1
|
Liang W, Wu H, Long Q, Lin H, Lv X, Ma W, Wu T, Li A, Zheng Q, Guo J, Chen X, Guo J, Sun D. LKB1 activated by NaB inhibits the IL-4/STAT6 axis and ameliorates renal fibrosis through the suppression of M2 macrophage polarization. Life Sci 2025; 370:123564. [PMID: 40097066 DOI: 10.1016/j.lfs.2025.123564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 03/03/2025] [Accepted: 03/13/2025] [Indexed: 03/19/2025]
Abstract
BACKGROUND Renal fibrosis is a critical pathological characteristic of chronic kidney disease, and current antifibrotic therapies has limited efficacy. Sodium butyrate (NaB) has been shown to be highly effective in mitigating bleomycin-induced pulmonary fibrosis; however, its specific impact on renal fibrosis and the underlying mechanisms remain unclear. This study aims to elucidate the role and mechanism of NaB in renal fibrosis by using a mouse model of renal fibrosis induced through Unilateral Ureteral Obstruction (UUO) and folic acid (FA) administration. RESULTS NaB significantly decreased the distribution of collagen fibers in renal tissues and mitigated fibrosis in a dose-dependent manner. Further analysis indicated that NaB inhibited M2 macrophage polarization in the renal tissues of UUO model mice by blocking the phosphorylation of STAT6, hence reducing renal fibrosis. Additionally, in vitro experiments demonstrated that NaB inhibited fibroblast activation induced by M2 macrophages. Mechanistic studies revealed that NaB attenuates fibroblast activation and M2 macrophage polarization by upregulating LKB1 and inhibiting the activation of the STAT6 signaling pathway. CONCLUSION NaB may exert its effects by inhibiting the activation of the IL-4/STAT6 signaling pathway through the upregulation of LKB1, which suppress the polarization of M2 macrophages and consequently reduce renal fibrosis. These findings establish a theoretical foundation for NaB as a novel drug candidate for renal fibrosis and indicate its potential applicability in clinical treatments for this condition.
Collapse
Affiliation(s)
- Weifei Liang
- Department of Urology, Shenzhen Hospital, Southern Medical University, Shenzhen 518100, China; Center for Cancer and Immunology Research, State Key Laboratory of Respiratory Disease, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, 510180 Guangzhou, Guangdong, China
| | - Haoyu Wu
- School of Public Health, Wenzhou Medical University, Wenzhou 325035, China; South Zhejiang Institute of Radiation Medicine and Nuclear Technology Application, Wenzhou 325809, China; Zhejiang Provincial Key Laboratory of Watershed Sciences and Health, Wenzhou Medical University, Wenzhou 325035, China
| | - Qishan Long
- Department of Urology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Hong Lin
- Department of Laboratory Medicine, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, 511518 Qingyuan, Guangdong, China
| | - Xiaoyu Lv
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, 138 Yixueyuan Road, Xuhui District, Shanghai 200032, China
| | - Wen Ma
- Clinical Laboratory, Shenzhen Hospital, Southern Medical University, Shenzhen 518100, China
| | - Tao Wu
- Department of Urology, Shenzhen Hospital, Southern Medical University, Shenzhen 518100, China
| | - Ai Li
- Department of Clinical Medicine, The Second Clinical School of Guangzhou Medical University, Guangzhou 510000, China
| | - Qingyou Zheng
- Department of Urology, Shenzhen Hospital, Southern Medical University, Shenzhen 518100, China
| | - Jinan Guo
- Department of Urology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China.
| | - Xiangqiu Chen
- Department of Urology, Shenzhen Hospital, Southern Medical University, Shenzhen 518100, China.
| | - Jing Guo
- Center of Oncology, Heyou Hospital, Shunde District, Foshan City 528306, Address:No. 1 of Heren Road, Junlan Community, Beijiao Town, Shunde District, Foshan City, Guangdong Province, China.
| | - Donglin Sun
- Department of Urology, Shenzhen Hospital, Southern Medical University, Shenzhen 518100, China.
| |
Collapse
|
2
|
Martin EM, Chang J, González A, Genovese F. Circulating collagen type I fragments as specific biomarkers of cardiovascular outcome risk: Where are the opportunities? Matrix Biol 2025; 137:19-32. [PMID: 40037418 PMCID: PMC11986567 DOI: 10.1016/j.matbio.2025.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/24/2025] [Accepted: 03/01/2025] [Indexed: 03/06/2025]
Abstract
Collagen type I (COL1) is the most abundant protein in the human body and is a main component in the extracellular matrix. The COL1 structure vastly influences normal tissue homeostasis, and changes in the matrix drive progression in multiple diseases. Cardiovascular diseases (CVD) are the leading cause of mortality and morbidity in many Western countries; alterations in the extracellular matrix turnover processes, including COL1, are known to influence the pathophysiological processes leading to CVD outcome. Peptides reflecting COL1 formation and degradation have been established and explored for over two decades in CVD. This review aims to combine and assess the evidence for using COL1-derived circulating peptides as biomarkers in CVD. Secondly, the review identifies existing pitfalls, and evaluates future opportunities for improving the technical characteristics and performance of the biomarkers for implementation in the clinical setting.
Collapse
Affiliation(s)
- Emily M Martin
- Nordic Bioscience A/S, Herlev, Denmark; Institute of Biomedical Science, University of Copenhagen, Copenhagen, Denmark.
| | - Joan Chang
- Manchester Cell-Matrix Centre, Division of Molecular and Cellular Function, University of Manchester, Manchester, UK
| | - Arantxa González
- Centre for Applied Medical Research (CIMA) Universidad de Navarra, Department of Cardiology and Cardiac Surgery, Clínica Universidad de Navarra, Department of Pathology Anatomy and Physiology Universidad de Navarra and IdiSNA, Pamplona, Navarra (Spain); CIBERCV, Instituto de Salud Carlos III, Madrid Spain
| | | |
Collapse
|
3
|
Zhang Y, Wang TW, Tamatani M, Zeng X, Nakamura L, Omori S, Yamaguchi K, Hatakeyama S, Shimizu E, Yamazaki S, Furukawa Y, Imoto S, Johmura Y, Nakanishi M. Signaling networks in cancer stromal senescent cells establish malignant microenvironment. Proc Natl Acad Sci U S A 2025; 122:e2412818122. [PMID: 40168129 DOI: 10.1073/pnas.2412818122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 02/27/2025] [Indexed: 04/03/2025] Open
Abstract
The tumor microenvironment (TME) encompasses various cell types, blood and lymphatic vessels, and noncellular constituents like extracellular matrix (ECM) and cytokines. These intricate interactions between cellular and noncellular components contribute to the development of a malignant TME, such as immunosuppressive, desmoplastic, angiogenic conditions, and the formation of a niche for cancer stem cells, but there is limited understanding of the specific subtypes of stromal cells involved in this process. Here, we utilized p16-CreERT2-tdTomato mouse models to investigate the signaling networks established by senescent cancer stromal cells, contributing to the development of a malignant TME. In pancreatic ductal adenocarcinoma (PDAC) allograft models, these senescent cells were found to promote cancer fibrosis, enhance angiogenesis, and suppress cancer immune surveillance. Notably, the selective elimination of senescent cancer stromal cells improves the malignant TME, subsequently reducing tumor progression in PDAC. This highlights the antitumor efficacy of senolytic treatment alone and its synergistic effect when combined with conventional chemotherapy. Taken together, our findings suggest that the signaling crosstalk among senescent cancer stromal cells plays a key role in the progression of PDAC and may be a promising therapeutic target.
Collapse
Affiliation(s)
- Yue Zhang
- Division of Cancer Cell Biology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Teh-Wei Wang
- Division of Cancer Cell Biology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
- Project Division of Generative AI Utilization Aging Cells, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Maho Tamatani
- Division of Cancer Cell Biology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Xinyi Zeng
- Division of Cancer Cell Biology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Lindo Nakamura
- Division of Cancer Cell Biology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Satotaka Omori
- Division of Cancer Cell Biology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Kiyoshi Yamaguchi
- Division of Clinical Genome Research, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Seira Hatakeyama
- Division of Clinical Genome Research, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Eigo Shimizu
- Division of Health Medical Intelligence, Human Genome Center, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Satoshi Yamazaki
- Division of Cell Regulation, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Yoichi Furukawa
- Division of Clinical Genome Research, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Seiya Imoto
- Division of Health Medical Intelligence, Human Genome Center, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Yoshikazu Johmura
- Division of Cancer and Senescence Biology, Cancer Research Institute, Kanazawa University, Kanazawa 920-1192, Japan
| | - Makoto Nakanishi
- Division of Cancer Cell Biology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| |
Collapse
|
4
|
Rong G, Liu J, Yang Y, Wang S, Cao W. Skullcapflavone II induces G2/M phase arrest in hepatic stellate cells and suppresses hepatic fibrosis. Eur J Pharmacol 2025; 998:177522. [PMID: 40113067 DOI: 10.1016/j.ejphar.2025.177522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 03/14/2025] [Accepted: 03/14/2025] [Indexed: 03/22/2025]
Abstract
RESEARCH PURPOSE This investigation explored the therapeutic effects and mechanisms of Skullcapflavone II in hepatic fibrosis (HF). MATERIALS AND METHODS The optimal concentration of Skullcapflavone II for LX2 hepatic stellate cells was determined using the CCK8 assay. EdU staining and flow cytometry were utilised to assess cell proliferation and G2/M phase arrest. Mice with carbon tetrachloride-triggered HF were administered Skullcapflavone II at low (15 mg/day), medium (30 mg/day), and high (60 mg/day) doses. Subsequently, hepatic damage and fibrosis were assessed via body weight, liver index, biochemical markers, and histopathological staining. Immunohistochemistry for Collagen I and α-SMA were utilised to examine hepatic stellate cell (HSC) activation. RNA sequencing was utilised to ascertain differentially expressed genes. Molecular docking simulated interactions among Skullcapflavone II and target proteins as well as outcomes were validated by implementing western blotting, immunohistochemistry, and RT-qPCR. RESULTS Skullcapflavone II inhibited LX2 cell proliferation and triggered G2/M phase arrest. Its optimal intervention concentration was 160 μM. In vivo, it ameliorated hepatic function, diminished serum indicators of fibrosis, and suppressed HSC activation. Diminished collagen sediment was validated utilising histopathological examination, whereas immunohistochemistry indicated decreased expression of Collagen I and α-SMA. Additionally, molecular docking showed strong binding of Skullcapflavone II to DNA replication-related proteins. Western blotting and RT-qPCR implied that Skullcapflavone II disrupted DNA replication, which triggered G2/M arrest and hindered HSCs activation and proliferation. CONCLUSION The abovementioned mechanisms of action of Skullcapflavone II substantiate its prospective clinical application against HF.
Collapse
Affiliation(s)
- Guoyi Rong
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 401331, China; Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, 400016, China
| | - Jun Liu
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, 400016, China; Department of Rehabilitation Medicine of Jiangbei Campus, The First Affiliated Hospital of Army Medical University, Chongqing, 401151, China
| | - Yunheng Yang
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 401331, China; Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, 400016, China
| | - Shang Wang
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 401331, China; Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, 400016, China
| | - Wenfu Cao
- Department of Combination of Chinese and Western Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
5
|
Karsdal M, Cox TR, Parker AL, Willumsen N, Sand JMB, Jenkins G, Hansen HH, Oldenburger A, Geillinger-Kaestle KE, Larsen AT, Black D, Genovese F, Eckersley A, Heinz A, Nyström A, Holm Nielsen S, Bennink L, Johannsson L, Bay-Jensen AC, Orange DE, Friedman S, Røpke M, Fiore V, Schuppan D, Rieder F, Simona B, Borthwick L, Skarsfeldt M, Wennbo H, Thakker P, Stoffel R, Clarke GW, Kalluri R, Ruane D, Zannad F, Mortensen JH, Sinkeviciute D, Sundberg F, Coseno M, Thudium C, Croft AP, Khanna D, Cooreman M, Broermann A, Leeming DJ, Mobasheri A, Ricard-Blum S. Advances in Extracellular Matrix-Associated Diagnostics and Therapeutics. J Clin Med 2025; 14:1856. [PMID: 40142664 PMCID: PMC11943371 DOI: 10.3390/jcm14061856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/28/2025] [Accepted: 02/08/2025] [Indexed: 03/28/2025] Open
Abstract
The extracellular matrix (ECM) is the common denominator of more than 50 chronic diseases. Some of these chronic pathologies lead to enhanced tissue formation and deposition, whereas others are associated with increased tissue degradation, and some exhibit a combination of both, leading to severe tissue alterations. To develop effective therapies for diseases affecting the lung, liver, kidney, skin, intestine, musculoskeletal system, heart, and solid tumors, we need to modulate the ECM's composition to restore its organization and function. Across diverse organ diseases, there are common denominators and distinguishing factors in this fibroinflammatory axis, which may be used to foster new insights into drug development across disease indications. The 2nd Extracellular Matrix Pharmacology Congress took place in Copenhagen, Denmark, from 17 to 19 June 2024 and was hosted by the International Society of Extracellular Matrix Pharmacology. The event was attended by 450 participants from 35 countries, among whom were prominent scientists who brought together state-of-the-art research on organ diseases and asked important questions to facilitate drug development. We highlight key aspects of the ECM in the liver, kidney, skin, intestine, musculoskeletal system, lungs, and solid tumors to advance our understanding of the ECM and its central targets in drug development. We also highlight key advances in the tools and technology that enable this drug development, thereby supporting the ECM.
Collapse
Affiliation(s)
- Morten Karsdal
- Nordic Bioscience, 2730 Herlev, Denmark; (N.W.); (J.M.B.S.); (A.T.L.); (F.G.); (S.H.N.); (A.-C.B.-J.); (J.H.M.); (D.S.); (D.J.L.)
| | - Thomas R. Cox
- Garvan Institute of Medical Research, Sydney 2010, Australia; (T.R.C.); (A.L.P.)
- School of Clinical Medicine, St Vincent’s Clinical Campus, UNSW Medicine & Health, UNSW, Sydney 2010, Australia
| | - Amelia L. Parker
- Garvan Institute of Medical Research, Sydney 2010, Australia; (T.R.C.); (A.L.P.)
- School of Clinical Medicine, St Vincent’s Clinical Campus, UNSW Medicine & Health, UNSW, Sydney 2010, Australia
| | - Nicholas Willumsen
- Nordic Bioscience, 2730 Herlev, Denmark; (N.W.); (J.M.B.S.); (A.T.L.); (F.G.); (S.H.N.); (A.-C.B.-J.); (J.H.M.); (D.S.); (D.J.L.)
| | - Jannie Marie Bülow Sand
- Nordic Bioscience, 2730 Herlev, Denmark; (N.W.); (J.M.B.S.); (A.T.L.); (F.G.); (S.H.N.); (A.-C.B.-J.); (J.H.M.); (D.S.); (D.J.L.)
| | - Gisli Jenkins
- Margaret Turner Warwick Centre for Fibrosing Lung Disease, National Heart and Lung Institute, NIHR Imperial Biomedical Research Centre, Imperial College London, London SW7 2AZ, UK;
| | | | | | - Kerstin E. Geillinger-Kaestle
- Department of Immunology and Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, 88400 Biberach an der Riss, Germany;
| | - Anna Thorsø Larsen
- Nordic Bioscience, 2730 Herlev, Denmark; (N.W.); (J.M.B.S.); (A.T.L.); (F.G.); (S.H.N.); (A.-C.B.-J.); (J.H.M.); (D.S.); (D.J.L.)
| | | | - Federica Genovese
- Nordic Bioscience, 2730 Herlev, Denmark; (N.W.); (J.M.B.S.); (A.T.L.); (F.G.); (S.H.N.); (A.-C.B.-J.); (J.H.M.); (D.S.); (D.J.L.)
| | - Alexander Eckersley
- Wellcome Centre for Cell Matrix Research, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, University of Manchester, Manchester M13 9PL, UK;
| | - Andrea Heinz
- LEO Foundation Center for Cutaneous Drug Delivery, Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark;
| | - Alexander Nyström
- Department of Dermatology, Faculty of Medicine, Medical Center—University of Freiburg, 79106 Breisgau, Germany;
| | - Signe Holm Nielsen
- Nordic Bioscience, 2730 Herlev, Denmark; (N.W.); (J.M.B.S.); (A.T.L.); (F.G.); (S.H.N.); (A.-C.B.-J.); (J.H.M.); (D.S.); (D.J.L.)
| | | | | | - Anne-Christine Bay-Jensen
- Nordic Bioscience, 2730 Herlev, Denmark; (N.W.); (J.M.B.S.); (A.T.L.); (F.G.); (S.H.N.); (A.-C.B.-J.); (J.H.M.); (D.S.); (D.J.L.)
| | - Dana E. Orange
- Hospital for Special Surgery, The Rockefeller University, New York, NY 10065, USA;
| | - Scott Friedman
- Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA;
| | | | - Vincent Fiore
- Boehringer Ingelheim, 55218 Ingelheim am Rhein, Germany;
| | - Detlef Schuppan
- Institute of Translational Immunology, University Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Germany;
| | - Florian Rieder
- Department of Inflammation and Immunity, Cleveland Clinic Foundation, Cleveland, OH 44195, USA;
| | | | - Lee Borthwick
- FibroFind Ltd., FibroFind Laboratories, Medical School, Newcastle upon Tyne NE2 4HH, UK;
- Newcastle Fibrosis Research Group, Biosciences Institute, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Mark Skarsfeldt
- Nordic Bioscience, 2730 Herlev, Denmark; (N.W.); (J.M.B.S.); (A.T.L.); (F.G.); (S.H.N.); (A.-C.B.-J.); (J.H.M.); (D.S.); (D.J.L.)
| | - Haakan Wennbo
- Takeda, Translational Medicine Biomarkers Gastrointestinal & Global, Boston, MA 02110, USA; (H.W.); (P.T.)
| | - Paresh Thakker
- Takeda, Translational Medicine Biomarkers Gastrointestinal & Global, Boston, MA 02110, USA; (H.W.); (P.T.)
