1
|
Battilani D, Gargiulo R, Caniglia R, Fabbri E, Madrigal JR, Fontsere C, Ciucani MM, Gopalakrishnan S, Girardi M, Fracasso I, Mastroiaco M, Ciucci P, Vernesi C. Beyond population size: Whole-genome data reveal bottleneck legacies in the peninsular Italian wolf. J Hered 2025; 116:10-23. [PMID: 39189963 DOI: 10.1093/jhered/esae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 08/15/2024] [Indexed: 08/28/2024] Open
Abstract
Preserving genetic diversity and adaptive potential while avoiding inbreeding depression is crucial for the long-term conservation of natural populations. Despite demographic increases, traces of past bottleneck events at the genomic level should be carefully considered for population management. From this perspective, the peninsular Italian wolf is a paradigmatic case. After being on the brink of extinction in the late 1960s, peninsular Italian wolves rebounded and recolonized most of the peninsula aided by conservation measures, including habitat and legal protection. Notwithstanding their demographic recovery, a comprehensive understanding of the genomic consequences of the historical bottleneck in Italian wolves is still lacking. To fill this gap, we sequenced whole genomes of 13 individuals sampled in the core historical range of the species in Central Italy to conduct population genomic analyses, including a comparison with wolves from two highly-inbred wolf populations (i.e. Scandinavia and Isle Royale). We found that peninsular Italian wolves, despite their recent recovery, still exhibit relatively low genetic diversity, a small effective population size, signatures of inbreeding, and a non-negligible genetic load. Our findings indicate that the peninsular Italian wolf population is still susceptible to bottleneck legacies, which could lead to local inbreeding depression in case of population reduction or fragmentations. This study emphasizes the importance of considering key genetic parameters to design appropriate long-term conservation management plans.
Collapse
Affiliation(s)
- Daniele Battilani
- Department of Biology and Biotechnologies "Charles Darwin", Università di Roma La Sapienza, Roma, Italy
- Area per la Genetica della Conservazione, ISPRA, Ozzano dell'Emilia Bologna, Italy
- Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Roberta Gargiulo
- Ecosystem Stewardship, Royal Botanical Gardens, Kew, United Kingdom
| | - Romolo Caniglia
- Area per la Genetica della Conservazione, ISPRA, Ozzano dell'Emilia Bologna, Italy
| | - Elena Fabbri
- Area per la Genetica della Conservazione, ISPRA, Ozzano dell'Emilia Bologna, Italy
| | - Jazmín Ramos- Madrigal
- Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Claudia Fontsere
- Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Marta Maria Ciucani
- Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Shyam Gopalakrishnan
- Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Matteo Girardi
- Research and Innovation Centre-Fondazione Edmund Mach, S. Michele all'Adige, Italy
| | - Ilaria Fracasso
- Research and Innovation Centre-Fondazione Edmund Mach, S. Michele all'Adige, Italy
| | - Matteo Mastroiaco
- Department of Biology and Biotechnologies "Charles Darwin", Università di Roma La Sapienza, Roma, Italy
| | - Paolo Ciucci
- Department of Biology and Biotechnologies "Charles Darwin", Università di Roma La Sapienza, Roma, Italy
| | - Cristiano Vernesi
- Research and Innovation Centre-Fondazione Edmund Mach, S. Michele all'Adige, Italy
| |
Collapse
|
2
|
Kardos M, Keller LF, Funk WC. What Can Genome Sequence Data Reveal About Population Viability? Mol Ecol 2024:e17608. [PMID: 39681836 DOI: 10.1111/mec.17608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/08/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024]
Abstract
Biologists have long sought to understand the impacts of deleterious genetic variation on fitness and population viability. However, our understanding of these effects in the wild is incomplete, in part due to the rarity of sufficient genetic and demographic data needed to measure their impact. The genomics revolution is promising a potential solution by predicting the effects of deleterious genetic variants (genetic load) bioinformatically from genome sequences alone bypassing the need for costly demographic data. After a historical perspective on the theoretical and empirical basis of our understanding of the dynamics and fitness effects of deleterious genetic variation, we evaluate the potential for these new genomic measures of genetic load to predict population viability. We argue that current genomic analyses alone cannot reliably predict the effects of deleterious genetic variation on population growth, because these depend on demographic, ecological and genetic parameters that need more than just genome sequence data to be measured. Thus, while purely genomic analyses of genetic load promise to improve our understanding of the composition of the genetic load, they are currently of little use for evaluating population viability. Demographic data and ecological context remain crucial to our understanding of the consequences of deleterious genetic variation for population fitness. However, when combined with such demographic and ecological data, genomic information can offer important insights into genetic variation and inbreeding that are crucial for conservation decision making.
Collapse
Affiliation(s)
- Marty Kardos
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, Washington, USA
| | - Lukas F Keller
- Department of Evolutionary Biology and Environmental Studies & Natural History Museum, University of Zurich, Zurich, Switzerland
| | - W Chris Funk
- Department of Biology, Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
3
|
Inoue K, Yahagi T, Kimura T, Kimura S, Kano Y. Comparison of Genetic Structures Among Sympatric, Red-Listed Salt-Marsh Snails in Mainland Japan (Gastropoda: Ellobiidae). Zoolog Sci 2024; 41:509-521. [PMID: 39636133 DOI: 10.2108/zs240028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 07/08/2024] [Indexed: 12/07/2024]
Abstract
Melampus "sincaporensis," Auriculastra "duplicata", and Ellobium chinense are Red-Listed snail species of the family Ellobiidae that co-occur on salt marshes in mainland Japan. Here, we report the genetic diversity and population structures of the former two taxa in comparison with our previous data on E. chinense for the evaluation of connectivity and conservation values of their local populations. Analyses of 655-bp or 652-bp sequences of the mitochondrial cytochrome c oxidase subunit I gene showed the highest genetic diversity and panmictic structure for M. sp. cf. sincaporensis throughout its geographic range in Japan, whereas they showed the highest level of genetic subdivision for A. sp. cf. duplicata. Our laboratory observation of egg masses and planktotrophic larvae of A. "duplicata" and reference to previous ontogenetic data for the species of Melampus suggested differences in their fecundity and pelagic larval duration, which apparently have led to the contrasting levels of population differentiation in the study species. Particular need of conservation efforts was identified for the isolated population of A. "duplicata" in the Ise-Mikawa Bay area to avoid local extinction and shrinking of the species' geographic range. In addition, we present molecular and morphological evidence that individuals of A. "duplicata" from mangrove swamps in the northern part of Okinawa Island represent an independent, surviving lineage of a different species.
Collapse
Affiliation(s)
- Karin Inoue
- Department of Marine Ecosystems Science, Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba 277-8564, Japan,
- Department of Biological Science, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| | - Takuya Yahagi
- Department of Marine Ecosystems Science, Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba 277-8564, Japan
| | - Taeko Kimura
- Graduate School of Bioresources, Mie University, Tsu, Mie 514-8507, Japan
| | - Shoichi Kimura
- Graduate School of Bioresources, Mie University, Tsu, Mie 514-8507, Japan
| | - Yasunori Kano
- Department of Marine Ecosystems Science, Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba 277-8564, Japan
| |
Collapse
|
4
|
Wu S, Chen Z, Zhou X, Lu J, Tian Y, Jiang Y, Liu Q, Wang Z, Li H, Qu L, Zhang F. Analysis of genetic diversity and genetic structure of indigenous chicken populations in Guizhou province based on genome-wide single nucleotide polymorphism markers. Poult Sci 2024; 103:104383. [PMID: 39447329 PMCID: PMC11539430 DOI: 10.1016/j.psj.2024.104383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/23/2024] [Accepted: 10/01/2024] [Indexed: 10/26/2024] Open
Abstract
Guizhou province in China is rich in indigenous chicken breeds, playing an essential role in the genetic improvement of modern chickens. Genetic diversity has decreased in recent decades due to accelerated breeding processes and changing conservation priorities. To determine the genetic diversity and population structure of Guizhou indigenous chicken breeds, we used 55K genotyping arrays to conduct population genetic analysis on 233 individuals from 8 Guizhou indigenous breeds and 263 individuals from 9 Guizhou indigenous chicken populations. We evaluated the genetic diversity parameter (heterozygosity, proportion of polymorphic markers, and nucleotide diversity), linkage disequilibrium (LD), population structure, and genetic differentiation (FST and genetics distance). Genetic diversity results indicated that the genetic diversity of chicken breeds in Guizhou province is relatively affluent. Among Guizhou breeds, Baiyi black-bone and Guizhou yellow chicken displayed the lowest genetic diversity, as the 2 breeds exhibit lower PN and heterozygosity, the extent of linkage disequilibrium is higher. According to the LD pattern, Guizhou indigenous breeds can be divided into 3 categories. Population structure analysis showed a certain degree of genetic differentiation among local chickens in Guizhou. We argue that Chishui black-bone and Puan black-bone chickens are 2 different geographical regional groups of the same breed. In principal component analysis, individuals from the 2 groups clustered together, and the phylogenetic tree results showed that the 2 groups clustered together to form a branch independent of other breeds, and they displayed an identical pattern of ancestral lineage composition. The research results will provide a reference for protecting local chicken genetic resources in Guizhou Province and promote the protection and utilization of genetic resources.
Collapse
Affiliation(s)
- Sheng Wu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Sciences, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Zhiwen Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Sciences, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Xiaohong Zhou
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Sciences, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Juanhong Lu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Sciences, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Yingping Tian
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Sciences, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Yaozhou Jiang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Sciences, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Qinsong Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Sciences, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Zhong Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Sciences, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Hui Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Sciences, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Lujiang Qu
- Department of Animal Genetics and Breeding, State Key Laboratory of Animal Nutrition, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Fuping Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Sciences, Guizhou University, Guiyang, 550025, Guizhou Province, China.
| |
Collapse
|
5
|
Martin EJ, Speak SA, Urban L, Morales HE, van Oosterhout C. Sonification of Genomic Data to Represent Genetic Load in Zoo Populations. Zoo Biol 2024; 43:513-519. [PMID: 39228291 PMCID: PMC11624621 DOI: 10.1002/zoo.21859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 06/13/2024] [Accepted: 08/14/2024] [Indexed: 09/05/2024]
Abstract
Maintaining a diverse gene pool is important in the captive management of zoo populations, especially in endangered species such as the pink pigeon (Nesoenas mayeri). However, due to the limited number of breeding individuals and relaxed natural selection, the loss of variation and accumulation of harmful variants is inevitable. Inbreeding results in a loss of fitness (i.e., inbreeding depression), principally because related parents are more likely to transmit a copy of the same recessive deleterious genetic variant to their offspring. Genomics-informed captive breeding can manage harmful variants by artificial selection, reducing the genetic load by avoiding the inheritance of two copies of the same harmful variant. To explain this concept in an interactive way to zoo visitors, we developed a sonification game to represent the fitness impacts of harmful variants by detuning notes in a familiar musical melody (i.e., Beethoven's Für Elise). Conceptually, zoo visitors play a game aiming to create the most optimal pink pigeon offspring in terms of inbreeding depression. They select virtual crosses between pink pigeon individuals and listen for the detuning of the melody, which represents the realised load of the resultant offspring. Here we present the sonification algorithm and the results of an online survey to see whether participants could identify the most and least optimal offspring from three potential pink pigeon offspring. Of our 98 respondents, 85 (86.7%) correctly identified the least optimal offspring, 73 (74.5%) correctly identified the most optimal, and 62 (63.3%) identified both the most and least optimal offspring using only the sonification.
Collapse
Affiliation(s)
- Edward J. Martin
- Institute of Ecology and Evolution, School of Biological SciencesUniversity of EdinburghEdinburghUK
| | - Samuel A. Speak
- School of Environmental SciencesUniversity of East Anglia, Norwich Research ParkNorwichUK
- Natural History MuseumLondonUK
- North of England Zoological SocietyChester ZooChesterUK
| | - Lara Urban
- Helmholtz AIHelmholtz Zentrum MuenchenNeuherbergGermany
- Helmholtz Pioneer CampusHelmholtz Zentrum MuenchenMunichGermany
- School of Life SciencesTechnical University of MunichFreisingGermany
| | - Hernán E. Morales
- Center for Evolutionary Hologenomics, Globe Institute, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Cock van Oosterhout
- School of Environmental SciencesUniversity of East Anglia, Norwich Research ParkNorwichUK
| |
Collapse
|
6
|
Chhina AK, Abhari N, Mooers A, Lewthwaite JMM. Linking the spatial and genomic structure of adaptive potential for conservation management: a review. Genome 2024; 67:403-423. [PMID: 39083766 DOI: 10.1139/gen-2024-0036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
We unified the recent literature with the goal to contribute to the discussion on how genetic diversity might best be conserved. We argue that this decision will be guided by how genomic variation is distributed among manageable populations (i.e., its spatial structure), the degree to which adaptive potential is best predicted by variation across the entire genome or the subset of that variation that is identified as putatively adaptive (i.e., its genomic structure), and whether we are managing species as single entities or as collections of diversifying lineages. The distribution of genetic variation and our ultimate goal will have practical implications for on-the-ground management. If adaptive variation is largely polygenic or responsive to change, its spatial structure might be broadly governed by the forces determining genome-wide variation (linked selection, drift, and gene flow), making measurement and prioritization straightforward. If we are managing species as single entities, then population-level prioritization schemes are possible so as to maximize future pooled genetic variation. We outline one such scheme based on the popular Shapley value from cooperative game theory that considers the relative genetic contribution of a population to an unknown future collection of populations.
Collapse
Affiliation(s)
- Avneet K Chhina
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Niloufar Abhari
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
- Department of Mathematics, Simon Fraser University, Burnaby, BC, Canada
| | - Arne Mooers
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Jayme M M Lewthwaite
- Marine and Environmental Biology, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
7
|
Yin K, Chung MY, Lan B, Du FK, Chung MG. Plant conservation in the age of genome editing: opportunities and challenges. Genome Biol 2024; 25:279. [PMID: 39449103 PMCID: PMC11515576 DOI: 10.1186/s13059-024-03399-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/23/2024] [Indexed: 10/26/2024] Open
Abstract
Numerous plant taxa are threatened by habitat destruction or overexploitation. To overcome these threats, new methods are urgently needed for rescuing threatened and endangered plant species. Here, we review the genetic consequences of threats to species populations. We highlight potential advantages of genome editing for mitigating negative effects caused by new pathogens and pests or climate change where other approaches have failed. We propose solutions to protect threatened plants using genome editing technology unless absolutely necessary. We further discuss the challenges associated with genome editing in plant conservation to mitigate the decline of plant diversity.
