategies such as p-tau-PROTACs targeted small molecules for AD and other tauopathies. The present article describes the characteristics of tau biology, structure, and function in both healthy and pathological states in AD. It also explains data from studies that have identified the involvement of p-tau in neuronal damage and synaptic and cognitive functions in AD. Current article also covers several aspects, including small molecule inhibitors, and the development of p-tau-PROTACs targeted drug molecules to treat patients with AD and other tauopathies.
Collapse
Affiliation(s)
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
25
|
Lopachev AV, Lagarkova MA, Lebedeva OS, Ezhova MA, Kazanskaya RB, Timoshina YA, Khutorova AV, Akkuratov EE, Fedorova TN, Gainetdinov RR. Ouabain-Induced Gene Expression Changes in Human iPSC-Derived Neuron Culture Expressing Dopamine and cAMP-Regulated Phosphoprotein 32 and GABA Receptors. Brain Sci 2021; 11:brainsci11020203. [PMID: 33562186 PMCID: PMC7915459 DOI: 10.3390/brainsci11020203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/27/2021] [Accepted: 02/03/2021] [Indexed: 12/22/2022] Open
Abstract
Cardiotonic steroids (CTS) are specific inhibitors and endogenous ligands of a key enzyme in the CNS-the Na+, K+-ATPase, which maintains and creates an ion gradient on the plasma membrane of neurons. CTS cause the activation of various signaling cascades and changes in gene expression in neurons and other cell types. It is known that intracerebroventricular injection of cardiotonic steroid ouabain causes mania-like behavior in rodents, in part due to activation of dopamine-related signaling cascades in the dopamine and cAMP-regulated phosphoprotein 32 (DARPP-32) expressing medium spiny neurons in the striatum. Dopaminergic projections in the striatum innervate these GABAergic medium spiny neurons. The objective of this study was to assess changes in the expression of all genes in human iPSC-derived expressing DARPP-32 and GABA receptors neurons under the influence of ouabain. We noted a large number of statistically significant upregulated and downregulated genes after a 16-h incubation with non-toxic concentration (30 nM) of ouabain. These changes in the transcriptional activity were accomplished with activation of MAP-kinase ERK1/2 and transcriptional factor cAMP response element-binding protein (CREB). Thus, it can be concluded that 30 nM ouabain incubated for 16 h with human iPSC-derived expressing DARPP-32 and GABA receptors neurons activates genes associated with neuronal maturation and synapse formation, by increasing the expression of genes associated with translation, vesicular transport, and increased electron transport chain function. At the same time, the expression of genes associated with proliferation, migration, and early development of neurons decreases. These data indicate that non-toxic concentrations of ouabain may induce neuronal maturation, neurite growth, and increased synaptogenesis in dopamine-receptive GABAergic neurons, suggesting formation of plasticity and the establishment of new neuronal junctions.
Collapse
Affiliation(s)
- Alexander V. Lopachev
- Laboratory of Clinical and Experimental Neurochemistry, Research Center of Neurology, 125367 Moscow, Russia; (Y.A.T.); (A.V.K.); (T.N.F.)
- Correspondence:
| | - Maria A. Lagarkova
- Laboratory of Cell Biology, Federal Research and Clinical Center of Physical-Chemical Medicine Federal Medical Biological Agency, 119435 Moscow, Russia; (M.A.L.); (O.S.L.)
| | - Olga S. Lebedeva
- Laboratory of Cell Biology, Federal Research and Clinical Center of Physical-Chemical Medicine Federal Medical Biological Agency, 119435 Moscow, Russia; (M.A.L.); (O.S.L.)
| | - Margarita A. Ezhova
- Laboratory of Plant Genomics, Institute for Information Transmission Problems of the Russian Academy of Sciences, 127051 Moscow, Russia;
- Center of Life Sciences, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Rogneda B. Kazanskaya
- Biological Department, Saint Petersburg State University, 199034 St. Petersburg, Russia;
| | - Yulia A. Timoshina
- Laboratory of Clinical and Experimental Neurochemistry, Research Center of Neurology, 125367 Moscow, Russia; (Y.A.T.); (A.V.K.); (T.N.F.)
- Biological Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Anastasiya V. Khutorova
- Laboratory of Clinical and Experimental Neurochemistry, Research Center of Neurology, 125367 Moscow, Russia; (Y.A.T.); (A.V.K.); (T.N.F.)
- Biological Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Evgeny E. Akkuratov
- Department of Applied Physics, Royal Institute of Technology, Science for Life Laboratory, 171 65 Stockholm, Sweden;
| | - Tatiana N. Fedorova
- Laboratory of Clinical and Experimental Neurochemistry, Research Center of Neurology, 125367 Moscow, Russia; (Y.A.T.); (A.V.K.); (T.N.F.)
| | - Raul R. Gainetdinov
- Institute of Translational Biomedicine and Saint Petersburg University Hospital, Saint Petersburg State University, 199034 St. Petersburg, Russia;
| |
Collapse
|
26
|
Gholami D, Noori AR, Mohammadkhani M, Emruzi Z, Riazi GH. The long-term effects of Δ 9-tetrahydrocannabinol on microtubule dynamicity in rats. Arch Biochem Biophys 2020; 693:108574. [PMID: 32898566 DOI: 10.1016/j.abb.2020.108574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/28/2020] [Accepted: 09/01/2020] [Indexed: 11/19/2022]
Abstract
Studies reported that Δ9-tetrahydrocannabinol (Δ9-THC) is an essential drug as an anti-cancer, neuroprotective, anti-inflammatory, and immune-modulatory agent. However, the mechanism by which Δ9-THC causes these events remains to be elucidated. We attempted to investigate the in vivo studies of Δ9-THC on brain microtubule dynamicity, and acetylcholinesterase (AChE) activity. The microtubule polymerization, secondary and tertiary structures of α/β-tubulins, as well as the AChE activity, were evaluated in the experimental groups. The significantly lowest optical density and initial rate of polymerization was observed in THC 3 mg/kg, THC 9 mg/kg, and THC 18 mg/kg treated groups. The content of secondary and tertiary structures of α/β-tubulins was significantly affected in treated groups. The AChE activity was significantly lower in treated groups in a dose-dependent manner. These data highlight the microtubule dynamicity as a molecular target for Δ9-THC, which affects memory dysfunction. However, Δ9-THC can be inhibited the AChE activity and provide an improved therapeutics for neurodegenerative diseases.