| | - Ruedi Stoffel
- Roche Diagnostics International Ltd., 6343 Rotkreuz, Switzerland;
| | - Graham W. Clarke
- Translational Science and Experimental Medicine, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, 431 83 Gothenburg, Sweden;
- School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King’s College, London E1 9RT, UK
| | - Raghu Kalluri
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Darren Ruane
- Janssen Immunology, Translational Sciences and Medicine, La Jolla, CA 92037, USA;
| | - Faiez Zannad
- Division of Heart Failure and Hypertension, and of the Inserm CIC, University of Lorraine, 54000 Metz, France;
| | - Joachim Høg Mortensen
- Nordic Bioscience, 2730 Herlev, Denmark; (N.W.); (J.M.B.S.); (A.T.L.); (F.G.); (S.H.N.); (A.-C.B.-J.); (J.H.M.); (D.S.); (D.J.L.)
| | - Dovile Sinkeviciute
- Nordic Bioscience, 2730 Herlev, Denmark; (N.W.); (J.M.B.S.); (A.T.L.); (F.G.); (S.H.N.); (A.-C.B.-J.); (J.H.M.); (D.S.); (D.J.L.)
| | - Fred Sundberg
- Sengenics Corporation LLC, Wilmington, DE 19801, USA; (F.S.); (M.C.)
| | - Molly Coseno
- Sengenics Corporation LLC, Wilmington, DE 19801, USA; (F.S.); (M.C.)
| | - Christian Thudium
- Nordic Bioscience, 2730 Herlev, Denmark; (N.W.); (J.M.B.S.); (A.T.L.); (F.G.); (S.H.N.); (A.-C.B.-J.); (J.H.M.); (D.S.); (D.J.L.)
| | - Adam P. Croft
- National Institute for Health and Care Research (NIHR) Birmingham Biomedical Research Centre, University of Birmingham, Birmingham B15 2TT, UK;
- Institute of Inflammation and Ageing, Queen Elizabeth Hospital, University of Birmingham, Birmingham B15 2TT, UK
| | - Dinesh Khanna
- Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA;
| | | | - Andre Broermann
- Department of CardioMetabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, 88400 Biberach an der Riss, Germany;
| | - Diana Julie Leeming
- Nordic Bioscience, 2730 Herlev, Denmark; (N.W.); (J.M.B.S.); (A.T.L.); (F.G.); (S.H.N.); (A.-C.B.-J.); (J.H.M.); (D.S.); (D.J.L.)
| | - Ali Mobasheri
- Faculty of Medicine, University of Oulu, 90570 Oulu, Finland;
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania
- Faculté de Médecine, Université de Liège, 4000 Liège, Belgium
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Sylvie Ricard-Blum
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS), UMR 5246 CNRS, ICBMS, University Lyon 1, 69622 Villeurbanne Cedex, France;
| |
Collapse
|
6
|
Guo K, Tang X, Liu Y, Cheng H, Liu H, Fan Y, Qi X, Xu R, Kang J, Li D, Wang G, Gershenzon J, Liu Y, Li S. From Monocyclization to Pentacyclization: A Versatile Plant Cyclase Produces Diverse Sesterterpenes with Anti-Liver Fibrosis Potential. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2415370. [PMID: 39792598 PMCID: PMC11884544 DOI: 10.1002/advs.202415370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/23/2024] [Indexed: 01/12/2025]
Abstract
A prolific multi-product sesterterpene synthase CbTPS1 is characterized from the medicinal Brassicaceae plant Capsella bursa-pastoris. Twenty different sesterterpenes including 16 undescribed compounds, possessing 10 different mono-/di-/tri-/tetra-/penta-carbocyclic skeletons, including the unique 15-membered macrocyclic and 24(15→14)-abeo-capbuane scaffolds, are isolated and structurally elucidated from engineered Escherichia coli strains expressing CbTPS1. Site-directed mutagenesis assisted by molecular dynamics simulations resulted in the variant L354M with up to 13.2-fold increased sesterterpene production. These structurally diverse products suggest a comprehensive cyclization mechanism for plant sesterterpenes and provide compelling evidence for the initial cyclization of geranylfarnesyl diphosphate via a crucial 15-membered monocyclic carbocation. The activities of these sesterterpenes against liver fibrosis is inferred from the inhibition of the transforming growth factor-β/Smad signaling pathway and collagen synthesis. These findings greatly expand the chemical space and biological functions of sesterterpenes and provide new insights into the catalytic mechanism of terpene synthases.
Collapse
Affiliation(s)
- Kai Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and PharmacyChengdu University of Traditional Chinese MedicineChengdu611137P. R. China
| | - Xue Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and PharmacyChengdu University of Traditional Chinese MedicineChengdu611137P. R. China
| | - Yan‐Chun Liu
- State Key Laboratory of Phytochemistry and Natural Medicines, and Yunnan Key Laboratory of Natural Medicinal ChemistryKunming Institute of BotanyChinese Academy of SciencesKunming650201P. R. China
| | - Hui‐Zhen Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and PharmacyChengdu University of Traditional Chinese MedicineChengdu611137P. R. China
| | - Huan Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and PharmacyChengdu University of Traditional Chinese MedicineChengdu611137P. R. China
| | - Yu‐Zhou Fan
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and PharmacyChengdu University of Traditional Chinese MedicineChengdu611137P. R. China
| | - Xiao‐Yu Qi
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and PharmacyChengdu University of Traditional Chinese MedicineChengdu611137P. R. China
| | - Rui Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and PharmacyChengdu University of Traditional Chinese MedicineChengdu611137P. R. China
| | - Juan‐Juan Kang
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and PharmacyChengdu University of Traditional Chinese MedicineChengdu611137P. R. China
| | - De‐Sen Li
- State Key Laboratory of Phytochemistry and Natural Medicines, and Yunnan Key Laboratory of Natural Medicinal ChemistryKunming Institute of BotanyChinese Academy of SciencesKunming650201P. R. China
| | - Guo‐Dong Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene ResearchInstitute of Genetics and Developmental BiologyThe Innovative Academy of Seed DesignChinese Academy of SciencesBeijing100101P. R. China
| | | | - Yan Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and PharmacyChengdu University of Traditional Chinese MedicineChengdu611137P. R. China
| | - Sheng‐Hong Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and PharmacyChengdu University of Traditional Chinese MedicineChengdu611137P. R. China
- State Key Laboratory of Phytochemistry and Natural Medicines, and Yunnan Key Laboratory of Natural Medicinal ChemistryKunming Institute of BotanyChinese Academy of SciencesKunming650201P. R. China
| |
Collapse
|
7
|
Shahzil M, Hasan F, Kazmi SK, Gangwani MK, Shabbar U, Chaudhary AJ, Khaqan MA, Faisal MS, Williams KN, Mohan BP, Tofani C. Evaluating the Effectiveness of Pegbelfermin in MASH-Associated Hepatic Fibrosis A Meta-Analysis and Systematic Review of Randomized Controlled Trials. JGH Open 2025; 9:e70131. [PMID: 40104016 PMCID: PMC11913888 DOI: 10.1002/jgh3.70131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 02/18/2025] [Accepted: 03/02/2025] [Indexed: 03/20/2025]
Abstract
Introduction Metabolic dysfunction-associated steatohepatitis (MASH), an advanced form of fatty liver disease, is characterized by liver inflammation and fibrosis, with an emerging interest in fibroblast growth factor (FGF)-21 analogs, particularly pegbelfermin (PGBF). This study evaluates the efficacy and safety of PGBF in treating MASH-associated hepatic fibrosis. Methods This meta-analysis followed Cochrane guidelines and PRISMA standards. A comprehensive search of databases up to January 2023 focused on randomized controlled trials (RCTs) comparing PGBF to placebo for MASH. Meta-analyses were performed with RevMan 5.4 using a random-effects model. Results Data from 452 participants across three RCTs were analyzed. Significant improvements in adiponectin concentration were observed in both the 10 mg [MD = 18.23, 95% CI (6.35, 30.11), p = 0.003] and 20 mg [MD = 18.09, 95% CI (5.88, 30.31), p = 0.004] PGBF groups compared to placebo. Significant reductions in PRO-C3 concentration were noted in both the 10 mg [MD = -25.50, 95% CI (-43.95, -7.05), p = 0.007] and 20 mg [MD = -19.54, 95% CI (-33.33, -5.76), p = 0.005] groups. Significant improvement in MASH was seen in the 10 mg group [RR = 2.84, 95% CI (1.18, 6.78), p = 0.02] but not in the 20 mg group. No significant improvements in liver stiffness, Modified Ishak scores, collagen proportionate area, ALT and AST levels, or treatment-emergent adverse events (TEAEs) were observed in either dosage group. Conclusions Pegbelfermin, a promising therapy for MASH fibrosis, has demonstrated effectiveness at 10 mg, significantly improving MASH and biomarkers including adiponectin and PRO-C3, while maintaining a generally safe profile.
Collapse
Affiliation(s)
- Muhammad Shahzil
- Department of Internal Medicine Penn State Health Milton S Hershey Medical Center Hershey Pennsylvania USA
| | - Fariha Hasan
- Department of Internal Medicine Cooper University Hospital Camden New Jersey USA
| | - Syeda Kanza Kazmi
- Department of Internal Medicine Penn State Health Milton S Hershey Medical Center Hershey Pennsylvania USA
| | | | | | | | - Muhammad Ali Khaqan
- Department of Internal Medicine John H. Stroger, Jr. Hospital of Cook County Chicago Illinois USA
| | | | - Kathy N Williams
- Department of Gastroenterology Cooper University Hospital Camden New Jersey USA
| | - Babu P Mohan
- Gastroenterology and Hepatology Orlando Gastroenterology PA Orlando Florida USA
| | - Christina Tofani
- Department of Gastroenterology Cooper University Hospital Camden New Jersey USA
| |
Collapse
|
8
|
Nash MJ, Dobrinskikh E, Al‐Juboori SI, Janssen RC, Fernandes J, Argabright A, D'Alessandro A, Kirigiti MA, Kievit P, Aagaard KM, McCurdy CE, Gannon M, Jones KL, Li T, Friedman JE, Wesolowski SR. Maternal Western Diet Programmes Bile Acid Dysregulation and Hepatic Fibrosis in Fetal and Juvenile Macaques. Liver Int 2025; 45:e16236. [PMID: 39865409 PMCID: PMC11771692 DOI: 10.1111/liv.16236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 12/10/2024] [Accepted: 12/25/2024] [Indexed: 01/28/2025]
Abstract
BACKGROUND AND AIMS Maternal obesity increases the risk of the paediatric form of metabolic dysfunction-associated steatotic liver disease (MASLD), affecting up to 30% of youth, but the developmental origins remain poorly understood. METHODS Using a Japanese macaque model, we investigated the impact of maternal Western-style diet (mWSD) or chow diet followed by postweaning WSD (pwWSD) or chow diet focusing on bile acid (BA) homeostasis and hepatic fibrosis in livers from third-trimester fetuses and 3-year-old juvenile offspring. RESULTS Juveniles exposed to mWSD had increased hepatic collagen I/III content and stellate cell activation in portal regions. mWSD increased transcriptional signatures of FXR activation, while pwWSD impaired FXR pathway genes and increased liver BA content. Both mWSD and pwWSD increased serum BA concentrations. Notably, mWSD-exposed juvenile offspring had increased periportal CK19 expression and cholangiocyte gene expression supporting proliferation compared with maternal chow-exposed offspring. Fetuses exposed to mWSD had increased CK19 expression and hepatic BAs which correlated positively with periportal collagen deposition and negatively with markers of fetal oxygenation. In juvenile offspring, increased serum BAs correlated positively with hepatic oxidative stress and portal fibrosis without elevated liver enzymes. CONCLUSIONS mWSD is associated with hallmarks of paediatric MASLD including portal bile ductular reaction, portal fibrosis and dysregulated BA homeostasis. These conditions begin in utero and persist in juvenile offspring regardless of their postweaning diet. These findings implicate changes in BA metabolism that may drive developmental programming of MASLD in juvenile offspring beginning in utero.
Collapse
Affiliation(s)
- Michael J. Nash
- Department of PediatricsUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Evgenia Dobrinskikh
- Department of PediatricsUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Saif I. Al‐Juboori
- Department of PediatricsUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Rachel C. Janssen
- Harold Hamm Diabetes CenterUniversity of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
| | - Jolyn Fernandes
- Department of PediatricsUniversity of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
| | - Amy Argabright
- Department of MedicineUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Angelo D'Alessandro
- Department of MedicineUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Melissa A. Kirigiti
- Division of Cardiometabolic HealthOregon Health Science University, Oregon National Primate Research CenterBeavertonOregonUSA
| | - Paul Kievit
- Division of Cardiometabolic HealthOregon Health Science University, Oregon National Primate Research CenterBeavertonOregonUSA
- Division of NeuroscienceOregon Health Science University, Oregon National Primate Research CenterBeavertonOregonUSA
| | - Kjersti M. Aagaard
- Department of Obstetrics and GynecologyDivision of Maternal‐Fetal Medicine, Baylor College of MedicineHoustonTexasUSA
| | | | - Maureen Gannon
- Department of Medicine, Division of Diabetes, Endocrinology, and MetabolismVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Kenneth L. Jones
- Harold Hamm Diabetes CenterUniversity of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
| | - Tiangang Li
- Harold Hamm Diabetes CenterUniversity of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
- Department of Biochemistry and PhysiologyUniversity of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
| | - Jacob E. Friedman
- Harold Hamm Diabetes CenterUniversity of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
- Department of Biochemistry and PhysiologyUniversity of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
| | | |
Collapse
|
9
|
Hardwick JP, Song BJ, Rote P, Leahy C, Lee YK, Wolf AR, Diegisser D, Garcia V. The CYP4/20-HETE/GPR75 axis in the progression metabolic dysfunction-associated steatosis liver disease (MASLD) to chronic liver disease. Front Physiol 2025; 15:1497297. [PMID: 39959811 PMCID: PMC11826315 DOI: 10.3389/fphys.2024.1497297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 12/24/2024] [Indexed: 02/18/2025] Open
Abstract
Introduction Metabolic-dysfunction-associated steatosis liver disease (MASLD) is a progressive liver disease from simple steatosis, steatohepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma. Chronic liver diseases (CLDs) can lead to portal hypertension, which is a major cause of complications of cirrhosis. CLDs cause structural alterations across the liver through increased contents of extracellular matrix (ECM), driving dysfunction of liver sinusoidal endothelial cells (LSECs) alongside hepatic stellate cells (HSCs) and activated resident or infiltrating immune cells. Bioactive arachidonic metabolites have diverse roles in the progression of MASLD. Both secreted levels of 20-hydroxyeicosatetraenoic acid (20-HETE) and epoxyeicosatrienoic acid (EET) are elevated in patients with liver cirrhosis. Methods CLD samples were evaluated for changes in free fatty acids (FFA), cholesterol, bilirubin, bile acid, reactive oxygen species (ROD), lipid peroxidation, myeloperoxidase activity and hydroxyproline levels to evaluate the degrees of liver damage and fibrosis. To address the role of the CYP4/20-HETE/GPR75 axis, we measured the amount and the synthesis of 20-HETE in patients with CLD, specifically during the progression of MASLD. Additionally, we evaluated gene expression and protein levels of GPR75, a high-affinity receptor for 20-HETE across CLD patient samples. Results We observed an increase in 20-HETE levels and synthesis during the progression of MASLD. Increased synthesis of 20-HETE correlated with the expression of CYP4A11 genes but not CYP4F2. These results were confirmed by increased P4504A11 protein levels and decreased P4504F2 protein levels during the development and progression of MASLD. The gene expression and protein levels of GPR75, the major receptor for 20-HETE, increased in the progression of MASLD. Interestingly, the CYP4A11 and GPR75 mRNA levels increased in steatohepatitis but dramatically dropped in cirrhosis and then increased in patients with HCC. Also, protein levels of P4504A11 and GPR75 mirrored their mRNA levels. Discussion These results indicate that the CYP4A11 and subsequent GPR75 genes are coordinately regulated in the progression of MASLD and may have multiple roles, including 20-HETE activation of peroxisome proliferator-activated receptor α (PPARα) in steatosis and GPR75 in CLD through either increased cell proliferation or vasoconstriction in portal hypertension during cirrhosis. The abrupt reduction in CYP4A11 and GPR75 in patients with cirrhosis may also be due to increased 20-HETE, serving as a feedback mechanism via GPR75, leading to reduced CYP4A11 and GPR75 gene expression. This work illustrates key correlations associated with the CYP4/20-HETE/GPR75 axis and the progression of liver disease in humans.
Collapse
Affiliation(s)
- James P. Hardwick
- Department of Integrative Medical Sciences Liver Focus Group, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | - Paul Rote
- Department of Integrative Medical Sciences Liver Focus Group, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Charles Leahy
- Department of Integrative Medical Sciences Liver Focus Group, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Yoon Kwang Lee
- Department of Integrative Medical Sciences Liver Focus Group, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Alexandra Rudi Wolf
- Department of Pharmacology, New York Medical College, Valhalla, NY, United States
| | - Danielle Diegisser
- Department of Pharmacology, New York Medical College, Valhalla, NY, United States
| | - Victor Garcia
- Department of Pharmacology, New York Medical College, Valhalla, NY, United States
| |
Collapse
|
10
|
Shu S, Li Y, Yu X, Chen X, Abdullah U, Yu Y. Association between mixed exposure of non-persistent pesticides and liver fibrosis in the general US population: NHANES 2013-2016. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117776. [PMID: 39862698 DOI: 10.1016/j.ecoenv.2025.117776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/17/2025] [Accepted: 01/19/2025] [Indexed: 01/27/2025]
Abstract
People are continually and simultaneously exposed to various non-persistent pesticides as these chemicals are ubiquitously distributed in the environment. Toxicological studies have indicated the associations between non-persistent pesticides and liver fibrosis in vitro and in vivo. However, epidemical study on the deleterious effect of non-persistent pesticides on the risk of liver fibrosis is rather limited. To examine the relationship between mixed non-persistent pesticides exposure and liver fibrosis, and to identify the potential pesticides of significant importance, this study enrolled the representative individuals from the NHANES 2013-2016 survey cycles, in which urinary non-persistent pesticides were measured. Liver fibrosis was determined based on the alternative noninvasive tests Fibrosis-4 index (FIB-4) and Hepamet Fibrosis Score (HFS). Survey-weighted linear/logistic regression and Bayesian kernel machine regression (BKMR) were used to detected the independent and combined associations between non-persistent pesticides and liver fibrosis, respectively. In single exposure analysis, significant and persistent associations were identified for 3,5,6-trichloropyridinol (TCPY), para-nitrophenol (PNP), glyphosate (GLYP) and 2,4-dichlorophenoxyacetic acid (2,4-D) exposure with both continuous and dichotomous liver fibrosis outcomes. Of them, TCPY and GLYP had the highest effect estimates, with the corresponding FIB-4 coefficient (β) being 0.09 (0.05-0.13, model 3) and 0.09 (0.06-0.12, model 3), respectively. In BKMR analysis, positive associations between pesticides mixture and FIB-4 and HFS liver fibrosis were identified. The results of Posterior Inclusion Probability (PIP) further showed that GLYP, TCPY, and PNP were the main contributors to the overall effects of pesticides mixture, and the corresponding PIPs were 1.000 (1.000), 1.000 (0.914) and 0.972 (0.819) for FIB-4 (HFS) liver fibrosis, respectively. This study indicates that exposure to non-persistent pesticides mixture is associated with increased risk of liver fibrosis in humans, and provide new insight into the hepatotoxic potential of non-persistent pesticides.
