1
|
Tang YJ, Zhou DY, Dai J, Li Y, Xing YM, Guo SX, Chen J. Potential Specificity Between Mycorrhizal Fungi Isolated from Widespread Dendrobium spp. and Rare D. huoshanense Seeds. Curr Microbiol 2022; 79:264. [PMID: 35859013 DOI: 10.1007/s00284-022-02952-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 06/24/2022] [Indexed: 11/28/2022]
Abstract
In nature, orchid seed germination and seedling development depend on compatible mycorrhizal fungi. Mycorrhizal generalist and specificity affect the orchid distribution and rarity. Here, we investigated the specificity toward fungi in the rare D. huoshanense by mycorrhizal fungal isolation and symbiotic germination in vitro. Twenty mycorrhizal fungal strains were isolated from the roots of adult Dendrobium spp. (six and 12 strains from rare D. huoshanense and widespread D. officinale, respectively, and two strains from D. nobile and D. moniliforme, respectively) and 13 strains belong to Tulasnellaceae and seven strains belong to Serendipitaceae. Germination trials in vitro revealed that all 20 tested fungal strains can stimulate seed germination of D. huoshanense, but only nine strains (~ 50%) can support it up to the seedling stage. This finding indicates that generalistic fungi are important for early germination, but only a few can maintain a symbiosis with host in seedling stage. Thus, a shift of the microbial community from seedling to mature stage probably narrows the D. huoshanense distribution range. In addition, to further understand the relationship between the fungal capability to promote seed germination and fungal enzyme activity, we screened the laccase and pectase activity. The results showed that the two enzymes activities of fungi cannot be directly correlated with their germination-promoting activities. Understanding the host specificity degree toward fungi can help to better interpret the limited geographic distribution of D. huoshanense and provides opportunities for in situ and ex situ conservation and reintroduction programs.
Collapse
Affiliation(s)
- Yan-Jing Tang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Dong-Yu Zhou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Jun Dai
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization for Traditional Chinese Medicine Resources, West Anhui University, Lu'an, 237012, Anhui, China.,College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, 237012, Anhui, China
| | - Yang Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Yong-Mei Xing
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Shun-Xing Guo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Juan Chen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China.
| |
Collapse
|
2
|
Bae EK, An C, Kang MJ, Lee SA, Lee SJ, Kim KT, Park EJ. Chromosome-level genome assembly of the fully mycoheterotrophic orchid Gastrodia elata. G3 (BETHESDA, MD.) 2022; 12:6511440. [PMID: 35100375 PMCID: PMC8896018 DOI: 10.1093/g3journal/jkab433] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 12/10/2021] [Indexed: 11/26/2022]
Abstract
Gastrodia elata, an obligate mycoheterotrophic orchid, requires complete carbon and mineral nutrient supplementation from mycorrhizal fungi during its entire life cycle. Although full mycoheterotrophy occurs most often in the Orchidaceae family, no chromosome-level reference genome from this group has been assembled to date. Here, we report a high-quality chromosome-level genome assembly of G. elata, using Illumina and PacBio sequencing methods with Hi-C technique. The assembled genome size was found to be 1045 Mb, with an N50 of 50.6 Mb and 488 scaffolds. A total of 935 complete (64.9%) matches to the 1440 embryophyte Benchmarking Universal Single-Copy Orthologs were identified in this genome assembly. Hi-C scaffolding of the assembled genome resulted in 18 pseudochromosomes, 1008 Mb in size and containing 96.5% of the scaffolds. A total of 18,844 protein-coding sequences (CDSs) were predicted in the G. elata genome, of which 15,619 CDSs (82.89%) were functionally annotated. In addition, 74.92% of the assembled genome was found to be composed of transposable elements. Phylogenetic analysis indicated a significant contraction of genes involved in various biosynthetic processes and cellular components and an expansion of genes for novel metabolic processes and mycorrhizal association. This result suggests an evolutionary adaptation of G. elata to a mycoheterotrophic lifestyle. In summary, the genomic resources generated in this study will provide a valuable reference genome for investigating the molecular mechanisms of G. elata biological functions. Furthermore, the complete G. elata genome will greatly improve our understanding of the genetics of Orchidaceae and its mycoheterotrophic evolution.
Collapse
Affiliation(s)
- Eun-Kyung Bae
- Forest Microbiology Division, National Institute of Forest Science, Suwon 16631, Korea
| | - Chanhoon An
- Forest Microbiology Division, National Institute of Forest Science, Suwon 16631, Korea
| | - Min-Jeong Kang
- Forest Microbiology Division, National Institute of Forest Science, Suwon 16631, Korea
| | - Sang-A Lee
- Forest Microbiology Division, National Institute of Forest Science, Suwon 16631, Korea
| | - Seung Jae Lee
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
| | - Ki-Tae Kim
- Department of Agricultural Life Science, Sunchon National University, Suncheon 57922, Korea
| | - Eung-Jun Park
- Forest Microbiology Division, National Institute of Forest Science, Suwon 16631, Korea
| |
Collapse
|
3
|
Suetsugu K, Okada H. Symbiotic germination and development of fully mycoheterotrophic plants convergently targeting similar Glomeraceae taxa. Environ Microbiol 2021; 23:6328-6343. [PMID: 34545683 DOI: 10.1111/1462-2920.15781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 11/28/2022]
Abstract
Plants producing dust seeds often meet their carbon demands by exploiting fungi at the seedling stage. This germination strategy (i.e. mycoheterotrophic germination) has been investigated among orchidaceous and ericaceous plants exploiting Ascomycota or Basidiomycota. Although several other angiosperm lineages have evolved fully mycoheterotrophic relationships with Glomeromycota, the fungal identities involved in mycoheterotrophic germination remain largely unknown. Here, we conducted in situ seed baiting and high-throughput DNA barcoding to identify mycobionts associated with seedlings of Burmannia championii (Burmanniaceae: Dioscoreales) and Sciaphila megastyla (Triuridaceae: Pandanales), which have independently evolved full mycoheterotrophy. Subsequently, we revealed that both seedlings and adults in B. championii and S. megastyla predominantly associate with Glomeraceae. However, mycorrhizal communities are somewhat distinct between seedling and adult stages, particularly in S. megastyla. Notably, the dissimilarity of mycorrhizal communities between S. megastyla adult samples and S. megastyla seedling samples is significantly higher than that between B. championi adult samples and S. megastyla adult samples, based on some indices. This pattern is possibly due to both mycorrhizal shifts during ontogenetic development and convergent recruitment of cheating-susceptible fungi. The extensive fungal overlap in two unrelated mycoheterotrophic plants indicates that both species convergently exploit specific AM fungal phylotypes.
