1
|
Mendiola PJ, O’Herron P, Xie K, Brands MW, Bush W, Patterson RE, Di Stefano V, Filosa JA. Blood pressure variability compromises vascular function in middle-aged mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.21.619509. [PMID: 39484398 PMCID: PMC11526967 DOI: 10.1101/2024.10.21.619509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Blood pressure variability (BPV) has emerged as a novel risk factor for cognitive decline and dementia, independent of alterations in average blood pressure (BP). However, the underlying consequences of large BP fluctuations on the neurovascular complex are unknown. We developed a novel mouse model of BPV in middle-aged mice based on intermittent Angiotensin II infusions. Using radio telemetry, we demonstrated that the 24-hr BP averages of these mice were similar to controls, indicating BPV without hypertension. Chronic (20-25 days) BPV led to a blunted bradycardic response and cognitive deficits. Two-photon imaging of parenchymal arterioles showed enhanced pressure-evoked constrictions (myogenic response) in BPV mice. Sensory stimulus-evoked dilations (neurovascular coupling) were greater at higher BP levels in control mice, but this pressure-dependence was lost in BPV mice. Our findings support the notion that large BP variations impair vascular function at the neurovascular complex and contribute to cognitive decline.
Collapse
Affiliation(s)
- Perenkita J. Mendiola
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Philip O’Herron
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Kun Xie
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Michael W. Brands
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Weston Bush
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Rachel E. Patterson
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Valeria Di Stefano
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Jessica A. Filosa
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| |
Collapse
|
2
|
Taylor JL, Baudel MMA, Nieves-Cintron M, Navedo MF. Vascular Function and Ion Channels in Alzheimer's Disease. Microcirculation 2024; 31:e12881. [PMID: 39190776 PMCID: PMC11498901 DOI: 10.1111/micc.12881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024]
Abstract
This review paper explores the critical role of vascular ion channels in the regulation of cerebral artery function and examines the impact of Alzheimer's disease (AD) on these processes. Vascular ion channels are fundamental in controlling vascular tone, blood flow, and endothelial function in cerebral arteries. Dysfunction of these channels can lead to impaired cerebral autoregulation, contributing to cerebrovascular pathologies. AD, characterized by the accumulation of amyloid beta (Aβ) plaques and neurofibrillary tangles, has been increasingly linked to vascular abnormalities, including altered vascular ion channel activity. Here, we briefly review the role of vascular ion channels in cerebral blood flow control and neurovascular coupling. We then examine the vascular defects in AD, the current understanding of how AD pathology affects vascular ion channel function, and how these changes may lead to compromised cerebral blood flow and neurodegenerative processes. Finally, we provide future perspectives and conclusions. Understanding this topic is important as ion channels may be potential therapeutic targets for improving cerebrovascular health and mitigating AD progression.
Collapse
Affiliation(s)
- Jade L. Taylor
- Department of Pharmacology, University of California Davis, Davis CA, 95616, USA
| | | | | | - Manuel F. Navedo
- Department of Pharmacology, University of California Davis, Davis CA, 95616, USA
| |
Collapse
|
3
|
Rajkovic J, Peric M, Stanisic J, Gostimirovic M, Novakovic R, Djokic V, Tepavcevic S, Rakocevic J, Labudovic-Borovic M, Gojkovic-Bukarica L. Effect of Type-2 Diabetes Mellitus on the Expression and Function of Smooth Muscle ATP-Sensitive Potassium Channels in Human Internal Mammary Artery Grafts. Pharmaceuticals (Basel) 2024; 17:857. [PMID: 39065708 PMCID: PMC11280115 DOI: 10.3390/ph17070857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/10/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Here we have shown for the first time altered expression of the vascular smooth muscle (VSM) KATP channel subunits in segments of the human internal mammary artery (HIMA) in patients with type-2 diabetes mellitus (T2DM). Functional properties of vascular KATP channels in the presence of T2DM, and the interaction between its subunits and endogenous ligands known to relax this vessel, were tested using the potassium (K) channels opener, pinacidil. HIMA is the most commonly used vascular graft in cardiac surgery. Previously it was shown that pinacidil relaxes HIMA segments through interaction with KATP (SUR2B/Kir6.1) vascular channels, but it is unknown whether pinacidil sensitivity is changed in the presence of T2DM, considering diabetes-induced vascular complications commonly seen in patients undergoing coronary artery bypass graft surgery (CABG). KATP subunits were detected in HIMA segments using Western blot and immunohistochemistry analyses. An organ bath system was used to interrogate endothelium-independent vasorelaxation caused by pinacidil. In pharmacological experiments, pinacidil was able to relax HIMA from patients with T2DM, with sensitivity comparable to our previous results. All three KATP subunits (SUR2B, Kir6.1 and Kir6.2) were observed in HIMA from patients with and without T2DM. There were no differences in the expression of the SUR2B subunit. The expression of the Kir6.1 subunit was lower in HIMA from T2DM patients. In the same group, the expression of the Kir6.2 subunit was higher. Therefore, KATP channels might not be the only method of pinacidil-induced dilatation of T2DM HIMA. T2DM may decrease the level of Kir6.1, a dominant subunit in VSM of HIMA, altering the interaction between pinacidil and those channels.
Collapse
Affiliation(s)
- Jovana Rajkovic
- Institute of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (M.G.); (L.G.-B.)
| | - Miodrag Peric
- Dedinje Cardiovascular Institute, 11000 Belgrade, Serbia;
| | - Jelena Stanisic
- Laboratory for Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences, University of Belgrade, 11000 Belgrade, Serbia; (J.S.); (S.T.)
| | - Milos Gostimirovic
- Institute of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (M.G.); (L.G.-B.)
| | - Radmila Novakovic
- Center for Genome Sequencing and Bioinformatics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11000 Belgrade, Serbia;
| | - Vladimir Djokic
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905, USA;
| | - Snezana Tepavcevic
- Laboratory for Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences, University of Belgrade, 11000 Belgrade, Serbia; (J.S.); (S.T.)
| | - Jelena Rakocevic
- Institute of Histology and Embryology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (J.R.); (M.L.-B.)
| | - Milica Labudovic-Borovic
- Institute of Histology and Embryology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (J.R.); (M.L.-B.)
| | - Ljiljana Gojkovic-Bukarica
- Institute of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (M.G.); (L.G.-B.)
- Dedinje Cardiovascular Institute, 11000 Belgrade, Serbia;
| |
Collapse
|
4
|
Raph SM, Calderin EP, Nong Y, Brittian K, Garrett L, Zhang D, Nystoriak MA. Kv beta complex facilitates exercise-induced augmentation of myocardial perfusion and cardiac growth. Front Cardiovasc Med 2024; 11:1411354. [PMID: 38978788 PMCID: PMC11228310 DOI: 10.3389/fcvm.2024.1411354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/21/2024] [Indexed: 07/10/2024] Open
Abstract
The oxygen sensitivity of voltage-gated potassium (Kv) channels regulates cardiovascular physiology. Members of the Kv1 family interact with intracellular Kvβ proteins, which exhibit aldo-keto reductase (AKR) activity and confer redox sensitivity to Kv channel gating. The Kvβ proteins contribute to vasoregulation by controlling outward K+ currents in smooth muscle upon changes in tissue oxygen consumption and demand. Considering exercise as a primary physiological stimulus of heightened oxygen demand, the current study tested the role of Kvβ proteins in exercise performance, exercise-induced adaptations in myocardial perfusion, and physiological cardiac growth. Our findings reveal that genetic ablation of Kvβ2 proteins diminishes baseline exercise capacity in mice and attenuates the enhancement in exercise performance observed after long-term training. Moreover, we demonstrate that Kvβ2 proteins are critical for exercise-mediated enhancement in myocardial perfusion during cardiac stress as well as adaptive changes in cardiac structure. Our results underscore the importance of Kvβ proteins in metabolic vasoregulation, highlighting their role in modulating both exercise capacity and cardiovascular benefits associated with training. Furthermore, our study sheds light on a novel molecular target for enhancing exercise performance and improving the health benefits associated with exercise training in patients with limited capacity for physical activity.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Matthew A. Nystoriak
- Center for Cardiometabolic Science, Department of Medicine, Division of Environmental Medicine, University of Louisville, Louisville, KY, United States
| |
Collapse
|
5
|
Park M, Mun SY, Zhuang W, Jeong J, Kim HR, Park H, Han ET, Han JH, Chun W, Li H, Park WS. The antidiabetic drug ipragliflozin induces vasorelaxation of rabbit femoral artery by activating a Kv channel, the SERCA pump, and the PKA signaling pathway. Eur J Pharmacol 2024; 972:176589. [PMID: 38631503 DOI: 10.1016/j.ejphar.2024.176589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/29/2024] [Accepted: 04/11/2024] [Indexed: 04/19/2024]
Abstract
We explored the vasorelaxant effects of ipragliflozin, a sodium-glucose cotransporter-2 inhibitor, on rabbit femoral arterial rings. Ipragliflozin relaxed phenylephrine-induced pre-contracted rings in a dose-dependent manner. Pre-treatment with the ATP-sensitive K+ channel inhibitor glibenclamide (10 μM), the inwardly rectifying K+ channel inhibitor Ba2+ (50 μM), or the Ca2+-sensitive K+ channel inhibitor paxilline (10 μM) did not influence the vasorelaxant effect. However, the voltage-dependent K+ (Kv) channel inhibitor 4-aminopyridine (3 mM) reduced the vasorelaxant effect. Specifically, the vasorelaxant response to ipragliflozin was significantly attenuated by pretreatment with the Kv7.X channel inhibitors linopirdine (10 μM) and XE991 (10 μM), the sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA) pump inhibitors thapsigargin (1 μM) and cyclopiazonic acid (10 μM), and the cAMP/protein kinase A (PKA)-associated signaling pathway inhibitors SQ22536 (50 μM) and KT5720 (1 μM). Neither the cGMP/protein kinase G (PKG)-associated signaling pathway nor the endothelium was involved in ipragliflozin-induced vasorelaxation. We conclude that ipragliflozin induced vasorelaxation of rabbit femoral arteries by activating Kv channels (principally the Kv7.X channel), the SERCA pump, and the cAMP/PKA-associated signaling pathway independent of other K+ (ATP-sensitive K+, inwardly rectifying K+, and Ca2+-sensitive K+) channels, cGMP/PKG-associated signaling, and the endothelium.
Collapse
Affiliation(s)
- Minju Park
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Seo-Yeong Mun
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Wenwen Zhuang
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Junsu Jeong
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Hye Ryung Kim
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Hongzoo Park
- Institute of Medical Sciences, Department of Urology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Jin-Hee Han
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Wanjoo Chun
- Department of Pharmacology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Hongliang Li
- Institute of Translational Medicine, Medical College, Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment for Senile Diseases, Yangzhou University, Yangzhou, 225001, Jiangsu, China.
| | - Won Sun Park
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea.
| |
Collapse
|
6
|
Nwokocha C, Palacios J, Ojukwu VE, Nna VU, Owu DU, Nwokocha M, McGrowder D, Orie NN. Oxidant-induced disruption of vascular K + channel function: implications for diabetic vasculopathy. Arch Physiol Biochem 2024; 130:361-372. [PMID: 35757993 DOI: 10.1080/13813455.2022.2090578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/07/2022] [Indexed: 11/02/2022]
Abstract
Diabetes in humans a chronic metabolic disorder characterised by hyperglycaemia, it is associated with an increased risk of cardiovascular disease, disruptions to metabolism and vascular functions. It is also linked to oxidative stress and its complications. Its role in vascular dysfunctions is generally reported without detailed impact on the molecular mechanisms. Potassium ion channel (K+ channels) are key regulators of vascular tone, and as membrane proteins, are modifiable by oxidant stress associated with diabetes. This review manuscript examined the impact of oxidant stress on vascular K+ channel functions in diabetes, its implication in vascular complications and metabolic and cardiovascular diseases.
Collapse
Affiliation(s)
| | - Javier Palacios
- Department of Pharmacy, Faculty of Health Sciences, Arturo Prat University, Iquique, Chile
| | - Victoria E Ojukwu
- Basic Medical Sciences, University of the West Indies, Mona, Kingston, Jamaica
| | - Victor Udo Nna
- Department of Physiology, College of Medical Sciences, University of Calabar, Calabar, Nigeria
| | - Daniel Udofia Owu
- Department of Physiology, College of Medical Sciences, University of Calabar, Calabar, Nigeria
| | - Magdalene Nwokocha
- Department of Pathology, Faculty of Medical Sciences, University of the West Indies, Mona, Kingston, Jamaica
| | - Donovan McGrowder
- Department of Pathology, Faculty of Medical Sciences, University of the West Indies, Mona, Kingston, Jamaica
| | - Nelson N Orie
- Centre of Metabolism and Inflammation, University College London, London, UK
| |
Collapse
|
7
|
Hou W, Yin S, Li P, Zhang L, Chen T, Qin D, Mustafa AU, Liu C, Song M, Qiu C, Xiong X, Wang J. Aberrant splicing of Ca V1.2 calcium channel induced by decreased Rbfox1 enhances arterial constriction during diabetic hyperglycemia. Cell Mol Life Sci 2024; 81:164. [PMID: 38575795 PMCID: PMC10995029 DOI: 10.1007/s00018-024-05198-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 02/23/2024] [Accepted: 03/04/2024] [Indexed: 04/06/2024]
Abstract
Diabetic hyperglycemia induces dysfunctions of arterial smooth muscle, leading to diabetic vascular complications. The CaV1.2 calcium channel is one primary pathway for Ca2+ influx, which initiates vasoconstriction. However, the long-term regulation mechanism(s) for vascular CaV1.2 functions under hyperglycemic condition remains unknown. Here, Sprague-Dawley rats fed with high-fat diet in combination with low dose streptozotocin and Goto-Kakizaki (GK) rats were used as diabetic models. Isolated mesenteric arteries (MAs) and vascular smooth muscle cells (VSMCs) from rat models were used to assess K+-induced arterial constriction and CaV1.2 channel functions using vascular myograph and whole-cell patch clamp, respectively. K+-induced vasoconstriction is persistently enhanced in the MAs from diabetic rats, and CaV1.2 alternative spliced exon 9* is increased, while exon 33 is decreased in rat diabetic arteries. Furthermore, CaV1.2 channels exhibit hyperpolarized current-voltage and activation curve in VSMCs from diabetic rats, which facilitates the channel function. Unexpectedly, the application of glycated serum (GS), mimicking advanced glycation end-products (AGEs), but not glucose, downregulates the expression of the splicing factor Rbfox1 in VSMCs. Moreover, GS application or Rbfox1 knockdown dynamically regulates alternative exons 9* and 33, leading to facilitated functions of CaV1.2 channels in VSMCs and MAs. Notably, GS increases K+-induced intracellular calcium concentration of VSMCs and the vasoconstriction of MAs. These results reveal that AGEs, not glucose, long-termly regulates CaV1.2 alternative splicing events by decreasing Rbfox1 expression, thereby enhancing channel functions and increasing vasoconstriction under diabetic hyperglycemia. This study identifies the specific molecular mechanism for enhanced vasoconstriction under hyperglycemia, providing a potential target for managing diabetic vascular complications.
Collapse
Affiliation(s)
- Wei Hou
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
- The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu, China
| | - Shumin Yin
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Pengpeng Li
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ludan Zhang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Tiange Chen
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Dongxia Qin
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Atta Ul Mustafa
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Caijie Liu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Miaomiao Song
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Cheng Qiu
- Nanjing Comprehensive Stroke Center, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaoqing Xiong
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China.
- The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu, China.
| | - Juejin Wang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China.