Collapse
Affiliation(s)
- Shuge Shu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Yuan Li
- Department of Cosmetic Dermatology, The Fifth People's Hospital of Hainan Province, Haikou 570000, PR China
| | - Xiangyu Yu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Xinting Chen
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Ummara Abdullah
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Yongquan Yu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China.
| |
Collapse
|
11
|
Szternel Ł, Sobucki B, Wieprzycka L, Krintus M, Panteghini M. Golgi protein 73 in liver fibrosis. Clin Chim Acta 2025; 565:119999. [PMID: 39401651 DOI: 10.1016/j.cca.2024.119999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 10/17/2024]
Abstract
Golgi protein 73 (GP73) is implicated in key pathogenic processes, particularly those related to inflammation and fibrogenesis. In the last years, its measurement has emerged as a promising biomarker for detection of liver fibrosis (LF), a common consequence of chronic liver disease that can progress to cirrhosis and eventually hepatocellular carcinoma. GP73 concentrations in blood appear significantly increased in LF patients, correlating with disease severity, making this biomarker a possible non-invasive alternative for detecting and monitoring this condition regardless of etiology. Understanding the molecular mechanisms involving GP73 expression could also lead to new therapeutic strategies aimed at modulating its synthesis or function to prevent or reverse LF. Despite its clinical potential, GP73 as a LF biomarker faces several challenges. The lack of demonstrated comparability among different assays as well as the lack of knowledge of individual variability can make difficult the result interpretation. Further research is therefore needed focusing on robust clinical validation of GP73 as a LF biomarker. Addressing analytical, biological, and clinical limitations will be critical to exploiting its potential for improving detection and monitoring of advanced LF.
Collapse
Affiliation(s)
- Łukasz Szternel
- Department of Laboratory Medicine, Nicolaus Copernicus University in Torun, Collegium Medicum in Bydgoszcz, Poland
| | - Bartłomiej Sobucki
- Department of Laboratory Medicine, Nicolaus Copernicus University in Torun, Collegium Medicum in Bydgoszcz, Poland
| | - Laura Wieprzycka
- Department of Laboratory Medicine, Nicolaus Copernicus University in Torun, Collegium Medicum in Bydgoszcz, Poland
| | - Magdalena Krintus
- Department of Laboratory Medicine, Nicolaus Copernicus University in Torun, Collegium Medicum in Bydgoszcz, Poland.
| | - Mauro Panteghini
- Department of Laboratory Medicine, Nicolaus Copernicus University in Torun, Collegium Medicum in Bydgoszcz, Poland
| |
Collapse
|
12
|
Youhanna S, Kemas AM, Wright SC, Zhong Y, Klumpp B, Klein K, Motso A, Michel M, Ziegler N, Shang M, Sabatier P, Kannt A, Sheng H, Oliva‐Vilarnau N, Büttner FA, Seashore‐Ludlow B, Schreiner J, Windbergs M, Cornillet M, Björkström NK, Hülsmeier AJ, Hornemann T, Olsen JV, Wang Y, Gramignoli R, Sundström M, Lauschke VM. Chemogenomic Screening in a Patient-Derived 3D Fatty Liver Disease Model Reveals the CHRM1-TRPM8 Axis as a Novel Module for Targeted Intervention. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2407572. [PMID: 39605182 PMCID: PMC11744578 DOI: 10.1002/advs.202407572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/19/2024] [Indexed: 11/29/2024]
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH) is a leading cause of chronic liver disease with few therapeutic options. To narrow the translational gap in the development of pharmacological MASH treatments, a 3D liver model from primary human hepatocytes and non-parenchymal cells derived from patients with histologically confirmed MASH was established. The model closely mirrors disease-relevant endpoints, such as steatosis, inflammation and fibrosis, and multi-omics analyses show excellent alignment with biopsy data from 306 MASH patients and 77 controls. By combining high-content imaging with scalable biochemical assays and chemogenomic screening, multiple novel targets with anti-steatotic, anti-inflammatory, and anti-fibrotic effects are identified. Among these, activation of the muscarinic M1 receptor (CHRM1) and inhibition of the TRPM8 cation channel result in strong anti-fibrotic effects, which are confirmed using orthogonal genetic assays. Strikingly, using biosensors based on bioluminescence resonance energy transfer, a functional interaction along a novel MASH signaling axis in which CHRM1 inhibits TRPM8 via Gq/11 and phospholipase C-mediated depletion of phosphatidylinositol 4,5-bisphosphate can be demonstrated. Combined, this study presents the first patient-derived 3D MASH model, identifies a novel signaling module with anti-fibrotic effects, and highlights the potential of organotypic culture systems for phenotype-based chemogenomic drug target identification at scale.
Collapse
|
13
|
Sotoudeheian M. Value of Mac-2 Binding Protein Glycosylation Isomer (M2BPGi) in Assessing Liver Fibrosis in Metabolic Dysfunction-Associated Liver Disease: A Comprehensive Review of its Serum Biomarker Role. Curr Protein Pept Sci 2025; 26:6-21. [PMID: 38982921 DOI: 10.2174/0113892037315931240618085529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 07/11/2024]
Abstract
Metabolic Dysfunction-Associated Fatty Liver Disease (MAFLD) is a broad condition characterized by lipid accumulation in the liver tissue, which can progress to fibrosis and cirrhosis if left untreated. Traditionally, liver biopsy is the gold standard for evaluating fibrosis. However, non-invasive biomarkers of liver fibrosis are developed to assess the fibrosis without the risk of biopsy complications. Novel serum biomarkers have emerged as a promising tool for non-invasive assessment of liver fibrosis in MAFLD patients. Several studies have shown that elevated levels of Mac-2 binding protein glycosylation isomer (M2BPGi) are associated with increased liver fibrosis severity in MAFLD patients. This suggests that M2BPGi could serve as a reliable marker for identifying individuals at higher risk of disease progression. Furthermore, the use of M2BPGi offers a non-invasive alternative to liver biopsy, which is invasive and prone to sampling errors. Overall, the usage of M2BPGi in assessing liver fibrosis in MAFLD holds great promise for improving risk stratification and monitoring disease progression in affected individuals. Further research is needed to validate its utility in clinical practice and establish standardized protocols for its implementation.
Collapse
|
14
|
Righetti R, Cinque F, Patel K, Sebastiani G. The role of noninvasive biomarkers for monitoring cell injury in advanced liver fibrosis. Expert Rev Gastroenterol Hepatol 2025; 19:65-80. [PMID: 39772945 DOI: 10.1080/17474124.2025.2450717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 01/04/2025] [Indexed: 01/11/2025]
Abstract
INTRODUCTION Accurate and reliable diagnosis and monitoring of hepatic fibrosis is increasingly important given the variable natural history in chronic liver disease (CLD) and expanding antifibrotic therapeutic options targeting reversibility of early-stage cirrhosis. This highlights the need to develop more refined and effective noninvasive techniques for the dynamic assessment of fibrogenesis and fibrolysis. AREAS COVERED We conducted a literature review on PubMed, from 1 December 1970, to 1 November 2024, to evaluate and compare available blood-based and imaging-based noninvasive tools for hepatic fibrosis diagnosis and monitoring. Simple scores such as FIB-4 and NAFLD fibrosis score are suitable for excluding significant or advanced fibrosis, while tertiary centers should adopt complex scores and liver stiffness measurement as part of a secondary diagnostic and more comprehensive evaluation. Moreover, the advent of multiomics for high-resolution molecular profiling, and integration of artificial intelligence for noninvasive diagnostics holds promise for revolutionizing fibrosis monitoring and treatment through novel biomarker discovery and predictive omics-based algorithms. EXPERT OPINION The increased shift toward noninvasive diagnostics for liver fibrosis needs to align with personalized medicine, enabling more effective, tailored management strategies for patients with liver disease in the future.
Collapse
Affiliation(s)
- Riccardo Righetti
- Chronic Viral Illness Service, Division of Infectious Diseases, Department of Medicine, McGill University Health Centre, Montreal, Canada
- Division of Gastroenterology and Hepatology, Department of Medicine, McGill University Health Centre, Montreal, Canada
- Internal Medicine Unit, Department of Medical and Surgical Science for Children and Adults, Azienda Ospedaliero-Universitaria Policlinico di Modena, University of Modena and Reggio Emilia, Modena, Italy
| | - Felice Cinque
- Chronic Viral Illness Service, Division of Infectious Diseases, Department of Medicine, McGill University Health Centre, Montreal, Canada
- SC Medicina Indirizzo Metabolico, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico di Milano, Milan, Italy
- Department of Pathophysiology, Transplantation University of Milan, Milan, Italy
| | - Keyur Patel
- University Health Network Division of Gastroenterology and Hepatology, University of Toronto, Toronto, Canada
| | - Giada Sebastiani
- Chronic Viral Illness Service, Division of Infectious Diseases, Department of Medicine, McGill University Health Centre, Montreal, Canada
- Division of Gastroenterology and Hepatology, Department of Medicine, McGill University Health Centre, Montreal, Canada
| |
Collapse
|
15
|
Coren L, Zaffryar-Eilot S, Odeh A, Kaganovsky A, Hasson P. Fibroblast diversification is an embryonic process dependent on muscle contraction. Cell Rep 2024; 43:115034. [PMID: 39636726 DOI: 10.1016/j.celrep.2024.115034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 09/18/2024] [Accepted: 11/14/2024] [Indexed: 12/07/2024] Open
Abstract
Fibroblasts, the most common cell type found in connective tissues, play major roles in development, homeostasis, regeneration, and disease. Although specific fibroblast subpopulations have been associated with different biological processes, the mechanisms and unique activities underlying their diversity have not been thoroughly examined. Here, we set out to dissect the variation in skeletal-muscle-resident fibroblasts (mrFibroblasts) during development. Our results demonstrate that mrFibroblasts diversify following the transition from embryonic to fetal myogenesis prior to birth. We find that mrFibroblasts segregate into two major subpopulations occupying distinct niches, with interstitial fibroblasts residing between the muscle fibers and delineating fibroblasts sheathing the muscle. We further show that these subpopulations entail distinct cellular dynamics and transcriptomes. Notably, we find that mrFibroblast subpopulations exert distinct regulatory roles on myoblast proliferation and differentiation. Finally, we demonstrate that this diversification depends on muscle contraction. Altogether, these findings establish that mrFibroblasts diversify in a spatiotemporal embryonic process into distinct cell types, entailing different characteristics and roles.
Collapse
Affiliation(s)
- Lavi Coren
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Shelly Zaffryar-Eilot
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Anas Odeh
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Anna Kaganovsky
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Peleg Hasson
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa 31096, Israel.
| |
Collapse
|
16
|
Zhao L, Tang H, Cheng Z. Pharmacotherapy of Liver Fibrosis and Hepatitis: Recent Advances. Pharmaceuticals (Basel) 2024; 17:1724. [PMID: 39770566 PMCID: PMC11677259 DOI: 10.3390/ph17121724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/05/2024] [Accepted: 12/17/2024] [Indexed: 01/03/2025] Open
Abstract
Liver fibrosis is a progressive scarring process primarily caused by chronic inflammation and injury, often closely associated with viral hepatitis, alcoholic liver disease, metabolic dysfunction-associated steatotic liver disease (MASLD), drug-induced liver injury, and autoimmune liver disease (AILD). Currently, there are very few clinical antifibrotic drugs available, and effective targeted therapy is lacking. Recently, emerging antifibrotic drugs and immunomodulators have shown promising results in animal studies, and some have entered clinical research phases. This review aims to systematically review the molecular mechanisms underlying liver fibrosis, focusing on advancements in drug treatments for hepatic fibrosis. Furthermore, since liver fibrosis is a progression or endpoint of many diseases, it is crucial to address the etiological treatment and secondary prevention for liver fibrosis. We will also review the pharmacological treatments available for common hepatitis leading to liver fibrosis.
Collapse
Affiliation(s)
- Liangtao Zhao
- Hepato-Pancreato-Biliary Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China;
| | - Haolan Tang
- School of Medicine, Southeast University, Nanjing 210009, China;
| | - Zhangjun Cheng
- Hepato-Pancreato-Biliary Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China;
| |
Collapse
|
17
|
Liu J, Li Y, Li F, Zhang X, Wang Y, Zhou J. Landscape of extrachromosomal circular DNAs, transcriptome, and proteome analysis reveals insights into alcoholic liver cirrhosis. Gene 2024; 927:148599. [PMID: 38782221 DOI: 10.1016/j.gene.2024.148599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/09/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
Alcoholic liver cirrhosis (ALC) is a result of excessive and chronic alcohol consumption. Because alchol can cause DNA damage, extrachromosomal circular DNA (eccDNA) was investigated in ALC liver due to it can be a result of DNA damage. Considering eccDNA has ability to lead to genomic instability as an enhancer of gene transcription, we utilized Circle-Seq to identify differences in eccDNA profiles and gene expression patterns in liver samples obtained from ALC patients (n = 3) and healthy controls (n = 3) to investigate the role of eccDNA in the development of ALC. The abundance of eccDNA in ALC (mean = 13,349) were higher than the healthy control (mean = 11,557) without significant difference (pvalue = 0.6530). We observed 1,032 eccDNA containing genes showed higher expression in ALC patients compared to healthy controls (p < 0.05, log2FC > 1). Notably, we discovered seven genes that exhibited a significant positive correlation between eccDNA abundance and gene expression levels. These genes include A disintegrin and metalloproteinase with thrombospondin motifs 2 (ADAMTS2), Voltage-dependent L-type calcium channel subunit alpha-1C (CACNA1C), Protein TANC1 (TANC1), Integrin alpha-2 (ITGA2), EH domain-containing protein 4 (EHD4), Phosphofurin acidic cluster sorting protein 1 (PACS1), and Neuron navigator 2 (NAV2). Through mass spectrometry proteomics, ITGA2 were found to have significantly higher abbudance in ALC. Integrins are a family of proteins plays key roles in the fibrosis development of liver. Thus, our study opens a new perspective for liver fibrosis development.
Collapse
Affiliation(s)
- Jingwen Liu
- Department of Infectious Disease, The Third Hospital of Hebei Medical University, Shi jia Zhuang 050051, China; Department of Infectious Diseases, Baoding No.1 Central Hospital, Baoding, Hebei 071000, China
| | - Yuanyuan Li
- Department of Infectious Disease, The Third Hospital of Hebei Medical University, Shi jia Zhuang 050051, China
| | - Fei Li
- Department of Pediatrics, Baoding No.1 Central Hospital, Baoding, Hebei 071000, China
| | - Xin Zhang
- Department of Tuberculosis, The Fifth Hospital of Shijiazhuang, Hebei Medical University, Shijiazhuang 050021, China
| | - Yadong Wang
- Department of Infectious Disease, The Third Hospital of Hebei Medical University, Shi jia Zhuang 050051, China
| | - Junying Zhou
- Department of Infectious Disease, The Third Hospital of Hebei Medical University, Shi jia Zhuang 050051, China.
| |
Collapse
|
18
|
Xi YY, Chen C, Zheng JJ, Jiang B, Dong XY, Lou SY, Luo JG, Zhang XH, Zhou ZY, Luo QJ, Wang W, Zhou XD. Ampelopsis grossedentata tea alleviating liver fibrosis in BDL-induced mice via gut microbiota and metabolite modulation. NPJ Sci Food 2024; 8:93. [PMID: 39537664 PMCID: PMC11561287 DOI: 10.1038/s41538-024-00334-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Liver fibrosis (LF) is a common sequela to diverse chronic liver injuries, leading to rising rates of cirrhosis and hepatocellular carcinoma (HCC). As the medicinal and edible homologous material, traditional teas have exhibited promising applications in the clinical management of liver fibrosis. Here, we generated a liver fibrosis mouse model to explore the potent therapeutic ability of Ampelopsis grossedentata (AG) tea on this condition by multi-omics analysis. The biochemistry results pointed towards mitigated increases of ALT, AST, TBIL, and ALP triggered by BDL in the AG-treated group. Examination using H&E and Sirius Red staining revealed severe liver injuries, inflammation infiltration, amplified fibrosed regions, and the creation of bile ducts, all of which were fallout from BDL. Immunohistochemistry findings also implicated a noteworthy upregulation of the HSC activation marker α-smooth muscle actin (α-SMA) and the fibrosis marker collagen I in the BDL group. However, these symptoms demonstrated a significant improvement in the group treated with 100 mg/kg AG. Findings from the Western Blot test corroborated the prominent elevation of TNF-α, col1a1, α-SMA, and TGF-β, instigated by BDL, while AG treatment meaningfully modulated these proteins. Furthermore, our study underscored the potential involvement of several microbiota, such as Ruminococcaceae UCG-014, Eubacterium Ruminantium, Ruminococcus 1, Christensenellaceae R-7, Acetatifactor, Dubosiella, Parasutterella, Faecalibaculum, and Defluviitaleaceae UCG-011, in the progression of liver fibrosis and the therapeutic efficacy of AG. This investigation shows that during the process of AG ameliorating BDL-induced liver fibrosis, bile acid derivatives such as CDCA, TCDCA, 3-DHC, UCA, DCA, among others, play significant roles. In this study, we identified that several non-bile acid metabolites, such as Deltarasin, Thr-Ile-Arg, etc., are entailed in the process of AG improving liver fibrosis.