Collapse
Affiliation(s)
- Kenji Suetsugu
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Hyogo, 657-8501, Japan
| | - Hidehito Okada
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Hyogo, 657-8501, Japan
| |
Collapse
|
4
|
Matsuda Y, Yamaguchi Y, Matsuo N, Uesugi T, Ito J, Yagame T, Figura T, Selosse MA, Hashimoto Y. Communities of mycorrhizal fungi in different trophic types of Asiatic Pyrola japonica sensu lato (Ericaceae). JOURNAL OF PLANT RESEARCH 2020; 133:841-853. [PMID: 33099700 DOI: 10.1007/s10265-020-01233-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
Mixotrophic plants obtain carbon by their own photosynthetic activity and from their root-associated mycorrhizal fungi. Mixotrophy is deemed a pre-adaptation for evolution of mycoheterotrophic nutrition, where plants fully depend on fungi and lose their photosynthetic activity. The aim of this study was to clarify mycorrhizal dependency and heterotrophy level in various phenotypes of mixotrophic Pyrola japonica (Ericaceae), encompassing green individuals, rare achlorophyllous variants (albinos) and a form with minute leaves, P. japonica f. subaphylla. These three phenotypes were collected in two Japanese forests. Phylogenetic analysis of both plants and mycorrhizal fungi was conducted based on DNA barcoding. Enrichment in 13C among organs (leaves, stems and roots) of the phenotypes with reference plants and fungal fruitbodies were compared by measuring stable carbon isotopic ratio. All plants were placed in the same clade, with f. subaphylla as a separate subclade. Leaf 13C abundances of albinos were congruent with a fully mycoheterotrophic nutrition, suggesting that green P. japonica leaves are 36.8% heterotrophic, while rhizomes are 74.0% heterotrophic. There were no significant differences in δ13C values among organs in both albino P. japonica and P. japonica f. subaphylla, suggesting full and high mycoheterotrophic nutrition, respectively. Among 55 molecular operational taxonomic units (OTUs) detected as symbionts, the genus Russula was the most abundant in each phenotype and its dominance was significantly higher in albino P. japonica and P. japonica f. subaphylla. Russula spp. detected in P. japonica f. subaphylla showed higher dissimilarity with other phenotypes. These results suggest that P. japonica sensu lato is prone to evolve mycoheterotrophic variants, in a process that changes its mycorrhizal preferences, especially towards the genus Russula for which this species has a marked preference.
Collapse
Affiliation(s)
- Yosuke Matsuda
- Graduate School of Bioresources, Mie University, 1577 Kurimamachiya, Tsu, Mie, 514-8507, Japan.
| | - Yusuke Yamaguchi
- Graduate School of Bioresources, Mie University, 1577 Kurimamachiya, Tsu, Mie, 514-8507, Japan
| | - Naoko Matsuo
- Graduate School of Bioresources, Mie University, 1577 Kurimamachiya, Tsu, Mie, 514-8507, Japan
| | - Takashi Uesugi
- Graduate School of Bioresources, Mie University, 1577 Kurimamachiya, Tsu, Mie, 514-8507, Japan
| | - Junko Ito
- Natural History Museum and Institute, Aoba-cho, Chuo-ku, Chiba, 260-8682, Japan
| | - Takahiro Yagame
- Mizuho Municipal Museum, 316-5 Kamagata-fujisan, Mizuho-machi, Tokyo, 190-1202, Japan
| | - Tomáš Figura
- Evolution, Biodiversité (ISYEB), Institut de Systématique, Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, CP 39, 57 rue Cuvier, 75005, Paris, France
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 12844, Prague, Czech Republic
| | - Marc-André Selosse
- Evolution, Biodiversité (ISYEB), Institut de Systématique, Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, CP 39, 57 rue Cuvier, 75005, Paris, France
- Faculty of Biology, University of Gdańsk, ul. Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Yasushi Hashimoto
- Agro-Environmental Science, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan
| |
Collapse
|
5
|
Figura T, Tylová E, Šoch J, Selosse MA, Ponert J. In vitro axenic germination and cultivation of mixotrophic Pyroloideae (Ericaceae) and their post-germination ontogenetic development. ANNALS OF BOTANY 2019; 123:625-639. [PMID: 30403767 PMCID: PMC6417480 DOI: 10.1093/aob/mcy195] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/25/2018] [Accepted: 10/06/2018] [Indexed: 05/21/2023]
Abstract
BACKGROUND AND AIMS Pyroloids, forest sub-shrubs of the Ericaceae family, are an important model for their mixotrophic nutrition, which mixes carbon from photosynthesis and from their mycorrhizal fungi. They have medical uses but are difficult to cultivate ex situ; in particular, their dust seeds contain undifferentiated, few-celled embryos, whose germination is normally fully supported by fungal partners. Their germination and early ontogenesis thus remain elusive. METHODS An optimized in vitro cultivation system of five representatives from the subfamily Pyroloideae was developed to study the strength of seed dormancy and the effect of different media and conditions (including light, gibberellins and soluble saccharides) on germination. The obtained plants were analysed for morphological, anatomical and histochemical development. KEY RESULTS Thanks to this novel cultivation method, which breaks dormancy and achieved up to 100 % germination, leafy shoots were obtained in vitro for representatives of all pyroloid genera (Moneses, Orthilia, Pyrola and Chimaphila). In all cases, the first post-germination stage is an undifferentiated structure, from which a root meristem later emerges, well before formation of an adventive shoot. CONCLUSIONS This cultivation method can be used for further research or for ex situ conservation of pyroloid species. After strong seed dormancy is broken, the tiny globular embryo of pyroloids germinates into an intermediary zone, which is functionally convergent with the protocorm of other plants with dust seeds such as orchids. Like the orchid protocorm, this intermediary zone produces a single meristem: however, unlike orchids, which produce a shoot meristem, pyroloids first generate a root meristem.