- The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu, China.
| |
Collapse
|
8
|
Sarkar A, Pawar SV, Chopra K, Jain M. Gamut of glycolytic enzymes in vascular smooth muscle cell proliferation: Implications for vascular proliferative diseases. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167021. [PMID: 38216067 DOI: 10.1016/j.bbadis.2024.167021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/05/2024] [Accepted: 01/05/2024] [Indexed: 01/14/2024]
Abstract
Vascular smooth muscle cells (VSMCs) are the predominant cell type in the media of the blood vessels and are responsible for maintaining vascular tone. Emerging evidence confirms that VSMCs possess high plasticity. During vascular injury, VSMCs switch from a "contractile" phenotype to an extremely proliferative "synthetic" phenotype. The balance between both strongly affects the progression of vascular remodeling in many cardiovascular pathologies such as restenosis, atherosclerosis and aortic aneurism. Proliferating cells demand high energy requirements and to meet this necessity, alteration in cellular bioenergetics seems to be essential. Glycolysis, fatty acid metabolism, and amino acid metabolism act as a fuel for VSMC proliferation. Metabolic reprogramming of VSMCs is dynamically variable that involves multiple mechanisms and encompasses the coordination of various signaling molecules, proteins, and enzymes. Here, we systemically reviewed the metabolic changes together with the possible treatments that are still under investigation underlying VSMC plasticity which provides a promising direction for the treatment of diseases associated with VSMC proliferation. A better understanding of the interaction between metabolism with associated signaling may uncover additional targets for better therapeutic strategies in vascular disorders.
Collapse
Affiliation(s)
- Ankan Sarkar
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Sandip V Pawar
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Kanwaljit Chopra
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Manish Jain
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India.
| |
Collapse
|
9
|
Xu S, Eisenberg R, Song Z, Huang H. Coupled chemical reactions: Effects of electric field, diffusion, and boundary control. Phys Rev E 2023; 108:064413. [PMID: 38243466 DOI: 10.1103/physreve.108.064413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/31/2023] [Indexed: 01/21/2024]
Abstract
Chemical reactions involve the movement of charges, and this paper presents a mathematical model for describing chemical reactions in electrolytes. The model is developed using an energy variational method that aligns with classical thermodynamics principles. It encompasses both electrostatics and chemical reactions within consistently defined energetic and dissipative functionals. Furthermore, the energy variation method is extended to account for open systems that involve the input and output of charge and mass. Such open systems have the capability to convert one form of input energy into another form of output energy. In particular, a two-domain model is developed to study a reaction system with self-regulation and internal switching, which plays a vital role in the electron transport chain of mitochondria responsible for ATP generation-a crucial process for sustaining life. Simulations are conducted to explore the influence of electric potential on reaction rates and switching dynamics within the two-domain system. It shows that the electric potential inhibits the oxidation reaction while accelerating the reduction reaction.
Collapse
Affiliation(s)
- Shixin Xu
- Zu Chongzhi Center for Mathematics and Computational Sciences, Duke Kunshan University, 8 Duke Ave, Kunshan, Jiangsu 215316, China
| | - Robert Eisenberg
- Department of Applied Mathematics, Illinois Institute of Technology, Chicago, Illinois 60616, USA and Department of Physiology and Biophysics, Rush University, Chicago, Ilinois 60612, USA
| | - Zilong Song
- Math and Statistics Department, Utah State University, Old Main Hill Logan, Utah 84322, USA
| | - Huaxiong Huang
- Research Center for Mathematics, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, Guangdong, 519088, China; Guangdong Provincial Key Laboratory of Interdisciplinary Research and Application for Data Science, BNU-HKBU United International College, Zhuhai, Guangdong 519088, China; Laboratory of Mathematics and Complex Systems, MOE, Beijing Normal University, Beijing 100875, China; and Department of Mathematics and Statistics York University, Toronto, Ontario, Canada M3J 1P3
| |
Collapse
|
10
|
Jung J, Shin S, Park J, Lee K, Choi HY. Hypotensive and Vasorelaxant Effects of Sanguisorbae Radix Ethanol Extract in Spontaneously Hypertensive and Sprague Dawley Rats. Nutrients 2023; 15:4510. [PMID: 37960162 PMCID: PMC10647409 DOI: 10.3390/nu15214510] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/21/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Hypertension requires proper management because of the increased risk of cardiovascular disease and death. For this purpose, functional foods containing tannins have been considered an effective treatment. Sanguisorbae radix (SR) also contains various tannins; however, there have been no studies on its vasorelaxant or antihypertensive effects. In this study, the vasorelaxant effect of the ethanol extract of SR (SRE) was investigated in the thoracic aorta of Sprague Dawley rats. SRE (1, 3, 10, 30, and 100 μg/mL) showed this effect in a dose-dependent manner, and its mechanisms were related to the NO/cGMP pathway and voltage-gated K+ channels. Concentrations of 300 and 1000 μg/mL blocked the influx of extracellular Ca2+ and inhibited vasoconstriction. Moreover, 100 μg/mL of SRE showed a relaxing effect on blood vessels constricted by angiotensin II. The hypotensive effect of SRE was investigated in spontaneously hypertensive rats (SHR) using the tail-cuff method. Blood pressure significantly decreased 4 and 8 h after 1000 mg/kg of SRE administration. Considering these hypotensive effects and the vasorelaxant mechanisms of SRE, our findings suggests that SRE can be used as a functional food to prevent and treat hypertension. Further studies are needed for identifying the active components and determining the optimal dosage.
Collapse
Affiliation(s)
- Jaesung Jung
- Department of Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (J.J.); (S.S.)
| | - Sujin Shin
- Department of Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (J.J.); (S.S.)
| | - Junkyu Park
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Kyungjin Lee
- Department of Herbal Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ho-Young Choi
- Department of Herbal Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
11
|
Grandi E, Navedo MF, Saucerman JJ, Bers DM, Chiamvimonvat N, Dixon RE, Dobrev D, Gomez AM, Harraz OF, Hegyi B, Jones DK, Krogh-Madsen T, Murfee WL, Nystoriak MA, Posnack NG, Ripplinger CM, Veeraraghavan R, Weinberg S. Diversity of cells and signals in the cardiovascular system. J Physiol 2023; 601:2547-2592. [PMID: 36744541 PMCID: PMC10313794 DOI: 10.1113/jp284011] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/19/2023] [Indexed: 02/07/2023] Open
Abstract
This white paper is the outcome of the seventh UC Davis Cardiovascular Research Symposium on Systems Approach to Understanding Cardiovascular Disease and Arrhythmia. This biannual meeting aims to bring together leading experts in subfields of cardiovascular biomedicine to focus on topics of importance to the field. The theme of the 2022 Symposium was 'Cell Diversity in the Cardiovascular System, cell-autonomous and cell-cell signalling'. Experts in the field contributed their experimental and mathematical modelling perspectives and discussed emerging questions, controversies, and challenges in examining cell and signal diversity, co-ordination and interrelationships involved in cardiovascular function. This paper originates from the topics of formal presentations and informal discussions from the Symposium, which aimed to develop a holistic view of how the multiple cell types in the cardiovascular system integrate to influence cardiovascular function, disease progression and therapeutic strategies. The first section describes the major cell types (e.g. cardiomyocytes, vascular smooth muscle and endothelial cells, fibroblasts, neurons, immune cells, etc.) and the signals involved in cardiovascular function. The second section emphasizes the complexity at the subcellular, cellular and system levels in the context of cardiovascular development, ageing and disease. Finally, the third section surveys the technological innovations that allow the interrogation of this diversity and advancing our understanding of the integrated cardiovascular function and dysfunction.
Collapse
Affiliation(s)
- Eleonora Grandi
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| | - Manuel F. Navedo
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| | - Jeffrey J. Saucerman
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Donald M. Bers
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| | - Nipavan Chiamvimonvat
- Department of Pharmacology, University of California Davis, Davis, CA, USA
- Department of Internal Medicine, University of California Davis, Davis, CA, USA
| | - Rose E. Dixon
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA, USA
| | - Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
- Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Canada
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Ana M. Gomez
- Signaling and Cardiovascular Pathophysiology-UMR-S 1180, INSERM, Université Paris-Saclay, Orsay, France
| | - Osama F. Harraz
- Department of Pharmacology, Larner College of Medicine, and Vermont Center for Cardiovascular and Brain Health, University of Vermont, Burlington, VT, USA
| | - Bence Hegyi
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| | - David K. Jones
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Trine Krogh-Madsen
- Department of Physiology & Biophysics, Weill Cornell Medicine, New York, New York, USA
| | - Walter Lee Murfee
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Matthew A. Nystoriak
- Department of Medicine, Division of Environmental Medicine, Center for Cardiometabolic Science, University of Louisville, Louisville, KY, 40202, USA
| | - Nikki G. Posnack
- Department of Pediatrics, Department of Pharmacology and Physiology, The George Washington University, Washington, DC, USA
- Sheikh Zayed Institute for Pediatric and Surgical Innovation, Children’s National Heart Institute, Children’s National Hospital, Washington, DC, USA
| | | | - Rengasayee Veeraraghavan
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
- Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University – Wexner Medical Center, Columbus, OH, USA
| | - Seth Weinberg
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
- Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University – Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|
12
|
Zhou X, Lin H, Wei L, Tan Y, Fu X. Potential mechanism of transient receptor potential cation channel subfamily V member 1 combined with an ATP‑sensitive potassium channel in severe preeclampsia. Exp Ther Med 2023; 26:318. [PMID: 37273761 PMCID: PMC10236140 DOI: 10.3892/etm.2023.12017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 02/14/2023] [Indexed: 06/06/2023] Open
Abstract
Severe preeclampsia is one of the most serious obstetric diseases. However, the pathogenesis of the disease is not fully understood. In the present study, placental artery and blood serum was collected from patients with severe preeclampsia, as well as from normal pregnant women. The results of reverse transcription-quantitative (q)PCR, western blotting, and immunohistochemical staining revealed markedly decreased transient receptor potential cation channel subfamily V member 1 (TRPV1), ATP-sensitive potassium channel (KATP) subtype Kir6.1/SUR2B and endothelial nitric oxide synthase (eNOS) expression in severe preeclampsia tissue specimens compared with those in samples from normal pregnant women. The nitrate reduction method indicated lower NO levels in the tissue specimens and serum of patients with severe preeclampsia. Moreover, hematoxylin-eosin staining showed that the endothelial cell layer in the placental artery of patients with severe preeclampsia was notably damaged. To investigate the potential role of TRPV1-KATP channels in severe preeclampsia, HUVECs were used for in vitro experiments. The samples were divided into a control group, a TRPV1 agonist group (capsaicin) and a TRPV1 inhibitor group (capsazepine). qPCR and western blotting revealed that the relative gene and protein expression levels of TRPV1, Kir6.1, SUR2B and eNOS in the control group were significantly lower than those in the capsaicin group and considerably higher than those in the capsazepine group. Based on previous studies and the results of the present study, we hypothesized that impairment of the endothelial TRPV1-KATP channels results in decreased eNOS/NO pathway activity, which may be one of the mechanisms involved in severe preeclampsia. The increase in NO generation mediated by TRPV1-KATP may be a suitable target for the management of severe preeclampsia.
Collapse
Affiliation(s)
- Xianyi Zhou
- Department of Obstetrics, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Hairui Lin
- Department of Obstetrics, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Li Wei
- Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Yingyun Tan
- Department of Obstetrics, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Xiaodong Fu
- Department of Obstetrics, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
13
|
Kate Gadanec L, Qaradakhi T, Renee McSweeney K, Matsoukas JM, Apostolopoulos V, Burrell LM, Zulli A. Diminazene aceturate uses different pathways to induce relaxation in healthy and atherogenic blood vessels. Biochem Pharmacol 2023; 208:115397. [PMID: 36566945 DOI: 10.1016/j.bcp.2022.115397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/17/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Diminazene aceturate (DIZE), a putative angiotensin-converting enzyme 2 (ACE2) activator, elicits relaxation in various animal models. This study aimed to determine the relaxing mechanisms in internal iliac arteries utilised by DIZE in healthy and atherogenic rabbit models. Studies were conducted on internal iliac artery rings retrieved from male New Zealand White rabbits fed a 4-week healthy control (n = 24) or atherogenic diet (n = 20). To investigate pathways utilised by DIZE to promote arterial relaxation, a DIZE dose response [10-9.0 M - 10-5.0 M] was performed on pre-contracted rings incubated with pharmaceuticals that target: components of the renin-angiotensin system; endothelial- and vascular smooth muscle-dependent mechanisms; protein kinases; and potassium channels. ACE2 expression was quantified by immunohistochemistry analysis following a 2 hr or 4 hr DIZE incubation. DIZE significantly enhanced vessel relaxation in atherogenic rings at doses [10-5.5 M] (p < 0.01) and [10-5.0 M] (p < 0.0001), when compared to healthy controls. Comprehensive results from functional isometric studies determined that DIZE causes relaxation via different mechanisms depending on pathology. For the first time, we report that in healthy blood vessels DIZE exerts its direct relaxing effect through ACE2/AT2R and NO/sGC pathways; however, in atherogenesis this switches to MasR, arachidonic acid pathway (i.e., COX1/2, EET and DHET), MCLP, Ca2+ activated voltage channels, AMPK and ERK1/2. Moreover, quantitative immunohistochemical analysis demonstrated that DIZE increases artery ACE2 expression in a time dependent manner. We provide a detailed investigation of DIZE's mechanisms and demonstrate for the first time that in healthy and atherogenic arteries DIZE provides beneficial effects through directly inducing relaxation, albeit via different pathways.
Collapse
Affiliation(s)
- Laura Kate Gadanec
- Institute for Health and Sport, Victoria University, Melbourne 3030, Victoria, Australia.
| | - Tawar Qaradakhi
- Institute for Health and Sport, Victoria University, Melbourne 3030, Victoria, Australia.
| | | | - John M Matsoukas
- Institute for Health and Sport, Victoria University, Melbourne 3030, Victoria, Australia; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Alberta T2N 4N1, Canada; NewDrug PC, Patras Science Park, 26500 Patras, Greece.
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne 3030, Victoria, Australia; Australian Institute for Musculoskeletal Science, Melbourne 3021, Victoria, Australia.
| | - Louise M Burrell
- Department of Medicine, Austin Health, University of Melbourne, Heidelberg 3084, Victoria, Australia.
| | - Anthony Zulli
- Institute for Health and Sport, Victoria University, Melbourne 3030, Victoria, Australia.
| |
Collapse
|
14
|
Blackwell JA, Silva JF, Louis EM, Savu A, Largent-Milnes TM, Brooks HL, Pires PW. Cerebral arteriolar and neurovascular dysfunction after chemically induced menopause in mice. Am J Physiol Heart Circ Physiol 2022; 323:H845-H860. [PMID: 36149767 PMCID: PMC9602916 DOI: 10.1152/ajpheart.00276.2022] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/20/2022] [Accepted: 09/20/2022] [Indexed: 12/14/2022]
Abstract
Cognitive decline is linked to decreased cerebral blood flow, particularly in women after menopause. Impaired cerebrovascular function precedes the onset of dementia, possibly because of reduced functional dilation in parenchymal arterioles. These vessels are bottlenecks of the cerebral microcirculation, and dysfunction can limit functional hyperemia in the brain. Large-conductance Ca2+-activated K+ channels (BKCa) are the final effectors of several pathways responsible for functional hyperemia, and their expression is modulated by estrogen. However, it remains unknown whether BKCa function is altered in cerebral parenchymal arterioles after menopause. Using a chemically induced model of menopause, the 4-vinylcyclohexene diepoxide (VCD) model, which depletes follicles while maintaining intact ovaries, we hypothesized that menopause would be associated with reduced functional vasodilatory responses in cerebral parenchymal arterioles of wild-type mice via reduced BKCa function. Using pressure myography of isolated parenchymal arterioles, we observed that menopause (Meno) induced a significant increase in spontaneous myogenic tone. Endothelial function, assessed as nitric oxide production and dilation after cholinergic stimulation or endothelium-dependent hyperpolarization pathways, was unaffected by Meno. BKCa function was significantly impaired in Meno compared with control, without changes in voltage-gated K+ channel activity. Cerebral functional hyperemia, measured by laser-speckle contrast imaging during whisker stimulation, was significantly blunted in Meno mice, without detectable changes in basal perfusion. However, behavioral testing identified no change in cognition. These findings suggest that menopause induces cerebral microvascular and neurovascular deficits.NEW & NOTEWORTHY Cerebral parenchymal arterioles from menopause mice showed increased myogenic tone. We identified an impairment in smooth muscle cell BKCa channel activity, without a reduction in endothelium-dependent dilation or nitric oxide production. Microvascular dysfunction was associated with a reduction in neurovascular responses after somatosensory stimulation. Despite the neurovascular impairment, cognitive abilities were maintained in menopausal mice.
