1
|
Davies-Bolorunduro OF, Jaemsai B, Ruangchai W, Noppanamas T, Boonbangyang M, Bodharamik T, Sawaengdee W, Mahasirimongkol S, Palittapongarnpim P. Analysis of complete genomes of Mycobacterium tuberculosis sublineage 2.1 (Proto-Beijing) revealed the presence of three pe_pgrs3-pe_pgrs4-like genes. Sci Rep 2024; 14:30702. [PMID: 39730410 DOI: 10.1038/s41598-024-79351-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 11/08/2024] [Indexed: 12/29/2024] Open
Abstract
Mycobacterium tuberculosis Complex (MTBC), the etiological agent of tuberculosis (TB), demonstrates considerable genotypic diversity with distinct geographic distributions and variable virulence profiles. The pe-ppe gene family is especially noteworthy for its extensive variability and roles in host immune response modulation and virulence enhancement. We sequenced an Mtb genotype L2.1 isolate from Chiangrai, Northern Thailand, using second and third-generation sequencing technologies. Comparative genomic analysis with two additional L2.1 isolates and two L2.2.AA3 (Asia Ancestral 3 Beijing) isolates revealed significant pe-ppe gene variations. Notably, all L2.1 isolates harbored three copies of pe_pgrs3-pe_pgrs4-like genes (pe_pgrs3*, pe_pgrs4*, and pe_pgrs4), different from L2.2.AA3 and H37Rv strains. Additionally, ppe53 was duplicated in all but H37Rv, and ppe50 was deleted in L2.1 isolates, contrasting with an extended ppe50 in an L2.2 isolate (Mtb 18b), which contains an additional SVP motif. Complete deletion of ppe66 and loss of wag22 were observed in L2.1 isolates. These findings highlight the high structural variability of the pe-ppe gene family, emphasizing its complex roles in Mtb-host immune interactions. This genetic complexity offers potentially critical insights into mycobacterial pathogenesis, with significant implications for vaccine development and diagnostics.
Collapse
Affiliation(s)
- Olabisi Flora Davies-Bolorunduro
- Pornchai Matangkasombut Center for Microbial Genomics, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok, 10400, Thailand
- Department of Microbiology, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok, 10400, Thailand
- Floret Center for Advanced Genomics and Bioinformatics Research, Lagos, Nigeria
| | - Bharkbhoom Jaemsai
- Department of Microbiology, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok, 10400, Thailand
| | - Wuthiwat Ruangchai
- Pornchai Matangkasombut Center for Microbial Genomics, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok, 10400, Thailand
| | - Thanakron Noppanamas
- Pornchai Matangkasombut Center for Microbial Genomics, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok, 10400, Thailand
| | - Manon Boonbangyang
- Pornchai Matangkasombut Center for Microbial Genomics, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok, 10400, Thailand
| | - Thavin Bodharamik
- Pornchai Matangkasombut Center for Microbial Genomics, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok, 10400, Thailand
| | - Waritta Sawaengdee
- Department of Medical Sciences, Medical Life Science Institute, Ministry of Public Health, Nonthaburi, Thailand
| | - Surakameth Mahasirimongkol
- Department of Medical Sciences, Medical Life Science Institute, Ministry of Public Health, Nonthaburi, Thailand
| | - Prasit Palittapongarnpim
- Pornchai Matangkasombut Center for Microbial Genomics, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok, 10400, Thailand.
- Department of Microbiology, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok, 10400, Thailand.
| |
Collapse
|
2
|
Shankar G, Akhter Y. Stealing survival: Iron acquisition strategies of Mycobacteriumtuberculosis. Biochimie 2024; 227:37-60. [PMID: 38901792 DOI: 10.1016/j.biochi.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/07/2024] [Accepted: 06/18/2024] [Indexed: 06/22/2024]
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), faces iron scarcity within the host due to immune defenses. This review explores the importance of iron for Mtb and its strategies to overcome iron restriction. We discuss how the host limits iron as an innate immune response and how Mtb utilizes various iron acquisition systems, particularly the siderophore-mediated pathway. The review illustrates the structure and biosynthesis of mycobactin, a key siderophore in Mtb, and the regulation of its production. We explore the potential of targeting siderophore biosynthesis and uptake as a novel therapeutic approach for TB. Finally, we summarize current knowledge on Mtb's iron acquisition and highlight promising directions for future research to exploit this pathway for developing new TB interventions.
Collapse
Affiliation(s)
- Gauri Shankar
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh, 226 025, India
| | - Yusuf Akhter
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh, 226 025, India.
| |
Collapse
|
3
|
Farnia P, Maleknia M, Farnia P, Ghanavi J. Adaptive Mechanisms of Mycobacterium tuberculosis: Role of fbiC Mutations in Dormancy and Survival. Int J Mycobacteriol 2024; 13:355-361. [PMID: 39700156 DOI: 10.4103/ijmy.ijmy_198_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/20/2024] [Indexed: 12/21/2024] Open
Abstract
This review examines the impact of F420 biosynthesis protein C (fbiC) mutations in Mycobacterium tuberculosis (Mtb) and their influence on the bacterium's dormancy mechanisms. The potential role of fbiC mutations and functional impairments in the persistence of Mtb is emphasized. Tuberculosis (TB) bacilli can enter a dormant state with minimal metabolic activity, allowing them to conserve resources and survive in low-nutrient, low-oxygen environments for extended periods. While the fbiC gene contributes to dormancy, Mtb can achieve this state through multiple genetic and metabolic pathways, suggesting that it may still undergo dormancy even with functional impairments in fbiC. In this review, we utilized several scientific databases, including PubMed, Web of Science, and Google Scholar, and set of key search terms including "fbiC gene," "F420 Biosynthesis," "Mycobacterium tuberculosis," "Dormancy," and "Drug Resistance" to highlight the significance of the fbiC gene in regulating dormancy and explore how Mtb compensates for fbiC dysfunction through various metabolic adaptations.
Collapse
Affiliation(s)
- Parissa Farnia
- Mycobacteriology Research Center, National Research Institute of Tuberculosis and Lung Disease, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | | |
Collapse
|
4
|
Malik AA, Shariq M, Sheikh JA, Jaiswal U, Fayaz H, Shrivastava G, Ehtesham NZ, Hasnain SE. Mechanisms of immune evasion by Mycobacterium tuberculosis: the impact of T7SS and cell wall lipids on host defenses. Crit Rev Biochem Mol Biol 2024; 59:310-336. [PMID: 39378051 DOI: 10.1080/10409238.2024.2411264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/21/2024] [Accepted: 09/27/2024] [Indexed: 11/14/2024]
Abstract
Mycobacterium tuberculosis (M. tb) is one of the most successful human pathogens, causing a severe and widespread infectious disease. The frequent emergence of multidrug-resistant (MDR) strains has exacerbated this public health crisis, particularly in underdeveloped regions. M. tb employs a sophisticated array of virulence factors to subvert host immune responses, both innate and adaptive. It utilizes the early secretory antigenic target (ESAT6) secretion system 1 (ESX-1) type VII secretion system (T7SS) and cell wall lipids to disrupt phagosomal integrity, inhibiting phagosome maturation, and fusion with lysosomes. Although host cells activate mechanisms such as ubiquitin (Ub), Ub-ligase, and cyclic GMP-AMP synthase-stimulator of interferon genes 1 (CGAS-STING1)-mediated autophagy to inhibit M. tb survival within macrophages, the pathogen counteracts these defenses with its own virulence factors, thereby inhibiting autophagy and dampening host-directed responses. T7SSs are critical for transporting proteins across the complex mycobacterial cell envelope, performing essential functions, including metabolite uptake, immune evasion, and conjugation. T7SS substrates fall into two main families: ESAT-6 system proteins, which are found in both Firmicutes and Actinobacteria, and proline-glutamic acid (PE) and proline-proline-glutamic acid (PPE) proteins, which are unique to mycobacteria. Recent studies have highlighted the significance of T7SSs in mycobacterial growth, virulence, and pathogenesis. Understanding the mechanisms governing T7SSs could pave the way for novel therapeutic strategies to combat mycobacterial diseases, including tuberculosis (TB).
Collapse
Affiliation(s)
- Asrar Ahmad Malik
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Mohd Shariq
- GITAM School of Science, GITAM University, Rudraram, Telangana, India
| | - Javaid Ahmad Sheikh
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, India
| | - Udyeshita Jaiswal
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, India
| | - Haleema Fayaz
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Gauri Shrivastava
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Nasreen Z Ehtesham
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Seyed E Hasnain
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi (IIT-D), Hauz Khas, New Delhi, India
| |
Collapse
|
5
|
Bohada-Lizarazo DP, Bravo-Sanabria KD, Cárdenas-Malpica P, Rodríguez R. Comparative Genomic Analysis of Mycobacterium tuberculosis Isolates Circulating in North Santander, Colombia. Trop Med Infect Dis 2024; 9:197. [PMID: 39330886 PMCID: PMC11436241 DOI: 10.3390/tropicalmed9090197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/17/2024] [Accepted: 08/27/2024] [Indexed: 09/28/2024] Open
Abstract
Tuberculosis (TB) is an important infectious disease in relation to global public health and is caused species of the Mycobacterium tuberculosis complex (MTBC). In this study, we used whole-genome sequencing (WGS) and comparative genomics to investigate the genetic diversity of M. tuberculosis (Mtb) isolates circulating in North Santander (NS), Colombia. WGS was used for the phylogenetic and lineage characterization of 18 isolates of Mtb typed with orphan genotypes from 11 municipalities of NS between 2015 and 2018. The isolates studied were included in six sublineages from L4; the most frequent were 4.1.2.1, 4.3.3, and 4.3.4.2, corresponding to a proportion of 22.2%. The genome analysis conducted allowed the identification of a set of genetic variants mainly associated with determinants of virulence and evasion of the immune system (PPE34 and PE_PGRS2); adaptation and survival (PGL/p-HBAD); stress response (sigJ and sigM); geographic variability (PPE34); and carbohydrate and lipid metabolism (aldA, rocA, and cyp144). This is the first description of the molecular epidemiology of Mtb isolates circulating in NS achieved through WGS. It was possible to perform comparative genomics analyses between Mtb isolates against the universal reference H37Rv and Colombian UT205 genome, which can help us to understand the local genetic diversity and is relevant for epidemiological studies, providing insight into TB transmission dynamics in NS.
Collapse
Affiliation(s)
- Diana Patricia Bohada-Lizarazo
- Centro Experimental de Diagnóstico e Investigación Molecular-CEDIMOL, Universidad de Pamplona, Pamplona 503050, Colombia; (K.D.B.-S.); (R.R.)
- Grupo de Investigación en Recursos Naturales, Universidad de Pamplona, Pamplona 503050, Colombia;
- Departamento de Bacteriología y Laboratorio Clínico, Facultad de Salud, Universidad de Pamplona, Pamplona 503050, Colombia
| | - Karen Dayana Bravo-Sanabria
- Centro Experimental de Diagnóstico e Investigación Molecular-CEDIMOL, Universidad de Pamplona, Pamplona 503050, Colombia; (K.D.B.-S.); (R.R.)
- Departamento de Bacteriología y Laboratorio Clínico, Facultad de Salud, Universidad de Pamplona, Pamplona 503050, Colombia
| | - Paola Cárdenas-Malpica
- Grupo de Investigación en Recursos Naturales, Universidad de Pamplona, Pamplona 503050, Colombia;
- Departamento de Bacteriología y Laboratorio Clínico, Facultad de Salud, Universidad de Pamplona, Pamplona 503050, Colombia
| | - Raúl Rodríguez
- Centro Experimental de Diagnóstico e Investigación Molecular-CEDIMOL, Universidad de Pamplona, Pamplona 503050, Colombia; (K.D.B.-S.); (R.R.)
- Grupo de Investigación en Recursos Naturales, Universidad de Pamplona, Pamplona 503050, Colombia;
| |
Collapse
|
6
|
Pidot SJ, Klatt S, Ates LS, Frigui W, Sayes F, Majlessi L, Izumi H, Monk IR, Porter JL, Bennett-Wood V, Seemann T, Otter A, Taiaroa G, Cook GM, West N, Tobias NJ, Fuerst JA, Stutz MD, Pellegrini M, McConville M, Brosch R, Stinear TP. Marine sponge microbe provides insights into evolution and virulence of the tubercle bacillus. PLoS Pathog 2024; 20:e1012440. [PMID: 39207937 PMCID: PMC11361433 DOI: 10.1371/journal.ppat.1012440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024] Open
Abstract
Reconstructing the evolutionary origins of Mycobacterium tuberculosis, the causative agent of human tuberculosis, has helped identify bacterial factors that have led to the tubercle bacillus becoming such a formidable human pathogen. Here we report the discovery and detailed characterization of an exceedingly slow growing mycobacterium that is closely related to M. tuberculosis for which we have proposed the species name Mycobacterium spongiae sp. nov., (strain ID: FSD4b-SM). The bacterium was isolated from a marine sponge, taken from the waters of the Great Barrier Reef in Queensland, Australia. Comparative genomics revealed that, after the opportunistic human pathogen Mycobacterium decipiens, M. spongiae is the most closely related species to the M. tuberculosis complex reported to date, with 80% shared average nucleotide identity and extensive conservation of key M. tuberculosis virulence factors, including intact ESX secretion systems and associated effectors. Proteomic and lipidomic analyses showed that these conserved systems are functional in FSD4b-SM, but that it also produces cell wall lipids not previously reported in mycobacteria. We investigated the virulence potential of FSD4b-SM in mice and found that, while the bacteria persist in lungs for 56 days after intranasal infection, no overt pathology was detected. The similarities with M. tuberculosis, together with its lack of virulence, motivated us to investigate the potential of FSD4b-SM as a vaccine strain and as a genetic donor of the ESX-1 genetic locus to improve BCG immunogenicity. However, neither of these approaches resulted in superior protection against M. tuberculosis challenge compared to BCG vaccination alone. The discovery of M. spongiae adds to our understanding of the emergence of the M. tuberculosis complex and it will be another useful resource to refine our understanding of the factors that shaped the evolution and pathogenesis of M. tuberculosis.