Collapse
Affiliation(s)
- Yi-Yuan Xi
- TCM and Ethnomedicine Innovation and Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
- The Clinical Research Center, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, China
| | - Chen Chen
- School of Electronic and Information Engineering, Taizhou University, Taizhou, 318000, China
| | - Ju-Jia Zheng
- The Clinical Research Center, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, China
| | - Bing Jiang
- The Clinical Research Center, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xin-Ya Dong
- TCM and Ethnomedicine Innovation and Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Shu-Ying Lou
- The Clinical Research Center, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, China
| | - Jin-Guo Luo
- TCM and Ethnomedicine Innovation and Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Xiu-Hua Zhang
- The Clinical Research Center, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, China
| | - Zi-Ye Zhou
- The Clinical Research Center, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, China
| | - Qu-Jing Luo
- TCM and Ethnomedicine Innovation and Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Wei Wang
- TCM and Ethnomedicine Innovation and Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China.
| | - Xu-Dong Zhou
- TCM and Ethnomedicine Innovation and Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China.
| |
Collapse
|
19
|
Yang JW, Khorsandi D, Trabucco L, Ahmed M, Khademhosseini A, Dokmeci MR, Ye JY, Jucaud V. Liver-on-a-Chip Integrated with Label-Free Optical Biosensors for Rapid and Continuous Monitoring of Drug-Induced Toxicity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403560. [PMID: 39212623 PMCID: PMC11602353 DOI: 10.1002/smll.202403560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/06/2024] [Indexed: 09/04/2024]
Abstract
Drug toxicity assays using conventional 2D static cultures and animal studies have limitations preventing the translation of potential drugs to the clinic. The recent development of organs-on-a-chip platforms provides promising alternatives for drug toxicity/screening assays. However, most studies conducted with these platforms only utilize single endpoint results, which do not provide real-time/ near real-time information. Here, a versatile technology is presented that integrates a 3D liver-on-a-chip with a label-free photonic crystal-total internal reflection (PC-TIR) biosensor for rapid and continuous monitoring of the status of cells. This technology can detect drug-induced liver toxicity by continuously monitoring the secretion rates and levels of albumin and glutathione S-transferase α (GST-α) of a 3D liver on-a-chip model treated with Doxorubicin. The PC-TIR biosensor is based on a one-step antibody functionalization with high specificity and a detection range of 21.7 ng mL-1 to 7.83 x 103 ng mL-1 for albumin and 2.20 ng mL-1 to 7.94 x 102 ng mL-1 for GST-α. This approach provides critical advantages for the early detection of drug toxicity and improved temporal resolution to capture transient drug effects. The proposed proof-of-concept study introduces a scalable and efficient plug-in solution for organ-on-a-chip technologies, advancing drug development and in vitro testing methods by enabling timely and accurate toxicity assessments.
Collapse
Affiliation(s)
- Jia-Wei Yang
- Terasaki Institute for Biomedical Innovation, 21100 Erwin St, Woodland Hills, CA 91367, USA
| | - Danial Khorsandi
- Terasaki Institute for Biomedical Innovation, 21100 Erwin St, Woodland Hills, CA 91367, USA
| | - Luis Trabucco
- The University of Texas at San Antonio, Department of Biomedical Engineering and Chemical Engineering, One UTSA Circle, San Antonio, TX, 78249, USA
| | - Maisha Ahmed
- The University of Texas at San Antonio, Department of Biomedical Engineering and Chemical Engineering, One UTSA Circle, San Antonio, TX, 78249, USA
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, 21100 Erwin St, Woodland Hills, CA 91367, USA
| | - Mehmet Remzi Dokmeci
- Terasaki Institute for Biomedical Innovation, 21100 Erwin St, Woodland Hills, CA 91367, USA
| | - Jing Yong Ye
- The University of Texas at San Antonio, Department of Biomedical Engineering and Chemical Engineering, One UTSA Circle, San Antonio, TX, 78249, USA
| | - Vadim Jucaud
- Terasaki Institute for Biomedical Innovation, 21100 Erwin St, Woodland Hills, CA 91367, USA
| |
Collapse
|
20
|
Lai Q, Li W, Hu D, Huang Z, Wu M, Feng S, Wan Y. Hepatic stellate cell-targeted chemo-gene therapy for liver fibrosis using fluorinated peptide-lipid hybrid nanoparticles. J Control Release 2024; 376:601-617. [PMID: 39437969 DOI: 10.1016/j.jconrel.2024.10.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/17/2024] [Accepted: 10/19/2024] [Indexed: 10/25/2024]
Abstract
Exploring precise and effective treatments for liver fibrosis is urgent. The effective therapy for liver fibrosis depends on the specific delivery of antifibrotic drugs to activated hepatic stellate cells (aHSCs). However, this is a challenging task due to pathological barriers, primarily caused by collagen deposition. This study developed vitamin A-functionalized fluorinated peptide/lipid hybrid nanoparticles to co-deliver sorafenib and siRNA against HSP47 (SF-siHSP47@VFPL NPs). This nanoparticle formulation offers significant advantages due to its fluorine‑fluorine and electrostatic interactions, allowing for high SF and siHSP47 loading efficiency and sustained drug release. Importantly, in vitro cell uptake and in vivo biodistribution revealed that VA functionalization significantly improved aHSC-targeted delivery efficiency by engaging retinol-binding protein receptors on HSCs. Furthermore, it dramatically reduced extracellular matrix deposition, as evidenced by diminished levels of liver fibrosis-associated genes (HSP47, TIMP-1, and collagen I), promoting collagen breakdown and preventing collagen production, thus overcoming drug delivery barriers. Thus, SF-siHSP47@VFPL NPs demonstrated optimal antifibrotic effects by triggering apoptosis and ferroptosis in aHSCs. In liver fibrosis mouse models, SF-siHSP47@VFPL NPs remodeled the pathological environment and restored liver functionality through a marked reduction in serum liver transferases, hydroxyproline content, collagen deposition, and α-SMA and CD31 expression in liver tissue, resulting in alleviated liver fibrosis. Consequently, SF-siHSP47@VFPL NPs showed significant potential for HSC-targeted, chemo-gene therapy in the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Qiuyue Lai
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China; School of Biomedicine and Pharmaceutical Sciences, Sichuan modern vocational college, Chengdu 610207, China
| | - Wenlong Li
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Dandan Hu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Zhenqiu Huang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Mingyu Wu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Shun Feng
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yu Wan
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| |
Collapse
|
21
|
Nian L, Cai X, Li W, Jiang Y, Wu Q, Xiao J. Multiplex Collagen Fingerprinting for the Staging of Hepatic Fibrosis Using High-Precision Fluorescence-Guided SERS Imaging. Anal Chem 2024; 96:16649-16657. [PMID: 39375934 DOI: 10.1021/acs.analchem.4c02847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Hepatic fibrosis is a common chronic liver disease, and its severe progression can culminate in cirrhosis and hepatocellular carcinoma (HCC). Precise diagnosis and staging of hepatic fibrosis are essential to prevent liver cirrhosis and HCC. Simultaneous detection of multiplex collagen biomarkers within liver tissue is crucial for staging hepatic fibrosis. We herein for the first time constructed multiplex collagen fingerprinting for the staging of hepatic fibrosis using high-precision fluorescence-guided surface-enhanced Raman scattering (SERS) imaging. SERS/fluorescent probes, collectively referred to as SF, comprising silver nanoparticles (Ag NPs), Raman reporters, and FAM-labeled collagen targeting peptides. These probes exhibit exceptional aqueous dispersion and stability, attributed to the increased number of Asp residues in CTP. Meanwhile, SF probes, namely SF-I, SF-IV, and SF-D have demonstrated specific targeting of type I, type IV, and denatured collagen, respectively, within hepatic fibrotic tissues. The results from fluorescence-guided SERS imaging underscore the method's capacity for typing, localization, and quantification of collagen, thus providing novel insights into collagen's role in the development of hepatic fibrosis. The collagen fingerprinting strategy offers a potent toolkit for the multifaceted profiling of collagen superfamilies, holding significant implications for the precise staging of hepatic fibrosis.
Collapse
Affiliation(s)
- Linge Nian
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
- Gansu Engineering Research Center of Medical Collagen, Lanzhou, Gansu 730000, P. R. China
| | - Xiangdong Cai
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
- Gansu Engineering Research Center of Medical Collagen, Lanzhou, Gansu 730000, P. R. China
| | - Wenhua Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
- Gansu Engineering Research Center of Medical Collagen, Lanzhou, Gansu 730000, P. R. China
| | - Yuxuan Jiang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
| | - Qingfeng Wu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu 730000, P. R. China
| | - Jianxi Xiao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
- Gansu Engineering Research Center of Medical Collagen, Lanzhou, Gansu 730000, P. R. China
| |
Collapse
|
22
|
Schmidt-Christensen A, Eriksson G, Laprade WM, Pirzamanbein B, Hörnberg M, Linde K, Nilsson J, Skarsfeldt M, Leeming DJ, Mokso R, Verezhak M, Dahl A, Dahl V, Önnerhag K, Oghazi MR, Mayans S, Holmberg D. Structure-function analysis of time-resolved immunological phases in metabolic dysfunction-associated fatty liver disease (MASH) comparing the NIF mouse model to human MASH. Sci Rep 2024; 14:23014. [PMID: 39362932 PMCID: PMC11452201 DOI: 10.1038/s41598-024-73150-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 09/13/2024] [Indexed: 10/05/2024] Open
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH) is a common but frequently unrecognized complication of obesity and type 2 diabetes. The association between these conditions is multifaceted and involves complex interactions between metabolic, inflammatory, and genetic factors. Here we assess the underlying structural and molecular processes focusing on the immunological phase of MASH in the nonobese inflammation and fibrosis (NIF) mouse model and compare it to the human disease as well as other murine models. Histopathology together with synchrotron-radiation-based x-ray micro-computed tomography (SRµCT) was used to investigate structural changes within the hepatic sinusoids network in the NIF mouse in comparison to patients with different severities of MASH. A time-course, bulk RNA-sequencing analysis of liver tissue from NIF mice was performed to identify the dynamics of key processes associated with the pathogenesis. Transcriptomics profiling of the NIF mouse revealed a gradual transition from an initially reactive inflammatory response to a regenerative, pro-fibrotic inflammatory response suggesting new avenues for treatment strategies that focus on immunological targets. Despite the lack of metabolic stress induced liver phenotype, a large similarity between the NIF mouse and the immunological phase of human MASH was detected. The translational value was further supported by the comparative analyses with MASH patients and additional animal models. Finally, the impact of diets known to induce metabolic stress, was explored in the NIF mouse. An obesogenic diet was found to induce key physiological, metabolic, and histologic changes akin to those observed in human MASH.
Collapse
Affiliation(s)
| | - Gustaw Eriksson
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | | | - Behnaz Pirzamanbein
- Technical University of Denmark, DTU, Copenhagen, Denmark
- Statistics department, Lund University, Lund, Sweden
| | | | | | - Julia Nilsson
- Lund University Diabetes Center, Lund University, Lund, Sweden
- Inficure Bio AB, Umeå, Sweden
| | | | | | | | | | - Anders Dahl
- Technical University of Denmark, DTU, Copenhagen, Denmark
| | - Vedrana Dahl
- Technical University of Denmark, DTU, Copenhagen, Denmark
| | | | | | | | - Dan Holmberg
- Lund University Diabetes Center, Lund University, Lund, Sweden.
- Inficure Bio AB, Umeå, Sweden.
- Department of Medical Biosciences, Umeå University, Umeå, Sweden.
| |
Collapse
|
23
|
Rasmussen DGK, Hansen MK, Frederiksen P, Luo Y, Pehrsson M, Neal B, Karsdal MA, Genovese F. Association of type III collagen turnover with cardiovascular outcomes and impact with canagliflozin in the CANVAS Program: A post hoc analysis. Diabetes Obes Metab 2024; 26:4060-4068. [PMID: 39014523 DOI: 10.1111/dom.15761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/12/2024] [Accepted: 06/19/2024] [Indexed: 07/18/2024]
Abstract
AIM To investigate type III collagen (COL III) turnover in participants from the CANVAS Program biomarker substudy. METHODS Biomarkers of COL III formation (PRO-C3) and COL III degradation fragments (C3M and CTX-III) were assessed in baseline and year 3 plasma from patients enrolled in CANVAS, investigating the effect of canagliflozin in participants with type 2 diabetes. The clinical outcomes investigated in this study were hospitalization for heart failure, cardiovascular death and all-cause mortality. RESULTS Higher levels of PRO-C3 and C3M at baseline were associated with an increased incidence of all investigated outcomes, whereas levels of CTX-III at baseline were not associated with any of the investigated outcomes. Levels of PRO-C3 decreased and levels of CTX-III increased following canagliflozin treatment. An increase from baseline to year 3 in PRO-C3 in the placebo arm was associated with an increased incidence of cardiovascular outcomes, and in all participants was associated with an increased risk of all-cause mortality. CONCLUSIONS The changes in PRO-C3 and CTX-III reflect a shift in the dynamics of COL3 turnover following treatment with canagliflozin. These biomarkers are promising pharmacodynamic tools that can be used to monitor the impact of canagliflozin treatment and possibly other sodium-glucose co-transporter-2 inhibitors on tissue remodelling in future interventional trials.
Collapse
Affiliation(s)
| | - Michael K Hansen
- Janssen Research & Development, LLC, Spring House, Pennsylvania, USA
| | | | | | | | - Bruce Neal
- The George Institute for Global Health, UNSW Sydney, Sydney, New South Wales, Australia
- The Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
- Imperial College London, London, UK
| | | | | |
Collapse
|
24
|
Lagoutte P, Bourhis JM, Mariano N, Gueguen-Chaignon V, Vandroux D, Moali C, Vadon-Le Goff S. Mono- and Bi-specific Nanobodies Targeting the CUB Domains of PCPE-1 Reduce the Proteolytic Processing of Fibrillar Procollagens. J Mol Biol 2024; 436:168667. [PMID: 38901640 DOI: 10.1016/j.jmb.2024.168667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 06/22/2024]
Abstract
The excessive deposition of fibrillar collagens is a hallmark of fibrosis. Collagen fibril formation requires proteolytic maturations by Procollagen N- and C-proteinases (PNPs and PCPs) to remove the N- and C-propeptides which maintain procollagens in the soluble form. Procollagen C-Proteinase Enhancer-1 (PCPE-1, a glycoprotein composed of two CUB domains and one NTR domain) is a regulatory protein that activates the C-terminal processing of procollagens by the main PCPs. It is often up-regulated in fibrotic diseases and represents a promising target for the development of novel anti-fibrotic strategies. Here, our objective was to develop the first antagonists of PCPE-1, based on the nanobody scaffold. Using both an in vivo selection through the immunization of a llama and an in vitro selection with a synthetic library, we generated 18 nanobodies directed against the CUB domains of PCPE1, which carry its enhancing activity. Among them, I5 from the immune library and H4 from the synthetic library have a high affinity for PCPE-1 and inhibit its interaction with procollagens. The crystal structure of the complex formed by PCPE-1, H4 and I5 showed that they have distinct epitopes and enabled the design of a biparatopic fusion, the diabody diab-D1. Diab-D1 has a sub-nanomolar affinity for PCPE-1 and is a potent antagonist of its activity, preventing the stimulation of procollagen cleavage in vitro. Moreover, Diab-D1 is also effective in reducing the proteolytic maturation of procollagen I in cultures of human dermal fibroblasts and hence holds great promise as a tool to modulate collagen deposition in fibrotic conditions.
Collapse
Affiliation(s)
- Priscillia Lagoutte
- Universite Claude Bernard Lyon 1, CNRS, Tissue Biology and Therapeutic Engineering Laboratory, LBTI, UMR5305, F-69367 Lyon, France
| | - Jean-Marie Bourhis
- Institut de Biologie Structurale, University Grenoble Alpes, CEA, CNRS, F-38000 Grenoble, France
| | - Natacha Mariano
- Universite Claude Bernard Lyon 1, CNRS, Tissue Biology and Therapeutic Engineering Laboratory, LBTI, UMR5305, F-69367 Lyon, France
| | - Virginie Gueguen-Chaignon
- Protein Science Facility, SFR BioSciences, Univ Lyon, CNRS UAR3444, Inserm US8, ENS de Lyon, F-69367 Lyon, France
| | | | - Catherine Moali
- Universite Claude Bernard Lyon 1, CNRS, Tissue Biology and Therapeutic Engineering Laboratory, LBTI, UMR5305, F-69367 Lyon, France
| | - Sandrine Vadon-Le Goff
- Universite Claude Bernard Lyon 1, CNRS, Tissue Biology and Therapeutic Engineering Laboratory, LBTI, UMR5305, F-69367 Lyon, France.
| |
Collapse
|
25
|
Yi JY, Ryu J, Jeong Y, Cho Y, Kim M, Jeon M, Park HH, Hwang NS, Jeong HJ, Sung C. One-step detection of procollagen type III N-terminal peptide as a fibrosis biomarker using fluorescent immunosensor (quenchbody). Anal Chim Acta 2024; 1317:342887. [PMID: 39030019 DOI: 10.1016/j.aca.2024.342887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/29/2024] [Accepted: 06/17/2024] [Indexed: 07/21/2024]
Abstract
BACKGROUND Procollagen type III N-terminal peptide (P-III-NP) is a fibrosis biomarker associated with liver and cardiac fibrosis. Despite the value of P-III-NP as a biomarker, its analysis currently relies on enzyme-linked immunosorbent assays (ELISA) and radioimmunoassays (RIA), which require more than 3 h. To facilitate early diagnosis and treatment through rapid biomarker testing, we developed a one-step immunoassay for P-III-NP using a quenchbody, which is a fluorescence-labeled immunosensor for immediate signal generation. RESULTS To create quenchbodies, the total mRNA of P-III-NP antibodies was extracted from early-developed hybridoma cells, and genes of variable regions were obtained through cDNA synthesis, inverse PCR, and sequencing. A single-chain variable fragment (scFv) with an N-terminal Cys-tag was expressed in E. coli Shuffle T7, resulting in a final yield of 9.8 mg L-1. The fluorescent dye was labeled on the Cys-tag of the anti-P-III-NP scFv using maleimide-thiol click chemistry, and the spacer arm lengths between the maleimide-fluorescent dyes were compared. Consequently, a TAMRA-C6-labeled quenchbody exhibited antigen-dependent fluorescence signals and demonstrated its ability to detect P-III-NP at concentrations as low as 0.46 ng mL-1 for buffer samples, 1.0 ng mL-1 for 2 % human serum samples. SIGNIFICANCE This one-step P-III-NP detection method provides both qualitative and quantitative outcomes within a concise 5-min timeframe. Furthermore, its application can be expanded using a 96-well platform and human serum, making it a high-throughput and sensitive method for testing fibrotic biomarkers.