Collapse
Affiliation(s)
- Jade A Blackwell
- Department of Physiology, University of Arizona, Tucson, Arizona
| | - Josiane F Silva
- Department of Physiology, University of Arizona, Tucson, Arizona
| | - Emma M Louis
- Department of Physiology, University of Arizona, Tucson, Arizona
| | - Andrea Savu
- Department of Physiology, University of Arizona, Tucson, Arizona
| | - Tally M Largent-Milnes
- Department of Pharmacology, University of Arizona, Tucson, Arizona
- Bio5 Institute, University of Arizona, Tucson, Arizona
| | - Heddwen L Brooks
- Department of Physiology, University of Arizona, Tucson, Arizona
- Bio5 Institute, University of Arizona, Tucson, Arizona
- Sarver Heart Center, University of Arizona, Tucson, Arizona
| | - Paulo W Pires
- Department of Physiology, University of Arizona, Tucson, Arizona
- Bio5 Institute, University of Arizona, Tucson, Arizona
- Sarver Heart Center, University of Arizona, Tucson, Arizona
| |
Collapse
|
15
|
Jesus RLC, Silva ILP, Araújo FA, Moraes RA, Silva LB, Brito DS, Lima GBC, Alves QL, Silva DF. 7-Hydroxycoumarin Induces Vasorelaxation in Animals with Essential Hypertension: Focus on Potassium Channels and Intracellular Ca 2+ Mobilization. Molecules 2022; 27:7324. [PMID: 36364149 PMCID: PMC9655823 DOI: 10.3390/molecules27217324] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/22/2022] [Accepted: 10/24/2022] [Indexed: 12/01/2022] Open
Abstract
Cardiovascular diseases (CVD) are the deadliest noncommunicable disease worldwide. Hypertension is the most prevalent risk factor for the development of CVD. Although there is a wide range of antihypertensive drugs, there still remains a lack of blood pressure control options for hypertensive patients. Additionally, natural products remain crucial to the design of new drugs. The natural product 7-hydroxycoumarin (7-HC) exhibits pharmacological properties linked to antihypertensive mechanisms of action. This study aimed to evaluate the vascular effects of 7-HC in an experimental model of essential hypertension. The isometric tension measurements assessed the relaxant effect induced by 7-HC (0.001 μM-300 μM) in superior mesenteric arteries isolated from hypertensive rats (SHR, 200-300 g). Our results suggest that the relaxant effect induced by 7-HC rely on K+-channels (KATP, BKCa, and, to a lesser extent, Kv) activation and also on Ca2+ influx from sarcolemma and sarcoplasmic reticulum mobilization (inositol 1,4,5-triphosphate (IP3) and ryanodine receptors). Moreover, 7-HC diminishes the mesenteric artery's responsiveness to α1-adrenergic agonist challenge and improves the actions of the muscarinic agonist and NO donor. The present work demonstrated that the relaxant mechanism of 7-HC in SHR involves endothelium-independent vasorelaxant factors. Additionally, 7-HC reduced vasoconstriction of the sympathetic agonist while improving vascular endothelium-dependent and independent relaxation.
Collapse
Affiliation(s)
- Rafael L. C. Jesus
- Laboratory of Cardiovascular Physiology and Pharmacology, Federal University of Bahia, Salvador 40110-902, Brazil
| | - Isnar L. P. Silva
- Laboratory of Cardiovascular Physiology and Pharmacology, Federal University of Bahia, Salvador 40110-902, Brazil
| | - Fênix A. Araújo
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation—FIOCRUZ, Salvador 40296-710, Brazil
| | - Raiana A. Moraes
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation—FIOCRUZ, Salvador 40296-710, Brazil
| | - Liliane B. Silva
- Laboratory of Cardiovascular Physiology and Pharmacology, Federal University of Bahia, Salvador 40110-902, Brazil
| | - Daniele S. Brito
- Laboratory of Cardiovascular Physiology and Pharmacology, Federal University of Bahia, Salvador 40110-902, Brazil
| | - Gabriela B. C. Lima
- Laboratory of Cardiovascular Physiology and Pharmacology, Federal University of Bahia, Salvador 40110-902, Brazil
| | - Quiara L. Alves
- Laboratory of Cardiovascular Physiology and Pharmacology, Federal University of Bahia, Salvador 40110-902, Brazil
| | - Darizy F. Silva
- Laboratory of Cardiovascular Physiology and Pharmacology, Federal University of Bahia, Salvador 40110-902, Brazil
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation—FIOCRUZ, Salvador 40296-710, Brazil
| |
Collapse
|
16
|
Daghbouche-Rubio N, López-López JR, Pérez-García MT, Cidad P. Vascular smooth muscle ion channels in essential hypertension. Front Physiol 2022; 13:1016175. [PMID: 36213221 PMCID: PMC9540222 DOI: 10.3389/fphys.2022.1016175] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Hypertension is a highly prevalent chronic disease and the major risk factor for cardiovascular diseases, the leading cause of death worldwide. Hypertension is characterized by an increased vascular tone determined by the contractile state of vascular smooth muscle cells that depends on intracellular calcium levels. The interplay of ion channels determine VSMCs membrane potential and thus intracellular calcium that controls the degree of contraction, vascular tone and blood pressure. Changes in ion channels expression and function have been linked to hypertension, but the mechanisms and molecular entities involved are not completely clear. Furthermore, the literature shows discrepancies regarding the contribution of different ion channels to hypertension probably due to differences both in the vascular preparation and in the model of hypertension employed. Animal models are essential to study this multifactorial disease but it is also critical to know their characteristics to interpret properly the results obtained. In this review we summarize previous studies, using the hypertensive mouse (BPH) and its normotensive control (BPN), focused on the identified changes in the expression and function of different families of ion channels. We will focus on L-type voltage-dependent Ca2+ channels (Cav1.2), canonical transient receptor potential channels and four different classes of K+ channels: voltage-activated (Kv), large conductance Ca2+-activated (BK), inward rectifiers (Kir) and ATP-sensitive (KATP) K+ channels. We will describe the role of these channels in hypertension and we will discuss the importance of integrating individual changes in a global context to understand the complex interplay of ion channels in hypertension.
Collapse
|
17
|
Park S, Kang M, Heo R, Mun SY, Park M, Han ET, Han JH, Chun W, Park H, Park WS. Inhibition of voltage-dependent K + channels by antimuscarinic drug fesoterodine in coronary arterial smooth muscle cells. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY 2022; 26:397-404. [PMID: 36039740 PMCID: PMC9437370 DOI: 10.4196/kjpp.2022.26.5.397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/08/2022] [Accepted: 08/08/2022] [Indexed: 11/25/2022]
Abstract
Fesoterodine, an antimuscarinic drug, is widely used to treat overactive bladder syndrome. However, there is little information about its effects on vascular K+ channels. In this study, voltage-dependent K+ (Kv) channel inhibition by fesoterodine was investigated using the patch-clamp technique in rabbit coronary artery. In whole-cell patches, the addition of fesoterodine to the bath inhibited the Kv currents in a concentration-dependent manner, with an IC50 value of 3.19 ± 0.91 μM and a Hill coefficient of 0.56 ± 0.03. Although the drug did not alter the voltage-dependence of steady-state activation, it shifted the steady-state inactivation curve to a more negative potential, suggesting that fesoterodine affects the voltage-sensor of the Kv channel. Inhibition by fesoterodine was significantly enhanced by repetitive train pulses (1 or 2 Hz). Furthermore, it significantly increased the recovery time constant from inactivation, suggesting that the Kv channel inhibition by fesoterodine is use (state)-dependent. Its inhibitory effect disappeared by pretreatment with a Kv 1.5 inhibitor. However, pretreatment with Kv2.1 or Kv7 inhibitors did not affect the inhibitory effects on Kv channels. Based on these results, we conclude that fesoterodine inhibits vascular Kv channels (mainly the Kv1.5 subtype) in a concentration- and use (state)-dependent manner, independent of muscarinic receptor antagonism.
Collapse
Affiliation(s)
- Seojin Park
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon 24341, Korea
| | - Minji Kang
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon 24341, Korea
| | - Ryeon Heo
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon 24341, Korea
| | - Seo-Yeong Mun
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon 24341, Korea
| | - Minju Park
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon 24341, Korea
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon 24341, Korea
| | - Jin-Hee Han
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon 24341, Korea
| | - Wanjoo Chun
- Department of Pharmacology, Kangwon National University School of Medicine, Chuncheon 24341, Korea
| | - Hongzoo Park
- Institute of Medical Sciences, Department of Urology, Kangwon National University School of Medicine, Chuncheon 24341, Korea
| | - Won Sun Park
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon 24341, Korea
| |
Collapse
|
18
|
Yerlikaya S, Djamgoz MB. Oleamide, a Sleep-Inducing Compound: Effects on Ion Channels and Cancer. Bioelectricity 2022. [DOI: 10.1089/bioe.2022.0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Serife Yerlikaya
- Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
| | - Mustafa B.A. Djamgoz
- Department of Life Sciences, Imperial College London, London, United Kingdom
- Biotechnology Research Center, Cyprus International University, Haspolat, Nicosia, TRNC, Mersin 10, Turkey
| |
Collapse
|
19
|
Kang M, Heo R, Park S, Mun SY, Park M, Han ET, Han JH, Chun W, Ha KS, Park H, Jung WK, Choi IW, Park WS. Inhibitory effects of the atypical antipsychotic, clozapine, on voltage-dependent K + channels in rabbit coronary arterial smooth muscle cells. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2022; 26:277-285. [PMID: 35766005 PMCID: PMC9247706 DOI: 10.4196/kjpp.2022.26.4.277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/10/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
To investigate the adverse effects of clozapine on cardiovascular ion channels, we examined the inhibitory effect of clozapine on voltage-dependent K+ (Kv) channels in rabbit coronary arterial smooth muscle cells. Clozapine-induced inhibition of Kv channels occurred in a concentration-dependent manner with an half-inhibitory concentration value of 7.84 ± 4.86 µM and a Hill coefficient of 0.47 ± 0.06. Clozapine did not shift the steady-state activation or inactivation curves, suggesting that it inhibited Kv channels regardless of gating properties. Application of train pulses (1 and 2 Hz) progressively augmented the clozapine-induced inhibition of Kv channels in the presence of the drug. Furthermore, the recovery time constant from inactivation was increased in the presence of clozapine, suggesting that clozapine-induced inhibition of Kv channels is use (state)-dependent. Pretreatment of a Kv1.5 subtype inhibitor decreased the Kv current amplitudes, but additional application of clozapine did not further inhibit the Kv current. Pretreatment with Kv2.1 or Kv7 subtype inhibitors partially blocked the inhibitory effect of clozapine. Based on these results, we conclude that clozapine inhibits arterial Kv channels in a concentrationand use (state)-dependent manner. Kv1.5 is the major subtype involved in clozapine-induced inhibition of Kv channels, and Kv2.1 and Kv7 subtypes are partially involved.
Collapse
Affiliation(s)
- Minji Kang
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon 24341, Korea
| | - Ryeon Heo
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon 24341, Korea
| | - Seojin Park
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon 24341, Korea
| | - Seo-Yeong Mun
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon 24341, Korea
| | - Minju Park
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon 24341, Korea
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon 24341, Korea
| | - Jin-Hee Han
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon 24341, Korea
| | - Wanjoo Chun
- Department of Pharmacology, Kangwon National University School of Medicine, Chuncheon 24341, Korea
| | - Kwon-Soo Ha
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon 24341, Korea
| | - Hongzoo Park
- Institute of Medical Sciences, Department of Urology, Kangwon National University School of Medicine, Chuncheon 24341, Korea
| | - Won-Kyo Jung
- Department of Biomedical Engineering and Center for Marine-Integrated Biomedical Technology (BK21 Plus), Pukyong National University, Busan 48513, Korea
| | - Il-Whan Choi
- Department of Microbiology, College of Medicine, Inje University, Busan 48516, Korea
| | - Won Sun Park
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon 24341, Korea
| |
Collapse
|
20
|
Liu XY, Qian LL, Wang RX. Hydrogen Sulfide-Induced Vasodilation: The Involvement of Vascular Potassium Channels. Front Pharmacol 2022; 13:911704. [PMID: 35721210 PMCID: PMC9198332 DOI: 10.3389/fphar.2022.911704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/02/2022] [Indexed: 12/21/2022] Open
Abstract
Hydrogen sulfide (H2S) has been highlighted as an important gasotransmitter in mammals. A growing number of studies have indicated that H2S plays a key role in the pathophysiology of vascular diseases and physiological vascular homeostasis. Alteration in H2S biogenesis has been reported in a variety of vascular diseases and H2S supplementation exerts effects of vasodilation. Accumulating evidence has shown vascular potassium channels activation is involved in H2S-induced vasodilation. This review aimed to summarize and discuss the role of H2S in the regulation of vascular tone, especially by interaction with different vascular potassium channels and the underlying mechanisms.
Collapse
Affiliation(s)
- Xiao-Yu Liu
- Department of Cardiology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Ling-Ling Qian
- Department of Cardiology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Ru-Xing Wang
- Department of Cardiology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| |
Collapse
|
21
|
Sahinturk S, Demirel S, Isbil N, Ozyener F. Potassium Channels Contributes to Apelin-induced Vasodilation in Rat
Thoracic Aorta. Protein Pept Lett 2022; 29:538-549. [DOI: 10.2174/0929866529666220516141317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/11/2022] [Accepted: 03/09/2022] [Indexed: 11/22/2022]
Abstract
Background:
Apelin is a newly discovered peptide hormone and originally discovered
endogenous apelin receptor ligand.
Objective:
In this study, we aimed to investigate the possible roles of potassium channel subtypes in
the vasorelaxant effect mechanisms of apelin.
Methods:
The vascular rings obtained from the thoracic aortas of the male Wistar Albino rats were
placed into the isolated tissue bath system. The resting tension was set to 2 g. After the equilibration
period, the aortic rings were precontracted with 10-5 M phenylephrine (PHE) or 45 mM KCl.
Pyroglutamyl-apelin-13 ([Pyr1]apelin-13), which is the dominant apelin isoform in the human
cardiovascular tissues and human plasma, was applied cumulatively (10-10-10-6 M) to the aortic
rings in the plateau phase. The experimental protocol was repeated in the presence of specific K+
channel subtype blockers to determine the role of K+ channels in the vasorelaxant effect
mechanisms of apelin.
Results:
[Pyr1]apelin-13 induced a concentration-dependent vasorelaxation (p < 0.001). The
maximum relaxation level was approximately 52%, according to PHE-induced contraction.
Tetraethylammonium, iberiotoxin, 4-Aminopyridine, glyburide, anandamide, and BaCl2 statistically
significantly decreased the vasorelaxant effect level of [Pyr1]apelin-13 (p < 0.001). However,
apamin didn’t statistically significantly change the vasorelaxant effect level of [Pyr1]apelin-13.
Conclusion:
In conclusion, our findings suggest that BKCa, IKCa, Kv, KATP, Kir, and K2P channels
are involved in the vasorelaxant effect mechanisms of apelin in the rat thoracic aorta.