Collapse
Affiliation(s)
- Kangquan Yin
- School of Grassland Science, Beijing Forestry University, Beijing, 100083, China.
| | - Mi Yoon Chung
- Department of Biological Sciences, Chungnam National University, Daejeon, 34134, South Korea
| | - Bo Lan
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Fang K Du
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China.
| | - Myong Gi Chung
- Division of Life Science, Gyeongsang National University, Jinju, 52828, South Korea
| |
Collapse
|
8
|
Ho TAT, Downing PA, Schou MF, Bechsgaard J, Thomsen PF, Jorgensen TH, Bilde T. The relationship between neutral genetic diversity and performance in wild arthropod populations. J Evol Biol 2024; 37:1170-1180. [PMID: 39119920 DOI: 10.1093/jeb/voae099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/14/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Larger effective populations (Ne) are characterized by higher genetic diversity, which is expected to predict population performance (average individual performance that influences fitness). Empirical studies of the relationship between neutral diversity and performance mostly represent species with small Ne, while there is limited data from the species-rich and ecologically important arthropods that are assumed to have large Ne but are threatened by massive declines. We performed a systematic literature search and used meta-analytical models to test the prediction of a positive association between neutral genetic diversity and performance in wild arthropods. From 14 relevant studies of 286 populations, we detected a weak (r = 0.15) but nonsignificant positive association both in the full data set (121 effect sizes) and a reduced data set accounting for dependency (14 effect sizes). Theory predicts that traits closely associated with fitness show a relatively stronger correlation with neutral diversity; this relationship was upheld for longevity and marginally for reproduction. Our analyses point to major knowledge gaps in our understanding of relationships between neutral diversity and performance. Future studies using genome-wide data sets across populations could guide more powerful designs to evaluate relationships between adaptive, deleterious and neutral diversity and performance.
Collapse
Affiliation(s)
- Tammy Ai Tian Ho
- Centre for Ecological Genetics, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Philip A Downing
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
| | - Mads F Schou
- Centre for Ecological Genetics, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Jesper Bechsgaard
- Centre for Ecological Genetics, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Philip Francis Thomsen
- Centre for Ecological Genetics, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Tove H Jorgensen
- Centre for Ecological Genetics, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Trine Bilde
- Centre for Ecological Genetics, Department of Biology, Aarhus University, Aarhus, Denmark
| |
Collapse
|
9
|
Whitla R, Hens K, Hogan J, Martin G, Breuker C, Shreeve TG, Arif S. The last days of Aporia crataegi (L.) in Britain: Evaluating genomic erosion in an extirpated butterfly. Mol Ecol 2024; 33:e17518. [PMID: 39192591 DOI: 10.1111/mec.17518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 07/10/2024] [Indexed: 08/29/2024]
Abstract
Current rates of habitat degradation and climate change are causing unprecedented declines in global biodiversity. Studies on vertebrates highlight how conservation genomics can be effective in identifying and managing threatened populations, but it is unclear how vertebrate-derived metrics of genomic erosion translate to invertebrates, with their markedly different population sizes and life histories. The Black-veined White butterfly (Aporia crataegi) was extirpated from Britain in the 1920s. Here, we sequenced historical DNA from 17 specimens collected between 1854 and 1924 to reconstruct demography and compare levels of genomic erosion between extirpated British and extant European mainland populations. We contrast these results using modern samples of the Common Blue butterfly (Polyommatus icarus); a species with relatively stable demographic trends in Great Britain. We provide evidence for bottlenecks in both these species around the period of post-glacial colonization of the British Isles. Our results reveal different demographic histories and Ne for both species, consistent with their fates in Britain, likely driven by differences in life history, ecology and genome size. Despite a difference, by an order of magnitude, in historical effective population sizes (Ne), reduction in genome-wide heterozygosity in A. crataegi was comparable to that in P. icarus. Symptomatic of A. crataegi's disappearance were marked increases in runs-of-homozygosity (RoH), potentially indicative of recent inbreeding, and accumulation of putatively mildly and weakly deleterious variants. Our results provide a rare glimpse of genomic erosion in a regionally extinct insect and support the potential use of genomic erosion metrics in identifying invertebrate populations or species in decline.
Collapse
Affiliation(s)
- Rebecca Whitla
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| | - Korneel Hens
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
- Centre for Functional Genomics, Oxford Brookes University, Oxford, UK
| | - James Hogan
- Oxford University Museum of Natural History, Oxford, UK
| | - Geoff Martin
- Insects Division, Natural History Museum, London, UK
| | - Casper Breuker
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
- Centre for Functional Genomics, Oxford Brookes University, Oxford, UK
| | - Timothy G Shreeve
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| | - Saad Arif
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
- Centre for Functional Genomics, Oxford Brookes University, Oxford, UK
| |
Collapse
|
10
|
Clarke JG, Smith AC, Cullingham CI. Genetic rescue often leads to higher fitness as a result of increased heterozygosity across animal taxa. Mol Ecol 2024; 33:e17532. [PMID: 39279498 DOI: 10.1111/mec.17532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/18/2024]
Abstract
Biodiversity loss has reached critical levels partly due to anthropogenic habitat loss and degradation. These landscape changes are damaging as they can fragment species distributions into small, isolated populations, resulting in limited gene flow, population declines and reduced adaptive potential. Genetic rescue, the translocation of individuals to increase genetic diversity and ultimately fitness, has produced promising results for fragmented populations but remains underutilized due to a lack of long-term data and monitoring. To promote a better understanding of genetic rescue and its potential risks and benefits over the short-term, we reviewed and analysed published genetic rescue attempts to identify whether genetic diversity increases following translocation, and if this change is associated with increased fitness. Our review identified 19 studies that provided genetic and fitness data from before and after the translocation; the majority of these were on mammals, and included experimental, natural and conservation-motivated translocations. Using a Bayesian meta-analytical approach, we found that on average, genetic diversity and fitness increased in populations post translocations, although there were some exceptions to this trend. Overall, genetic diversity was a positive predictor of population fitness, and in some cases this relationship extended three generations post-rescue. These data suggest a single translocation can have lasting fitness benefits, and support translocation as another tool to facilitate conservation success. Given the limited number of studies with long-term data, we echo the need for genetic monitoring of populations post-translocation to understand whether genetic rescue can also limit the loss of adaptive potential in the long-term.
Collapse
Affiliation(s)
- Julia G Clarke
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Adam C Smith
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
- National Wildlife Research Centre, Environment and Climate Change Canada, Ottawa, Ontario, Canada
| | | |
Collapse
|
11
|
Mergeay J. Population Size in Evolutionary Biology Is More Than the Effective Size. Evol Appl 2024; 17:e70029. [PMID: 39444442 PMCID: PMC11496246 DOI: 10.1111/eva.70029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 09/25/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024] Open
Abstract
In population genetics idealized Wright-Fisher (WF) populations are generally considered equivalent to real populations with regard to the major evolutionary processes that influence genotype and allele frequencies. As a result we often model the response of populations by focusing on the effective size N e . The Diversity Partitioning Theorem (DPT) shows that you cannot model the behavior of a system solely on the basis of a diversity (accounting for unevenness among items) without taking richness into account. I show that the census population size (the number of adults, N c ) is equivalent to a richness, and that the effective size N e is equivalent to a true diversity. It follows logically from the DPT that we require both N e and N c to understand how drift, selection, mutation, and gene flow interact to shape the course of evolution of populations. Here I review evidence that both N c and N e affect evolutionary trajectories of populations for neutral and adaptive processes. This also influences how we should consider evolutionary potential and genetic criteria for conservation of populations. The effective size of a population is of huge importance in evolutionary biology, but it should not be the sole focus when population size is concerned. Applied evolutionary studies need to integrate N c in the equation more consistently when modeling the response to selection, mutation, migration, and drift.
Collapse
Affiliation(s)
- Joachim Mergeay
- Research Institute for Nature and ForestGeraardsbergenBelgium
- Ecology, Evolution and Biodiversity ConservationKU LeuvenLeuvenBelgium
| |
Collapse
|
12
|
Speak SA, Birley T, Bortoluzzi C, Clark MD, Percival-Alwyn L, Morales HE, van Oosterhout C. Genomics-informed captive breeding can reduce inbreeding depression and the genetic load in zoo populations. Mol Ecol Resour 2024; 24:e13967. [PMID: 38727721 DOI: 10.1111/1755-0998.13967] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/10/2024] [Accepted: 04/12/2024] [Indexed: 10/10/2024]
Abstract
Zoo populations of threatened species are a valuable resource for the restoration of wild populations. However, their small effective population size poses a risk to long-term viability, especially in species with high genetic load. Recent bioinformatic developments can identify harmful genetic variants in genome data. Here, we advance this approach, analysing the genetic load in the threatened pink pigeon (Nesoenas mayeri). We lifted the mutation-impact scores that had been calculated for the chicken (Gallus gallus) to estimate the genetic load in six pink pigeons. Additionally, we perform in silico crossings to predict the genetic load and realized load of potential offspring. We thus identify the optimal mate pairs that are theoretically expected to produce offspring with the least inbreeding depression. We use computer simulations to show how genomics-informed conservation can reduce the genetic load whilst reducing the loss of genome-wide diversity. Genomics-informed management is likely to become instrumental in maintaining the long-term viability of zoo populations.
Collapse
Affiliation(s)
- Samuel A Speak
- School of Environmental Sciences, University of East Anglia, Norwich, UK
- Natural History Museum, London, UK
- North of England Zoological Society, Chester Zoo, Chester, UK
| | - Thomas Birley
- School of Environmental Sciences, University of East Anglia, Norwich, UK
| | - Chiara Bortoluzzi
- University of Cambridge, Cambridge, UK
- Wellcome Sanger Institute, Hinxton, UK
| | - Matthew D Clark
- Natural History Museum, London, UK
- Earlham Institute, Norwich, UK
| | | | | | | |
Collapse
|
13
|
Sang H, Li Y, Tan S, Gao P, Wang B, Guo S, Luo S, Sun C. Conservation genomics analysis reveals recent population decline and possible causes in bumblebee Bombus opulentus. INSECT SCIENCE 2024; 31:1631-1644. [PMID: 38297451 DOI: 10.1111/1744-7917.13324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 11/29/2023] [Accepted: 12/07/2023] [Indexed: 02/02/2024]
Abstract
Bumblebees are a genus of pollinators (Bombus) that play important roles in natural ecosystem and agricultural production. Several bumblebee species have been recorded as under population decline, and the proportion of species experiencing population decline within subgenus Thoracobombus is higher than average. Bombus opulentus is 1 species in Thoracobombus, but little is known about its recent population dynamics. Here, we employed conservation genomics methods to investigate the population dynamics of B. opulentus during the recent past and identify the likely environmental factors that may cause population decline. Firstly, we placed the scaffold-level of B. opulentus reference genome sequence onto chromosome-level using Hi-C technique. Then, based on this reference genome and whole-genome resequencing data for 51 B. opulentus samples, we reconstructed the population structure and effective population size (Ne) trajectories of B. opulentus and identified genes that were under positive selection. Our results revealed that the collected B. opulentus samples could be divided into 2 populations, and 1 of them experienced a recent population decline; the declining population also exhibited lower genetic diversity and higher inbreeding levels. Genes related to high-temperature tolerance, immune response, and detoxication showed signals of positive selection in the declining population, suggesting that climate warming and pathogen/pesticide exposures may contribute to the decline of this B. opulentus population. Taken together, our study provided insights into the demography of B. opulentus populations and highlighted that populations of the same bumblebee species could have contrasting Ne trajectories and population decline could be caused by a combination of various stressors.
Collapse
Affiliation(s)
- Huiling Sang
- College of Life Sciences, Capital Normal University, Beijing, China
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yancan Li
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
- Western Research Institute, Chinese Academy of Agricultural Sciences, Changji, Xinjiang, China
| | - Shuxin Tan
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Pu Gao
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Bei Wang
- Yan'an Beekeeping Experimental Station, Yan'an, Shannxi, China
| | - Shengnan Guo
- Hengshui center for Disease Prevention and Control, Hengshui, Hebei, China
| | - Shudong Luo
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
- Western Research Institute, Chinese Academy of Agricultural Sciences, Changji, Xinjiang, China
| | - Cheng Sun
- College of Life Sciences, Capital Normal University, Beijing, China
| |
Collapse
|
14
|
Croft L, Matheson P, Butterworth NJ, McGaughran A. Fitness consequences of population bottlenecks in an invasive blowfly. Mol Ecol 2024; 33:e17492. [PMID: 39136044 DOI: 10.1111/mec.17492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/14/2024] [Accepted: 08/02/2024] [Indexed: 08/28/2024]
Abstract
Invasive species often undergo demographic bottlenecks that cause a decrease in genetic diversity and associated reductions in population fitness. Despite this, they manage to thrive in novel environments. Investigating the effects of inbreeding and genetic bottlenecks on population fitness for invasive species is, therefore, key to understanding how they may survive in new environments. We used the blowfly Calliphora vicina (Sciences, Mathématiques et Physique, 1830, 2, 1), which is native to Europe and was introduced to Australia and New Zealand, to examine the effects of genetic diversity on population fitness. We first collected 59 samples from 15 populations across New Zealand and one in Australia, and used 20,501 biallelic SNPs to investigate population genomic diversity, structure and admixture. We then explored the impacts of repeated experimental bottlenecks on population fitness by creating inbred and outbred lines of C. vicina and measuring a variety of fitness traits. In wild-caught samples, we found low overall genetic diversity, signals of genetic admixture and limited (<3%) genetic differentiation between North and South Island populations, with genetic links between the South Island and Australia. Following experimental bottlenecks, we found significant reductions in fitness for inbred lines. However, fitness effects were not felt equally across all phenotypic traits. Moreover, they were not enough to cause population collapse in any experimental line, suggesting that C. vicina (when under relaxed selection, as in laboratory settings) may be able to compensate for population bottlenecks even when highly inbred. Our results demonstrate the value of a tractable experimental system for investigating processes that may facilitate or hamper biological invasion.