Collapse
Affiliation(s)
- Joon-Yeop Yi
- Doping Control Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea; Interdisciplinary Program of Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jaewon Ryu
- Department of Biological and Environmental Science, Dongguk University, Goyang-si, Gyeonggi-do, 10326, Republic of Korea
| | - Yujin Jeong
- Doping Control Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea; Department of Bioengineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Yoeseph Cho
- Doping Control Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Minyoung Kim
- Doping Control Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea; Interdisciplinary Program of Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Mijin Jeon
- Doping Control Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Hee Ho Park
- Department of Bioengineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Nathaniel S Hwang
- Interdisciplinary Program of Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea; School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea; Institute of Engineering Research, Seoul National University, Seoul, 08826, Republic of Korea; Bio-Max/N-Bio Institute, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hee-Jin Jeong
- Department of Biological and Chemical Engineering, Hongik University, Sejong, 30016, Republic of Korea
| | - Changmin Sung
- Doping Control Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea.
| |
Collapse
|
26
|
Fan W, Bradford TM, Török NJ. Metabolic dysfunction-associated liver disease and diabetes: Matrix remodeling, fibrosis, and therapeutic implications. Ann N Y Acad Sci 2024; 1538:21-33. [PMID: 38996214 DOI: 10.1111/nyas.15184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Metabolic dysfunction-associated liver disease (MASLD) and steatohepatitis (MASH) are becoming the most common causes of chronic liver disease in the United States and worldwide due to the obesity and diabetes epidemics. It is estimated that by 2030 close to 100 million people might be affected and patients with type 2 diabetes are especially at high risk. Twenty to 30% of patients with MASLD can progress to MASH, which is characterized by steatosis, necroinflammation, hepatocyte ballooning, and in advanced cases, fibrosis progressing to cirrhosis. Clinically, it is recognized that disease progression in diabetic patients is accelerated and the role of various genetic and epigenetic factors, as well as cell-matrix interactions in fibrosis and stromal remodeling, have recently been recognized. While there has been great progress in drug development and clinical trials for MASLD/MASH, the complexity of these pathways highlights the need to improve diagnosis/early detection and develop more successful antifibrotic therapies that not only prevent but reverse fibrosis.
Collapse
Affiliation(s)
- Weiguo Fan
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, California, USA
- Palo Alto VA Medical Center, Palo Alto, California, USA
| | - Toby M Bradford
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, California, USA
| | - Natalie J Török
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, California, USA
- Palo Alto VA Medical Center, Palo Alto, California, USA
| |
Collapse
|
27
|
Linder M, Bennink L, Foxton RH, Kirkness M, Westenskow PD. In vivo monitoring of active subretinal fibrosis in mice using collagen hybridizing peptides. Lab Anim (NY) 2024; 53:196-204. [PMID: 39060633 PMCID: PMC11291276 DOI: 10.1038/s41684-024-01408-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 06/19/2024] [Indexed: 07/28/2024]
Abstract
Subretinal fibrosis is associated with worse visual outcomes in patients with neovascular age-related macular degeneration. As there is a lack of optimal biomarkers and no method that directly detects collagen in the back of the eye, novel tools that monitor fibrosis-related changes in neovascular age-related macular degeneration are needed. Here, using two mouse models (the laser-induced choroidal neovascularization model, and the JR5558 mouse presenting with spontaneous subretinal neovascularization with fibrosis), we imaged active fibrotic lesions using fluorescently labeled collagen hybridizing peptides (CHPs), short peptides that bind to single α-chain collagen structures during collagen remodeling. JR5558 retinal pigment epithelium/choroid flat mounts showed CHP co-staining with fibrosis and epithelial mesenchymal transition-related markers; additionally, CHP histopathology staining correlated with in vivo CHP imaging. After laser-induced choroidal neovascularization, in vivo CHP binding correlated with laser intensity, histopathology CHP and fibronectin staining. Laser-induced choroidal neovascularization showed decreased CHP intensity over time in healing/regressing versus active scars in vivo, whereas increased CHP binding correlated with elevated fibrosis in JR5558 mouse eyes with age. In bispecific angiopoietin 2/vascular endothelial growth factor antibody-treated JR5558 mice, CHPs detected significantly decreased collagen remodeling versus immunoglobulin G control. These results demonstrate the first use of CHPs to directly image remodeling collagen in the eye and as a potential clinical optical biomarker of active subretinal fibrosis associated with ocular neovascularization.
Collapse
Affiliation(s)
- Markus Linder
- Roche Pharma Research and Early Development, Roche Innovation Center, F. Hoffmann-La Roche AG, Basel, Switzerland
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | - Richard H Foxton
- Roche Pharma Research and Early Development, Roche Innovation Center, F. Hoffmann-La Roche AG, Basel, Switzerland
| | | | - Peter D Westenskow
- Roche Pharma Research and Early Development, Roche Innovation Center, F. Hoffmann-La Roche AG, Basel, Switzerland.
| |
Collapse
|
28
|
Tagliaferro M, Marino M, Basile V, Pocino K, Rapaccini GL, Ciasca G, Basile U, Carnazzo V. New Biomarkers in Liver Fibrosis: A Pass through the Quicksand? J Pers Med 2024; 14:798. [PMID: 39201990 PMCID: PMC11355846 DOI: 10.3390/jpm14080798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/12/2024] [Accepted: 07/27/2024] [Indexed: 09/03/2024] Open
Abstract
Chronic liver diseases (CLD) stem from various causes and lead to a gradual progression that ultimately may result in fibrosis and eventually cirrhosis. This process is typically prolonged and asymptomatic, characterized by the complex interplay among various cell types, signaling pathways, extracellular matrix components, and immune responses. With the prevalence of CLD increasing, diagnoses are often delayed, which leads to poor prognoses and in some cases, the need for liver transplants. Consequently, there is an urgent need for the development of novel, non-invasive methods for the diagnosis and monitoring of CLD. In this context, serum biomarkers-safer, repeatable, and more acceptable alternatives to tissue biopsies-are attracting significant research interest, although their clinical implementation is not yet widespread. This review summarizes the latest advancements in serum biomarkers for detecting hepatic fibrogenesis and advocates for concerted efforts to consolidate current knowledge, thereby providing patients with early, effective, and accessible diagnoses that facilitate personalized therapeutic strategies.
Collapse
Affiliation(s)
- Marzia Tagliaferro
- Dipartimento di Patologia Clinica, Ospedale Santa Maria Goretti, A.U.S.L. Latina, 04100 Latina, Italy; (M.T.); (V.C.)
| | - Mariapaola Marino
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (M.M.); (G.L.R.)
- Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Valerio Basile
- Clinical Pathology Unit and Cancer Biobank, Department of Research and Advanced Technologies, I.R.C.C.S. Regina Elena National Cancer Institute, 00144 Rome, Italy;
| | - Krizia Pocino
- Clinical Pathology Unit, San Pietro Fatebenefratelli Hospital, 00189 Rome, Italy;
| | - Gian Ludovico Rapaccini
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (M.M.); (G.L.R.)
| | - Gabriele Ciasca
- Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Umberto Basile
- Dipartimento di Patologia Clinica, Ospedale Santa Maria Goretti, A.U.S.L. Latina, 04100 Latina, Italy; (M.T.); (V.C.)
| | - Valeria Carnazzo
- Dipartimento di Patologia Clinica, Ospedale Santa Maria Goretti, A.U.S.L. Latina, 04100 Latina, Italy; (M.T.); (V.C.)
| |
Collapse
|
29
|
Sultan LR, Grasso V, Jose J, Al-Hasani M, Karmacharya MB, Sehgal CM. Advanced Techniques for Liver Fibrosis Detection: Spectral Photoacoustic Imaging and Superpixel Photoacoustic Unmixing Analysis for Collagen Tracking. SENSORS (BASEL, SWITZERLAND) 2024; 24:4617. [PMID: 39066017 PMCID: PMC11281248 DOI: 10.3390/s24144617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/30/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024]
Abstract
Liver fibrosis, a major global health issue, is marked by excessive collagen deposition that impairs liver function. Noninvasive methods for the direct visualization of collagen content are crucial for the early detection and monitoring of fibrosis progression. This study investigates the potential of spectral photoacoustic imaging (sPAI) to monitor collagen development in liver fibrosis. Utilizing a novel data-driven superpixel photoacoustic unmixing (SPAX) framework, we aimed to distinguish collagen presence and evaluate its correlation with fibrosis progression. We employed an established diethylnitrosamine (DEN) model in rats to study liver fibrosis over various time points. Our results revealed a significant correlation between increased collagen photoacoustic signal intensity and advanced fibrosis stages. Collagen abundance maps displayed dynamic changes throughout fibrosis progression. These findings underscore the potential of sPAI for the noninvasive monitoring of collagen dynamics and fibrosis severity assessment. This research advances the development of noninvasive diagnostic tools and personalized management strategies for liver fibrosis.
Collapse
Affiliation(s)
- Laith R. Sultan
- Clinical Research Core, Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA;
| | - Valeria Grasso
- FUJIFILM VisualSonics, 1114 AB Amsterdam, The Netherlands; (V.G.); (J.J.)
| | - Jithin Jose
- FUJIFILM VisualSonics, 1114 AB Amsterdam, The Netherlands; (V.G.); (J.J.)
| | - Maryam Al-Hasani
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA; (M.A.-H.); (C.M.S.)
| | - Mrigendra B. Karmacharya
- Clinical Research Core, Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA;
| | - Chandra M. Sehgal
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA; (M.A.-H.); (C.M.S.)
| |
Collapse
|
30
|
Sanyal AJ, Kaplan LM, Frias JP, Brouwers B, Wu Q, Thomas MK, Harris C, Schloot NC, Du Y, Mather KJ, Haupt A, Hartman ML. Triple hormone receptor agonist retatrutide for metabolic dysfunction-associated steatotic liver disease: a randomized phase 2a trial. Nat Med 2024; 30:2037-2048. [PMID: 38858523 PMCID: PMC11271400 DOI: 10.1038/s41591-024-03018-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 04/24/2024] [Indexed: 06/12/2024]
Abstract
Retatrutide is a novel triple agonist of the glucose-dependent insulinotropic polypeptide, glucagon-like peptide 1 and glucagon receptors. A 48-week phase 2 obesity study demonstrated weight reductions of 22.8% and 24.2% with retatrutide 8 and 12 mg, respectively. The primary objective of this substudy was to assess mean relative change from baseline in liver fat (LF) at 24 weeks in participants from that study with metabolic dysfunction-associated steatotic liver disease and ≥10% of LF. Here, in this randomized, double-blind, placebo-controlled trial, participants (n = 98) were randomly assigned to 48 weeks of once-weekly subcutaneous retatrutide (1, 4, 8 or 12 mg dose) or placebo. The mean relative change from baseline in LF at 24 weeks was -42.9% (1 mg), -57.0% (4 mg), -81.4% (8 mg), -82.4% (12 mg) and +0.3% (placebo) (all P < 0.001 versus placebo). At 24 weeks, normal LF (<5%) was achieved by 27% (1 mg), 52% (4 mg), 79% (8 mg), 86% (12 mg) and 0% (placebo) of participants. LF reductions were significantly related to changes in body weight, abdominal fat and metabolic measures associated with improved insulin sensitivity and lipid metabolism. The ClinicalTrials.gov registration is NCT04881760 .
Collapse
Affiliation(s)
- Arun J Sanyal
- Stravitz-Sanyal Institute for Liver Disease and Metabolic Health and Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University School of Medicine, Richmond, VA, USA.
| | - Lee M Kaplan
- Section of Obesity Medicine and Weight and Wellness Center, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Juan P Frias
- Velocity Clinical Research, Los Angeles, CA, USA
| | | | - Qiwei Wu
- Eli Lilly and Company, Indianapolis, IN, USA
| | | | | | | | - Yu Du
- Eli Lilly and Company, Indianapolis, IN, USA
| | | | - Axel Haupt
- Eli Lilly and Company, Indianapolis, IN, USA
| | | |
Collapse
|
31
|
Thorburn D, Leeming DJ, Barchuk WT, Wang Y, Lu X, Malkov VA, Ito KL, Bowlus CL, Levy C, Goodman Z, Karsdal MA, Muir AJ, Xu J. Serologic extracellular matrix remodeling markers are related to fibrosis stage and prognosis in a phase 2b trial of simtuzumab in patients with primary sclerosing cholangitis. Hepatol Commun 2024; 8:e0467. [PMID: 38967589 PMCID: PMC11227354 DOI: 10.1097/hc9.0000000000000467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/12/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND Novel noninvasive predictors of disease severity and prognosis in primary sclerosing cholangitis (PSC) are needed. This study evaluated the ability of extracellular matrix remodeling markers to diagnose fibrosis stage and predict PSC-related fibrosis progression and clinical events. METHODS Liver histology and serum markers of collagen formation (propeptide of type III collagen [Pro-C3], propeptide of type IV collagen, propeptide of type V collagen), collagen degradation (type III collagen matrix metalloproteinase degradation product and type IV collagen matrix metalloproteinase degradation product), and fibrosis (enhanced liver fibrosis [ELF] score and its components [metalloproteinase-1, type III procollagen, hyaluronic acid]) were assessed in samples from baseline to week 96 in patients with PSC enrolled in a study evaluating simtuzumab (NCT01672853). Diagnostic performance for advanced fibrosis (Ishak stages 3-6) and cirrhosis (Ishak stages 5-6) was evaluated by logistic regression and AUROC. Prognostic performance for PSC-related clinical events and fibrosis progression was assessed by AUROC and Wilcoxon rank-sum test. RESULTS Among 234 patients, 51% had advanced fibrosis and 11% had cirrhosis at baseline. Baseline Pro-C3 and ELF score and its components provided moderate diagnostic ability for discrimination of advanced fibrosis (AUROC 0.73-0.78) and cirrhosis (AUROC 0.73-0.81). Baseline Pro-C3, ELF score, and type III procollagen provided a moderate prognosis for PSC-related clinical events (AUROC 0.70-0.71). Among patients without cirrhosis at baseline, median changes in Pro-C3 and ELF score to week 96 were higher in those with than without progression to cirrhosis (both p < 0.001). CONCLUSIONS Pro-C3 correlated with fibrosis stage, and Pro-C3 and ELF score provided discrimination of advanced fibrosis and cirrhosis and predicted PSC-related events and fibrosis progression. The results support the clinical utility of Pro-C3 and ELF score for staging and as prognostic markers in PSC.
Collapse
Affiliation(s)
- Douglas Thorburn
- Sheila Sherlock Liver Centre and UCL Institute for Liver and Digestive Health, Royal Free Hospital, London, UK
| | | | | | - Ya Wang
- Gilead Sciences, Inc., Foster City, California, USA
| | - Xiaomin Lu
- Gilead Sciences, Inc., Foster City, California, USA
| | | | - Kaori L. Ito
- Gilead Sciences, Inc., Foster City, California, USA
| | - Christopher L. Bowlus
- Division of Gastroenterology and Hepatology, University of California Davis School of Medicine, Sacramento, California, USA
| | - Cynthia Levy
- Division of Digestive Health and Liver Diseases, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | | | | | - Andrew J. Muir
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Jun Xu
- Gilead Sciences, Inc., Foster City, California, USA
| |
Collapse
|
32
|
Nian L, Li W, Zhang C, Li L, Zhang G, Xiao J. 3D-Printed SERS Chips for Highly Specific Detection of Denatured Type I and IV Collagens in Blood for Early Hepatic Fibrosis Diagnosis. ACS Sens 2024; 9:3272-3281. [PMID: 38836565 DOI: 10.1021/acssensors.4c00623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Hepatic fibrosis, the insidious progression of chronic liver scarring leading to life-threatening cirrhosis and hepatocellular carcinoma, necessitates the urgent development of noninvasive and precise diagnostic methodologies. Denatured collagen emerges as a critical biomarker in the pathogenesis of hepatic fibrosis. Herein, we have for the first time developed 3D-printed collagen capture chips for highly specific surface-enhanced Raman scattering (SERS) detection of denatured type I and type IV collagen in blood, facilitating the early diagnosis of hepatic fibrosis. Employing a novel blend of denatured collagen-targeting peptide-modified silver nanoparticle probes (Ag@DCTP) and polyethylene glycol diacrylate (PEGDA), we engineered a robust ink for the 3D fabrication of these collagen capture chips. The chips are further equipped with specialized SERS peptide probes, Ag@ICTP@R1 (S-I) and Ag@IVCTP@R2 (S-IV), tailored for the targeted detection of type I and IV collagen, respectively. The SERS chip platform demonstrated exceptional specificity and sensitivity in capturing and detecting denatured type I and IV collagen, achieving detection limits of 3.5 ng/mL for type I and 3.2 ng/mL for type IV collagen within a 10-400 ng/mL range. When tested on serum samples from hepatic fibrosis mouse models across a spectrum of fibrosis stages (S0-S4), the chips consistently measured denatured type I collagen and detected a progressive increase in type IV collagen concentration, which correlated with the severity of fibrosis. This novel strategy establishes a benchmark for the multiplexed detection of collagen biomarkers, enhancing our capacity to assess the stages of hepatic fibrosis.