Collapse
Affiliation(s)
- Sacha J. Pidot
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Stephan Klatt
- Department of Molecular Biology and Biochemistry, Bio21 Institute, University of Melbourne, Parkville, Australia
| | - Louis S. Ates
- Institut Pasteur, Université Paris Cité, Unit for Integrated Mycobacterial Pathogenomics, Paris, France
| | - Wafa Frigui
- Institut Pasteur, Université Paris Cité, Unit for Integrated Mycobacterial Pathogenomics, Paris, France
| | - Fadel Sayes
- Institut Pasteur, Université Paris Cité, Unit for Integrated Mycobacterial Pathogenomics, Paris, France
| | - Laleh Majlessi
- Institut Pasteur, Université Paris Cité, Unit for Integrated Mycobacterial Pathogenomics, Paris, France
| | - Hiroshi Izumi
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia
| | - Ian R. Monk
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Jessica L. Porter
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Vicki Bennett-Wood
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Torsten Seemann
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Ashley Otter
- UK Health Security Agency, Porton Down, Salisbury, United Kingdom
| | - George Taiaroa
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Gregory M. Cook
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Nicholas West
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia
| | - Nicholas J. Tobias
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - John A. Fuerst
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia
| | - Michael D. Stutz
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Marc Pellegrini
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Malcolm McConville
- Department of Molecular Biology and Biochemistry, Bio21 Institute, University of Melbourne, Parkville, Australia
| | - Roland Brosch
- Institut Pasteur, Université Paris Cité, Unit for Integrated Mycobacterial Pathogenomics, Paris, France
| | - Timothy P. Stinear
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| |
Collapse
|
7
|
Kipkorir T, Polgar P, Barker D, D’Halluin A, Patel Z, Arnvig K. A novel regulatory interplay between atypical B12 riboswitches and uORF translation in Mycobacterium tuberculosis. Nucleic Acids Res 2024; 52:7876-7892. [PMID: 38709884 PMCID: PMC11260477 DOI: 10.1093/nar/gkae338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 04/10/2024] [Accepted: 04/17/2024] [Indexed: 05/08/2024] Open
Abstract
Vitamin B12 is an essential cofactor in all domains of life and B12-sensing riboswitches are some of the most widely distributed riboswitches. Mycobacterium tuberculosis, the causative agent of tuberculosis, harbours two B12-sensing riboswitches. One controls expression of metE, encoding a B12-independent methionine synthase, the other controls expression of ppe2 of uncertain function. Here, we analysed ligand sensing, secondary structure and gene expression control of the metE and ppe2 riboswitches. Our results provide the first evidence of B12 binding by these riboswitches and show that they exhibit different preferences for individual isoforms of B12, use distinct regulatory and structural elements and act as translational OFF switches. Based on our results, we propose that the ppe2 switch represents a new variant of Class IIb B12-sensing riboswitches. Moreover, we have identified short translated open reading frames (uORFs) upstream of metE and ppe2, which modulate the expression of their downstream genes. Translation of the metE uORF suppresses MetE expression, while translation of the ppe2 uORF is essential for PPE2 expression. Our findings reveal an unexpected regulatory interplay between B12-sensing riboswitches and the translational machinery, highlighting a new level of cis-regulatory complexity in M. tuberculosis. Attention to such mechanisms will be critical in designing next-level intervention strategies.
Collapse
Affiliation(s)
- Terry Kipkorir
- Institute for Structural and Molecular Biology, University College London, Gower Street, WC1E 6BT London, UK
| | - Peter Polgar
- Institute for Structural and Molecular Biology, University College London, Gower Street, WC1E 6BT London, UK
| | - Declan Barker
- Institute for Structural and Molecular Biology, University College London, Gower Street, WC1E 6BT London, UK
| | - Alexandre D’Halluin
- Institute for Structural and Molecular Biology, University College London, Gower Street, WC1E 6BT London, UK
| | - Zaynah Patel
- Institute for Structural and Molecular Biology, University College London, Gower Street, WC1E 6BT London, UK
| | - Kristine B Arnvig
- Institute for Structural and Molecular Biology, University College London, Gower Street, WC1E 6BT London, UK
| |
Collapse
|
8
|
Krysztopa-Grzybowska K, Lach J, Polak M, Strapagiel D, Dziadek J, Olszewski M, Zasada AA, Darlińska A, Lutyńska A, Augustynowicz-Kopeć E. The whole genome sequence of Polish vaccine strain Mycobacterium bovis BCG Moreau. Microbiol Spectr 2024; 12:e0425923. [PMID: 38757975 PMCID: PMC11237378 DOI: 10.1128/spectrum.04259-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/24/2024] [Indexed: 05/18/2024] Open
Abstract
Currently, tuberculosis immunoprophylaxis is based solely on Bacillus Calmette-Guérin (BCG) vaccination, and some of the new potential tuberculosis vaccines are based on the BCG genome. Therefore, it is reasonable to analyze the genomes of individual BCG substrains. The aim of this study was the genetic characterization of the BCG-Moreau Polish (PL) strain used for the production of the BCG vaccine in Poland since 1955. Sequencing of different BCG lots showed that the strain was stable over a period of 59 years. As a result of comparison, BCG-Moreau PL with BCG-Moreau Rio de Janeiro (RDJ) 143 single nucleotide polymorphisms (SNPs) and 32 insertion/deletion mutations (INDELs) were identified. However, the verification of these mutations showed that the most significant were accumulated in the BCG-Moreau RDJ genome. The mutations unique to the Polish strain genome are 1 SNP and 2 INDEL. The strategy of combining short-read sequencing with long-read sequencing is currently the most optimal approach for sequencing bacterial genomes. With this approach, the only available genomic sequence of BCG-Moreau PL was obtained. This sequence will primarily be a reference point in the genetic control of the stability of the vaccine strain in the future. The results enrich knowledge about the microevolution and attenuation of the BCG vaccine substrains. IMPORTANCE The whole genome sequence obtained is the only genomic sequence of the strain that has been used for vaccine production in Poland since 1955. Sequencing of different BCG lots showed that the strain was stable over a period of 59 years. The comprehensive genomic analysis performed not only enriches knowledge about the microevolution and attenuation of the BCG vaccine substrains but also enables the utilization of identified markers as a reference point in the genetic control and identity tests of the stability of the vaccine strain in the future.
Collapse
Affiliation(s)
- Katarzyna Krysztopa-Grzybowska
- Department of Sera and Vaccines Evaluation, National Institute of Public Health NIH – National Research Institute, Warsaw, Poland
| | - Jakub Lach
- Biobank Lab, Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Maciej Polak
- Department of Sera and Vaccines Evaluation, National Institute of Public Health NIH – National Research Institute, Warsaw, Poland
| | - Dominik Strapagiel
- Biobank Lab, Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Jaroslaw Dziadek
- Mycobacterium Genetics and Physiology Unit, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Marcin Olszewski
- Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
| | - Aleksandra A. Zasada
- Department of Sera and Vaccines Evaluation, National Institute of Public Health NIH – National Research Institute, Warsaw, Poland
| | - Aniela Darlińska
- Department of Sera and Vaccines Evaluation, National Institute of Public Health NIH – National Research Institute, Warsaw, Poland
| | - Anna Lutyńska
- Department of Medical Biology, National Institute of Cardiology, Warsaw, Poland
| | - Ewa Augustynowicz-Kopeć
- Department of Microbiology, National Tuberculosis and Lung Diseases Research Institute, Warsaw, Poland
| |
Collapse
|
9
|
Fang WW, Kong XL, Yang JY, Tao NN, Li YM, Wang TT, Li YY, Han QL, Zhang YZ, Hu JJ, Li HC, Liu Y. PE/PPE mutations in the transmission of Mycobacterium tuberculosis in China revealed by whole genome sequencing. BMC Microbiol 2024; 24:206. [PMID: 38858614 PMCID: PMC11163795 DOI: 10.1186/s12866-024-03352-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 05/26/2024] [Indexed: 06/12/2024] Open
Abstract
OBJECTIVE This study aims to examine the impact of PE/PPE gene mutations on the transmission of Mycobacterium tuberculosis (M. tuberculosis) in China. METHODS We collected the whole genome sequencing (WGS) data of 3202 M. tuberculosis isolates in China from 2007 to 2018 and investigated the clustering of strains from different lineages. To evaluate the potential role of PE/PPE gene mutations in the dissemination of the pathogen, we employed homoplastic analysis to detect homoplastic single nucleotide polymorphisms (SNPs) within these gene regions. Subsequently, logistic regression analysis was conducted to analyze the statistical association. RESULTS Based on nationwide M. tuberculosis WGS data, it has been observed that the majority of the M. tuberculosis burden in China is caused by lineage 2 strains, followed by lineage 4. Lineage 2 exhibited a higher number of transmission clusters, totaling 446 clusters, of which 77 were cross-regional clusters. Conversely, there were only 52 transmission clusters in lineage 4, of which 9 were cross-regional clusters. In the analysis of lineage 2 isolates, regression results showed that 4 specific gene mutations, PE4 (position 190,394; c.46G > A), PE_PGRS10 (839,194; c.744 A > G), PE16 (1,607,005; c.620T > G) and PE_PGRS44 (2,921,883; c.333 C > A), were significantly associated with the transmission of M. tuberculosis. Mutations of PE_PGRS10 (839,334; c.884 A > G), PE_PGRS11 (847,613; c.1455G > C), PE_PGRS47 (3,054,724; c.811 A > G) and PPE66 (4,189,930; c.303G > C) exhibited significant associations with the cross-regional clusters. A total of 13 mutation positions showed a positive correlation with clustering size, indicating a positive association. For lineage 4 strains, no mutations were found to enhance transmission, but 2 mutation sites were identified as risk factors for cross-regional clusters. These included PE_PGRS4 (338,100; c.974 A > G) and PPE13 (976,897; c.1307 A > C). CONCLUSION Our results indicate that some PE/PPE gene mutations can increase the risk of M. tuberculosis transmission, which might provide a basis for controlling the spread of tuberculosis.
Collapse
Affiliation(s)
- Wei-Wei Fang
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong, 250021, PR China
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, People's Republic of China
| | - Xiang-Long Kong
- Shandong Artificial Intelligence Institute, Qilu University of Technology & Shandong Academy of Sciences, Jinan, Shandong, PR China
| | - Jie-Yu Yang
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong, 250021, PR China
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, People's Republic of China
| | - Ning-Ning Tao
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong, 250021, PR China
| | - Ya-Meng Li
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong, 250021, PR China
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, PR China
| | - Ting-Ting Wang
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong, 250021, PR China
| | - Ying-Ying Li
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong, 250021, PR China
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, PR China
| | - Qi-Lin Han
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong, 250021, PR China
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, People's Republic of China
| | - Yu-Zhen Zhang
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong, 250021, PR China
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, People's Republic of China
| | - Jin-Jiang Hu
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong, 250021, PR China
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, People's Republic of China
| | - Huai-Chen Li
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong, 250021, PR China
| | - Yao Liu
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong, 250021, PR China.
| |
Collapse
|
10
|
Veerapandian R, Gadad SS, Jagannath C, Dhandayuthapani S. Live Attenuated Vaccines against Tuberculosis: Targeting the Disruption of Genes Encoding the Secretory Proteins of Mycobacteria. Vaccines (Basel) 2024; 12:530. [PMID: 38793781 PMCID: PMC11126151 DOI: 10.3390/vaccines12050530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Tuberculosis (TB), a chronic infectious disease affecting humans, causes over 1.3 million deaths per year throughout the world. The current preventive vaccine BCG provides protection against childhood TB, but it fails to protect against pulmonary TB. Multiple candidates have been evaluated to either replace or boost the efficacy of the BCG vaccine, including subunit protein, DNA, virus vector-based vaccines, etc., most of which provide only short-term immunity. Several live attenuated vaccines derived from Mycobacterium tuberculosis (Mtb) and BCG have also been developed to induce long-term immunity. Since Mtb mediates its virulence through multiple secreted proteins, these proteins have been targeted to produce attenuated but immunogenic vaccines. In this review, we discuss the characteristics and prospects of live attenuated vaccines generated by targeting the disruption of the genes encoding secretory mycobacterial proteins.
Collapse
Affiliation(s)
- Raja Veerapandian
- Center of Emphasis in Infectious Diseases, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Shrikanth S. Gadad
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Chinnaswamy Jagannath
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute & Weill Cornell Medical College, Houston, TX 77030, USA
| | - Subramanian Dhandayuthapani
- Center of Emphasis in Infectious Diseases, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| |
Collapse
|
11
|
Ullah H, Shi X, Taj A, Cheng L, Yan Q, Sha S, Ahmad, Kang J, Haris M, Ma X, Ma Y. Mycobacterium tuberculosis PE_PGRS38 Enhances Intracellular Survival of Mycobacteria by Inhibiting TLR4/NF-κB-Dependent Inflammation and Apoptosis of the Host. BIOLOGY 2024; 13:313. [PMID: 38785795 PMCID: PMC11118070 DOI: 10.3390/biology13050313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/20/2024] [Accepted: 04/27/2024] [Indexed: 05/25/2024]
Abstract
Mycobacterium tuberculosis (Mtb) ranks as the most lethal human pathogen, able to fend off repeated attacks by the immune system or medications. PE_PGRS proteins are hallmarks of the pathogenicity of Mtb and contribute to its antigenic diversity, virulence, and persistence during infection. M. smegmatis is a nonpathogenic mycobacterium that naturally lacks PE_PGRS and is used as a model to express Mtb proteins. PE_PGRS has the capability to evade host immune responses and enhance the intracellular survival of M. smegmatis. Despite the intense investigations into PE_PGRS proteins, their role in tuberculosis remains elusive. We engineered the recombinant M. smegmatis strain Ms-PE_PGRS38. The result shows that PE_PGRS38 is expressed in the cell wall of M. smegmatis. PE_PGRS38 contributes to biofilm formation, confers permeability to the cell wall, and shows variable responses to exogenous stresses. PE_PGRS38 downregulated TLR4/NF-κB signaling in RAW264.7 macrophages and lung tissues of infected mice. In addition, PE_PGRS38 decreased NLRP3-dependent IL-1β release and limited pathogen-mediated inflammasome activity during infection. Moreover, PE_PGRS38 inhibited the apoptosis of RAW264.7 cells by downregulating the expression of apoptotic markers including Bax, cytochrome c, caspase-3, and caspase-9. In a nutshell, our findings demonstrate that PE_PGRS38 is a virulence factor for Mtb that enables recombinant M. smegmatis to survive by resisting and evading the host's immune responses during infection.
Collapse
Affiliation(s)
- Hayan Ullah
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China; (H.U.); (A.T.); (L.C.); (S.S.); (J.K.); (M.H.)
- Department of Microbiology, Dalian Medical University, Dalian 116044, China;
| | - Xiaoxia Shi
- Department of Experimental Teaching Center of Public Health, Dalian Medical University, Dalian 116044, China;
| | - Ayaz Taj
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China; (H.U.); (A.T.); (L.C.); (S.S.); (J.K.); (M.H.)
| | - Lin Cheng
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China; (H.U.); (A.T.); (L.C.); (S.S.); (J.K.); (M.H.)
| | - Qiulong Yan
- Department of Microbiology, Dalian Medical University, Dalian 116044, China;
| | - Shanshan Sha
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China; (H.U.); (A.T.); (L.C.); (S.S.); (J.K.); (M.H.)
| | - Ahmad
- Department of Immunology, Dalian Medical University, Dalian 116044, China;
| | - Jian Kang
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China; (H.U.); (A.T.); (L.C.); (S.S.); (J.K.); (M.H.)
| | - Muhammad Haris
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China; (H.U.); (A.T.); (L.C.); (S.S.); (J.K.); (M.H.)
| | - Xiaochi Ma
- Pharmaceutical Research Center, The Second Affiliated Hospital, Dalian Medical University, Dalian 116044, China
| | - Yufang Ma
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China; (H.U.); (A.T.); (L.C.); (S.S.); (J.K.); (M.H.)