Collapse
Affiliation(s)
- Lilly Croft
- Te Aka Mātuatua - School of Science, University of Waikato, Hamilton, New Zealand
| | - Paige Matheson
- Te Aka Mātuatua - School of Science, University of Waikato, Hamilton, New Zealand
| | | | - Angela McGaughran
- Te Aka Mātuatua - School of Science, University of Waikato, Hamilton, New Zealand
| |
Collapse
|
15
|
Jeon JY, Black AN, Heenkenda EJ, Mularo AJ, Lamka GF, Janjua S, Brüniche-Olsen A, Bickham JW, Willoughby JR, DeWoody JA. Genomic Diversity as a Key Conservation Criterion: Proof-of-Concept From Mammalian Whole-Genome Resequencing Data. Evol Appl 2024; 17:e70000. [PMID: 39257570 PMCID: PMC11386325 DOI: 10.1111/eva.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/25/2024] [Accepted: 07/25/2024] [Indexed: 09/12/2024] Open
Abstract
Many international, national, state, and local organizations prioritize the ranking of threatened and endangered species to help direct conservation efforts. For example, the International Union for Conservation of Nature (IUCN) assesses the Green Status of species and publishes the influential Red List of threatened species. Unfortunately, such conservation yardsticks do not explicitly consider genetic or genomic diversity (GD), even though GD is positively associated with contemporary evolutionary fitness, individual viability, and with future evolutionary potential. To test whether populations of genome sequences could help improve conservation assessments, we estimated GD metrics from 82 publicly available mammalian datasets and examined their statistical association with attributes related to conservation. We also considered intrinsic biological factors, including trophic level and body mass, that could impact GD and quantified their relative influences. Our results identify key population GD metrics that are both reflective and predictive of IUCN conservation categories. Specifically, our analyses revealed that Watterson's theta (the population mutation rate) and autozygosity (a product of inbreeding) are associated with the current Red List categorization, likely because demographic declines that lead to "listing" decisions also reduce levels of standing genetic variation. We argue that by virtue of this relationship, conservation organizations like IUCN could leverage emerging genome sequence data to help categorize Red List threat rankings (especially in otherwise data-deficient species) and/or enhance Green Status assessments to establish a baseline for future population monitoring. Thus, our paper (1) outlines the theoretical and empirical justification for a new GD-based assessment criterion, (2) provides a bioinformatic pipeline for estimating GD from population genomic data, and (3) suggests an analytical framework that can be used to measure baseline GD while providing quantitative GD context for consideration by conservation authorities.
Collapse
Affiliation(s)
- Jong Yoon Jeon
- Department of Forestry and Natural Resources Purdue University West Lafayette Indiana USA
| | - Andrew N Black
- Department of Forestry and Natural Resources Purdue University West Lafayette Indiana USA
- Western Association of Fish and Wildlife Agencies Boise Idaho USA
| | - Erangi J Heenkenda
- Department of Forestry and Natural Resources Purdue University West Lafayette Indiana USA
| | - Andrew J Mularo
- Department of Biological Sciences Purdue University West Lafayette Indiana USA
| | - Gina F Lamka
- College of Forestry, Wildlife, and Environment Auburn University Auburn Alabama USA
| | - Safia Janjua
- Department of Forestry and Natural Resources Purdue University West Lafayette Indiana USA
| | - Anna Brüniche-Olsen
- Center for Macroecology, Evolution and Climate, Globe Institute University of Copenhagen Copenhagen Denmark
| | - John W Bickham
- Department of Ecology and Conservation Biology Texas A&M University College Station Texas USA
| | - Janna R Willoughby
- College of Forestry, Wildlife, and Environment Auburn University Auburn Alabama USA
| | - J Andrew DeWoody
- Department of Forestry and Natural Resources Purdue University West Lafayette Indiana USA
- Western Association of Fish and Wildlife Agencies Boise Idaho USA
| |
Collapse
|
16
|
Wang X, Reid K, Chen Y, Dudgeon D, Merilä J. Ecological genetics of isolated loach populations indicate compromised adaptive potential. Heredity (Edinb) 2024; 133:88-98. [PMID: 38961235 PMCID: PMC11286901 DOI: 10.1038/s41437-024-00695-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/18/2024] [Accepted: 05/20/2024] [Indexed: 07/05/2024] Open
Abstract
Many endangered species live in fragmented and isolated populations with low genetic variability, signs of inbreeding, and small effective population sizes - all features elevating their extinction risk. The flat-headed loach (Oreonectes platycephalus), a small noemacheilid fish, is widely across southern China, but only in the headwaters of hillstreams; as a result, they are spatially isolated from conspecific populations. We surveyed single nucleotide polymorphisms in 16 Hong Kong populations of O. platycephalus to determine whether loach populations from different streams were genetically isolated from each other, showed low levels of genetic diversity, signs of inbreeding, and had small contemporary effective population sizes. Estimates of average observed heterozygosity (HO = 0.0473), average weighted nucleotide diversity (πw = 0.0546) and contemporary effective population sizes (Ne = 10.2 ~ 129.8) were very low, and several populations showed clear signs of inbreeding as judged from relatedness estimates. The degree of genetic differentiation among populations was very high (average FST = 0.668), even over short geographic distances (<1.5 km), with clear patterns of isolation by distance. These results suggest that Hong Kong populations of O. platycephalus have experienced strong genetic drift and loss of genetic variability because sea-level rise after the last glaciation reduced connectedness among paleodrainages, isolating populations in headwaters. All this, together with the fact that the levels of genetic diversity and contemporary effective population sizes within O. platycephalus populations are lower than most other freshwater fishes, suggests that they face high local extinction risk and have limited capacity for future adaptation.
Collapse
Affiliation(s)
- Xi Wang
- Area of Ecology and Biodiversity, School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China.
| | - Kerry Reid
- Area of Ecology and Biodiversity, School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Ying Chen
- Area of Ecology and Biodiversity, School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - David Dudgeon
- Area of Ecology and Biodiversity, School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Juha Merilä
- Area of Ecology and Biodiversity, School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China.
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Programme, University of Helsinki, FI-00014 University of Helsinki, Helsinki, Finland.
| |
Collapse
|
17
|
Kreling SES, Reese EM, Cavalluzzi OM, Bozzi NB, Messinger R, Schell CJ, Long RA, Prugh LR. City divided: Unveiling family ties and genetic structuring of coyotes in Seattle. Mol Ecol 2024; 33:e17427. [PMID: 38837263 DOI: 10.1111/mec.17427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/02/2024] [Accepted: 05/13/2024] [Indexed: 06/07/2024]
Abstract
Linear barriers pose significant challenges for wildlife gene flow, impacting species persistence, adaptation, and evolution. While numerous studies have examined the effects of linear barriers (e.g., fences and roadways) on partitioning urban and non-urban areas, understanding their influence on gene flow within cities remains limited. Here, we investigated the impact of linear barriers on coyote (Canis latrans) population structure in Seattle, Washington, where major barriers (i.e., interstate highways and bodies of water) divide the city into distinct quadrants. Just under 1000 scats were collected to obtain genetic data between January 2021 and December 2022, allowing us to identify 73 individual coyotes. Notably, private allele analysis underscored limited interbreeding among quadrants. When comparing one quadrant to each other, there were up to 16 private alleles within a single quadrant, representing nearly 22% of the population allelic diversity. Our analysis revealed weak isolation by distance, and despite being a highly mobile species, genetic structuring was apparent between quadrants even with extremely short geographic distance between individual coyotes, implying that Interstate 5 and the Ship Canal act as major barriers. This study uses coyotes as a model species for understanding urban gene flow and its consequences in cities, a crucial component for bolstering conservation of rarer species and developing wildlife friendly cities.
Collapse
Affiliation(s)
- Samantha E S Kreling
- School of Environmental and Forest Sciences, University of Washington, Seattle, Washington, USA
| | - Ellen M Reese
- School of Environmental and Forest Sciences, University of Washington, Seattle, Washington, USA
| | - Olivia M Cavalluzzi
- School of Environmental and Forest Sciences, University of Washington, Seattle, Washington, USA
| | - Natalee B Bozzi
- School of Environmental and Forest Sciences, University of Washington, Seattle, Washington, USA
| | - Riley Messinger
- School of Environmental and Forest Sciences, University of Washington, Seattle, Washington, USA
| | - Christopher J Schell
- Department of Environmental Science, Policy, and Management, University of California-Berkeley, Berkeley, California, USA
| | | | - Laura R Prugh
- School of Environmental and Forest Sciences, University of Washington, Seattle, Washington, USA
| |
Collapse
|
18
|
Yuan W, Pigliucci M, Richards CL. Rapid phenotypic differentiation in the iconic Japanese knotweed s.l. invading novel habitats. Sci Rep 2024; 14:14640. [PMID: 38918411 PMCID: PMC11199593 DOI: 10.1038/s41598-024-64109-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 06/05/2024] [Indexed: 06/27/2024] Open
Abstract
Understanding the mechanisms that underlie plant invasions is critical for management and conservation of biodiversity. At the same time, invasive species also provide a unique opportunity to study rapid adaptation to complex environmental conditions. Using four replicate reciprocal transplant experiments across three habitats, we described patterns of phenotypic response and assessed the degree of local adaptation in knotweed populations. We found plants from beach habitats were generally smaller than plants from marsh and roadside habitats when grown in their home habitat. In the marsh habitat, marsh plants were generally larger than beach plants, but not different from roadside plants. There were no differences among plants grown in the roadside habitat. We found mixed evidence for local adaptation: plants from the marsh habitat had greater biomass in their "home" sites, while plants from beaches and roadsides had greater survival in their "home" sites compared to other plants. In sum, we found phenotypic differentiation and some support for the hypothesis of rapid local adaptation of plants from beach, marsh and roadside habitats. Identifying whether these patterns of differentiation result from genetic or heritable non-genetic mechanisms will require further work.
Collapse
Affiliation(s)
- Wei Yuan
- Department of Molecular Biology, Max Planck Institute for Biology, Tübingen, Germany
| | - Massimo Pigliucci
- Department of Philosophy, City College of New York, New York, NY, USA
| | - Christina L Richards
- Plant Evolutionary Ecology Group, University of Tübingen, Tübingen, Germany.
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
19
|
Lamka GF, Willoughby JR. Habitat remediation followed by managed connectivity reduces unwanted changes in evolutionary trajectory of high extirpation risk populations. PLoS One 2024; 19:e0304276. [PMID: 38814889 PMCID: PMC11139274 DOI: 10.1371/journal.pone.0304276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/09/2024] [Indexed: 06/01/2024] Open
Abstract
As we continue to convert green spaces into roadways and buildings, connectivity between populations and biodiversity will continue to decline. In threatened and endangered species, this trend is particularly concerning because the cessation of immigration can cause increased inbreeding and loss of genetic diversity, leading to lower adaptability and higher extirpation probabilities in these populations. Unfortunately, monitoring changes in genetic diversity from management actions such as assisted migration and predicting the extent of introduced genetic variation that is needed to prevent extirpation is difficult and costly in situ. Therefore, we designed an agent-based model to link population-wide genetic variability and the influx of unique alleles via immigration to population stability and extirpation outcomes. These models showed that management of connectivity can be critical in restoring at-risk populations and reducing the effects of inbreeding depression. However, the rescued populations were more similar to the migrant source population (average FST range 0.05-0.10) compared to the historical recipient population (average FST range 0.23-0.37). This means that these management actions not only recovered the populations from the effects of inbreeding depression, but they did so in a way that changed the evolutionary trajectory that was predicted and expected for these populations prior to the population crash. This change was most extreme in populations with the smallest population sizes, which are representative of critically endangered species that could reasonably be considered candidates for restored connectivity or translocation strategies. Understanding how these at-risk populations change in response to varying management interventions has broad implications for the long-term adaptability of these populations and can improve future efforts for protecting locally adapted allele complexes when connectivity is restored.
Collapse
Affiliation(s)
- Gina F. Lamka
- College of Forestry, Wildlife, and Environment, Auburn University, Auburn, Alabama, United States of America
| | - Janna R. Willoughby
- College of Forestry, Wildlife, and Environment, Auburn University, Auburn, Alabama, United States of America
| |
Collapse
|
20
|
Sopniewski J, Catullo RA. Estimates of heterozygosity from single nucleotide polymorphism markers are context-dependent and often wrong. Mol Ecol Resour 2024; 24:e13947. [PMID: 38433491 DOI: 10.1111/1755-0998.13947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/18/2024] [Accepted: 02/21/2024] [Indexed: 03/05/2024]
Abstract
Genetic diversity is frequently described using heterozygosity, particularly in a conservation context. Often, it is estimated using single nucleotide polymorphisms (SNPs); however, it has been shown that heterozygosity values calculated from SNPs can be biased by both study design and filtering parameters. Though solutions have been proposed to address these issues, our own work has found them to be inadequate in some circumstances. Here, we aimed to improve the reliability and comparability of heterozygosity estimates, specifically by investigating how sample size and missing data thresholds influenced the calculation of autosomal heterozygosity (heterozygosity calculated from across the genome, i.e. fixed and variable sites). We also explored how the standard practice of tri- and tetra-allelic site exclusion could bias heterozygosity estimates and influence eventual conclusions relating to genetic diversity. Across three distinct taxa (a frog, Litoria rubella; a tree, Eucalyptus microcarpa; and a grasshopper, Keyacris scurra), we found heterozygosity estimates to be meaningfully affected by sample size and missing data thresholds, partly due to the exclusion of tri- and tetra-allelic sites. These biases were inconsistent both between species and populations, with more diverse populations tending to have their estimates more severely affected, thus having potential to dramatically alter interpretations of genetic diversity. We propose a modified framework for calculating heterozygosity that reduces bias and improves the utility of heterozygosity as a measure of genetic diversity, whilst also highlighting the need for existing population genetic pipelines to be adjusted such that tri- and tetra-allelic sites be included in calculations.
Collapse
Affiliation(s)
- Jarrod Sopniewski
- School of Biological Sciences, University of Western Australia, Crawley, Western Australia, Australia
| | - Renee A Catullo
- School of Biological Sciences, University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
21
|
Ning Y, Liu D, Gu J, Zhang Y, Roberts NJ, Guskov VY, Sun J, Liu D, Gong M, Qi J, He Z, Shi C, Jiang G. The genetic status and rescue measure for a geographically isolated population of Amur tigers. Sci Rep 2024; 14:8088. [PMID: 38582794 PMCID: PMC10998829 DOI: 10.1038/s41598-024-58746-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 04/02/2024] [Indexed: 04/08/2024] Open
Abstract
The Amur tiger is currently confronted with challenges of anthropogenic development, leading to its population becoming fragmented into two geographically isolated groups: smaller and larger ones. Small and isolated populations frequently face a greater extinction risk, yet the small tiger population's genetic status and survival potential have not been assessed. Here, a total of 210 samples of suspected Amur tiger feces were collected from this small population, and the genetic background and population survival potentials were assessed by using 14 microsatellite loci. Our results demonstrated that the mean number of alleles in all loci was 3.7 and expected heterozygosity was 0.6, indicating a comparatively lower level of population genetic diversity compared to previously reported studies on other subspecies. The genetic estimates of effective population size (Ne) and the Ne/N ratio were merely 7.6 and 0.152, respectively, representing lower values in comparison to the Amur tiger population in Sikhote-Alin (the larger group). However, multiple methods have indicated the possibility of genetic divergence within our isolated population under study. Meanwhile, the maximum kinship recorded was 0.441, and the mean inbreeding coefficient stood at 0.0868, both of which are higher than those observed in other endangered species, such as the African lion and the grey wolf. Additionally, we have identified a significant risk of future extinction if the lethal equivalents were to reach 6.26, which is higher than that of other large carnivores. Further, our simulation results indicated that an increase in the number of breeding females would enhance the prospects of this population. In summary, our findings provide a critical theoretical basis for further bailout strategies concerning Amur tigers.