Collapse
Affiliation(s)
- Tomáš Figura
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná, Prague, Czech Republic
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum national d’Histoire naturelle, CNRS, Sorbonne Université, EPHE, Paris, France
| | - Edita Tylová
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná, Prague, Czech Republic
| | - Jan Šoch
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná, Prague, Czech Republic
| | - Marc-André Selosse
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum national d’Histoire naturelle, CNRS, Sorbonne Université, EPHE, Paris, France
- Department of Plant Taxonomy and Nature Conservation, University of Gdańsk, Wita Stwosza, Gdańsk, Poland
| | - Jan Ponert
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná, Prague, Czech Republic
- Prague Botanical Garden, Trojská, Prague, Czech Republic
| |
Collapse
|
6
|
Jacquemyn H, Waud M, Brys R. Mycorrhizal divergence and selection against immigrant seeds in forest and dune populations of the partially mycoheterotrophic Pyrola rotundifolia. Mol Ecol 2018; 27:5228-5237. [PMID: 30427084 DOI: 10.1111/mec.14940] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 10/17/2018] [Accepted: 10/24/2018] [Indexed: 11/29/2022]
Abstract
Plant populations occupying different habitats may diverge from each other over time and gradually accumulate genetic and morphological differences, ultimately resulting in ecotype or even species formation. In plant species that critically rely on mycorrhizal fungi, differences in mycorrhizal communities can contribute to ecological isolation by reducing or even inhibiting germination of immigrant seeds. In this study, we investigated whether the mycorrhizal communities available in the soil and associating with the roots of seedlings and adult plants of the partially mycoheterotrophic Pyrola rotundifolia differed between populations growing in sand dunes and forests. In addition, reciprocal germination experiments were performed to test whether native seeds showed higher germination than immigrant seeds. Our results showed that the mycorrhizal communities differed significantly between forest and dune populations, and that within populations seedlings and adults also associated with different mycorrhizal communities. In both forest and dune populations, mycorrhizal communities were dominated by members of the Thelephoraceae, but dune populations showed a higher incidence of members of the Inocybaceae, whereas forest populations showed a high abundance of members of the Russulaceae. Reciprocal germination experiments showed that native seeds showed a higher germination success than immigrant seeds and this effect was most pronounced in dune populations. Overall, these results demonstrate that plants of P. rotundifolia growing in dune and forest habitats associate with different mycorrhizal communities and that reduced germination of non-native seeds may contribute to reproductive isolation. We conclude that selection against immigrants may constitute an important reproductive barrier at early stages of the speciation process.
Collapse
Affiliation(s)
- Hans Jacquemyn
- Department of Biology, Plant Conservation and Population Biology, KU Leuven, Leuven, Belgium
| | - Michael Waud
- Department of Biology, Plant Conservation and Population Biology, KU Leuven, Leuven, Belgium
| | - Rein Brys
- Research Institute for Forest and Nature, Geraardsbergen, Belgium
| |
Collapse
|
7
|
Gonzalez E, Pitre FE, Pagé AP, Marleau J, Guidi Nissim W, St-Arnaud M, Labrecque M, Joly S, Yergeau E, Brereton NJB. Trees, fungi and bacteria: tripartite metatranscriptomics of a root microbiome responding to soil contamination. MICROBIOME 2018; 6:53. [PMID: 29562928 PMCID: PMC5863371 DOI: 10.1186/s40168-018-0432-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 03/02/2018] [Indexed: 05/05/2023]
Abstract
BACKGROUND One method for rejuvenating land polluted with anthropogenic contaminants is through phytoremediation, the reclamation of land through the cultivation of specific crops. The capacity for phytoremediation crops, such as Salix spp., to tolerate and even flourish in contaminated soils relies on a highly complex and predominantly cryptic interacting community of microbial life. METHODS Here, Illumina HiSeq 2500 sequencing and de novo transcriptome assembly were used to observe gene expression in washed Salix purpurea cv. 'Fish Creek' roots from trees pot grown in petroleum hydrocarbon-contaminated or non-contaminated soil. All 189,849 assembled contigs were annotated without a priori assumption as to sequence origin and differential expression was assessed. RESULTS The 839 contigs differentially expressed (DE) and annotated from S. purpurea revealed substantial increases in transcripts encoding abiotic stress response equipment, such as glutathione S-transferases, in roots of contaminated trees as well as the hallmarks of fungal interaction, such as SWEET2 (Sugars Will Eventually Be Exported Transporter). A total of 8252 DE transcripts were fungal in origin, with contamination conditions resulting in a community shift from Ascomycota to Basidiomycota genera. In response to contamination, 1745 Basidiomycota transcripts increased in abundance (the majority uniquely expressed in contaminated soil) including major monosaccharide transporter MST1, primary cell wall and lamella CAZy enzymes, and an ectomycorrhiza-upregulated exo-β-1,3-glucanase (GH5). Additionally, 639 DE polycistronic transcripts from an uncharacterised Enterobacteriaceae species were uniformly in higher abundance in contamination conditions and comprised a wide spectrum of genes cryptic under laboratory conditions but considered putatively involved in eukaryotic interaction, biofilm formation and dioxygenase hydrocarbon degradation. CONCLUSIONS Fungal gene expression, representing the majority of contigs assembled, suggests out-competition of white rot Ascomycota genera (dominated by Pyronema), a sometimes ectomycorrhizal (ECM) Ascomycota (Tuber) and ECM Basidiomycota (Hebeloma) by a poorly characterised putative ECM Basidiomycota due to contamination. Root and fungal expression involved transcripts encoding carbohydrate/amino acid (C/N) dialogue whereas bacterial gene expression included the apparatus necessary for biofilm interaction and direct reduction of contamination stress, a potential bacterial currency for a role in tripartite mutualism. Unmistakable within the metatranscriptome is the degree to which the landscape of rhizospheric biology, particularly the important but predominantly uncharacterised fungal genetics, is yet to be discovered.
