1
|
Mu Y, Zhang N, Wei D, Yang G, Yao L, Xu X, Li Y, Xue J, Zhang Z, Chen T. Müller cells are activated in response to retinal outer nuclear layer degeneration in rats subjected to simulated weightlessness conditions. Neural Regen Res 2025; 20:2116-2128. [PMID: 39254570 DOI: 10.4103/nrr.nrr-d-23-01035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 01/07/2024] [Indexed: 09/11/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202507000-00032/figure1/v/2024-09-09T124005Z/r/image-tiff A microgravity environment has been shown to cause ocular damage and affect visual acuity, but the underlying mechanisms remain unclear. Therefore, we established an animal model of weightlessness via tail suspension to examine the pathological changes and molecular mechanisms of retinal damage under microgravity. After 4 weeks of tail suspension, there were no notable alterations in retinal function and morphology, while after 8 weeks of tail suspension, significant reductions in retinal function were observed, and the outer nuclear layer was thinner, with abundant apoptotic cells. To investigate the mechanism underlying the degenerative changes that occurred in the outer nuclear layer of the retina, proteomics was used to analyze differentially expressed proteins in rat retinas after 8 weeks of tail suspension. The results showed that the expression levels of fibroblast growth factor 2 (also known as basic fibroblast growth factor) and glial fibrillary acidic protein, which are closely related to Müller cell activation, were significantly upregulated. In addition, Müller cell regeneration and Müller cell gliosis were observed after 4 and 8 weeks, respectively, of simulated weightlessness. These findings indicate that Müller cells play an important regulatory role in retinal outer nuclear layer degeneration during weightlessness.
Collapse
Affiliation(s)
- Yuxue Mu
- Aerospace Clinical Medical Center, School of Aerospace Medicine, Air Force Medical University, Xi'an, Shaanxi Province, China
- Department of Aviation Medicine, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi Province, China
| | - Ning Zhang
- Department of Emergency Medicine, Wuhan No.1 Hospital, Wuhan, Hubei Province, China
| | - Dongyu Wei
- Aerospace Clinical Medical Center, School of Aerospace Medicine, Air Force Medical University, Xi'an, Shaanxi Province, China
| | - Guoqing Yang
- Aerospace Clinical Medical Center, School of Aerospace Medicine, Air Force Medical University, Xi'an, Shaanxi Province, China
| | - Lilingxuan Yao
- Third Regiment, School of Basic Medicine, Air Force Medical University, Xi'an, Shaanxi Province, China
| | - Xinyue Xu
- Aerospace Clinical Medical Center, School of Aerospace Medicine, Air Force Medical University, Xi'an, Shaanxi Province, China
| | - Yang Li
- Fourth Regiment, School of Basic Medicine, Air Force Medical University, Xi'an, Shaanxi Province, China
| | - Junhui Xue
- Aerospace Clinical Medical Center, School of Aerospace Medicine, Air Force Medical University, Xi'an, Shaanxi Province, China
- Department of Aviation Medicine, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi Province, China
| | - Zuoming Zhang
- Aerospace Clinical Medical Center, School of Aerospace Medicine, Air Force Medical University, Xi'an, Shaanxi Province, China
| | - Tao Chen
- Aerospace Clinical Medical Center, School of Aerospace Medicine, Air Force Medical University, Xi'an, Shaanxi Province, China
- Department of Aviation Medicine, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi Province, China
| |
Collapse
|
2
|
Brown RI, Barber HM, Kucenas S. Satellite glial cell manipulation prior to axotomy enhances developing dorsal root ganglion central branch regrowth into the spinal cord. Glia 2024; 72:1766-1784. [PMID: 39141572 PMCID: PMC11325082 DOI: 10.1002/glia.24581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/30/2024] [Accepted: 06/02/2024] [Indexed: 08/16/2024]
Abstract
The central and peripheral nervous systems (CNS and PNS, respectively) exhibit remarkable diversity in the capacity to regenerate following neuronal injury with PNS injuries being much more likely to regenerate than those that occur in the CNS. Glial responses to damage greatly influence the likelihood of regeneration by either promoting or inhibiting axonal regrowth over time. However, despite our understanding of how some glial lineages participate in nerve degeneration and regeneration, less is known about the contributions of peripheral satellite glial cells (SGC) to regeneration failure following central axon branch injury of dorsal root ganglia (DRG) sensory neurons. Here, using in vivo, time-lapse imaging in larval zebrafish coupled with laser axotomy, we investigate the role of SGCs in axonal regeneration. In our studies we show that SGCs respond to injury by relocating their nuclei to the injury site during the same period that DRG neurons produce new central branch neurites. Laser ablation of SGCs prior to axon injury results in more neurite growth attempts and ultimately a higher rate of successful central axon regrowth, implicating SGCs as inhibitors of regeneration. We also demonstrate that this SGC response is mediated in part by ErbB signaling, as chemical inhibition of this receptor results in reduced SGC motility and enhanced central axon regrowth. These findings provide new insights into SGC-neuron interactions under injury conditions and how these interactions influence nervous system repair.
Collapse
Affiliation(s)
- Robin I Brown
- Department of Biology, University of Virginia, Charlottesville, Virginia, USA
- Program in Fundamental Neuroscience, University of Virginia, Charlottesville, Virginia, USA
| | - Heather M Barber
- Program in Fundamental Neuroscience, University of Virginia, Charlottesville, Virginia, USA
- Cell & Developmental Biology Graduate Program, University of Virginia, Charlottesville, Virginia, USA
| | - Sarah Kucenas
- Department of Biology, University of Virginia, Charlottesville, Virginia, USA
- Program in Fundamental Neuroscience, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
3
|
Zuo H, Han W, Wu K, Yang H, Song H, Zhang Z, Lai Y, Pan Z, Li W, Zhao L. Prohibitin 2 deficiency in photoreceptors leads to progressive retinal degeneration and facilitated Müller glia engulfing microglia debris. Exp Eye Res 2024; 244:109935. [PMID: 38763352 DOI: 10.1016/j.exer.2024.109935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
Müller glia and microglia are capable of phagocytosing fragments of retinal cells in response to retinal injury or degeneration. However, the direct evidence for their mutual interactions between Müller glia and microglia in the progression of retinal degeneration (RD) remains largely unclear. This study aims to construct a progressive RD mouse model and investigate the activated pattern of Müller glia and the interplay between Müller glia and microglia in the early stage or progression of RD. A Prohibitin 2 (Phb2) photoreceptor-specific knockout (RKO) mouse model was generated by crossing Phb2flox/flox mice with Rhodopsin-Cre mice. Optical Coherence Tomography (OCT), histological staining, and Electroretinography (ERG) assessed retinal structure and function, and RKO mice exhibited progressive RD from six weeks of age. In detail, six-week-old RKO mice showed no significant retinal impairment, but severe vision dysfunction and retina thinning were shown in ten-week-old RKO mice. Furthermore, RKO mice were sensitive to Light Damage (LD) and showed severe RD at an early age after light exposure. Bulk retina RNA-seq analysis from six-week-old control (Ctrl) and RKO mice showed reactive retinal glia in RKO mice. The activated pattern of Müller glia and the interplay between Müller glia and microglia was visualized by immunohistology and 3D reconstruction. In six-week-old RKO mice or light-exposed Ctrl mice, Müller glia were initially activated at the edge of the retina. Moreover, in ten-week-old RKO mice or light-exposed six-week-old RKO mice with severe photoreceptor degeneration, abundant Müller glia were activated across the whole retinas. With the progression of RD, phagocytosis of microglia debris by activated Müller glia were remarkably increased. Altogether, our study establishes a Phb2 photoreceptor-specific knockout mouse model, which is a novel mouse model of RD and can well demonstrate the phenotype of progressive RD. We also report that Müller glia in the peripheral retina is more sensitive to the early damage of photoreceptors. Our study provides more direct evidence for Müller glia engulfing microglia debris in the progression of RD due to photoreceptor Phb2 deficiency.
Collapse
Affiliation(s)
- Haoyu Zuo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Wenjuan Han
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Keling Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Haohan Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, China
| | - Huiying Song
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Zirong Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yuhua Lai
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Zhongshu Pan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China; State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing, China
| | - Weihua Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China.
| | - Ling Zhao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China.
| |
Collapse
|
4
|
Huo A, Wang J, Li Q, Li M, Qi Y, Yin Q, Luo W, Shi J, Cong Q. Molecular mechanisms underlying microglial sensing and phagocytosis in synaptic pruning. Neural Regen Res 2024; 19:1284-1290. [PMID: 37905877 PMCID: PMC11467947 DOI: 10.4103/1673-5374.385854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/08/2023] [Accepted: 08/03/2023] [Indexed: 11/02/2023] Open
Abstract
ABSTRACT Microglia are the main non-neuronal cells in the central nervous system that have important roles in brain development and functional connectivity of neural circuits. In brain physiology, highly dynamic microglial processes are facilitated to sense the surrounding environment and stimuli. Once the brain switches its functional states, microglia are recruited to specific sites to exert their immune functions, including the release of cytokines and phagocytosis of cellular debris. The crosstalk of microglia between neurons, neural stem cells, endothelial cells, oligodendrocytes, and astrocytes contributes to their functions in synapse pruning, neurogenesis, vascularization, myelination, and blood-brain barrier permeability. In this review, we highlight the neuron-derived "find-me," "eat-me," and "don't eat-me" molecular signals that drive microglia in response to changes in neuronal activity for synapse refinement during brain development. This review reveals the molecular mechanism of neuron-microglia interaction in synaptic pruning and presents novel ideas for the synaptic pruning of microglia in disease, thereby providing important clues for discovery of target drugs and development of nervous system disease treatment methods targeting synaptic dysfunction.
Collapse
Affiliation(s)
- Anran Huo
- Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University; Institute of Neuroscience and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu Province, China
| | - Jiali Wang
- Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University; Institute of Neuroscience and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu Province, China
| | - Qi Li
- Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University; Institute of Neuroscience and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu Province, China
| | - Mengqi Li
- Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University; Institute of Neuroscience and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu Province, China
| | - Yuwan Qi
- Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University; Institute of Neuroscience and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu Province, China
| | - Qiao Yin
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Weifeng Luo
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Jijun Shi
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Qifei Cong
- Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University; Institute of Neuroscience and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
5
|
Deng X, Mo Y, Zhu X. Deciphering Müller cell heterogeneity signatures in diabetic retinopathy across species: an integrative single-cell analysis. Eur J Med Res 2024; 29:265. [PMID: 38698486 PMCID: PMC11067085 DOI: 10.1186/s40001-024-01847-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 04/17/2024] [Indexed: 05/05/2024] Open
Abstract
Diabetic retinopathy (DR), a leading cause of visual impairment, demands a profound comprehension of its cellular mechanisms to formulate effective therapeutic strategies. Our study presentes a comprehensive single-cell analysis elucidating the intricate landscape of Müller cells within DR, emphasizing their nuanced involvement. Utilizing scRNA-seq data from both Sprague-Dawley rat models and human patients, we delineated distinct Müller cell clusters and their corresponding gene expression profiles. These findings were further validated through differential gene expression analysis utilizing human transcriptomic data. Notably, certain Müller cell clusters displayed upregulation of the Rho gene, implying a phagocytic response to damaged photoreceptors within the DR microenvironment. This phenomenon was consistently observed across species. Additionally, the co-expression patterns of RHO and PDE6G within Müller cell clusters provided compelling evidence supporting their potential role in maintaining retinal integrity during DR. Our results offer novel insights into the cellular dynamics of DR and underscore Müller cells as promising therapeutic targets for preserving vision in retinal disorders induced by diabetes.
Collapse
Affiliation(s)
- Xiyuan Deng
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ya Mo
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Xiuying Zhu
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
6
|
Du X, Butler AG, Chen HY. Cell-cell interaction in the pathogenesis of inherited retinal diseases. Front Cell Dev Biol 2024; 12:1332944. [PMID: 38500685 PMCID: PMC10944940 DOI: 10.3389/fcell.2024.1332944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/06/2024] [Indexed: 03/20/2024] Open
Abstract
The retina is part of the central nervous system specialized for vision. Inherited retinal diseases (IRD) are a group of clinically and genetically heterogenous disorders that lead to progressive vision impairment or blindness. Although each disorder is rare, IRD accumulatively cause blindness in up to 5.5 million individuals worldwide. Currently, the pathophysiological mechanisms of IRD are not fully understood and there are limited treatment options available. Most IRD are caused by degeneration of light-sensitive photoreceptors. Genetic mutations that abrogate the structure and/or function of photoreceptors lead to visual impairment followed by blindness caused by loss of photoreceptors. In healthy retina, photoreceptors structurally and functionally interact with retinal pigment epithelium (RPE) and Müller glia (MG) to maintain retinal homeostasis. Multiple IRD with photoreceptor degeneration as a major phenotype are caused by mutations of RPE- and/or MG-associated genes. Recent studies also reveal compromised MG and RPE caused by mutations in ubiquitously expressed ciliary genes. Therefore, photoreceptor degeneration could be a direct consequence of gene mutations and/or could be secondary to the dysfunction of their interaction partners in the retina. This review summarizes the mechanisms of photoreceptor-RPE/MG interaction in supporting retinal functions and discusses how the disruption of these processes could lead to photoreceptor degeneration, with an aim to provide a unique perspective of IRD pathogenesis and treatment paradigm. We will first describe the biology of retina and IRD and then discuss the interaction between photoreceptors and MG/RPE as well as their implications in disease pathogenesis. Finally, we will summarize the recent advances in IRD therapeutics targeting MG and/or RPE.