Collapse
Affiliation(s)
- Dariush Gholami
- Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran; Department of Biochemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran.
| | - Ali Reza Noori
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mina Mohammadkhani
- Department of Biochemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Zeinab Emruzi
- Department of Medical Genetics, National Institute of Genetic Engineering and Biotechnology, (NIGEB), Tehran, Iran
| | - Gholam Hossein Riazi
- Department of Biochemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| |
Collapse
|
27
|
Microtubule Dysfunction: A Common Feature of Neurodegenerative Diseases. Int J Mol Sci 2020; 21:ijms21197354. [PMID: 33027950 PMCID: PMC7582320 DOI: 10.3390/ijms21197354] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/24/2020] [Accepted: 10/01/2020] [Indexed: 12/13/2022] Open
Abstract
Neurons are particularly susceptible to microtubule (MT) defects and deregulation of the MT cytoskeleton is considered to be a common insult during the pathogenesis of neurodegenerative disorders. Evidence that dysfunctions in the MT system have a direct role in neurodegeneration comes from findings that several forms of neurodegenerative diseases are associated with changes in genes encoding tubulins, the structural units of MTs, MT-associated proteins (MAPs), or additional factors such as MT modifying enzymes which modulating tubulin post-translational modifications (PTMs) regulate MT functions and dynamics. Efforts to use MT-targeting therapeutic agents for the treatment of neurodegenerative diseases are underway. Many of these agents have provided several benefits when tested on both in vitro and in vivo neurodegenerative model systems. Currently, the most frequently addressed therapeutic interventions include drugs that modulate MT stability or that target tubulin PTMs, such as tubulin acetylation. The purpose of this review is to provide an update on the relevance of MT dysfunctions to the process of neurodegeneration and briefly discuss advances in the use of MT-targeting drugs for the treatment of neurodegenerative disorders.
Collapse
|
28
|
Froger N. [New therapeutic avenues for neurosteroids in psychiatric diseases]. Biol Aujourdhui 2020; 213:131-140. [PMID: 31829933 DOI: 10.1051/jbio/2019023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Indexed: 12/28/2022]
Abstract
Discovered in the eighties by Pr Baulieu and colleagues, neurosteroids are a class of neuroactive brain-born steroids, which comprises the steroid hormones, their biosynthesis precursors and their metabolites. They can act through genomic as well as non-genomic pathways. Genomic pathways, only triggered by the neurosteroid hormones, are, in the brain, the same as those largely described in the periphery: the binding of these steroid hormones to nuclear receptors leads to transcription regulations. On the other hand, their precursors and metabolites, such as pregnenolone (PREG), dehydroepiandrosterone (DHEA), their respective sulfate esters, pregnenolone sulfate (PREG-S) and DHEA sulfate (DHEA-S) and allopregnanolone (ALLOP), are defined as neurosteroids, but no corresponding nuclear receptors have been identified so far. In fact, they trigger non-genomic pathways which consist in (i) inhibitory ionotropic receptors, (ii) excitatory ionotropic receptors and (iii) the microtubular system. Hence, inhibitory neurosteroids, whose mostly studied representative is ALLOP, positively modulate, or directly activate, the ionotropic GABA-A receptors. In contrast, excitatory neurosteroids, represented by PREG-S, DHEA-S and DHEA, inhibit the GABA-A receptors, and activate, directly or indirectly, through the sigma-1 receptors, the NMDA glutamate receptors. Neurosteroids of the third group, the microtubular neurosteroids, are able to bind microtubule associated proteins, in particular MAP2, to promote microtubule assembly, neurite outgrowth and in fine structural neuroplasticity. So far, PREG, DHEA and progesterone are the three identified microtubular neurosteroids. The pharmacological properties of neurosteroids have led to specific investigations for assessing their therapeutic potentialities in psychiatric diseases, using validated animal models. In some cases, clinical trials were also performed. These studies showed that ALLOP, the main inhibitory neurosteroid, displayed clear-cut anxiolytic-like and antidepressant-like efficacy in animals. It has been subsequently developed as Brexanolone and tested with success in phase III of clinical trials for the treatment of post-partum depression. Although showing pro-cognitive properties in animals, the sulfated neurosteroids, PREG-S and DHEA-S, were, in contrast, never tested in clinical trials, probably due to their poor stability and proconvulsivant side effects. Their respective non-sulfated forms, PREG and DHEA, showed antidepressant and antipsychotic efficacies in clinical trials, but these drugs never reached the phase III of clinical development because their therapeutic uses would have led to an overproduction of active metabolites responsible for intolerable side effects. The alternative strategy which has been selected consists of the development of non-metabolizable synthetic derivatives of these natural steroids, which keep the same neuroactive properties as their parent molecules, but are devoid of any hormonal side effects. An example of such innovative drugs is MAP4343, a synthetic derivative of PREG, which exhibits potent antidepressant-like efficacy in validated animal models. It is currently tested in depressed patients.
Collapse
Affiliation(s)
- Nicolas Froger
- MAPREG SAS, CHU Bicêtre, 94270 Le Kremlin-Bicêtre, France
| |
Collapse
|
29
|
Mahmoodi N, Ai J, Ebrahimi‐Barough S, Hassannejad Z, Hasanzadeh E, Basiri A, Vaccaro AR, Rahimi‐Movaghar V. Microtubule stabilizer epothilone B as a motor neuron differentiation agent for human endometrial stem cells. Cell Biol Int 2020; 44:1168-1183. [DOI: 10.1002/cbin.11315] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/02/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Narges Mahmoodi
- Sina Trauma and Surgery Research Center, Sina HospitalTehran University of Medical Sciences Hasan‐Abad Square, Imam Khomeini Ave. Tehran 11365‐3876 Iran
| | - Jafar Ai
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in MedicineTehran University of Medical Sciences Number 88, Italy Street, Between Ghods Street and Vesal Shirazi Street Tehran 14177‐55469 Iran
| | - Somayeh Ebrahimi‐Barough
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in MedicineTehran University of Medical Sciences Number 88, Italy Street, Between Ghods Street and Vesal Shirazi Street Tehran 14177‐55469 Iran
| | - Zahra Hassannejad
- Pediatric Urology and Regenerative Medicine Research Center, Children's Medical Center, Pediatric Center of ExcellenceTehran University of Medical Sciences No. 62, Dr. Gharibs Street, Keshavarz Boulevard Tehran 1419733151 Iran
| | - Elham Hasanzadeh
- Department of Tissue Engineering, School of Advanced Technologies in MedicineMazandaran University of Medical Sciences Next to Tooba Medical Building, Khazar Boulevard Sari 48471‐91971 Iran
| | - Arefeh Basiri
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in MedicineTehran University of Medical Sciences Number 88, Italy Street, Between Ghods Street and Vesal Shirazi Street Tehran 14177‐55469 Iran
| | - Alexander R. Vaccaro
- Department of Orthopedic Surgery, Rothman InstituteThomas Jefferson University 1925 Chestnut Street, 5th Floor Philadelphia Pennsylvania 19107 USA
| | - Vafa Rahimi‐Movaghar
- Sina Trauma and Surgery Research Center, Sina HospitalTehran University of Medical Sciences Hasan‐Abad Square, Imam Khomeini Ave. Tehran 11365‐3876 Iran
| |
Collapse
|
30
|
Clark JA, Chuckowree JA, Dyer MS, Dickson TC, Blizzard CA. Epothilone D alters normal growth, viability and microtubule dependent intracellular functions of cortical neurons in vitro. Sci Rep 2020; 10:918. [PMID: 31969604 PMCID: PMC6976590 DOI: 10.1038/s41598-020-57718-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 12/18/2019] [Indexed: 01/09/2023] Open
Abstract
Brain penetrant microtubule stabilising agents (MSAs) are being increasingly validated as potential therapeutic strategies for neurodegenerative diseases and traumatic injuries of the nervous system. MSAs are historically used to treat malignancies to great effect. However, this treatment strategy can also cause adverse off-target impacts, such as the generation of debilitating neuropathy and axonal loss. Understanding of the effects that individual MSAs have on neurons of the central nervous system is still incomplete. Previous research has revealed that aberrant microtubule stabilisation can perturb many neuronal functions, such as neuronal polarity, neurite outgrowth, microtubule dependant transport and overall neuronal viability. In the current study, we evaluate the dose dependant impact of epothilone D, a brain penetrant MSA, on both immature and relatively mature mouse cortical neurons in vitro. We show that epothilone D reduces the viability, growth and complexity of immature cortical neurons in a dose dependant manner. Furthermore, in relatively mature cortical neurons, we demonstrate that while cellularly lethal doses of epothilone D cause cellular demise, low sub lethal doses can also affect mitochondrial transport over time. Our results reveal an underappreciated mitochondrial disruption over a wide range of epothilone D doses and reiterate the importance of understanding the dosage, timing and intended outcome of MSAs, with particular emphasis on brain penetrant MSAs being considered to target neurons in disease and trauma.