Collapse
Affiliation(s)
- E Gonzalez
- Canadian Center for Computational Genomics, McGill University and Genome Quebec Innovation Center, Montréal, H3A 1A4, Canada
- Department of Human Genetics, McGill University, Montreal, H3A 1B1, Canada
| | - F E Pitre
- Institut de recherche en biologie végétale, University of Montreal, Montreal, QC, H1X 2B2, Canada
- Montreal Botanical Garden, Montreal, QC, H1X 2B2, Canada
| | - A P Pagé
- Aquatic and Crop Resource Development (ACRD), National Research Council Canada, Montréal, QC, H4P 2R2, Canada
| | - J Marleau
- Institut de recherche en biologie végétale, University of Montreal, Montreal, QC, H1X 2B2, Canada
| | - W Guidi Nissim
- Department of Agri-food and Environmental Science, University of Florence, Viale delle Idee, Sesto Fiorentino, FI, Italy
| | - M St-Arnaud
- Institut de recherche en biologie végétale, University of Montreal, Montreal, QC, H1X 2B2, Canada
- Montreal Botanical Garden, Montreal, QC, H1X 2B2, Canada
| | - M Labrecque
- Institut de recherche en biologie végétale, University of Montreal, Montreal, QC, H1X 2B2, Canada
- Montreal Botanical Garden, Montreal, QC, H1X 2B2, Canada
| | - S Joly
- Institut de recherche en biologie végétale, University of Montreal, Montreal, QC, H1X 2B2, Canada
- Montreal Botanical Garden, Montreal, QC, H1X 2B2, Canada
| | - E Yergeau
- Institut National de la Recherche Scientifique, Centre INRS-Institut Armand-Frappier, Laval, QC, Canada
| | - N J B Brereton
- Institut de recherche en biologie végétale, University of Montreal, Montreal, QC, H1X 2B2, Canada.
| |
Collapse
|
8
|
Jia S, Nakano T, Hattori M, Nara K. Root-associated fungal communities in three Pyroleae species and their mycobiont sharing with surrounding trees in subalpine coniferous forests on Mount Fuji, Japan. MYCORRHIZA 2017; 27:733-745. [PMID: 28707027 PMCID: PMC5645451 DOI: 10.1007/s00572-017-0788-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 06/20/2017] [Indexed: 06/07/2023]
Abstract
Pyroleae species are perennial understory shrubs, many of which are partial mycoheterotrophs. Most fungi colonizing Pyroleae roots are ectomycorrhizal (ECM) and share common mycobionts with their Pyroleae hosts. However, such mycobiont sharing has neither been examined in depth before nor has the interspecific variation in sharing among Pyroleae species. Here, we examined root-associated fungal communities in three co-existing Pyroleae species, including Pyrola alpina, Pyrola incarnata, and Orthilia secunda, with reference to co-existing ECM fungi on the surrounding trees in the same soil blocks in subalpine coniferous forests. We identified 42, 75, and 18 fungal molecular operational taxonomic units in P. alpina, P. incarnata, and O. secunda roots, respectively. Mycobiont sharing with surrounding trees, which was defined as the occurrence of the same mycobiont between Pyroleae and surrounding trees in each soil block, was most frequent among P. incarnata (31 of 44 plants). In P. alpina, sharing was confirmed in 12 of 37 plants, and the fungal community was similar to that of P. incarnata. Mycobiont sharing was least common in O. secunda, found in only 5 of 32 plants. Root-associated fungi of O. secunda were dominated by Wilcoxina species, which were absent from the surrounding ECM roots in the same soil blocks. These results indicate that mycobiont sharing with surrounding trees does not equally occur among Pyroleae plants, some of which may develop independent mycorrhizal associations with ECM fungi, as suggested in O. secunda at our research sites.
Collapse
Affiliation(s)
- Shuzheng Jia
- Department of Natural Environmental Studies, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8563, Japan.
| | - Takashi Nakano
- Mount Fuji Research Institute, Fujiyoshida, Yamanashi, Japan
| | - Masahira Hattori
- Laboratory of Metagenomics, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Kazuhide Nara
- Department of Natural Environmental Studies, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8563, Japan
| |
Collapse
|
9
|
Fochi V, Falla N, Girlanda M, Perotto S, Balestrini R. Cell-specific expression of plant nutrient transporter genes in orchid mycorrhizae. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 263:39-45. [PMID: 28818382 DOI: 10.1016/j.plantsci.2017.06.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 06/14/2017] [Indexed: 05/03/2023]
Abstract
Orchid mycorrhizal protocorms and roots are heterogeneous structures composed of different plant cell-types, where cells colonized by intracellular fungal coils (the pelotons) are close to non-colonized plant cells. Moreover, the fungal coils undergo rapid turnover inside the colonized cells, so that plant cells containing coils at different developmental stages can be observed in the same tissue section. Here, we have investigated by laser microdissection (LMD) the localization of specific plant gene transcripts in different cell-type populations collected from mycorrhizal protocorms and roots of the Mediterranean orchid Serapias vomeracea colonized by Tulasnella calospora. RNAs extracted from the different cell-type populations have been used to study plant gene expression, focusing on genes potentially involved in N uptake and transport and previously identified as up-regulated in symbiotic protocorms. Results clearly showed that some plant N transporters are differentially expressed in cells containing fungal coils at different developmental stages, as well as in non-colonized cells, and allowed the identification of new functional markers associated to coil-containing cells.