Collapse
Affiliation(s)
| | | | - Holly Y. Chen
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
7
|
Fernández-Albarral JA, Ramírez AI, de Hoz R, Matamoros JA, Salobrar-García E, Elvira-Hurtado L, López-Cuenca I, Sánchez-Puebla L, Salazar JJ, Ramírez JM. Glaucoma: from pathogenic mechanisms to retinal glial cell response to damage. Front Cell Neurosci 2024; 18:1354569. [PMID: 38333055 PMCID: PMC10850296 DOI: 10.3389/fncel.2024.1354569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/10/2024] [Indexed: 02/10/2024] Open
Abstract
Glaucoma is a neurodegenerative disease of the retina characterized by the irreversible loss of retinal ganglion cells (RGCs) leading to visual loss. Degeneration of RGCs and loss of their axons, as well as damage and remodeling of the lamina cribrosa are the main events in the pathogenesis of glaucoma. Different molecular pathways are involved in RGC death, which are triggered and exacerbated as a consequence of a number of risk factors such as elevated intraocular pressure (IOP), age, ocular biomechanics, or low ocular perfusion pressure. Increased IOP is one of the most important risk factors associated with this pathology and the only one for which treatment is currently available, nevertheless, on many cases the progression of the disease continues, despite IOP control. Thus, the IOP elevation is not the only trigger of glaucomatous damage, showing the evidence that other factors can induce RGCs death in this pathology, would be involved in the advance of glaucomatous neurodegeneration. The underlying mechanisms driving the neurodegenerative process in glaucoma include ischemia/hypoxia, mitochondrial dysfunction, oxidative stress and neuroinflammation. In glaucoma, like as other neurodegenerative disorders, the immune system is involved and immunoregulation is conducted mainly by glial cells, microglia, astrocytes, and Müller cells. The increase in IOP produces the activation of glial cells in the retinal tissue. Chronic activation of glial cells in glaucoma may provoke a proinflammatory state at the retinal level inducing blood retinal barrier disruption and RGCs death. The modulation of the immune response in glaucoma as well as the activation of glial cells constitute an interesting new approach in the treatment of glaucoma.
Collapse
Affiliation(s)
- Jose A. Fernández-Albarral
- Ramon Castroviejo Ophthalmological Research Institute, Complutense University of Madrid (UCM), Grupo UCM 920105, IdISSC, Madrid, Spain
| | - Ana I. Ramírez
- Ramon Castroviejo Ophthalmological Research Institute, Complutense University of Madrid (UCM), Grupo UCM 920105, IdISSC, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, Madrid, Spain
| | - Rosa de Hoz
- Ramon Castroviejo Ophthalmological Research Institute, Complutense University of Madrid (UCM), Grupo UCM 920105, IdISSC, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, Madrid, Spain
| | - José A. Matamoros
- Ramon Castroviejo Ophthalmological Research Institute, Complutense University of Madrid (UCM), Grupo UCM 920105, IdISSC, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, Madrid, Spain
| | - Elena Salobrar-García
- Ramon Castroviejo Ophthalmological Research Institute, Complutense University of Madrid (UCM), Grupo UCM 920105, IdISSC, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, Madrid, Spain
| | - Lorena Elvira-Hurtado
- Ramon Castroviejo Ophthalmological Research Institute, Complutense University of Madrid (UCM), Grupo UCM 920105, IdISSC, Madrid, Spain
| | - Inés López-Cuenca
- Ramon Castroviejo Ophthalmological Research Institute, Complutense University of Madrid (UCM), Grupo UCM 920105, IdISSC, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, Madrid, Spain
| | - Lidia Sánchez-Puebla
- Ramon Castroviejo Ophthalmological Research Institute, Complutense University of Madrid (UCM), Grupo UCM 920105, IdISSC, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Juan J. Salazar
- Ramon Castroviejo Ophthalmological Research Institute, Complutense University of Madrid (UCM), Grupo UCM 920105, IdISSC, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, Madrid, Spain
| | - José M. Ramírez
- Ramon Castroviejo Ophthalmological Research Institute, Complutense University of Madrid (UCM), Grupo UCM 920105, IdISSC, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
8
|
Guo YM, Jiang X, Min J, Huang J, Huang XF, Ye L. Advances in the study of Müller glia reprogramming in mammals. Front Cell Neurosci 2023; 17:1305896. [PMID: 38155865 PMCID: PMC10752929 DOI: 10.3389/fncel.2023.1305896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/27/2023] [Indexed: 12/30/2023] Open
Abstract
Müller cells play an integral role in the development, maintenance, and photopic signal transmission of the retina. While lower vertebrate Müller cells can differentiate into various types of retinal neurons to support retinal repair following damage, there is limited neurogenic potential of mammalian Müller cells. Therefore, it is of great interest to harness the neurogenic potential of mammalian Müller cells to achieve self-repair of the retina. While multiple studies have endeavored to induce neuronal differentiation and proliferation of mammalian Müller cells under defined conditions, the efficiency and feasibility of these methods often fall short, rendering them inadequate for the requisites of retinal repair. As the mechanisms and methodologies of Müller cell reprogramming have been extensively explored, a summary of the reprogramming process of unlocking the neurogenic potential of Müller cells can provide insight into Müller cell fate development and facilitate their therapeutic use in retinal repair. In this review, we comprehensively summarize the progress in reprogramming mammalian Müller cells and discuss strategies for optimizing methods and enhancing efficiency based on the mechanisms of fate regulation.
Collapse
Affiliation(s)
- Yi-Ming Guo
- Shaanxi Eye Hospital, Xi’an People’s Hospital (Xi’an Fourth Hospital), Affiliated People’s Hospital of Northwest University, Xi’an, China
| | - Xinyi Jiang
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jie Min
- Shaanxi Eye Hospital, Xi’an People’s Hospital (Xi’an Fourth Hospital), Affiliated People’s Hospital of Northwest University, Xi’an, China
| | - Juan Huang
- Shaanxi Eye Hospital, Xi’an People’s Hospital (Xi’an Fourth Hospital), Affiliated People’s Hospital of Northwest University, Xi’an, China
| | - Xiu-Feng Huang
- Zhejiang Provincial Clinical Research Center for Pediatric Disease, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lu Ye
- Shaanxi Eye Hospital, Xi’an People’s Hospital (Xi’an Fourth Hospital), Affiliated People’s Hospital of Northwest University, Xi’an, China
| |
Collapse
|
9
|
Cioanca AV, Wooff Y, Aggio‐Bruce R, Sekar R, Dietrich C, Natoli R. Multiomic integration reveals neuronal-extracellular vesicle coordination of gliotic responses in degeneration. J Extracell Vesicles 2023; 12:e12393. [PMID: 38082562 PMCID: PMC10714032 DOI: 10.1002/jev2.12393] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/20/2023] [Accepted: 11/14/2023] [Indexed: 12/18/2023] Open
Abstract
In the central nervous system (CNS), including in the retina, neuronal-to-glial communication is critical for maintaining tissue homeostasis including signal transmission, transfer of trophic factors, and in the modulation of inflammation. Extracellular vesicle (EV)-mediated transport of molecular messages to regulate these processes has been suggested as a mechanism by which bidirectional communication between neuronal and glial cells can occur. In this work we employed multiomics integration to investigate the role of EV communication pathways from neurons to glial cells within the CNS, using the mouse retina as a readily accessible representative CNS tissue. Further, using a well-established model of degeneration, we aimed to uncover how dysregulation of homeostatic messaging between neurons and glia via EV can result in retinal and neurodegenerative diseases. EV proteomics, glia microRNA (miRNA) Open Array and small RNA sequencing, and retinal single cell sequencing were performed, with datasets integrated and analysed computationally. Results demonstrated that exogenous transfer of neuronal miRNA to glial cells was mediated by EV and occurred as a targeted response during degeneration to modulate gliotic inflammation. Taken together, our results support a model of neuronal-to-glial communication via EV, which could be harnessed for therapeutic targeting to slow the progression of retinal-, and neuro-degenerations of the CNS.
Collapse
Affiliation(s)
- Adrian V. Cioanca
- Clear Vision Research Group, Eccles Institute of Neuroscience, John Curtin School of Medical Research, College of Health and MedicineThe Australian National UniversityCanberraAustralia
- School of Medicine and Psychology, College of Health and MedicineThe Australian National UniversityCanberraAustralia
| | - Yvette Wooff
- Clear Vision Research Group, Eccles Institute of Neuroscience, John Curtin School of Medical Research, College of Health and MedicineThe Australian National UniversityCanberraAustralia
- School of Medicine and Psychology, College of Health and MedicineThe Australian National UniversityCanberraAustralia
| | - Riemke Aggio‐Bruce
- Clear Vision Research Group, Eccles Institute of Neuroscience, John Curtin School of Medical Research, College of Health and MedicineThe Australian National UniversityCanberraAustralia
- School of Medicine and Psychology, College of Health and MedicineThe Australian National UniversityCanberraAustralia
| | - Rakshanya Sekar
- Clear Vision Research Group, Eccles Institute of Neuroscience, John Curtin School of Medical Research, College of Health and MedicineThe Australian National UniversityCanberraAustralia
- School of Medicine and Psychology, College of Health and MedicineThe Australian National UniversityCanberraAustralia
| | - Catherine Dietrich
- Clear Vision Research Group, Eccles Institute of Neuroscience, John Curtin School of Medical Research, College of Health and MedicineThe Australian National UniversityCanberraAustralia
- Peter MacCallum Cancer CentreMelbourneVictoriaAustralia
| | - Riccardo Natoli
- Clear Vision Research Group, Eccles Institute of Neuroscience, John Curtin School of Medical Research, College of Health and MedicineThe Australian National UniversityCanberraAustralia
- School of Medicine and Psychology, College of Health and MedicineThe Australian National UniversityCanberraAustralia
| |
Collapse
|
10
|
Lieffrig SA, Gyimesi G, Mao Y, Finnemann SC. Clearance phagocytosis by the retinal pigment epithelial during photoreceptor outer segment renewal: Molecular mechanisms and relation to retinal inflammation. Immunol Rev 2023; 319:81-99. [PMID: 37555340 PMCID: PMC10615845 DOI: 10.1111/imr.13264] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/18/2023] [Indexed: 08/10/2023]
Abstract
Mammalian photoreceptor outer segment renewal is a highly coordinated process that hinges on timed cell signaling between photoreceptor neurons and the adjacent retinal pigment epithelial (RPE). It is a strictly rhythmic, synchronized process that underlies in part circadian regulation. We highlight findings from recently developed methods that quantify distinct phases of outer segment renewal in retinal tissue. At light onset, outer segments expose the conserved "eat-me" signal phosphatidylserine exclusively at their distal, most aged tip. A coordinated two-receptor efferocytosis process follows, in which ligands bridge outer segment phosphatidylserine with the RPE receptors αvβ5 integrin, inducing cytosolic signaling toward Rac1 and focal adhesion kinase/MERTK, and with MERTK directly, additionally inhibiting RhoA/ROCK and thus enabling F-actin dynamics favoring outer segment fragment engulfment. Photoreceptors and RPE persist for life with each RPE cell in the eye servicing dozens of overlying photoreceptors. Thus, RPE cells phagocytose more often and process more material than any other cell type. Mutant mice with impaired outer segment renewal largely retain functional photoreceptors and retinal integrity. However, when anti-inflammatory signaling in the RPE via MERTK or the related TYRO3 is lacking, catastrophic inflammation leads to immune cell infiltration that swiftly destroys the retina causing blindness.
Collapse
Affiliation(s)
- Stephanie A. Lieffrig
- Center for Cancer, Genetic Diseases and Gene Regulation, Department of Biological Sciences, Fordham University, Bronx, NY
| | - Gavin Gyimesi
- Center for Cancer, Genetic Diseases and Gene Regulation, Department of Biological Sciences, Fordham University, Bronx, NY
| | | | - Silvia C. Finnemann
- Center for Cancer, Genetic Diseases and Gene Regulation, Department of Biological Sciences, Fordham University, Bronx, NY
| |
Collapse
|
11
|
Kramer AC, Carthage J, Berry Y, Gurdziel K, Cook TA, Thummel R. A comparative analysis of gene and protein expression in chronic and acute models of photoreceptor degeneration in adult zebrafish. Front Cell Dev Biol 2023; 11:1233269. [PMID: 37745292 PMCID: PMC10512720 DOI: 10.3389/fcell.2023.1233269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/22/2023] [Indexed: 09/26/2023] Open
Abstract
Background: Adult zebrafish are capable of photoreceptor (PR) regeneration following acute phototoxic lesion (AL). We developed a chronic low light (CLL) exposure model that more accurately reflects chronic PR degeneration observed in many human retinal diseases. Methods: Here, we characterize the morphological and transcriptomic changes associated with acute and chronic models of PR degeneration at 8 time-points over a 28-day window using immunohistochemistry and 3'mRNA-seq. Results: We first observed a differential sensitivity of rod and cone PRs to CLL. Next, we found no evidence for Müller glia (MG) gliosis or regenerative cell-cycle re-entry in the CLL model, which is in contrast to the robust gliosis and proliferative response from resident MG in the AL model. Differential responses of microglia between the models was also observed. Transcriptomic comparisons between the models revealed gene-specific networks of PR regeneration and degeneration, including genes that are activated under conditions of chronic PR stress. Finally, we showed that CLL is at least partially reversible, allowing for rod and cone outer segment outgrowth and replacement of rod cell nuclei via an apparent upregulation of the existing rod neurogenesis mechanism. Discussion: Collectively, these data provide a direct comparison of the morphological and transcriptomic PR degeneration and regeneration models in zebrafish.
Collapse
Affiliation(s)
- Ashley C. Kramer
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Justin Carthage
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Yasmeen Berry
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Katherine Gurdziel
- Genomic Sciences Core, Wayne State University, Detroit, MI, United States
| | - Tiffany A. Cook
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, United States
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, United States
| | - Ryan Thummel
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
12
|
Eriksen AZ, Melander F, Eriksen GDM, Kempen PJ, Kjaer A, Andresen TL, Urquhart AJ. Active Transport and Ocular Distribution of Intravitreally Injected Liposomes. Transl Vis Sci Technol 2023; 12:20. [PMID: 37615641 PMCID: PMC10461645 DOI: 10.1167/tvst.12.8.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 07/10/2023] [Indexed: 08/25/2023] Open
Abstract
Purpose Drug delivery to the retina remains a challenge due to ocular barriers and fast clearing mechanisms. Nanocarrier drug delivery systems (NDDSs) hold the promise of prolonging intraocular retention times and increasing drug concentrations in the retina. Methods Anionic and cationic PEGylated liposomes, loaded with oxaliplatin (OxPt) to be used as trace element, were prepared from dry lipid powders. The differently charged liposomes were intravitreally injected in C57BL/6JrJ mice; eyes were harvested 2 hours and 24 hours post-injection. To investigate active transport mechanisms in the eye, a subset of mice were pre-injected with chloroquine before injection with cationic liposomes. Eyes were dissected and the distribution of OxPt in different tissues were quantified by inductively coupled plasma mass spectrometry (ICP-MS). Results Both liposome formulations enhanced the retention time of OxPt in the vitreous over free OxPt. Surprisingly, when formulated in cationic liposomes, OxPt translocated through the retina and accumulated in the RPE-sclera. Pre-injection with chloroquine inhibited the transport of liposomal OxPt from the vitreous to the RPE-sclera. Conclusions We show that liposomes can enhance the retention time of small molecular drugs in the vitreous and that active transport mechanisms are involved in the trans retinal transport of NDDS after intravitreal injections. Translational Relevance These results highlight the need for understanding the dynamics of ocular transport mechanisms in living eyes when designing NDDS with the back of the eye as the target. Active transport of nanocarriers through the retina will limit the drug concentration in the neuronal retina but might be exploited for targeting the RPE.