Collapse
Affiliation(s)
- Linge Nian
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
- School of Life Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Wenhua Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Chunxia Zhang
- Tianjin Baogang Rare Earth Research Institute Company, Limited, Beijing 100022, P. R. China
| | - Lu Li
- Tianjin Baogang Rare Earth Research Institute Company, Limited, Beijing 100022, P. R. China
| | - Guangrui Zhang
- Tianjin Baogang Rare Earth Research Institute Company, Limited, Beijing 100022, P. R. China
| | - Jianxi Xiao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
33
|
Very N, Boulet C, Gheeraert C, Berthier A, Johanns M, Bou Saleh M, Guille L, Bray F, Strub JM, Bobowski-Gerard M, Zummo FP, Vallez E, Molendi-Coste O, Woitrain E, Cianférani S, Montaigne D, Ntandja-Wandji LC, Dubuquoy L, Dubois-Chevalier J, Staels B, Lefebvre P, Eeckhoute J. O-GlcNAcylation controls pro-fibrotic transcriptional regulatory signaling in myofibroblasts. Cell Death Dis 2024; 15:391. [PMID: 38830870 PMCID: PMC11148087 DOI: 10.1038/s41419-024-06773-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/05/2024]
Abstract
Tissue injury causes activation of mesenchymal lineage cells into wound-repairing myofibroblasts (MFs), whose uncontrolled activity ultimately leads to fibrosis. Although this process is triggered by deep metabolic and transcriptional reprogramming, functional links between these two key events are not yet understood. Here, we report that the metabolic sensor post-translational modification O-linked β-D-N-acetylglucosaminylation (O-GlcNAcylation) is increased and required for myofibroblastic activation. Inhibition of protein O-GlcNAcylation impairs archetypal myofibloblast cellular activities including extracellular matrix gene expression and collagen secretion/deposition as defined in vitro and using ex vivo and in vivo murine liver injury models. Mechanistically, a multi-omics approach combining proteomic, epigenomic, and transcriptomic data mining revealed that O-GlcNAcylation controls the MF transcriptional program by targeting the transcription factors Basonuclin 2 (BNC2) and TEA domain transcription factor 4 (TEAD4) together with the Yes-associated protein 1 (YAP1) co-activator. Indeed, inhibition of protein O-GlcNAcylation impedes their stability leading to decreased functionality of the BNC2/TEAD4/YAP1 complex towards promoting activation of the MF transcriptional regulatory landscape. We found that this involves O-GlcNAcylation of BNC2 at Thr455 and Ser490 and of TEAD4 at Ser69 and Ser99. Altogether, this study unravels protein O-GlcNAcylation as a key determinant of myofibroblastic activation and identifies its inhibition as an avenue to intervene with fibrogenic processes.
Collapse
Affiliation(s)
- Ninon Very
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Clémence Boulet
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Céline Gheeraert
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Alexandre Berthier
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Manuel Johanns
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Mohamed Bou Saleh
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, Lille, France
| | - Loïc Guille
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Fabrice Bray
- Miniaturization for Synthesis, Analysis & Proteomics, UAR 3290, CNRS, University of Lille, Villeneuve d'Ascq Cedex, France
| | - Jean-Marc Strub
- Laboratoire de Spectrométrie de Masse BioOrganique, CNRS UMR7178, Univ. Strasbourg, IPHC, Infrastructure Nationale de Protéomique ProFI - FR2048, Strasbourg, France
| | - Marie Bobowski-Gerard
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Francesco P Zummo
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Emmanuelle Vallez
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Olivier Molendi-Coste
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Eloise Woitrain
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique, CNRS UMR7178, Univ. Strasbourg, IPHC, Infrastructure Nationale de Protéomique ProFI - FR2048, Strasbourg, France
| | - David Montaigne
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Line Carolle Ntandja-Wandji
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, Lille, France
| | - Laurent Dubuquoy
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, Lille, France
| | | | - Bart Staels
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Philippe Lefebvre
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Jérôme Eeckhoute
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France.
| |
Collapse
|
34
|
Ishii C, Tojo Y, Iwasaki K, Fujii A, Akita T, Nagano M, Mita M, Ide T, Hamase K. Development of a two-dimensional LC-MS/MS system for the determination of proline and 4-hydroxyproline enantiomers in biological and food samples. ANAL SCI 2024; 40:881-889. [PMID: 38598049 DOI: 10.1007/s44211-024-00530-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
A two-dimensional LC-MS/MS system has been developed for the enantioselective determination of proline (Pro), cis-4-hydroxyproline (cis-4-Hyp) and trans-4-hydroxyproline (trans-4-Hyp) in a variety of biological samples. The amino acids were pre-column derivatized with 4-fluoro-7-nitro-2,1,3-benzoxadiazole (NBD-F), and the NBD-derivatives were separated by a reversed-phase column (Singularity RP18) as their D plus L mixtures in the first dimension. The collected target fractions were then introduced into the second dimension where the enantiomers were separated by a Pirkle-type enantioselective column (Singularity CSP-001S) and determined by a tandem mass spectrometer (Triple Quad™ 5500). The method was validated by the standard amino acids and also by human plasma, and sufficient results were obtained for the calibration, precision and accuracy. The method was applied to human plasma and urine, bivalve tissues and fermented food/beverages. D-Pro was widely found in the human physiological fluids, bivalves and several fermented products. Although trans-4-D-Hyp was not found in all the tested samples, cis-4-D-Hyp was present in human urine and tissues of the ark shell, and further studies focusing on the origin and physiological significance of these D-enantiomers are expected.
Collapse
Affiliation(s)
- Chiharu Ishii
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yosuke Tojo
- MIRAI Technology Institute, Shiseido Co., Ltd., 1-2-11 Takashima, Nishi-ku, Yokohama, 220-0011, Japan
| | - Komei Iwasaki
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Akira Fujii
- Sakamoto Kurozu, Inc., 21-15 Uenosono-cho, Kagoshima, 890-0052, Japan
| | - Takeyuki Akita
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Masanobu Nagano
- Sakamoto Kurozu, Inc., 21-15 Uenosono-cho, Kagoshima, 890-0052, Japan
| | - Masashi Mita
- KAGAMI, Inc., 7-7-15, Saito-asagi, Ibaraki, Osaka, 567-0085, Japan
| | - Tomomi Ide
- Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kenji Hamase
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
35
|
Petrenko O, Königshofer P, Brusilovskaya K, Hofer BS, Bareiner K, Simbrunner B, Jühling F, Baumert TF, Lupberger J, Trauner M, Kauschke SG, Pfisterer L, Simon E, Rendeiro AF, de Rooij LP, Schwabl P, Reiberger T. Transcriptomic signatures of progressive and regressive liver fibrosis and portal hypertension. iScience 2024; 27:109301. [PMID: 38469563 PMCID: PMC10926212 DOI: 10.1016/j.isci.2024.109301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/10/2023] [Accepted: 02/16/2024] [Indexed: 03/13/2024] Open
Abstract
Persistent liver injury triggers a fibrogenic program that causes pathologic remodeling of the hepatic microenvironment (i.e., liver fibrosis) and portal hypertension. The dynamics of gene regulation during liver disease progression and early regression remain understudied. Here, we generated hepatic transcriptome profiles in two well-established liver disease models at peak fibrosis and during spontaneous regression after the removal of the inducing agents. We linked the dynamics of key disease readouts, such as portal pressure, collagen area, and transaminase levels, to differentially expressed genes, enabling the identification of transcriptomic signatures of progressive vs. regressive liver fibrosis and portal hypertension. These candidate biomarkers (e.g., Tcf4, Mmp7, Trem2, Spp1, Scube1, Islr) were validated in RNA sequencing datasets of patients with cirrhosis and portal hypertension, and those cured from hepatitis C infection. Finally, deconvolution identified major cell types and suggested an association of macrophage and portal hepatocyte signatures with portal hypertension and fibrosis area.
Collapse
Affiliation(s)
- Oleksandr Petrenko
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna 1090, Austria
- Christian Doppler Laboratory for Portal Hypertension and Liver Fibrosis, Medical University of Vienna, Vienna 1090, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
| | - Philipp Königshofer
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna 1090, Austria
- Christian Doppler Laboratory for Portal Hypertension and Liver Fibrosis, Medical University of Vienna, Vienna 1090, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
| | - Ksenia Brusilovskaya
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna 1090, Austria
- Christian Doppler Laboratory for Portal Hypertension and Liver Fibrosis, Medical University of Vienna, Vienna 1090, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
| | - Benedikt S. Hofer
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna 1090, Austria
- Christian Doppler Laboratory for Portal Hypertension and Liver Fibrosis, Medical University of Vienna, Vienna 1090, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
| | - Katharina Bareiner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna 1090, Austria
| | - Benedikt Simbrunner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna 1090, Austria
- Christian Doppler Laboratory for Portal Hypertension and Liver Fibrosis, Medical University of Vienna, Vienna 1090, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
| | - Frank Jühling
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hepatiques UMR_S1110, Strasbourg 67000, France
| | - Thomas F. Baumert
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hepatiques UMR_S1110, Strasbourg 67000, France
- Service d’hépato-gastroentérologie, Hôpitaux Universitaires de Strasbourg, Strasbourg 67000, France
- Institut Universitaire de France (IUF), 75005 Paris, France
| | - Joachim Lupberger
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hepatiques UMR_S1110, Strasbourg 67000, France
- Service d’hépato-gastroentérologie, Hôpitaux Universitaires de Strasbourg, Strasbourg 67000, France
- Institut Universitaire de France (IUF), 75005 Paris, France
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna 1090, Austria
| | - Stefan G. Kauschke
- Department of CardioMetabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co.KG, 88397 Biberach an der Riss, Germany
| | - Larissa Pfisterer
- Department of CardioMetabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co.KG, 88397 Biberach an der Riss, Germany
| | - Eric Simon
- Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co.KG, 88397 Biberach an der Riss, Germany
| | - André F. Rendeiro
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
| | - Laura P.M.H. de Rooij
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
| | - Philipp Schwabl
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna 1090, Austria
- Christian Doppler Laboratory for Portal Hypertension and Liver Fibrosis, Medical University of Vienna, Vienna 1090, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
| | - Thomas Reiberger
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna 1090, Austria
- Christian Doppler Laboratory for Portal Hypertension and Liver Fibrosis, Medical University of Vienna, Vienna 1090, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
| |
Collapse
|
36
|
Liang Q, Pan F, Qiu H, Zhou X, Cai J, Luo R, Xiong Z, Yang H, Zhang L. CLC-3 regulates TGF-β/smad signaling pathway to inhibit the process of fibrosis in hypertrophic scar. Heliyon 2024; 10:e24984. [PMID: 38333829 PMCID: PMC10850413 DOI: 10.1016/j.heliyon.2024.e24984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 02/10/2024] Open
Abstract
Objective To study the role and mechanism of chloride channel-3 (ClC-3) in the formation of hypertrophic scar by constructing ClC-3 interference vectors and examining their effects on human hypertrophic scar fibroblasts (HSFB). Methods Human HSFB and human normal skin fibroblasts (NSFB) were used in this study, and ClC-3 interference vectors were constructed to transfect cells. ClC-3 inhibitors NPPB and Tamoxifen were used to treat cells. Cell migration and the expression of TGF-β/Smad, CollagenⅠ,CollagenⅢ were examined to explore the role of ClC-3 in the formation of hypertrophic scar. Results Compared with the normal skin tissue, the positive expression of ClC-3 and TGF-β in the scar tissue was significantly increased. The relative expression of ClC-3 and TGF-β1 in HSFB cells was higher than that in NSFB cells. Interfering with the expression of CLC-3 can inhibit the migration of HSFB cells and the expression of TGF- β/Smad, CollagenⅠ/Ⅲ. The experiment of HSFB cells treated by CLC-3 inhibitors can also obtain similar results. Conclusion Inhibiting CLC-3 can reduce the formation of hypertrophic scars.
Collapse
Affiliation(s)
- Qian Liang
- Department of Medical Cosmetology, The Second Affiliated Hospital of Guangxi Medical University, No. 166 Daxue East Road, Xixiangtang District, Nanning City, Guangxi Province, China
| | - Fuqiang Pan
- Department of Medical Cosmetology, The Second Affiliated Hospital of Guangxi Medical University, No. 166 Daxue East Road, Xixiangtang District, Nanning City, Guangxi Province, China
| | - Houhuang Qiu
- Department of Medical Cosmetology, The Second Affiliated Hospital of Guangxi Medical University, No. 166 Daxue East Road, Xixiangtang District, Nanning City, Guangxi Province, China
| | - Xiang Zhou
- Department of Medical Cosmetology, The Second Affiliated Hospital of Guangxi Medical University, No. 166 Daxue East Road, Xixiangtang District, Nanning City, Guangxi Province, China
| | - Jieyun Cai
- Department of Medical Cosmetology, The Second Affiliated Hospital of Guangxi Medical University, No. 166 Daxue East Road, Xixiangtang District, Nanning City, Guangxi Province, China
| | - Ruijin Luo
- Department of Medical Cosmetology, The Second Affiliated Hospital of Guangxi Medical University, No. 166 Daxue East Road, Xixiangtang District, Nanning City, Guangxi Province, China
| | - Zenghui Xiong
- Department of Medical Cosmetology, The Second Affiliated Hospital of Guangxi Medical University, No. 166 Daxue East Road, Xixiangtang District, Nanning City, Guangxi Province, China
| | - Huawei Yang
- Department of Breast Surgery, Affiliated Cancer Hospital of Guangxi Medical University, No. 71 Hedi Road, Nanning City, Guangxi Province, China
| | - Liming Zhang
- Department of Medical Cosmetology, The Second Affiliated Hospital of Guangxi Medical University, No. 166 Daxue East Road, Xixiangtang District, Nanning City, Guangxi Province, China
| |
Collapse
|
37
|
Florea CM, Rosu R, Moldovan R, Vlase L, Toma V, Decea N, Baldea I, Filip GA. The impact of chronic Trimethylamine N-oxide administration on liver oxidative stress, inflammation, and fibrosis. Food Chem Toxicol 2024; 184:114429. [PMID: 38176578 DOI: 10.1016/j.fct.2023.114429] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 01/06/2024]
Abstract
TMAO, a gut microbiota derived byproduct, has been associated with various cardiometabolic diseases by promoting oxidative stress and inflammation. The liver is the main organ for TMAO production and chronic exposure to high doses of TMAO could alter its function. In this study, we evaluated the effect of chronic exposure of high TMAO doses on liver oxidative stress, inflammation, and fibrosis. TMAO was administered daily via gastric gavage to laboratory rats for 3 months. Blood was drawn for the quantification of TMAO, and liver tissues were harvested for the assessment of oxidative stress (MDA, GSH, GSSG, GPx, CAT, and 8-oxo-dG) and inflammation by quantification of IL-1α, TNF-α, IL-10, TGF-β, NOS and COX-2 expression. The evaluation of fibrosis was made by Western blot analysis of α-SMA and Collagen-3 protein expression. Histological investigation and immunohistochemical staining of iNOS were performed in order to assess the liver damage. After 3 months of TMAO exposure, TMAO serum levels enhanced in parallel with increases in MDA and GSSG levels in liver tissue and lower values of GSH and GSH/GSSG ratio as well as a decrease in GPx and CAT activities. Inflammation was also highlighted, with enhanced iNOS, COX-2, and IL-10 expression, without structural changes and without induction of liver fibrosis.
Collapse
Affiliation(s)
- Cristian Marius Florea
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Radu Rosu
- Fifth Department of Internal Medicine, Cardiology Clinic, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Remus Moldovan
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Laurian Vlase
- Department of Pharmaceutical Technology and Biopharmaceutics, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Vlad Toma
- Department of Molecular Biology and Biotechnologies, Faculty of Biology and Geology, Babeș-Bolyai University, Cluj-Napoca, Romania; Department of Experimental Biology and Biochemistry, Institute of Biological Research, branch of NIRDBS, Cluj-Napoca, Romania; Center for Systems Biology, Biodiversity and Bioresources "3B", Babeș-Bolyai University, Cluj-Napoca, Romania.
| | - Nicoleta Decea
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ioana Baldea
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Gabriela Adriana Filip
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
38
|
Ferreira JP, Butler J, Anker SD, Januzzi JL, Panova-Noeva M, Reese-Petersen AL, Sattar N, Schueler E, Pocock SJ, Filippatos G, Packer M, Sumin M, Zannad F. Effects of empagliflozin on collagen biomarkers in patients with heart failure: Findings from the EMPEROR trials. Eur J Heart Fail 2024; 26:274-284. [PMID: 38037709 DOI: 10.1002/ejhf.3101] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/09/2023] [Accepted: 11/27/2023] [Indexed: 12/02/2023] Open
Abstract
AIMS Extracellular matrix remodelling is one of the key pathways involved in heart failure (HF) progression. Sodium-glucose cotransporter 2 inhibitors (SGLT2i) may have a role in attenuating myocardial fibrosis. The impact of SGLT2i on blood markers of collagen turnover in humans is not fully elucidated. This study aimed to investigate the effect of empagliflozin on serum markers of collagen turnover in patients enrolled in the EMPEROR-Preserved and EMPEROR-Reduced trials. METHODS AND RESULTS Overall, 1084 patients (545 in empagliflozin and 539 in placebo) were included in the analysis. Procollagen type I carboxy-terminal propeptide (PICP), a fragment of N-terminal type III collagen (PRO-C3), procollagen type I amino-terminal peptide (PINP), a fragment of C-terminal type VIa3 collagen (PRO-C6), a fragment of type I collagen (C1M), and a fragment of type III collagen (C3M) were measured in serum at baseline, 12 and 52 weeks. A mixed model repeated measurements model was used to evaluate the effect of empagliflozin versus placebo on the analysed biomarkers. Higher baseline PICP, PRO-C6 and PINP levels were associated with older age, a more severe HF presentation, higher levels of natriuretic peptides and high-sensitivity troponin T, and the presence of comorbid conditions such as chronic kidney disease and atrial fibrillation. Higher PICP levels were associated with the occurrence of the study primary endpoint (a composite of HF hospitalization or cardiovascular death), and PRO-C6 and PINP were associated with the occurrence of sustained worsening of kidney function. On the other hand, PRO-C3, C1M, and C3M were not associated with worse HF severity or study outcomes. Compared to placebo, empagliflozin reduced PICP at week 12 by 5% and at week 52 by 8% (week 12: geometric mean ratio = 0.95, 95% confidence interval [CI] 0.91-0.99, p = 0.012; week 52: geometric mean ratio = 0.92, 95% CI 0.88-0.97, p = 0.003). Additionally, empagliflozin reduced PRO-C3 at week 52 by 7% (week 12: geometric mean ratio = 0.98, 95% CI 0.95-1.02, p = 0.42; week 52: geometric mean ratio = 0.93, 95% CI 0.89-0.98, p = 0.003), without impact on other collagen markers. CONCLUSION Our observations are consistent with experimental observations that empagliflozin down-regulates profibrotic signalling. The importance of such an effect for the clinical benefits of SGLT2i in HF remains to be elucidated.