Collapse
Affiliation(s)
- J A Clark
- Menzies Institute for Medical Research, University of Tasmania 17 Liverpool Street Hobart, Tasmania, 7000, Australia
| | - J A Chuckowree
- Menzies Institute for Medical Research, University of Tasmania 17 Liverpool Street Hobart, Tasmania, 7000, Australia
| | - M S Dyer
- Menzies Institute for Medical Research, University of Tasmania 17 Liverpool Street Hobart, Tasmania, 7000, Australia
| | - T C Dickson
- Menzies Institute for Medical Research, University of Tasmania 17 Liverpool Street Hobart, Tasmania, 7000, Australia
| | - C A Blizzard
- Menzies Institute for Medical Research, University of Tasmania 17 Liverpool Street Hobart, Tasmania, 7000, Australia.
| |
Collapse
|
31
|
Yousefzadeh SA, Hesslow G, Shumyatsky GP, Meck WH. Internal Clocks, mGluR7 and Microtubules: A Primer for the Molecular Encoding of Target Durations in Cerebellar Purkinje Cells and Striatal Medium Spiny Neurons. Front Mol Neurosci 2020; 12:321. [PMID: 31998074 PMCID: PMC6965020 DOI: 10.3389/fnmol.2019.00321] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 12/16/2019] [Indexed: 12/16/2022] Open
Abstract
The majority of studies in the field of timing and time perception have generally focused on sub- and supra-second time scales, specific behavioral processes, and/or discrete neuronal circuits. In an attempt to find common elements of interval timing from a broader perspective, we review the literature and highlight the need for cell and molecular studies that can delineate the neural mechanisms underlying temporal processing. Moreover, given the recent attention to the function of microtubule proteins and their potential contributions to learning and memory consolidation/re-consolidation, we propose that these proteins play key roles in coding temporal information in cerebellar Purkinje cells (PCs) and striatal medium spiny neurons (MSNs). The presence of microtubules at relevant neuronal sites, as well as their adaptability, dynamic structure, and longevity, makes them a suitable candidate for neural plasticity at both intra- and inter-cellular levels. As a consequence, microtubules appear capable of maintaining a temporal code or engram and thereby regulate the firing patterns of PCs and MSNs known to be involved in interval timing. This proposed mechanism would control the storage of temporal information triggered by postsynaptic activation of mGluR7. This, in turn, leads to alterations in microtubule dynamics through a "read-write" memory process involving alterations in microtubule dynamics and their hexagonal lattice structures involved in the molecular basis of temporal memory.
Collapse
Affiliation(s)
- S. Aryana Yousefzadeh
- Department of Psychology and Neuroscience, Duke University, Durham, NC, United States
| | - Germund Hesslow
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Gleb P. Shumyatsky
- Department of Genetics, Rutgers University, Piscataway, NJ, United States
| | - Warren H. Meck
- Department of Psychology and Neuroscience, Duke University, Durham, NC, United States
| |
Collapse
|
32
|
Tryptophan Improves Memory Independent of Its Role as a Serotonin Precursor: Potential Involvement of Microtubule Proteins. J Mol Neurosci 2020; 70:559-567. [DOI: 10.1007/s12031-019-01457-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 11/28/2019] [Indexed: 12/17/2022]
|
33
|
|
34
|
Three-dimensional architecture of a mechanoreceptor in the brown planthopper, Nilaparvata lugens, revealed by FIB-SEM. Cell Tissue Res 2019; 379:487-495. [PMID: 31768711 DOI: 10.1007/s00441-019-03122-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 10/06/2019] [Indexed: 10/25/2022]
Abstract
Trichoid sensilla are the most common mechanoreceptors in insects; depending on their distribution, they can act as either exteroceptors or proprioceptors. In this study, the internal structure of the trichoid sensillum from Nilaparvata lugens was studied, using focused ion beam scanning electron microscopy (FIB-SEM). We reconstructed a three-dimensional (3D) model derived from the FIB-SEM data set. The model displayed characteristic mechanosensory sensilla components, including a hair inserted in the socket, a dendrite going through the laminated cuticle, and an electron-dense tubular body at the dendrite terminal. The detailed 3D model showed the relationship between the microtubules within the tubular body and those outside of the tubular body. We also found an autocellular junction in the tormogen cell, indicating that the tormogen cell grows around the dendrite sheath to form a hollow column shape during sensilla morphogenesis.
Collapse
|
35
|
Das BC, Dasgupta S, Ray SK. Potential therapeutic roles of retinoids for prevention of neuroinflammation and neurodegeneration in Alzheimer's disease. Neural Regen Res 2019; 14:1880-1892. [PMID: 31290437 PMCID: PMC6676868 DOI: 10.4103/1673-5374.259604] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 03/20/2019] [Indexed: 01/03/2023] Open
Abstract
All retinoids, which can be natural and synthetic, are chemically related to vitamin A. Both natural and synthetic retinoids use specific nuclear receptors such as retinoic acid receptors and retinoid X receptors to activate specific signaling pathways in the cells. Retinoic acid signaling is extremely important in the central nervous system. Impairment of retinoic acid signaling pathways causes severe pathological processes in the central nervous system, especially in the adult brain. Retinoids have major roles in neural patterning, differentiation, axon outgrowth in normal development, and function of the brain. Impaired retinoic acid signaling results in neuroinflammation, oxidative stress, mitochondrial malfunction, and neurodegeneration leading to progressive Alzheimer's disease, which is pathologically characterized by extra-neuronal accumulation of amyloid plaques (aggregated amyloid-beta) and intra-neurofibrillary tangles (hyperphosphorylated tau protein) in the temporal lobe of the brain. Alzheimer's disease is the most common cause of dementia and loss of memory in old adults. Inactive cholinergic neurotransmission is responsible for cognitive deficits in Alzheimer's disease patients. Deficiency or deprivation of retinoic acid in mice is associated with loss of spatial learning and memory. Retinoids inhibit expression of chemokines and neuroinflammatory cytokines in microglia and astrocytes, which are activated in Alzheimer's disease. Stimulation of retinoic acid receptors and retinoid X receptors slows down accumulation of amyloids, reduces neurodegeneration, and thereby prevents pathogenesis of Alzheimer's disease in mice. In this review, we described chemistry and biochemistry of some natural and synthetic retinoids and potentials of retinoids for prevention of neuroinflammation and neurodegeneration in Alzheimer's disease.