Collapse
Affiliation(s)
- Anne Zebitz Eriksen
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Fredrik Melander
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | | | - Paul Joseph Kempen
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
- National Center for Nano Fabrication and Characterization, Technical University of Denmark, Lyngby, Denmark
| | - Andreas Kjaer
- Department of Clinical Physiology, Nuclear Medicine and PET & Cluster for Molecular Imaging, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Lars Andresen
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | | |
Collapse
|
13
|
Christensen G, Chen Y, Urimi D, Zizmare L, Trautwein C, Schipper N, Paquet-Durand F. Pyruvate-conjugation of PEGylated liposomes for targeted drug delivery to retinal photoreceptors. Biomed Pharmacother 2023; 163:114717. [PMID: 37435722 DOI: 10.1016/j.biopha.2023.114717] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 07/13/2023] Open
Abstract
Despite several promising candidates, there is a paucity of drug treatments available for patients suffering from retinal diseases. An important reason for this is the lack of suitable delivery systems that can achieve sufficiently high drug uptake in the retina and its photoreceptors. A promising and versatile method for drug delivery to specific cell types involves transporter-targeted liposomes, i.e., liposomes surface-coated with substrates for transporter proteins highly expressed on the target cell. We identified strong lactate transporter (monocarboxylate transporter, MCT) expression on photoreceptors as a potential target for drug delivery vehicles. To evaluate MCT suitability for drug targeting, we used PEG-coated liposomes and conjugated these with different monocarboxylates, including lactate, pyruvate, and cysteine. Monocarboxylate-conjugated and dye-loaded liposomes were tested on both human-derived cell-lines and murine retinal explant cultures. We found that liposomes conjugated with pyruvate consistently displayed higher cell uptake than unconjugated liposomes or liposomes conjugated with lactate or cysteine. Pharmacological inhibition of MCT1 and MCT2 reduced internalization, suggesting an MCT-dependent uptake mechanism. Notably, pyruvate-conjugated liposomes loaded with the drug candidate CN04 reduced photoreceptor cell death in the murine rd1 retinal degeneration model while free drug solutions could not achieve the same therapeutic effect. Our study thus highlights pyruvate-conjugated liposomes as a promising system for drug delivery to retinal photoreceptors, as well as other neuronal cell types displaying high expression of MCT-type proteins.
Collapse
Affiliation(s)
- Gustav Christensen
- Institute for Ophthalmic Research, University of Tübingen, Elfriede-Aulhorn Straße 5-7, Tübingen 72076, Germany
| | - Yiyi Chen
- Institute for Ophthalmic Research, University of Tübingen, Elfriede-Aulhorn Straße 5-7, Tübingen 72076, Germany
| | - Dileep Urimi
- Division Bioeconomy and Health, Chemical Process and Pharmaceutical Development, RISE Research Institutes of Sweden, Forskargatan 18, Södertälje 15136, Sweden
| | - Laimdota Zizmare
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, University Hospital Tübingen, Röntgenweg 13, Tübingen 72076, Germany
| | - Christoph Trautwein
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, University Hospital Tübingen, Röntgenweg 13, Tübingen 72076, Germany
| | - Nicolaas Schipper
- Division Bioeconomy and Health, Chemical Process and Pharmaceutical Development, RISE Research Institutes of Sweden, Forskargatan 18, Södertälje 15136, Sweden
| | - François Paquet-Durand
- Institute for Ophthalmic Research, University of Tübingen, Elfriede-Aulhorn Straße 5-7, Tübingen 72076, Germany.
| |
Collapse
|
14
|
Miao Y, Zhao GL, Cheng S, Wang Z, Yang XL. Activation of retinal glial cells contributes to the degeneration of ganglion cells in experimental glaucoma. Prog Retin Eye Res 2023; 93:101169. [PMID: 36736070 DOI: 10.1016/j.preteyeres.2023.101169] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/12/2023] [Accepted: 01/24/2023] [Indexed: 02/04/2023]
Abstract
Elevation of intraocular pressure (IOP) is a major risk factor for neurodegeneration in glaucoma. Glial cells, which play an important role in normal functioning of retinal neurons, are well involved into retinal ganglion cell (RGC) degeneration in experimental glaucoma animal models generated by elevated IOP. In response to elevated IOP, mGluR I is first activated and Kir4.1 channels are subsequently inhibited, which leads to the activation of Müller cells. Müller cell activation is followed by a complex process, including proliferation, release of inflammatory and growth factors (gliosis). Gliosis is further regulated by several factors. Activated Müller cells contribute to RGC degeneration through generating glutamate receptor-mediated excitotoxicity, releasing cytotoxic factors and inducing microglia activation. Elevated IOP activates microglia, and following morphological and functional changes, these cells, as resident immune cells in the retina, show adaptive immune responses, including an enhanced release of pro-inflammatory factors (tumor neurosis factor-α, interleukins, etc.). These ATP and Toll-like receptor-mediated responses are further regulated by heat shock proteins, CD200R, chemokine receptors, and metabotropic purinergic receptors, may aggravate RGC loss. In the optic nerve head, astrogliosis is initiated and regulated by a complex reaction process, including purines, transmitters, chemokines, growth factors and cytokines, which contributes to RGC axon injury through releasing pro-inflammatory factors and changing extracellular matrix in glaucoma. The effects of activated glial cells on RGCs are further modified by the interplay among different types of glial cells. This review is concluded by presenting an in-depth discussion of possible research directions in this field in the future.
Collapse
Affiliation(s)
- Yanying Miao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Guo-Li Zhao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Shuo Cheng
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Zhongfeng Wang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
| | - Xiong-Li Yang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
15
|
Gala DS, Titlow JS, Teodoro RO, Davis I. Far from home: the role of glial mRNA localization in synaptic plasticity. RNA (NEW YORK, N.Y.) 2023; 29:153-169. [PMID: 36442969 PMCID: PMC9891262 DOI: 10.1261/rna.079422.122] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Neurons and glia are highly polarized cells, whose distal cytoplasmic functional subdomains require specific proteins. Neurons have axonal and dendritic cytoplasmic extensions containing synapses whose plasticity is regulated efficiently by mRNA transport and localized translation. The principles behind these mechanisms are equally attractive for explaining rapid local regulation of distal glial cytoplasmic projections, independent of their cell nucleus. However, in contrast to neurons, mRNA localization has received little experimental attention in glia. Nevertheless, there are many functionally diverse glial subtypes containing extensive networks of long cytoplasmic projections with likely localized regulation that influence neurons and their synapses. Moreover, glia have many other neuron-like properties, including electrical activity, secretion of gliotransmitters and calcium signaling, influencing, for example, synaptic transmission, plasticity and axon pruning. Here, we review previous studies concerning glial transcripts with important roles in influencing synaptic plasticity, focusing on a few cases involving localized translation. We discuss a variety of important questions about mRNA transport and localized translation in glia that remain to be addressed, using cutting-edge tools already available for neurons.
Collapse
Affiliation(s)
- Dalia S Gala
- Department of Biochemistry, The University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Joshua S Titlow
- Department of Biochemistry, The University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Rita O Teodoro
- iNOVA4Health, NOVA Medical School-Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa 1169-056, Portugal
| | - Ilan Davis
- Department of Biochemistry, The University of Oxford, Oxford OX1 3QU, United Kingdom
| |
Collapse
|
16
|
Herrera-Barrera M, Ryals RC, Gautam M, Jozic A, Landry M, Korzun T, Gupta M, Acosta C, Stoddard J, Reynaga R, Tschetter W, Jacomino N, Taratula O, Sun C, Lauer AK, Neuringer M, Sahay G. Peptide-guided lipid nanoparticles deliver mRNA to the neural retina of rodents and nonhuman primates. SCIENCE ADVANCES 2023; 9:eadd4623. [PMID: 36630502 PMCID: PMC9833661 DOI: 10.1126/sciadv.add4623] [Citation(s) in RCA: 51] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Lipid nanoparticle (LNP)-based mRNA delivery holds promise for the treatment of inherited retinal degenerations. Currently, LNP-mediated mRNA delivery is restricted to the retinal pigment epithelium (RPE) and Müller glia. LNPs must overcome ocular barriers to transfect neuronal cells critical for visual phototransduction, the photoreceptors (PRs). We used a combinatorial M13 bacteriophage-based heptameric peptide phage display library for the mining of peptide ligands that target PRs. We identified the most promising peptide candidates resulting from in vivo biopanning. Dye-conjugated peptides showed rapid localization to the PRs. LNPs decorated with the top-performing peptide ligands delivered mRNA to the PRs, RPE, and Müller glia in mice. This distribution translated to the nonhuman primate eye, wherein robust protein expression was observed in the PRs, Müller glia, and RPE. Overall, we have developed peptide-conjugated LNPs that can enable mRNA delivery to the neural retina, expanding the utility of LNP-mRNA therapies for inherited blindness.
Collapse
Affiliation(s)
- Marco Herrera-Barrera
- Department of Pharmaceutical Sciences, College of Pharmacy, Robertson Life Sciences Building, Oregon State University, Portland, OR 97201, USA
| | - Renee C. Ryals
- Department of Ophthalmology, Casey Eye Institute, Oregon Health and Science University, Portland, OR 97239, USA
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Milan Gautam
- Department of Pharmaceutical Sciences, College of Pharmacy, Robertson Life Sciences Building, Oregon State University, Portland, OR 97201, USA
| | - Antony Jozic
- Department of Pharmaceutical Sciences, College of Pharmacy, Robertson Life Sciences Building, Oregon State University, Portland, OR 97201, USA
| | - Madeleine Landry
- Department of Pharmaceutical Sciences, College of Pharmacy, Robertson Life Sciences Building, Oregon State University, Portland, OR 97201, USA
| | - Tetiana Korzun
- Oregon Health and Science University Medical School, Portland, OR 97239, USA
| | - Mohit Gupta
- Department of Pharmaceutical Sciences, College of Pharmacy, Robertson Life Sciences Building, Oregon State University, Portland, OR 97201, USA
| | - Chris Acosta
- Department of Pharmaceutical Sciences, College of Pharmacy, Robertson Life Sciences Building, Oregon State University, Portland, OR 97201, USA
| | - Jonathan Stoddard
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Rene Reynaga
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Wayne Tschetter
- Department of Ophthalmology, Casey Eye Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Nick Jacomino
- Department of Pharmaceutical Sciences, College of Pharmacy, Robertson Life Sciences Building, Oregon State University, Portland, OR 97201, USA
| | - Oleh Taratula
- Department of Pharmaceutical Sciences, College of Pharmacy, Robertson Life Sciences Building, Oregon State University, Portland, OR 97201, USA
| | - Conroy Sun
- Department of Pharmaceutical Sciences, College of Pharmacy, Robertson Life Sciences Building, Oregon State University, Portland, OR 97201, USA
| | - Andreas K. Lauer
- Department of Ophthalmology, Casey Eye Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Martha Neuringer
- Department of Ophthalmology, Casey Eye Institute, Oregon Health and Science University, Portland, OR 97239, USA
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Gaurav Sahay
- Department of Pharmaceutical Sciences, College of Pharmacy, Robertson Life Sciences Building, Oregon State University, Portland, OR 97201, USA
- Department of Ophthalmology, Casey Eye Institute, Oregon Health and Science University, Portland, OR 97239, USA
- Department of Biomedical Engineering, Robertson Life Sciences Building, Oregon Health and Science University, Portland, OR 97201, USA
- Corresponding author.
| |
Collapse
|
17
|
Titialii-Torres KF, Morris AC. Embryonic hyperglycemia perturbs the development of specific retinal cell types, including photoreceptors. J Cell Sci 2022; 135:jcs259187. [PMID: 34851372 PMCID: PMC8767273 DOI: 10.1242/jcs.259187] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 11/18/2021] [Indexed: 01/12/2023] Open
Abstract
Diabetes is linked to various long-term complications in adults, such as neuropathy, nephropathy and diabetic retinopathy. Diabetes poses additional risks for pregnant women, because glucose passes across the placenta, and excess maternal glucose can result in diabetic embryopathy. While many studies have examined the teratogenic effects of maternal diabetes on fetal heart development, little is known about the consequences of maternal hyperglycemia on the development of the embryonic retina. To address this question, we investigated retinal development in two models of embryonic hyperglycemia in zebrafish. Strikingly, we found that hyperglycemic larvae displayed a significant reduction in photoreceptors and horizontal cells, whereas other retinal neurons were not affected. We also observed reactive gliosis and abnormal optokinetic responses in hyperglycemic larvae. Further analysis revealed delayed retinal cell differentiation in hyperglycemic embryos that coincided with increased reactive oxygen species (ROS). Our results suggest that embryonic hyperglycemia causes abnormal retinal development via altered timing of cell differentiation and ROS production, which is accompanied by visual defects. Further studies using zebrafish models of hyperglycemia will allow us to understand the molecular mechanisms underlying these effects.