Collapse
Affiliation(s)
- João Pedro Ferreira
- Department of Surgery and Physiology, Cardiovascular Research and Development Center (UnIC@RISE), Faculty of Medicine of the University of Porto, Porto, Portugal
- Centre d'Investigations Cliniques Plurithématique 14-33, Inserm U1116, CHRU, F-CRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists), Université de Lorraine, Nancy, France
- Cardiovascular Research and Development Center, Nancy, France
| | - Javed Butler
- Baylor Scott and White Research Institute, Dallas, TX, USA
- Department of Medicine, University of Mississippi School of Medicine, Jackson, MS, USA
| | - Stefan D Anker
- Department of Cardiology (CVK), Berlin Institute of Health Center for Regenerative Therapies (BCRT), German Centre for Cardiovascular Research (DZHK) partner site Berlin, Charité Universitätsmedizin Berlin, Berlin, Germany
- Institute of Heart Diseases, Wrocław Medical University, Wrocław, Poland
| | - James L Januzzi
- Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | | | | | - Naveed Sattar
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | | | - Stuart J Pocock
- Department of Medical Statistics, London School of Hygiene and Tropical Medicine, London, UK
| | - Gerasimos Filippatos
- National and Kapodistrian University of Athens School of Medicine, Athens, Greece
| | - Milton Packer
- Baylor University Medical Center, Dallas, TX, USA
- Imperial College, London, UK
| | - Mikhail Sumin
- Boehringer Ingelheim International GmbH, Ingelheim, Germany
| | - Faiez Zannad
- Centre d'Investigations Cliniques Plurithématique 14-33, Inserm U1116, CHRU, F-CRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists), Université de Lorraine, Nancy, France
| |
Collapse
|
39
|
Petrović A, Madić V, Stojanović G, Zlatanović I, Zlatković B, Vasiljević P, Đorđević L. Antidiabetic effects of polyherbal mixture made of Centaurium erythraea, Cichorium intybus and Potentilla erecta. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117032. [PMID: 37582477 DOI: 10.1016/j.jep.2023.117032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/29/2023] [Accepted: 08/11/2023] [Indexed: 08/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The polyherbal mixture made of Centaurium erythraea aerial parts and Cichorium intybus roots and Potentilla erecta rhizomes has been used for centuries to treat both the primary and secondary complications of diabetes. AIM OF THE STUDY As a continuation of our search for the most effective herbal mixture used as an ethnopharmacological remedy for diabetes, this study aimed to compare the in vitro biological activities of this polyherbal mixture and its individual ingredients, and, most importantly, to validate the ethnopharmacological value of the herbal mixture through evaluation of its phytochemical composition, its potential in vivo toxicity and its effect on diabetes complications. MATERIALS AND METHODS Phytochemical analysis was performed using HPLC-UV. Antioxidant activity was estimated via the DPPH test. Potential cytotoxicity/anticytotoxicity was assessed using an in vitro RBCs antihemolytic assay and an in vivo sub-chronic oral toxicity method. Antidiabetic activity was evaluated using an in vitro α-amylase inhibition assay and in vivo using a chemically induced diabetic rat model. RESULTS The HPLC-UV analysis revealed the presence of p-hydroxybenzoic acid, p-hydroxybenzoic acid derivative, catechin, five catechin derivatives, epicatechin, isoquercetin, hyperoside, rutin, four quercetin derivatives, caffeic acid, and four caffeic acid derivatives in the polyherbal mixture decoction. Treatment with the decoction has shown no toxic effects. The antioxidant and cytoprotective activities of the polyherbal mixture were higher than the reference's ones. Its antidiabetic activity was high in both in vitro and in vivo studies. Fourteen days of treatment with the decoction (15 g/kg) completely normalized blood glucose levels of diabetic animals, while treatments with insulin and glimepiride only slightly lowered glycemic values. In addition, lipid status of treated animals as well as levels of serum AST, ALT, ALP, creatinine, urea and MDA were completely normalized. In addition, the polyherbal mixture completely restored the histopathological changes of the liver, kidneys and all four Cornu ammonis regions of the hippocampus. CONCLUSIONS The polyherbal mixture was effective in the prevention of both primary and secondary diabetic complications such as hyperlipidemia, increased lipid peroxidation, non-alcoholic fatty liver disease, nephropathy and neurodegeneration.
Collapse
Affiliation(s)
- Aleksandra Petrović
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000, Niš, Serbia.
| | - Višnja Madić
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000, Niš, Serbia
| | - Gordana Stojanović
- Department of Chemistry, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000, Niš, Serbia
| | - Ivana Zlatanović
- Department of Chemistry, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000, Niš, Serbia
| | - Bojan Zlatković
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000, Niš, Serbia
| | - Perica Vasiljević
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000, Niš, Serbia
| | - Ljubiša Đorđević
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000, Niš, Serbia
| |
Collapse
|
40
|
Gao TM, Jin SJ, Fang F, Qian JJ, Zhang C, Zhou BH, Bai DS, Jiang GQ. Novel Preoperative Type IV Collagen to Predict the Risk of Hepatocellular Carcinoma in Patients with Hepatitis B Virus-Related Cirrhotic Portal Hypertension After Laparoscopic Splenectomy and Azygoportal Disconnection. J Hepatocell Carcinoma 2024; 10:2411-2420. [PMID: 38260186 PMCID: PMC10801173 DOI: 10.2147/jhc.s425814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 08/15/2023] [Indexed: 01/24/2024] Open
Abstract
Purpose Although laparoscopic splenectomy and azygoportal disconnection (LSD) can significantly decrease portal vein pressure and even the incidence of hepatocellular carcinoma (HCC) in patients with cirrhotic portal hypertension (CPH), postoperative HCC inevitably occurs in certain patients. The purpose of this study was to seek a novel preoperative non-invasive predictive indicator to predict the occurrence of postoperative HCC. Patients and Methods From April 2012 to April 2022, we collected clinical data of 178 hepatitis B virus (HBV)-related CPH patients. Based on inverse treatment probability weighting, candidate variables for predicting postoperative HCC were determined by means analysis. Then, a novel preoperative non-invasive prediction indicator (ie, type IV collagen-alpha fetoprotein-fibrosis-4 score [IVAF-FIB-4]) was established based on candidate variables, and its predictive ability was explored. Results Postoperative HCC occurred in 9 (5.1%) patients. Correlation analyses showed that the IVAF-FIB-4 had a significant positive correlation with HCC (r = 0.835, P < 0.001). IVAF-FIB-4 showed a high accuracy (the area under the receiver operating characteristic curve: 0.939, 95% confidence interval [CI]: 0.818-1.000; sensitivity: 88.9%; specificity: 93.5%). At the end of follow-up, the incidence density of HCC in patients with IVAF-FIB-4 (1) was significant higher than that in patients with IVAF-FIB-4 (0) (138.1/1000 vs 1.1/1000 person-years; rate ratio: 130.475, 95% CI: 16.318-1043.227). In logistic regression, IVAF-FIB-4 was an independent risk factor for HCC (odds ratio: 668.000, 95% CI: 53.895-8279.541; P < 0.001). Conclusion IVAF-FIB-4 is a novel preoperative noninvasive predictive indicator for predicting postoperative HCC in HBV-related CPH patients after LSD, with satisfactory predictive ability.
Collapse
Affiliation(s)
- Tian-Ming Gao
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, Yangzhou, 225001, People’s Republic of China
| | - Sheng-Jie Jin
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, Yangzhou, 225001, People’s Republic of China
| | - Fang Fang
- Department of Gastrointestinal Surgery, Clinical Medical College, Yangzhou University, Yangzhou, 225001, People’s Republic of China
| | - Jian-Jun Qian
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, Yangzhou, 225001, People’s Republic of China
| | - Chi Zhang
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, Yangzhou, 225001, People’s Republic of China
| | - Bao-Huan Zhou
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, Yangzhou, 225001, People’s Republic of China
| | - Dou-Sheng Bai
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, Yangzhou, 225001, People’s Republic of China
| | - Guo-Qing Jiang
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, Yangzhou, 225001, People’s Republic of China
| |
Collapse
|
41
|
Stulpinas R, Morkunas M, Rasmusson A, Drachneris J, Augulis R, Gulla A, Strupas K, Laurinavicius A. Improving HCC Prognostic Models after Liver Resection by AI-Extracted Tissue Fiber Framework Analytics. Cancers (Basel) 2023; 16:106. [PMID: 38201532 PMCID: PMC10778366 DOI: 10.3390/cancers16010106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/11/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Despite advances in diagnostic and treatment technologies, predicting outcomes of patients with hepatocellular carcinoma (HCC) remains a challenge. Prognostic models are further obscured by the variable impact of the tumor properties and the remaining liver parenchyma, often affected by cirrhosis or non-alcoholic fatty liver disease that tend to precede HCC. This study investigated the prognostic value of reticulin and collagen microarchitecture in liver resection samples. We analyzed 105 scanned tissue sections that were stained using a Gordon and Sweet's silver impregnation protocol combined with Picric Acid-Sirius Red. A convolutional neural network was utilized to segment the red-staining collagen and black linear reticulin strands, generating a detailed map of the fiber structure within the HCC and adjacent liver tissue. Subsequent hexagonal grid subsampling coupled with automated epithelial edge detection and computational fiber morphometry provided the foundation for region-specific tissue analysis. Two penalized Cox regression models using LASSO achieved a concordance index (C-index) greater than 0.7. These models incorporated variables such as patient age, tumor multifocality, and fiber-derived features from the epithelial edge in both the tumor and liver compartments. The prognostic value at the tumor edge was derived from the reticulin structure, while collagen characteristics were significant at the epithelial edge of peritumoral liver. The prognostic performance of these models was superior to models solely reliant on conventional clinicopathologic parameters, highlighting the utility of AI-extracted microarchitectural features for the management of HCC.
Collapse
Affiliation(s)
- Rokas Stulpinas
- Faculty of Medicine, Institute of Biomedical Sciences, Department of Pathology and Forensic Medicine, Vilnius University, 03101 Vilnius, Lithuania (A.L.)
- National Center of Pathology, Affiliate of Vilnius University Hospital Santaros Klinikos, 08406 Vilnius, Lithuania;
| | - Mindaugas Morkunas
- National Center of Pathology, Affiliate of Vilnius University Hospital Santaros Klinikos, 08406 Vilnius, Lithuania;
- Vilnius Santaros Klinikos Biobank, Vilnius University Hospital Santaros Klinikos, 08661 Vilnius, Lithuania
| | - Allan Rasmusson
- Faculty of Medicine, Institute of Biomedical Sciences, Department of Pathology and Forensic Medicine, Vilnius University, 03101 Vilnius, Lithuania (A.L.)
- National Center of Pathology, Affiliate of Vilnius University Hospital Santaros Klinikos, 08406 Vilnius, Lithuania;
| | - Julius Drachneris
- Faculty of Medicine, Institute of Biomedical Sciences, Department of Pathology and Forensic Medicine, Vilnius University, 03101 Vilnius, Lithuania (A.L.)
- National Center of Pathology, Affiliate of Vilnius University Hospital Santaros Klinikos, 08406 Vilnius, Lithuania;
| | - Renaldas Augulis
- Faculty of Medicine, Institute of Biomedical Sciences, Department of Pathology and Forensic Medicine, Vilnius University, 03101 Vilnius, Lithuania (A.L.)
- National Center of Pathology, Affiliate of Vilnius University Hospital Santaros Klinikos, 08406 Vilnius, Lithuania;
| | - Aiste Gulla
- Faculty of Medicine, Institute of Clinical Medicine, Vilnius University, 03101 Vilnius, Lithuania
- Faculty of Medicine, Centre for Visceral Medicine and Translational Research, Vilnius University, 03101 Vilnius, Lithuania
- Center of Abdominal Surgery, Vilnius University Hospital Santaros Klinikos, 08410 Vilnius, Lithuania
| | - Kestutis Strupas
- Faculty of Medicine, Institute of Clinical Medicine, Vilnius University, 03101 Vilnius, Lithuania
- Faculty of Medicine, Centre for Visceral Medicine and Translational Research, Vilnius University, 03101 Vilnius, Lithuania
- Center of Abdominal Surgery, Vilnius University Hospital Santaros Klinikos, 08410 Vilnius, Lithuania
| | - Arvydas Laurinavicius
- Faculty of Medicine, Institute of Biomedical Sciences, Department of Pathology and Forensic Medicine, Vilnius University, 03101 Vilnius, Lithuania (A.L.)
- National Center of Pathology, Affiliate of Vilnius University Hospital Santaros Klinikos, 08406 Vilnius, Lithuania;
| |
Collapse
|
42
|
Hanitsch LG, Steiner S, Schumann M, Wittke K, Kedor C, Scheibenbogen C, Fischer A. Portal hypertension in common variable immunodeficiency disorders - a single center analysis on clinical and immunological parameter in 196 patients. Front Immunol 2023; 14:1268207. [PMID: 38187397 PMCID: PMC10769488 DOI: 10.3389/fimmu.2023.1268207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/20/2023] [Indexed: 01/09/2024] Open
Abstract
Background Liver manifestations and in particular portal hypertension (PH) contribute significantly to morbidity and mortality of patients with common variable immunodeficiency disorders (CVID). Screening strategies and early detection are limited due to the lack of specific diagnostic tools. Methods We evaluated clinical, immunological, histological, and imaging parameters in CVID patients with clinical manifestation of portal hypertension (CVID+PH). Results Portal hypertension was present in 5.6% of CVID patients and was associated with high clinical burden and increased mortality (18%). Longitudinal data on clinical and immunological parameters in patients before and during clinically manifest portal hypertension revealed a growing splenomegaly and increasing gamma-glutamyl transferase (GGT) and soluble interleukin 2 receptor (SIL-2R) levels with decreasing platelets over time. While ultrasound of the liver failed to detect signs of portal hypertension in most affected patients, transient elastography was elevated in all patients. All CVID+PH patients had reduced naïve CD45RA+CD4+ T-cells (mean of 6,2%). The frequency of severe B-lymphocytopenia (Euroclass B-) was higher in CVID+PH patients. The main histological findings included lymphocytic infiltration, nodular regenerative hyperplasia-like changes (NRH-LC), and porto(-septal) fibrosis. Conclusion CVID patients with lower naïve CD45RA+CD4+ T-cells or severely reduced B-cells might be at higher risk for portal hypertension. The combination of biochemical (increasing sIL-2R, GGT, and decreasing platelets) and imaging parameters (increasing splenomegaly) should raise suspicion of the beginning of portal hypertension.
Collapse
Affiliation(s)
- Leif G. Hanitsch
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Berlin, Germany
| | - Sophie Steiner
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Michael Schumann
- Department of Gastroenterology, Infectiology and Rheumatology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Kirsten Wittke
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Claudia Kedor
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Carmen Scheibenbogen
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Berlin, Germany
| | - Andreas Fischer
- Department of Internal Medicine and Gastroenterology, Caritas-Klinik Maria Heimsuchung Berlin-Pankow, Berlin, Germany
- Department of Hepatology and Gastroenterology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
43
|
Burmeister Y, Weyer K, Dörre A, Seilheimer B. The Multicomponent Medicinal Product Hepar Compositum Reduces Hepatic Inflammation and Fibrosis in a Streptozotocin- and High-Fat Diet-Induced Model of Metabolic Dysfunction-Associated Steatotic Liver Disease/Metabolic Dysfunction-Associated Steatohepatitis. Biomedicines 2023; 11:3216. [PMID: 38137437 PMCID: PMC10740479 DOI: 10.3390/biomedicines11123216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/22/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD)-formerly known as non-alcoholic fatty liver disease (NAFLD)-is the most common chronic liver disease worldwide. Since there is currently no approved pharmacotherapy for MASLD, there is an urgent unmet need for efficacious therapeutics for this disease. Hepar compositum (HC-24) is a multicomponent medicinal product that consists of 24 natural ingredients. It has been shown to have anti-inflammatory properties in an obesity-associated MASLD mouse model, but its potential to reduce MASLD-associated fibrosis had not been explored before this study. Here, we investigated the hepatic anti-inflammatory and anti-fibrotic potential of HC-24 in a streptozotocin (STZ)- and high-fat diet (HFD)-induced model of MASLD. Mice received a single injection of low-dose STZ at 2 days of age, followed by HFD feeding from 4 to 9 weeks of age. Mice were treated every second day with HC-24 or daily with the positive control telmisartan from 6 to 9 weeks of age. A non-diseased control group was included as a healthy reference. An explorative small-scale pilot study demonstrated that HC-24 improved liver histology, resulting in a lower NAFLD activity score and reduced liver fibrosis. A subsequent full study confirmed these effects and showed that HC-24 reduced hepatic inflammation, specifically reducing T helper cell and neutrophil influx, and decreased hepatic fibrosis (with qualitatively reduced collagen type I and type III immunopositivity) in the absence of an effect on body and liver weight, blood glucose or liver steatosis. These results show that HC-24 has hepatoprotective, anti-inflammatory, and anti-fibrotic properties in an STZ- and HFD-induced model of MASLD/MASH, suggesting that this multicomponent medicine has therapeutic potential for MASLD patients.