Collapse
Affiliation(s)
- Bhaskar C. Das
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Somsankar Dasgupta
- Department of Neuroscience and Regenerative Medicine, Institute of Molecular Medicine and Genetics, Augusta University, Augusta, GA, USA
| | - Swapan K. Ray
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC, USA
| |
Collapse
|
36
|
Shin S, Lim S, Song JY, Kim D, Choi MJ, Gadhe CG, Park AY, Pae AN, Kim YK. Development of an Aryloxazole Derivative as a Brain-Permeable Anti-Glioblastoma Agent. Pharmaceutics 2019; 11:pharmaceutics11100497. [PMID: 31569420 PMCID: PMC6835410 DOI: 10.3390/pharmaceutics11100497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 11/16/2022] Open
Abstract
Glioblastoma drug development has been difficult due to the extremely low blood brain barrier (BBB) penetration of conventional anti-cancer agents. P-glycoprotein, an efflux membrane transporter, is responsible for the poor brain uptake of small and hydrophobic drug substances. To develop brain-penetrable anti-tumor agents, we designed colchicine derivatives containing an aryloxazole moiety, which is known to inhibit P-glycoprotein. Among those tested, an aryloxazole derivative named KIST-G1 showed the strongest anti-glioblastoma cell proliferation activity (IC50 = 3.2 ± 0.8 nM). Compared to colchicine, KIST-G1 showed dramatically increased BBB-permeable properties presenting 51.7 ± 0.5 (10-6 cm/s) parallel artificial membrane permeability assay (PAMPA) permeability and 45.0 ± 6.0% of P-gp inhibition. Aid by the BBB-permeable properties, KIST-G1 (5 mg/kg) suppressed glioblastoma cell growth and migration almost completely in the brain of glioblastoma xenograft models by showing 98.2 ± 0.1% reduced tumor area compared with phosphate buffered saline (PBS)-injected control. In comparison, temozolomide, which is the most widely used drug for glioblastoma, showed only moderate effects. Our results demonstrate the effectiveness of an aryloxazole moiety in targeting brain tumors and suggest KIST-G1 as a potent anti-glioblastoma agent.
Collapse
Affiliation(s)
- Seulgi Shin
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Brain science institute, Korea Institute of Science and Technology (KIST), Seoul 02791, Korea.
- Department of Biological Chemistry, University of Science and Technology (UST), Daejeon 34113, Korea.
| | - Sungsu Lim
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Brain science institute, Korea Institute of Science and Technology (KIST), Seoul 02791, Korea.
| | - Ji Yeon Song
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Brain science institute, Korea Institute of Science and Technology (KIST), Seoul 02791, Korea.
| | - Dohee Kim
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Brain science institute, Korea Institute of Science and Technology (KIST), Seoul 02791, Korea.
| | - Min Jeong Choi
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Brain science institute, Korea Institute of Science and Technology (KIST), Seoul 02791, Korea.
| | - Changdev G Gadhe
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Brain science institute, Korea Institute of Science and Technology (KIST), Seoul 02791, Korea.
| | - A Young Park
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Brain science institute, Korea Institute of Science and Technology (KIST), Seoul 02791, Korea.
| | - Ae Nim Pae
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Brain science institute, Korea Institute of Science and Technology (KIST), Seoul 02791, Korea.
- Department of Biological Chemistry, University of Science and Technology (UST), Daejeon 34113, Korea.
| | - Yun Kyung Kim
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Brain science institute, Korea Institute of Science and Technology (KIST), Seoul 02791, Korea.
- Department of Biological Chemistry, University of Science and Technology (UST), Daejeon 34113, Korea.
| |
Collapse
|
37
|
An acetylation mimicking mutation, K274Q, in tau imparts neurotoxicity by enhancing tau aggregation and inhibiting tubulin polymerization. Biochem J 2019; 476:1401-1417. [PMID: 31036717 DOI: 10.1042/bcj20190042] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/24/2019] [Accepted: 04/29/2019] [Indexed: 01/30/2023]
Abstract
In Alzheimer's disease, tau is predominantly acetylated at K174, K274, K280, and K281 residues. The acetylation of K274-tau is linked with memory loss and dementia. In this study, we have examined the molecular mechanism of the toxicity of acetylated K274-tau. We incorporated an acetylation mimicking mutation at K274 (K→Q) residue of tau. The mutation (K274Q) strongly reduced the ability of tau to bind to tubulin and also to polymerize tubulin while K274R mutation did not reduce the ability of tau either to bind or polymerize tubulin. In addition, K274Q-tau displayed a higher aggregation propensity than wild-type tau as evident from thioflavin S fluorescence, tryptophan fluorescence, and electron microscopic images. Furthermore, dynamic light scattering, atomic force microscopy, and dot blot analysis using an oligomer-specific antibody suggested that K274Q mutation enhanced the oligomerization of tau. The K274Q mutation also strongly decreased the critical concentration for the liquid-liquid phase separation of tau. The oligomeric forms of K274Q-tau were found to be more toxic than wild tau to neuroblastoma cells. Using circular dichroism and fluorescence spectroscopy, we provide evidence indicating that the acetylation mimicking mutation (K274Q) induced conformational changes in tau. The results suggested that the acetylation of tau at 274 residues can increase tau aggregation and enhance the cytotoxicity of tau oligomers.
Collapse
|
38
|
Pradhan K, Das G, Khan J, Gupta V, Barman S, Adak A, Ghosh S. Neuro-Regenerative Choline-Functionalized Injectable Graphene Oxide Hydrogel Repairs Focal Brain Injury. ACS Chem Neurosci 2019; 10:1535-1543. [PMID: 30427662 DOI: 10.1021/acschemneuro.8b00514] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Brain damage is associated with spatial imbalance of cholinergic system, which makes severe impact in recovery of damaged neurons of brain. Therefore, maintenance of cholinergic system is extremely important. Here, we fabricated an injectable hydrogel with acetylcholine-functionalized graphene oxide and poly(acrylic acid). Results revealed that this hydrogel is non-cytotoxic, promotes neurite outgrowth, stabilizes microtubule networks, and enhances the expression of some key neural markers in rat cortical primary neurons. Further, this hydrogel exhibits significant potential in neuro-regeneration and also promotes fast recovery of the sham injured mice brain. Moreover, we found significant enhancement of reactive astrocytes in the hippocampal dentate gyrus region of the sham injured brain, indicating its excellent potential in neural repair of the damaged brain. Finally, above results clearly indicate that this neuro-regenerative hydrogel is highly capable of maintaining the cholinergic balance through local release of acetylcholine in the injured brain, which is crucial for brain repair.