Collapse
Affiliation(s)
- Kayla F. Titialii-Torres
- Department of Biology, University of Kentucky, Lexington, KY 40506-0225, USA
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Ann C. Morris
- Department of Biology, University of Kentucky, Lexington, KY 40506-0225, USA
| |
Collapse
|
18
|
Lew DS, McGrath MJ, Finnemann SC. Galectin-3 Promotes Müller Glia Clearance Phagocytosis via MERTK and Reduces Harmful Müller Glia Activation in Inherited and Induced Retinal Degeneration. Front Cell Neurosci 2022; 16:878260. [PMID: 35711472 PMCID: PMC9194531 DOI: 10.3389/fncel.2022.878260] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Clearance phagocytosis is a documented function of Müller glia in the retina. However, the molecular mechanisms of Müller glia phagocytosis remain largely undefined. Here, we show that extracellular galectin-3 and protein S promote clearance phagocytosis by immortalized human MIO-M1 Müller cells in an additive, saturable manner. Galectin-3 promotes phagocytosis by primary Müller glia from wild-type (WT) mice but not from mice that lack the engulfment receptor MERTK and therefore develop postnatal photoreceptor degeneration. Probing a possible functional link between Müller galectin-3 and MERTK, we discovered that mertk -/- Müller glia in situ show excess galectin-3 at postnatal day 20 (P20), an age prior to detectable photoreceptor degeneration. Moreover, double knockout (DKO) mice lacking both galectin-3 and MERTK show increased activation of Müller cells (but not of microglia) at P20 and more pronounced photoreceptor loss at P35 compared to mice lacking MERTK alone. Exploring the well-established sodium iodate injury model, we also found more severe activation specifically of Müller glia, and worse retinal damage in mice lacking galectin-3 compared to WT mice. Indeed, galectin-3 deficiency significantly increased sensitivity to injury, yielding Müller activation and retinal damage at a sodium iodate concentration that had no effect on the WT retina. Altogether, our results from both inherited and acutely induced models of retinal degeneration agree that eliminating galectin-3 exacerbates Müller cell activation and retinal degeneration. These data identify an important protective role for the MERTK ligand galectin-3 in the retina in restraining Müller glia activation.
Collapse
Affiliation(s)
- Deborah S. Lew
- Center for Cancer, Genetic Diseases and Gene Regulation, Department of Biological Sciences, Fordham University, Bronx, NY, United States
| | - Morgan J. McGrath
- Center for Cancer, Genetic Diseases and Gene Regulation, Department of Biological Sciences, Fordham University, Bronx, NY, United States
| | | |
Collapse
|
19
|
Chen Y, Xia Q, Zeng Y, Zhang Y, Zhang M. Regulations of Retinal Inflammation: Focusing on Müller Glia. Front Cell Dev Biol 2022; 10:898652. [PMID: 35573676 PMCID: PMC9091449 DOI: 10.3389/fcell.2022.898652] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/11/2022] [Indexed: 12/12/2022] Open
Abstract
Retinal inflammation underlies multiple prevalent retinal diseases. While microglia are one of the most studied cell types regarding retinal inflammation, growing evidence shows that Müller glia play critical roles in the regulation of retinal inflammation. Müller glia express various receptors for cytokines and release cytokines to regulate inflammation. Müller glia are part of the blood-retinal barrier and interact with microglia in the inflammatory responses. The unique metabolic features of Müller glia in the retina makes them vital for retinal homeostasis maintenance, regulating retinal inflammation by lipid metabolism, purine metabolism, iron metabolism, trophic factors, and antioxidants. miRNAs in Müller glia regulate inflammatory responses via different mechanisms and potentially regulate retinal regeneration. Novel therapies are explored targeting Müller glia for inflammatory retinal diseases treatment. Here we review new findings regarding the roles of Müller glia in retinal inflammation and discuss the related novel therapies for retinal diseases.
Collapse
Affiliation(s)
- Yingying Chen
- Department of Ophthalmology, Sichuan University West China Hospital, Sichuan University, Chengdu, China
- Research Laboratory of Macular Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Qinghong Xia
- Operating Room of Anesthesia Surgery Center, West China Hospital, Sichuan University, Chengdu, China
- West China School of Nursing, Sichuan University, Chengdu, China
| | - Yue Zeng
- Department of Ophthalmology, Sichuan University West China Hospital, Sichuan University, Chengdu, China
- Research Laboratory of Macular Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Yun Zhang
- Department of Ophthalmology, Sichuan University West China Hospital, Sichuan University, Chengdu, China
- Research Laboratory of Macular Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Meixia Zhang
- Department of Ophthalmology, Sichuan University West China Hospital, Sichuan University, Chengdu, China
- Research Laboratory of Macular Disease, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Meixia Zhang,
| |
Collapse
|
20
|
Thiel WA, Blume ZI, Mitchell DM. Compensatory engulfment and Müller glia reactivity in the absence of microglia. Glia 2022; 70:1402-1425. [PMID: 35451181 DOI: 10.1002/glia.24182] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/05/2022] [Accepted: 04/08/2022] [Indexed: 01/25/2023]
Abstract
Microglia are known for important phagocytic functions in the vertebrate retina. Reports also suggest that Müller glia have phagocytic capacity, though the relative levels and contexts in which this occurs remain to be thoroughly examined. Here, we investigate Müller glial engulfment of dying cells in the developing zebrafish retina in the presence and absence of microglia, using a genetic mutant in which microglia do not develop. We show that in normal conditions clearance of dying cells is dominated by microglia; however, Müller glia do have a limited clearance role. In retinas lacking intact microglial populations, we found a striking increase in the engulfment load assumed by the Müller glia, which displayed prominent cellular compartments containing apoptotic cells, several of which localized with the early phagosome/endosome marker Rab5. Consistent with increased engulfment, lysosomal staining was also increased in Müller glia in the absence of microglia. Increased engulfment load led to evidence of Müller glia reactivity including upregulation of gfap but did not trigger cell cycle re-entry by differentiated Müller glia. Our work provides important insight into the phagocytic capacity of Müller glia and the ability for compensatory functions and downstream effects. Therefore, effects of microglial deficiency or depletion on other glial cell types should be well-considered in experimental manipulations, in neurodegenerative disease, and in therapeutic approaches that target microglia. Our findings further justify future work to understand differential mechanisms and contexts of phagocytosis by glial cells in the central nervous system, and the significance of these mechanisms in health and disease.
Collapse
Affiliation(s)
- Whitney A Thiel
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
| | - Zachary I Blume
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
| | - Diana M Mitchell
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
| |
Collapse
|
21
|
Carpi-Santos R, de Melo Reis RA, Gomes FCA, Calaza KC. Contribution of Müller Cells in the Diabetic Retinopathy Development: Focus on Oxidative Stress and Inflammation. Antioxidants (Basel) 2022; 11:617. [PMID: 35453302 PMCID: PMC9027671 DOI: 10.3390/antiox11040617] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/01/2022] [Accepted: 03/15/2022] [Indexed: 01/27/2023] Open
Abstract
Diabetic retinopathy is a neurovascular complication of diabetes and the main cause of vision loss in adults. Glial cells have a key role in maintenance of central nervous system homeostasis. In the retina, the predominant element is the Müller cell, a specialized cell with radial morphology that spans all retinal layers and influences the function of the entire retinal circuitry. Müller cells provide metabolic support, regulation of extracellular composition, synaptic activity control, structural organization of the blood-retina barrier, antioxidant activity, and trophic support, among other roles. Therefore, impairments of Müller actions lead to retinal malfunctions. Accordingly, increasing evidence indicates that Müller cells are affected in diabetic retinopathy and may contribute to the severity of the disease. Here, we will survey recently described alterations in Müller cell functions and cellular events that contribute to diabetic retinopathy, especially related to oxidative stress and inflammation. This review sheds light on Müller cells as potential therapeutic targets of this disease.
Collapse
Affiliation(s)
- Raul Carpi-Santos
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (R.C.-S.); (F.C.A.G.)
| | - Ricardo A. de Melo Reis
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil;
| | - Flávia Carvalho Alcantara Gomes
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (R.C.-S.); (F.C.A.G.)
| | - Karin C. Calaza
- Instituto de Biologia, Departamento de Neurobiologia, Universidade Federal Fluminense, Niteroi 24210-201, RJ, Brazil
| |
Collapse
|
22
|
Ikeda T, Nakamura K, Kida T, Oku H. Possible roles of anti-type II collagen antibody and innate immunity in the development and progression of diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol 2022; 260:387-403. [PMID: 34379187 PMCID: PMC8786754 DOI: 10.1007/s00417-021-05342-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 07/19/2021] [Accepted: 07/24/2021] [Indexed: 11/08/2022] Open
Abstract
The pathogenesis of both diabetic retinopathy (DR) and rheumatoid arthritis (RA) has recently been considered to involve autoimmunity. Serum and synovial fluid levels of anti-type II collagen antibodies increase early after the onset of RA, thus inducing immune responses and subsequent hydrarthrosis and angiogenesis, which resemble diabetic macular edema and proliferative DR (PDR), respectively. We previously reported that DR is also associated with increased serum levels of anti-type II collagen antibodies. Retinal hypoxia in DR may induce pericytes to express type II collagen, resulting in autoantibody production against type II collagen. As the result of blood-retinal barrier disruption, anti-type II collagen antibodies in the serum come into contact with type II collagen around the retinal vessels. A continued loss of pericytes and type II collagen around the retinal vessels may result in a shift of the immune reaction site from the retina to the vitreous. It has been reported that anti-inflammatory M2 macrophages increased in the vitreous of PDR patients, accompanied by the activation of the NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome, a key regulator of innate immunity. M2 macrophages promote angiogenesis and fibrosis, which might be exacerbated and prolonged by dysregulated innate immunity.
Collapse
Affiliation(s)
- Tsunehiko Ikeda
- Department of Ophthalmology, Osaka Medical and Pharmaceutical University, Takatsuki City, Osaka, Japan.
- Department of Ophthalmology, Osaka Kaisei Hospital, 1-6-10 Miyahara Yodogawa-ku, Osaka City, Osaka, Japan.
| | | | - Teruyo Kida
- Department of Ophthalmology, Osaka Medical and Pharmaceutical University, Takatsuki City, Osaka, Japan
| | - Hidehiro Oku
- Department of Ophthalmology, Osaka Medical and Pharmaceutical University, Takatsuki City, Osaka, Japan
| |
Collapse
|
23
|
Brunet AA, Harvey AR, Carvalho LS. Primary and Secondary Cone Cell Death Mechanisms in Inherited Retinal Diseases and Potential Treatment Options. Int J Mol Sci 2022; 23:ijms23020726. [PMID: 35054919 PMCID: PMC8775779 DOI: 10.3390/ijms23020726] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/05/2022] [Accepted: 01/05/2022] [Indexed: 12/13/2022] Open
Abstract
Inherited retinal diseases (IRDs) are a leading cause of blindness. To date, 260 disease-causing genes have been identified, but there is currently a lack of available and effective treatment options. Cone photoreceptors are responsible for daylight vision but are highly susceptible to disease progression, the loss of cone-mediated vision having the highest impact on the quality of life of IRD patients. Cone degeneration can occur either directly via mutations in cone-specific genes (primary cone death), or indirectly via the primary degeneration of rods followed by subsequent degeneration of cones (secondary cone death). How cones degenerate as a result of pathological mutations remains unclear, hindering the development of effective therapies for IRDs. This review aims to highlight similarities and differences between primary and secondary cone cell death in inherited retinal diseases in order to better define cone death mechanisms and further identify potential treatment options.
Collapse
Affiliation(s)
- Alicia A. Brunet
- Centre for Ophthalmology and Visual Sciences, The University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia;
- Lions Eye Institute Ltd., 2 Verdun St, Nedlands, WA 6009, Australia
- Correspondence: ; Tel.: +61-423-359-714
| | - Alan R. Harvey
- School of Human Sciences, The University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia;
- Perron Institute for Neurological and Translational Science, 8 Verdun St, Nedlands, WA 6009, Australia
| | - Livia S. Carvalho
- Centre for Ophthalmology and Visual Sciences, The University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia;
- Lions Eye Institute Ltd., 2 Verdun St, Nedlands, WA 6009, Australia
| |
Collapse
|
24
|
Rotov AY, Romanov IS, Tarakanchikova YV, Astakhova LA. Application Prospects for Synthetic Nanoparticles in Optogenetic Retinal Prosthetics. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021060132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Tworig JM, Coate C, Feller MB. Excitatory neurotransmission activates compartmentalized calcium transients in Müller glia without affecting lateral process motility. eLife 2021; 10:73202. [PMID: 34913435 PMCID: PMC8806189 DOI: 10.7554/elife.73202] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 12/15/2021] [Indexed: 11/13/2022] Open
Abstract
Neural activity has been implicated in the motility and outgrowth of glial cell processes throughout the central nervous system. Here, we explore this phenomenon in Müller glia, which are specialized radial astroglia that are the predominant glial type of the vertebrate retina. Müller glia extend fine filopodia-like processes into retinal synaptic layers, in similar fashion to brain astrocytes and radial glia that exhibit perisynaptic processes. Using two-photon volumetric imaging, we found that during the second postnatal week, Müller glial processes were highly dynamic, with rapid extensions and retractions that were mediated by cytoskeletal rearrangements. During this same stage of development, retinal waves led to increases in cytosolic calcium within Müller glial lateral processes and stalks. These regions comprised distinct calcium compartments, distinguished by variable participation in waves, timing, and sensitivity to an M1 muscarinic acetylcholine receptor antagonist. However, we found that motility of lateral processes was unaffected by the presence of pharmacological agents that enhanced or blocked wave-associated calcium transients. Finally, we found that mice lacking normal cholinergic waves in the first postnatal week also exhibited normal Müller glial process morphology. Hence, outgrowth of Müller glial lateral processes into synaptic layers is determined by factors that are independent of neuronal activity. When it comes to studying the nervous system, neurons often steal the limelight; yet, they can only work properly thanks to an ensemble cast of cell types whose roles are only just emerging. For example, ‘glial cells’ – their name derives from the Greek word for glue – were once thought to play only a passive, supporting function in nervous tissues. Now, growing evidence shows that they are, in fact, integrated into neural circuits: their activity is influenced by neurons, and, in turn, they help neurons to function properly. The role of glial cells is becoming clear in the retina, the thin, light-sensitive layer that lines the back of the eye and relays visual information to the brain. There, beautifully intricate Müller glial cells display fine protrusions (or ‘processes') that intermingle with synapses, the busy space between neurons where chemical messengers are exchanged. These messengers can act on Müller cells, triggering cascades of molecular events that may influence the structure and function of glia. This is of particular interest during development: as Müller cells mature, they are exposed to chemicals released by more fully formed retinal neurons. Tworig et al. explored how neuronal messengers can influence the way Müller cells grow their processes. To do so, they tracked mouse retinal glial cells ‘live’ during development, showing that they were growing fine, highly dynamic processes in a region rich in synapses just as neurons and glia increased their communication. However, using drugs to disrupt this messaging for a short period did not seem to impact how the processes grew. Extending the blockade over a longer timeframe also did not change the way Müller cells developed, with the cells still acquiring their characteristic elaborate process networks. Taken together, these results suggest that the structural maturation of Müller glial cells is not impacted by neuronal signaling, giving a more refined understanding of how glia form in the retina and potentially in the brain.