Collapse
Affiliation(s)
- Serdar Sahinturk
- Physiology Department, Bursa Uludag University Medicine School, Bursa, Turkey
| | - Sadettin Demirel
- Physiology Department, Bursa Uludag University Medicine School, Bursa, Turkey
| | - Naciye Isbil
- Physiology Department, Bursa Uludag University Medicine School, Bursa, Turkey
| | - Fadil Ozyener
- Physiology Department, Bursa Uludag University Medicine School, Bursa, Turkey
| |
Collapse
|
22
|
Truong L, Zheng YM, Wang YX. The Potential Important Role of Mitochondrial Rieske Iron–Sulfur Protein as a Novel Therapeutic Target for Pulmonary Hypertension in Chronic Obstructive Pulmonary Disease. Biomedicines 2022; 10:biomedicines10050957. [PMID: 35625694 PMCID: PMC9138741 DOI: 10.3390/biomedicines10050957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/19/2022] [Accepted: 04/19/2022] [Indexed: 02/01/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is the third leading cause of death worldwide, which is often due to pulmonary hypertension (PH). The underlying molecular mechanisms are poorly understood, and current medications are neither specific nor always effective. In this review, we highlight the recent findings on the roles of altered mitochondrial bioenergetics in PH in COPD. We also discuss the central role of mitochondrial reactive oxygen species (ROS) generation mediated by Rieske iron–sulfur protein (RISP) and review the contributions of RISP-dependent DNA damage and NF-κB-associated inflammatory signaling. Finally, the potential importance of mitochondrial RISP and its associated molecules as novel therapeutic targets for PH in COPD are meticulously discussed.
Collapse
Affiliation(s)
| | | | - Yong-Xiao Wang
- Correspondence: ; Tel.: +1-(518)-262-9506; Fax: +1-(518)-262-8101
| |
Collapse
|
23
|
Matsumoto T, Taguchi K, Kobayashi T. Relationships between advanced glycation end products (AGEs), vasoactive substances, and vascular function. J Smooth Muscle Res 2022; 57:94-107. [PMID: 35095032 PMCID: PMC8795595 DOI: 10.1540/jsmr.57.94] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Vascular smooth muscle cells (VSMCs) and endothelial cells (ECs) are major cell types that control vascular function, and hence dysfunction of these cells plays a key role in the development and progression of vasculopathies. Abnormal vascular responsiveness to vasoactive substances including vasoconstrictors and vasodilators has been observed in various arteries in diseases including diabetes, hypertension, chronic kidney diseases, and atherosclerosis. Several substances derived from ECs tightly control vascular function, such as endothelium-derived relaxing and contracting factors, and it is known that abnormal vascular signaling of these endothelium-derived substances is often observed in various diseases. Derangement of signaling in VSMCs and altered function influence vascular reactivity to vasoactive substances and tone, which are important determinants of vascular resistance and blood pressure. However, understanding the molecular mechanisms underlying abnormalities of vascular functions in pathological states is difficult because multiple substances interact in the development of these processes. Advanced glycation end products (AGEs), a heterogeneous group of bioactive compounds, are thought to contribute to vascular dysfunction, which in turn cause the development of several diseases including diabetes, hypertension, stroke, and atherosclerosis. A growing body of evidence suggests that AGEs could affect these cells and modulate vascular function. This study is focused on the link between AGEs and functions of ECs and VSMCs, particularly the modulative effects of AGEs on vascular reactivities to vasoactive substances.
Collapse
Affiliation(s)
- Takayuki Matsumoto
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Kumiko Taguchi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Tsuneo Kobayashi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| |
Collapse
|
24
|
Demirel S, Sahinturk S, Isbil N, Ozyener F. Physiological role of K + channels in irisin-induced vasodilation in rat thoracic aorta. Peptides 2022; 147:170685. [PMID: 34748790 DOI: 10.1016/j.peptides.2021.170685] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/01/2021] [Accepted: 11/04/2021] [Indexed: 12/11/2022]
Abstract
Irisin, an exercise-induced myokine, has been shown to have a peripheral vasodilator effect. However, little is known about the mechanisms underlying its effects. In this study, it was aimed to investigate the vasoactive effects of irisin on rat thoracic aorta, and the hypothesis that voltage-gated potassium (KV) channels, ATP-sensitive potassium (KATP) channels, small-conductance calcium-activated potassium (SKCa) channels, large-conductance calcium-activated potassium (BKCa) channels, intermediate-conductance calcium-activated potassium (IKCa) channels, inward rectifier potassium (Kir) channels, and two-pore domain potassium (K2P) channels may have roles in these effects. Isometric contraction-relaxation responses of isolated thoracic aorta rings were measured with an organ bath model. The steady contraction was induced with both 10-5 M phenylephrine and 45 mM KCl, and then the concentration-dependent responses of irisin (10-9-10-6 M) were examined. Irisin exerted the vasorelaxant effects in both endothelium-intact and -denuded aortic rings at concentrations of 10-8, 10-7, and 10-6 M (p < 0.001). Besides, KV channel blocker 4-aminopyridine, KATP channel blocker glibenclamide, SKCa channel blocker apamin, BKCa channel blockers tetraethylammonium and iberiotoxin, IKCa channel blocker TRAM-34, and Kir channel blocker barium chloride incubations significantly inhibited the irisin-induced relaxation responses. However, incubation of K2P TASK-1 channel blocker anandamide did not cause a significant decrease in the relaxation responses of irisin. In conclusion, the first physiological findings were obtained regarding the functional relaxing effects of irisin in rat thoracic aorta. Furthermore, this study is the first to report that irisin-induced relaxation responses are associated with the activity of KV, KATP, SKCa, BKCa, IKCa, and Kir channels.
Collapse
Affiliation(s)
- Sadettin Demirel
- Department of Physiology, Faculty of Medicine, Bursa Uludag University, 16059, Bursa, Turkey.
| | - Serdar Sahinturk
- Department of Physiology, Faculty of Medicine, Bursa Uludag University, 16059, Bursa, Turkey.
| | - Naciye Isbil
- Department of Physiology, Faculty of Medicine, Bursa Uludag University, 16059, Bursa, Turkey.
| | - Fadil Ozyener
- Department of Physiology, Faculty of Medicine, Bursa Uludag University, 16059, Bursa, Turkey.
| |
Collapse
|
25
|
Seo MS, An JR, Kang M, Heo R, Park H, Han ET, Han JH, Chun W, Park WS. Mechanisms underlying the vasodilatory effects of canagliflozin in the rabbit thoracic aorta: Involvement of the SERCA pump and Kv channels. Life Sci 2021; 287:120101. [PMID: 34715136 DOI: 10.1016/j.lfs.2021.120101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 10/13/2021] [Accepted: 10/24/2021] [Indexed: 10/20/2022]
Abstract
AIMS Canagliflozin is an anti-diabetic agent and sodium glucose co-transporter-2 inhibitor. Despite numerous clinical trials demonstrating its beneficial effects on blood pressure, the cellular mechanisms underlying the effects of canagliflozin on vascular reactivity have yet to be clarified. We investigated the vasodilatory effect of canagliflozin on aortic rings isolated from rabbits. MAIN METHODS We used rabbit thoracic aortic rings and its arterial tone was tested by using wire myography system. KEY FINDINGS Canagliflozin caused concentration-dependent vasodilation in aortic rings pre-constricted with phenylephrine or high K+. However, the degree of canagliflozin-induced vasodilation of the aortic rings pre-constricted with high K+ was less than that of rings pre-constricted with phenylephrine. Application of 4-aminopyridine, a voltage-dependent K+ (Kv) channel inhibitor, reduced canagliflozin-induced vasodilation. However, pre-incubation of an inwardly rectifying K+ channel inhibitor, a large-conductance Ca2+-activated K+ channel inhibitor, and an ATP-sensitive K+ inhibitor did not modulate the vasodilatory effects of canagliflozin. Indeed, canagliflozin increased Kv currents in aortic smooth muscle cells. Pre-treatment with thapsigargin or cyclopiazonic acid, a sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) pump inhibitors, reduced the vasodilatory effects of canagliflozin. Conversely, pre-treatment with a Ca2+ channel inhibitor, adenylyl cyclase/PKA inhibitors, and guanylyl cyclase/PKG inhibitors did not modulate the vasodilatory effects of canagliflozin. Endothelium removal, and pre-treatment with the nitric oxide synthase inhibitor L-NAME, and small- and intermediate-conductance Ca2+-activated K+ channel inhibitor apamin and TRAM-34, did not diminish the vasodilatory effects of canagliflozin. SIGNIFICANCE Our results indicate that canagliflozin induces vasodilation, which is dependent on the robust SERCA activity and Kv channel activation.
Collapse
Affiliation(s)
- Mi Seon Seo
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon 24341, South Korea
| | - Jin Ryeol An
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon 24341, South Korea
| | - Minji Kang
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon 24341, South Korea
| | - Ryeon Heo
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon 24341, South Korea
| | - Hongzoo Park
- Department of Urology, Kangwon National University School of Medicine, Chuncheon 24341, South Korea
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon 24341, South Korea
| | - Jin-Hee Han
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon 24341, South Korea
| | - Wanjoo Chun
- Department of Pharmacology, Kangwon National University School of Medicine, Chuncheon 24341, South Korea
| | - Won Sun Park
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon 24341, South Korea.
| |
Collapse
|
26
|
Demirel S, Sahinturk S, Isbil N, Ozyener F. Irisin relaxes rat thoracic aorta: MEK1/2 signaling pathway, KV channels, SKCa channels, and BKCa channels are involved in irisin-induced vasodilation. Can J Physiol Pharmacol 2021; 100:379-385. [PMID: 34826251 DOI: 10.1139/cjpp-2021-0500] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this study, it was aimed to investigate the effects of irisin on vascular smooth muscle contractility in rat thoracic aorta, and the hypothesis that mitogen-activated protein kinase kinase (MEK1/2) signalling pathway, voltage-gated potassium (KV) channels, small-conductance calcium-activated potassium (SKCa) channels, and large-conductance calcium-activated potassium (BKCa) channels may have roles in these effects. Isometric contraction-relaxation responses of isolated thoracic aorta rings were measured with an organ bath model. The steady contraction was induced with 10-5 M phenylephrine (PHE), and then the concentration-dependent responses of irisin (10-9-10-6 M) were examined. Irisin exerted the vasorelaxant effects at concentrations of 10-8, 10-7, and 10-6 M compared to the control group (p<0.001). Besides, MEK1/2 inhibitor U0126, KV channel blocker XE-991, SKCa channel blocker apamin, and BKCa channel blocker tetraethylammonium (TEA) incubations significantly inhibited the irisin-induced relaxation responses. In conclusion, the first physiological findings were obtained regarding the functional relaxing effects of irisin in rat thoracic aorta. The findings demonstrated that irisin induces relaxation responses in endothelium-intact aortic rings in a concentration-dependent manner. Furthermore, this study is the first to report that irisin-induced relaxation responses are related to the activity of the MEK1/2 pathway, KV channels, and calcium-activated K+ (SKCa and BKCa) channels.
Collapse
Affiliation(s)
- Sadettin Demirel
- Bursa Uludag University, 37523, Medicine School, Physiology Department, Bursa, Turkey;
| | - Serdar Sahinturk
- Bursa Uludag University, 37523, Medicine School, Physiology Department, Bursa, Turkey;
| | - Naciye Isbil
- Bursa Uludag University, 37523, Medicine School, Physiology Department, Bursa, Turkey;
| | - Fadil Ozyener
- Bursa Uludag University, 37523, Medicine School, Physiology Department, Bursa, Turkey;
| |
Collapse
|
27
|
Grey-box modeling and hypothesis testing of functional near-infrared spectroscopy-based cerebrovascular reactivity to anodal high-definition tDCS in healthy humans. PLoS Comput Biol 2021; 17:e1009386. [PMID: 34613970 PMCID: PMC8494321 DOI: 10.1371/journal.pcbi.1009386] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 08/28/2021] [Indexed: 12/12/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) has been shown to evoke hemodynamics response; however, the mechanisms have not been investigated systematically using systems biology approaches. Our study presents a grey-box linear model that was developed from a physiologically detailed multi-compartmental neurovascular unit model consisting of the vascular smooth muscle, perivascular space, synaptic space, and astrocyte glial cell. Then, model linearization was performed on the physiologically detailed nonlinear model to find appropriate complexity (Akaike information criterion) to fit functional near-infrared spectroscopy (fNIRS) based measure of blood volume changes, called cerebrovascular reactivity (CVR), to high-definition (HD) tDCS. The grey-box linear model was applied on the fNIRS-based CVR during the first 150 seconds of anodal HD-tDCS in eleven healthy humans. The grey-box linear models for each of the four nested pathways starting from tDCS scalp current density that perturbed synaptic potassium released from active neurons for Pathway 1, astrocytic transmembrane current for Pathway 2, perivascular potassium concentration for Pathway 3, and voltage-gated ion channel current on the smooth muscle cell for Pathway 4 were fitted to the total hemoglobin concentration (tHb) changes from optodes in the vicinity of 4x1 HD-tDCS electrodes as well as on the contralateral sensorimotor cortex. We found that the tDCS perturbation Pathway 3 presented the least mean square error (MSE, median <2.5%) and the lowest Akaike information criterion (AIC, median -1.726) from the individual grey-box linear model fitting at the targeted-region. Then, minimal realization transfer function with reduced-order approximations of the grey-box model pathways was fitted to the ensemble average tHb time series. Again, Pathway 3 with nine poles and two zeros (all free parameters), provided the best Goodness of Fit of 0.0078 for Chi-Square difference test of nested pathways. Therefore, our study provided a systems biology approach to investigate the initial transient hemodynamic response to tDCS based on fNIRS tHb data. Future studies need to investigate the steady-state responses, including steady-state oscillations found to be driven by calcium dynamics, where transcranial alternating current stimulation may provide frequency-dependent physiological entrainment for system identification. We postulate that such a mechanistic understanding from system identification of the hemodynamics response to transcranial electrical stimulation can facilitate adequate delivery of the current density to the neurovascular tissue under simultaneous portable imaging in various cerebrovascular diseases.
Collapse
|
28
|
Le T, Martín-Aragón Baudel M, Syed A, Singhrao N, Pan S, Flores-Tamez VA, Burns AE, Man KNM, Karey E, Hong J, Hell JW, Pinkerton KE, Chen CY, Nieves-Cintrón M. Secondhand Smoke Exposure Impairs Ion Channel Function and Contractility of Mesenteric Arteries. FUNCTION 2021; 2:zqab041. [PMID: 34553140 PMCID: PMC8448673 DOI: 10.1093/function/zqab041] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/05/2021] [Accepted: 08/16/2021] [Indexed: 01/11/2023] Open
Abstract
Cigarette smoke, including secondhand smoke (SHS), has significant detrimental vascular effects, but its effects on myogenic tone of small resistance arteries and the underlying mechanisms are understudied. Although it is apparent that SHS contributes to endothelial dysfunction, much less is known about how this toxicant alters arterial myocyte contraction, leading to alterations in myogenic tone. The study's goal is to determine the effects of SHS on mesenteric arterial myocyte contractility and excitability. C57BL/6J male mice were randomly assigned to either filtered air (FA) or SHS (6 h/d, 5 d/wk) exposed groups for a 4, 8, or 12-weeks period. Third and fourth-order mesenteric arteries and arterial myocytes were acutely isolated and evaluated with pressure myography and patch clamp electrophysiology, respectively. Myogenic tone was found to be elevated in mesenteric arteries from mice exposed to SHS for 12 wk but not for 4 or 8 wk. These results were correlated with an increase in L-type Ca2+ channel activity in mesenteric arterial myocytes after 12 wk of SHS exposure. Moreover, 12 wk SHS exposed arterial myocytes have reduced total potassium channel current density, which correlates with a depolarized membrane potential (Vm). These results suggest that SHS exposure induces alterations in key ionic conductances that modulate arterial myocyte contractility and myogenic tone. Thus, chronic exposure to an environmentally relevant concentration of SHS impairs mesenteric arterial myocyte electrophysiology and myogenic tone, which may contribute to increased blood pressure and risks of developing vascular complications due to passive exposure to cigarette smoke.