Collapse
Affiliation(s)
- Yao Ning
- College of Life Science, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Dongqi Liu
- Feline Research Center of National Forestry and Grassland Administration, College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Jiayin Gu
- Feline Research Center of National Forestry and Grassland Administration, College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Yifei Zhang
- College of Life Science, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Nathan James Roberts
- Feline Research Center of National Forestry and Grassland Administration, College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Valentin Yu Guskov
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of Russian Academy of Sciences (FSCEATB FEB RAS), Vladivostok, Russian Federation
| | - Jiale Sun
- Feline Research Center of National Forestry and Grassland Administration, College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Dan Liu
- Siberian Tiger Park, Harbin, 150028, Heilongjiang, China
| | - Ming Gong
- Siberian Tiger Park, Harbin, 150028, Heilongjiang, China
| | - Jinzhe Qi
- Feline Research Center of National Forestry and Grassland Administration, College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Zhijian He
- Feline Research Center of National Forestry and Grassland Administration, College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Chunmei Shi
- College of Mathematics and Computer Science, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Guangshun Jiang
- Feline Research Center of National Forestry and Grassland Administration, College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China.
| |
Collapse
|
22
|
Xu H, Huang L, Chen T, Wang C, Wu Z, Cheng Y, Su Q, Kang B, Yan Y, Zhang X. Phylogeography and population structure of Lagocephalus spadiceus (Richardson, 1845) (Tetraodontiformes, Tetraodontidae) in the South China Sea. Ecol Evol 2024; 14:e11320. [PMID: 38681184 PMCID: PMC11045559 DOI: 10.1002/ece3.11320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 03/25/2024] [Accepted: 04/03/2024] [Indexed: 05/01/2024] Open
Abstract
The climate fluctuations during the Late Pleistocene significantly influenced the phylogeographic structure and historical dynamics of marine fishes in the marginal seas of the western Pacific Ocean. The puffer fish, Lagocephalus spadiceus, holds substantial nutritional and economic value in the South China Sea. To investigate the demographic history and population structure of the L. spadiceus, the mitochondrial DNA COI and Cyt b gene datasets from 300 individuals across eight populations in the South China Sea were sequenced. Our findings revealed high haplotype diversity (0.874 ± 0.013) and low nucleotide diversity (0.00075 ± 0.00058). The phylogenetic tree and haplotype networks revealed no significant genetic differentiation along the northern coast of South China Sea. Neutrality tests, mismatch distribution analyses, and Bayesian skyline plots suggested that L. spadiceus underwent population expansion during the Late Pleistocene. Both ocean currents and climate change significantly influenced the geographical distribution and genetic population structure of L. spadiceus.
Collapse
Affiliation(s)
- Hao Xu
- College of Environmental Science and EngineeringGuilin University of TechnologyGuilinChina
- Guangxi Key Laboratory of Theory and Technology for Environmental Pollution ControlGuilinChina
| | - Liangliang Huang
- College of Environmental Science and EngineeringGuilin University of TechnologyGuilinChina
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst AreasGuilinChina
| | - Tao Chen
- College of Basic MedicineGuilin Medical UniversityGuilinChina
| | - Caiguang Wang
- College of Environmental Science and EngineeringGuilin University of TechnologyGuilinChina
- Guangxi Key Laboratory of Theory and Technology for Environmental Pollution ControlGuilinChina
| | - Zhiqiang Wu
- College of Environmental Science and EngineeringGuilin University of TechnologyGuilinChina
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst AreasGuilinChina
| | - Yanan Cheng
- College of Environmental Science and EngineeringGuilin University of TechnologyGuilinChina
- Guangxi Key Laboratory of Theory and Technology for Environmental Pollution ControlGuilinChina
| | - Qiongyuan Su
- College of Environmental Science and EngineeringGuilin University of TechnologyGuilinChina
- Guangxi Key Laboratory of Theory and Technology for Environmental Pollution ControlGuilinChina
| | - Bin Kang
- Fisheries CollegeOcean University of ChinaQingdaoChina
| | - Yunrong Yan
- Fisheries CollegeGuangdong Ocean UniversityZhanjiangChina
| | - Xiuguo Zhang
- Guangxi Jinggong Marine Science and Technology LtdBeihaiChina
| |
Collapse
|
23
|
Gose MA, Humble E, Brownlow A, Wall D, Rogan E, Sigurðsson GM, Kiszka JJ, Thøstesen CB, IJsseldijk LL, Ten Doeschate M, Davison NJ, Øien N, Deaville R, Siebert U, Ogden R. Population genomics of the white-beaked dolphin (Lagenorhynchus albirostris): Implications for conservation amid climate-driven range shifts. Heredity (Edinb) 2024; 132:192-201. [PMID: 38302666 PMCID: PMC10997624 DOI: 10.1038/s41437-024-00672-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/18/2024] [Accepted: 01/18/2024] [Indexed: 02/03/2024] Open
Abstract
Climate change is rapidly affecting species distributions across the globe, particularly in the North Atlantic. For highly mobile and elusive cetaceans, the genetic data needed to understand population dynamics are often scarce. Cold-water obligate species such as the white-beaked dolphin (Lagenorhynchus albirostris) face pressures from habitat shifts due to rising sea surface temperatures in addition to other direct anthropogenic threats. Unravelling the genetic connectivity between white-beaked dolphins across their range is needed to understand the extent to which climate change and anthropogenic pressures may impact species-wide genetic diversity and identify ways to protect remaining habitat. We address this by performing a population genomic assessment of white-beaked dolphins using samples from much of their contemporary range. We show that the species displays significant population structure across the North Atlantic at multiple scales. Analysis of contemporary migration rates suggests a remarkably high connectivity between populations in the western North Atlantic, Iceland and the Barents Sea, while two regional populations in the North Sea and adjacent UK and Irish waters are highly differentiated from all other clades. Our results have important implications for the conservation of white-beaked dolphins by providing guidance for the delineation of more appropriate management units and highlighting the risk that local extirpation may have on species-wide genetic diversity. In a broader context, this study highlights the importance of understanding genetic structure of all species threatened with climate change-driven range shifts to assess the risk of loss of species-wide genetic diversity.
Collapse
Affiliation(s)
- Marc-Alexander Gose
- Royal (Dick) School of Veterinary Studies and the Roslin Institute, University of Edinburgh, Edinburgh, UK.
| | - Emily Humble
- Royal (Dick) School of Veterinary Studies and the Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Andrew Brownlow
- Scottish Marine Animal Stranding Scheme, School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Science, University of Glasgow, Glasgow, UK
| | - Dave Wall
- Irish Whale and Dolphin Group (IWDG), Kilrush, Ireland
| | - Emer Rogan
- School of Biological, Earth & Environmental Sciences, University College Cork, Cork, Ireland
| | | | - Jeremy J Kiszka
- Institute of Environment, Department of Biological Sciences, Florida International University, North Miami, FL, USA
| | | | - Lonneke L IJsseldijk
- Division of Pathology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Mariel Ten Doeschate
- Scottish Marine Animal Stranding Scheme, School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Science, University of Glasgow, Glasgow, UK
| | - Nicholas J Davison
- Scottish Marine Animal Stranding Scheme, School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Science, University of Glasgow, Glasgow, UK
| | - Nils Øien
- Institute of Marine Research (IMR), Bergen, Norway
| | - Rob Deaville
- Institute of Zoology, Zoological Society of London, London, UK
| | - Ursula Siebert
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover Foundation, Hannover, Germany
| | - Rob Ogden
- Royal (Dick) School of Veterinary Studies and the Roslin Institute, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
24
|
Kim KR, Kim KY, Song HY. Genetic Structure and Diversity of Hatchery and Wild Populations of Yellow Catfish Tachysurus fulvidraco (Siluriformes: Bagridae) from Korea. Int J Mol Sci 2024; 25:3923. [PMID: 38612732 PMCID: PMC11011370 DOI: 10.3390/ijms25073923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/12/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
Yellow catfish Tachysurus fulvidraco is an important commercial fish species in South Korea. However, due to their current declines in its distribution area and population size, it is being released from hatchery populations into wild populations. Hatchery populations also produced from wild broodstocks are used for its captive breeding. We reported 15 new microsatellite DNA markers of T. fulvidraco to identify the genetic diversity and structure of its hatchery and wild populations, providing baseline data for useful resource development strategies. The observed heterozygosity of the hatchery populations ranged from 0.816 to 0.873, and that of the wild populations ranged from 0.771 to 0.840. Their inbreeding coefficient ranged from -0.078 to 0.024. All populations experienced a bottleneck (p < 0.05), with effective population sizes ranging from 21 to infinity. Their gene structure was divided into two groups with STRUCTURE results of K = 2. It was confirmed that each hatchery population originated from a different wild population. This study provides genetic information necessary for the future development and conservation of fishery resources for T. fulvidraco.
Collapse
Affiliation(s)
- Kang-Rae Kim
- Department of Life Science & Biotechnology, Soonchunhyang University, Asan 31538, Republic of Korea;
| | - Keun-Yong Kim
- Department of Genetic Analysis, AquaGenTech Co., Ltd., Busan 48300, Republic of Korea;
| | - Ha Yoon Song
- Inland Fisheries Research Institute, National Institute of Fisheries Science, Geumsan 32762, Republic of Korea
| |
Collapse
|
25
|
Coutellec MA, Chaumot A, Sucré E. Neglected impacts of plant protection products on invertebrate aquatic biodiversity: a focus on eco-evolutionary processes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-32767-3. [PMID: 38459285 DOI: 10.1007/s11356-024-32767-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 02/29/2024] [Indexed: 03/10/2024]
Abstract
The application of plant protection products (PPPs) may have delayed and long-term non-intentional impacts on aquatic invertebrates inhabiting agricultural landscapes. Such effects may induce population responses based on developmental and transgenerational plasticity, selection of genetic resistance, as well as increased extirpation risks associated with random genetic drift. While the current knowledge on such effects of PPPs is still scarce in non-target aquatic invertebrate species, evidences are accumulating that support the need for consideration of evolutionary components of the population response to PPPs in standard procedures of risk assessment. This mini-review, as part of a contribution to the collective scientific assessment on PPP impacts on biodiversity and ecosystem services performed in the period 2020-2022, presents a brief survey of the current results published on the subject, mainly in freshwater crustaceans, and proposes some research avenues and strategies that we feel relevant to fill this gap.
Collapse
Affiliation(s)
- Marie-Agnès Coutellec
- DECOD (Ecosystem Dynamics and Sustainability), INRAE, L'Institut Agro, IFREMER, 35042, Rennes, France.
| | - Arnaud Chaumot
- Laboratoire d'écotoxicologie, INRAE, UR RiverLy, 69625, Villeurbanne, France
| | - Elliott Sucré
- MARBEC (MARine Biodiversity, Exploitation and Conservation), Université de Montpellier, CNRS, Ifremer, IRD, 34000, Montpellier, France
- Université de Mayotte, Dembeni, 97660, Mayotte, France
| |
Collapse
|
26
|
Abstract
Genomic data are becoming increasingly affordable and easy to collect, and new tools for their analysis are appearing rapidly. Conservation biologists are interested in using this information to assist in management and planning but are typically limited financially and by the lack of genomic resources available for non-model taxa. It is therefore important to be aware of the pitfalls as well as the benefits of applying genomic approaches. Here, we highlight recent methods aimed at standardizing population assessments of genetic variation, inbreeding, and forms of genetic load and methods that help identify past and ongoing patterns of genetic interchange between populations, including those subjected to recent disturbance. We emphasize challenges in applying some of these methods and the need for adequate bioinformatic support. We also consider the promises and challenges of applying genomic approaches to understand adaptive changes in natural populations to predict their future adaptive capacity.
Collapse
Affiliation(s)
- Thomas L Schmidt
- School of BioSciences, Bio21 Institute, University of Melbourne, Parkville, Victoria, Australia;
| | - Joshua A Thia
- School of BioSciences, Bio21 Institute, University of Melbourne, Parkville, Victoria, Australia;
| | - Ary A Hoffmann
- School of BioSciences, Bio21 Institute, University of Melbourne, Parkville, Victoria, Australia;
| |
Collapse
|
27
|
Akhmet N, Zhu L, Song J, Akhatayeva Z, Zhang Q, Su P, Li R, Pan C, Lan X. Exploring the Sheep MAST4 Gene Variants and Their Associations with Litter Size. Animals (Basel) 2024; 14:591. [PMID: 38396560 PMCID: PMC10886284 DOI: 10.3390/ani14040591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/25/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
The economic efficiency of sheep breeding can be improved by enhancing sheep productivity. A recent genome-wide association study (GWAS) unveiled the potential impact of the MAST4 gene on prolificacy traits in Australian White sheep (AUW)). Herein, whole-genome sequencing (WGS) data from 26 different sheep breeds worldwide (n = 1507), including diverse meat, wool, milk, or dual-purpose sheep breed types from China, Europe, and Africa, were used. Moreover, polymerase chain reaction (PCR) genotyping of the MAST4 gene polymorphisms in (n = 566) Australian white sheep (AUW) was performed. The 3 identified polymorphisms were not homogeneously distributed across the 26 examined sheep breeds. Findings revealed prevalent polymorphisms (P3-ins-29 bp and P6-del-21 bp) with varying frequencies (0.02 to 0.97) across 26 breeds, while P5-del-24 bp was presented in 24 out of 26 breeds. Interestingly, the frequency of the P3-ins-29 bp variant was markedly higher in Chinese meat or dual-purpose sheep breeds, while the other two variants also showed moderate frequencies in meat breeds. Notably, association analysis indicated that all InDels were associated with AUW sheep litter size (p < 0.05). These results suggest that these InDels within the MAST4 gene could be useful in marker-assisted selection in sheep breeding.