Collapse
Affiliation(s)
- Joshua M Tworig
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Chandler Coate
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Marla B Feller
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
26
|
Gharbi N, Røise D, Førre JE, Edson AJ, Hushagen HA, Tronci V, Frøyset AK, Fladmark KE. Reintroduction of DJ-1 in Müller Cells Inhibits Retinal Degeneration in the DJ-1 Deficient Retina. Antioxidants (Basel) 2021; 10:1862. [PMID: 34942966 PMCID: PMC8698414 DOI: 10.3390/antiox10121862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/14/2021] [Accepted: 11/16/2021] [Indexed: 12/19/2022] Open
Abstract
The eye is continuously under oxidative stress due to high metabolic activity and reactive oxygen species generated by daily light exposure. The redox-sensitive protein DJ-1 has proven to be essential in order to protect retina and retinal pigment epithelium (RPE) from oxidative-stress-induced degeneration. Here, we analyzed the specific role of Müller cell DJ-1 in the adult zebrafish retina by re-establishing Müller-cell-specific DJ-1 expression in a DJ-1 knockout retina. Loss of DJ-1 resulted in an age-dependent retinal degeneration, including loss of cells in the ganglion cell layer, retinal thinning, photoreceptor disorganization and RPE cell dysfunction. The degenerative phenotype induced by the absence of DJ-1 was inhibited by solely expressing DJ-1 in Müller cells. The protective effect was dependent upon the cysteine-106 residue of DJ-1, which has been shown to be an oxidative sensor of DJ-1. In a label-free proteomics analysis of isolated retinas, we identified proteins differentially expressed after DJ-1 knockout, but with restored levels after Müller cell DJ-1 re-insertion. Our data show that Müller cell DJ-1 has a major role in protecting the retina from age-dependent oxidative stress.
Collapse
Affiliation(s)
- Naouel Gharbi
- Integrative Fish Biology Group (IFB), NORCE Norwegian Research Center AS, N-5020 Bergen, Norway; (N.G.); (V.T.)
| | - Dagne Røise
- Department of Biological Science, University of Bergen, N-5020 Bergen, Norway; (D.R.); (J.-E.F.); (A.J.E.); (H.A.H.); (A.-K.F.)
| | - Jorunn-Elise Førre
- Department of Biological Science, University of Bergen, N-5020 Bergen, Norway; (D.R.); (J.-E.F.); (A.J.E.); (H.A.H.); (A.-K.F.)
| | - Amanda J. Edson
- Department of Biological Science, University of Bergen, N-5020 Bergen, Norway; (D.R.); (J.-E.F.); (A.J.E.); (H.A.H.); (A.-K.F.)
| | - Helena A. Hushagen
- Department of Biological Science, University of Bergen, N-5020 Bergen, Norway; (D.R.); (J.-E.F.); (A.J.E.); (H.A.H.); (A.-K.F.)
| | - Valentina Tronci
- Integrative Fish Biology Group (IFB), NORCE Norwegian Research Center AS, N-5020 Bergen, Norway; (N.G.); (V.T.)
| | - Ann-Kristin Frøyset
- Department of Biological Science, University of Bergen, N-5020 Bergen, Norway; (D.R.); (J.-E.F.); (A.J.E.); (H.A.H.); (A.-K.F.)
| | - Kari E. Fladmark
- Department of Biological Science, University of Bergen, N-5020 Bergen, Norway; (D.R.); (J.-E.F.); (A.J.E.); (H.A.H.); (A.-K.F.)
| |
Collapse
|
27
|
Schmalen A, Lorenz L, Grosche A, Pauly D, Deeg CA, Hauck SM. Proteomic Phenotyping of Stimulated Müller Cells Uncovers Profound Pro-Inflammatory Signaling and Antigen-Presenting Capacity. Front Pharmacol 2021; 12:771571. [PMID: 34776983 PMCID: PMC8585775 DOI: 10.3389/fphar.2021.771571] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/12/2021] [Indexed: 01/15/2023] Open
Abstract
Müller cells are the main macroglial cells of the retina exerting a wealth of functions to maintain retinal homoeostasis. Upon pathological changes in the retina, they become gliotic with both protective and detrimental consequences. Accumulating data also provide evidence for a pivotal role of Müller cells in the pathogenesis of diabetic retinopathy (DR). While microglial cells, the resident immune cells of the retina are considered as main players in inflammatory processes associated with DR, the implication of activated Müller cells in chronic retinal inflammation remains to be elucidated. In order to assess the signaling capacity of Müller cells and their role in retinal inflammation, we performed in-depth proteomic analysis of Müller cell proteomes and secretomes after stimulation with INFγ, TNFα, IL-4, IL-6, IL-10, VEGF, TGFβ1, TGFβ2 and TGFβ3. We used both, primary porcine Müller cells and the human Müller cell line MIO-M1 for our hypothesis generating approach. Our results point towards an intense signaling capacity of Müller cells, which reacted in a highly discriminating manner upon treatment with different cytokines. Stimulation of Müller cells resulted in a primarily pro-inflammatory phenotype with secretion of cytokines and components of the complement system. Furthermore, we observed evidence for mitochondrial dysfunction, implying oxidative stress after treatment with the various cytokines. Finally, both MIO-M1 cells and primary porcine Müller cells showed several characteristics of atypical antigen-presenting cells, as they are capable of inducing MHC class I and MHC class II with co-stimulatory molecules. In line with this, they express proteins associated with formation and maturation of phagosomes. Thus, our findings underline the importance of Müller cell signaling in the inflamed retina, indicating an active role in chronic retinal inflammation.
Collapse
Affiliation(s)
- Adrian Schmalen
- Research Unit Protein Science and Metabolomics and Proteomics Core, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Neuherberg, Germany.,Chair of Physiology, Department of Veterinary Sciences, LMU Munich, Martinsried, Germany
| | - Lea Lorenz
- Chair of Physiology, Department of Veterinary Sciences, LMU Munich, Martinsried, Germany
| | - Antje Grosche
- Department of Physiological Genomics, Biomedical Center, LMU Munich, Martinsried, Germany
| | - Diana Pauly
- Experimental Ophthalmology, Philipps-University Marburg, Marburg, Germany.,Department of Ophthalmology, University Hospital Regensburg, Regensburg, Germany
| | - Cornelia A Deeg
- Chair of Physiology, Department of Veterinary Sciences, LMU Munich, Martinsried, Germany
| | - Stefanie M Hauck
- Research Unit Protein Science and Metabolomics and Proteomics Core, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| |
Collapse
|
28
|
Ramachandra Rao S, Fliesler SJ. Monitoring basal autophagy in the retina utilizing CAG-mRFP-EGFP-MAP1LC3B reporter mouse: technical and biological considerations. Autophagy 2021; 18:1187-1201. [PMID: 34674604 PMCID: PMC9196719 DOI: 10.1080/15548627.2021.1969634] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
We describe the utility of a tandem-tagged autophagy reporter mouse model (CAG-RFP-EGFP-MAP1LC3B) in investigating basal macroautophagic/autophagic flux in the neural retina. Western blot, in situ hybridization, immunohistochemistry, and confocal microscopy showed that CAG promoter-driven expression of RFP-EGFP-MAP1LC3B increased “cytosolic” RFP-EGFP-LC3B-I levels, whereas RFP-EGFP-LC3B-II decorates true phagosomes. We verified that the electroretinographic (ERG) responses of tandem-tagged LC3B mice were comparable to those of age-matched controls. Optimized microscope settings detected lipofuscin autofluorescence in retinas of abca4−/- mice. The majority of retinal phagosomes in the reporter mice exhibited only RFP (not EGFP) fluorescence, suggesting rapid maturation of phagosomes. Only ~1.5% of the total phagosome population was EGFP-labeled; RFP-labeled (mature) phagosomes colocalized with lysosomal markers LAMP2 and CTSD. In the outer retina, phagosome sizes were as follows (in µm2, ave ± SEM): RPE, 0.309 ± 0.015; photoreceptor inner segment-myoid, 0.544 ± 0.031; and outer nuclear layer, 0.429 ± 0.011. Detection of RPE phagosomes by fluorescence microscopy is challenging, due to the presence of melanin. Increased lipofuscin autofluorescence, such as observed in the abca4−/- mouse model of Stargardt disease, is a strong confounding factor when attempting to study autophagy in the RPE. In addition to RPE and photoreceptor cells, phagosomes were detected in inner retinal cell types, microglia, astrocytes, and endothelial cells. We conclude that the tandem-tagged LC3B mouse model serves as a useful system for studying autophagy in the retina. This utility, however, is dependent upon several technical and biological factors, including microscope settings, transgene expression, choice of fluorophores, and lipofuscin autofluorescence. Abbreviations: ACTB: actin, beta; AIF1: allograft inflammatory factor 1; ATG: autophagy related; CTSD: cathepsin D; DAPI: (4’,6-diamido-2-phenylindole); DIC: differential interference contrast; EGFP: enhanced green fluorescent protein; ELM: external limiting membrane; ERG: electroretinography; GCL: ganglion cell layer; GLUL: glutamine-ammonia ligase (glutamine synthetase); INL: inner nuclear layer; IS-E/M: inner segment – ellipsoid/myoid; ISH: in situ hybridization; LAMP2: lysosomal-associated membrane protein 2; L.I.: laser Intensity; MAP1LC3B: microtubule-associated protein 1 light chain 3 beta; MTOR: mechanistic target of rapamycin kinase; O.C.T.: optimal cutting temperature; OS: outer segment; ONL: outer nuclear layer; PE: phosphatidylethanolamine; RFP: red fluorescent protein; R.O.I.: region of interest; RPE: retinal pigment epithelium
Collapse
Affiliation(s)
- Sriganesh Ramachandra Rao
- Departments of Ophthalmology and Biochemistry and Neuroscience Graduate Program, Jacobs School of Medicine and Biomedical Sciences, State University of New York- University at Buffalo, Buffalo, NY, USA.,Research Service, VA Western Ny Healthcare System, Buffalo, NY, USA
| | - Steven J Fliesler
- Departments of Ophthalmology and Biochemistry and Neuroscience Graduate Program, Jacobs School of Medicine and Biomedical Sciences, State University of New York- University at Buffalo, Buffalo, NY, USA.,Research Service, VA Western Ny Healthcare System, Buffalo, NY, USA
| |
Collapse
|
29
|
Beckers A, Vanhunsel S, Van Dyck A, Bergmans S, Masin L, Moons L. Injury-induced Autophagy Delays Axonal Regeneration after Optic Nerve Damage in Adult Zebrafish. Neuroscience 2021; 470:52-69. [PMID: 34280491 DOI: 10.1016/j.neuroscience.2021.07.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/18/2021] [Accepted: 07/09/2021] [Indexed: 12/15/2022]
Abstract
Optic neuropathies comprise a group of disorders in which the axons of retinal ganglion cells (RGCs), the retinal projection neurons conveying visual information to the brain, are damaged. This results in visual impairment or even blindness, which is irreversible as adult mammals lack the capacity to repair or replace injured or lost neurons. Despite intensive research, no efficient treatment to induce axonal regeneration in the central nervous system (CNS) is available yet. Autophagy, the cellular recycling response, was shown repeatedly to be elevated in animal models of optic nerve injury, and both beneficial and detrimental effects have been reported. In this study, we subjected spontaneously regenerating adult zebrafish to optic nerve damage (ONC) and revealed that autophagy is enhanced after optic nerve damage in zebrafish, both in RGC axons and somas, as well as in macroglial cells of the retina, the optic nerve and the visual target areas in the brain. Interestingly, the pattern of the autophagic response in the axons followed the spatiotemporal window of axonal regrowth, which suggests that autophagy is ongoing at the growth cones. Pharmacological inhibition of the recycling pathway resulted in accelerated RGC target reinnervation, possibly linked to increased mechanistic target of rapamycin (mTOR) activity, known to stimulate axonal regrowth. Taken together, these intriguing findings underline that further research is warranted to decipher if modulation of autophagy could be an effective therapeutic method to induce CNS regeneration.
Collapse
Affiliation(s)
- An Beckers
- Neural Circuit Development and Regeneration Research Group, Animal Physiology and Neurobiology Section, Department of Biology, KU Leuven, 3000 Leuven, Belgium
| | - Sophie Vanhunsel
- Neural Circuit Development and Regeneration Research Group, Animal Physiology and Neurobiology Section, Department of Biology, KU Leuven, 3000 Leuven, Belgium
| | - Annelies Van Dyck
- Neural Circuit Development and Regeneration Research Group, Animal Physiology and Neurobiology Section, Department of Biology, KU Leuven, 3000 Leuven, Belgium
| | - Steven Bergmans
- Neural Circuit Development and Regeneration Research Group, Animal Physiology and Neurobiology Section, Department of Biology, KU Leuven, 3000 Leuven, Belgium
| | - Luca Masin
- Neural Circuit Development and Regeneration Research Group, Animal Physiology and Neurobiology Section, Department of Biology, KU Leuven, 3000 Leuven, Belgium
| | - Lieve Moons
- Neural Circuit Development and Regeneration Research Group, Animal Physiology and Neurobiology Section, Department of Biology, KU Leuven, 3000 Leuven, Belgium; Leuven Brain Institute, 3000 Leuven, Belgium.
| |
Collapse
|
30
|
Dixon MA, Greferath U, Fletcher EL, Jobling AI. The Contribution of Microglia to the Development and Maturation of the Visual System. Front Cell Neurosci 2021; 15:659843. [PMID: 33967697 PMCID: PMC8102829 DOI: 10.3389/fncel.2021.659843] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/29/2021] [Indexed: 12/20/2022] Open
Abstract
Microglia, the resident immune cells of the central nervous system (CNS), were once considered quiescent cells that sat in readiness for reacting to disease and injury. Over the last decade, however, it has become clear that microglia play essential roles in maintaining the normal nervous system. The retina is an easily accessible part of the central nervous system and therefore much has been learned about the function of microglia from studies in the retina and visual system. Anatomically, microglia have processes that contact all synapses within the retina, as well as blood vessels in the major vascular plexuses. Microglia contribute to development of the visual system by contributing to neurogenesis, maturation of cone photoreceptors, as well as refining synaptic contacts. They can respond to neural signals and in turn release a range of cytokines and neurotrophic factors that have downstream consequences on neural function. Moreover, in light of their extensive contact with blood vessels, they are also essential for regulation of vascular development and integrity. This review article summarizes what we have learned about the role of microglia in maintaining the normal visual system and how this has helped in understanding their role in the central nervous system more broadly.