Collapse
|
39
|
Abstract
Mutations causing dysfunction of the tubulins and microtubule-associated proteins, otherwise known as tubulinopathies, are a group of recently described entities, that lead to complex brain malformations. An understanding of the fundamental principles of operation of the cytoskeleton and compounds in particular microtubules, actin, and microtubule-associated proteins, can assist in the interpretation of the imaging findings of tubulinopathies. Somewhat consistent morphological imaging patterns have been described in tubulinopathies such as dysmorphic basal ganglia-the hallmark (found in 75% of cases), callosal dysgenesis, cerebellar hypoplasia/dysplasia, and cortical malformations, most notably lissencephaly. Recognizing the common imaging phenotypes present in tubulinopathies can prove invaluable in directing the genetic workup for a patient with brain malformations.
Collapse
|
40
|
Yoong LF, Pai YJ, Moore AW. Stages and transitions in dendrite arbor differentiation. Neurosci Res 2019; 138:70-78. [DOI: 10.1016/j.neures.2018.09.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 08/10/2018] [Accepted: 08/14/2018] [Indexed: 12/26/2022]
|
41
|
Magiera MM, Bodakuntla S, Žiak J, Lacomme S, Marques Sousa P, Leboucher S, Hausrat TJ, Bosc C, Andrieux A, Kneussel M, Landry M, Calas A, Balastik M, Janke C. Excessive tubulin polyglutamylation causes neurodegeneration and perturbs neuronal transport. EMBO J 2018; 37:e100440. [PMID: 30420556 PMCID: PMC6276888 DOI: 10.15252/embj.2018100440] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/14/2018] [Accepted: 09/20/2018] [Indexed: 12/12/2022] Open
Abstract
Posttranslational modifications of tubulin are emerging regulators of microtubule functions. We have shown earlier that upregulated polyglutamylation is linked to rapid degeneration of Purkinje cells in mice with a mutation in the deglutamylating enzyme CCP1. How polyglutamylation leads to degeneration, whether it affects multiple neuron types, or which physiological processes it regulates in healthy neurons has remained unknown. Here, we demonstrate that excessive polyglutamylation induces neurodegeneration in a cell-autonomous manner and can occur in many parts of the central nervous system. Degeneration of selected neurons in CCP1-deficient mice can be fully rescued by simultaneous knockout of the counteracting polyglutamylase TTLL1. Excessive polyglutamylation reduces the efficiency of neuronal transport in cultured hippocampal neurons, suggesting that impaired cargo transport plays an important role in the observed degenerative phenotypes. We thus establish polyglutamylation as a cell-autonomous mechanism for neurodegeneration that might be therapeutically accessible through manipulation of the enzymes that control this posttranslational modification.
Collapse
Affiliation(s)
- Maria M Magiera
- Institut Curie, CNRS UMR3348, PSL Research University, Orsay, France
- Université Paris-Saclay, CNRS UMR3348, Université Paris Sud, Orsay, France
| | - Satish Bodakuntla
- Institut Curie, CNRS UMR3348, PSL Research University, Orsay, France
- Université Paris-Saclay, CNRS UMR3348, Université Paris Sud, Orsay, France
| | - Jakub Žiak
- Department of Molecular Neurobiology, Institute of Physiology, Czech Academy of Sciences, Prague 4, Czech Republic
- Faculty of Science, Charles University, Prague 2, Czech Republic
| | - Sabrina Lacomme
- Bordeaux Imaging Center, BIC, UMS 3420, Université Bordeaux, Bordeaux, France
| | - Patricia Marques Sousa
- Institut Curie, CNRS UMR3348, PSL Research University, Orsay, France
- Université Paris-Saclay, CNRS UMR3348, Université Paris Sud, Orsay, France
| | - Sophie Leboucher
- Institut Curie, CNRS UMR3348, PSL Research University, Orsay, France
- Université Paris-Saclay, CNRS UMR3348, Université Paris Sud, Orsay, France
| | - Torben J Hausrat
- Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christophe Bosc
- Grenoble Institut des Neurosciences, GIN, Université Grenoble Alpes, Grenoble, France
- Inserm U1216, Grenoble, France
| | - Annie Andrieux
- Grenoble Institut des Neurosciences, GIN, Université Grenoble Alpes, Grenoble, France
- Inserm U1216, Grenoble, France
| | - Matthias Kneussel
- Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marc Landry
- Interdisciplinary Institute for Neuroscience, CNRS UMR5297, Université Bordeaux, Bordeaux, France
| | - André Calas
- Interdisciplinary Institute for Neuroscience, CNRS UMR5297, Université Bordeaux, Bordeaux, France
| | - Martin Balastik
- Department of Molecular Neurobiology, Institute of Physiology, Czech Academy of Sciences, Prague 4, Czech Republic
| | - Carsten Janke
- Institut Curie, CNRS UMR3348, PSL Research University, Orsay, France
- Université Paris-Saclay, CNRS UMR3348, Université Paris Sud, Orsay, France
| |
Collapse
|
42
|
Shashi V, Magiera MM, Klein D, Zaki M, Schoch K, Rudnik-Schöneborn S, Norman A, Lopes Abath Neto O, Dusl M, Yuan X, Bartesaghi L, De Marco P, Alfares AA, Marom R, Arold ST, Guzmán-Vega FJ, Pena LD, Smith EC, Steinlin M, Babiker MO, Mohassel P, Foley AR, Donkervoort S, Kaur R, Ghosh PS, Stanley V, Musaev D, Nava C, Mignot C, Keren B, Scala M, Tassano E, Picco P, Doneda P, Fiorillo C, Issa MY, Alassiri A, Alahmad A, Gerard A, Liu P, Yang Y, Ertl-Wagner B, Kranz PG, Wentzensen IM, Stucka R, Stong N, Allen AS, Goldstein DB, Schoser B, Rösler KM, Alfadhel M, Capra V, Chrast R, Strom TM, Kamsteeg EJ, Bönnemann CG, Gleeson JG, Martini R, Janke C, Senderek J. Loss of tubulin deglutamylase CCP1 causes infantile-onset neurodegeneration. EMBO J 2018; 37:e100540. [PMID: 30420557 PMCID: PMC6276871 DOI: 10.15252/embj.2018100540] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/10/2018] [Accepted: 10/11/2018] [Indexed: 11/09/2022] Open
Abstract
A set of glutamylases and deglutamylases controls levels of tubulin polyglutamylation, a prominent post-translational modification of neuronal microtubules. Defective tubulin polyglutamylation was first linked to neurodegeneration in the Purkinje cell degeneration (pcd) mouse, which lacks deglutamylase CCP1, displays massive cerebellar atrophy, and accumulates abnormally glutamylated tubulin in degenerating neurons. We found biallelic rare and damaging variants in the gene encoding CCP1 in 13 individuals with infantile-onset neurodegeneration and confirmed the absence of functional CCP1 along with dysregulated tubulin polyglutamylation. The human disease mainly affected the cerebellum, spinal motor neurons, and peripheral nerves. We also demonstrate previously unrecognized peripheral nerve and spinal motor neuron degeneration in pcd mice, which thus recapitulated key features of the human disease. Our findings link human neurodegeneration to tubulin polyglutamylation, entailing this post-translational modification as a potential target for drug development for neurodegenerative disorders.