Collapse
Affiliation(s)
- Thanhmai Le
- Department of Pharmacology, University of California Davis, Davis, CA 95616, USA
| | | | - Arsalan Syed
- Department of Pharmacology, University of California Davis, Davis, CA 95616, USA
| | - Navid Singhrao
- Department of Pharmacology, University of California Davis, Davis, CA 95616, USA
| | - Shiyue Pan
- Department of Pharmacology, University of California Davis, Davis, CA 95616, USA
| | | | - Abby E Burns
- Department of Pharmacology, University of California Davis, Davis, CA 95616, USA
| | - Kwun Nok Mimi Man
- Department of Pharmacology, University of California Davis, Davis, CA 95616, USA
| | - Emma Karey
- Department of Pharmacology, University of California Davis, Davis, CA 95616, USA
| | - Junyoung Hong
- Department of Pharmacology, University of California Davis, Davis, CA 95616, USA
| | - Johannes W Hell
- Department of Pharmacology, University of California Davis, Davis, CA 95616, USA
| | - Kent E Pinkerton
- Center for Health and the Environment, University of California, Davis, CA 95616, USA
| | - Chao-Yin Chen
- Department of Pharmacology, University of California Davis, Davis, CA 95616, USA
| | | |
Collapse
|
29
|
Kang M, An JR, Seo MS, Jung HS, Heo R, Park H, Song G, Jung WK, Choi IW, Park WS. Atypical antipsychotic olanzapine inhibits voltage-dependent K + channels in coronary arterial smooth muscle cells. Pharmacol Rep 2021; 73:1724-1733. [PMID: 34146337 DOI: 10.1007/s43440-021-00299-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/12/2021] [Accepted: 06/14/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Olanzapine, an FDA-approved atypical antipsychotic, is widely used to treat schizophrenia and bipolar disorder. In this study, the inhibitory effect of olanzapine on voltage-dependent K+ (Kv) channels in rabbit coronary arterial smooth muscle cells was investigated. METHODS Electrophysiological recordings were performed in freshly isolated coronary arterial smooth muscle cells. RESULTS Olanzapine inhibited the Kv channels in a concentration-dependent manner with an IC50 value of 7.76 ± 1.80 µM and a Hill coefficient of 0.82 ± 0.09. Although olanzapine did not change the steady-state activation curve, it shifted the inactivation curve to a more negative potential, suggesting that it inhibited Kv currents by affecting the voltage sensor of the Kv channel. Application of 1 or 2 Hz train pulses did not affect the olanzapine-induced inhibition of Kv channels, suggesting that its effect on Kv channels occurs in a use (state)-independent manner. Pretreatment with DPO-1 (Kv1.5 subtype inhibitor) reduced the olanzapine-induced inhibition of Kv currents. In addition, pretreatment with guangxitoxin (Kv2.1 subtype inhibitor) and linopirdine (Kv7 subtype inhibitor) partially decreased the degree of Kv current inhibition. Olanzapine induced membrane depolarization. CONCLUSION From these results, we suggest that olanzapine inhibits the Kv channels in a concentration-dependent, but state-independent, manner by affecting the gating properties of Kv channels. The primary Kv channel target of olanzapine is the Kv1.5 subtype.
Collapse
Affiliation(s)
- Minji Kang
- Department of Physiology, Kangwon National University School of Medicine, 1 Kangwondaehak-gil, Chuncheon, 24341, South Korea
| | - Jin Ryeol An
- Department of Physiology, Kangwon National University School of Medicine, 1 Kangwondaehak-gil, Chuncheon, 24341, South Korea
| | - Mi Seon Seo
- Department of Physiology, Kangwon National University School of Medicine, 1 Kangwondaehak-gil, Chuncheon, 24341, South Korea
| | - Hee Seok Jung
- Department of Physiology, Kangwon National University School of Medicine, 1 Kangwondaehak-gil, Chuncheon, 24341, South Korea
| | - Ryeon Heo
- Department of Physiology, Kangwon National University School of Medicine, 1 Kangwondaehak-gil, Chuncheon, 24341, South Korea
| | - Hongzoo Park
- Department of Urology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Geehyun Song
- Department of Urology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Won-Kyo Jung
- Department of Biomedical Engineering, and Center for Marine-Integrated Biomedical Technology (BK21 Plus), Pukyong National University, Busan, 48513, South Korea
| | - Il-Whan Choi
- Department of Microbiology, College of Medicine, Inje University, Busan, 48516, South Korea
| | - Won Sun Park
- Department of Physiology, Kangwon National University School of Medicine, 1 Kangwondaehak-gil, Chuncheon, 24341, South Korea.
| |
Collapse
|
30
|
Zhang X, Zhao Z, Xu C, Zhao F, Yan Z. Allisartan ameliorates vascular remodeling through regulation of voltage-gated potassium channels in hypertensive rats. BMC Pharmacol Toxicol 2021; 22:33. [PMID: 34108047 PMCID: PMC8188709 DOI: 10.1186/s40360-021-00498-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/27/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The objective of the present study was to determine the effect of allisartan, a new angiotensin II type 1 receptor antagonist on vascular remodeling through voltage gated potassium channels (Kv7) in hypertensive rats. METHODS The study included a total of 47 Sprague Dawley (SD) rats. The animals were randomized to sham operation (n = 14), untreated hypertensive control group (n = 18) and allisartan treatment group (n = 15). Using renal artery stenosis, hypertension was induced in animals. Single dose of allisartan was administered intra-gastrically to animals in the allisartan treatment group and match placebo in the other 2 groups. Wire myography was used to measure the muscle tension in isolated mesenteric arteries from the animals. Real-time polymerase chain reaction was used to quantify the expression of Kv7 channel mRNA subunits. RESULTS After 4 weeks of treatment, a significant decrease in mean arterial, systolic and diastolic blood pressure (SBP and DBP) was observed in allisartan treatment group compared to hypertension control group. The median arterial wall thickness and area/diameter ratio reduced significantly in treatment group compared to untreated hypertension group (P < 0.05). Wire myography demonstrated increased relaxation of mesenteric artery with increase in concentration of ML213. A significant up-regulation in the expression of all Kv7 mRNA subunits was observed in allisartan group compared to untreated hypertension group. CONCLUSIONS From the results, allisartan was found to lower BP and preserve vascular remodeling through Kv7 channels.
Collapse
Affiliation(s)
- Xiaoqin Zhang
- Department of Cardiology, Southern Medical University affiliated Fengxian Hospital, Shanghai, 201499, China
- Shanghai University of Medicine and Health Sciences Affiliated Sixth People's Hospital South Campus, Nanfeng Road No.6600, Shanghai, 201499, China
| | - Ziying Zhao
- Endoscopy Center, East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Chunfang Xu
- Department of Cardiology, Southern Medical University affiliated Fengxian Hospital, Shanghai, 201499, China
| | - Fengping Zhao
- Department of Cardiology, Southern Medical University affiliated Fengxian Hospital, Shanghai, 201499, China
| | - Zhiqiang Yan
- Department of Cardiology, Southern Medical University affiliated Fengxian Hospital, Shanghai, 201499, China.
| |
Collapse
|
31
|
Truong L, Zheng YM, Kandhi S, Wang YX. Overview on Interactive Role of Inflammation, Reactive Oxygen Species, and Calcium Signaling in Asthma, COPD, and Pulmonary Hypertension. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1304:147-164. [PMID: 34019268 DOI: 10.1007/978-3-030-68748-9_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Inflammatory signaling is a major component in the development and progression of many lung diseases, including asthma, chronic obstructive pulmonary disorder (COPD), and pulmonary hypertension (PH). This chapter will provide a brief overview of asthma, COPD, and PH and how inflammation plays a vital role in these diseases. Specifically, we will discuss the role of reactive oxygen species (ROS) and Ca2+ signaling in inflammatory cellular responses and how these interactive signaling pathways mediate the development of asthma, COPD, and PH. We will also deliberate the key cellular responses of pulmonary arterial (PA) smooth muscle cells (SMCs) and airway SMCs (ASMCs) in these devastating lung diseases. The analysis of the importance of inflammation will shed light on the key questions remaining in this field and highlight molecular targets that are worth exploring. The crucial findings will not only demonstrate the novel roles of essential signaling molecules such as Rieske iron-sulfur protein and ryanodine receptor in the development and progress of asthma, COPD, and PH but also offer advanced insight for creating more effective and new therapeutic targets for these devastating inflammatory lung diseases.
Collapse
Affiliation(s)
- Lillian Truong
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Yun-Min Zheng
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Sharath Kandhi
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA.
| | - Yong-Xiao Wang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA.
| |
Collapse
|
32
|
Shvetsova AA, Gaynullina DK, Tarasova OS, Schubert R. Remodeling of Arterial Tone Regulation in Postnatal Development: Focus on Smooth Muscle Cell Potassium Channels. Int J Mol Sci 2021; 22:ijms22115413. [PMID: 34063769 PMCID: PMC8196626 DOI: 10.3390/ijms22115413] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/15/2021] [Accepted: 05/18/2021] [Indexed: 11/30/2022] Open
Abstract
Maturation of the cardiovascular system is associated with crucial structural and functional remodeling. Thickening of the arterial wall, maturation of the sympathetic innervation, and switching of the mechanisms of arterial contraction from calcium-independent to calcium-dependent occur during postnatal development. All these processes promote an almost doubling of blood pressure from the moment of birth to reaching adulthood. This review focuses on the developmental alterations of potassium channels functioning as key smooth muscle membrane potential determinants and, consequently, vascular tone regulators. We present evidence that the pattern of potassium channel contribution to vascular control changes from Kir2, Kv1, Kv7 and TASK-1 channels to BKCa channels with maturation. The differences in the contribution of potassium channels to vasomotor tone at different stages of postnatal life should be considered in treatment strategies of cardiovascular diseases associated with potassium channel malfunction.
Collapse
Affiliation(s)
- Anastasia A. Shvetsova
- Department of Human and Animal Physiology, Faculty of Biology, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia; (D.K.G.); (O.S.T.)
- Correspondence:
| | - Dina K. Gaynullina
- Department of Human and Animal Physiology, Faculty of Biology, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia; (D.K.G.); (O.S.T.)
- Department of Physiology, Russian National Research Medical University, 117997 Moscow, Russia
| | - Olga S. Tarasova
- Department of Human and Animal Physiology, Faculty of Biology, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia; (D.K.G.); (O.S.T.)
- Laboratory of Exercise Physiology, State Research Center of the Russian Federation-Institute for Biomedical Problems, Russian Academy of Sciences, 123007 Moscow, Russia
| | - Rudolf Schubert
- Physiology, Institute of Theoretical Medicine, Medical Faculty, University of Augsburg, 86159 Augsburg, Germany;
| |
Collapse
|
33
|
Li H, Zhuang W, Seo MS, An JR, Yang Y, Zha Y, Liang J, Xu ZX, Park WS. Inhibition of voltage-dependent K + channels in rabbit coronary arterial smooth muscle cells by the class Ic antiarrhythmic agent lorcainide. Eur J Pharmacol 2021; 904:174158. [PMID: 33971179 DOI: 10.1016/j.ejphar.2021.174158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 04/22/2021] [Accepted: 05/04/2021] [Indexed: 10/21/2022]
Abstract
Voltage-dependent K+ (Kv) channels play the role of returning the membrane potential to the resting state, thereby maintaining the vascular tone. Here, we used native smooth-muscle cells from rabbit coronary arteries to investigate the inhibitory effect of lorcainide, a class Ic antiarrhythmic agent, on Kv channels. Lorcainide inhibited Kv channels in a concentration-dependent manner with an IC50 of 4.46 ± 0.15 μM and a Hill coefficient of 0.95 ± 0.01. Although application of lorcainide did not change the activation curve, it shifted the inactivation curve toward a more negative potential, implying that lorcainide inhibits Kv channels by changing the channels' voltage sensors. The recovery time constant from channel inactivation increased in the presence of lorcainide. Furthermore, application of train steps (of 1 or 2 Hz) in the presence of lorcainide progressively augmented the inhibition of Kv currents, implying that lorcainide-induced inhibition of Kv channels is use (state)-dependent. Pretreatment with Kv1.5 or Kv2.1/2.2 inhibitors effectively reduced the amplitude of the Kv current but did not affect the inhibitory effect of lorcainide. Based on these results, we conclude that lorcainide inhibits vascular Kv channels in a concentration and use (state)-dependent manner by changing their inactivation gating properties. Considering the clinical efficacy of lorcainide, and the pathophysiological significance of vascular Kv channels, our findings should be considered when prescribing lorcainide to patients with arrhythmia and vascular disease.
Collapse
Affiliation(s)
- Hongliang Li
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China; Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment for Senile Diseases, Yangzhou University, Yangzhou, 225001, China
| | - Wenwen Zhuang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China
| | - Mi Seon Seo
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Jin Ryeol An
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Yongqi Yang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China
| | - Yiwen Zha
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China
| | - Jingyan Liang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China.
| | - Zheng-Xin Xu
- Department of Pharmacology, School of Medicine, Yangzhou University, Yangzhou, 225000, Jiangsu, China.
| | - Won Sun Park
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea.
| |
Collapse
|
34
|
Tang Y, Tang Q, Wei H, Hu P, Zou D, Liang R, Ling Y. Hub Genes Associated with the Diagnosis of Diabetic Retinopathy. Int J Gen Med 2021; 14:1739-1750. [PMID: 33986612 PMCID: PMC8110263 DOI: 10.2147/ijgm.s311683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 04/14/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose This study aimed to identify genes that may be effective in diagnosing or treating diabetic retinopathy (DR), the most common complication of diabetes mellitus (DM). Methods Differentially expressed genes (DEGs) were identified between DR and DM in GSE146615 dataset. DEGs that were consistently up- or down-regulated under both standard glucose and high glucose conditions were identified as common genes and used to generate a protein-protein interaction network and modules. The module genes were assessed for the area under the receiver operating characteristic curve (AUC), leading to the identification of hub genes. Differentially methylated probes in GSE76169 were also compared with common DEGs to identify specific methylation markers of DR. Enrichment analysis was used to explore the biological characteristics. The Short Time-series Expression Miner algorithm was used to identify genes that were progressively dysregulated in the sequence: healthy controls < DM < DR. Results A total of 1917 common genes were identified for seven modules. The eight genes with AUC > 0.8 under high glucose and standard glucose conditions were considered as hub genes. The module genes were significantly enriched during vascular smooth muscle cell development and regulation of oxygen metabolism, while 92 methylation markers were involved in the similar terms. Among the progressively dysregulated genes, three intersection genes under both standard glucose and high glucose conditions were found to be module genes and were considered as key genes. Conclusion We identified eight potential DR-specific diagnostic and therapeutic genes, whose abnormal expression can cause oxidative stress, thus favoring the course of the disease.