Collapse
Affiliation(s)
- Michael A Dixon
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC, Australia
| | - Ursula Greferath
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC, Australia
| | - Erica L Fletcher
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC, Australia
| | - Andrew I Jobling
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
31
|
Park YS, Kim HL, Lee SH, Zhang Y, Kim IB. Expression of the Endoplasmic Reticulum Stress Marker GRP78 in the Normal Retina and Retinal Degeneration Induced by Blue LED Stimuli in Mice. Cells 2021; 10:cells10050995. [PMID: 33922686 PMCID: PMC8145904 DOI: 10.3390/cells10050995] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/19/2021] [Accepted: 04/22/2021] [Indexed: 01/12/2023] Open
Abstract
Retinal degeneration is a leading cause of blindness. The unfolded protein response (UPR) is an endoplasmic reticulum (ER) stress response that affects cell survival and death and GRP78 forms a representative protective response. We aimed to determine the exact localization of GRP78 in an animal model of light-induced retinal degeneration. Dark-adapted mice were exposed to blue light-emitting diodes and retinas were obtained at 24 h and 72 h after exposure. In the normal retina, we found that GRP78 was rarely detected in the photoreceptor cells while it was expressed in the perinuclear space of the cell bodies in the inner nuclear and ganglion cell layers. After injury, the expression of GRP78 in the outer nuclear and inner plexiform layers increased in a time-dependent manner. However, an increased GRP78 expression was not observed in damaged photoreceptor cells in the outer nuclear layer. GRP78 was located in the perinuclear space and ER lumen of glial cells and the ER developed in glial cells during retinal degeneration. These findings suggest that GRP78 and the ER response are important for glial cell activation in the retina during photoreceptor degeneration.
Collapse
Affiliation(s)
- Yong Soo Park
- Department of Anatomy, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Korea; (Y.S.P.); (S.H.L.); (Y.Z.)
- Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Korea
| | - Hong-Lim Kim
- Integrative Research Support Center, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Korea;
| | - Seung Hee Lee
- Department of Anatomy, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Korea; (Y.S.P.); (S.H.L.); (Y.Z.)
- Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Korea
| | - Yan Zhang
- Department of Anatomy, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Korea; (Y.S.P.); (S.H.L.); (Y.Z.)
- Department of Biomedicine and Health Sciences, Graduate School, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Korea
| | - In-Beom Kim
- Department of Anatomy, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Korea; (Y.S.P.); (S.H.L.); (Y.Z.)
- Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Korea
- Integrative Research Support Center, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Korea;
- Department of Biomedicine and Health Sciences, Graduate School, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Korea
- Catholic Institute for Applied Anatomy, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Korea
- Correspondence: ; Tel.: +82-2-2258-7263
| |
Collapse
|
32
|
Álvarez-Hernán G, de Mera-Rodríguez JA, Hernández-Núñez I, Marzal A, Gañán Y, Martín-Partido G, Rodríguez-León J, Francisco-Morcillo J. Analysis of Programmed Cell Death and Senescence Markers in the Developing Retina of an Altricial Bird Species. Cells 2021; 10:cells10030504. [PMID: 33652964 PMCID: PMC7996935 DOI: 10.3390/cells10030504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 12/30/2022] Open
Abstract
This study shows the distribution patterns of apoptotic cells and biomarkers of cellular senescence during the ontogeny of the retina in the zebra finch (T. guttata). Neurogenesis in this altricial bird species is intense in the retina at perinatal and post-hatching stages, as opposed to precocial bird species in which retinogenesis occurs entirely during the embryonic period. Various phases of programmed cell death (PCD) were distinguishable in the T. guttata visual system. These included areas of PCD in the central region of the neuroretina at the stages of optic cup morphogenesis, and in the sub-optic necrotic centers (St15–St20). A small focus of early neural PCD was detected in the neuroblastic layer, dorsal to the optic nerve head, coinciding with the appearance of the first differentiated neuroblasts (St24–St25). There were sparse pyknotic bodies in the non-laminated retina between St26 and St37. An intense wave of neurotrophic PCD was detected in the laminated retina between St42 and P8, the last post-hatching stage included in the present study. PCD was absent from the photoreceptor layer. Phagocytic activity was also detected in Müller cells during the wave of neurotrophic PCD. With regard to the chronotopographical staining patterns of senescence biomarkers, there was strong parallelism between the SA-β-GAL signal and p21 immunoreactivity in both the undifferentiated and the laminated retina, coinciding in the cell body of differentiated neurons. In contrast, no correlation was found between SA-β-GAL activity and the distribution of TUNEL-positive cells in the developing tissue.
Collapse
Affiliation(s)
- Guadalupe Álvarez-Hernán
- Área de Biología Celular Departamento de Anatomía Biología Celular y Zoología, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain; (G.Á.-H.); (J.A.d.M.-R.); (I.H.-N.); (G.M.-P.)
| | - José Antonio de Mera-Rodríguez
- Área de Biología Celular Departamento de Anatomía Biología Celular y Zoología, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain; (G.Á.-H.); (J.A.d.M.-R.); (I.H.-N.); (G.M.-P.)
| | - Ismael Hernández-Núñez
- Área de Biología Celular Departamento de Anatomía Biología Celular y Zoología, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain; (G.Á.-H.); (J.A.d.M.-R.); (I.H.-N.); (G.M.-P.)
| | - Alfonso Marzal
- Área de Zoología, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain;
| | - Yolanda Gañán
- Área de Anatomía y Embriología Humana, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Medicina, Universidad de Extremadura, 06006 Badajoz, Spain;
| | - Gervasio Martín-Partido
- Área de Biología Celular Departamento de Anatomía Biología Celular y Zoología, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain; (G.Á.-H.); (J.A.d.M.-R.); (I.H.-N.); (G.M.-P.)
| | - Joaquín Rodríguez-León
- Área de Anatomía y Embriología Humana, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Medicina, Universidad de Extremadura, 06006 Badajoz, Spain;
- Correspondence: (J.R.-L.); (J.F.-M.)
| | - Javier Francisco-Morcillo
- Área de Biología Celular Departamento de Anatomía Biología Celular y Zoología, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain; (G.Á.-H.); (J.A.d.M.-R.); (I.H.-N.); (G.M.-P.)
- Correspondence: (J.R.-L.); (J.F.-M.)
| |
Collapse
|
33
|
Gao H, A L, Huang X, Chen X, Xu H. Müller Glia-Mediated Retinal Regeneration. Mol Neurobiol 2021; 58:2342-2361. [PMID: 33417229 DOI: 10.1007/s12035-020-02274-w] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/22/2020] [Indexed: 12/18/2022]
Abstract
Müller glia originate from neuroepithelium and are the principal glial cells in the retina. During retinal development, Müller glia are one of the last cell types to be born. In lower vertebrates, such as zebrafish, Müller glia possess a remarkable capacity for retinal regeneration following various forms of injury through a reprogramming process in which endogenous Müller glia proliferate and differentiate into all types of retinal cells. In mammals, Müller glia become reactive in response to damage to protect or to further impair retinal function. Although mammalian Müller glia have regenerative potential, it is limited as far as repairing damaged retina. Lessons learned from zebrafish will help reveal the critical mechanisms involved in Müller glia reprogramming. Progress has been made in triggering Müller glia to reprogram and generate functional neurons to restore vision in mammals indicating that Müller glia reprogramming may be a promising therapeutic strategy for human retinal diseases. This review comprehensively summarizes the mechanisms related to retinal regeneration in model animals and the critical advanced progress made in Müller glia reprogramming in mammals.
Collapse
Affiliation(s)
- Hui Gao
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Luodan A
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Xiaona Huang
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Xi Chen
- Department of Ophthalmology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Haiwei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China.
| |
Collapse
|
34
|
Álvarez-Hernán G, de Mera-Rodríguez JA, Gañán Y, Solana-Fajardo J, Martín-Partido G, Rodríguez-León J, Francisco-Morcillo J. Development and postnatal neurogenesis in the retina: a comparison between altricial and precocial bird species. Neural Regen Res 2021; 16:16-20. [PMID: 32788442 PMCID: PMC7818864 DOI: 10.4103/1673-5374.286947] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/14/2020] [Accepted: 04/07/2020] [Indexed: 01/09/2023] Open
Abstract
The visual system is affected by neurodegenerative diseases caused by the degeneration of specific retinal neurons, the leading cause of irreversible blindness in humans. Throughout vertebrate phylogeny, the retina has two kinds of specialized niches of constitutive neurogenesis: the retinal progenitors located in the circumferential marginal zone and Müller glia. The proliferative activity in the retinal progenitors located in the circumferential marginal zone in precocial birds such as the chicken, the commonest bird model used in developmental and regenerative studies, is very low. This region adds only a few retinal cells to the peripheral edge of the retina during several months after hatching, but does not seem to be involved in retinal regeneration. Müller cells in the chicken retina are not proliferative under physiological conditions, but after acute damage some of them undergo a reprogramming event, dedifferentiating into retinal stem cells and generating new retinal neurons. Therefore, regenerative response after injury occurs with low efficiency in the precocial avian retina. In contrast, it has recently been shown that neurogenesis is intense in the retina of altricial birds at hatching. In particular, abundant proliferative activity is detected both in the circumferential marginal zone and in the outer half of the inner nuclear layer. Therefore, stem cell niches are very active in the retina of altricial birds. Although more extensive research is needed to assess the potential of proliferating cells in the adult retina of altricial birds, it emerges as an attractive model for studying different aspects of neurogenesis and neural regeneration in vertebrates.
Collapse
Affiliation(s)
- Guadalupe Álvarez-Hernán
- Área de Biología Celular, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - José Antonio de Mera-Rodríguez
- Área de Anatomía Humana, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Medicina, Universidad de Extremadura, Badajoz, Spain
| | - Yolanda Gañán
- Área de Anatomía Humana, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Medicina, Universidad de Extremadura, Badajoz, Spain
| | - Jorge Solana-Fajardo
- Servicio de Oftalmología, Complejo Hospitalario Universitario de Badajoz, Badajoz, Spain
| | - Gervasio Martín-Partido
- Área de Biología Celular, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Joaquín Rodríguez-León
- Área de Anatomía Humana, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Medicina, Universidad de Extremadura, Badajoz, Spain
| | - Javier Francisco-Morcillo
- Área de Biología Celular, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| |
Collapse
|
35
|
Lago-Baldaia I, Fernandes VM, Ackerman SD. More Than Mortar: Glia as Architects of Nervous System Development and Disease. Front Cell Dev Biol 2020; 8:611269. [PMID: 33381506 PMCID: PMC7767919 DOI: 10.3389/fcell.2020.611269] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/17/2020] [Indexed: 12/12/2022] Open
Abstract
Glial cells are an essential component of the nervous system of vertebrates and invertebrates. In the human brain, glia are as numerous as neurons, yet the importance of glia to nearly every aspect of nervous system development has only been expounded over the last several decades. Glia are now known to regulate neural specification, synaptogenesis, synapse function, and even broad circuit function. Given their ubiquity, it is not surprising that the contribution of glia to neuronal disease pathogenesis is a growing area of research. In this review, we will summarize the accumulated evidence of glial participation in several distinct phases of nervous system development and organization-neural specification, circuit wiring, and circuit function. Finally, we will highlight how these early developmental roles of glia contribute to nervous system dysfunction in neurodevelopmental and neurodegenerative disorders.
Collapse
Affiliation(s)
- Inês Lago-Baldaia
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Vilaiwan M. Fernandes
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Sarah D. Ackerman
- Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, Eugene, OR, United States
| |
Collapse
|
36
|
Jin M, Li X, Yan F, Chen W, Jiang L, Zhang X. The effects of low-color-temperature dual-primary-color light-emitting diodes on three kinds of retinal cells. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 214:112099. [PMID: 33285486 DOI: 10.1016/j.jphotobiol.2020.112099] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 10/03/2020] [Accepted: 11/23/2020] [Indexed: 12/20/2022]
Abstract
Long-term illumination of the retina with blue-light-excited phosphor-converted light-emitting diodes (LEDs) may result in decreased retinal function, even if the levels of blue light emitted are low. New low-color-temperature dual-primary-color LEDs have been developed that are composed of only two LED chips: a red chip and a yellow chip. These LEDs are expected to become a new type of healthy lighting source because they do not emit blue light, they lack phosphor, and they solve the problem of low efficiency encountered with phosphor-converted low-color-temperature LEDs. Many studies have indicated that these new low-color-temperature LEDs are likely to have therapeutic effects. However, the biological safety of these LEDs needs to be explored before the therapeutic effects are explored. Therefore, this experiment was conducted to investigate the effects of the new low-color-temperature LEDs and fluorescent white LEDs on three types of retinal cells. We observed that the viability and numbers of retinal cells decreased gradually with increasing LED color temperature. The new low-color-temperature LEDs caused less death and adverse effects on proliferation than the fluorescent white LEDs. After irradiation with high-color-temperature LEDs, the expression of Zonula Occludens-1 (ZO-1) was decreased and discontinuous in ARPE-19 cells; the stress protein hemeoxygenase-1 (HO-1) was upregulated in R28 cells; and glial fibrillary acidic protein (GFAP) and vimentin were upregulated in rMC-1 cells. We therefore conclude that the new white LEDs cause almost no damage to retinal cells and reduce the potential human health risks of chronic exposure to fluorescent white LEDs.
Collapse
Affiliation(s)
- Ming Jin
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Clinical Research Center for Ophthalmic Disease, 463 Bayi Road, Nanchang, Jiangxi 330006, China
| | - Xiongfeng Li
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Clinical Research Center for Ophthalmic Disease, 463 Bayi Road, Nanchang, Jiangxi 330006, China
| | - Feng Yan
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Clinical Research Center for Ophthalmic Disease, 463 Bayi Road, Nanchang, Jiangxi 330006, China
| | - Weixin Chen
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Clinical Research Center for Ophthalmic Disease, 463 Bayi Road, Nanchang, Jiangxi 330006, China
| | - Lei Jiang
- Queen Mary School of Nanchang University, 461 Bayi Road, Nanchang, Jiangxi 330046, China
| | - Xu Zhang
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Clinical Research Center for Ophthalmic Disease, 463 Bayi Road, Nanchang, Jiangxi 330006, China.
| |
Collapse
|
37
|
Karlen SJ, Miller EB, Burns ME. Microglia Activation and Inflammation During the Death of Mammalian Photoreceptors. Annu Rev Vis Sci 2020; 6:149-169. [PMID: 32936734 PMCID: PMC10135402 DOI: 10.1146/annurev-vision-121219-081730] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Photoreceptors are highly specialized sensory neurons with unique metabolic and physiological requirements. These requirements are partially met by Müller glia and cells of the retinal pigment epithelium (RPE), which provide essential metabolites, phagocytose waste, and control the composition of the surrounding microenvironment. A third vital supporting cell type, the retinal microglia, can provide photoreceptors with neurotrophic support or exacerbate neuroinflammation and hasten neuronal cell death. Understanding the physiological requirements for photoreceptor homeostasis and the factors that drive microglia to best promote photoreceptor survival has important implications for the treatment and prevention of blinding degenerative diseases like retinitis pigmentosa and age-related macular degeneration.