- Department of Microbiology, Dalian Medical University, Dalian 116044, China;
| |
Collapse
|
12
|
Kumar A, Kamuju V, Vivekanandan P. RNA G-quadruplexes inhibit translation of the PE/PPE transcripts in Mycobacterium tuberculosis. J Biol Chem 2024; 300:105567. [PMID: 38103641 PMCID: PMC10801317 DOI: 10.1016/j.jbc.2023.105567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/22/2023] [Accepted: 12/08/2023] [Indexed: 12/19/2023] Open
Abstract
The role of RNA G-quadruplexes (rG4s) in bacteria remains poorly understood. High G-quadruplex densities have been linked to organismal stress. Here we investigate rG4s in mycobacteria, which survive highly stressful conditions within the host. We show that rG4-enrichment is a unique feature exclusive to slow-growing pathogenic mycobacteria, and Mycobacterium tuberculosis (Mtb) transcripts contain an abundance of folded rG4s. Notably, the PE/PPE family of genes, unique to slow-growing pathogenic mycobacteria, contain over 50% of rG4s within Mtb transcripts. We found that RNA oligonucleotides of putative rG4s in PE/PPE genes form G-quadruplex structures in vitro, which are stabilized by the G-quadruplex ligand BRACO19. Furthermore, BRACO19 inhibits the transcription of PE/PPE genes and selectively suppresses the growth of Mtb but not Mycobacterium smegmatis or other rapidly growing bacteria. Importantly, the stabilization of rG4s inhibits the translation of Mtb PE/PPE genes (PPE56, PPE67, PPE68, PE_PGRS39, and PE_PGRS41) ectopically expressed in M. smegmatis or Escherichia coli. In addition, the rG4-mediated reduction in PE/PPE protein levels attenuates proinflammatory response upon infection of THP-1 cells. Our findings shed new light on the regulation of PE/PPE genes and highlight a pivotal role for rG4s in Mtb transcripts as regulators of post-transcriptional translational control. The rG4s in mycobacterial transcripts may represent potential drug targets for newer therapies.
Collapse
Affiliation(s)
- Ashish Kumar
- Kusuma School of Biological Sciences, Indian Institute of Technology, New Delhi, India
| | - Vinay Kamuju
- Department of Biochemical Engineering & Biotechnology, Indian Institute of Technology, New Delhi, India
| | - Perumal Vivekanandan
- Kusuma School of Biological Sciences, Indian Institute of Technology, New Delhi, India.
| |
Collapse
|
13
|
Medha, Joshi H, Sharma S, Sharma M. Elucidating the function of hypothetical PE_PGRS45 protein of Mycobacterium tuberculosis as an oxido-reductase: a potential target for drug repurposing for the treatment of tuberculosis. J Biomol Struct Dyn 2023; 41:10009-10025. [PMID: 36448553 DOI: 10.1080/07391102.2022.2151514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 11/19/2022] [Indexed: 06/17/2023]
Abstract
Mycobacterium tuberculosis (Mtb) encodes a total of 67 PE_PGRS proteins and definite functions of many of them are still unknown. This study reports PE_PGRS45 (Rv2615c) protein from Mtb as NADPH dependent oxido-reductase having substrate specificity for fatty acyl Coenzyme A. Computational studies predicted PE_PGRS45 to be an integral membrane protein of Mtb. Expression of PE_PGRS45 in non-pathogenic Mycobacterium smegmatis, which does not possess PE_PGRS genes, confirmed its membrane localization. This protein was observed to have NADPH binding motif. Experimental validation confirmed its NADPH dependent oxido-reductase activity (Km value = 34.85 ± 9.478 μM, Vmax = 96.77 ± 7.184 nmol/min/mg of protein). Therefore, its potential to be targeted by first line anti-tubercular drug Isoniazid (INH) was investigated. INH was predicted to bind within the active site of PE_PGRS45 protein and experiments validated its inhibitory effect on the oxido-reductase activity of PE_PGRS45 with IC50/Ki values of 5.66 μM. Mtb is resistant to first line drugs including INH. Therefore, to address the problem of drug resistant TB, docking and Molecular Dynamics (MD) simulation studies between PE_PGRS45 and three drugs (Entacapone, Tolcapone and Verapamil) which are being used in Parkinson's and hypertension treatment were performed. PE_PGRS45 bound the three drugs with similar or better affinity in comparison to INH. Additionally, INH and these drugs bound within the same active site of PE_PGRS45. This study discovered Mtb's PE_PGRS45 protein to have an oxido-reductase activity and could be targeted by drugs that can be repurposed for TB treatment. Furthermore, in-vitro and in-vivo validation will aid in drug-resistant TB treatment. HIGHLIGHTSIn-silico and in-vitro studies of hypothetical protein PE_PGRS45 (Rv2615c) of Mycobacterium tuberculosis (Mtb) reveals it to be an integral membrane proteinPE_PGRS45 protein has substrate specificity for fatty acyl Coenzyme A (fatty acyl CoA) and possess NADPH dependent oxido-reductase activityDocking and simulation studies revealed that first line anti-tubercular drug Isoniazid (INH) and other drugs with anti-TB property have strong affinity for PE_PGRS45 proteinOxido-reductase activity of PE_PGRS45 protein is inhibited by INHPE_PGRS45 protein could be targeted by drugs that can be repurposed for TB treatmentCommunicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Medha
- DSKC Bio Discovery Lab and Department of Zoology, Miranda House, University of Delhi, New Delhi, India
| | - Hemant Joshi
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Sadhna Sharma
- DSKC Bio Discovery Lab and Department of Zoology, Miranda House, University of Delhi, New Delhi, India
| | - Monika Sharma
- DSKC Bio Discovery Lab and Department of Zoology, Miranda House, University of Delhi, New Delhi, India
| |
Collapse
|
14
|
Gómez-González PJ, Grabowska AD, Tientcheu LD, Tsolaki AG, Hibberd ML, Campino S, Phelan JE, Clark TG. Functional genetic variation in pe/ ppe genes contributes to diversity in Mycobacterium tuberculosis lineages and potential interactions with the human host. Front Microbiol 2023; 14:1244319. [PMID: 37876785 PMCID: PMC10591178 DOI: 10.3389/fmicb.2023.1244319] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/21/2023] [Indexed: 10/26/2023] Open
Abstract
Introduction Around 10% of the coding potential of Mycobacterium tuberculosisis constituted by two poorly understood gene families, the pe and ppe loci, thought to be involved in host-pathogen interactions. Their repetitive nature and high GC content have hindered sequence analysis, leading to exclusion from whole-genome studies. Understanding the genetic diversity of pe/ppe families is essential to facilitate their potential translation into tools for tuberculosis prevention and treatment. Methods To investigate the genetic diversity of the 169 pe/ppe genes, we performed a sequence analysis across 73 long-read assemblies representing seven different lineages of M. tuberculosis and M. bovis BCG. Individual pe/ppe gene alignments were extracted and diversity and conservation across the different lineages studied. Results The pe/ppe genes were classified into three groups based on the level of protein sequence conservation relative to H37Rv, finding that >50% were conserved, with indels in pe_pgrs and ppe_mptr sub-families being major drivers of structural variation. Gene rearrangements, such as duplications and gene fusions, were observed between pe and pe_pgrs genes. Inter-lineage diversity revealed lineage-specific SNPs and indels. Discussion The high level of pe/ppe genes conservation, together with the lineage-specific findings, suggest their phylogenetic informativeness. However, structural variants and gene rearrangements differing from the reference were also identified, with potential implications for pathogenicity. Overall, improving our knowledge of these complex gene families may have insights into pathogenicity and inform the development of much-needed tools for tuberculosis control.
Collapse
Affiliation(s)
| | - Anna D. Grabowska
- Department of Biophysics, Physiology and Pathophysiology, Medical University of Warsaw, Warsaw, Poland
| | - Leopold D. Tientcheu
- MRC Unit, The Gambia at the London School of Hygiene and Tropical Medicine, Vaccines and Immunity Theme, Fajara, The Gambia
| | - Anthony G. Tsolaki
- Department of Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Martin L. Hibberd
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Susana Campino
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Jody E. Phelan
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Taane G. Clark
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
15
|
Koleske BN, Jacobs WR, Bishai WR. The Mycobacterium tuberculosis genome at 25 years: lessons and lingering questions. J Clin Invest 2023; 133:e173156. [PMID: 37781921 PMCID: PMC10541200 DOI: 10.1172/jci173156] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023] Open
Abstract
First achieved in 1998 by Cole et al., the complete genome sequence of Mycobacterium tuberculosis continues to provide an invaluable resource to understand tuberculosis (TB), the leading cause of global infectious disease mortality. At the 25-year anniversary of this accomplishment, we describe how insights gleaned from the M. tuberculosis genome have led to vital tools for TB research, epidemiology, and clinical practice. The increasing accessibility of whole-genome sequencing across research and clinical settings has improved our ability to predict antibacterial susceptibility, to track epidemics at the level of individual outbreaks and wider historical trends, to query the efficacy of the bacille Calmette-Guérin (BCG) vaccine, and to uncover targets for novel antitubercular therapeutics. Likewise, we discuss several recent efforts to extract further discoveries from this powerful resource.
Collapse
Affiliation(s)
- Benjamin N. Koleske
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - William R. Jacobs
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - William R. Bishai
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
16
|
Anand PK, Saini V, Kaur J, Kumar A, Kaur J. Cell wall and immune modulation by Rv1800 (PPE28) helps M. smegmatis to evade intracellular killing. Int J Biol Macromol 2023; 247:125837. [PMID: 37455004 DOI: 10.1016/j.ijbiomac.2023.125837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/27/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023]
Abstract
Rv1800 is predicted as PPE family protein found in pathogenic mycobacteria only. Under acidic stress, the rv1800 gene was expressed in M. tuberculosis H37Ra. In-silico study showed lipase/esterase activity in C-terminus PE-PPE domain having pentapeptide motif with catalytic Ser-Asp-His residue. Full-length Rv1800 and C-terminus PE-PPE domain proteins showed esterase activity with pNP-C4 at the optimum temperature of 40 °C and pH 8.0. However, the N-terminus PPE domain showed no esterase activity, but involved in thermostability of Rv1800 full-length protein. M. smegmatis expressing rv1800 (MS_Rv1800) showed altered colony morphology and a significant resistance to numerous environmental stresses, antibiotics and higher lipid content. In extracellular and membrane fraction, Rv1800 protein was detected, while C terminus PE-PPE was present in cytoplasm, suggesting the role of N-terminus PPE domain in transportation of protein. MS_Rv1800 infected macrophage showed higher intracellular survival and low production of ROS, NO and expression levels of iNOS and pro-inflammatory cytokines, while induced expression of the anti-inflammatory cytokines. The Rv1800, PPE and PE-PPE showed antibody-mediated immunity in MDR-TB and PTB patients. Overall, these results confirmed the esterase activity in the C-terminus and function of N-terminus in thermostabilization and transportation; predicting the role of Rv1800 in immune/lipid modulation to support intracellular mycobacterium survival.
Collapse
Affiliation(s)
- Pradeep Kumar Anand
- Department of Biotechnology, BMS Block-1, South Campus, Panjab University, Chandigarh, 160014, India
| | - Varinder Saini
- Department of Pulmonary Medicine, Government Medical College and Hospital, Chandigarh, India
| | - Jasbinder Kaur
- Department of Biochemistry, Government Medical College and Hospital, Chandigarh, India
| | - Arbind Kumar
- Department of Biotechnology, BMS Block-1, South Campus, Panjab University, Chandigarh, 160014, India
| | - Jagdeep Kaur
- Department of Biotechnology, BMS Block-1, South Campus, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
17
|
Medha, Priyanka, Sharma S, Sharma M. PE_PGRS45 (Rv2615c) protein of Mycobacterium tuberculosis perturbs mitochondria of macrophages. Immunol Cell Biol 2023. [PMID: 37565603 DOI: 10.1111/imcb.12677] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 03/23/2023] [Accepted: 07/19/2023] [Indexed: 08/12/2023]
Abstract
The PE_PGRS proteins have coevolved with the antigenic ESX-V secretory system and are abundant in pathogenic Mycobacterium. Only a few PE_PGRS proteins have been characterized, and research suggests their role in organelle targeting, cell death pathways, calcium (Ca2+ ) homeostasis and disease pathogenesis. The PE_PGRS45 (Rv2615c) protein was predicted to contain mitochondria targeting sequences by in silico evaluation. Therefore, we investigated the targeting of the Rv2615c protein to host mitochondria and its effect on mitochondrial functions. In vitro experiments showed the Rv2615c protein colocalized with the mitochondria and led to morphological mitochondrial perturbations. Recombinant Rv2615c was observed to cause increased levels of intracellular reactive oxygen species and the adenosine diphosphate-to-adenosine triphosphate ratio. The Rv2615c protein also induced mitochondrial membrane depolarization and the generation of mitochondrial superoxide. We observed the release of cytochrome C into the cytoplasm and increased expression of proapoptotic genes Bax and Bim with no significant change in anti-apoptotic Bcl2 in Rv2615c-stimulated THP1 macrophages. Ca2+ is a key signaling molecule in tuberculosis pathogenesis, modulating host cell responses. As reported for other PE_PGRS proteins, Rv2615c also has Ca2+ -binding motifs and thus can modulate calcium homeostasis in the host. We also observed a high level of Ca2+ influx in THP1 macrophages stimulated with Rv2615c. Based on these findings, we suggest that Rv2615c may be an effector protein that could contribute to disease pathogenesis by targeting host mitochondria.