Collapse
Affiliation(s)
- Vandana Shashi
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Maria M Magiera
- Institut Curie, CNRS UMR3348, PSL Research University, Orsay, France
- CNRS UMR3348, Université Paris Sud, Université Paris-Saclay, Orsay, France
| | - Dennis Klein
- Department of Neurology, Developmental Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Maha Zaki
- Clinical Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt
| | - Kelly Schoch
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | | | - Andrew Norman
- Department of Clinical Genetics, St. Michael's Hospital, University Hospitals Bristol NHS Foundation Trust, Bristol, UK
| | - Osorio Lopes Abath Neto
- Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Marina Dusl
- Friedrich Baur Institute at the Department of Neurology, Friedrich Baur Institute, University Hospital, LMU Munich, Munich, Germany
| | - Xidi Yuan
- Department of Neurology, Developmental Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Luca Bartesaghi
- Department of Neuroscience and Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | - Ahmed A Alfares
- Department of Pediatrics, College of Medicine, Qassim University, Qassim, Saudi Arabia
| | - Ronit Marom
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital, Houston, TX, USA
| | - Stefan T Arold
- Division of Biological and Environmental Sciences and Engineering (BESE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Francisco J Guzmán-Vega
- Division of Biological and Environmental Sciences and Engineering (BESE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Loren Dm Pena
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Edward C Smith
- Division of Neurology, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Maja Steinlin
- Division of Neuropaediatrics, Development and Rehabilitation, University Children's Hospital, Inselspital, University of Bern, Bern, Switzerland
| | | | - Payam Mohassel
- Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - A Reghan Foley
- Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Sandra Donkervoort
- Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Rupleen Kaur
- Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Partha S Ghosh
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Valentina Stanley
- Laboratory for Pediatric Brain Disease, Howard Hughes Medical Institute, University of California, San Diego, CA, USA
| | - Damir Musaev
- Laboratory for Pediatric Brain Disease, Howard Hughes Medical Institute, University of California, San Diego, CA, USA
| | - Caroline Nava
- Department of Genetics, Assistance Publique des Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Paris, France
- Institut du Cerveau et de la Moelle épinière, Sorbonne Universités, Inserm U1127, CNRS, UMR 7225, UPMC Univ Paris 06, Paris, France
| | - Cyril Mignot
- Department of Genetics, Assistance Publique des Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Paris, France
- Institut du Cerveau et de la Moelle épinière, Sorbonne Universités, Inserm U1127, CNRS, UMR 7225, UPMC Univ Paris 06, Paris, France
| | - Boris Keren
- Department of Genetics, Assistance Publique des Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Paris, France
- Institut du Cerveau et de la Moelle épinière, Sorbonne Universités, Inserm U1127, CNRS, UMR 7225, UPMC Univ Paris 06, Paris, France
| | | | | | - Paolo Picco
- IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Paola Doneda
- Grande Ospedale Metropolitano Niguarda, Milano, Italy
| | - Chiara Fiorillo
- IRCCS Istituto Giannina Gaslini, Genova, Italy
- Università degli Studi di Genova, Genova, Italy
| | - Mahmoud Y Issa
- Clinical Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt
| | - Ali Alassiri
- Department of Pathology and Laboratory Medicine, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | - Ahmed Alahmad
- Department of Pathology and Laboratory Medicine, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | - Amanda Gerard
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital, Houston, TX, USA
| | - Pengfei Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Baylor Genetics, Houston, TX, USA
| | - Yaping Yang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Baylor Genetics, Houston, TX, USA
| | - Birgit Ertl-Wagner
- Department of Diagnostic Imaging, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Peter G Kranz
- Division of Neuroradiology, Department of Radiology, Duke University Medical Center, Durham, NC, USA
| | | | - Rolf Stucka
- Friedrich Baur Institute at the Department of Neurology, Friedrich Baur Institute, University Hospital, LMU Munich, Munich, Germany
| | - Nicholas Stong
- Institute of Genomic Medicine, Columbia University, New York, NY, USA
| | - Andrew S Allen
- Center for Statistical Genetics and Genomics, Duke University Medical Center, Durham, NC, USA
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA
| | - David B Goldstein
- Institute of Genomic Medicine, Columbia University, New York, NY, USA
| | - Benedikt Schoser
- Friedrich Baur Institute at the Department of Neurology, Friedrich Baur Institute, University Hospital, LMU Munich, Munich, Germany
| | - Kai M Rösler
- Neuromuscular Centre, University Department of Neurology, Inselspital, Bern, Switzerland
| | - Majid Alfadhel
- Genetics Division, Department of Pediatrics, King Saud bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | | | - Roman Chrast
- Department of Neuroscience and Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Tim M Strom
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
- Institute of Human Genetics, Technische Universität München, Munich, Germany
| | - Erik-Jan Kamsteeg
- Department of Human Genetics, Donders Centre for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Carsten G Bönnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Joseph G Gleeson
- Laboratory for Pediatric Brain Disease, Howard Hughes Medical Institute, University of California, San Diego, CA, USA
| | - Rudolf Martini
- Department of Neurology, Developmental Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Carsten Janke
- Institut Curie, CNRS UMR3348, PSL Research University, Orsay, France
- CNRS UMR3348, Université Paris Sud, Université Paris-Saclay, Orsay, France
| | - Jan Senderek
- Friedrich Baur Institute at the Department of Neurology, Friedrich Baur Institute, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
43
|
Pradeepkiran JA, Reddy AP, Reddy PH. Pharmacophore-based models for therapeutic drugs against phosphorylated tau in Alzheimer's disease. Drug Discov Today 2018; 24:616-623. [PMID: 30453058 DOI: 10.1016/j.drudis.2018.11.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 09/22/2018] [Accepted: 11/07/2018] [Indexed: 10/27/2022]
Abstract
Phosphorylated tau (P-tau) has received much attention in the field of Alzheimer's disease (AD), as a potential therapeutic target owing to its involvement with synaptic damage and neuronal dysfunction. The continuous failure of amyloid β (Aβ)-targeted therapeutics highlights the urgency to consider alternative therapeutic strategies for AD. The present review describes the latest developments in tau biology and function. It also explains abnormal interactions between P-tau with Aβ and the mitochondrial fission protein Drp1, leading to excessive mitochondrial fragmentation and synaptic damage in AD neurons. This article also addresses 3D pharmacophore-based drug models designed to treat patients with AD and other tauopathies.