Collapse
Affiliation(s)
- Sarah J. Karlen
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, California 95616, USA
| | - Eric B. Miller
- Center for Neuroscience, University of California, Davis, Davis, California 95616, USA
| | - Marie E. Burns
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, California 95616, USA
- Center for Neuroscience, University of California, Davis, Davis, California 95616, USA
- Department of Ophthalmology & Vision Science, University of California, Davis, Davis, California 95616, USA
| |
Collapse
|
38
|
Pereiro X, Miltner AM, La Torre A, Vecino E. Effects of Adult Müller Cells and Their Conditioned Media on the Survival of Stem Cell-Derived Retinal Ganglion Cells. Cells 2020; 9:E1759. [PMID: 32708020 PMCID: PMC7465792 DOI: 10.3390/cells9081759] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 12/16/2022] Open
Abstract
Retinal neurons, particularly retinal ganglion cells (RGCs), are susceptible to the degenerative damage caused by different inherited conditions and environmental insults, leading to irreversible vision loss and, ultimately, blindness. Numerous strategies are being tested in different models of degeneration to restore vision and, in recent years, stem cell technologies have offered novel avenues to obtain donor cells for replacement therapies. To date, stem cell-based transplantation in the retina has been attempted as treatment for photoreceptor degeneration, but the same tools could potentially be applied to other retinal cell types, including RGCs. However, RGC-like cells are not an abundant cell type in stem cell-derived cultures and, often, these cells degenerate over time in vitro. To overcome this limitation, we have taken advantage of the neuroprotective properties of Müller glia (one of the main glial cell types in the retina) and we have examined whether Müller glia and the factors they secrete could promote RGC-like cell survival in organoid cultures. Accordingly, stem cell-derived RGC-like cells were co-cultured with adult Müller cells or Müller cell-conditioned media was added to the cultures. Remarkably, RGC-like cell survival was substantially enhanced in both culture conditions, and we also observed a significant increase in their neurite length. Interestingly, Atoh7, a transcription factor required for RGC development, was up-regulated in stem cell-derived organoids exposed to conditioned media, suggesting that Müller cells may also enhance the survival of retinal progenitors and/or postmitotic precursor cells. In conclusion, Müller cells and the factors they release promote organoid-derived RGC-like cell survival, neuritogenesis, and possibly neuronal maturation.
Collapse
Affiliation(s)
- Xandra Pereiro
- Department of Cell Biology and Histology, University of Basque Country UPV/EHU, Leioa, 48940 Vizcaya, Spain;
| | - Adam M. Miltner
- Department of Cell Biology and Human Anatomy, University of California Davis, Davis, CA 95616, USA; (A.M.M.); (A.L.T.)
| | - Anna La Torre
- Department of Cell Biology and Human Anatomy, University of California Davis, Davis, CA 95616, USA; (A.M.M.); (A.L.T.)
| | - Elena Vecino
- Department of Cell Biology and Histology, University of Basque Country UPV/EHU, Leioa, 48940 Vizcaya, Spain;
| |
Collapse
|
39
|
Di Pierdomenico J, Martínez-Vacas A, Hernández-Muñoz D, Gómez-Ramírez AM, Valiente-Soriano FJ, Agudo-Barriuso M, Vidal-Sanz M, Villegas-Pérez MP, García-Ayuso D. Coordinated Intervention of Microglial and Müller Cells in Light-Induced Retinal Degeneration. Invest Ophthalmol Vis Sci 2020; 61:47. [PMID: 32232352 PMCID: PMC7401701 DOI: 10.1167/iovs.61.3.47] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Purpose To analyze the role of microglial and Müller cells in the formation of rings of photoreceptor degeneration caused by phototoxicity. Methods Two-month-old Sprague-Dawley rats were exposed to light and processed 1, 2, or 3 months later. Retinas were dissected as whole-mounts, immunodetected for microglial cells, Müller cells, and S- and L/M-cones and analyzed using fluorescence, thunder imaging, and confocal microscopy. Cone populations were automatically counted and isodensity maps constructed to document cone topography. Results Phototoxicity causes a significant progressive loss of S- and L/M-cones of up to 68% and 44%, respectively, at 3 months after light exposure (ALE). One month ALE, we observed rings of cone degeneration in the photosensitive area of the superior retina. Two and 3 months ALE, these rings had extended to the central and inferior retina. Within the rings of cone degeneration, there were degenerating cones, often activated microglial cells, and numerous radially oriented processes of Müller cells that showed increased expression of intermediate filaments. Between 1 and 3 months ALE, the rings coalesced, and at the same time the microglial cells resumed a mosaic-like distribution, and there was a decrease of Müller cell gliosis at the areas devoid of cones. Conclusions Light-induced photoreceptor degeneration proceeds with rings of cone degeneration, as observed in inherited retinal degenerations in which cone death is secondary to rod degeneration. The spatiotemporal relationship of cone death microglial cell activation and Müller cell gliosis within the rings of cone degeneration suggests that, although both glial cells are involved in the formation of the rings, they may have coordinated actions and, while microglial cells may be more involved in photoreceptor phagocytosis, Müller cells may be more involved in cone and microglial cell migration, retinal remodeling and glial seal formation.
Collapse
|
40
|
Peña JS, Vazquez M. VEGF Upregulates EGFR Expression to Stimulate Chemotactic Behaviors in the rMC-1 Model of Müller Glia. Brain Sci 2020; 10:E330. [PMID: 32485834 PMCID: PMC7348795 DOI: 10.3390/brainsci10060330] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 03/28/2020] [Accepted: 05/27/2020] [Indexed: 12/14/2022] Open
Abstract
Progressive vision loss in adults has become increasingly prevalent worldwide due to retinopathies associated with aging, genetics, and epigenetic factors that damage the retinal microvasculature. Insufficient supply of oxygen and/or nutrients upregulates factors such as vascular endothelial growth factor (VEGF) and epidermal growth factor (EGF), which can induce abnormal angiogenesis and damage the structural arrangement of the retinal blood barrier (BRB). Müller glia (MG) regulate the diffusion of essential compounds across the BRB and respond to retinal insults via reactive gliosis, which includes cell hypertrophy, migration, and/or proliferation near areas of elevated VEGF concentration. Increasing concentrations of exogenous VEGF, upregulated by retinal pigmented epithelium cells, and endogenous epidermal growth factor receptor (EGF-R) stimulation in MG, implicated in MG proliferative and migratory behavior, often lead to progressive and permanent vision loss. Our project examined the chemotactic responses of the rMC-1 cell line, a mammalian MG model, toward VEGF and EGF signaling fields in transwell assays, and within respective concentration gradient fields produced in the glia line (gLL) microfluidic system previously described by our group. rMC-1 receptor expression in defined ligand fields was also evaluated using quantitative polymerase chain reaction (qPCR) and immunocytochemical staining. Results illustrate dramatic increases in rMC-1 chemotactic responses towards EGF gradient fields after pre-treatment with VEGF. In addition, qPCR illustrated significant upregulation of EGF-R upon VEGF pre-treatment, which was higher than that induced by its cognate ligand, EGF. These results suggest interplay of molecular pathways between VEGF and EGF-R that have remained understudied in MG but are significant to the development of effective anti-VEGF treatments needed for a variety of retinopathies.
Collapse
Affiliation(s)
| | - Maribel Vazquez
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA;
| |
Collapse
|
41
|
Elsner AE, Papay JA, Johnston KD, Sawides L, de Castro A, King BJ, Jones DW, Clark CA, Gast TJ, Burns SA. Cones in ageing and harsh environments: the neural economy hypothesis. Ophthalmic Physiol Opt 2020; 40:88-116. [PMID: 32017191 PMCID: PMC7155023 DOI: 10.1111/opo.12670] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/31/2019] [Indexed: 01/22/2023]
Abstract
PURPOSE Cones are at great risk in a wide variety of retinal diseases, especially when there is a harsh microenvironment and retinal pigment epithelium is damaged. We provide established and new methods for assessing cones and retinal pigment epithelium, together with new results. We investigated conditions under which cones can be imaged and could guide light, despite the proximity of less than ideal retinal pigment epithelium. RECENT FINDINGS We used a variety of imaging methods to detect and localise damage to the retinal pigment epithelium. As age-related macular degeneration is a particularly widespread disease, we imaged clinical hallmarks: drusen and hyperpigmentation. Using near infrared light provided improved imaging of the deeper fundus layers. We compared confocal and multiply scattered light images, using both the variation of detection apertures and polarisation analysis. We used optical coherence tomography to examine distances between structures and thickness of retinal layers, as well as identifying damage to the retinal pigment epithelium. We counted cones using adaptive optics scanning laser ophthalmoscopy. We compared the results of five subjects with geographic atrophy to data from a previous normative ageing study. Using near infrared imaging and layer analysis of optical coherence tomography, the widespread aspect of drusen became evident. Both multiply scattered light imaging and analysis of the volume in the retinal pigment epithelial layer from the optical coherence tomography were effective in localising drusen and hyperpigmentation beneath the photoreceptors. Cone photoreceptors in normal older eyes were shorter than in younger eyes. Cone photoreceptors survived in regions of atrophy, but with greatly reduced and highly variable density. Regular arrays of cones were found in some locations, despite abnormal retinal pigment epithelium. For some subjects, the cone density was significantly greater than normative values in some retinal locations outside the atrophy. SUMMARY The survival of cones within atrophy is remarkable. The unusually dense packing of cones at some retinal locations outside the atrophy indicates more fluidity in cone distribution than typically thought. Together these findings suggest strategies for therapy that includes preserving cones.
Collapse
|
42
|
Blume ZI, Lambert JM, Lovel AG, Mitchell DM. Microglia in the developing retina couple phagocytosis with the progression of apoptosis via P2RY12 signaling. Dev Dyn 2020; 249:723-740. [PMID: 32072708 DOI: 10.1002/dvdy.163] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/30/2019] [Accepted: 02/07/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Microglia colonize the developing vertebrate central nervous system coincident with the detection of developmental apoptosis. Our understanding of apoptosis in intact tissue in relation to microglial clearance of dying cells is largely based on fixed samples, which is limiting given that microglia are highly motile and mobile phagocytes. Here, we used a system of microglial depletion and in vivo real-time imaging in zebrafish to directly address microglial phagocytosis of apoptotic cells during normal retinal development, the relative timing of phagocytosis in relation to apoptotic progression, and the contribution of P2RY12 signaling to this process. RESULTS The depletion of microglia resulted in accumulation of numerous apoptotic cells in the retina. Real-time imaging revealed precise timing of microglial engulfment with the progression of apoptosis, and dynamic movement and displacement of engulfed apoptotic cells. Inhibition of P2RY12 signaling delayed microglial clearance of apoptotic cells. CONCLUSIONS Microglial engulfment of dying cells is coincident with apoptotic progression and requires P2RY12 signaling, indicating that microglial P2RY12 signaling is shared between development and injury response. Our work provides important in vivo insight into the dynamics of apoptotic cell clearance in the developing vertebrate retina and provides a basis to understand microglial phagocytic behavior in health and disease.
Collapse
Affiliation(s)
- Zachary I Blume
- Biological Sciences, University of Idaho, Moscow, Idaho, USA
| | - Jared M Lambert
- Biological Sciences, University of Idaho, Moscow, Idaho, USA
| | - Anna G Lovel
- Biological Sciences, University of Idaho, Moscow, Idaho, USA
| | | |
Collapse
|
43
|
García-Ayuso D, Di Pierdomenico J, Vidal-Sanz M, Villegas-Pérez MP. Retinal Ganglion Cell Death as a Late Remodeling Effect of Photoreceptor Degeneration. Int J Mol Sci 2019; 20:ijms20184649. [PMID: 31546829 PMCID: PMC6770703 DOI: 10.3390/ijms20184649] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/09/2019] [Accepted: 09/17/2019] [Indexed: 12/16/2022] Open
Abstract
Inherited or acquired photoreceptor degenerations, one of the leading causes of irreversible blindness in the world, are a group of retinal disorders that initially affect rods and cones, situated in the outer retina. For many years it was assumed that these diseases did not spread to the inner retina. However, it is now known that photoreceptor loss leads to an unavoidable chain of events that cause neurovascular changes in the retina including migration of retinal pigment epithelium cells, formation of “subretinal vascular complexes”, vessel displacement, retinal ganglion cell (RGC) axonal strangulation by retinal vessels, axonal transport alteration and, ultimately, RGC death. These events are common to all photoreceptor degenerations regardless of the initial trigger and thus threaten the outcome of photoreceptor substitution as a therapeutic approach, because with a degenerating inner retina, the photoreceptor signal will not reach the brain. In conclusion, therapies should be applied early in the course of photoreceptor degeneration, before the remodeling process reaches the inner retina.