Collapse
Affiliation(s)
- Nazar Akhmet
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (N.A.); (L.Z.); (R.L.); (C.P.)
| | - Leijing Zhu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (N.A.); (L.Z.); (R.L.); (C.P.)
| | - Jiajun Song
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (N.A.); (L.Z.); (R.L.); (C.P.)
| | - Zhanerke Akhatayeva
- Scientific Research Institute of Sheep Breeding Branch, Kazakh Scientific Research Institute of Animal Husbandry and Fodder Production, Mynbaev 040622, Kazakhstan;
| | - Qingfeng Zhang
- Tianjin Aoqun Sheep Industry Academy Company, Tianjin 300000, China;
| | - Peng Su
- National Germplasm Center of Domestic Animal Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China;
| | - Ran Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (N.A.); (L.Z.); (R.L.); (C.P.)
| | - Chuanying Pan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (N.A.); (L.Z.); (R.L.); (C.P.)
| | - Xianyong Lan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (N.A.); (L.Z.); (R.L.); (C.P.)
| |
Collapse
|
28
|
Zhao R, He Q, Chu X, He A, Zhang Y, Zhu Z. Regional environmental differences significantly affect the genetic structure and genetic differentiation of Carpinus tientaiensis Cheng, an endemic and extremely endangered species from China. FRONTIERS IN PLANT SCIENCE 2024; 15:1277173. [PMID: 38405582 PMCID: PMC10885731 DOI: 10.3389/fpls.2024.1277173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 01/10/2024] [Indexed: 02/27/2024]
Abstract
Differences in topography and environment greatly affect the genetic structure and genetic differentiation of species, and endemic or endangered species with limited geographic ranges seem to be more sensitive to changes in climate and other environmental factors. The complex topography of eastern China is likely to affect genetic differentiation of plants there. Carpinus tientaiensis Cheng is a native and endangered plants from China, and exploring its genetic diversity has profound significance for protection and the collection of germplasm resources. Based on AFLP markers, this study found that C. tientaiensis has low genetic diversity, which mainly came from within populations, while Shangshantou and Tiantai Mountain populations have relatively high genetic diversity. The Nei genetic distance was closely related to geographical distance, and temperature and precipitation notablely affected the genetic variation and genetic differentiation of C. tientaiensis. Based on cpDNA, this study indicated that C. tientaiensis exhibits a moderate level of genetic diversity, and which mainly came from among populations, while Tiantai Mountain population have the highest genetic diversity. It demonstrated that there was genetic differentiation between populations, which can be divided into two independent geographical groups, but there was no significant phylogeographic structure between them. The MaxEnt model showed that climate change significantly affects its distribution, and the suitable distribution areas in Zhejiang were primarily divided into two regions, eastern Zhejiang and southern Zhejiang, and there was niche differentiation in its suitable distribution areas. Therefore, this study speculated that the climate and the terrain of mountains and hills in East China jointly shape the genetic structure of C. tientaiensis, which gived rise to an obvious north-south differentiation trend of these species, and the populations located in the hilly areas of eastern Zhejiang and the mountainous areas of southern Zhejiang formed two genetic branches respectively.
Collapse
Affiliation(s)
- Runan Zhao
- College of Landscape Architecture, Nanjing Forestry University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Qianqian He
- Research Center for Urban and Rural Living Environment, Zhijiang College of Zhejiang University of Technology, Shaoxing, China
| | - Xiaojie Chu
- College of Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Anguo He
- Administration of Zhejiang Dapanshan National Nature Reserve, Pan’an, China
| | - Yuanlan Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- College of Life Sciences, Nanjing Forestry University, Nanjing, China
| | - Zunling Zhu
- College of Landscape Architecture, Nanjing Forestry University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- Jinpu Research Institute, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
29
|
Moran PA, Bosse M, Mariën J, Halfwerk W. Genomic footprints of (pre) colonialism: Population declines in urban and forest túngara frogs coincident with historical human activity. Mol Ecol 2024; 33:e17258. [PMID: 38153193 DOI: 10.1111/mec.17258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 11/21/2023] [Accepted: 12/06/2023] [Indexed: 12/29/2023]
Abstract
Urbanisation is rapidly altering ecosystems, leading to profound biodiversity loss. To mitigate these effects, we need a better understanding of how urbanisation impacts dispersal and reproduction. Two contrasting population demographic models have been proposed that predict that urbanisation either promotes (facilitation model) or constrains (fragmentation model) gene flow and genetic diversity. Which of these models prevails likely depends on the strength of selection on specific phenotypic traits that influence dispersal, survival, or reproduction. Here, we a priori examined the genomic impact of urbanisation on the Neotropical túngara frog (Engystomops pustulosus), a species known to adapt its reproductive traits to urban selective pressures. Using whole-genome resequencing for multiple urban and forest populations we examined genomic diversity, population connectivity and demographic history. Contrary to both the fragmentation and facilitation models, urban populations did not exhibit substantial changes in genomic diversity or differentiation compared with forest populations, and genomic variation was best explained by geographic distance rather than environmental factors. Adopting an a posteriori approach, we additionally found both urban and forest populations to have undergone population declines. The timing of these declines appears to coincide with extensive human activity around the Panama Canal during the last few centuries rather than recent urbanisation. Our study highlights the long-lasting legacy of past anthropogenic disturbances in the genome and the importance of considering the historical context in urban evolution studies as anthropogenic effects may be extensive and impact nonurban areas on both recent and older timescales.
Collapse
Affiliation(s)
- Peter A Moran
- A-LIFE, Section Ecology & Evolution, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Mirte Bosse
- A-LIFE, Section Ecology & Evolution, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Animal Breeding and Genomics, Wageningen University and Research, Wageningen, The Netherlands
| | - Janine Mariën
- A-LIFE, Section Ecology & Evolution, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Wouter Halfwerk
- A-LIFE, Section Ecology & Evolution, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
30
|
Zbinden ZD, Douglas MR, Chafin TK, Douglas ME. Riverscape community genomics: A comparative analytical approach to identify common drivers of spatial structure. Mol Ecol 2023; 32:6743-6765. [PMID: 36461662 DOI: 10.1111/mec.16806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/04/2022]
Abstract
Genetic differentiation among local groups of individuals, that is, genetic β-diversity, is a key component of population persistence related to connectivity and isolation. However, most genetic investigations of natural populations focus on a single species, overlooking opportunities for multispecies conservation plans to benefit entire communities in an ecosystem. We present an approach to evaluate genetic β-diversity within and among many species and demonstrate how this riverscape community genomics approach can be applied to identify common drivers of genetic structure. Our study evaluated genetic β-diversity in 31 co-distributed native stream fishes sampled from 75 sites across the White River Basin (Ozarks, USA) using SNP genotyping (ddRAD). Despite variance among species in the degree of genetic divergence, general spatial patterns were identified corresponding to river network architecture. Most species (N = 24) were partitioned into discrete subpopulations (K = 2-7). We used partial redundancy analysis to compare species-specific genetic β-diversity across four models of genetic structure: Isolation by distance (IBD), isolation by barrier (IBB), isolation by stream hierarchy (IBH), and isolation by environment (IBE). A significant proportion of intraspecific genetic variation was explained by IBH (x̄ = 62%), with the remaining models generally redundant. We found evidence for consistent spatial modularity in that gene flow is higher within rather than between hierarchical units (i.e., catchments, watersheds, basins), supporting the generalization of the stream hierarchy model. We discuss our conclusions regarding conservation and management and identify the 8-digit hydrologic unit (HUC) as the most relevant spatial scale for managing genetic diversity across riverine networks.
Collapse
Affiliation(s)
- Zachery D Zbinden
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, USA
| | - Marlis R Douglas
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, USA
| | - Tyler K Chafin
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, USA
- Biomathematics and Statistics Scotland, Edinburgh, UK
| | - Michael E Douglas
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, USA
| |
Collapse
|
31
|
Peng L, Hua W, Chen Y, Wang W, Xue Z. Comparative analysis of the population diversity of black rockfish (Sebastes schlegelii) in northern China. Mol Biol Rep 2023; 50:10015-10024. [PMID: 37902911 DOI: 10.1007/s11033-023-08821-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 09/12/2023] [Indexed: 11/01/2023]
Abstract
The nearshore marine fish known as black rockfish (Sebastes schlegelii) is found in the Yellow Sea, Bohai Sea, and East China Sea. The population structure and genetic diversity of S. schlegelii are vulnerable to the effects of artificial stocking, environmental pollution, overfishing, and climate change, so relevant studies are urgently needed. This study used comparative mtDNA loop (D-loop) analysis to examine the genetic diversity and natural population structure of 98 individuals from the northern Chinese cities of Qingdao, Jinzhou, and Dalian. A total of 22 haplotypes were identified in the three groups of samples, with the most common haplotypes being Hap-2, Hap-3, Hap-4, Hap-5, and Hap-6. The results of genetic diversity based on the D-LOOP sequence showed that the genetic diversity of S. schlegelii in the study area showed high Hd and low π type, indicating that the genetic diversity of S. schlegelii was low. Analyses of molecular variance (AMOVA) showed that the percentage of among population variation was - 0.29%, and the percentage of within population variation was 100.29%, indicating that the genetic variation was mainly from within the population. Between the three locations, the genetic differentiation index (Fst) was - 0.0113 ~ 0.0061, and there was no genetic differentiation among the populations. The results of gene flow (Nm) coefficients showed that the average Nm among the three populations was infinite (Nm = inf > > 4) and the three populations formed a stochastic unit. The results of the neutrality test (Tajima's D, Fu's Fs) and the frequency of nucleotide mismatch distribution demonstrated that the three geographic populations of S. schlegelii did not undergo a large population expansion in recent history. Based on the above conclusions, the S. schlegelii as a whole should be protected in situ.
Collapse
Affiliation(s)
- Lei Peng
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, No. 52 Heishijiao Street, Dalian, 116023, China
- College of Aquatic and Life Science, Dalian Ocean University, No. 52 Heishijiao Street, Dalian, 116023, China
| | - Wenyuan Hua
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, No. 52 Heishijiao Street, Dalian, 116023, China
- College of Aquatic and Life Science, Dalian Ocean University, No. 52 Heishijiao Street, Dalian, 116023, China
| | - Yan Chen
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, No. 52 Heishijiao Street, Dalian, 116023, China
- College of Aquatic and Life Science, Dalian Ocean University, No. 52 Heishijiao Street, Dalian, 116023, China
| | - Wei Wang
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, No. 52 Heishijiao Street, Dalian, 116023, China.
- College of Aquatic and Life Science, Dalian Ocean University, No. 52 Heishijiao Street, Dalian, 116023, China.
| | - Zhuang Xue
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, No. 52 Heishijiao Street, Dalian, 116023, China.
- College of Aquatic and Life Science, Dalian Ocean University, No. 52 Heishijiao Street, Dalian, 116023, China.
| |
Collapse
|
32
|
Altamirano-Ponce L, Dávila-Játiva M, Pozo G, Pozo MJ, Terán-Velástegui M, Cadena CD, Cisneros-Heredia DF, Torres MDL. First genetic insights of Gonatodescaudiscutatus (Reptilia, Gekkota) in the Galapagos Islands and mainland Ecuador. Biodivers Data J 2023; 11:e113396. [PMID: 38028240 PMCID: PMC10680088 DOI: 10.3897/bdj.11.e113396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/01/2023] [Indexed: 12/01/2023] Open
Abstract
Studies on genetic variability amongst native and introduced species contribute to a better understanding of the genetic diversity of species along their autochthonous distribution and identify possible routes of introduction. Gonatodescaudiscutatus is a gecko native to western Ecuador and introduced to the Galapagos Islands. Despite being a successful species in human-modified habitats along its native and non-native ranges, neither the colonisation process nor the genetic diversity of this gecko is known. In this study, we analysed 55 individuals from 14 localities in western Ecuador and six localities in San Cristobal Island, Galapagos - the only island with a large, self-sustaining population. We amplified and analysed the genetic variability of two nuclear genes (Cmos and Rag2) and one mitochondrial gene (16S). Cmos and Rag2 sequences presented little to none genetic variability, while 16S allowed us to build a haplotype network. We identified nine haplotypes across mainland Ecuador, two of which are also present in Galapagos. Low genetic diversity between insular and continental populations suggests that the introduction of G.caudiscutatus on the Islands is relatively recent. Due to the widespread geographical distribution of mainland haplotypes, it was not possible to determine the source population of the introduction. This study represents the first exploration of the genetic diversity of Gonatodescaudiscutatus, utilising genetic tools to gain insights into its invasion history in the Galapagos.
Collapse
Affiliation(s)
- Lía Altamirano-Ponce
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias Biológicas y Ambientales, Instituto de Biodiversidad Tropical IBIOTROP, Laboratorio de Zoología Terrestre, Quito, EcuadorUniversidad San Francisco de Quito USFQ, Colegio de Ciencias Biológicas y Ambientales, Instituto de Biodiversidad Tropical IBIOTROP, Laboratorio de Zoología TerrestreQuitoEcuador
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias Biológicas y Ambientales, Laboratorio de Biotecnología Vegetal, Quito, EcuadorUniversidad San Francisco de Quito USFQ, Colegio de Ciencias Biológicas y Ambientales, Laboratorio de Biotecnología VegetalQuitoEcuador
| | - Mateo Dávila-Játiva
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias Biológicas y Ambientales, Instituto de Biodiversidad Tropical IBIOTROP, Laboratorio de Zoología Terrestre, Quito, EcuadorUniversidad San Francisco de Quito USFQ, Colegio de Ciencias Biológicas y Ambientales, Instituto de Biodiversidad Tropical IBIOTROP, Laboratorio de Zoología TerrestreQuitoEcuador
- Universidad San Francisco de Quito USFQ, extensión Galápagos GAIAS, Puerto Baquerizo Moreno, San Cristóbal, Galápagos, EcuadorUniversidad San Francisco de Quito USFQ, extensión Galápagos GAIAS, Puerto Baquerizo Moreno, San CristóbalGalápagosEcuador
- Universidad de los Andes, Departamento de Ciencias Biológicas, Laboratorio de Biología Evolutiva de Vertebrados, Bogotá, ColombiaUniversidad de los Andes, Departamento de Ciencias Biológicas, Laboratorio de Biología Evolutiva de VertebradosBogotáColombia
- Galápagos Science Center, Universidad San Francisco de Quito USFQ & University of North Carolina at Chapel Hill UNC, Galápagos, EcuadorGalápagos Science Center, Universidad San Francisco de Quito USFQ & University of North Carolina at Chapel Hill UNCGalápagosEcuador
| | - Gabriela Pozo
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias Biológicas y Ambientales, Laboratorio de Biotecnología Vegetal, Quito, EcuadorUniversidad San Francisco de Quito USFQ, Colegio de Ciencias Biológicas y Ambientales, Laboratorio de Biotecnología VegetalQuitoEcuador
| | - María José Pozo
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias Biológicas y Ambientales, Laboratorio de Biotecnología Vegetal, Quito, EcuadorUniversidad San Francisco de Quito USFQ, Colegio de Ciencias Biológicas y Ambientales, Laboratorio de Biotecnología VegetalQuitoEcuador
| | - Martín Terán-Velástegui
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias Biológicas y Ambientales, Laboratorio de Biotecnología Vegetal, Quito, EcuadorUniversidad San Francisco de Quito USFQ, Colegio de Ciencias Biológicas y Ambientales, Laboratorio de Biotecnología VegetalQuitoEcuador
| | - Carlos Daniel Cadena
- Universidad de los Andes, Departamento de Ciencias Biológicas, Laboratorio de Biología Evolutiva de Vertebrados, Bogotá, ColombiaUniversidad de los Andes, Departamento de Ciencias Biológicas, Laboratorio de Biología Evolutiva de VertebradosBogotáColombia
| | - Diego F. Cisneros-Heredia
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias Biológicas y Ambientales, Instituto de Biodiversidad Tropical IBIOTROP, Laboratorio de Zoología Terrestre, Quito, EcuadorUniversidad San Francisco de Quito USFQ, Colegio de Ciencias Biológicas y Ambientales, Instituto de Biodiversidad Tropical IBIOTROP, Laboratorio de Zoología TerrestreQuitoEcuador
- Universidad San Francisco de Quito USFQ, extensión Galápagos GAIAS, Puerto Baquerizo Moreno, San Cristóbal, Galápagos, EcuadorUniversidad San Francisco de Quito USFQ, extensión Galápagos GAIAS, Puerto Baquerizo Moreno, San CristóbalGalápagosEcuador
- Galápagos Science Center, Universidad San Francisco de Quito USFQ & University of North Carolina at Chapel Hill UNC, Galápagos, EcuadorGalápagos Science Center, Universidad San Francisco de Quito USFQ & University of North Carolina at Chapel Hill UNCGalápagosEcuador
| | - Maria de Lourdes Torres
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias Biológicas y Ambientales, Laboratorio de Biotecnología Vegetal, Quito, EcuadorUniversidad San Francisco de Quito USFQ, Colegio de Ciencias Biológicas y Ambientales, Laboratorio de Biotecnología VegetalQuitoEcuador
- Universidad San Francisco de Quito USFQ, extensión Galápagos GAIAS, Puerto Baquerizo Moreno, San Cristóbal, Galápagos, EcuadorUniversidad San Francisco de Quito USFQ, extensión Galápagos GAIAS, Puerto Baquerizo Moreno, San CristóbalGalápagosEcuador
- Galápagos Science Center, Universidad San Francisco de Quito USFQ & University of North Carolina at Chapel Hill UNC, Galápagos, EcuadorGalápagos Science Center, Universidad San Francisco de Quito USFQ & University of North Carolina at Chapel Hill UNCGalápagosEcuador
| |
Collapse
|
33
|
Schmidt C, Hoban S, Jetz W. Conservation macrogenetics: harnessing genetic data to meet conservation commitments. Trends Genet 2023; 39:816-829. [PMID: 37648576 DOI: 10.1016/j.tig.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/03/2023] [Accepted: 08/03/2023] [Indexed: 09/01/2023]
Abstract
Genetic biodiversity is rapidly gaining attention in global conservation policy. However, for almost all species, conservation relevant, population-level genetic data are lacking, limiting the extent to which genetic diversity can be used for conservation policy and decision-making. Macrogenetics is an emerging discipline that explores the patterns and processes underlying population genetic composition at broad taxonomic and spatial scales by aggregating and reanalyzing thousands of published genetic datasets. Here we argue that focusing macrogenetic tools on conservation needs, or conservation macrogenetics, will enhance decision-making for conservation practice and fill key data gaps for global policy. Conservation macrogenetics provides an empirical basis for better understanding the complexity and resilience of biological systems and, thus, how anthropogenic drivers and policy decisions affect biodiversity.