Collapse
Affiliation(s)
- Valeria Fochi
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università degli Studi di Torino, Viale Mattioli, 25, 10125 Torino, Italy; CNR-Istituto per la Protezione Sostenibile delle Piante (IPSP), Viale Mattioli, 25, 10125 Torino, Italy
| | - Nicole Falla
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università degli Studi di Torino, Viale Mattioli, 25, 10125 Torino, Italy
| | - Mariangela Girlanda
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università degli Studi di Torino, Viale Mattioli, 25, 10125 Torino, Italy; CNR-Istituto per la Protezione Sostenibile delle Piante (IPSP), Viale Mattioli, 25, 10125 Torino, Italy
| | - Silvia Perotto
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università degli Studi di Torino, Viale Mattioli, 25, 10125 Torino, Italy; CNR-Istituto per la Protezione Sostenibile delle Piante (IPSP), Viale Mattioli, 25, 10125 Torino, Italy.
| | - Raffaella Balestrini
- CNR-Istituto per la Protezione Sostenibile delle Piante (IPSP), Viale Mattioli, 25, 10125 Torino, Italy.
| |
Collapse
|
10
|
Lallemand F, Puttsepp Ü, Lang M, Luud A, Courty PE, Palancade C, Selosse MA. Mixotrophy in Pyroleae (Ericaceae) from Estonian boreal forests does not vary with light or tissue age. ANNALS OF BOTANY 2017; 120:361-371. [PMID: 28575199 PMCID: PMC5591414 DOI: 10.1093/aob/mcx054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 03/23/2017] [Indexed: 05/21/2023]
Abstract
Background and Aims In temperate forests, some green plants, namely pyroloids (Pyroleae, Ericaceae) and some orchids, independently evolved a mode of nutrition mixing photosynthates and carbon gained from their mycorrhizal fungi (mixotrophy). Fungal carbon is more enriched in 13C than photosynthates, allowing estimation of the proportion of carbon acquired heterotrophically from fungi in plant biomass. Based on 13C enrichment, mixotrophic orchids have previously been shown to increase shoot autotrophy level over the growth season and with environmental light availability. But little is known about the plasticity of use of photosynthetic versus fungal carbon in pyroloids. Methods Plasticity of mixotrophy with leaf age or light level (estimated from canopy openness) was investigated in pyroloids from three Estonian boreal forests. Bulk leaf 13C enrichment of five pyroloid species was compared with that of control autotrophic plants along temporal series (over one growth season) and environmental light gradients (n=405 samples). Key Results Mixotrophic 13C enrichment was detected at studied sites for Pyrola chlorantha and Orthilia secunda (except at one site for the latter), but not for Chimaphila umbellata, Pyrola rotundifolia and Moneses uniflora. Enrichment with 13C did not vary over the growth season or between leaves from current and previous years. Finally, although one co-occurring mixotrophic orchid showed 13C depletion with increasing light availability, as expected for mixotrophs, all pyroloids responded identically to autotrophic control plants along light gradients. Conclusions A phylogenetic trend previously observed is further supported: mixotrophy is rarely supported by 13C enrichment in the Chimaphila + Moneses clade, whereas it is frequent in the Pyrola + Orthilia clade. Moreover, pyroloid mixotrophy does not respond plastically to ageing or to light level. This contrasts with the usual view of a convergent evolution with orchids, and casts doubt on the way pyroloids use the carbon gained from their mycorrhizal fungi, especially to replace photosynthetic carbon.
Collapse
Affiliation(s)
- Félix Lallemand
- Institut de Systématique, Évolution, Biodiversité (ISYEB), UMR 7205 CNRS MNHN UPMC EPHE, Muséum national d’Histoire naturelle, Sorbonne Universités, 57 rue Cuvier, CP39, 75005 Paris, France
- Master BioSciences, Département de Biologie, École Normale Supérieure de Lyon, Université de Lyon, UCB Lyon1, 46 Allée d’Italie, Lyon, France
| | - Ülle Puttsepp
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Street Kreutzwaldi 5, 51014, Tartu, Estonia
| | - Mait Lang
- Institute of Forestry and Rural Engineering, Estonian University of Life Sciences, Street Kreutzwaldi 5, 51014 Tartu, Estonia
- Tartu Observatory, 61602 Tõravere, Tartu County, Estonia
| | - Aarne Luud
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Street Kreutzwaldi 5, 51014, Tartu, Estonia
| | - Pierre-Emmanuel Courty
- Agroécologie, AgroSupDijon, CNRS, INRA, Université de Bourgogne Franche-Comté, 21000 Dijon, France and
| | - Cécile Palancade
- Institut de Systématique, Évolution, Biodiversité (ISYEB), UMR 7205 CNRS MNHN UPMC EPHE, Muséum national d’Histoire naturelle, Sorbonne Universités, 57 rue Cuvier, CP39, 75005 Paris, France
| | - Marc-André Selosse
- Institut de Systématique, Évolution, Biodiversité (ISYEB), UMR 7205 CNRS MNHN UPMC EPHE, Muséum national d’Histoire naturelle, Sorbonne Universités, 57 rue Cuvier, CP39, 75005 Paris, France
- Department of Plant Taxonomy and Nature Conservation, University of Gdansk, ul. Wita Stwosza 59, 80-308 Gdańsk, Poland
| |
Collapse
|
11
|
Johansson VA, Bahram M, Tedersoo L, Kõljalg U, Eriksson O. Specificity of fungal associations of Pyroleae and Monotropa hypopitys during germination and seedling development. Mol Ecol 2017; 26:2591-2604. [PMID: 28173637 DOI: 10.1111/mec.14050] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 11/23/2016] [Accepted: 01/17/2017] [Indexed: 01/15/2023]
Abstract
Mycoheterotrophic plants obtain organic carbon from associated mycorrhizal fungi, fully or partially. Angiosperms with this form of nutrition possess exceptionally small 'dust seeds' which after germination develop 'seedlings' that remain subterranean for several years, fully dependent on fungi for supply of carbon. Mycoheterotrophs which as adults have photosynthesis thus develop from full to partial mycoheterotrophy, or autotrophy, during ontogeny. Mycoheterotrophic plants may represent a gradient of variation in a parasitism-mutualism continuum, both among and within species. Previous studies on plant-fungal associations in mycoheterotrophs have focused on either germination or the adult life stages of the plant. Much less is known about the fungal associations during development of the subterranean seedlings. We investigated germination and seedling development and the diversity of fungi associated with germinating seeds and subterranean seedlings (juveniles) in five Monotropoideae (Ericaceae) species, the full mycoheterotroph Monotropa hypopitys and the putatively partial mycoheterotrophs Pyrola chlorantha, P. rotundifolia, Moneses uniflora and Chimaphila umbellata. Seedlings retrieved from seed sowing experiments in the field were used to examine diversity of fungal associates, using pyrosequencing analysis of ITS2 region for fungal identification. The investigated species varied with regard to germination, seedling development and diversity of associated fungi during juvenile ontogeny. Results suggest that fungal host specificity increases during juvenile ontogeny, most pronounced in the fully mycoheterotrophic species, but a narrowing of fungal associates was found also in two partially mycoheterotrophic species. We suggest that variation in specificity of associated fungi during seedling ontogeny in mycoheterotrophs represents ongoing evolution along a parasitism-mutualism continuum.