Collapse
Affiliation(s)
- Yanhui Tang
- Department of Ophthalmology, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530022, People's Republic of China.,Department of Ophthalmology, The First People's Hospital of Nanning, Nanning, Guangxi, 530022, People's Republic of China
| | - Qi Tang
- Department of Ophthalmology, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530022, People's Republic of China.,Department of Ophthalmology, The First People's Hospital of Nanning, Nanning, Guangxi, 530022, People's Republic of China
| | - Haicheng Wei
- Department of Ophthalmology, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530022, People's Republic of China.,Department of Ophthalmology, The First People's Hospital of Nanning, Nanning, Guangxi, 530022, People's Republic of China
| | - Pinzhang Hu
- Department of Ophthalmology, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530022, People's Republic of China.,Department of Ophthalmology, The First People's Hospital of Nanning, Nanning, Guangxi, 530022, People's Republic of China
| | - Donghua Zou
- Department of Neurology, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530022, People's Republic of China
| | - Rixiong Liang
- Department of Ophthalmology, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530022, People's Republic of China.,Department of Ophthalmology, The First People's Hospital of Nanning, Nanning, Guangxi, 530022, People's Republic of China
| | - Yu Ling
- Department of Ophthalmology, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530022, People's Republic of China.,Department of Ophthalmology, The First People's Hospital of Nanning, Nanning, Guangxi, 530022, People's Republic of China
| |
Collapse
|
35
|
Bercea CI, Cottrell GS, Tamagnini F, McNeish AJ. Omega-3 polyunsaturated fatty acids and hypertension: a review of vasodilatory mechanisms of docosahexaenoic acid and eicosapentaenoic acid. Br J Pharmacol 2021; 178:860-877. [PMID: 33283269 DOI: 10.1111/bph.15336] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/27/2020] [Accepted: 11/29/2020] [Indexed: 02/06/2023] Open
Abstract
Hypertension is often characterised by impaired vasodilation involving dysfunction of multiple vasodilatory mechanisms. ω-3 polyunsaturated fatty acids (PUFAs), docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) can reduce blood pressure and vasodilation. In the endothelium, DHA and EPA improve function including increased NO bioavailability. However, animal studies show that DHA- and EPA-mediated vasodilation persists after endothelial removal, indicating a role for vascular smooth muscle cells (VSMCs). The vasodilatory effects of ω-3 PUFAs on VSMCs are mediated via opening of large conductance calcium-activated potassium channels (BKCa ), ATP-sensitive potassium channels (KATP ) and possibly members of the Kv 7 family of voltage-activated potassium channels, resulting in hyperpolarisation and relaxation. ω-3 PUFA actions on BKCa and voltage-gated ion channels involve electrostatic interactions that are dependent on the polyunsaturated acyl tail, cis-geometry of these double bonds and negative charge of the carboxyl headgroup. This suggests structural manipulation of ω-3 PUFA could generate novel, targeted, therapeutic leads.
Collapse
Affiliation(s)
- Cristiana-Ioana Bercea
- Reading School of Pharmacy, School of Chemistry, Food and Pharmacy, The University of Reading, Reading, UK
| | - Graeme S Cottrell
- Reading School of Pharmacy, School of Chemistry, Food and Pharmacy, The University of Reading, Reading, UK
| | - Francesco Tamagnini
- Reading School of Pharmacy, School of Chemistry, Food and Pharmacy, The University of Reading, Reading, UK
| | - Alister J McNeish
- Reading School of Pharmacy, School of Chemistry, Food and Pharmacy, The University of Reading, Reading, UK
| |
Collapse
|
36
|
Nieves-Cintrón M, Flores-Tamez VA, Le T, Baudel MMA, Navedo MF. Cellular and molecular effects of hyperglycemia on ion channels in vascular smooth muscle. Cell Mol Life Sci 2021; 78:31-61. [PMID: 32594191 PMCID: PMC7765743 DOI: 10.1007/s00018-020-03582-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 06/10/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022]
Abstract
Diabetes affects millions of people worldwide. This devastating disease dramatically increases the risk of developing cardiovascular disorders. A hallmark metabolic abnormality in diabetes is hyperglycemia, which contributes to the pathogenesis of cardiovascular complications. These cardiovascular complications are, at least in part, related to hyperglycemia-induced molecular and cellular changes in the cells making up blood vessels. Whereas the mechanisms mediating endothelial dysfunction during hyperglycemia have been extensively examined, much less is known about how hyperglycemia impacts vascular smooth muscle function. Vascular smooth muscle function is exquisitely regulated by many ion channels, including several members of the potassium (K+) channel superfamily and voltage-gated L-type Ca2+ channels. Modulation of vascular smooth muscle ion channels function by hyperglycemia is emerging as a key contributor to vascular dysfunction in diabetes. In this review, we summarize the current understanding of how diabetic hyperglycemia modulates the activity of these ion channels in vascular smooth muscle. We examine underlying mechanisms, general properties, and physiological relevance in the context of myogenic tone and vascular reactivity.
Collapse
Affiliation(s)
- Madeline Nieves-Cintrón
- Department of Pharmacology, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Víctor A Flores-Tamez
- Department of Pharmacology, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Thanhmai Le
- Department of Pharmacology, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA
| | | | - Manuel F Navedo
- Department of Pharmacology, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA.
| |
Collapse
|
37
|
Mondéjar-Parreño G, Barreira B, Callejo M, Morales-Cano D, Barrese V, Esquivel-Ruiz S, Olivencia MA, Macías M, Moreno L, Greenwood IA, Perez-Vizcaino F, Cogolludo A. Uncovered Contribution of Kv7 Channels to Pulmonary Vascular Tone in Pulmonary Arterial Hypertension. Hypertension 2020; 76:1134-1146. [DOI: 10.1161/hypertensionaha.120.15221] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
K
+
channels play a fundamental role regulating membrane potential of pulmonary artery (PA) smooth muscle cells and their impairment is a common feature in pulmonary arterial hypertension (PAH). K
+
voltage-gated channel subfamily Q (
KCNQ1-5
) or Kv7 channels and their regulatory subunits subfamily E (KCNE) regulatory subunits are known to regulate vascular tone, but whether Kv7 channel function is impaired in PAH and how this can affect the rationale for targeting Kv7 channels in PAH remains unknown. Here, we have studied the role of Kv7/KCNE subunits in rat PA and their possible alteration in PAH. Using the patch-clamp technique, we found that the total K
+
current is reduced in PA smooth muscle cells from pulmonary hypertension animals (SU5416 plus hypoxia) and Kv7 currents made a higher contribution to the net K
+
current. Likewise, enhanced vascular responses to Kv7 channel modulators were found in pulmonary hypertension rats. Accordingly, KCNE4 subunit was highly upregulated in lungs from pulmonary hypertension animals and patients. Additionally, Kv7 channel activity was enhanced in the presence of Kv1.5 and TASK-1 channel inhibitors and this was associated with an increased KCNE4 membrane abundance. Compared with systemic arteries, PA showed a poor response to Kv7 channel modulators which was associated with reduced expression and membrane abundance of Kv7.4 and KCNE4. Our data indicate that Kv7 channel function is preserved and KCNE4 is upregulated in PAH. Therefore, compared with other downregulated channels, the contribution of Kv7 channels is increased in PAH resulting in an enhanced sensitivity to Kv7 channel modulators. This study provides insight into the potential usefulness of targeting Kv7 channels in PAH.
Collapse
Affiliation(s)
- Gema Mondéjar-Parreño
- From the Departamento de Farmacología y Toxicología. Facultad de Medicina, Universidad Complutense de Madrid, Spain (G.M.-P., B.B., M.C., S.E.-R., M.A.O., M.M., L.M., F.P.-V., A.C.)
- Ciber Enfermedades Respiratorias (Ciberes), Spain (G.M.-P., B.B., M.C., S.E.-R., M.A.O., M.M., L.M., F.P.-V., A.C.)
- Instituto de Investigación Sanitaria Gregorio Marañón (IISGM) (G.M.-P., B.B., M.C., S.E.-R., M.A.O., M.M., L.M., F.P.-V., A.C.)
| | - Bianca Barreira
- From the Departamento de Farmacología y Toxicología. Facultad de Medicina, Universidad Complutense de Madrid, Spain (G.M.-P., B.B., M.C., S.E.-R., M.A.O., M.M., L.M., F.P.-V., A.C.)
- Ciber Enfermedades Respiratorias (Ciberes), Spain (G.M.-P., B.B., M.C., S.E.-R., M.A.O., M.M., L.M., F.P.-V., A.C.)
- Instituto de Investigación Sanitaria Gregorio Marañón (IISGM) (G.M.-P., B.B., M.C., S.E.-R., M.A.O., M.M., L.M., F.P.-V., A.C.)
| | - María Callejo
- From the Departamento de Farmacología y Toxicología. Facultad de Medicina, Universidad Complutense de Madrid, Spain (G.M.-P., B.B., M.C., S.E.-R., M.A.O., M.M., L.M., F.P.-V., A.C.)
- Ciber Enfermedades Respiratorias (Ciberes), Spain (G.M.-P., B.B., M.C., S.E.-R., M.A.O., M.M., L.M., F.P.-V., A.C.)
- Instituto de Investigación Sanitaria Gregorio Marañón (IISGM) (G.M.-P., B.B., M.C., S.E.-R., M.A.O., M.M., L.M., F.P.-V., A.C.)
| | - Daniel Morales-Cano
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (D.M.-C.)
| | - Vincenzo Barrese
- Vascular Biology Research Centre, Institute of Molecular and Clinical Sciences, St George’s University of London, United Kingdom (V.B., I.A.G.)
- Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, Naples, Italy (V.B.)
| | - Sergio Esquivel-Ruiz
- From the Departamento de Farmacología y Toxicología. Facultad de Medicina, Universidad Complutense de Madrid, Spain (G.M.-P., B.B., M.C., S.E.-R., M.A.O., M.M., L.M., F.P.-V., A.C.)
- Ciber Enfermedades Respiratorias (Ciberes), Spain (G.M.-P., B.B., M.C., S.E.-R., M.A.O., M.M., L.M., F.P.-V., A.C.)
- Instituto de Investigación Sanitaria Gregorio Marañón (IISGM) (G.M.-P., B.B., M.C., S.E.-R., M.A.O., M.M., L.M., F.P.-V., A.C.)
| | - Miguel A. Olivencia
- From the Departamento de Farmacología y Toxicología. Facultad de Medicina, Universidad Complutense de Madrid, Spain (G.M.-P., B.B., M.C., S.E.-R., M.A.O., M.M., L.M., F.P.-V., A.C.)
- Ciber Enfermedades Respiratorias (Ciberes), Spain (G.M.-P., B.B., M.C., S.E.-R., M.A.O., M.M., L.M., F.P.-V., A.C.)
- Instituto de Investigación Sanitaria Gregorio Marañón (IISGM) (G.M.-P., B.B., M.C., S.E.-R., M.A.O., M.M., L.M., F.P.-V., A.C.)
| | - Miguel Macías
- From the Departamento de Farmacología y Toxicología. Facultad de Medicina, Universidad Complutense de Madrid, Spain (G.M.-P., B.B., M.C., S.E.-R., M.A.O., M.M., L.M., F.P.-V., A.C.)
- Ciber Enfermedades Respiratorias (Ciberes), Spain (G.M.-P., B.B., M.C., S.E.-R., M.A.O., M.M., L.M., F.P.-V., A.C.)
- Instituto de Investigación Sanitaria Gregorio Marañón (IISGM) (G.M.-P., B.B., M.C., S.E.-R., M.A.O., M.M., L.M., F.P.-V., A.C.)
| | - Laura Moreno
- From the Departamento de Farmacología y Toxicología. Facultad de Medicina, Universidad Complutense de Madrid, Spain (G.M.-P., B.B., M.C., S.E.-R., M.A.O., M.M., L.M., F.P.-V., A.C.)
- Ciber Enfermedades Respiratorias (Ciberes), Spain (G.M.-P., B.B., M.C., S.E.-R., M.A.O., M.M., L.M., F.P.-V., A.C.)
- Instituto de Investigación Sanitaria Gregorio Marañón (IISGM) (G.M.-P., B.B., M.C., S.E.-R., M.A.O., M.M., L.M., F.P.-V., A.C.)
| | - Iain A. Greenwood
- Vascular Biology Research Centre, Institute of Molecular and Clinical Sciences, St George’s University of London, United Kingdom (V.B., I.A.G.)
| | - Francisco Perez-Vizcaino
- From the Departamento de Farmacología y Toxicología. Facultad de Medicina, Universidad Complutense de Madrid, Spain (G.M.-P., B.B., M.C., S.E.-R., M.A.O., M.M., L.M., F.P.-V., A.C.)
- Ciber Enfermedades Respiratorias (Ciberes), Spain (G.M.-P., B.B., M.C., S.E.-R., M.A.O., M.M., L.M., F.P.-V., A.C.)
- Instituto de Investigación Sanitaria Gregorio Marañón (IISGM) (G.M.-P., B.B., M.C., S.E.-R., M.A.O., M.M., L.M., F.P.-V., A.C.)
| | - Angel Cogolludo
- From the Departamento de Farmacología y Toxicología. Facultad de Medicina, Universidad Complutense de Madrid, Spain (G.M.-P., B.B., M.C., S.E.-R., M.A.O., M.M., L.M., F.P.-V., A.C.)
- Ciber Enfermedades Respiratorias (Ciberes), Spain (G.M.-P., B.B., M.C., S.E.-R., M.A.O., M.M., L.M., F.P.-V., A.C.)
- Instituto de Investigación Sanitaria Gregorio Marañón (IISGM) (G.M.-P., B.B., M.C., S.E.-R., M.A.O., M.M., L.M., F.P.-V., A.C.)
| |
Collapse
|
38
|
Djokic V, Jankovic S, Labudovic-Borovic M, Rakocevic J, Stanisic J, Rajkovic J, Novakovic R, Kostic M, Djuric M, Gostimirovic M, Gojkovic-Bukarica L. Pregnancy-induced hypertension decreases K v1.3 potassium channel expression and function in human umbilical vein smooth muscle. Eur J Pharmacol 2020; 882:173281. [PMID: 32562800 DOI: 10.1016/j.ejphar.2020.173281] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 06/09/2020] [Accepted: 06/15/2020] [Indexed: 10/24/2022]
Abstract
Voltage-gated potassium (Kv) channels are the largest superfamily of potassium (K) channels. A variety of Kv channels are expressed in the vascular smooth muscle cells (SMC). Studies have shown that gestational diabetes mellitus (GDM) and pregnancy-induced hypertension (PIH) cause various changes in the human umbilical vein (HUV). Recently, we have shown that 4-AP, a nonspecific Kv1-4 channel inhibitor, significantly decreases vasorelaxation induced by K channel opener pinacidil in vascular SMCs of the HUVs from normal pregnancies, but not in GDM and PIH. The goal of this study was to provide more detailed insight in the Kv channel subtypes involved in pinacidil-induced vasodilation of HUVs, as well as to investigate potential alterations of their function and expression during GDM and PIH. Margatoxin, a specific blocker of Kv1.2 and Kv1.3 channels, significantly antagonized pinacidil-induced vasorelaxation in normal pregnancy, while in HUVs from GDM and PIH that was not the case, indicating damage of Kv1.2 and Kv1.3 channel function. Immunohistochemistry and Western blot revealed similar expression of Kv1.2 channels in all groups. The expression of Kv1.3 subunit was significantly decreased in PIH, while it remained unchanged in GDM compared to normal pregnancy. Phrixotoxin, specific blocker of Kv4.2 and Kv4.3 channels, did not antagonize response to pinacidil in any of the groups. The major novel findings show that margatoxin antagonized pinacidil-induced relaxation in normal pregnancy, but not in GDM and PIH. Decreased expression of Kv1.3 channels in HUV during PIH may be important pathophysiological mechanism contributing to an increased risk of adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Vladimir Djokic
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11000, Belgrade, Serbia.
| | - Svetlana Jankovic
- Department of Obstetrics and Gynecology "Narodni Front", Faculty of Medicine, University of Belgrade, 11000, Belgrade, Serbia
| | - Milica Labudovic-Borovic
- Institute of Histology and Embryology "Aleksandar Dj. Kostic", Faculty of Medicine, University of Belgrade, 11000, Belgrade, Serbia
| | - Jelena Rakocevic
- Institute of Histology and Embryology "Aleksandar Dj. Kostic", Faculty of Medicine, University of Belgrade, 11000, Belgrade, Serbia
| | - Jelena Stanisic
- Vinca Institute of Nuclear Sciences, 11000, Belgrade, Serbia
| | - Jovana Rajkovic
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11000, Belgrade, Serbia
| | - Radmila Novakovic
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11000, Belgrade, Serbia
| | - Milan Kostic
- Vinca Institute of Nuclear Sciences, 11000, Belgrade, Serbia
| | - Milos Djuric
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11000, Belgrade, Serbia
| | - Milos Gostimirovic
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11000, Belgrade, Serbia
| | - Ljiljana Gojkovic-Bukarica
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11000, Belgrade, Serbia
| |
Collapse
|
39
|
Liu Y, Zhang L, Dong L, Song Q, Guo P, Wang Y, Chen Z, Zhang M. Hesperetin improves diabetic coronary arterial vasomotor responsiveness by upregulating myocyte voltage‑gated K+ channels. Exp Ther Med 2020; 20:486-494. [PMID: 32509018 PMCID: PMC7271715 DOI: 10.3892/etm.2020.8670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 03/03/2020] [Indexed: 12/04/2022] Open
Abstract
Hesperetin (HSP) is a naturally occurring flavonoid. The present study aimed to investigate the potential vasomotor effects and mechanisms of HSP action on rat coronary arteries (RCAs) injured by diabetes or high glucose concentrations. HSP (100 mg/kg/day) was intragastrically administered to the rats for 8 weeks, which were rendered diabetic with a single intraperitoneal injection of 60 mg/kg streptozotocin (STZ). The vascular tone of RCAs was recorded using a wire myograph. The voltage-dependent K+ (Kv) currents were examined using patch clamping. The expression of Kv channels (Kv1.2 and Kv1.5) was examined by western blot analysis and reverse transcription-quantitative PCR (RT-qPCR). Diabetes induced contractile hypersensitivity and vasodilator hyposensitivity in RCAs, both of which were attenuated by the chronic administration of HSP. Patch clamp data revealed that chronic HSP treatment reduced diabetes-induced suppression of Kv currents in the myocytes. Western blot and RT-qPCR analyses revealed that chronic HSP administration increased the expression of Kv1.2, but not Kv1.5, in the RCAs of diabetic rats compared with those from non-diabetic rats. In vitro analysis showed that co-incubation with HSP ameliorated high-glucose-induced suppression of Kv currents and Kv 1.2 protein expression in the myocytes. Taken together, the present study demonstrated that HSP alleviated RCA vasomotor dysfunction as a result of diabetes in rats by upregulating the expression of myocyte Kv channels.