Collapse
Affiliation(s)
- Chloé Schmidt
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA; Center for Biodiversity and Global Change, Yale University, New Haven, CT, USA; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.
| | - Sean Hoban
- The Center for Tree Science, The Morton Arboretum, Lisle, IL, USA
| | - Walter Jetz
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA; Center for Biodiversity and Global Change, Yale University, New Haven, CT, USA
| |
Collapse
|
34
|
Mathur S, Mason AJ, Bradburd GS, Gibbs HL. Functional genomic diversity is correlated with neutral genomic diversity in populations of an endangered rattlesnake. Proc Natl Acad Sci U S A 2023; 120:e2303043120. [PMID: 37844221 PMCID: PMC10614936 DOI: 10.1073/pnas.2303043120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 09/19/2023] [Indexed: 10/18/2023] Open
Abstract
Theory predicts that genetic erosion in small, isolated populations of endangered species can be assessed using estimates of neutral genetic variation, yet this widely used approach has recently been questioned in the genomics era. Here, we leverage a chromosome-level genome assembly of an endangered rattlesnake (Sistrurus catenatus) combined with whole genome resequencing data (N = 110 individuals) to evaluate the relationship between levels of genome-wide neutral and functional diversity over historical and future timescales. As predicted, we found positive correlations between genome-wide estimates of neutral genetic diversity (π) and inferred levels of adaptive variation and an estimate of inbreeding mutation load, and a negative relationship between neutral diversity and an estimate of drift mutation load. However, these correlations were half as strong for projected future levels of neutral diversity based on contemporary effective population sizes. Broadly, our results confirm that estimates of neutral genetic diversity provide an accurate measure of genetic erosion in populations of a threatened vertebrate. They also provide nuance to the neutral-functional diversity controversy by suggesting that while these correlations exist, anthropogenetic impacts may have weakened these associations in the recent past and into the future.
Collapse
Affiliation(s)
- Samarth Mathur
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH48824
- Ohio Biodiversity Conservation Partnership, The Ohio State University, Columbus, OH43210
| | - Andrew J. Mason
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH48824
- Ohio Biodiversity Conservation Partnership, The Ohio State University, Columbus, OH43210
| | - Gideon S. Bradburd
- Evolution and Behavior Program, Department of Integrative Biology, Ecology, Michigan State University, East Lansing, MI48824
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI48109
| | - H. Lisle Gibbs
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH48824
- Ohio Biodiversity Conservation Partnership, The Ohio State University, Columbus, OH43210
| |
Collapse
|
35
|
Dussex N, Tørresen OK, van der Valk T, Le Moullec M, Veiberg V, Tooming-Klunderud A, Skage M, Garmann-Aarhus B, Wood J, Rasmussen JA, Pedersen ÅØ, Martin SL, Røed KH, Jakobsen KS, Dalén L, Hansen BB, Martin MD. Adaptation to the High-Arctic island environment despite long-term reduced genetic variation in Svalbard reindeer. iScience 2023; 26:107811. [PMID: 37744038 PMCID: PMC10514459 DOI: 10.1016/j.isci.2023.107811] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 07/24/2023] [Accepted: 08/30/2023] [Indexed: 09/26/2023] Open
Abstract
Typically much smaller in number than their mainland counterparts, island populations are ideal systems to investigate genetic threats to small populations. The Svalbard reindeer (Rangifer tarandus platyrhynchus) is an endemic subspecies that colonized the Svalbard archipelago ca. 6,000-8,000 years ago and now shows numerous physiological and morphological adaptations to its arctic habitat. Here, we report a de-novo chromosome-level assembly for Svalbard reindeer and analyze 133 reindeer genomes spanning Svalbard and most of the species' Holarctic range, to examine the genomic consequences of long-term isolation and small population size in this insular subspecies. Empirical data, demographic reconstructions, and forward simulations show that long-term isolation and high inbreeding levels may have facilitated the reduction of highly deleterious-and to a lesser extent, moderately deleterious-variation. Our study indicates that long-term reduced genetic diversity did not preclude local adaptation to the High Arctic, suggesting that even severely bottlenecked populations can retain evolutionary potential.
Collapse
Affiliation(s)
- Nicolas Dussex
- Department of Natural History, University Museum, Norwegian University of Science and Technology (NTNU), Erling Skakkes gate 47A, Trondheim, Norway
| | - Ole K. Tørresen
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, PO Box 1066 Blindern, N-0316 Oslo, Norway
| | - Tom van der Valk
- Centre for PalaeoGenetics, Svante Arrhenius väg 20C, SE 106 91 Stockholm, Sweden
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, SE 104 05 Stockholm, Sweden
| | - Mathilde Le Moullec
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology (NTNU), NO 7491 Trondheim, Norway
| | - Vebjørn Veiberg
- Department of Terrestrial Ecology, Norwegian Institute for Nature Research (NINA), NO 7034 Trondheim, Trondheim, Norway
| | - Ave Tooming-Klunderud
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, PO Box 1066 Blindern, N-0316 Oslo, Norway
| | - Morten Skage
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, PO Box 1066 Blindern, N-0316 Oslo, Norway
| | - Benedicte Garmann-Aarhus
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, PO Box 1066 Blindern, N-0316 Oslo, Norway
- Natural History Museum, University of Oslo, NO 0318 Oslo, Norway
| | - Jonathan Wood
- Tree of Life, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA Cambridge, UK
| | - Jacob A. Rasmussen
- Department of Natural History, University Museum, Norwegian University of Science and Technology (NTNU), Erling Skakkes gate 47A, Trondheim, Norway
- Globe Institute, University of Copenhagen, 2100 Copenhagen, Denmark
| | | | - Sarah L.F. Martin
- Department of Natural History, University Museum, Norwegian University of Science and Technology (NTNU), Erling Skakkes gate 47A, Trondheim, Norway
| | - Knut H. Røed
- Department of Preclinical Sciences and Pathology, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway
| | - Kjetill S. Jakobsen
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, PO Box 1066 Blindern, N-0316 Oslo, Norway
| | - Love Dalén
- Centre for PalaeoGenetics, Svante Arrhenius väg 20C, SE 106 91 Stockholm, Sweden
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, SE 104 05 Stockholm, Sweden
- Department of Zoology, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Brage B. Hansen
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology (NTNU), NO 7491 Trondheim, Norway
- Department of Terrestrial Ecology, Norwegian Institute for Nature Research (NINA), NO 7034 Trondheim, Trondheim, Norway
| | - Michael D. Martin
- Department of Natural History, University Museum, Norwegian University of Science and Technology (NTNU), Erling Skakkes gate 47A, Trondheim, Norway
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology (NTNU), NO 7491 Trondheim, Norway
| |
Collapse
|
36
|
Dussex N, Kurland S, Olsen RA, Spong G, Ericsson G, Ekblom R, Ryman N, Dalén L, Laikre L. Range-wide and temporal genomic analyses reveal the consequences of near-extinction in Swedish moose. Commun Biol 2023; 6:1035. [PMID: 37848497 PMCID: PMC10582009 DOI: 10.1038/s42003-023-05385-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 09/25/2023] [Indexed: 10/19/2023] Open
Abstract
Ungulate species have experienced severe declines over the past centuries through overharvesting and habitat loss. Even if many game species have recovered thanks to strict hunting regulation, the genome-wide impacts of overharvesting are still unclear. Here, we examine the temporal and geographical differences in genome-wide diversity in moose (Alces alces) over its whole range in Sweden by sequencing 87 modern and historical genomes. We found limited impact of the 1900s near-extinction event but local variation in inbreeding and load in modern populations, as well as suggestion of a risk of future reduction in genetic diversity and gene flow. Furthermore, we found candidate genes for local adaptation, and rapid temporal allele frequency shifts involving coding genes since the 1980s, possibly due to selective harvesting. Our results highlight that genomic changes potentially impacting fitness can occur over short time scales and underline the need to track both deleterious and selectively advantageous genomic variation.
Collapse
Affiliation(s)
- Nicolas Dussex
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, SE-106 91, Stockholm, Sweden.
- Department of Zoology, Division of Population Genetics, Stockholm University, SE-106 91, Stockholm, Sweden.
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, SE-104 05, Stockholm, Sweden.
- Norwegian University of Science and Technology, University Museum, Trondheim, NO-7491, Norway.
| | - Sara Kurland
- Department of Zoology, Division of Population Genetics, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Remi-André Olsen
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, SE-171 21, Solna, Sweden
| | - Göran Spong
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, SE-901 83, Umeå, Sweden
| | - Göran Ericsson
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, SE-901 83, Umeå, Sweden
| | - Robert Ekblom
- Wildlife Analysis Unit, Swedish Environmental Protection Agency, SE-106 48, Stockholm, Sweden
| | - Nils Ryman
- Department of Zoology, Division of Population Genetics, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Love Dalén
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, SE-106 91, Stockholm, Sweden
- Department of Zoology, Division of Population Genetics, Stockholm University, SE-106 91, Stockholm, Sweden
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, SE-104 05, Stockholm, Sweden
| | - Linda Laikre
- Department of Zoology, Division of Population Genetics, Stockholm University, SE-106 91, Stockholm, Sweden.
| |
Collapse
|
37
|
Martchenko D, Shafer ABA. Contrasting whole-genome and reduced representation sequencing for population demographic and adaptive inference: an alpine mammal case study. Heredity (Edinb) 2023; 131:273-281. [PMID: 37532838 PMCID: PMC10539292 DOI: 10.1038/s41437-023-00643-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 07/22/2023] [Accepted: 07/22/2023] [Indexed: 08/04/2023] Open
Abstract
Genomes capture the adaptive and demographic history of a species, but the choice of sequencing strategy and sample size can impact such inferences. We compared whole genome and reduced representation sequencing approaches to study the population demographic and adaptive signals of the North American mountain goat (Oreamnos americanus). We applied the restriction site-associated DNA sequencing (RADseq) approach to 254 individuals and whole genome resequencing (WGS) approach to 35 individuals across the species range at mid-level coverage (9X) and to 5 individuals at high coverage (30X). We used ANGSD to estimate the genotype likelihoods and estimated the effective population size (Ne), population structure, and explicitly modelled the demographic history with δaδi and MSMC2. The data sets were overall concordant in supporting a glacial induced vicariance and extremely low Ne in mountain goats. We evaluated a set of climatic variables and geographic location as predictors of genetic diversity using redundancy analysis. A moderate proportion of total variance (36% for WGS and 21% for RADseq data sets) was explained by geography and climate variables; both data sets support a large impact of drift and some degree of local adaptation. The empirical similarities of WGS and RADseq presented herein reassuringly suggest that both approaches will recover large demographic and adaptive signals in a population; however, WGS offers several advantages over RADseq, such as inferring adaptive processes and calculating runs-of-homozygosity estimates. Considering the predicted climate-induced changes in alpine environments and the genetically depauperate mountain goat, the long-term adaptive capabilities of this enigmatic species are questionable.
Collapse
Affiliation(s)
- Daria Martchenko
- Environmental and Life Sciences Graduate Program, Trent University, 2140 East Bank Drive, Peterborough, ON, K9J 7B8, Canada.
| | - Aaron B A Shafer
- Environmental and Life Sciences Graduate Program, Trent University, 2140 East Bank Drive, Peterborough, ON, K9J 7B8, Canada
- Department of Forensics & Environmental and Life Sciences Graduate Program, Trent University, 2140 East Bank Drive, Peterborough, ON, K9J 7B8, Canada
| |
Collapse
|
38
|
Dussex N, Morales HE, Grossen C, Dalén L, van Oosterhout C. Purging and accumulation of genetic load in conservation. Trends Ecol Evol 2023; 38:961-969. [PMID: 37344276 DOI: 10.1016/j.tree.2023.05.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 06/23/2023]
Abstract
Our ability to assess the threat posed by the genetic load to small and declining populations has been greatly improved by advances in genome sequencing and computational approaches. Yet, considerable confusion remains around the definitions of the genetic load and its dynamics, and how they impact individual fitness and population viability. We illustrate how both selective purging and drift affect the distribution of deleterious mutations during population size decline and recovery. We show how this impacts the composition of the genetic load, and how this affects the extinction risk and recovery potential of populations. We propose a framework to examine load dynamics and advocate for the introduction of load estimates in the management of endangered populations.