Collapse
Affiliation(s)
- Medha
- DSKC BioDiscovery Laboratory, Department of Zoology, Miranda House, University of Delhi, Delhi, India
| | - Priyanka
- DSKC BioDiscovery Laboratory, Department of Zoology, Miranda House, University of Delhi, Delhi, India
| | - Sadhna Sharma
- DSKC BioDiscovery Laboratory, Department of Zoology, Miranda House, University of Delhi, Delhi, India
| | - Monika Sharma
- DSKC BioDiscovery Laboratory, Department of Zoology, Miranda House, University of Delhi, Delhi, India
| |
Collapse
|
18
|
Pérez-Llanos FJ, Dreyer V, Barilar I, Utpatel C, Kohl TA, Murcia MI, Homolka S, Merker M, Niemann S. Transmission Dynamics of a Mycobacterium tuberculosis Complex Outbreak in an Indigenous Population in the Colombian Amazon Region. Microbiol Spectr 2023; 11:e0501322. [PMID: 37222610 PMCID: PMC10269451 DOI: 10.1128/spectrum.05013-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 05/04/2023] [Indexed: 05/25/2023] Open
Abstract
Whole genome sequencing (WGS) has become the main tool for studying the transmission of Mycobacterium tuberculosis complex (MTBC) strains; however, the clonal expansion of one strain often limits its application in local MTBC outbreaks. The use of an alternative reference genome and the inclusion of repetitive regions in the analysis could potentially increase the resolution, but the added value has not yet been defined. Here, we leveraged short and long WGS read data of a previously reported MTBC outbreak in the Colombian Amazon Region to analyze possible transmission chains among 74 patients in the indigenous setting of Puerto Nariño (March to October 2016). In total, 90.5% (67/74) of the patients were infected with one distinct MTBC strain belonging to lineage 4.3.3. Employing a reference genome from an outbreak strain and highly confident single nucleotide polymorphisms (SNPs) in repetitive genomic regions, e.g., the proline-glutamic acid/proline-proline-glutamic-acid (PE/PPE) gene family, increased the phylogenetic resolution compared to a classical H37Rv reference mapping approach. Specifically, the number of differentiating SNPs increased from 890 to 1,094, which resulted in a more granular transmission network as judged by an increasing number of individual nodes in a maximum parsimony tree, i.e., 5 versus 9 nodes. We also found in 29.9% (20/67) of the outbreak isolates, heterogenous alleles at phylogenetically informative sites, suggesting that these patients are infected with more than one clone. In conclusion, customized SNP calling thresholds and employment of a local reference genome for a mapping approach can improve the phylogenetic resolution in highly clonal MTBC populations and help elucidate within-host MTBC diversity. IMPORTANCE The Colombian Amazon around Puerto Nariño has a high tuberculosis burden with a prevalence of 1,267/100,000 people in 2016. Recently, an outbreak of Mycobacterium tuberculosis complex (MTBC) bacteria among the indigenous populations was identified with classical MTBC genotyping methods. Here, we employed a whole-genome sequencing-based outbreak investigation in order to improve the phylogenetic resolution and gain new insights into the transmission dynamics in this remote Colombian Amazon Region. The inclusion of well-supported single nucleotide polymorphisms in repetitive regions and a de novo-assembled local reference genome provided a more granular picture of the circulating outbreak strain and revealed new transmission chains. Multiple patients from different settlements were possibly infected with at least two different clones in this high-incidence setting. Thus, our results have the potential to improve molecular surveillance studies in other high-burden settings, especially regions with few clonal multidrug-resistant (MDR) MTBC lineages/clades.
Collapse
Affiliation(s)
| | - Viola Dreyer
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
- German Center for Infection Research, Hamburg-Lübeck-Borstel-Riems, Germany
| | - Ivan Barilar
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
- German Center for Infection Research, Hamburg-Lübeck-Borstel-Riems, Germany
| | - Christian Utpatel
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
- German Center for Infection Research, Hamburg-Lübeck-Borstel-Riems, Germany
| | - Thomas A. Kohl
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
- German Center for Infection Research, Hamburg-Lübeck-Borstel-Riems, Germany
| | - Martha Isabel Murcia
- Grupo MICOBAC-UN, Departamento de Microbiología, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Susanne Homolka
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
| | - Matthias Merker
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
- German Center for Infection Research, Hamburg-Lübeck-Borstel-Riems, Germany
- Evolution of the Resistome, Research Center Borstel, Borstel, Germany
| | - Stefan Niemann
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
- German Center for Infection Research, Hamburg-Lübeck-Borstel-Riems, Germany
| |
Collapse
|
19
|
Tchan BGO, Ngazoa-Kakou S, Aka N, Apia NKB, Hammoudi N, Drancourt M, Saad J. PPE Barcoding Identifies Biclonal Mycobacterium ulcerans Buruli Ulcer, Côte d'Ivoire. Microbiol Spectr 2023; 11:e0034223. [PMID: 37222600 PMCID: PMC10269924 DOI: 10.1128/spectrum.00342-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/08/2023] [Indexed: 05/25/2023] Open
Abstract
Mycobacterium ulcerans, an environmental opportunistic pathogen, causes necrotic cutaneous and subcutaneous lesions, named Buruli ulcers, in tropical countries. PCR-derived tests used to detect M. ulcerans in environmental and clinical samples do not allow one-shot detection, identification, and typing of M. ulcerans among closely related Mycobacterium marinum complex mycobacteria. We established a 385-member M. marinum/M. ulcerans complex whole-genome sequence database by assembling and annotating 341 M. marinum/M. ulcerans complex genomes and added 44 M. marinum/M. ulcerans complex whole-genome sequences already deposited in the NCBI database. Pangenome, core genome, and single-nucleotide polymorphism (SNP) distance-based comparisons sorted the 385 strains into 10 M. ulcerans taxa and 13 M. marinum taxa, correlating with the geographic origin of strains. Aligning conserved genes identified one PPE (proline-proline-glutamate) gene sequence to be species and intraspecies specific, thereby genotyping the 23 M. marinum/M. ulcerans complex taxa. PCR sequencing of the PPE gene correctly genotyped nine M. marinum/M. ulcerans complex isolates among one M. marinum taxon and three M. ulcerans taxa in the African taxon (T2.4). Further, successful PPE gene PCR sequencing in 15/21 (71.4%) swabs collected from suspected Buruli ulcer lesions in Côte d'Ivoire exhibited positive M. ulcerans IS2404 real-time PCR and identified the M. ulcerans T2.4.1 genotype in eight swabs and M. ulcerans T2.4.1/T2.4.2 mixed genotypes in seven swabs. PPE gene sequencing could be used as a proxy for whole-genome sequencing for the one-shot detection, identification, and typing of clinical M. ulcerans strains, offering an unprecedented tool for identifying M. ulcerans mixed infections. IMPORTANCE We describe a new targeted sequencing approach that characterizes the PPE gene to disclose the simultaneous presence of different variants of a single pathogenic microorganism. This approach has direct implications on the understanding of pathogen diversity and natural history and potential therapeutic implications when dealing with obligate and opportunistic pathogens, such as Mycobacterium ulcerans presented here as a prototype.
Collapse
Affiliation(s)
- B. G. O. Tchan
- IRD, MEPHI, IHU Méditerranée Infection, Aix-Marseille-Université, Marseille, France
- IHU Méditerranée Infection, Marseille, France
| | - S. Ngazoa-Kakou
- Plateforme de Biologie Moléculaire, Institut Pasteur de Côte d'Ivoire, Abidjan, Côte d'Ivoire
| | - N. Aka
- Unité des Mycobactéries Tuberculeuses et Atypiques, Institut Pasteur de Côte d'Ivoire, Abidjan, Côte d'Ivoire
| | - N. K. B. Apia
- Plateforme de Biologie Moléculaire, Institut Pasteur de Côte d'Ivoire, Abidjan, Côte d'Ivoire
| | - N. Hammoudi
- IRD, MEPHI, IHU Méditerranée Infection, Aix-Marseille-Université, Marseille, France
- IHU Méditerranée Infection, Marseille, France
| | - M. Drancourt
- IRD, MEPHI, IHU Méditerranée Infection, Aix-Marseille-Université, Marseille, France
- IHU Méditerranée Infection, Marseille, France
| | - J. Saad
- IRD, MEPHI, IHU Méditerranée Infection, Aix-Marseille-Université, Marseille, France
- IHU Méditerranée Infection, Marseille, France
| |
Collapse
|
20
|
Sankey N, Merrick H, Singh P, Rogers J, Reddi A, Hartson SD, Mitra A. Role of the Mycobacterium tuberculosis ESX-4 Secretion System in Heme Iron Utilization and Pore Formation by PPE Proteins. mSphere 2023; 8:e0057322. [PMID: 36749044 PMCID: PMC10117145 DOI: 10.1128/msphere.00573-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/16/2023] [Indexed: 02/08/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) is transmitted through aerosols and primarily colonizes within the lung. The World Health Organization estimates that Mtb kills ~1.4 million people every year. A key aspect that makes Mtb such a successful pathogen is its ability to overcome iron limitation mounted by the host immune response. In our previous studies, we have shown that Mtb can utilize iron from heme, the largest source of iron in the human host, and that it uses two redundant heme utilization pathways. In this study, we show that the ESX-4 type VII secretion system (T7SS) is necessary for extracellular heme uptake into the Mtb cell through both heme utilization pathways. ESX-4 influences the secretion of the culture filtrate proteins Rv0125 and Rv1085c, which are also necessary for efficient heme utilization. We also discovered that deletion of the alternative sigma factor SigM significantly reduced Mtb heme utilization through both pathways and predict that SigM is a global positive regulator of core heme utilization genes of both pathways. Finally, we present the first direct evidence that some mycobacterial PPE (proline-proline-glutamate motif) proteins of the PPE protein family are pore-forming membrane proteins. Altogether, we identified core components of both Mtb Heme utilization pathways that were previously unknown and identified a novel channel-forming membrane protein of Mtb. IMPORTANCE M. tuberculosis (Mtb) is completely dependent on iron acquisition in the host to cause disease. The largest source of iron for Mtb in the human host is heme. Here, we show that the ancestral ESX-4 type VII secretion system is required for the efficient utilization of heme as a source of iron, which is an essential nutrient. This is another biological function identified for ESX-4 in Mtb, whose contribution to Mtb physiology is poorly understood. A most exciting finding is that some mycobacterial PPE (proline-proline-glutamate motif) proteins that have been implicated in the nutrient acquisition are membrane proteins that can form channels in a lipid bilayer. These observations have far-reaching implications because they support an emerging theme that PPE proteins can function as channel proteins in the outer mycomembrane for nutrient acquisition. Mtb has evolved a heme uptake system that is drastically different from all other known bacterial heme acquisition systems.
Collapse
Affiliation(s)
- November Sankey
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Haley Merrick
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Padam Singh
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Janet Rogers
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Amit Reddi
- School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Steven D. Hartson
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Avishek Mitra
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| |
Collapse
|
21
|
Li W, Yan Z, Zhang N, Zhang Z, Xiang X. Novel role of PE_PGRS47 in the alteration of mycobacterial cell wall integrity and drug resistance. Arch Microbiol 2023; 205:174. [PMID: 37022460 DOI: 10.1007/s00203-023-03515-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/11/2023] [Accepted: 03/23/2023] [Indexed: 04/07/2023]
Abstract
The proline-glutamic acid and proline-proline-glutamic acid (PE/PPE) family of proteins is widespread in pathogenic mycobacteria and plays different roles in mycobacterial physiology. While several PE/PPE family proteins have been studied, the exact function of most PE/PPE proteins in the physiology of Mycobacterium tuberculosis (Mtb) remains unknown. PE_PGRS47 belongs to the PE/PPE family of proteins reported to help Mtb evade protective host immune responses. In this study, we demonstrate a novel role of PE_PGRS47. Heterologous expression of the pe_pgrs47 gene in a non-pathogenic Mycobacterium smegmatis, intrinsically deficient of PE_PGRS protein, exhibits modulated colony morphology and cell wall lipid profile leading to a marked susceptibility to multiple antibiotics and environmental stressors. Using ethidium bromide/Nile red uptake assays, Mycobacterium smegmatis expressing PE_PGRS47 showed higher cell wall permeability than the control strain. Overall, these data suggested that PE_PGRS47 is cell surface exposed and influences cell wall integrity and the formation of mycobacterial colonies, ultimately potentiating the efficacy of lethal stresses against mycobacteria.
Collapse
Affiliation(s)
- Wu Li
- Key Laboratory of Regional Characteristic Agricultural Resources, College of Life Sciences, Neijiang Normal University, Neijiang, 641100, Sichuan, People's Republic of China.
| | - Zifei Yan
- Key Laboratory of Regional Characteristic Agricultural Resources, College of Life Sciences, Neijiang Normal University, Neijiang, 641100, Sichuan, People's Republic of China
| | - Nan Zhang
- Key Laboratory of Regional Characteristic Agricultural Resources, College of Life Sciences, Neijiang Normal University, Neijiang, 641100, Sichuan, People's Republic of China
| | - Zhiyong Zhang
- Key Laboratory of Regional Characteristic Agricultural Resources, College of Life Sciences, Neijiang Normal University, Neijiang, 641100, Sichuan, People's Republic of China
| | - Xiaohong Xiang
- School of Pharmacy, Chongqing Medical and Pharmaceutical College, Chongqing, 401331, People's Republic of China.
| |
Collapse
|
22
|
Kumar S, Sau S, Agnivesh PK, Roy A, Kalia NP. Role of transcription termination factor Rho in anti-tuberculosis drug discovery. Drug Discov Today 2023; 28:103490. [PMID: 36638880 DOI: 10.1016/j.drudis.2023.103490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/26/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023]
Abstract
Mycobacterial infections, including multidrug and extreme drug-resistant (MDR and XDR) infections, are a severe challenge and create a virtual antibiotic-deficient era. Bacterial transcription is an established antimicrobial drug target. In mycobacteria, efficient transcription termination relies on the ATP-dependent RNA helicase factor Rho. Rho factor is essential for Mycobacterium tuberculosis (Mtb) survival, and is a valid antibacterial drug target with no homolog in eukaryotes. Rho maintains genomic stability and virulence and prevents pervasive transcription in Mtb. In this review, we provide an overview of the essentiality of Rho in Mtb, which makes it an attractive drug target for inhibitor discovery.
Collapse
Affiliation(s)
- Sunil Kumar
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500 037, India
| | - Shashikanta Sau
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500 037, India
| | - Puja Kumari Agnivesh
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500 037, India
| | - Arnab Roy
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500 037, India
| | - Nitin Pal Kalia
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500 037, India.
| |
Collapse
|
23
|
D'Souza C, Kishore U, Tsolaki AG. The PE-PPE Family of Mycobacterium tuberculosis: Proteins in Disguise. Immunobiology 2023; 228:152321. [PMID: 36805109 DOI: 10.1016/j.imbio.2022.152321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022]
Abstract
Mycobacterium tuberculosis has thrived in parallel with humans for millennia, and despite our efforts, M. tuberculosis continues to plague us, currently infecting a third of the world's population. The success of M. tuberculosis has recently been attributed, in part, to the PE-PPE family; a unique collection of 168 proteins fundamentally involved in the pathogenesis of M. tuberculosis. The PE-PPE family proteins have been at the forefront of intense research efforts since their discovery in 1998 and whilst our knowledge and understanding has significantly advanced over the last two decades, many important questions remain to be elucidated. This review consolidates and examines the vast body of existing literature regarding the PE-PPE family proteins, with respect to the latest developments in elucidating their evolution, structure, subcellular localisation, function, and immunogenicity. This review also highlights significant inconsistencies and contradictions within the field. Additionally, possible explanations for these knowledge gaps are explored. Lastly, this review poses many important questions, which need to be addressed to complete our understanding of the PE-PPE family, as well as highlighting the challenges associated with studying this enigmatic family of proteins. Further research into the PE-PPE family, together with technological advancements in genomics and proteomics, will undoubtedly improve our understanding of the pathogenesis of M. tuberculosis, as well as identify key targets/candidates for the development of novel drugs, diagnostics, and vaccines.