Collapse
Affiliation(s)
- Diego García-Ayuso
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, and Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca), 30120 Murcia, Spain.
| | - Johnny Di Pierdomenico
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, and Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca), 30120 Murcia, Spain.
| | - Manuel Vidal-Sanz
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, and Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca), 30120 Murcia, Spain.
| | - María P Villegas-Pérez
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, and Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca), 30120 Murcia, Spain.
| |
Collapse
|
44
|
Magnadóttir B, Bragason BT, Bricknell IR, Bowden T, Nicholas AP, Hristova M, Guðmundsdóttir S, Dodds AW, Lange S. Peptidylarginine deiminase and deiminated proteins are detected throughout early halibut ontogeny - Complement components C3 and C4 are post-translationally deiminated in halibut (Hippoglossus hippoglossus L.). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 92:1-19. [PMID: 30395876 DOI: 10.1016/j.dci.2018.10.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/30/2018] [Accepted: 10/30/2018] [Indexed: 06/08/2023]
Abstract
Post-translational protein deimination is mediated by peptidylarginine deiminases (PADs), which are calcium dependent enzymes conserved throughout phylogeny with physiological and pathophysiological roles. Protein deimination occurs via the conversion of protein arginine into citrulline, leading to structural and functional changes in target proteins. In a continuous series of early halibut development from 37 to 1050° d, PAD, total deiminated proteins and deiminated histone H3 showed variation in temporal and spatial detection in various organs including yolksac, muscle, skin, liver, brain, eye, spinal cord, chondrocytes, heart, intestines, kidney and pancreas throughout early ontogeny. For the first time in any species, deimination of complement components C3 and C4 is shown in halibut serum, indicating a novel mechanism of complement regulation in immune responses and homeostasis. Proteomic analysis of deiminated target proteins in halibut serum further identified complement components C5, C7, C8 C9 and C1 inhibitor, as well as various other immunogenic, metabolic, cytoskeletal and nuclear proteins. Post-translational deimination may facilitate protein moonlighting, an evolutionary conserved phenomenon, allowing one polypeptide chain to carry out various functions to meet functional requirements for diverse roles in immune defences and tissue remodelling.
Collapse
Affiliation(s)
- Bergljót Magnadóttir
- Institute for Experimental Pathology, University of Iceland, Keldur v. Vesturlandsveg, 112 Reykjavik, Iceland.
| | - Birkir Thor Bragason
- Institute for Experimental Pathology, University of Iceland, Keldur v. Vesturlandsveg, 112 Reykjavik, Iceland.
| | - Ian R Bricknell
- Aquaculture Research Institute School of Marine Sciences, University of Maine, Orono, ME, USA.
| | - Timothy Bowden
- Aquaculture Research Institute School of Food & Agriculture, University of Maine, University of Maine, Orono, ME, USA.
| | - Anthony P Nicholas
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Mariya Hristova
- Perinatal Brain Protection and Repair Group, EGA Institute for Women's Health, University College London, London, WC1E 6HX, UK.
| | - Sigríður Guðmundsdóttir
- Institute for Experimental Pathology, University of Iceland, Keldur v. Vesturlandsveg, 112 Reykjavik, Iceland.
| | - Alister W Dodds
- MRC Immunochemistry Unit, Department of Biochemistry, University of Oxford, Oxford, UK.
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London, W1W 6UW, UK.
| |
Collapse
|
45
|
Mitochondrial Uncoupling Protein 2 Knock-out Promotes Mitophagy to Decrease Retinal Ganglion Cell Death in a Mouse Model of Glaucoma. J Neurosci 2019; 39:3582-3596. [PMID: 30814312 DOI: 10.1523/jneurosci.2702-18.2019] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 02/14/2019] [Accepted: 02/15/2019] [Indexed: 01/12/2023] Open
Abstract
Glaucoma is a neurodegenerative disorder characterized by mitochondrial dysfunction and an increase in oxidative damage, leading to retinal ganglion cell (RGC) death. The oxidative status of RGCs is regulated intrinsically and also extrinsically by retinal glia. The mitochondrial uncoupling protein 2 (UCP2) relieves oxidative and neuronal damage in a variety of neurodegenerative disease models. We hypothesized that deletion of Ucp2 in either RGCs or retinal glia would increase retinal damage and RGC death in a mouse model of glaucoma. Paradoxically, we found the reverse, and deletion of mitochondrial Ucp2 decreased oxidative protein modification and reduced RGC death in male and female mice. This paradox was resolved after finding that Ucp2 deletion also increased levels of mitophagy in cell culture and retinal tissue. Our data suggest that Ucp2 deletion facilitates increased mitochondrial function by improving quality control. An increase in mitochondrial function explains the resistance of Ucp2-deleted retinas to glaucoma and may provide a therapeutic avenue for other chronic neurodegenerative conditions.SIGNIFICANCE STATEMENT Many unsolved neurodegenerative conditions result from defects in mitochondrial function. Molecular tools that can manipulate mitochondria will therefore be central to developing neuroprotective therapies. Among the most potent regulators of mitochondrial function are the uncoupling proteins, particularly UCP2. In this manuscript, we show that, while loss of Ucp2 does increase mitochondrial membrane potential and the production of reactive oxygen species, it also initiates an increase in mitophagy that is ultimately neuroprotective. This novel protective consequence of uncoupling protein inhibition may lead to new therapeutic approaches to combat neurodegenerative disease, particularly because pharmacological compounds do exist that can selectively inhibit UCP2.
Collapse
|
46
|
Devoldere J, Peynshaert K, De Smedt SC, Remaut K. Müller cells as a target for retinal therapy. Drug Discov Today 2019; 24:1483-1498. [PMID: 30731239 DOI: 10.1016/j.drudis.2019.01.023] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/20/2018] [Accepted: 01/30/2019] [Indexed: 12/28/2022]
Abstract
Müller cells are specialized glial cells that span the entire retina from the vitreous cavity to the subretinal space. Their functional diversity and unique radial morphology render them particularly interesting targets for new therapeutic approaches. In this review, we reflect on various possibilities for selective Müller cell targeting and describe how some of their cellular mechanisms can be used for retinal neuroprotection. Intriguingly, cross-species investigation of their properties has revealed that Müller cells also have an essential role in retinal regeneration. Although many questions regarding this subject remain, it is clear that Müller cells have unique characteristics that make them suitable targets for the prevention and treatment of numerous retinal diseases.
Collapse
Affiliation(s)
- Joke Devoldere
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Karen Peynshaert
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Stefaan C De Smedt
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - Katrien Remaut
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium.
| |
Collapse
|
47
|
Aires ID, Boia R, Rodrigues-Neves AC, Madeira MH, Marques C, Ambrósio AF, Santiago AR. Blockade of microglial adenosine A 2A receptor suppresses elevated pressure-induced inflammation, oxidative stress, and cell death in retinal cells. Glia 2019; 67:896-914. [PMID: 30667095 PMCID: PMC6590475 DOI: 10.1002/glia.23579] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 11/08/2018] [Accepted: 11/28/2018] [Indexed: 12/20/2022]
Abstract
Glaucoma is a retinal degenerative disease characterized by the loss of retinal ganglion cells and damage of the optic nerve. Recently, we demonstrated that antagonists of adenosine A2A receptor (A2A R) control retinal inflammation and afford protection to rat retinal cells in glaucoma models. However, the precise contribution of microglia to retinal injury was not addressed, as well as the effect of A2A R blockade directly in microglia. Here we show that blocking microglial A2A R prevents microglial cell response to elevated pressure and it is sufficient to protect retinal cells from elevated pressure-induced death. The A2A R antagonist SCH 58261 or the knockdown of A2A R expression with siRNA in microglial cells prevented the increase in microglia response to elevated hydrostatic pressure. Furthermore, in retinal neural cell cultures, the A2A R antagonist decreased microglia proliferation, as well as the expression and release of pro-inflammatory mediators. Microglia ablation prevented neural cell death triggered by elevated pressure. The A2A R blockade recapitulated the effects of microglia depletion, suggesting that blocking A2A R in microglia is able to control neurodegeneration in glaucoma-like conditions. Importantly, in human organotypic retinal cultures, A2A R blockade prevented the increase in reactive oxygen species and the morphological alterations in microglia triggered by elevated pressure. These findings place microglia as the main contributors for retinal cell death during elevated pressure and identify microglial A2A R as a therapeutic target to control retinal neuroinflammation and prevent neural apoptosis elicited by elevated pressure.
Collapse
Affiliation(s)
- Inês Dinis Aires
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal
| | - Raquel Boia
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal
| | - Ana Catarina Rodrigues-Neves
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal
| | - Maria Helena Madeira
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal
| | - Carla Marques
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal
| | - António Francisco Ambrósio
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal
| | - Ana Raquel Santiago
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal.,Association for Innovation and Biomedical Research on Light and Image (AIBILI), Coimbra, Portugal
| |
Collapse
|
48
|
Sakami S, Imanishi Y, Palczewski K. Müller glia phagocytose dead photoreceptor cells in a mouse model of retinal degenerative disease. FASEB J 2018; 33:3680-3692. [PMID: 30462532 DOI: 10.1096/fj.201801662r] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Retinitis pigmentosa is a devastating, blinding disorder that affects 1 in 4000 people worldwide. During the progression of the disorder, phagocytic clearance of dead photoreceptor cell bodies has a protective role by preventing additional retinal damage from accumulation of cellular debris. However, the cells responsible for the clearance remain unidentified. Taking advantage of a mouse model of retinitis pigmentosa ( RhoP23H/P23H), we clarified the roles of Müller glia in the phagocytosis of rod photoreceptor cells. During the early stage of retinal degeneration, Müller glial cells participated in the phagocytosis of dying or dead rod photoreceptors throughout the outer nuclear layer. Nearly 50% of Müller glia engaged in phagocytosis. Among the Müller phagosomes, >90% matured into phagolysosomes. Those observations indicated that Müller glial cells are the primary contributor to phagocytosis. In contrast, macrophages migrate to the inner part of the outer nuclear layer during photoreceptor degeneration, participating in the phagocytosis of a limited population of dying or dead photoreceptor cells. In healthy retinas of wild-type mice, Müller glial cells phagocytosed cell bodies of dead rod photoreceptors albeit at a lower frequency. Taken together, the phagocytic function of Müller glia is responsible for retinal homeostasis and reorganization under normal and pathologic conditions.-Sakami, S., Imanishi, Y., Palczewski, K. Müller glia phagocytose dead photoreceptor cells in a mouse model of retinal degenerative disease.
Collapse
Affiliation(s)
- Sanae Sakami
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Yoshikazu Imanishi
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Krzysztof Palczewski
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
49
|
Chen H, Ji Y, Yan X, Su G, Chen L, Xiao J. Berberine attenuates apoptosis in rat retinal Müller cells stimulated with high glucose via enhancing autophagy and the AMPK/mTOR signaling. Biomed Pharmacother 2018; 108:1201-1207. [PMID: 30372821 DOI: 10.1016/j.biopha.2018.09.140] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 09/26/2018] [Accepted: 09/26/2018] [Indexed: 11/30/2022] Open
Abstract
Berberine (BBR) has beneficial effects on diabetes and the multiple complications of diabetes due to its anti-apoptotic activity; however, the effect of BBR on diabetic retinopathy and its mechanism of action have not been clarified. The present study investigated the effect of BBR on Müller cells stimulated with high glucose (HG). Primary retinal Müller cells were incubated with high glucose to induce cell apoptosis; cells were pretreated with the AMPK inhibitor compound C and the AMPK activator AICAR to further explore the role of the AMPK/mTOR signaling pathway in the anti-apoptotic action of BBR. Immunofluorescence was used to measure apoptosis and autophagy. Western blot analysis was employed to determine the levels of p-AMPK and p-mTOR, as well as apoptosis-related proteins and autophagy-related proteins in Müller cells. Our results showed that BBR attenuated apoptosis, up regulated Bcl-2 and down regulated Bax and caspase-3 expression; enhanced the formation of autophagy, elevated the expression of Beclin-1 and LC3II and activated the AMPK/mTOR signaling pathway in Müller cells under high glucose conditions compared with the control group. The effect of BBR was partly blocked by compound C and strengthened by AICAR. BBR may have therapeutic potential to protect Müller cells from high-glucose-inducing apoptosis through enhancing autophagy and activating the AMPK/mTOR signaling pathway.
Collapse
Affiliation(s)
- Han Chen
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun, 130041, China
| | - Yingshi Ji
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Xin Yan
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; General Hospital of Fushun Mining Bureau, Fushun, 113008, China
| | - Guanfang Su
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun, 130041, China
| | - Li Chen
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; School of Nursing, Jilin University, Changchun, 130021, China
| | - Jun Xiao
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun, 130041, China.
| |
Collapse
|
50
|
Magnadóttir B, Hayes P, Hristova M, Bragason BT, Nicholas AP, Dodds AW, Guðmundsdóttir S, Lange S. Post-translational protein deimination in cod (Gadus morhua L.) ontogeny novel roles in tissue remodelling and mucosal immune defences? DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 87:157-170. [PMID: 29908202 DOI: 10.1016/j.dci.2018.06.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 06/12/2018] [Accepted: 06/12/2018] [Indexed: 06/08/2023]
Abstract
Peptidylarginine deiminases (PADs) are calcium dependent enzymes with physiological and pathophysiological roles conserved throughout phylogeny. PADs promote post-translational deimination of protein arginine to citrulline, altering the structure and function of target proteins. Deiminated proteins were detected in the early developmental stages of cod from 11 days post fertilisation to 70 days post hatching. Deiminated proteins were present in mucosal surfaces and in liver, pancreas, spleen, gut, muscle, brain and eye during early cod larval development. Deiminated protein targets identified in skin mucosa included nuclear histones; cytoskeletal proteins such as tubulin and beta-actin; metabolic and immune related proteins such as galectin, mannan-binding lectin, toll-like receptor, kininogen, Beta2-microglobulin, aldehyde dehydrogenase, bloodthirsty and preproapolipoprotein A-I. Deiminated histone H3, a marker for anti-pathogenic neutrophil extracellular traps, was particularly elevated in mucosal tissues in immunostimulated cod larvae. PAD-mediated protein deimination may facilitate protein moonlighting, allowing the same protein to exhibit a range of biological functions, in tissue remodelling and mucosal immune defences in teleost ontogeny.
Collapse
Affiliation(s)
- Bergljót Magnadóttir
- Institute for Experimental Pathology, University of Iceland, Keldur v. Vesturlandsveg, 112 Reykjavik, Iceland.
| | - Polly Hayes
- Department of Biomedical Sciences, University of Westminster, London, W1W 6UW, UK.
| | - Mariya Hristova
- Perinatal Brain Protection and Repair Group, EGA Institute for Women's Health, University College London, WC1E 6HX, London, UK.
| | - Birkir Thor Bragason
- Institute for Experimental Pathology, University of Iceland, Keldur v. Vesturlandsveg, 112 Reykjavik, Iceland.
| | - Anthony P Nicholas
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Alister W Dodds
- MRC Immunochemistry Unit, Department of Biochemistry, University of Oxford, Oxford, UK.
| | - Sigríður Guðmundsdóttir
- Institute for Experimental Pathology, University of Iceland, Keldur v. Vesturlandsveg, 112 Reykjavik, Iceland.
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, Department of Biomedical Sciences, University of Westminster, London, W1W 6UW, UK.
| |
Collapse
|