Collapse
Affiliation(s)
- Nicolas Dussex
- Department of Natural History, NTNU University Museum, Erling Skakkes Gate 47A, 7012 Trondheim, Norway.
| | - Hernán E Morales
- Center for Evolutionary Hologenomics, Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Christine Grossen
- WSL Swiss Federal Research Institute, CH-8903 Birmensdorf, Switzerland
| | - Love Dalén
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, SE-106 91 Stockholm, Sweden
| | - Cock van Oosterhout
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, NR4 7TJ Norwich, UK
| |
Collapse
|
39
|
Bharti DK, Pawar PY, Edgecombe GD, Joshi J. Genetic diversity varies with species traits and latitude in predatory soil arthropods (Myriapoda: Chilopoda). GLOBAL ECOLOGY AND BIOGEOGRAPHY : A JOURNAL OF MACROECOLOGY 2023; 32:1508-1521. [PMID: 38708411 PMCID: PMC7615927 DOI: 10.1111/geb.13709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 05/13/2023] [Indexed: 05/07/2024]
Abstract
Aim To investigate the drivers of intra-specific genetic diversity in centipedes, a group of ancient predatory soil arthropods. Location Asia, Australasia and Europe. Time Period Present. Major Taxa Studied Centipedes (Class: Chilopoda). Methods We assembled a database of 1245 mitochondrial cytochrome c oxidase subunit I sequences representing 128 centipede species from all five orders of Chilopoda. This sequence dataset was used to estimate genetic diversity for centipede species and compare its distribution with estimates from other arthropod groups. We studied the variation in centipede genetic diversity with species traits and biogeography using a beta regression framework, controlling for the effect of shared evolutionary history within a family. Results A wide variation in genetic diversity across centipede species (0-0.1713) falls towards the higher end of values among arthropods. Overall, 27.57% of the variation in mitochondrial COI genetic diversity in centipedes was explained by a combination of predictors related to life history and biogeography. Genetic diversity decreased with body size and latitudinal position of sampled localities, was greater in species showing maternal care and increased with geographic distance among conspecifics. Main Conclusions Centipedes fall towards the higher end of genetic diversity among arthropods, which may be related to their long evolutionary history and low dispersal ability. In centipedes, the negative association of body size with genetic diversity may be mediated by its influence on local abundance or the influence of ecological strategy on long-term population history. Species with maternal care had higher genetic diversity, which goes against expectations and needs further scrutiny. Hemispheric differences in genetic diversity can be due to historic climatic stability and lower seasonality in the southern hemisphere. Overall, we find that despite the differences in mean genetic diversity among animals, similar processes related to life-history strategy and biogeography are associated with the variation within them.
Collapse
Affiliation(s)
- D. K. Bharti
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | | | | | - Jahnavi Joshi
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
40
|
Jan M, Stronen AV, Boljte B, Černe R, Huber Đ, Iosif R, Kljun F, Konec M, Kos I, Krofel M, Kusak J, Luštrik R, Majić Skrbinšek A, Promberger-Füerpass B, Potočnik H, Rigg R, Trontelj P, Skrbinšek T. Wolf genetic diversity compared across Europe using the yardstick method. Sci Rep 2023; 13:13727. [PMID: 37608038 PMCID: PMC10444868 DOI: 10.1038/s41598-023-40834-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 08/17/2023] [Indexed: 08/24/2023] Open
Abstract
Integrating data across studies with traditional microsatellite genetic markers requires careful calibration and represents an obstacle for investigation of wide-ranging species where populations require transboundary management. We used the "yardstick" method to compare results published across Europe since 2002 and new wolf (Canis lupus) genetic profiles from the Carpathian Mountains in Central Europe and the Dinaric Mountains in Southeastern Europe, with the latter as our reference population. We compared each population with Dinaric wolves, considering only shared markers (range 4-17). For each population, we calculated standard genetic diversity indices plus calibrated heterozygosity (Hec) and allelic richness (Ac). Hec and Ac in Dinaric (0.704 and 9.394) and Carpathian wolves (0.695 and 7.023) were comparable to those observed in other large and mid-sized European populations, but smaller than those of northeastern Europe. Major discrepancies in marker choices among some studies made comparisons more difficult. However, the yardstick method, including the new measures of Hec and Ac, provided a direct comparison of genetic diversity values among wolf populations and an intuitive interpretation of the results. The yardstick method thus permitted the integration of diverse sources of publicly available microsatellite data for spatiotemporal genetic monitoring of evolutionary potential.
Collapse
Affiliation(s)
- Maja Jan
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia.
| | - Astrid Vik Stronen
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia
- DivjaLabs d.o.o., Aljaževa ulica 35a, 1000, Ljubljana, Slovenia
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220, Aalborg, Denmark
| | - Barbara Boljte
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia
- DivjaLabs d.o.o., Aljaževa ulica 35a, 1000, Ljubljana, Slovenia
| | - Rok Černe
- Slovenia Forest Service, Večna pot 2, 1000, Ljubljana, Slovenia
| | - Đuro Huber
- Faculty of Veterinary Medicine, University of Zagreb, Vjekoslava Heinzelova 55, 10000, Zagreb, Croatia
| | - Ruben Iosif
- Foundation Conservation Carpathia, 27 Calea Feldioarei, 500471, Brașov, Romania
| | - Franc Kljun
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia
| | - Marjeta Konec
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia
- DivjaLabs d.o.o., Aljaževa ulica 35a, 1000, Ljubljana, Slovenia
| | - Ivan Kos
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia
| | - Miha Krofel
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia
| | - Josip Kusak
- Faculty of Veterinary Medicine, University of Zagreb, Vjekoslava Heinzelova 55, 10000, Zagreb, Croatia
| | - Roman Luštrik
- Genialis Inc, Vojkova cesta 63, 1000, Ljubljana, Slovenia
| | - Aleksandra Majić Skrbinšek
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia
- DivjaLabs d.o.o., Aljaževa ulica 35a, 1000, Ljubljana, Slovenia
| | | | - Hubert Potočnik
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia
| | - Robin Rigg
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia
- Slovak Wildlife Society, Belanská 574/6, P.O. Box 72, Liptovský Hrádok, 033 01, Slovakia
| | - Peter Trontelj
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia
| | - Tomaž Skrbinšek
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia
- DivjaLabs d.o.o., Aljaževa ulica 35a, 1000, Ljubljana, Slovenia
| |
Collapse
|
41
|
Wang Z, Lu G, Gao Y, Yan L, Li M, Hu D, Zhang D. mtDNA CR Evidence Indicates High Genetic Diversity of Captive Forest Musk Deer in Shaanxi Province, China. Animals (Basel) 2023; 13:2191. [PMID: 37443989 DOI: 10.3390/ani13132191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/01/2023] [Accepted: 06/01/2023] [Indexed: 07/15/2023] Open
Abstract
Forest musk deer (Moschus berezovskii) are endangered ruminants whose adult males secrete musk. China has been breeding forest musk deer artificially since the 1950s in an effort to restore wild populations, with Shaanxi and Sichuan provinces as the two main sites for captive breeding. Genetic diversity is a significant indicator that determines the long-term viability and status of a population, particularly for species at risk of extinction. In this study, we analyzed the current genetic makeup of seven captive forest musk deer populations in the Shaanxi province, using the mitochondrial DNA (mtDNA) control region (CR) as the molecular marker. We sequenced 604 bp of mtDNA CR, with an average content of A+T higher than G+C. We observed 111 variable sites and 39 different haplotypes from 338 sequences. The nucleotide diversity (Pi) and haplotype diversity (Hd) were 0.02887 and 0.908, respectively. Genetic differentiation between these populations was not significant, and the populations might not have experienced rapid growth. By combining our sequences with previous ones, we identified 65 unique haplotypes with 26 rare haplotypes and estimated a total of 90 haplotypes in Shaanxi province captive populations. The Shaanxi province and Sichuan province obtained 88 haplotypes, the haplotypes from the two populations were mixed together, and the two populations showed moderate genetic differentiation. Our findings suggested that captive forest musk deer populations in the Shaanxi province had high genetic diversity, with a rich founder population of about 90 maternal lines. Additionally, managers could develop genetic management plans for forest musk deer based on the haplotype database. Overall, our study will provide insights and guidelines for the conservation of genetic diversity in captive forest musk deer populations in the Shaanxi province.
Collapse
Affiliation(s)
- Zhe Wang
- School of Ecology and Nature Conservation, Beijing Forestry University, Qinghua East Road 35, Beijing 100083, China
| | - Guanjie Lu
- School of Ecology and Nature Conservation, Beijing Forestry University, Qinghua East Road 35, Beijing 100083, China
| | - Yunyun Gao
- School of Ecology and Nature Conservation, Beijing Forestry University, Qinghua East Road 35, Beijing 100083, China
| | - Liping Yan
- School of Ecology and Nature Conservation, Beijing Forestry University, Qinghua East Road 35, Beijing 100083, China
| | - Mingzhe Li
- China Wildlife Conservation Association, Beijing 100714, China
| | - Defu Hu
- School of Ecology and Nature Conservation, Beijing Forestry University, Qinghua East Road 35, Beijing 100083, China
| | - Dong Zhang
- School of Ecology and Nature Conservation, Beijing Forestry University, Qinghua East Road 35, Beijing 100083, China
| |
Collapse
|
42
|
Johnson JA, Athrey G, Anderson CM, Bell DA, Dixon A, Kumazawa Y, Maechtle T, Meeks GW, Mindell D, Nakajima K, Novak B, Talbot S, White C, Zhan X. Whole-genome survey reveals extensive variation in genetic diversity and inbreeding levels among peregrine falcon subspecies. Ecol Evol 2023; 13:e10347. [PMID: 37484928 PMCID: PMC10361364 DOI: 10.1002/ece3.10347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/04/2023] [Accepted: 07/10/2023] [Indexed: 07/25/2023] Open
Abstract
In efforts to prevent extinction, resource managers are often tasked with increasing genetic diversity in a population of concern to prevent inbreeding depression or improve adaptive potential in a changing environment. The assumption that all small populations require measures to increase their genetic diversity may be unwarranted, and limited resources for conservation may be better utilized elsewhere. We test this assumption in a case study focused on the peregrine falcon (Falco peregrinus), a cosmopolitan circumpolar species with 19 named subspecies. We used whole-genome resequencing to generate over two million single nucleotide polymorphisms (SNPs) from multiple individuals of all peregrine falcon subspecies. Our analyses revealed extensive variation among subspecies, with many island-restricted and nonmigratory populations possessing lower overall genomic diversity, elevated inbreeding coefficients (F ROH)-among the highest reported, and extensive runs of homozygosity (ROH) compared to mainland and migratory populations. Similarly, the majority of subspecies that are either nonmigratory or restricted to islands show a much longer history of low effective population size (N e). While mutational load analyses indicated an increased proportion of homozygous-derived deleterious variants (i.e., drift load) among nonmigrant and island populations compared to those that are migrant or reside on the mainland, no significant differences in the proportion of heterozygous deleterious variants (i.e., inbreeding load) was observed. Our results provide evidence that high levels of inbreeding may not be an existential threat for some populations or taxa. Additional factors such as the timing and severity of population declines are important to consider in management decisions about extinction potential.
Collapse
Affiliation(s)
- Jeff A. Johnson
- Department of Biological SciencesUniversity of North TexasDentonTexasUSA
- Wolf Creek Operating FoundationWolfWyomingUSA
| | - Giridhar Athrey
- Department of Poultry Science & Faculty of Ecology and Evolutionary BiologyTexas A&M UniversityCollege StationTexasUSA
| | | | - Douglas A. Bell
- East Bay Regional Park DistrictOaklandCaliforniaUSA
- California Academy of SciencesSan FranciscoCaliforniaUSA
| | - Andrew Dixon
- The Mohamed Bin Zayed Raptor Conservation FundAbu DhabiUnited Arab Emirates
- International Wildlife ConsultantsCarmarthenUK
| | - Yoshinori Kumazawa
- Research Center for Biological DiversityNagoya City UniversityNagoyaJapan
| | | | - Garrett W. Meeks
- Department of Biological SciencesUniversity of North TexasDentonTexasUSA
| | - David Mindell
- Museum of Vertebrate ZoologyUniversity of California, BerkeleyBerkeleyCaliforniaUSA
| | - Keiya Nakajima
- Research Center for Biological DiversityNagoya City UniversityNagoyaJapan
- The Japan Falconiformes CenterOwariasahiJapan
| | - Ben Novak
- Revive & RestoreSausalitoCaliforniaUSA
| | - Sandra Talbot
- Far Northwestern Institute of Art and ScienceAnchorageAlaskaUSA
| | | | | |
Collapse
|
43
|
Stiller J, Wilson NG, Rouse GW. Range-wide population genomics of common seadragons shows secondary contact over a former barrier and insights on illegal capture. BMC Biol 2023; 21:129. [PMID: 37248474 DOI: 10.1186/s12915-023-01628-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 05/16/2023] [Indexed: 05/31/2023] Open
Abstract
BACKGROUND Common seadragons (Phyllopteryx taeniolatus, Syngnathidae) are an emblem of the diverse endemic fauna of Australia's southern rocky reefs, the newly recognized "Great Southern Reef." A lack of assessments spanning this global biodiversity hotspot in its entirety is currently hampering an understanding of the factors that have contributed to its diversity. The common seadragon has a wide range across Australia's entire temperate south and includes a geogenetic break over a former land bridge, which has called its status as a single species into question. As a popular aquarium display that sells for high prices, common seadragons are also vulnerable to illegal capture. RESULTS Here, we provide range-wide nuclear sequences (986 variable Ultraconserved Elements) for 198 individuals and mitochondrial genomes for 140 individuals to assess species status, identify genetic units and their diversity, and trace the source of two poached individuals. Using published data of the other two seadragon species, we found that lineages of common seadragons have diverged relatively recently (< 0.63 Ma). Within common seadragons, we found pronounced genetic structure, falling into three major groups in the western, central, and eastern parts of the range. While populations across the Bassian Isthmus were divergent, there is also evidence for secondary contact since the passage opened. We found a strong cline of genetic diversity from the range center tapering symmetrically towards the range peripheries. Based on their genetic similarities, the poached individuals were inferred to have originated from around Albany in southwestern Australia. CONCLUSIONS We conclude that common seadragons constitute a single species with strong geographic structure but coherence through gene flow. The low genetic diversity on the east and west coasts is concerning given that these areas are projected to face fast climate change. Our results suggest that in addition to their life history, geological events and demographic expansions have all played a role in shaping populations in the temperate south. These insights are an important step towards understanding the historical determinants of the diversity of species endemic to the Great Southern Reef.