Collapse
Affiliation(s)
- Christopher D'Souza
- Biosciences, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, United Kingdom
| | - Uday Kishore
- Department of Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Anthony G Tsolaki
- Biosciences, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, United Kingdom.
| |
Collapse
|
24
|
Tomasi FG, Schweber JTP, Kimura S, Zhu J, Cleghorn LAT, Davis SH, Green SR, Waldor MK, Rubin EJ. Peptidyl tRNA Hydrolase Is Required for Robust Prolyl-tRNA Turnover in Mycobacterium tuberculosis. mBio 2023; 14:e0346922. [PMID: 36695586 PMCID: PMC9973355 DOI: 10.1128/mbio.03469-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 12/23/2022] [Indexed: 01/26/2023] Open
Abstract
Enzymes involved in rescuing stalled ribosomes and recycling translation machinery are ubiquitous in bacteria and required for growth. Peptidyl tRNA drop-off is a type of abortive translation that results in the release of a truncated peptide that is still bound to tRNA (peptidyl tRNA) into the cytoplasm. Peptidyl tRNA hydrolase (Pth) recycles the released tRNA by cleaving off the unfinished peptide and is essential in most bacteria. We developed a sequencing-based strategy called copper sulfate-based tRNA sequencing (Cu-tRNAseq) to study the physiological role of Pth in Mycobacterium tuberculosis (Mtb). While most peptidyl tRNA species accumulated in a strain with impaired Pth expression, peptidyl prolyl-tRNA was particularly enriched, suggesting that Pth is required for robust peptidyl prolyl-tRNA turnover. Reducing Pth levels increased Mtb's susceptibility to tRNA synthetase inhibitors that are in development to treat tuberculosis (TB) and rendered this pathogen highly susceptible to macrolides, drugs that are ordinarily ineffective against Mtb. Collectively, our findings reveal the potency of Cu-tRNAseq for profiling peptidyl tRNAs and suggest that targeting Pth would open new therapeutic approaches for TB. IMPORTANCE Peptidyl tRNA hydrolase (Pth) is an enzyme that cuts unfinished peptides off tRNA that has been prematurely released from a stalled ribosome. Pth is essential in nearly all bacteria, including the pathogen Mycobacterium tuberculosis (Mtb), but it has not been clear why. We have used genetic and novel biochemical approaches to show that when Pth levels decline in Mtb, peptidyl tRNA accumulates to such an extent that usable tRNA pools drop. Thus, Pth is needed to maintain normal tRNA levels, most strikingly for prolyl-tRNAs. Many antibiotics act on protein synthesis and could be affected by altering the availability of tRNA. This is certainly true for tRNA synthetase inhibitors, several of which are drug candidates for tuberculosis. We find that their action is potentiated by Pth depletion. Furthermore, Pth depletion results in hypersensitivity to macrolides, drugs that are not active enough under ordinary circumstances to be useful for tuberculosis.
Collapse
Affiliation(s)
- Francesca G. Tomasi
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Jessica T. P. Schweber
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Satoshi Kimura
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
- Howard Hughes Medical Institute, Boston, Massachusetts, USA
| | - Junhao Zhu
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Laura A. T. Cleghorn
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Susan H. Davis
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Simon R. Green
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Matthew K. Waldor
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
- Howard Hughes Medical Institute, Boston, Massachusetts, USA
| | - Eric J. Rubin
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
25
|
D’Auria G, Hodzhev Y, Aceves-Sánchez MDJ, Moya A, Panaiotov S, Flores-Valdez MA. Genome sequences of BCG Pasteur ATCC 35734 and its derivative, the vaccine candidate BCGΔBCG1419c. BMC Genomics 2023; 24:69. [PMID: 36765273 PMCID: PMC9912546 DOI: 10.1186/s12864-023-09169-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
BACKGROUND Bacillus Calmette-Guérin (BCG) remains the only vaccine to prevent tuberculosis (TB) during childhood, with relatively low to no efficacy against pulmonary TB in adolescents and adults. BCG consists of close to 15 different substrains, where genetic variations among them might contribute to the variable protective efficacy afforded against pulmonary TB. We have shown that the vaccine candidate, BCGΔBCG1419c, which is based on BCG Pasteur, improved protection against chronic TB in murine models, as well as against pulmonary and extrapulmonary TB in guinea pigs. Here, to confirm deletion of the BCG1419c gene and to detect possible genetic variations occurring as a consequence of the spontaneous mutations that may arise during in vitro culture of mycobacteria, the genomes of BCG Pasteur ATCC 35734 and its isogenic derivative, BCGΔBCG1419c, were sequenced and subjected to a comparative analysis between them and against BCG Pasteur 1173P2. RESULTS The complete catalog of variants in genes relative to the reference genome BCG Pasteur 1173P2 (GenBank NC008769) showed that the parental strain BCG Pasteur ATCC 35734, from which the mutant BCGΔBCG1419c originated, showed five synonymous mutations, three missense mutations, and five codon insertions, whereas the BCGΔBCG1419c mutant reported the same changes. When BCG Pasteur ATCC 35734 and BCGΔBCG1419c were compared, we confirmed that the latter was devoid of the BCG1419c gene, with only one unanticipated SNP at position 2, 828, 791 which we consider has no role in vaccine properties reported thus far. CONCLUSION We provide evidence that the mutagenesis performed to remove BCG1419c from BCG Pasteur ATCC 35734 solely deleted this gene, and that compared with the reference strain BCG Pasteur 1173P2, few changes were present confirming that they are BCG Pasteur strains, and that changes in immunogenicity or efficacy observed thus far in BCGΔBCG1419c are most likely derived solely from the elimination of the BCG1419c gene.
Collapse
Affiliation(s)
- Giuseppe D’Auria
- grid.428862.20000 0004 0506 9859Sequencing and Bioinformatics Service, Foundation for the Promotion of Health and Biomedical Research of Valencia Region, FISABIO, Valencia, Spain ,grid.413448.e0000 0000 9314 1427CIBER in Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - Yordan Hodzhev
- grid.419273.a0000 0004 0469 0184National Center of Infectious and Parasitic Diseases, 1504 Sofia, Bulgaria
| | - Michel de Jesús Aceves-Sánchez
- grid.418270.80000 0004 0428 7635Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y diseño del Estado de Jalisco, A.C., Av. Normalistas 800, Col. Colinas de la Normal, 44270 Guadalajara, Jalisco Mexico
| | - Andrés Moya
- grid.428862.20000 0004 0506 9859Area of Genomics and Health, Foundation for the Promotion of Sanitary and Biomedical Research of Valencia Region (FISABIO-Public Health), Valencia, Spain ,grid.413448.e0000 0000 9314 1427CIBER in Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain ,grid.5338.d0000 0001 2173 938XInstituto de Biologia Integrativa de Sistemas, Universitat de València y Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Stefan Panaiotov
- National Center of Infectious and Parasitic Diseases, 1504, Sofia, Bulgaria.
| | - Mario Alberto Flores-Valdez
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y diseño del Estado de Jalisco, A.C., Av. Normalistas 800, Col. Colinas de la Normal, 44270, Guadalajara, Jalisco, Mexico.
| |
Collapse
|
26
|
Role of C-terminal domain of Mycobacterium tuberculosis PE6 (Rv0335c) protein in host mitochondrial stress and macrophage apoptosis. Apoptosis 2023; 28:136-165. [PMID: 36258102 PMCID: PMC9579591 DOI: 10.1007/s10495-022-01778-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2022] [Indexed: 11/02/2022]
Abstract
PE/PPE proteins of Mycobacterium tuberculosis (Mtb) target the host organelles to dictate the outcome of infection. This study investigated the significance of PE6/Rv0335c protein's unique C-terminal in causing host mitochondrial perturbations and apoptosis. In-silico analysis revealed that similar to eukaryotic apoptotic Bcl2 proteins, Rv0335c had disordered, hydrophobic C-terminal and two BH3-like motifs in which one was located at C-terminal. Also, Rv0335c's N terminal had mitochondrial targeting sequence. Since, C-terminal of Bcl2 proteins are crucial for mitochondria targeting and apoptosis; it became relevant to evaluate the role of Rv0335c's C-terminal domain in modulating host mitochondrial functions and apoptosis. To confirm this, in-vitro experiments were conducted with Rv0335c whole protein and Rv0335c∆Cterm (C-terminal domain deleted Rv0335c) protein. Rv0335c∆Cterm caused significant reduction in mitochondrial perturbations and Caspase-mediated apoptosis of THP1 macrophages in comparison to Rv0335c. However, the deletion of C-terminal domain didn't affect Rv0335c's ability to localize to mitochondria. Nine Ca2+ binding residues were predicted within Rv0335c and four of them were at the C-terminal. In-vitro studies confirmed that Rv0335c caused significant increase in intracellular calcium influx whereas Rv0335c∆Cterm had insignificant effect on Ca2+ influx. Rv0335c has been reported to be a TLR4 agonist and, we observed a significant reduction in the expression of TLR4-HLA-DR-TNF-α in response to Rv0335c∆Cterm protein also suggesting the role of Rv0335c's C-terminal domain in host-pathogen interaction. These findings indicate the possibility of Rv0335c as a molecular mimic of eukaryotic Bcl2 proteins which equips it to cause host mitochondrial perturbations and apoptosis that may facilitate pathogen persistence.
Collapse
|
27
|
Yu X, Huang Y, Li Y, Li T, Yan S, Ai X, Lv X, Fan L, Xie J. Mycobacterium tuberculosis PE_PGRS1 promotes mycobacteria intracellular survival via reducing the concentration of intracellular free Ca 2+ and suppressing endoplasmic reticulum stress. Mol Immunol 2023; 154:24-32. [PMID: 36584479 DOI: 10.1016/j.molimm.2022.12.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/03/2022] [Accepted: 12/13/2022] [Indexed: 12/29/2022]
Abstract
Mycobacterium tuberculosis (M. tuberculosis) is the causative agent of tuberculosis (TB). And the PE_PGRS family members of M. tuberculosis are closely associated with virulence and antigen presentation but with function largely elusive. PE_PGRS1(Rv0109) contained 7 Ca2+ binding domains of GGXGXD/NXUX (X is any amino acid), which can reduce intracellular Ca2+ surge. In addition, PE_PGRS1 can mitigate the activation of PERK branch in endoplasmic reticulum (ER) stress by down-regulating the expression of CHOP, Bip, p-PERK, p-eIF2α, and ATF4. Interestingly, we found that two splicing variations of Bax/Bcl-2, Baxβ, and Bcl-2α, were differentially expressed after infection with Ms_PE_PGRS1, and may be involved in the regulation of apoptosis. Hence, this study identified that PE_PGRS1 is a novel calcium-associated protein that can decrease intracellular Ca2+ levels and the PERK axis. And the weakening of the PERK-eIF2α-ATF4 axis reduces THP-1 macrophages apoptosis, promotes the survival of mycobacteria in macrophages.
Collapse
Affiliation(s)
- Xi Yu
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Yu Huang
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Yuzhu Li
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Tongxin Li
- Chongqing Public Health Medical Center, Southwest University Public Health Hospital, central laboratory, Chongqing 400715, China
| | - Shuangquan Yan
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Xuefeng Ai
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Xi Lv
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Lin Fan
- Shanghai Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai Key Laboratory of Tuberculosis, Shanghai 200433, China.
| | - Jianping Xie
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
28
|
Renau-Mínguez C, Herrero-Abadía P, Ruiz-Rodriguez P, Sentandreu V, Torrents E, Chiner-Oms Á, Torres-Puente M, Comas I, Julián E, Coscolla M. Genomic analysis of Mycobacterium brumae sustains its nonpathogenic and immunogenic phenotype. Front Microbiol 2023; 13:982679. [PMID: 36687580 PMCID: PMC9850167 DOI: 10.3389/fmicb.2022.982679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 12/06/2022] [Indexed: 01/07/2023] Open
Abstract
Mycobacterium brumae is a rapid-growing, non-pathogenic Mycobacterium species, originally isolated from environmental and human samples in Barcelona, Spain. Mycobacterium brumae is not pathogenic and it's in vitro phenotype and immunogenic properties have been well characterized. However, the knowledge of its underlying genetic composition is still incomplete. In this study, we first describe the 4 Mb genome of the M. brumae type strain ATCC 51384T assembling PacBio reads, and second, we assess the low intraspecies variability by comparing the type strain with Illumina reads from three additional strains. Mycobacterium brumae genome is composed of a circular chromosome with a high GC content of 69.2% and containing 3,791 CDSs, 97 pseudogenes, one prophage and no CRISPR loci. Mycobacterium brumae has shown no pathogenic potential in in vivo experiments, and our genomic analysis confirms its phylogenetic position with other non-pathogenic and rapid growing mycobacteria. Accordingly, we determined the absence of virulence-related genes, such as ESX-1 locus and most PE/PPE genes, among others. Although the immunogenic potential of M. brumae was proved to be as high as Mycobacterium bovis BCG, the only mycobacteria licensed to treat cancer, the genomic content of M. tuberculosis T cell and B cell antigens in M. brumae genome is considerably lower than those antigens present in M. bovis BCG genome. Overall, this work provides relevant genomic data on one of the species of the mycobacterial genus with high therapeutic potential.
Collapse
Affiliation(s)
| | - Paula Herrero-Abadía
- Genetics and Microbiology Department, Faculty of Biosciences, Autonomous University of Barcelona, Barcelona, Spain
| | | | - Vicente Sentandreu
- Genomics Unit, Central Service for Experimental Research (SCSIE), University of Valencia, Burjassot, Spain
| | - Eduard Torrents
- Bacterial Infections and Antimicrobial Therapies Group, Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain
- Microbiology Section, Department of Genetics, Microbiology, and Statistics, Biology Faculty, Universitat de Barcelona, Barcelona, Spain
| | | | | | - Iñaki Comas
- Instituto de Biomedicina de Valencia (IBV), CSIC, Valencia, Spain
| | - Esther Julián
- Genetics and Microbiology Department, Faculty of Biosciences, Autonomous University of Barcelona, Barcelona, Spain
| | - Mireia Coscolla
- I2SysBio, University of Valencia-FISABIO Joint Unit, Paterna, Spain
| |
Collapse
|
29
|
Dong W, Wang G, Bai Y, Li Y, Huo X, Zhao J, Lu W, Lu H, Wang C, Wang X, Chen H, Tan C. Analysis of the noncoding RNA regulatory networks of H37Rv- and H37Rv△1759c-infected macrophages. Front Microbiol 2023; 14:1106643. [PMID: 36992931 PMCID: PMC10042141 DOI: 10.3389/fmicb.2023.1106643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/13/2023] [Indexed: 03/31/2023] Open
Abstract
Noncoding RNAs regulate the process of Mycobacterium tuberculosis (M. tb) infecting the host, but there is no simultaneous transcriptional information of long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) and the global regulatory networks of non-coding RNA. Rv1759c, a virulence factor, is a member of protein family containing the proline-glutamic acid (PE) in M. tb, which can increase M. tb survival. To reveal the noncoding RNA regulatory networks and the effect of Rv1759c on non-coding RNA expression during M. tb infection, we collected samples of H37Rv- and H37Rv△1759c-infected macrophages and explored the full transcriptome expression profile. We found 356 mRNAs, 433 lncRNAs, 168 circRNAs, and 12 miRNAs differentially expressed during H37Rv infection, 356 mRNAs, 433 lncRNAs, 168 circRNAs, and 12 miRNAs differentially expressed during H37Rv△1759c infection. We constructed lncRNA/circRNA-miRNA-mRNA regulatory networks during H37Rv and H37Rv△1759c infection. We demonstrated the role of one of the hubs of the networks, hsa-miR-181b-3p, for H37Rv survival in macrophages. We discovered that the expression changes of 68 mRNAs, 92 lncRNAs, 26 circRNAs, and 3 miRNAs were only related to the deletion of Rv1759c by comparing the transcription profiles of H37Rv and H37Rv△1759c. Here, our study comprehensively characterizes the transcriptional profiles in THP1-derived-macrophages infected with H37Rv and H37Rv△1759c, which provides support and new directions for in-depth exploration of noncoding RNA and PE/PPE family functions during the infection process.