Collapse
Affiliation(s)
- V A Johansson
- Department of Ecology, Environment and Plant Sciences, Stockholm University, SE 106 91, Stockholm, Sweden
| | - M Bahram
- Institute of Ecology and Earth Sciences, University of Tartu, 51005, Tartu, Estonia.,Department of Organismal Biology, Uppsala University, SE 75236, Uppsala, Sweden
| | - L Tedersoo
- Institute of Ecology and Earth Sciences, University of Tartu, 51005, Tartu, Estonia
| | - U Kõljalg
- Institute of Ecology and Earth Sciences, University of Tartu, 51005, Tartu, Estonia
| | - O Eriksson
- Department of Ecology, Environment and Plant Sciences, Stockholm University, SE 106 91, Stockholm, Sweden
| |
Collapse
|
12
|
Weiß M, Waller F, Zuccaro A, Selosse MA. Sebacinales - one thousand and one interactions with land plants. THE NEW PHYTOLOGIST 2016; 211:20-40. [PMID: 27193559 DOI: 10.1111/nph.13977] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 02/05/2016] [Indexed: 05/20/2023]
Abstract
20 I 21 II 21 III 23 IV 29 V 33 VI 35 36 36 References 36 SUMMARY: Root endophytism and mycorrhizal associations are complex derived traits in fungi that shape plant physiology. Sebacinales (Agaricomycetes, Basidiomycota) display highly diverse interactions with plants. Although early-diverging Sebacinales lineages are root endophytes and/or have saprotrophic abilities, several more derived clades harbour obligate biotrophs forming mycorrhizal associations. Sebacinales thus display transitions from saprotrophy to endophytism and to mycorrhizal nutrition within one fungal order. This review discusses the genomic traits possibly associated with these transitions. We also show how molecular ecology revealed the hyperdiversity of Sebacinales and their evolutionary diversification into two sister families: Sebacinaceae encompasses mainly ectomycorrhizal and early-diverging saprotrophic species; the second family includes endophytes and lineages that repeatedly evolved ericoid, orchid and ectomycorrhizal abilities. We propose the name Serendipitaceae for this family and, within it, we transfer to the genus Serendipita the endophytic cultivable species Piriformospora indica and P. williamsii. Such cultivable Serendipitaceae species provide excellent models for root endophytism, especially because of available genomes, genetic tractability, and broad host plant range including important crop plants and the model plant Arabidopsis thaliana. We review insights gained with endophytic Serendipitaceae species into the molecular mechanisms of endophytism and of beneficial effects on host plants, including enhanced resistance to abiotic and pathogen stress.
Collapse
Affiliation(s)
- Michael Weiß
- Steinbeis-Innovationszentrum Organismische Mykologie und Mikrobiologie, Vor dem Kreuzberg 17, 72070, Tübingen, Germany
- Department of Biology, University of Tübingen, Auf der Morgenstelle 1, 72076, Tübingen, Germany
| | - Frank Waller
- Pharmaceutical Biology, Julius von Sachs Institute for Biosciences, Biocenter, Würzburg University, Julius-von-Sachs Platz 2, 97082, Würzburg, Germany
| | - Alga Zuccaro
- Botanical Institute, Cluster of Excellence on Plant Sciences (CEPLAS), BioCenter, University of Cologne, 50674, Cologne, Germany
- Max Planck Institute for Terrestrial Microbiology, 35043, Marburg, Germany
| | - Marc-André Selosse
- Département Systématique et Evolution (UMR 7205 ISYEB), Muséum national d'Histoire naturelle, CP 50, 45 rue Buffon, 75005, Paris, France
- Department of Plant Taxonomy and Nature Conservation, University of Gdansk, Gdansk, Poland
| |
Collapse
|
13
|
Field KJ, Leake JR, Tille S, Allinson KE, Rimington WR, Bidartondo MI, Beerling DJ, Cameron DD. From mycoheterotrophy to mutualism: mycorrhizal specificity and functioning in Ophioglossum vulgatum sporophytes. THE NEW PHYTOLOGIST 2015; 205:1492-1502. [PMID: 25615559 DOI: 10.1111/nph.13263] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 12/08/2014] [Indexed: 06/04/2023]
Abstract
Mycorrhizal functioning in the fern Ophioglossum is complex and poorly understood. It is unknown whether mature O. vulgatum sporophytes form mutualistic associations with fungi of the Glomeromycota and with what specificity. Are green sporophytes able to 'repay' fungal carbon (C) invested in them by mycorrhizal partners during the initially heterotrophic gametophyte and early sporophyte stages of the lifecycle? We identified fungal partners of O. vulgatum sporophytes using molecular techniques and supplied them with (33) P-orthophosphate and O. vulgatum sporophytes with (14) CO2 . We traced the movement of fungal-acquired nutrients and plant-fixed C between symbionts and analysed natural abundance (13) C and (15) N isotope signatures to assess nutritional interactions. We found fungal specificity of O. vulgatum sporophytes towards a mycorrhizal fungus closely related to Glomus macrocarpum. Our radioisotope tracers revealed reciprocal C-for-phosphorus exchange between fern sporophytes and fungal partners, despite competition from surrounding vegetation. Monocultures of O. vulgatum were enriched in (13) C and (15) N, providing inconclusive evidence of mycoheterotrophy when experiencing competition from the surrounding plant community. We show mutualistic and specific symbiosis between a eusporangiate fern and fungi of the Glomeromycota. Our findings suggest a 'take now, pay later' strategy of mycorrhizal functioning through the lifecycle O. vulgatum, from mycoheterotrophic gametophyte to mutualistic aboveground sporophyte.