Collapse
Affiliation(s)
- Jangampalli Adi Pradeepkiran
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, USA
| | - Arubala P Reddy
- Pharmacology & Neuroscience Department, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, USA
| | - P Hemachandra Reddy
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, USA; Cell Biology & Biochemistry Department, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, USA; Pharmacology & Neuroscience Department, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, USA; Neurology Department, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, USA; Speech, Language and Hearing Sciences Departments, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, USA; Garrison Institute on Aging, South West Campus, Texas Tech University Health Sciences Center, 6630 S. Quaker Suite E, MS 7495, Lubbock, TX 79413, USA.
| |
Collapse
|
44
|
Ramkumar A, Jong BY, Ori-McKenney KM. ReMAPping the microtubule landscape: How phosphorylation dictates the activities of microtubule-associated proteins. Dev Dyn 2017; 247:138-155. [PMID: 28980356 DOI: 10.1002/dvdy.24599] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 09/11/2017] [Accepted: 09/19/2017] [Indexed: 12/12/2022] Open
Abstract
Classical microtubule-associated proteins (MAPs) were originally identified based on their co-purification with microtubules assembled from mammalian brain lysate. They have since been found to perform a range of functions involved in regulating the dynamics of the microtubule cytoskeleton. Most of these MAPs play integral roles in microtubule organization during neuronal development, microtubule remodeling during neuronal activity, and microtubule stabilization during neuronal maintenance. As a result, mutations in MAPs contribute to neurodevelopmental disorders, psychiatric conditions, and neurodegenerative diseases. MAPs are post-translationally regulated by phosphorylation depending on developmental time point and cellular context. Phosphorylation can affect the microtubule affinity, cellular localization, or overall function of a particular MAP and can thus have profound implications for neuronal health. Here we review MAP1, MAP2, MAP4, MAP6, MAP7, MAP9, tau, and DCX, and how each is regulated by phosphorylation in neuronal physiology and disease. Developmental Dynamics 247:138-155, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Amrita Ramkumar
- Department of Molecular and Cellular Biology, University of California, Davis, CA
| | - Brigette Y Jong
- Department of Molecular and Cellular Biology, University of California, Davis, CA
| | | |
Collapse
|
45
|
Horie M, Yoshioka N, Takebayashi H. BPAG1 in muscles: Structure and function in skeletal, cardiac and smooth muscle. Semin Cell Dev Biol 2017; 69:26-33. [PMID: 28736206 DOI: 10.1016/j.semcdb.2017.07.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 07/12/2017] [Accepted: 07/14/2017] [Indexed: 01/19/2023]
Abstract
BPAG1, also known as Dystonin or BP230, belongs to the plakin family of proteins, which has multiple cytoskeleton-binding domains. Several BPAG1 isoforms are produced by a single BPAG1 genomic locus using different promoters and exons. For example, BPAG1a, BPAG1b, and BPAG1e are predominantly expressed in the nervous system, muscle, and skin, respectively. Among BPAG1 isoforms, BPAG1e is well studied because it was first identified as an autoantigen in patients with bullous pemphigoid, an autoimmune skin disease. BPAG1e is a component of hemidesmosomes, the adhesion complexes that promote dermal-epidermal cohesion. In the nervous system, the role of BPAG1a is also well studied because disruption of BPAG1a results in a phenotype identical to that of Dystonia musculorum (dt) mutants, which show progressive motor disorder. However, the expression and function of BPAG1 in muscles is not well studied. The aim of this review is to provide an overview of and highlight some recent findings on the expression and function of BPAG1 in muscles, which can assist future studies designed to delineate the role and regulation of BPAG1 in the dt mouse phenotype and in human hereditary sensory and autonomic neuropathy type 6 (HSAN6).
Collapse
Affiliation(s)
- Masao Horie
- Division of Neurobiology and Anatomy, Niigata University, Niigata 951-8510, Japan
| | - Nozomu Yoshioka
- Division of Neurobiology and Anatomy, Niigata University, Niigata 951-8510, Japan
| | - Hirohide Takebayashi
- Division of Neurobiology and Anatomy, Niigata University, Niigata 951-8510, Japan.
| |
Collapse
|
46
|
Verstraelen P, Detrez JR, Verschuuren M, Kuijlaars J, Nuydens R, Timmermans JP, De Vos WH. Dysregulation of Microtubule Stability Impairs Morphofunctional Connectivity in Primary Neuronal Networks. Front Cell Neurosci 2017; 11:173. [PMID: 28690500 PMCID: PMC5480095 DOI: 10.3389/fncel.2017.00173] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Accepted: 06/08/2017] [Indexed: 12/18/2022] Open
Abstract
Functionally related neurons assemble into connected networks that process and transmit electrochemical information. To do this in a coordinated manner, the number and strength of synaptic connections is tightly regulated. Synapse function relies on the microtubule (MT) cytoskeleton, the dynamics of which are in turn controlled by a plethora of MT-associated proteins, including the MT-stabilizing protein Tau. Although mutations in the Tau-encoding MAPT gene underlie a set of neurodegenerative disorders, termed tauopathies, the exact contribution of MT dynamics and the perturbation thereof to neuronal network connectivity has not yet been scrutinized. Therefore, we investigated the impact of targeted perturbations of MT stability on morphological (e.g., neurite- and synapse density) and functional (e.g., synchronous calcium bursting) correlates of connectivity in networks of primary hippocampal neurons. We found that treatment with MT-stabilizing or -destabilizing compounds impaired morphofunctional connectivity in a reversible manner. We also discovered that overexpression of MAPT induced significant connectivity defects, which were accompanied by alterations in MT dynamics and increased resistance to pharmacological MT depolymerization. Overexpression of a MAPT variant harboring the P301L point mutation in the MT-binding domain did far less, directly linking neuronal connectivity with Tau's MT binding affinity. Our results show that MT stability is a vulnerable node in tauopathies and that its precise pharmacological tuning may positively affect neuronal network connectivity. However, a critical balance in MT turnover causes it to be a difficult therapeutic target with a narrow operating window.
Collapse
Affiliation(s)
- Peter Verstraelen
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of AntwerpAntwerp, Belgium
| | - Jan R. Detrez
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of AntwerpAntwerp, Belgium
| | - Marlies Verschuuren
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of AntwerpAntwerp, Belgium
| | | | - Rony Nuydens
- Janssen Research and Development, Division of Janssen Pharmaceutica N.V.Beerse, Belgium
| | - Jean-Pierre Timmermans
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of AntwerpAntwerp, Belgium
| | - Winnok H. De Vos
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of AntwerpAntwerp, Belgium
- Department of Molecular Biotechnology, University of GhentGhent, Belgium
| |
Collapse
|
47
|
Oberstadt M, Claßen J, Arendt T, Holzer M. TDP-43 and Cytoskeletal Proteins in ALS. Mol Neurobiol 2017; 55:3143-3151. [PMID: 28466273 DOI: 10.1007/s12035-017-0543-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 04/07/2017] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) represents a rapidly progressing neurodegenerative disease and is characterized by a degeneration of motor neurons. Motor neurons are particularly susceptible to selective and early degeneration because of their extended axon length and their dependency on the cytoskeleton for its stability, signaling, and axonal transport. The motor neuron cytoskeleton comprises actin filaments, neurofilaments like peripherin, and microtubules. The Transactivating Response Region (TAR) DNA Binding Protein (TDP-43) forms characteristic cytoplasmic aggregates in motor neurons of ALS patients, and at least in part, the pathogenesis of ALS seems to be driven by toxic pTDP-43 aggregates in cytoplasm, which lead to a diminished axon formation and reduced axon length. Diminished axon formation and reduced axon length suggest an interaction of TDP-43 with the cytoskeleton of motor neurons. TDP-43 interacts with several cytoskeletal components, e.g., the microtubule-associated protein 1B (MAP1B) or the neurofilament light chain (NFL) through direct binding to its RNA. From a clinical perspective, cytoskeletal biomarkers like phosphorylated neurofilament heavy chain (pNFH) and NFL are already clinically used in ALS patients to predict survival, disease progression, and duration. Thus, in this review, we focus on the interaction of TDP-43 with the different cytoskeleton components such as actin filaments, neurofilaments, and microtubules as well as their associated proteins as one aspect in the complex pathogenesis of ALS.