Collapse
Affiliation(s)
- Wenqi Dong
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Gaoyan Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yajuan Bai
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yuxin Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xinyu Huo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jing Zhao
- WuHan Animal Disease Control Center, Wuhan, Hubei, China
| | - Wenjia Lu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Hao Lu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Chenchen Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xiangru Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Chen Tan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
- *Correspondence: Chen Tan,
| |
Collapse
|
30
|
Qian J, Hu Y, Zhang X, Chi M, Xu S, Wang H, Zhang X. Mycobacterium tuberculosis PE_PGRS19 Induces Pyroptosis through a Non-Classical Caspase-11/GSDMD Pathway in Macrophages. Microorganisms 2022; 10:microorganisms10122473. [PMID: 36557726 PMCID: PMC9785159 DOI: 10.3390/microorganisms10122473] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022] Open
Abstract
The PE/PPE protein family commonly exists in pathogenic species, such as Mycobacterium tuberculosis, suggesting a role in virulence and its maintenance. However, the exact role of most PE/PPE proteins in host-pathogen interactions remains unknown. Here, we constructed a recombinant Mycobacterium smegmatis expressing M. tuberculosis PE_PGRS19 (Ms_PE_PGRS19) and found that PE_PGRS19 overexpression resulted in accelerated bacterial growth in vitro, increased bacterial survival in macrophages, and enhanced cell damage capacity. Ms_PE_PGRS19 also induced the expression of pro-inflammatory cytokines, such as IL-6, TNF-α, IL-1β, and IL-18. Furthermore, we demonstrated that Ms_PE_PGRS19 induced cell pyroptosis by cleaving caspase-11 via a non-classical pathway rather than caspase-1 activation and further inducing the cleavage of gasdermin D, which led to the release of IL-1β and IL-18. To the best of our current knowledge, this is the first report of a PE/PPE family protein activating cell pyroptosis via a non-classical pathway, which expands the knowledge on PE/PPE protein functions, and these pathogenic factors involved in bacterial survival and spread could be potential drug targets for anti-tuberculosis therapy.
Collapse
|
31
|
Boradia V, Frando A, Grundner C. The Mycobacterium tuberculosis PE15/PPE20 complex transports calcium across the outer membrane. PLoS Biol 2022; 20:e3001906. [PMID: 36441815 PMCID: PMC9731449 DOI: 10.1371/journal.pbio.3001906] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/08/2022] [Accepted: 11/04/2022] [Indexed: 11/29/2022] Open
Abstract
The mechanisms by which nutrients traverse the Mycobacterium tuberculosis (Mtb) outer membrane remain mostly unknown and, in the absence of classical porins, likely involve specialized transport systems. Calcium ions (Ca2+) are an important nutrient and serve as a second messenger in eukaryotes, but whether bacteria have similar Ca2+ signaling systems is not well understood. To understand the basis for Ca2+ transport and signaling in Mtb, we determined Mtb's transcriptional response to Ca2+. Overall, only few genes changed expression, suggesting a limited role of Ca2+ as a transcriptional regulator. However, 2 of the most strongly down-regulated genes were the pe15 and ppe20 genes that code for members of a large family of proteins that localize to the outer membrane and comprise many intrinsically disordered proteins. PE15 and PPE20 formed a complex and PPE20 directly bound Ca2+. Ca2+-associated phenotypes such as increased ATP consumption and biofilm formation were reversed in a pe15/ppe20 knockout (KO) strain, suggesting a direct role in Ca2+ homeostasis. To test whether the PE15/PPE20 complex has a role in Ca2+ transport across the outer membrane, we created a fluorescence resonance energy transfer (FRET)-based Ca2+ reporter strain. A pe15/ppe20 KO in the FRET background showed a specific and selective loss of Ca2+ influx that was dependent on the presence of an intact outer cell wall. These data show that PE15/PPE20 form a Ca2+-binding protein complex that selectively imports Ca2+, show a distinct transport function for an intrinsically disordered protein, and support the emerging idea of a general family-wide role of PE/PPE proteins as idiosyncratic transporters across the outer membrane.
Collapse
Affiliation(s)
- Vishant Boradia
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Andrew Frando
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Christoph Grundner
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
- Department of Pediatrics, University of Washington, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
32
|
Nimmo C, Millard J, Faulkner V, Monteserin J, Pugh H, Johnson EO. Evolution of Mycobacterium tuberculosis drug resistance in the genomic era. Front Cell Infect Microbiol 2022; 12:954074. [PMID: 36275027 PMCID: PMC9585206 DOI: 10.3389/fcimb.2022.954074] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/20/2022] [Indexed: 12/02/2022] Open
Abstract
Mycobacterium tuberculosis has acquired drug resistance to all drugs that have been used against it, including those only recently introduced into clinical practice. Compared to other bacteria, it has a well conserved genome due to its role as an obligate human pathogen that has adapted to a niche over five to ten thousand years. These features facilitate reconstruction and dating of M. tuberculosis phylogenies, giving key insights into how resistance has been acquired and spread globally. Resistance to each new drug has occurred within five to ten years of clinical use and has occurred even more rapidly with recently introduced drugs. In most cases, resistance-conferring mutations come with a fitness cost, but this can be overcome by compensatory mutations which restore fitness to that of wild-type bacteria. It is likely that M. tuberculosis acquires drug resistance while maintaining limited genomic variability due the generation of low frequency within-host variation, combined with ongoing purifying selection causing loss of variants without a clear fitness advantage. However, variants that do confer an advantage, such as drug resistance, can increase in prevalence amongst all bacteria within a host and become the dominant clone. These resistant strains can then be transmitted leading to primary drug resistant infection in a new host. As many countries move towards genomic methods for diagnosis of M. tuberculosis infection and drug resistance, it is important to be aware of the implications for the evolution of resistance. Currently, understanding of resistance-conferring mutations is incomplete, and some targeted genetic diagnostics create their own selective pressures. We discuss an example where a rifampicin resistance-conferring mutation which was not routinely covered by standard testing became dominant. Finally, resistance to new drugs such as bedaquiline and delamanid is caused by individually rare mutations occurring across a large mutational genomic target that have been detected over a short time, and do not provide statistical power for genotype-phenotype correlation – in contrast to longer-established drugs that form the backbone of drug-sensitive antituberculosis therapy. Therefore, we need a different approach to identify resistance-conferring mutations of new drugs before their resistance becomes widespread, abrogating their usefulness.
Collapse
Affiliation(s)
- Camus Nimmo
- Systems Chemical Biology of Infection and Resistance Laboratory, Francis Crick Institute, London, United Kingdom
- *Correspondence: Camus Nimmo,
| | - James Millard
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Valwynne Faulkner
- Systems Chemical Biology of Infection and Resistance Laboratory, Francis Crick Institute, London, United Kingdom
| | - Johana Monteserin
- Systems Chemical Biology of Infection and Resistance Laboratory, Francis Crick Institute, London, United Kingdom
| | - Hannah Pugh
- Systems Chemical Biology of Infection and Resistance Laboratory, Francis Crick Institute, London, United Kingdom
| | - Eachan Oliver Johnson
- Systems Chemical Biology of Infection and Resistance Laboratory, Francis Crick Institute, London, United Kingdom
| |
Collapse
|
33
|
Suo J, Wang X, Zhao R, Ma P, Ge L, Luo T. Mycobacterium tuberculosis PPE7 Enhances Intracellular Survival of Mycobacterium smegmatis and Manipulates Host Cell Cytokine Secretion Through Nuclear Factor Kappa B and Mitogen-Activated Protein Kinase Signaling. J Interferon Cytokine Res 2022; 42:525-535. [PMID: 36178924 DOI: 10.1089/jir.2022.0062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The PE/PPE family proteins of Mycobacterium tuberculosis have been associated with its virulence and interaction with the host immune system. The highly virulent modern lineage of M. tuberculosis possesses a lineage-specific PPE gene (PPE7), which arises from an ancestral mutation and is rarely studied. Here we examined the role of PPE7 in mycobacterial pathogenicity and survival by expressing M. tuberculosis PPE7 in Mycobacterium smegmatis. We show that, PPE7 activates host inflammation by increasing expression of pro-inflammatory cytokines including tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1β, and IL-6, while suppressing the expression of anti-inflammatory cytokines such as IL-10, possibly through the nuclear factor kappa B, ERK1/2, and p38 mitogen-activated protein kinase pathways. Overexpressing PPE7 in M. smegmatis could enhance bacterial intracellular survival of infected macrophages. Furthermore, higher level of bacterial persistence, higher levels of TNF-α, IL-1β, and IL-6 cytokines, and more injury in the lung, liver, and spleen tissues of infected mice has been discovered. In conclusion, PPE7 could manipulate host immune response and increase bacterial persistence.
Collapse
Affiliation(s)
- Jing Suo
- Laboratory of Infection and Immunity, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, People's Republic of China
| | - Xinyan Wang
- Laboratory of Infection and Immunity, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, People's Republic of China
| | - Rongchuan Zhao
- Laboratory of Infection and Immunity, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, People's Republic of China
| | - Pengjiao Ma
- Laboratory of Infection and Immunity, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, People's Republic of China
| | - Liang Ge
- Laboratory of Infection and Immunity, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, People's Republic of China
| | - Tao Luo
- Laboratory of Infection and Immunity, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
34
|
Dupuy P, Ghosh S, Adefisayo O, Buglino J, Shuman S, Glickman MS. Distinctive roles of translesion polymerases DinB1 and DnaE2 in diversification of the mycobacterial genome through substitution and frameshift mutagenesis. Nat Commun 2022; 13:4493. [PMID: 35918328 PMCID: PMC9346131 DOI: 10.1038/s41467-022-32022-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 07/12/2022] [Indexed: 12/15/2022] Open
Abstract
Antibiotic resistance of Mycobacterium tuberculosis is exclusively a consequence of chromosomal mutations. Translesion synthesis (TLS) is a widely conserved mechanism of DNA damage tolerance and mutagenesis, executed by translesion polymerases such as DinBs. In mycobacteria, DnaE2 is the only known agent of TLS and the role of DinB polymerases is unknown. Here we demonstrate that, when overexpressed, DinB1 promotes missense mutations conferring resistance to rifampicin, with a mutational signature distinct from that of DnaE2, and abets insertion and deletion frameshift mutagenesis in homo-oligonucleotide runs. DinB1 is the primary mediator of spontaneous −1 frameshift mutations in homo-oligonucleotide runs whereas DnaE2 and DinBs are redundant in DNA damage-induced −1 frameshift mutagenesis. These results highlight DinB1 and DnaE2 as drivers of mycobacterial genome diversification with relevance to antimicrobial resistance and host adaptation. This manuscript elucidates new mechanisms of mutagenesis in mycobacteria by implicating two translesion DNA polymerases in genome diversification, including creating the mutations that underlie all antibiotic resistance in these global pathogens.
Collapse
Affiliation(s)
- Pierre Dupuy
- Immunology Program, Sloan Kettering Institute, New York, NY, 10065, USA
| | - Shreya Ghosh
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY, 10065, USA
| | - Oyindamola Adefisayo
- Immunology Program, Sloan Kettering Institute, New York, NY, 10065, USA.,Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Graduate School, 1300 York Avenue, New York, NY, 10065, USA
| | - John Buglino
- Immunology Program, Sloan Kettering Institute, New York, NY, 10065, USA
| | - Stewart Shuman
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY, 10065, USA
| | - Michael S Glickman
- Immunology Program, Sloan Kettering Institute, New York, NY, 10065, USA. .,Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Graduate School, 1300 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
35
|
Hill NS, Welch MD. A glycine-rich PE_PGRS protein governs mycobacterial actin-based motility. Nat Commun 2022; 13:3608. [PMID: 35750685 PMCID: PMC9232537 DOI: 10.1038/s41467-022-31333-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 06/14/2022] [Indexed: 11/09/2022] Open
Abstract
Many key insights into actin regulation have been derived through examining how microbial pathogens intercept the actin cytoskeleton during infection. Mycobacterium marinum, a close relative of the human pathogen Mycobacterium tuberculosis, polymerizes host actin at the bacterial surface to drive intracellular movement and cell-to-cell spread during infection. However, the mycobacterial factor that commandeers actin polymerization has remained elusive. Here, we report the identification and characterization of the M. marinum actin-based motility factor designated mycobacterial intracellular rockets A (MirA), which is a member of the glycine-rich PE_PGRS protein family. MirA contains an amphipathic helix to anchor into the mycobacterial outer membrane and, surprisingly, also the surface of host lipid droplet organelles. MirA directly binds to and activates the host protein N-WASP to stimulate actin polymerization through the Arp2/3 complex, directing both bacterial and lipid droplet actin-based motility. MirA is dissimilar to known N-WASP activating ligands and may represent a new class of microbial and host actin regulator. Additionally, the MirA-N-WASP interaction represents a model to understand how the enigmatic PE_PGRS proteins contribute to mycobacterial pathogenesis.
Collapse
Affiliation(s)
- Norbert S Hill
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.
| | - Matthew D Welch
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.
| |
Collapse
|
36
|
Dou Y, Xie Y, Zhang L, Liu S, Xu D, Wei Y, Li Y, Zhang XL. Host MKRN1-Mediated Mycobacterial PPE Protein Ubiquitination Suppresses Innate Immune Response. Front Immunol 2022; 13:880315. [PMID: 35603194 PMCID: PMC9114769 DOI: 10.3389/fimmu.2022.880315] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/11/2022] [Indexed: 11/17/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb), as an important intracellular pathogen, can invade and survive in macrophages and is capable of escaping the clearance of immune system. Despite decades of research efforts, the precise mechanism of immune escape and the virulence factors encoded by Mtb involved remain to be explored. Mtb-specific genomic regions of deletion (RD)-encoded proteins and PE/PPE family proteins have been implicated in immune evasion. Here, we screened more than forty RD-encoded proteins which might be involved in facilitating bacterial survival in macrophages, and found that a Mtb PPE68/Rv3873 protein, encoded by Mtb-RD1, is essential for efficient Mtb intracellular survival in macrophages. In terms of mechanism, we found that the ubiquitin ligase (E3) Makorin Ring Finger Protein 1 (MKRN1) of macrophage interacted with PPE68 and promoted the attachment of lysine (K)-63-linked ubiquitin chains to the K166 site of PPE68. K63-ubiquitination of PPE68 further bound src homology 2 domain-containing protein tyrosine phosphatase 1 (SHP1) to suppress K63-linked polyubiquitin chains of tumor necrosis factor receptor-associated factor 6 (TRAF6), and then remarkably suppressed TRAF6-driven NF-κB and AP-1 signaling and TNF-α, IL-6 and NO production. We demonstrate that the K63-linked ubiquitination of PPE68 by MKRN1 contributed to the PPE68-mediated mycobacterial immune escape. Our finding identifies a previously unrecognized mechanism by which host MKRN1-mediated-ubiquitination of mycobacterial PPE protein suppresses innate immune responses. Disturbing the interaction between host MKRN1 ubiquitin system and mycobacterial PPE protein might be a potential therapeutic target for tuberculosis.