Collapse
Affiliation(s)
- Katie J Field
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Jonathan R Leake
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Stefanie Tille
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Kate E Allinson
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - William R Rimington
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
- Jodrell Laboratory, Royal Botanic Gardens, Kew, TW9 3DS, UK
- Department of Life Sciences, Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| | - Martin I Bidartondo
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
- Jodrell Laboratory, Royal Botanic Gardens, Kew, TW9 3DS, UK
| | - David J Beerling
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Duncan D Cameron
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| |
Collapse
|
14
|
Těšitelová T, Kotilínek M, Jersáková J, Joly FX, Košnar J, Tatarenko I, Selosse MA. Two widespread greenNeottiaspecies (Orchidaceae) show mycorrhizal preference for Sebacinales in various habitats and ontogenetic stages. Mol Ecol 2015; 24:1122-34. [DOI: 10.1111/mec.13088] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 01/16/2015] [Accepted: 01/19/2015] [Indexed: 12/18/2022]
Affiliation(s)
- Tamara Těšitelová
- Faculty of Science; University of South Bohemia; Branišovská 31 37005 České Budějovice Czech Republic
| | - Milan Kotilínek
- Faculty of Science; University of South Bohemia; Branišovská 31 37005 České Budějovice Czech Republic
| | - Jana Jersáková
- Faculty of Science; University of South Bohemia; Branišovská 31 37005 České Budějovice Czech Republic
| | - François-Xavier Joly
- Faculty of Science; University of South Bohemia; Branišovská 31 37005 České Budějovice Czech Republic
| | - Jiří Košnar
- Faculty of Science; University of South Bohemia; Branišovská 31 37005 České Budějovice Czech Republic
| | - Irina Tatarenko
- Moscow Pedagogic State University; 1/1 M. Pirogovskaya Str. Moscow 119991 Russia
- Department of Environment, Earth and Ecosystems; Open University; Walton Hall Milton Keynes MK7 6AA UK
| | - Marc-André Selosse
- Département Systématique et Evolution (UMR 7205 ISYEB); Muséum national d'Histoire naturelle; CP 50, 45 rue Buffon 75005 Paris France
| |
Collapse
|
15
|
Johansson VA, Mikusinska A, Ekblad A, Eriksson O. Partial mycoheterotrophy in Pyroleae: nitrogen and carbon stable isotope signatures during development from seedling to adult. Oecologia 2014; 177:203-11. [PMID: 25395312 DOI: 10.1007/s00442-014-3137-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 10/26/2014] [Indexed: 11/28/2022]
Abstract
Mycoheterotrophic plants (MHP) are divided into non-photosynthesizing full MHP and green-leaved partial or initial MHP. We investigated (13)C and (15)N isotope enrichment in five putatively partial MHP species in the tribe Pyroleae (Ericaceae): Chimaphila umbellata, Moneses uniflora, Orthilia secunda, Pyrola chlorantha and Pyrola minor, sampled from forest sites on Öland, Sweden. For M. uniflora and P. chlorantha, we investigated isotope signatures of subterranean seedlings (which are mycoheterotrophic), to examine how the use of seedlings instead of full MHP species (Hypopitys monotropa) as reference species affects the assessment of partial mycoheterotrophy. Our main findings were as follows: (1) All investigated Pyroleae species were enriched in (15)N compared to autotrophic reference plants. (2) significant fungal-derived C among the Pyroleae species was found for O. secunda and P. chlorantha. For the remaining species of C. umbellata, M. uniflora and P. minor, isotope signatures suggested adult autotrophy. (3) C and N gains, calculated using seedlings as a full MHP reference, yielded qualitatively similar results as when using H. monotropa as a reference. However, the estimated differences in C and N gains became larger when using seedlings as an MHP reference. (4) A previously unknown interspecific variation in isotope signature occurs during early ontogeny, from seed production to developing seedlings. Our findings suggest that there is a variation among Pyroleae species concerning partial mycoheterotrophy in adults. Adult autotrophy may be most common in Pyroleae species, and these species may not be as dependent on fungal-derived nutrients as some green orchids.
Collapse
Affiliation(s)
- Veronika A Johansson
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91, Stockholm, Sweden,
| | | | | | | |
Collapse
|
16
|
Moyersoen B, Weiß M. New neotropical sebacinales species from a Pakaraimaea dipterocarpacea forest in the Guayana Region, Southern Venezuela: structural diversity and phylogeography. PLoS One 2014; 9:e103076. [PMID: 25072467 PMCID: PMC4114518 DOI: 10.1371/journal.pone.0103076] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 06/19/2014] [Indexed: 11/19/2022] Open
Abstract
Pakaraimaea dipterocarpacea, a member of the Dipterocarpaceae endemic in the Guayana region, is associated with a diverse community of ectomycorrhizal (ECM) fungi. Amongst the 41 ECM fungal species detected in a 400 m2 P. dipterocarpacea ssp. nitida plot in Southern Venezuela, three species belonged to the Sebacinales. We tested whether ECM anatomotype characterization can be used as a feasible element in an integrative taxonomy in this diverse fungal group, where the relevance of fruitbody morphology for species delimitation seems limited. Using a combination of ECM morpho-anatomical characterizations and phylogenetic analyses based on nuclear ITS and LSU sequences, we report three new species. The main distinguishing features of Sebacina guayanensis are the yellowish cell walls together with conspicuous undifferentiated, uniform compact (type B) rhizomorphs. Staghorn-like hyphae are characteristic of S. tomentosa. The combination of clusters of thick-walled emanating hyphae, including hyphae similar to awl-shaped cystidia with basal dichotomous or trichotomous ramifications, and the presence of type B rhizomorphs were characteristic of a third, yet unnamed species. The three species belong to three different, possibly specifically tropical clades in Sebacinales Group A. The geographic distribution of phylogenetically related strains was wide, including a Dicymbe forest in Guyana and an Ecuadorian rainforest with Coccoloba species. We show that ECM morpho-anatomy can be used, in combination with other analyses, to delineate species within Sebacinales Group A. In addition to phylogenetic information, type B rhizomorphs observed in different Sebacinales clades have important ecological implications for this fungal group. The phylogeography of Sebacinales suggests that dispersion and host jump are important radiation mechanisms that shaped P. dipterocarpacea ECM fungal community. This study emphasizes the need for more sequence data to evaluate the hypothesis that phylogeographic relationships between neo- and paleotropical ECM fungal species could be attributed to the vicariance of cross-continental hosts such as the Dipterocarpacae.