Collapse
Affiliation(s)
- Moritz Oberstadt
- Department of Neurology, University of Leipzig, Liebigstraße 20, 04103, Leipzig, Germany.
| | - Joseph Claßen
- Department of Neurology, University of Leipzig, Liebigstraße 20, 04103, Leipzig, Germany
| | - Thomas Arendt
- Department for Molecular and Cellular Mechanisms of Neurodegeneration, Paul Flechsig Institute for Brain Research, University of Leipzig, Liebigstraße 19, 04103, Leipzig, Germany
| | - Max Holzer
- Department for Molecular and Cellular Mechanisms of Neurodegeneration, Paul Flechsig Institute for Brain Research, University of Leipzig, Liebigstraße 19, 04103, Leipzig, Germany
| |
Collapse
|
48
|
Queenan BN, Ryan TJ, Gazzaniga M, Gallistel CR. On the research of time past: the hunt for the substrate of memory. Ann N Y Acad Sci 2017; 1396:108-125. [PMID: 28548457 PMCID: PMC5448307 DOI: 10.1111/nyas.13348] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 03/06/2017] [Accepted: 03/09/2017] [Indexed: 12/20/2022]
Abstract
The search for memory is one of the oldest quests in written human history. For at least two millennia, we have tried to understand how we learn and remember. We have gradually converged on the brain and looked inside it to find the basis of knowledge, the trace of memory. The search for memory has been conducted on multiple levels, from the organ to the cell to the synapse, and has been distributed across disciplines with less chronological or intellectual overlap than one might hope. Frequently, the study of the mind and its memories has been severely restricted by technological or philosophical limitations. However, in the last few years, certain technologies have emerged, offering new routes of inquiry into the basis of memory. The 2016 Kavli Futures Symposium was devoted to the past and future of memory studies. At the workshop, participants evaluated the logic and data underlying the existing and emerging theories of memory. In this paper, written in the spirit of the workshop, we briefly review the history of the hunt for memory, summarizing some of the key debates at each level of spatial resolution. We then discuss the exciting new opportunities to unravel the mystery of memory.
Collapse
Affiliation(s)
- Bridget N. Queenan
- Neuroscience Research Institute, Department of Mechanical Engineering, University of California Santa Barbara, Santa Barbara, California
| | - Tomás J. Ryan
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
- Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Michael Gazzaniga
- Department of Psychological & Brain Sciences, University of California Santa Barbara, Santa Barbara, California
| | - Charles R. Gallistel
- Rutgers Center for Cognitive Science, Rutgers University, Piscataway, New Jersey
| |
Collapse
|
49
|
Duménieu M, Oulé M, Kreutz MR, Lopez-Rojas J. The Segregated Expression of Voltage-Gated Potassium and Sodium Channels in Neuronal Membranes: Functional Implications and Regulatory Mechanisms. Front Cell Neurosci 2017; 11:115. [PMID: 28484374 PMCID: PMC5403416 DOI: 10.3389/fncel.2017.00115] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 04/05/2017] [Indexed: 01/25/2023] Open
Abstract
Neurons are highly polarized cells with apparent functional and morphological differences between dendrites and axon. A critical determinant for the molecular and functional identity of axonal and dendritic segments is the restricted expression of voltage-gated ion channels (VGCs). Several studies show an uneven distribution of ion channels and their differential regulation within dendrites and axons, which is a prerequisite for an appropriate integration of synaptic inputs and the generation of adequate action potential (AP) firing patterns. This review article will focus on the signaling pathways leading to segmented expression of voltage-gated potassium and sodium ion channels at the neuronal plasma membrane and the regulatory mechanisms ensuring segregated functions. We will also discuss the relevance of proper ion channel targeting for neuronal physiology and how alterations in polarized distribution contribute to neuronal pathology.
Collapse
Affiliation(s)
- Maël Duménieu
- Research Group Neuroplasticity, Leibniz Institute for NeurobiologyMagdeburg, Germany
| | - Marie Oulé
- Research Group Neuroplasticity, Leibniz Institute for NeurobiologyMagdeburg, Germany
| | - Michael R Kreutz
- Research Group Neuroplasticity, Leibniz Institute for NeurobiologyMagdeburg, Germany.,Leibniz Group "Dendritic Organelles and Synaptic Function", University Medical Center Hamburg-Eppendorf, Center for Molecular Neurobiology (ZMNH)Hamburg, Germany
| | - Jeffrey Lopez-Rojas
- Research Group Neuroplasticity, Leibniz Institute for NeurobiologyMagdeburg, Germany
| |
Collapse
|
50
|
Liu F, Laguesse S, Legastelois R, Morisot N, Ben Hamida S, Ron D. mTORC1-dependent translation of collapsin response mediator protein-2 drives neuroadaptations underlying excessive alcohol-drinking behaviors. Mol Psychiatry 2017; 22:89-101. [PMID: 26952865 PMCID: PMC5097030 DOI: 10.1038/mp.2016.12] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 12/01/2015] [Accepted: 12/02/2015] [Indexed: 01/01/2023]
Abstract
Mammalian target of rapamycin complex 1 (mTORC1) has an essential role in dendritic mRNA translation and participates in mechanisms underlying alcohol-drinking and reconsolidation of alcohol-related memories. Here, we report that excessive alcohol consumption increases the translation of downstream targets of mTORC1, including collapsin response mediator protein-2 (CRMP-2), in the nucleus accumbens (NAc) of rodents. We show that alcohol-mediated induction of CRMP-2 translation is mTORC1-dependent, leading to increased CRMP-2 protein levels. Furthermore, we demonstrate that alcohol intake also blocks glycogen synthase kinase-3β (GSK-3β)-phosphorylation of CRMP-2, which results in elevated binding of CRMP-2 to microtubules and a concomitant increase in microtubule content. Finally, we show that systemic administration of the CRMP-2 inhibitor lacosamide, or knockdown of CRMP-2 in the NAc decreases excessive alcohol intake. These results suggest that CRMP-2 in the NAc is a convergent point that receives inputs from two signaling pathways, mTORC1 and GSK-3β, that in turn drives excessive alcohol-drinking behaviors.
Collapse
Affiliation(s)
- F Liu
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - S Laguesse
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - R Legastelois
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - N Morisot
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - S Ben Hamida
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - D Ron
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|