Collapse
Affiliation(s)
- Josefin Stiller
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, 92093 , USA.
- Centre for Biodiversity Genomics, University of Copenhagen, 2100, Copenhagen, Denmark.
| | - Nerida G Wilson
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, 92093 , USA
- Research & Collections, Western Australian Museum, Perth, Western Australia, 6106, Australia
- School of Biological Sciences, University of Western Australia, Perth, Western Australia, 6009, Australia
| | - Greg W Rouse
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, 92093 , USA.
| |
Collapse
|
44
|
Wang X, Peischl S, Heckel G. Demographic history and genomic consequences of 10,000 generations of isolation in a wild mammal. Curr Biol 2023; 33:2051-2062.e4. [PMID: 37178689 DOI: 10.1016/j.cub.2023.04.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/20/2022] [Accepted: 04/17/2023] [Indexed: 05/15/2023]
Abstract
Increased human activities caused the isolation of populations in many species-often associated with genetic depletion and negative fitness effects. The effects of isolation are predicted by theory, but long-term data from natural populations are scarce. We show, with full genome sequences, that common voles (Microtus arvalis) in the Orkney archipelago have remained genetically isolated from conspecifics in continental Europe since their introduction by humans over 5,000 years ago. Modern Orkney vole populations are genetically highly differentiated from continental conspecifics as a result of genetic drift processes. Colonization likely started on the biggest Orkney island and vole populations on smaller islands were gradually split off, without signs of secondary admixture. Despite having large modern population sizes, Orkney voles are genetically depauperate and successive introductions to smaller islands resulted in further reduction of genetic diversity. We detected high levels of fixation of predicted deleterious variation compared with continental populations, particularly on smaller islands, yet the fitness effects realized in nature are unknown. Simulations showed that predominantly mildly deleterious mutations were fixed in populations, while highly deleterious mutations were purged early in the history of the Orkney population. Relaxation of selection overall due to benign environmental conditions on the islands and the effects of soft selection may have contributed to the repeated, successful establishment of Orkney voles despite potential fitness loss. Furthermore, the specific life history of these small mammals, resulting in relatively large population sizes, has probably been important for their long-term persistence in full isolation.
Collapse
Affiliation(s)
- Xuejing Wang
- Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, 3012 Bern, Switzerland
| | - Stephan Peischl
- Interfaculty Bioinformatics Unit, University of Bern, Baltzerstrasse 6, 3012 Bern, Switzerland; Swiss Institute of Bioinformatics, Amphipôle, Quartier UNIL-Sorge, 1015 Lausanne, Switzerland
| | - Gerald Heckel
- Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, 3012 Bern, Switzerland; Swiss Institute of Bioinformatics, Amphipôle, Quartier UNIL-Sorge, 1015 Lausanne, Switzerland.
| |
Collapse
|
45
|
Wilder AP, Supple MA, Subramanian A, Mudide A, Swofford R, Serres-Armero A, Steiner C, Koepfli KP, Genereux DP, Karlsson EK, Lindblad-Toh K, Marques-Bonet T, Munoz Fuentes V, Foley K, Meyer WK, Consortium Z, Ryder OA, Shapiro B. The contribution of historical processes to contemporary extinction risk in placental mammals. Science 2023; 380:eabn5856. [PMID: 37104572 PMCID: PMC10184782 DOI: 10.1126/science.abn5856] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/08/2023] [Indexed: 04/29/2023]
Abstract
Species persistence can be influenced by the amount, type, and distribution of diversity across the genome, suggesting a potential relationship between historical demography and resilience. In this study, we surveyed genetic variation across single genomes of 240 mammals that compose the Zoonomia alignment to evaluate how historical effective population size (Ne) affects heterozygosity and deleterious genetic load and how these factors may contribute to extinction risk. We find that species with smaller historical Ne carry a proportionally larger burden of deleterious alleles owing to long-term accumulation and fixation of genetic load and have a higher risk of extinction. This suggests that historical demography can inform contemporary resilience. Models that included genomic data were predictive of species' conservation status, suggesting that, in the absence of adequate census or ecological data, genomic information may provide an initial risk assessment.
Collapse
Affiliation(s)
- Aryn P. Wilder
- Conservation Genetics, San Diego Zoo Wildlife Alliance; Escondido, CA 92027, USA
| | - Megan A Supple
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz; Santa Cruz, CA 95064, USA
- Howard Hughes Medical Institute, University of California Santa Cruz; Santa Cruz, CA 95064, USA
| | | | | | - Ross Swofford
- Broad Institute of MIT and Harvard; Cambridge, MA 02139, USA
| | - Aitor Serres-Armero
- Institute of Evolutionary Biology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra; Barcelona, 08003, Spain
| | - Cynthia Steiner
- Conservation Genetics, San Diego Zoo Wildlife Alliance; Escondido, CA 92027, USA
| | - Klaus-Peter Koepfli
- Smithsonian-Mason School of Conservation, George Mason University; Front Royal, VA 22630, USA
- Center for Species Survival, Smithsonian Conservation Biology Institute, National Zoological Park; Washington, DC, 30008, USA
- Computer Technologies Laboratory, ITMO University; St. Petersburg, 197101, Russia
| | | | - Elinor K. Karlsson
- Broad Institute of MIT and Harvard; Cambridge, MA 02139, USA
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School; Worcester, MA 01605, USA
| | - Kerstin Lindblad-Toh
- Broad Institute of MIT and Harvard; Cambridge, MA 02139, USA
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University; Uppsala, 751 32, Sweden
| | - Tomas Marques-Bonet
- Institute of Evolutionary Biology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra; Barcelona, 08003, Spain
- Catalan Institution of Research and Advanced Studies; Barcelona, 08010, Spain
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology; Barcelona, 08028, Spain
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona; Barcelona, 08193, Spain
| | - Violeta Munoz Fuentes
- European Molecular Biology Laboratory-European Bioinformatics Institute, Wellcome Genome Campus; Hinxton, UK
| | - Kathleen Foley
- College of Law, University of Iowa; Iowa City, IA 52242, USA
- Lehigh University, Biological Sciences; Bethlehem, PA 18015, USA
| | - Wynn K. Meyer
- Lehigh University, Biological Sciences; Bethlehem, PA 18015, USA
| | | | - Oliver A. Ryder
- Conservation Genetics, San Diego Zoo Wildlife Alliance; Escondido, CA 92027, USA
- Department of Evolution, Behavior and Ecology, Division of Biology, University of California, San Diego; La Jolla, CA 92039 USA
| | - Beth Shapiro
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz; Santa Cruz, CA 95064, USA
- Howard Hughes Medical Institute, University of California Santa Cruz; Santa Cruz, CA 95064, USA
| |
Collapse
|
46
|
Chung MY, Merilä J, Kim Y, Mao K, López‐Pujol J, Chung MG. A review on Q ST- F ST comparisons of seed plants: Insights for conservation. Ecol Evol 2023; 13:e9926. [PMID: 37006890 PMCID: PMC10049885 DOI: 10.1002/ece3.9926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 02/14/2023] [Accepted: 03/02/2023] [Indexed: 03/30/2023] Open
Abstract
Increased access to genome-wide data provides new opportunities for plant conservation. However, information on neutral genetic diversity in a small number of marker loci can still be valuable because genomic data are not available to most rare plant species. In the hope of bridging the gap between conservation science and practice, we outline how conservation practitioners can more efficiently employ population genetic information in plant conservation. We first review the current knowledge about neutral genetic variation (NGV) and adaptive genetic variation (AGV) in seed plants, regarding both within-population and among-population components. We then introduce the estimates of among-population genetic differentiation in quantitative traits (Q ST) and neutral markers (F ST) to plant biology and summarize conservation applications derived from Q ST-F ST comparisons, particularly on how to capture most AGV and NGV on both in-situ and ex-situ programs. Based on a review of published studies, we found that, on average, two and four populations would be needed for woody perennials (n = 18) to capture 99% of NGV and AGV, respectively, whereas four populations would be needed in case of herbaceous perennials (n = 14). On average, Q ST is about 3.6, 1.5, and 1.1 times greater than F ST in woody plants, annuals, and herbaceous perennials, respectively. Hence, conservation and management policies or suggestions based solely on inference on F ST could be misleading, particularly in woody species. To maximize the preservation of the maximum levels of both AGV and NGV, we suggest using maximum Q ST rather than average Q ST. We recommend conservation managers and practitioners consider this when formulating further conservation and restoration plans for plant species, particularly woody species.
Collapse
Affiliation(s)
- Mi Yoon Chung
- Department of Biological SciencesChungnam National UniversityDaejeon34134South Korea
| | - Juha Merilä
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFI‐00014Finland
- Area of Ecology & BiodiversitySchool of Biological SciencesThe University of Hong KongHong Kong SARChina
| | - Yuseob Kim
- Division of EcoScienceEwha Womans UniversitySeoul03760South Korea
- Department of Life ScienceEwha Womans UniversitySeoul03760South Korea
| | - Kangshan Mao
- Key Laboratory for Bio‐resources and Eco‐environment of Ministry of Education, College of Life Science, State Key Laboratory of Hydraulics and Mountain River EngineeringSichuan UniversityChengdu610065China
| | - Jordi López‐Pujol
- Botanic Institute of Barcelona (IBB), CSIC‐Ajuntament de BarcelonaBarcelona08038CataloniaSpain
- Universidad Espíritu Santo (UEES)Samborondón091650Ecuador
| | - Myong Gi Chung
- Division of Life Science and RINSGyeongsang National UniversityJinju52828South Korea
| |
Collapse
|
47
|
Genomic diversity and signals of selection processes in wild and farm-reared red-legged partridges (Alectoris rufa). Genomics 2023; 115:110591. [PMID: 36849018 DOI: 10.1016/j.ygeno.2023.110591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 02/18/2023] [Accepted: 02/22/2023] [Indexed: 02/27/2023]
Abstract
The genetic dynamics of wild populations with releases of farm-reared reinforcements are very complex. These releases can endanger wild populations through genetic swamping or by displacing them. We assessed the genomic differences between wild and farm-reared red-legged partridges (Alectoris rufa) and described differential selection signals between both populations. We sequenced the whole genome of 30 wild and 30 farm-reared partridges. Both partridges had similar nucleotide diversity (π). Farm-reared partridges had a more negative Tajima's D and more and longer regions of extended haplotype homozygosity than wild partridges. We observed higher inbreeding coefficients (FIS and FROH) in wild partridges. Selective sweeps (Rsb) were enriched with genes that contribute to the reproductive, skin and feather colouring, and behavioural differences between wild and farm-reared partridges. The analysis of genomic diversity should inform future decisions for the preservation of wild populations.
Collapse
|
48
|
Chung MY, Merilä J, Li J, Mao K, López-Pujol J, Tsumura Y, Chung MG. Neutral and adaptive genetic diversity in plants: An overview. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.1116814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
Genetic diversity is a prerequisite for evolutionary change in all kinds of organisms. It is generally acknowledged that populations lacking genetic variation are unable to evolve in response to new environmental conditions (e.g., climate change) and thus may face an increased risk of extinction. Although the importance of incorporating genetic diversity into the design of conservation measures is now well understood, less attention has been paid to the distinction between neutral (NGV) and adaptive (AGV) genetic variation. In this review, we first focus on the utility of NGV by examining the ways to quantify it, reviewing applications of NGV to infer ecological and evolutionary processes, and by exploring its utility in designing conservation measures for plant populations and species. Against this background, we then summarize the ways to identify and estimate AGV and discuss its potential use in plant conservation. After comparing NGV and AGV and considering their pros and cons in a conservation context, we conclude that there is an urgent need for a better understanding of AGV and its role in climate change adaptation. To date, however, there are only a few AGV studies on non-model plant species aimed at deciphering the genetic and genomic basis of complex trait variation. Therefore, conservation researchers and practitioners should keep utilizing NGV to develop relevant strategies for rare and endangered plant species until more estimates of AGV are available.
Collapse
|
49
|
Peres PA, Mantelatto FL. Demographic changes and life-history strategies predict the genetic diversity in crabs. J Evol Biol 2023; 36:432-443. [PMID: 36537369 DOI: 10.1111/jeb.14138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 10/15/2022] [Accepted: 10/24/2022] [Indexed: 12/24/2022]
Abstract
Uncovering what predicts genetic diversity (GD) within species can help us access the status of populations and their evolutionary potential. Traits related to effective population size show a proportional association to GD, but evidence supports life-history strategies and habitat as the drivers of GD variation. Instead of investigating highly divergent taxa, focusing on one group could help to elucidate the factors influencing the GD. Additionally, most empirical data is based on vertebrate taxa; therefore, we might be missing novel patterns of GD found in neglected invertebrate groups. Here, we investigated the predictors of the GD in crabs (Brachyura) by compiling the most comprehensive cytochrome c oxidase subunit I (COI) available. Eight predictor variables were analysed across 150 species (16 992 sequences) using linear models (multiple linear regression) and comparative methods (PGLS). Our results indicate that population size fluctuation represents the most critical trait predicting GD, with species that have undergone bottlenecks followed by population expansion showing lower GD. Egg size, pelagic larval duration and habitat might play a role probably because of their association with how species respond to disturbances. Ultimately, K-strategists that have undergone bottlenecks are the species showing lower GD. Some variables do not show an association with GD as expected, most likely due to the taxon-specific role of some predictors, which should be considered in further investigations and generalizations. This work highlights the complexity underlying the predictors of GD and adds results from a marine invertebrate group to the current understanding of this topic.
Collapse
Affiliation(s)
- Pedro A Peres
- Faculty of Philosophy, Sciences and Letters at Ribeirão Preto (FFCLRP), Laboratory of Bioecology and Crustacean Systematics (LBSC), Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Fernando L Mantelatto
- Faculty of Philosophy, Sciences and Letters at Ribeirão Preto (FFCLRP), Laboratory of Bioecology and Crustacean Systematics (LBSC), Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
50
|
Genetic and demographic consequences of range contraction patterns during biological annihilation. Sci Rep 2023; 13:1691. [PMID: 36717685 PMCID: PMC9886963 DOI: 10.1038/s41598-023-28927-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
Species range contractions both contribute to, and result from, biological annihilation, yet do not receive the same attention as extinctions. Range contractions can lead to marked impacts on populations but are usually characterized only by reduction in extent of range. For effective conservation, it is critical to recognize that not all range contractions are the same. We propose three distinct patterns of range contraction: shrinkage, amputation, and fragmentation. We tested the impact of these patterns on populations of a generalist species using forward-time simulations. All three patterns caused 86-88% reduction in population abundance and significantly increased average relatedness, with differing patterns in declines of nucleotide diversity relative to the contraction pattern. The fragmentation pattern resulted in the strongest effects on post-contraction genetic diversity and structure. Defining and quantifying range contraction patterns and their consequences for Earth's biodiversity would provide useful and necessary information to combat biological annihilation.
Collapse
|