Collapse
Affiliation(s)
- Bernard Moyersoen
- School of Biological Sciences, Cruickshank Building, University of Aberdeen, Aberdeen, United Kingdom
| | - Michael Weiß
- Department of Biology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
17
|
Stöckel M, Těšitelová T, Jersáková J, Bidartondo MI, Gebauer G. Carbon and nitrogen gain during the growth of orchid seedlings in nature. THE NEW PHYTOLOGIST 2014; 202:606-615. [PMID: 24444001 DOI: 10.1111/nph.12688] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 12/17/2013] [Indexed: 05/12/2023]
Abstract
For germination and establishment, orchids depend on carbon (C) and nutrients supplied by mycorrhizal fungi. As adults, the majority of orchids then appear to become autotrophic. To compare the proportional C and nitrogen (N) gain from fungi in mycoheterotrophic seedlings and in adults, here we examined in the field C and N stable isotope compositions in seedlings and adults of orchids associated with ectomycorrhizal and saprotrophic fungi. Using a new highly sensitive approach, we measured the isotope compositions of seedlings and adults of four orchid species belonging to different functional groups: fully and partially mycoheterotrophic orchids associated with narrow or broad sets of ectomycorrhizal fungi, and two adult putatively autotrophic orchids associated exclusively with saprotrophic fungi. Seedlings of orchids associated with ectomycorrhizal fungi were enriched in (13) C and (15) N similarly to fully mycoheterotrophic adults. Seedlings of saprotroph-associated orchids were also enriched in (13) C and (15) N, but unexpectedly their enrichment was significantly lower, making them hardly distinguishable from their respective adult stages and neighbouring autotrophic plants. We conclude that partial mycoheterotrophy among saprotroph-associated orchids cannot be identified unequivocally based on C and N isotope compositions alone. Thus, partial mycoheterotrophy may be much more widely distributed among orchids than hitherto assumed.
Collapse
Affiliation(s)
- Marcus Stöckel
- Laboratory of Isotope Biogeochemistry, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, 95440, Bayreuth, Germany
| | - Tamara Těšitelová
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05, České Budějovice, Czech Republic
| | - Jana Jersáková
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05, České Budějovice, Czech Republic
| | | | - Gerhard Gebauer
- Laboratory of Isotope Biogeochemistry, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, 95440, Bayreuth, Germany
| |
Collapse
|
18
|
Tedersoo L, Smith ME. Lineages of ectomycorrhizal fungi revisited: Foraging strategies and novel lineages revealed by sequences from belowground. FUNGAL BIOL REV 2013. [DOI: 10.1016/j.fbr.2013.09.001] [Citation(s) in RCA: 338] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Horn K, Franke T, Unterseher M, Schnittler M, Beenken L. Morphological and molecular analyses of fungal endophytes of achlorophyllous gametophytes of Diphasiastrum alpinum (Lycopodiaceae). AMERICAN JOURNAL OF BOTANY 2013; 100:2158-74. [PMID: 24142907 DOI: 10.3732/ajb.1300011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
PREMISE OF THE STUDY To understand the early evolution of mycorrhizal symbioses, it is important to know the fungal partners of gametophytes and sporophytes for basal lineages of vascular plants. Subterranean mycotrophic gametophytes of the clubmoss Diphasiastrum alpinum found at three localities gave an opportunity to study their morphology and anatomy and to identify and describe their hitherto unknown fungal endophytes. In addition, sporophytes were screened for fungal partners. METHODS Gametophytes with attached young sporophytes were excavated, and their anatomy and their associated fungi were studied by light microscopy. DNA was isolated and amplified with both universal and group-specific fungal primers for the ITS region, the large subunit and small subunit of the nuclear rDNA, respectively, to identify the fungal partner. KEY RESULTS Gametophytes were uniformly colonized by a fungus with septate hyphae forming coils and vesicles. Its morphology resembles that of the sebacinoid genus Piriformospora. Both ITS and LSU sequences were identified as Sebacinales group B, a basal clade of the Agaricomycetes (Basidiomycota). This fungus was detected in 11 gametophytes from two localities and in rootlets of adjacent Calluna vulgaris (Ericaceae) plants, but was absent in roots of sporophytes. In addition, several ascomycetes and glomeromycetes were found by DNA sequencing. CONCLUSIONS Our study suggests a fungus belonging to Sebacinales group B as the main fungal host of the D. alpinum gametophytes. However, Sebacinales group B fungi occur as well in adjacent Ericaceae plants; therefore, we assume the mycoheterotrophic gametophyte to be epiparasitic on Ericaceae, which would explain the steady association of these plants.
Collapse
Affiliation(s)
- Karsten Horn
- Büro für angewandte Geobotanik und Landschaftsökologie (BaGL), Frankenstrasse 2, D-91077 Dormitz, Germany
| | | | | | | | | |
Collapse
|