Collapse
Affiliation(s)
- Yu Liu
- Department of Pharmacology, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Lei Zhang
- Department of Pharmacology, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Lina Dong
- Department of Pharmacology, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Qiying Song
- Department of Pharmacology, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Pengmei Guo
- Department of Pharmacology, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Yan Wang
- Department of Pharmacology, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Zhaoyang Chen
- Shanxi Key Laboratory of Experimental Animal Science and Animal Model of Human Disease, Laboratory Animal Center of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Mingsheng Zhang
- Department of Pharmacology, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| |
Collapse
|
40
|
Fan M, Liu J, Zhao B, Wu X, Li X, Gu J. Indirect comparison of NSAIDs for ankylosing spondylitis: Network meta-analysis of randomized, double-blinded, controlled trials. Exp Ther Med 2020; 19:3031-3041. [PMID: 32256790 PMCID: PMC7086213 DOI: 10.3892/etm.2020.8564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 11/15/2019] [Indexed: 01/01/2023] Open
Abstract
Ankylosing spondylitis (AS) is a chronic inflammatory disease characterized by lower back pain, enthesitis and asymmetrical peripheral arthritis. Non-steroidal anti-inflammatory drugs (NSAIDs) are recommended as a first-line drug treatment for AS. The aim of the present study was to evaluate the efficacy and safety of NSAIDs in patients with active AS. A total of 9 randomized controlled trials focusing on 6 NSAIDs, including etoricoxib, celecoxib, meloxicam, diclofenac, naproxen and beta-D-mannuronic acid (M2000), were analyzed in the present study. The efficacy endpoints included total pain score, patients' global assessment of disease activity (PGA), Bath Ankylosing Spondylitis Functional Index (BASFI) and the rate of achieving an Assessment in Ankylosing Spondylitis 20% response (ASAS20). The safety endpoints included total adverse events (AEs), gastrointestinal (GI) AEs, withdrawals due to AEs and serious AEs. NSAIDs were compared with the placebo and among themselves using Bayesian network meta-analysis, calculating mean differences (MDs) for continuous data and odds ratios for dichotomous data. The analysis revealed that all NSAIDs were significantly more effective in reducing pain severity than placebo (MDs between -17.49 and -25.99). Similarly, significant improvements in PGA, BASFI and ASAS20 were determined in patients receiving NSAIDs. Furthermore, etoricoxib was ranked as the most efficacious treatment for patients with AS. With regard to safety, there were no significant differences between NSAIDs and placebo in terms of total AEs, withdrawals due to AEs or serious AEs. Furthermore, no significant differences in AEs were identified between M2000 and the placebo. However, patients treated with diclofenac and naproxen had a higher risk of GI events than those taking placebo. In conclusion, the NSAIDs were all highly effective and well-tolerated in the treatment of AS. However, clinicians should take GI toxicity into account when prescribing NSAIDs.
Collapse
Affiliation(s)
- Meida Fan
- Department of Rheumatology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510630, P.R. China.,Department of Rheumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Jian Liu
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Bingcheng Zhao
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Xinyu Wu
- Department of Rheumatology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Xuefeng Li
- Department of Gastrointestinal Surgery, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China.,Shenzhen Following Precision Medical Research Institute, Shenzhen Luohu People's Hospital, The Third Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518001, P.R. China.,Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, P.R. China
| | - Jieruo Gu
- Department of Rheumatology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510630, P.R. China
| |
Collapse
|
41
|
Gu N, Dong A, Gao L, Xie C, Hou P, Wang W, Zhu S, Yao C, Zhang J, Guo X. Effectiveness and safety of pulsatile intravenous insulin therapy for the improvement of respiratory quotient in Chinese patients with diabetes mellitus. Exp Ther Med 2020; 19:3069-3075. [PMID: 32256794 PMCID: PMC7086298 DOI: 10.3892/etm.2020.8563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 12/20/2019] [Indexed: 11/18/2022] Open
Abstract
Pulsatile intravenous insulin therapy (PIVIT) is a means of imitating naturally occurring insulin pulses artificially. It is thought to improve carbohydrate metabolism, which can be assessed using the respiratory quotient (RQ). The aim of this present study was to assess the efficacy and safety of PIVIT for the improvement of RQ in Chinese patients with diabetes mellitus (DM). This 12-week, multi-center, prospective, randomized, open-label, parallel-group study involved 110 DM patients (both type 1 and type 2) whose RQ was <0.8. Of these, 53 patients formed the control group, in which standard anti-diabetic therapy was maintained, and 54 patients formed the treatment group, which underwent weekly PIVIT in addition to the administration of standard anti-diabetic therapy. RQ was evaluated monthly in control subjects, and before and after every PIVIT treatment in the treatment group. After weekly PIVIT for 12 weeks, the mean RQ increased from 0.70 to 0.90 in the treatment group, but did not change in the control group. The percentage of subjects reporting adverse events (AEs) was 31.5% (17/54) in the treatment group and 9.43% (5/53) in the control group (P=0.0053). The most frequently reported AE (by 12 subjects) was a gastroenteric reaction when these individuals were receiving 50% glucose during the PIVIT treatment. The majority of AEs were mild and did not interfere with the ongoing treatment. Thus, PIVIT can be viewed as tolerated and effective for the improvement of RQ in Chinese DM patients. This study was retrospectively registered with the Chinese Clinical Trial Registry (http://www.chictr.org.cn) on November 13th 2019 (registration no. ChiCTR1900027510).
Collapse
Affiliation(s)
- Nan Gu
- Department of Endocrinology, Peking University First Hospital, Beijing 100034, P.R. China
| | - Aimei Dong
- Department of Endocrinology, Peking University First Hospital, Beijing 100034, P.R. China
| | - Lei Gao
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing 100034, P.R. China
| | - Chenying Xie
- Department of Endocrinology, Peking University First Hospital, Beijing 100034, P.R. China
| | - Peiyi Hou
- Department of Endocrinology, Peking University First Hospital, Beijing 100034, P.R. China
| | - Wenbo Wang
- Department of Endocrinology, Peking University Shougang Hospital, Beijing 100144, P.R. China
| | - Sainan Zhu
- Department of Biostatistics, Peking University First Hospital, Beijing 100034, P.R. China
| | - Chen Yao
- Department of Biostatistics, Peking University First Hospital, Beijing 100034, P.R. China
| | - Junqing Zhang
- Department of Endocrinology, Peking University First Hospital, Beijing 100034, P.R. China
| | - Xiaohui Guo
- Department of Endocrinology, Peking University First Hospital, Beijing 100034, P.R. China
| |
Collapse
|
42
|
Martin-Aragon Baudel M, Espinosa-Tanguma R, Nieves-Cintron M, Navedo MF. Purinergic Signaling During Hyperglycemia in Vascular Smooth Muscle Cells. Front Endocrinol (Lausanne) 2020; 11:329. [PMID: 32528416 PMCID: PMC7256624 DOI: 10.3389/fendo.2020.00329] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 04/28/2020] [Indexed: 12/15/2022] Open
Abstract
The activation of purinergic receptors by nucleotides and/or nucleosides plays an important role in the control of vascular function, including modulation of vascular smooth muscle excitability, and vascular reactivity. Accordingly, purinergic receptor actions, acting as either ion channels (P2X) or G protein-coupled receptors (GCPRs) (P1, P2Y), target diverse downstream effectors, and substrates to regulate vascular smooth muscle function and vascular reactivity. Both vasorelaxant and vasoconstrictive effects have been shown to be mediated by different purinergic receptors in a vascular bed- and species-specific manner. Purinergic signaling has been shown to play a key role in altering vascular smooth muscle excitability and vascular reactivity following acute and short-term elevations in extracellular glucose (e.g., hyperglycemia). Moreover, there is evidence that vascular smooth muscle excitability and vascular reactivity is severely impaired during diabetes and that this is mediated, at least in part, by activation of purinergic receptors. Thus, purinergic receptors present themselves as important candidates mediating vascular reactivity in hyperglycemia, with potentially important clinical and therapeutic potential. In this review, we provide a narrative summarizing our current understanding of the expression, function, and signaling of purinergic receptors specifically in vascular smooth muscle cells and discuss their role in vascular complications following hyperglycemia and diabetes.
Collapse
Affiliation(s)
- Miguel Martin-Aragon Baudel
- Department of Pharmacology, University of California, Davis, Davis, CA, United States
- *Correspondence: Miguel Martin-Aragon Baudel
| | - Ricardo Espinosa-Tanguma
- Departamento de Fisiologia y Biofisca, Universidad Autónoma San Luis Potosí, San Luis Potosí, Mexico
| | | | - Manuel F. Navedo
- Department of Pharmacology, University of California, Davis, Davis, CA, United States
- Manuel F. Navedo
| |
Collapse
|
43
|
Babicheva A, Ayon RJ, Zhao T, Ek Vitorin JF, Pohl NM, Yamamura A, Yamamura H, Quinton BA, Ba M, Wu L, Ravellette KS, Rahimi S, Balistrieri F, Harrington A, Vanderpool RR, Thistlethwaite PA, Makino A, Yuan JXJ. MicroRNA-mediated downregulation of K + channels in pulmonary arterial hypertension. Am J Physiol Lung Cell Mol Physiol 2020; 318:L10-L26. [PMID: 31553627 PMCID: PMC6985878 DOI: 10.1152/ajplung.00010.2019] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 08/19/2019] [Accepted: 09/06/2019] [Indexed: 12/22/2022] Open
Abstract
Downregulated expression of K+ channels and decreased K+ currents in pulmonary artery smooth muscle cells (PASMC) have been implicated in the development of sustained pulmonary vasoconstriction and vascular remodeling in patients with idiopathic pulmonary arterial hypertension (IPAH). However, it is unclear exactly how K+ channels are downregulated in IPAH-PASMC. MicroRNAs (miRNAs) are small non-coding RNAs that are capable of posttranscriptionally regulating gene expression by binding to the 3'-untranslated regions of their targeted mRNAs. Here, we report that specific miRNAs are responsible for the decreased K+ channel expression and function in IPAH-PASMC. We identified 3 miRNAs (miR-29b, miR-138, and miR-222) that were highly expressed in IPAH-PASMC in comparison to normal PASMC (>2.5-fold difference). Selectively upregulated miRNAs are correlated with the decreased expression and attenuated activity of K+ channels. Overexpression of miR-29b, miR-138, or miR-222 in normal PASMC significantly decreased whole cell K+ currents and downregulated voltage-gated K+ channel 1.5 (KV1.5/KCNA5) in normal PASMC. Inhibition of miR-29b in IPAH-PASMC completely recovered K+ channel function and KV1.5 expression, while miR-138 and miR-222 had a partial or no effect. Luciferase assays further revealed that KV1.5 is a direct target of miR-29b. Additionally, overexpression of miR-29b in normal PASMC decreased large-conductance Ca2+-activated K+ (BKCa) channel currents and downregulated BKCa channel β1 subunit (BKCaβ1 or KCNMB1) expression, while inhibition of miR-29b in IPAH-PASMC increased BKCa channel activity and BKCaβ1 levels. These data indicate upregulated miR-29b contributes at least partially to the attenuated function and expression of KV and BKCa channels in PASMC from patients with IPAH.
Collapse
Affiliation(s)
- Aleksandra Babicheva
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, University of California, San Diego, La Jolla, California
- Departments of Medicine and Physiology, The University of Arizona, Tucson, Arizona
| | - Ramon J Ayon
- Departments of Medicine and Physiology, The University of Arizona, Tucson, Arizona
| | - Tengteng Zhao
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, University of California, San Diego, La Jolla, California
- Departments of Medicine and Physiology, The University of Arizona, Tucson, Arizona
| | - Jose F Ek Vitorin
- Departments of Medicine and Physiology, The University of Arizona, Tucson, Arizona
| | - Nicole M Pohl
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Aya Yamamura
- Kinjo Gakuin University School of Pharmacy, Nagoya, Japan
| | - Hisao Yamamura
- Nagoya City University Graduate School of Pharmaceutical Sciences, Nagoya, Japan
| | - Brooke A Quinton
- Departments of Medicine and Physiology, The University of Arizona, Tucson, Arizona
| | - Manqing Ba
- Departments of Medicine and Physiology, The University of Arizona, Tucson, Arizona
| | - Linda Wu
- Departments of Medicine and Physiology, The University of Arizona, Tucson, Arizona
| | - Keeley S Ravellette
- Departments of Medicine and Physiology, The University of Arizona, Tucson, Arizona
| | - Shamin Rahimi
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, University of California, San Diego, La Jolla, California
| | - Francesca Balistrieri
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, University of California, San Diego, La Jolla, California
| | - Angela Harrington
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, University of California, San Diego, La Jolla, California
| | - Rebecca R Vanderpool
- Departments of Medicine and Physiology, The University of Arizona, Tucson, Arizona
| | | | - Ayako Makino
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, California
- Departments of Medicine and Physiology, The University of Arizona, Tucson, Arizona
| | - Jason X-J Yuan
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, University of California, San Diego, La Jolla, California
- Departments of Medicine and Physiology, The University of Arizona, Tucson, Arizona
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
44
|
Man KNM, Navedo MF, Horne MC, Hell JW. β 2 Adrenergic Receptor Complexes with the L-Type Ca 2+ Channel Ca V1.2 and AMPA-Type Glutamate Receptors: Paradigms for Pharmacological Targeting of Protein Interactions. Annu Rev Pharmacol Toxicol 2019; 60:155-174. [PMID: 31561738 DOI: 10.1146/annurev-pharmtox-010919-023404] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Formation of signaling complexes is crucial for the orchestration of fast, efficient, and specific signal transduction. Pharmacological disruption of defined signaling complexes has the potential for specific intervention in selected regulatory pathways without affecting organism-wide disruption of parallel pathways. Signaling by epinephrine and norepinephrine through α and β adrenergic receptors acts on many signaling pathways in many cell types. Here, we initially provide an overview of the signaling complexes formed between the paradigmatic β2 adrenergic receptor and two of its most important targets, the L-type Ca2+ channel CaV1.2 and the AMPA-type glutamate receptor. Importantly, both complexes contain the trimeric Gs protein, adenylyl cyclase, and the cAMP-dependent protein kinase, PKA. We then discuss the functional implications of the formation of these complexes, how those complexes can be specifically disrupted, and how such disruption could be utilized in the pharmacological treatment of disease.