Collapse
Affiliation(s)
- Yafeng Dou
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China
| | - Yan Xie
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China
| | - Lingyun Zhang
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China
| | - Sheng Liu
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China
| | - Dandan Xu
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China
| | - Yuying Wei
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China
| | - Yongshuai Li
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China
| | - Xiao-Lian Zhang
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China
- Department of Allergy of Zhongnan Hospital, Wuhan University, School of Medicine, Wuhan, China
- State Key Laboratory of Virology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| |
Collapse
|
37
|
Kondratieva E, Majorov K, Grigorov A, Skvortsova Y, Kondratieva T, Rubakova E, Linge I, Azhikina T, Apt A. An In Vivo Model of Separate M. tuberculosis Phagocytosis by Neutrophils and Macrophages: Gene Expression Profiles in the Parasite and Disease Development in the Mouse Host. Int J Mol Sci 2022; 23:ijms23062961. [PMID: 35328388 PMCID: PMC8954342 DOI: 10.3390/ijms23062961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 11/21/2022] Open
Abstract
The role of neutrophils in tuberculosis infection remains less well studied compared to that of the CD4+ T-lymphocytes and macrophages. Thus, alterations in Mycobacterium tuberculosis transcription profile following phagocytosis by neutrophils and how these shifts differ from those caused by macrophage phagocytosis remain unknown. We developed a mouse model that allows obtaining large amounts of either neutrophils or macrophages infected in vivo with M. tuberculosis for mycobacteria isolation in quantities sufficient for the whole genome RNA sequencing and aerosol challenge of mice. Here, we present: (i) the differences in transcription profiles of mycobacteria isolated from liquid cultures, neutrophils and macrophages infected in vivo; (ii) phenotypes of infection and lung inflammation (life span, colony forming units (CFU) counts in organs, lung pathology, immune cells infiltration and cytokine production) in genetically TB-susceptible mice identically infected via respiratory tract with neutrophil-passaged (NP), macrophage-passaged (MP) and conventionally prepared (CP) mycobacteria. Two-hour residence within neutrophils caused transcriptome shifts consistent with mycobacterial transition to dormancy and diminished their capacity to attract immune cells to infected lung tissue. Mycobacterial multiplication in organs did not depend upon pre-phagocytosis, whilst survival time of infected mice was shorter in the group infected with NP bacilli. We also discuss possible reasons for these phenotypic divergences.
Collapse
Affiliation(s)
- Elena Kondratieva
- Laboratory for Immunogenetics, Central Research TB Institute, 107564 Moscow, Russia; (E.K.); (K.M.); (T.K.); (E.R.); (I.L.)
| | - Konstantin Majorov
- Laboratory for Immunogenetics, Central Research TB Institute, 107564 Moscow, Russia; (E.K.); (K.M.); (T.K.); (E.R.); (I.L.)
| | - Artem Grigorov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (A.G.); (Y.S.); (T.A.)
| | - Yulia Skvortsova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (A.G.); (Y.S.); (T.A.)
| | - Tatiana Kondratieva
- Laboratory for Immunogenetics, Central Research TB Institute, 107564 Moscow, Russia; (E.K.); (K.M.); (T.K.); (E.R.); (I.L.)
| | - Elvira Rubakova
- Laboratory for Immunogenetics, Central Research TB Institute, 107564 Moscow, Russia; (E.K.); (K.M.); (T.K.); (E.R.); (I.L.)
| | - Irina Linge
- Laboratory for Immunogenetics, Central Research TB Institute, 107564 Moscow, Russia; (E.K.); (K.M.); (T.K.); (E.R.); (I.L.)
| | - Tatyana Azhikina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (A.G.); (Y.S.); (T.A.)
| | - Alexander Apt
- Laboratory for Immunogenetics, Central Research TB Institute, 107564 Moscow, Russia; (E.K.); (K.M.); (T.K.); (E.R.); (I.L.)
- Correspondence:
| |
Collapse
|
38
|
Peng Z, Yue Y, Xiong S. Mycobacterial PPE36 Modulates Host Inflammation by Promoting E3 Ligase Smurf1-Mediated MyD88 Degradation. Front Immunol 2022; 13:690667. [PMID: 35237255 PMCID: PMC8882603 DOI: 10.3389/fimmu.2022.690667] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 01/21/2022] [Indexed: 11/18/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) PPE36, a cell-wall-associated protein, is highly specific and conserved for the Mtb complex group. Although PPE36 has been proven essential for iron utilization, little is known about it in regulating host immune responses. Here we exhibited that PPE36 was preferentially enriched in Mtb virulent strains and could efficiently inhibit host inflammatory responses and increase bacterial loads in infected macrophages and mice. In exploring the underlying mechanisms, we found that PPE36 could robustly inhibit the activation of inflammatory NF-κB and MAPK (Erk, p38, and Jnk) pathways by promoting E3 ligase Smurf1-mediated ubiquitination and proteasomal degradation of MyD88 protein. Our research revealed a previously unknown function of PPE36 on modulating host immune responses and provided some clues to the development of novel tuberculosis treatment strategies based on immune regulation.
Collapse
Affiliation(s)
- Zhangli Peng
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Yan Yue
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Sidong Xiong
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
39
|
Abstract
Whole-genome sequencing (WGS) is a powerful method for detecting drug resistance, genetic diversity, and transmission dynamics of Mycobacterium tuberculosis. Implementation of WGS in public health microbiology laboratories is impeded by a lack of user-friendly, automated, and semiautomated pipelines. We present the COMBAT-TB Workbench, a modular, easy-to-install application that provides a web-based environment for Mycobacterium tuberculosis bioinformatics. The COMBAT-TB Workbench is built using two main software components: the IRIDA platform for its web-based user interface and data management capabilities and the Galaxy bioinformatics workflow platform for workflow execution. These components are combined into a single easy-to-install application using Docker container technology. We implemented two workflows, for M. tuberculosis sample analysis and phylogeny, in Galaxy. Building our workflows involved updating some Galaxy tools (Trimmomatic, snippy, and snp-sites) and writing new Galaxy tools (snp-dists, TB-Profiler, tb_variant_filter, and TB Variant Report). The irida-wf-ga2xml tool was updated to be able to work with recent versions of Galaxy and was further developed into IRIDA plugins for both workflows. In the case of the M. tuberculosis sample analysis, an interface was added to update the metadata stored for each sequence sample with results gleaned from the Galaxy workflow output. Data can be loaded into the COMBAT-TB Workbench via the web interface or via the command line IRIDA uploader tool. The COMBAT-TB Workbench application deploys IRIDA, the COMBAT-TB IRIDA plugins, the MariaDB database, and Galaxy using Docker containers (https://github.com/COMBAT-TB/irida-galaxy-deploy). IMPORTANCE While the reduction in the cost of WGS is making sequencing more affordable in lower- and middle-income countries (LMICs), public health laboratories in these countries seldom have access to bioinformaticians and system support engineers adept at using the Linux command line and complex bioinformatics software. The COMBAT-TB Workbench provides an open-source, modular, easy-to-deploy and -use environment for managing and analyzing M. tuberculosis WGS data and thereby makes WGS usable in practice in the LMIC context.
Collapse
|
40
|
Ojo O, Williams DL, Adams LB, Lahiri R. Mycobacterium leprae Transcriptome During In Vivo Growth and Ex Vivo Stationary Phases. Front Cell Infect Microbiol 2022; 11:817221. [PMID: 35096659 PMCID: PMC8790229 DOI: 10.3389/fcimb.2021.817221] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/20/2021] [Indexed: 11/13/2022] Open
Abstract
Mycobacterium leprae, the causative agent of leprosy, is an obligate intracellular pathogen primarily residing within host macrophages and Schwann cells. Whole genome sequencing predicts a highly degraded genome with approximately one third of the coding capacity resulting in the loss of many catabolic pathways. Therefore, it can be assumed that M. leprae obtains many of the necessary metabolites for intracellular survival and growth from the host cells. In this study, global transcriptomic analyses were done on freshly harvested M. leprae growing in athymic mouse footpads for five months (MFP5) and compared to those held in axenic medium for 48 (ML48) and 96 (ML96) hours. Results show that all of the genes and pseudogenes were transcribed under both in vivo and in vitro conditions. 24% and 33% of gene transcript levels were significantly altered in ML48 and ML96 respectively, compared to MFP5. Approximately 45% (39/86) of lipid metabolism genes were significantly downregulated in ML96 compared to MFP5, majority of which are in the β-oxidation pathway. Cholesterol oxidase, acyl-CoA dehydrogenase, and coenzyme F420-dependent oxidoreductase, were significantly upregulated in both ML48 and ML96 compared to MFP5. 30% of cell wall and cell processes functional category genes had altered gene transcription at 96hr compared to MFP5. 40% of 57 genes associated with mycobacterial virulence showed significantly altered transcript levels with 52% significantly downregulated in ML96, including most of the Pro-Glu/Pro-Pro-Glu genes. All 111 hypothetical protein genes with unknown function were expressed. Adenosine triphosphate (ATP) synthesis in M. leprae appears to be significantly downregulated under ex vivo conditions. This is the first study comparing M. leprae global gene expression during in vivo growth and ex vivo stationery phase in axenic medium confirming that during the growth phase in the footpads of experimentally infected mice, M. leprae is metabolically active and its primary source of energy production is probably lipids.
Collapse
Affiliation(s)
- Olabisi Ojo
- United States Department of Health and Human Services, Health Resources and Services Administration, Health Systems Bureau, National Hansen's Disease Program, Baton Rouge, LA, United States
| | - Diana L Williams
- United States Department of Health and Human Services, Health Resources and Services Administration, Health Systems Bureau, National Hansen's Disease Program, Baton Rouge, LA, United States
| | - Linda B Adams
- United States Department of Health and Human Services, Health Resources and Services Administration, Health Systems Bureau, National Hansen's Disease Program, Baton Rouge, LA, United States
| | - Ramanuj Lahiri
- United States Department of Health and Human Services, Health Resources and Services Administration, Health Systems Bureau, National Hansen's Disease Program, Baton Rouge, LA, United States
| |
Collapse
|
41
|
Anna F, Lopez J, Moncoq F, Blanc C, Authié P, Noirat A, Fert I, Souque P, Nevo F, Pawlik A, Hardy D, Goyard S, Hudrisier D, Brosch R, Guinet F, Neyrolles O, Charneau P, Majlessi L. A lentiviral vector expressing a dendritic cell-targeting multimer induces mucosal anti-mycobacterial CD4 + T-cell immunity. Mucosal Immunol 2022; 15:1389-1404. [PMID: 36104497 PMCID: PMC9473479 DOI: 10.1038/s41385-022-00566-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 08/18/2022] [Accepted: 08/28/2022] [Indexed: 02/04/2023]
Abstract
Most viral vectors, including the potently immunogenic lentiviral vectors (LVs), only poorly direct antigens to the MHC-II endosomal pathway and elicit CD4+ T cells. We developed a new generation of LVs encoding antigen-bearing monomers of collectins substituted at their C-terminal domain with the CD40 ligand ectodomain to target and activate antigen-presenting cells. Host cells transduced with such optimized LVs secreted soluble collectin-antigen polymers with the potential to be endocytosed in vivo and reach the MHC-II pathway. In the murine tuberculosis model, such LVs induced efficient MHC-II antigenic presentation and triggered both CD8+ and CD4+ T cells at the systemic and mucosal levels. They also conferred a significant booster effect, consistent with the importance of CD4+ T cells for protection against Mycobacterium tuberculosis. Given the pivotal role of CD4+ T cells in orchestrating innate and adaptive immunity, this strategy could have a broad range of applications in the vaccinology field.