Collapse
Affiliation(s)
| | - Kathrin Weyer
- Heel GmbH, 76532 Baden-Baden, Germany; (Y.B.); (B.S.)
| | - Achim Dörre
- Independent Researcher, 14641 Nauen, Germany;
| | | |
Collapse
|
44
|
Azizsoltani A, Hatami B, Zali MR, Mahdavi V, Baghaei K, Alizadeh E. Obeticholic acid-loaded exosomes attenuate liver fibrosis through dual targeting of the FXR signaling pathway and ECM remodeling. Biomed Pharmacother 2023; 168:115777. [PMID: 37913732 DOI: 10.1016/j.biopha.2023.115777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/12/2023] [Accepted: 10/20/2023] [Indexed: 11/03/2023] Open
Abstract
End-stage of liver fibrosis as a precancerous state could lead to cirrhosis and hepatocellular carcinoma which liver transplantation is the only effective treatment. Previous studies have indicated that farnesoid X receptor (FXR) agonists, such as obeticholic acid (OCA) protect against hepatic injuries. However, free OCA administration results in side effects in clinical trials that could be alleviated by applying bio carriers such as MSC-derived exosomes (Exo) with the potential to mimic the biological regenerative effect of their parent cells, as proposed in this study. Loading OCA into the Exo was conducted via water bath sonication. Ex vivo bio distribution studies validated the Exo-loaded OCA more permanently accumulated in the liver. Using CCL4-induced liver fibrosis, we proposed whether Exo isolated from human Warton's Jelly mesenchymal stem cells loaded with a minimal dosage of OCA can facilitate liver recovery. Notably, Exo-loaded OCA exerted additive anti-fibrotic efficacy on histopathological features in CCL4-induced fibrotic mice. Compared to baseline, Exo-mediated delivery OCA results in marked improvements in the fibrotic-related indicators as well as serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) concentrations. Accordingly, the synergistic impact of Exo-loaded OCA as a promising approach is associated with the inactivation of hepatic stellate cells (HSCs), extracellular matrix (ECM) remodeling, and Fxr-Cyp7a1 cascade on CCL4-induced liver fibrosis mice. In conclusion, our data confirmed the additive protective effects of Exo-loaded OCA in fibrotic mice, which suggests a valuable therapeutic strategy to combat liver fibrosis. Furthermore, the use of Exo for accurate drug delivery to the liver tissue can be inspiring.
Collapse
Affiliation(s)
- Arezou Azizsoltani
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behzad Hatami
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahideh Mahdavi
- Iranian Research Institute of Plant Protection (IRIPP), Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
| | - Kaveh Baghaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Effat Alizadeh
- Drug Applied Research Center and Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
45
|
Noah AA, El-Mezayen NS, El-Ganainy SO, Darwish IE, Afify EA. Reversal of fibrosis and portal hypertension by Empagliflozin treatment of CCl 4-induced liver fibrosis: Emphasis on gal-1/NRP-1/TGF-β and gal-1/NRP-1/VEGFR2 pathways. Eur J Pharmacol 2023; 959:176066. [PMID: 37769984 DOI: 10.1016/j.ejphar.2023.176066] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/06/2023] [Accepted: 09/19/2023] [Indexed: 10/03/2023]
Abstract
To date, liver fibrosis has no clinically approved treatment. Empagliflozin (EMPA), a highly selective sodium-glucose-cotransporter-2 (SGLT2) inhibitor, has shown ameliorative potential in liver diseases without revealing its full mechanisms. Neuropilin-1 (NRP-1) is a novel regulator of profibrogenic signaling pathways related to hepatic stellate cells (HSCs) and hepatic sinusoidal endothelial cells (HSECs) that modulates intrahepatic profibrogenic and angiogenic pathways. Herein, EMPA's antifibrotic potentials and effects on galactin-1 (Gal-1)/NRP-1 signaling pathways have been evaluated in an experimental liver fibrosis rat model by testing different EMPA dose regimens. EMPA treatment brought a dose-dependent decrease in Gal-1/NRP-1 hepatic expression. This was coupled with suppression of major HSCs pro-fibrotic pathways; transforming growth factor-β (TGF-β)/TGF-βRI/Smad2 and platelet-derived growth factor-beta (PDGF-β) with a diminution of hepatic Col 1A1 level. In addition, EMPA prompted a protuberant suppression of the angiogenic pathway; vascular endothelial growth factor (VEGF)/VEGF-receptor-2 (VEGFR-2)/SH2-Domain Containing Adaptor Protein-B (Shb), and reversal of altered portal hypertension (PHT) markers; endothelin-1 (ET-1) and endothelial nitric oxide synthase (eNOS). The amelioration of liver fibrosis was coupled with a remarkable improvement in liver aminotransferases and histologic hepatic fibrosis Ishak scores. The highest EMPA dose showed a good safety profile with minimal changes in renal function and glycemic control. Thus, the current study brought about novel findings for a potential liver fibrosis treatment modality via targeting NRP-1 signaling pathways by EMPA.
Collapse
Affiliation(s)
- Ashraf A Noah
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt; Clinical Research Administration, Alexandria Directorate of Health Affairs, Egyptian Ministry of Health and Population, Alexandria, Egypt
| | - Nesrine S El-Mezayen
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt.
| | - Samar O El-Ganainy
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Inas E Darwish
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt; Department of Clinical Pharmacology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Elham A Afify
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
46
|
Gîlcă-Blanariu GE, Budur DS, Mitrică DE, Gologan E, Timofte O, Bălan GG, Olteanu VA, Ștefănescu G. Advances in Noninvasive Biomarkers for Nonalcoholic Fatty Liver Disease. Metabolites 2023; 13:1115. [PMID: 37999211 PMCID: PMC10672868 DOI: 10.3390/metabo13111115] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/15/2023] [Accepted: 10/24/2023] [Indexed: 11/25/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) currently represents one of the most common liver diseases worldwide. Early diagnosis and disease staging is crucial, since it is mainly asymptomatic, but can progress to nonalcoholic steatohepatitis (NASH) or cirrhosis or even lead to the development of hepatocellular carcinoma. Over time, efforts have been put into developing noninvasive diagnostic and staging methods in order to replace the use of a liver biopsy. The noninvasive methods used include imaging techniques that measure liver stiffness and biological markers, with a focus on serum biomarkers. Due to the impressive complexity of the NAFLD's pathophysiology, biomarkers are able to assay different processes involved, such as apoptosis, fibrogenesis, and inflammation, or even address the genetic background and "omics" technologies. This article reviews not only the currently validated noninvasive methods to investigate NAFLD but also the promising results regarding recently discovered biomarkers, including biomarker panels and the combination of the currently validated evaluation methods and serum markers.
Collapse
Affiliation(s)
- Georgiana-Emmanuela Gîlcă-Blanariu
- Gastroenterology Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (G.-E.G.-B.); (D.E.M.); (E.G.); (O.T.); (G.G.B.); (V.A.O.)
- Department of Gastroenterology, “Sf Spiridon” County Clinical Emergency Hospital, 100115 Iași, Romania
| | - Daniela Simona Budur
- Gastroenterology Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (G.-E.G.-B.); (D.E.M.); (E.G.); (O.T.); (G.G.B.); (V.A.O.)
| | - Dana Elena Mitrică
- Gastroenterology Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (G.-E.G.-B.); (D.E.M.); (E.G.); (O.T.); (G.G.B.); (V.A.O.)
- Department of Gastroenterology, “Sf Spiridon” County Clinical Emergency Hospital, 100115 Iași, Romania
| | - Elena Gologan
- Gastroenterology Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (G.-E.G.-B.); (D.E.M.); (E.G.); (O.T.); (G.G.B.); (V.A.O.)
| | - Oana Timofte
- Gastroenterology Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (G.-E.G.-B.); (D.E.M.); (E.G.); (O.T.); (G.G.B.); (V.A.O.)
- Department of Gastroenterology, “Sf Spiridon” County Clinical Emergency Hospital, 100115 Iași, Romania
| | - Gheorghe Gh Bălan
- Gastroenterology Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (G.-E.G.-B.); (D.E.M.); (E.G.); (O.T.); (G.G.B.); (V.A.O.)
- Department of Gastroenterology, “Sf Spiridon” County Clinical Emergency Hospital, 100115 Iași, Romania
| | - Vasile Andrei Olteanu
- Gastroenterology Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (G.-E.G.-B.); (D.E.M.); (E.G.); (O.T.); (G.G.B.); (V.A.O.)
- Department of Gastroenterology, “Sf Spiridon” County Clinical Emergency Hospital, 100115 Iași, Romania
| | - Gabriela Ștefănescu
- Gastroenterology Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (G.-E.G.-B.); (D.E.M.); (E.G.); (O.T.); (G.G.B.); (V.A.O.)
- Department of Gastroenterology, “Sf Spiridon” County Clinical Emergency Hospital, 100115 Iași, Romania
| |
Collapse
|
47
|
Shi X, Jiang W, Yang X, Ma H, Wang Z, Ai Q, Dong Y, Zhang Y, Shi Y. Aucubin inhibits hepatic stellate cell activation through stimulating Nrf2/Smad7 axis. Eur J Pharmacol 2023; 957:176002. [PMID: 37607604 DOI: 10.1016/j.ejphar.2023.176002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 08/24/2023]
Abstract
AIM Liver fibrosis may develop into end-stage liver disease if left unprevented. The study is attempting to identify a compound to ameliorate liver fibrosis progression with high efficiency and low toxicity, as well as to analyze its potential molecular mechanism. METHODS The drug screening was performed using human hepatic stellate cell line LX-2 for identifying the compound as collagen I inhibitor. Primary Human hepatic stellate cells and LX-2 cell line were used to detect the antifibrotic function activity and molecular mechanism analysis in vitro. The CCl4-induced mouse experimental model was used to measure the amelioration in liver fibrosis. RESULTS This study identified Aucubin, a natural compound, as a candidate for anti-liver fibrosis. Besides, Aucubin could inhibit the collagen I and α-SMA expressions in LX-2 cells and primary human hepatic stellate cells, as well as the cell proliferation. In terms of mechanism, Aucubin could upregulate Smad7 in hepatic stellate cells in a dose-dependent manner and block TGF-β signaling. We also found that Nrf2 might be a direct target for the action of Aucubin, whose activation was necessary for Smad7 upregulation. In an in-vivo mouse model, Aucubin efficiency ameliorated the progression of CCl4-induced liver fibrosis, and reduced the hepatic levels of collagen deposition, transaminase and inflammatory cytokines. CONCLUSION Capable of inhibiting the activation of hepatic stellate cells in vitro and in vivo, Aucubin may be a potential therapeutic candidate for liver fibrosis, which is dependent on the suppression of TGF-β signaling through stimulating Nrf2/Smad7 axis.
Collapse
Affiliation(s)
- Xu Shi
- Department of Laboratory Medicine, Lequn Branch, The First Hospital of Jilin University, Changchun, 130031, Jilin, China
| | - Wenyan Jiang
- Department of Radiology, The First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - XiaoGuang Yang
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130000, Jilin, China
| | - HeMing Ma
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Zhongfeng Wang
- Department of Hepatology, The First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Qing Ai
- Department of Laboratory Medicine, Lequn Branch, The First Hospital of Jilin University, Changchun, 130031, Jilin, China
| | - YuTong Dong
- Department of Hepatology, The First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - YingYu Zhang
- Department of Hepatology, The First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Ying Shi
- Department of Hepatology, The First Hospital of Jilin University, Changchun, 130021, Jilin, China.
| |
Collapse
|
48
|
Wang S, Friedman SL. Found in translation-Fibrosis in metabolic dysfunction-associated steatohepatitis (MASH). Sci Transl Med 2023; 15:eadi0759. [PMID: 37792957 PMCID: PMC10671253 DOI: 10.1126/scitranslmed.adi0759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 09/15/2023] [Indexed: 10/06/2023]
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH) is a severe form of liver disease that poses a global health threat because of its potential to progress to advanced fibrosis, leading to cirrhosis and liver cancer. Recent advances in single-cell methodologies, refined disease models, and genetic and epigenetic insights have provided a nuanced understanding of MASH fibrogenesis, with substantial cellular heterogeneity in MASH livers providing potentially targetable cell-cell interactions and behavior. Unlike fibrogenesis, mechanisms underlying fibrosis regression in MASH are still inadequately understood, although antifibrotic targets have been recently identified. A refined antifibrotic treatment framework could lead to noninvasive assessment and targeted therapies that preserve hepatocellular function and restore the liver's architectural integrity.
Collapse
Affiliation(s)
- Shuang Wang
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Scott L. Friedman
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| |
Collapse
|
49
|
Ait Ahmed Y, Lafdil F, Tacke F. Ambiguous Pathogenic Roles of Macrophages in Alcohol-Associated Liver Diseases. Hepat Med 2023; 15:113-127. [PMID: 37753346 PMCID: PMC10519224 DOI: 10.2147/hmer.s326468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/07/2023] [Indexed: 09/28/2023] Open
Abstract
Alcohol-associated liver disease (ALD) represents a major public health issue worldwide and is a leading etiology of liver cirrhosis. Alcohol-related liver injuries include a range of manifestations including alcoholic hepatitis (AH), simple steatosis, steatohepatitis, hepatic fibrosis, cirrhosis and liver cancer. Liver disease occurs from several pathological disturbances such as the metabolism of ethanol, which generates reactive oxygen species (ROS) in hepatocytes, alterations in the gut microbiota, and the immune response to these changes. A common hallmark of these liver affections is the establishment of an inflammatory environment, and some (broad) anti-inflammatory approaches are used to treat AH (eg, corticosteroids). Macrophages, which represent the main innate immune cells in the liver, respond to a wide variety of (pathogenic) stimuli and adopt a large spectrum of phenotypes. This translates to a diversity of functions including pathogen and debris clearance, recruitment of other immune cells, activation of fibroblasts, or tissue repair. Thus, macrophage populations play a crucial role in the course of ALD, but the underlying mechanisms driving macrophage polarization and their functionality in ALD are complex. In this review, we explore the various populations of hepatic macrophages in alcohol-associated liver disease and the underlying mechanisms driving their polarization. Additionally, we summarize the crosstalk between hepatic macrophages and other hepatic cell types in ALD, in order to support the exploration of targeted therapeutics by modulating macrophage polarization.
Collapse
Affiliation(s)
- Yeni Ait Ahmed
- Department of Hepatology & Gastroenterology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum (CVK) and Campus Charité Mitte (CCM), Berlin, Germany
| | - Fouad Lafdil
- Université Paris-Est, UMR-S955, UPEC, Créteil, France
- Institut National de la Sante et de la Recherche Medicale (INSERM), U955, Créteil, France
- Institut Universitaire de France (IUF), Paris, France
| | - Frank Tacke
- Department of Hepatology & Gastroenterology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum (CVK) and Campus Charité Mitte (CCM), Berlin, Germany
| |
Collapse
|
50
|
Boslem E, Reibe S, Carlessi R, Smeuninx B, Tegegne S, Egan CL, McLennan E, Terry LV, Nobis M, Mu A, Nowell C, Horadagoda N, Mellett NA, Timpson P, Jones M, Denisenko E, Forrest AR, Tirnitz-Parker JE, Meikle PJ, Rose-John S, Karin M, Febbraio MA. Therapeutic blockade of ER stress and inflammation prevents NASH and progression to HCC. SCIENCE ADVANCES 2023; 9:eadh0831. [PMID: 37703359 PMCID: PMC10499313 DOI: 10.1126/sciadv.adh0831] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 08/07/2023] [Indexed: 09/15/2023]
Abstract
The incidence of hepatocellular carcinoma (HCC) is rapidly rising largely because of increased obesity leading to nonalcoholic steatohepatitis (NASH), a known HCC risk factor. There are no approved treatments to treat NASH. Here, we first used single-nucleus RNA sequencing to characterize a mouse model that mimics human NASH-driven HCC, the MUP-uPA mouse fed a high-fat diet. Activation of endoplasmic reticulum (ER) stress and inflammation was observed in a subset of hepatocytes that was enriched in mice that progress to HCC. We next treated MUP-uPA mice with the ER stress inhibitor BGP-15 and soluble gp130Fc, a drug that blocks inflammation by preventing interleukin-6 trans-signaling. Both drugs have progressed to phase 2/3 human clinical trials for other indications. We show that this combined therapy reversed NASH and reduced NASH-driven HCC. Our data suggest that these drugs could provide a potential therapy for NASH progression to HCC.
Collapse
Affiliation(s)
- Ebru Boslem
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Saskia Reibe
- Garvan Institute of Medical Research, Sydney, Australia
| | - Rodrigo Carlessi
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Nedlands, WA 6009, Australia
- Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia
| | - Benoit Smeuninx
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Surafel Tegegne
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Casey L. Egan
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Emma McLennan
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Lauren V. Terry
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Max Nobis
- Garvan Institute of Medical Research, Sydney, Australia
| | - Andre Mu
- Wellcome Sanger Institute, Cambridge, UK
- EMBL's European Bioinformatics Institute, Cambridge UK
| | - Cameron Nowell
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Neil Horadagoda
- Faculty of Veterinary Science, University of Sydney, Camden, Australia
| | | | - Paul Timpson
- Garvan Institute of Medical Research, Sydney, Australia
| | - Matthew Jones
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Nedlands, WA 6009, Australia
| | - Elena Denisenko
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Nedlands, WA 6009, Australia
| | - Alistair R. R. Forrest
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Nedlands, WA 6009, Australia
| | - Janina E. E. Tirnitz-Parker
- Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia
| | - Peter J. Meikle
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Stefan Rose-John
- Department of Biochemistry, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Michael Karin
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Mark A. Febbraio
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| |
Collapse
|