Collapse
Affiliation(s)
- Kwun Nok Mimi Man
- Department of Pharmacology, University of California, Davis, California 95616, USA;
| | - Manuel F Navedo
- Department of Pharmacology, University of California, Davis, California 95616, USA;
| | - Mary C Horne
- Department of Pharmacology, University of California, Davis, California 95616, USA;
| | - Johannes W Hell
- Department of Pharmacology, University of California, Davis, California 95616, USA;
| |
Collapse
|
45
|
Kim HJ, Yin MZ, Cho S, Kim SE, Choi SW, Ye SK, Yoo HY, Kim SJ. Increased inward rectifier K + current of coronary artery smooth muscle cells in spontaneously hypertensive rats; partial compensation of the attenuated endothelium-dependent relaxation via Ca 2+ -activated K + channels. Clin Exp Pharmacol Physiol 2019; 47:38-48. [PMID: 31444788 DOI: 10.1111/1440-1681.13168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/06/2019] [Accepted: 08/19/2019] [Indexed: 11/28/2022]
Abstract
Endothelium-dependent vasorelaxation is partly mediated by small-conductance (SK3) and intermediate-conductance Ca2+ -activated K+ channels (SK4) in the endothelium that results in endothelium-dependent hyperpolarization (EDH). Apart from the electrical propagation through myoendothelial gap junctions, the K+ released from the endothelium facilitates EDH by increasing inward rectifier K+ channel (Kir) conductance in smooth muscle cells. The EDH-dependent relaxation of coronary artery (CA) and Kir current in smooth muscle cells (CASMCs) of hypertensive animals are poorly understood despite the critical role of coronary flow in the hypertrophic heart. In spontaneously hypertensive (SHR) and control (WKY) rats, we found attenuation of the CA relaxation by activators of SK3 and SK4 (NS309 and 1-EBIO) in SHR. In isolated CASMCs, whole-cell patch-clamp study revealed larger IKir in SHR than WKY, whereas the myocytes of skeletal and cerebral arteries showed smaller IKir in SHR than WKY. While the treatment with IKir inhibitor (0.1 mmol/L Ba2+ ) alone did not affect the WKY-CA, the SHR-CA showed significant contractile response, suggesting relaxing influence of the higher IK ir in the CASMCs of SHR. Furthermore, the attenuation of NS309-induced relaxation of CA by the combined treatment with 0.1 mmol/L Ba2+ was more prominent in SHR than WKY. Our study firstly shows a distinct increase of IK ir in the CASMCs of SHR, which could partly compensate for the attenuated relaxation via endothelial SK3 and SK4.
Collapse
Affiliation(s)
- Hae Jin Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Ming Zhe Yin
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Suhan Cho
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Sung Eun Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Seong Woo Choi
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea.,Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Sang Kyu Ye
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea.,Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Korea.,Department of Pharmacology, Seoul National University College of Medicine, Seoul, Korea
| | - Hae Young Yoo
- Chung-Ang University Red Cross College of Nursing, Seoul, Korea
| | - Sung Joon Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea.,Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
46
|
Syed AU, Reddy GR, Ghosh D, Prada MP, Nystoriak MA, Morotti S, Grandi E, Sirish P, Chiamvimonvat N, Hell JW, Santana LF, Xiang YK, Nieves-Cintrón M, Navedo MF. Adenylyl cyclase 5-generated cAMP controls cerebral vascular reactivity during diabetic hyperglycemia. J Clin Invest 2019; 129:3140-3152. [PMID: 31162142 PMCID: PMC6668679 DOI: 10.1172/jci124705] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 05/14/2019] [Indexed: 12/20/2022] Open
Abstract
Elevated blood glucose (hyperglycemia) is a hallmark metabolic abnormality in diabetes. Hyperglycemia is associated with protein kinase A (PKA)-mediated stimulation of L-type Ca2+ channels in arterial myocytes resulting in increased vasoconstriction. However, the mechanisms by which glucose activates PKA remain unclear. Here, we showed that elevating extracellular glucose stimulates cAMP production in arterial myocytes, and that this was specifically dependent on adenylyl cyclase 5 (AC5) activity. Super-resolution imaging suggested nanometer proximity between subpopulations of AC5 and the L-type Ca2+ channel pore-forming subunit CaV1.2. In vitro, in silico, ex vivo and in vivo experiments revealed that this close association is critical for stimulation of L-type Ca2+ channels in arterial myocytes and increased myogenic tone upon acute hyperglycemia. This pathway supported the increase in L-type Ca2+ channel activity and myogenic tone in two animal models of diabetes. Our collective findings demonstrate a unique role for AC5 in PKA-dependent modulation of L-type Ca2+ channel activity and vascular reactivity during acute hyperglycemia and diabetes.
Collapse
MESH Headings
- Adenylyl Cyclases/genetics
- Adenylyl Cyclases/metabolism
- Animals
- Calcium Channels, L-Type/biosynthesis
- Calcium Channels, L-Type/genetics
- Cerebral Arteries/enzymology
- Cerebral Arteries/pathology
- Cyclic AMP/genetics
- Cyclic AMP/metabolism
- Cyclic AMP-Dependent Protein Kinases/genetics
- Cyclic AMP-Dependent Protein Kinases/metabolism
- Diabetes Mellitus, Experimental/enzymology
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/pathology
- Hyperglycemia/enzymology
- Hyperglycemia/genetics
- Hyperglycemia/pathology
- Mice
- Mice, Knockout
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/enzymology
- Myocytes, Smooth Muscle/pathology
Collapse
Affiliation(s)
- Arsalan U. Syed
- Department of Pharmacology, University of California, Davis, Davis, California, USA
| | - Gopireddy R. Reddy
- Department of Pharmacology, University of California, Davis, Davis, California, USA
| | - Debapriya Ghosh
- Department of Pharmacology, University of California, Davis, Davis, California, USA
| | - Maria Paz Prada
- Department of Pharmacology, University of California, Davis, Davis, California, USA
| | - Matthew A. Nystoriak
- Diabetes and Obesity Center, Department of Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Stefano Morotti
- Department of Pharmacology, University of California, Davis, Davis, California, USA
| | - Eleonora Grandi
- Department of Pharmacology, University of California, Davis, Davis, California, USA
| | - Padmini Sirish
- Department of Internal Medicine, University of California, Davis, Davis, California, USA
| | - Nipavan Chiamvimonvat
- Department of Pharmacology, University of California, Davis, Davis, California, USA
- Department of Internal Medicine, University of California, Davis, Davis, California, USA
- VA Northern California Health Care System, Mather, California, USA
| | - Johannes W. Hell
- Department of Pharmacology, University of California, Davis, Davis, California, USA
| | - Luis F. Santana
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, California, USA
| | - Yang K. Xiang
- Department of Pharmacology, University of California, Davis, Davis, California, USA
- VA Northern California Health Care System, Mather, California, USA
| | | | - Manuel F. Navedo
- Department of Pharmacology, University of California, Davis, Davis, California, USA
| |
Collapse
|
47
|
Prada MP, Syed AU, Buonarati OR, Reddy GR, Nystoriak MA, Ghosh D, Simó S, Sato D, Sasse KC, Ward SM, Santana LF, Xiang YK, Hell JW, Nieves-Cintrón M, Navedo MF. A G s-coupled purinergic receptor boosts Ca 2+ influx and vascular contractility during diabetic hyperglycemia. eLife 2019; 8:42214. [PMID: 30821687 PMCID: PMC6397001 DOI: 10.7554/elife.42214] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 02/16/2019] [Indexed: 12/21/2022] Open
Abstract
Elevated glucose increases vascular reactivity by promoting L-type CaV1.2 channel (LTCC) activity by protein kinase A (PKA). Yet, how glucose activates PKA is unknown. We hypothesized that a Gs-coupled P2Y receptor is an upstream activator of PKA mediating LTCC potentiation during diabetic hyperglycemia. Experiments in apyrase-treated cells suggested involvement of a P2Y receptor underlying the glucose effects on LTTCs. Using human tissue, expression for P2Y11, the only Gs-coupled P2Y receptor, was detected in nanometer proximity to CaV1.2 and PKA. FRET-based experiments revealed that the selective P2Y11 agonist NF546 and elevated glucose stimulate cAMP production resulting in enhanced PKA-dependent LTCC activity. These changes were blocked by the selective P2Y11 inhibitor NF340. Comparable results were observed in mouse tissue, suggesting that a P2Y11-like receptor is mediating the glucose response in these cells. These findings established a key role for P2Y11 in regulating PKA-dependent LTCC function and vascular reactivity during diabetic hyperglycemia.
Collapse
Affiliation(s)
- Maria Paz Prada
- Department of Pharmacology, University of California, Davis, Davis, United States
| | - Arsalan U Syed
- Department of Pharmacology, University of California, Davis, Davis, United States
| | - Olivia R Buonarati
- Department of Pharmacology, University of California, Davis, Davis, United States
| | - Gopireddy R Reddy
- Department of Pharmacology, University of California, Davis, Davis, United States
| | - Matthew A Nystoriak
- Diabetes & Obesity Center, Department of Medicine, University of Louisville, Kentucky, United States
| | - Debapriya Ghosh
- Department of Pharmacology, University of California, Davis, Davis, United States
| | - Sergi Simó
- Department of Cell Biology & Human Anatomy, University of California, Davis, Davis, United States
| | - Daisuke Sato
- Department of Pharmacology, University of California, Davis, Davis, United States
| | | | - Sean M Ward
- Department of Physiology & Cell Biology, University of Nevada, Reno, United States
| | - Luis F Santana
- Department of Physiology & Membrane Biology, University of California, Davis, Davis, United States
| | - Yang K Xiang
- Department of Pharmacology, University of California, Davis, Davis, United States.,VA Northern California Healthcare System, Mather, United States
| | - Johannes W Hell
- Department of Pharmacology, University of California, Davis, Davis, United States
| | | | - Manuel F Navedo
- Department of Pharmacology, University of California, Davis, Davis, United States
| |
Collapse
|
48
|
Peng ML, Li SN, He QQ, Zhao JL, Li LL, Ma HT. Based serum metabolomics analysis reveals simultaneous interconnecting changes during chicken embryonic development. J Anim Physiol Anim Nutr (Berl) 2018; 102:1210-1219. [PMID: 29806083 DOI: 10.1111/jpn.12925] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 03/05/2018] [Accepted: 04/30/2018] [Indexed: 02/06/2023]
Abstract
Metabolic disorder is a major health problem and is associated with a number of metabolic diseases. Due to native hyperglycaemia and resistance to exogenous insulin, chickens as a model had used in the studies of adipose tissue biology, metabolism and obesity. But no detailed information is available about the comprehensive changes of serum metabolites at different stages of chicken embryonic development. This study employed LC/MS-QTOF to determine the changes of major functional metabolites at incubation day 14 (E14d), 19 (E19d) and hatching day 1 (H1d), and the associated pathways of differential metabolites during chicken embryonic development were analysed using Metabolite Set Enrichment Analysis method. Results showed that 39 metabolites were significantly changed from E14d to E19d and 68 metabolites were significantly altered from E19d to H1d in chicken embryos. Protein synthesis was promoted by increasing the concentrations of L-glutamine and threonine, and gonadal development was promoted through increasing oestrone content from E14d to E19d in chicken embryos, which indicated that serum glutamine, threonine and oestrone contents may be considered as the candidate indicators for assessment of early embryonic development. 2-oxoglutaric acid mainly contributed to enhancing the citric cycle, and it plays an important role in improving the growth of chicken embryos at the late development; the decreasing of L-glutamine, L-isoleucine and L-leucine contents from E19d to H1d in chicken embryonic development implied their possible functions as the feed additive during early posthatch period of broiler chickens to satisfy the growth. These results provided insights into understand the roles of serum metabolites at different developmental stages of chicken embryos, it also provides available information for chicken as a model to study metabolic disease or human obesity.
Collapse
Affiliation(s)
- M L Peng
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - S N Li
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Q Q He
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - J L Zhao
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - L L Li
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - H T Ma
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
49
|
Goto K, Ohtsubo T, Kitazono T. Endothelium-Dependent Hyperpolarization (EDH) in Hypertension: The Role of Endothelial Ion Channels. Int J Mol Sci 2018; 19:E315. [PMID: 29361737 PMCID: PMC5796258 DOI: 10.3390/ijms19010315] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 01/18/2018] [Accepted: 01/19/2018] [Indexed: 12/28/2022] Open
Abstract
Upon stimulation with agonists and shear stress, the vascular endothelium of different vessels selectively releases several vasodilator factors such as nitric oxide and prostacyclin. In addition, vascular endothelial cells of many vessels regulate the contractility of the vascular smooth muscle cells through the generation of endothelium-dependent hyperpolarization (EDH). There is a general consensus that the opening of small- and intermediate-conductance Ca2+-activated K⁺ channels (SKCa and IKCa) is the initial mechanistic step for the generation of EDH. In animal models and humans, EDH and EDH-mediated relaxations are impaired during hypertension, and anti-hypertensive treatments restore such impairments. However, the underlying mechanisms of reduced EDH and its improvement by lowering blood pressure are poorly understood. Emerging evidence suggests that alterations of endothelial ion channels such as SKCa channels, inward rectifier K⁺ channels, Ca2+-activated Cl- channels, and transient receptor potential vanilloid type 4 channels contribute to the impaired EDH during hypertension. In this review, we attempt to summarize the accumulating evidence regarding the pathophysiological role of endothelial ion channels, focusing on their relationship with EDH during hypertension.
Collapse
Affiliation(s)
- Kenichi Goto
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| | - Toshio Ohtsubo
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| | - Takanari Kitazono
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| |
Collapse
|
50
|
Nystoriak MA, Navedo MF. Regulation of microvascular function by voltage-gated potassium channels: New tricks for an "ancient" dog. Microcirculation 2018; 25:10.1111/micc.12435. [PMID: 29239491 PMCID: PMC5826567 DOI: 10.1111/micc.12435] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 12/10/2017] [Indexed: 12/12/2022]
Abstract
Arterial tone is tightly regulated by a variety of potassium (K+ ) permeable ion channels at the sarcolemma of vascular smooth muscle cells. In particular, several types of KV channels provide a significant hyperpolarizing influence and serve to oppose pressure and agonist-induced membrane depolarization to promote smooth muscle relaxation and augmentation of vascular diameter and blood flow. In recent years, a number of studies have underscored previously unknown roles for particular KV subunits, new modes of channel regulation, and distinct cellular functions for these channels during physiological and pathological conditions. In this overview, we highlight articles contained in this Special Topics Issue that focus on the latest, most exciting advancements in the field of KV channels in the microcirculation. The collection of articles aims to highlight important new discoveries and controversies in the field of vascular KV channels as well as to shed light on key questions that require additional investigation.
Collapse
Affiliation(s)
- Matthew A. Nystoriak
- Diabetes and Obesity Center, Institute of Molecular Cardiology, Department of Medicine, University of Louisville, Louisville, KY 40202
| | - Manuel F. Navedo
- Department of Pharmacology, University of California, Davis, Davis, CA, 95616
| |
Collapse
|