Collapse
Affiliation(s)
- François Anna
- grid.428999.70000 0001 2353 6535Pasteur-TheraVectys Joint Lab, Institut Pasteur, Université Paris Cité, 28 rue du Dr. Roux, F-75015 Paris, France
| | - Jodie Lopez
- grid.428999.70000 0001 2353 6535Pasteur-TheraVectys Joint Lab, Institut Pasteur, Université Paris Cité, 28 rue du Dr. Roux, F-75015 Paris, France
| | - Fanny Moncoq
- grid.428999.70000 0001 2353 6535Pasteur-TheraVectys Joint Lab, Institut Pasteur, Université Paris Cité, 28 rue du Dr. Roux, F-75015 Paris, France
| | - Catherine Blanc
- grid.428999.70000 0001 2353 6535Pasteur-TheraVectys Joint Lab, Institut Pasteur, Université Paris Cité, 28 rue du Dr. Roux, F-75015 Paris, France
| | - Pierre Authié
- grid.428999.70000 0001 2353 6535Pasteur-TheraVectys Joint Lab, Institut Pasteur, Université Paris Cité, 28 rue du Dr. Roux, F-75015 Paris, France
| | - Amandine Noirat
- grid.428999.70000 0001 2353 6535Pasteur-TheraVectys Joint Lab, Institut Pasteur, Université Paris Cité, 28 rue du Dr. Roux, F-75015 Paris, France
| | - Ingrid Fert
- grid.428999.70000 0001 2353 6535Pasteur-TheraVectys Joint Lab, Institut Pasteur, Université Paris Cité, 28 rue du Dr. Roux, F-75015 Paris, France
| | - Philippe Souque
- grid.428999.70000 0001 2353 6535Pasteur-TheraVectys Joint Lab, Institut Pasteur, Université Paris Cité, 28 rue du Dr. Roux, F-75015 Paris, France
| | - Fabien Nevo
- grid.428999.70000 0001 2353 6535Pasteur-TheraVectys Joint Lab, Institut Pasteur, Université Paris Cité, 28 rue du Dr. Roux, F-75015 Paris, France
| | - Alexandre Pawlik
- grid.428999.70000 0001 2353 6535Integrated Mycobacterial Pathogenomics Unit, CNRS UMR 3525, Institut Pasteur, Université Paris Cité, 25 rue du Dr. Roux, F-75015 Paris, France
| | - David Hardy
- grid.428999.70000 0001 2353 6535Histopathology Platform, Institut Pasteur, Université Paris Cité, 28 rue du Dr. Roux, F-75015 Paris, France
| | - Sophie Goyard
- grid.428999.70000 0001 2353 6535Platform for Innovation and Development of Diagnostic Tests, Institut Pasteur, Université Paris Cité, 28 rue du Dr. Roux, F-75015 Paris, France
| | - Denis Hudrisier
- grid.508721.9Institut de Pharmacologie et de Biologie Structurale, IPBS, CNRS, UPS, Université de Toulouse, Toulouse, France
| | - Roland Brosch
- grid.428999.70000 0001 2353 6535Integrated Mycobacterial Pathogenomics Unit, CNRS UMR 3525, Institut Pasteur, Université Paris Cité, 25 rue du Dr. Roux, F-75015 Paris, France
| | - Françoise Guinet
- grid.428999.70000 0001 2353 6535Lymphocytes and Immunity Unit, INSERM U1223, Institut Pasteur, Université Paris Cité, 25 rue du Dr. Roux, F-75015 Paris, France
| | - Olivier Neyrolles
- grid.508721.9Institut de Pharmacologie et de Biologie Structurale, IPBS, CNRS, UPS, Université de Toulouse, Toulouse, France
| | - Pierre Charneau
- grid.428999.70000 0001 2353 6535Pasteur-TheraVectys Joint Lab, Institut Pasteur, Université Paris Cité, 28 rue du Dr. Roux, F-75015 Paris, France
| | - Laleh Majlessi
- grid.428999.70000 0001 2353 6535Pasteur-TheraVectys Joint Lab, Institut Pasteur, Université Paris Cité, 28 rue du Dr. Roux, F-75015 Paris, France
| |
Collapse
|
42
|
De Maio F, Salustri A, Battah B, Palucci I, Marchionni F, Bellesi S, Palmieri V, Papi M, Kramarska E, Sanguinetti M, Sali M, Berisio R, Delogu G. PE_PGRS3 ensures provision of the vital phospholipids cardiolipin and phosphatidylinositols by promoting the interaction between M. tuberculosis and host cells. Virulence 2021; 12:868-884. [PMID: 33757409 PMCID: PMC8007152 DOI: 10.1080/21505594.2021.1897247] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/23/2021] [Accepted: 02/21/2021] [Indexed: 12/12/2022] Open
Abstract
PE_PGRS proteins of Mycobacterium tuberculosis (Mtb) constitute a large family of complex modular proteins whose role is still unclear. Among those, we have previously shown, using the heterologous expression in Mycobacterium smegmatis, that PE_PGRS3 containing a unique arginine-rich C-terminal domain, promotes adhesion to host cells. In this study, we investigate the role of PE_PGRS3 and its C-terminal domain directly in Mtb using functional deletion mutants. The results obtained here show that PE_PGRS3 is localized on the mycobacterial cell wall and its arginine-rich C-terminal region protrudes from the mycobacterial membrane and mediates Mtb entry into epithelial cells. Most importantly, this positively charged helical domain specifically binds phosphorylated phosphatidylinositols and cardiolipin, whereas it is unable to bind other phospholipids. Interestingly, administration of cardiolipin and phosphatidylinositol but no other phospholipids was able to turn-off expression of pe_pgrs3 activated by phosphate starvation conditions. These findings suggest that PE_PGRS3 has the key role to serve as a bridge between mycobacteria and host cells by interacting with specific host phospholipids and extracting them from host cells, for their direct integration or as a source of phosphate, during phases of TB pathogenesis when Mtb is short of phosphate supply.
Collapse
Affiliation(s)
- Flavio De Maio
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario “A. Gemelli”, Rome, Italy
- Dipartimento di Scienze biotecnologiche di base, cliniche intensivologiche e perioperatorie – Sezione di Microbiologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Alessandro Salustri
- Dipartimento di Scienze biotecnologiche di base, cliniche intensivologiche e perioperatorie – Sezione di Microbiologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Basem Battah
- Dipartimento di Scienze biotecnologiche di base, cliniche intensivologiche e perioperatorie – Sezione di Microbiologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Ivana Palucci
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario “A. Gemelli”, Rome, Italy
- Dipartimento di Scienze biotecnologiche di base, cliniche intensivologiche e perioperatorie – Sezione di Microbiologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Federica Marchionni
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, Rome, Italy
| | - Silvia Bellesi
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, Rome, Italy
| | - Valentina Palmieri
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Massimiliano Papi
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Roma, Italy
- Fondazione Policlinico Universitario “A. Gemelli”, Rome, Italy
| | - Eliza Kramarska
- Institute of Biostructures and Bioimaging - CNR-IBB, Naples, Italy
| | - Maurizio Sanguinetti
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario “A. Gemelli”, Rome, Italy
- Dipartimento di Scienze biotecnologiche di base, cliniche intensivologiche e perioperatorie – Sezione di Microbiologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Michela Sali
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario “A. Gemelli”, Rome, Italy
- Dipartimento di Scienze biotecnologiche di base, cliniche intensivologiche e perioperatorie – Sezione di Microbiologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Rita Berisio
- Institute of Biostructures and Bioimaging - CNR-IBB, Naples, Italy
| | - Giovanni Delogu
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario “A. Gemelli”, Rome, Italy
- Mater Olbia Hospital, Olbia, Italy
| |
Collapse
|
43
|
Pajuelo D, Tak U, Zhang L, Danilchanka O, Tischler AD, Niederweis M. Toxin secretion and trafficking by Mycobacterium tuberculosis. Nat Commun 2021; 12:6592. [PMID: 34782620 PMCID: PMC8593097 DOI: 10.1038/s41467-021-26925-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 10/27/2021] [Indexed: 12/30/2022] Open
Abstract
The tuberculosis necrotizing toxin (TNT) is the major cytotoxicity factor of Mycobacterium tuberculosis (Mtb) in macrophages. TNT is the C-terminal domain of the outer membrane protein CpnT and gains access to the cytosol to kill macrophages infected with Mtb. However, molecular mechanisms of TNT secretion and trafficking are largely unknown. A comprehensive analysis of the five type VII secretion systems of Mtb revealed that the ESX-4 system is required for export of CpnT and surface accessibility of TNT. Furthermore, the ESX-2 and ESX-4 systems are required for permeabilization of the phagosomal membrane in addition to the ESX-1 system. Thus, these three ESX systems need to act in concert to enable trafficking of TNT into the cytosol of Mtb-infected macrophages. These discoveries establish new molecular roles for the two previously uncharacterized type VII secretion systems ESX-2 and ESX-4 and reveal an intricate link between toxin secretion and phagosomal permeabilization by Mtb. The tuberculosis necrotizing toxin (TNT) is the major cytotoxicity factor of M. tuberculosis (Mtb). Mtb possesses five type VII secretion systems (ESX). Pajuelo et al. show that the ESX-4 system is required for TNT secretion and that ESX-2 and ESX-4 systems work in concert with ESX-1 to permeabilize the phagosomal membrane and enable trafficking of TNT into the cytoplasm of macrophages infected with Mtb.
Collapse
Affiliation(s)
- David Pajuelo
- Department of Microbiology, University of Alabama at Birmingham, 609 Bevill Biomedical Research Building, 845 19th Street South, Birmingham, AL, 35294, USA
| | - Uday Tak
- Department of Microbiology, University of Alabama at Birmingham, 609 Bevill Biomedical Research Building, 845 19th Street South, Birmingham, AL, 35294, USA.,University of Colorado Boulder, Jennie Smoly Caruthers Biotechnology Building B255, 3415 Colorado Avenue, Boulder, CO, 80303, USA
| | - Lei Zhang
- Department of Microbiology, University of Alabama at Birmingham, 609 Bevill Biomedical Research Building, 845 19th Street South, Birmingham, AL, 35294, USA
| | - Olga Danilchanka
- Department of Microbiology, University of Alabama at Birmingham, 609 Bevill Biomedical Research Building, 845 19th Street South, Birmingham, AL, 35294, USA.,Merck & Co., Inc., Cambridge, MA, 02141, USA
| | - Anna D Tischler
- Department of Microbiology and Immunology, University of Minnesota Twin Cities, Minneapolis, MN, 55455, USA
| | - Michael Niederweis
- Department of Microbiology, University of Alabama at Birmingham, 609 Bevill Biomedical Research Building, 845 19th Street South, Birmingham, AL, 35294, USA.
| |
Collapse
|
44
|
Structure-Aware Mycobacterium tuberculosis Functional Annotation Uncloaks Resistance, Metabolic, and Virulence Genes. mSystems 2021; 6:e0067321. [PMID: 34726489 PMCID: PMC8562490 DOI: 10.1128/msystems.00673-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Accurate and timely functional genome annotation is essential for translating basic pathogen research into clinically impactful advances. Here, through literature curation and structure-function inference, we systematically update the functional genome annotation of Mycobacterium tuberculosis virulent type strain H37Rv. First, we systematically curated annotations for 589 genes from 662 publications, including 282 gene products absent from leading databases. Second, we modeled 1,711 underannotated proteins and developed a semiautomated pipeline that captured shared function between 400 protein models and structural matches of known function on Protein Data Bank, including drug efflux proteins, metabolic enzymes, and virulence factors. In aggregate, these structure- and literature-derived annotations update 940/1,725 underannotated H37Rv genes and generate hundreds of functional hypotheses. Retrospectively applying the annotation to a recent whole-genome transposon mutant screen provided missing function for 48% (13/27) of underannotated genes altering antibiotic efficacy and 33% (23/69) required for persistence during mouse tuberculosis (TB) infection. Prospective application of the protein models enabled us to functionally interpret novel laboratory generated pyrazinamide (PZA)-resistant mutants of unknown function, which implicated the emerging coenzyme A depletion model of PZA action in the mutants’ PZA resistance. Our findings demonstrate the functional insight gained by integrating structural modeling and systematic literature curation, even for widely studied microorganisms. Functional annotations and protein structure models are available at https://tuberculosis.sdsu.edu/H37Rv in human- and machine-readable formats. IMPORTANCEMycobacterium tuberculosis, the primary causative agent of tuberculosis, kills more humans than any other infectious bacterium. Yet 40% of its genome is functionally uncharacterized, leaving much about the genetic basis of its resistance to antibiotics, capacity to withstand host immunity, and basic metabolism yet undiscovered. Irregular literature curation for functional annotation contributes to this gap. We systematically curated functions from literature and structural similarity for over half of poorly characterized genes, expanding the functionally annotated Mycobacterium tuberculosis proteome. Applying this updated annotation to recent in vivo functional screens added functional information to dozens of clinically pertinent proteins described as having unknown function. Integrating the annotations with a prospective functional screen identified new mutants resistant to a first-line TB drug, supporting an emerging hypothesis for its mode of action. These improvements in functional interpretation of clinically informative studies underscore the translational value of this functional knowledge. Structure-derived annotations identify hundreds of high-confidence candidates for mechanisms of antibiotic resistance, virulence factors, and basic metabolism and other functions key in clinical and basic tuberculosis research. More broadly, they provide a systematic framework for improving prokaryotic reference annotations.
Collapse
|
45
|
Comparative Genomics of Mycobacterium avium Complex Reveals Signatures of Environment-Specific Adaptation and Community Acquisition. mSystems 2021; 6:e0119421. [PMID: 34665012 PMCID: PMC8525567 DOI: 10.1128/msystems.01194-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nontuberculous mycobacteria, including those in the Mycobacterium avium complex (MAC), constitute an increasingly urgent threat to global public health. Ubiquitous in soil and water worldwide, MAC members cause a diverse array of infections in humans and animals that are often multidrug resistant, intractable, and deadly. MAC lung disease is of particular concern and is now more prevalent than tuberculosis in many countries, including the United States. Although the clinical importance of these microorganisms continues to expand, our understanding of their genomic diversity is limited, hampering basic and translational studies alike. Here, we leveraged a unique collection of genomes to characterize MAC population structure, gene content, and within-host strain dynamics in unprecedented detail. We found that different MAC species encode distinct suites of biomedically relevant genes, including antibiotic resistance genes and virulence factors, which may influence their distinct clinical manifestations. We observed that M. avium isolates from different sources—human pulmonary infections, human disseminated infections, animals, and natural environments—are readily distinguished by their core and accessory genomes, by their patterns of horizontal gene transfer, and by numerous specific genes, including virulence factors. We identified highly similar MAC strains from distinct patients within and across two geographically distinct clinical cohorts, providing important insights into the reservoirs which seed community acquisition. We also discovered a novel MAC genomospecies in one of these cohorts. Collectively, our results provide key genomic context for these emerging pathogens and will facilitate future exploration of MAC ecology, evolution, and pathogenesis. IMPORTANCE Members of the Mycobacterium avium complex (MAC), a group of mycobacteria encompassing M. avium and its closest relatives, are omnipresent in natural environments and emerging pathogens of humans and animals. MAC infections are difficult to treat, sometimes fatal, and increasingly common. Here, we used comparative genomics to illuminate key aspects of MAC biology. We found that different MAC species and M. avium isolates from different sources encode distinct suites of clinically relevant genes, including those for virulence and antibiotic resistance. We identified highly similar MAC strains in patients from different states and decades, suggesting community acquisition from dispersed and stable reservoirs, and we discovered a novel MAC species. Our work provides valuable insight into the genomic features underlying these versatile pathogens.
Collapse
|
46
|
Sharma S, Sharma M. Proline-Glutamate/Proline-Proline-Glutamate (PE/PPE) proteins of Mycobacterium tuberculosis: The multifaceted immune-modulators. Acta Trop 2021; 222:106035. [PMID: 34224720 DOI: 10.1016/j.actatropica.2021.106035] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/23/2021] [Accepted: 06/29/2021] [Indexed: 12/30/2022]
Abstract
The PE/PPE proteins encoded by seven percent (7%) of Mycobacterium tuberculosis (Mtb) genome are the chief constituents to pathogen's virulence reservoir. The fact that these genes have evolved along ESX secretory system in pathogenic Mtb strains make their investigation very intriguing. There is lot of speculation about the prominent role of these proteins at host pathogen interface and in disease pathogenesis. Nevertheless, the exact function of PE/PPE proteins still remains a mystery which calls for further research targeting these proteins. This article is an effort to document all the facts known so far with regard to these unique proteins which involves their origin, evolution, transcriptional control, and most important their role as host immune-modulators. Our understanding strongly points towards the versatile nature of these PE/PPE proteins as Mtb's host immune sensors and as decisive factors in shaping the outcome of infection. Further investigation on these proteins will surely pave way for newer and effective vaccines and therapeutics to control Tuberculosis (TB).
Collapse
Affiliation(s)
- Sadhna Sharma
- DS Kothari Central Interdisciplinary Research Centre and Department of Zoology, Miranda House, University of Delhi, Delhi 110007, India.
| | - Monika Sharma
- DS Kothari Central Interdisciplinary Research Centre and Department of Zoology, Miranda House, University of Delhi, Delhi 110007, India.
| |
Collapse
|
47
|
De Maio F, Berisio R, Manganelli R, Delogu G. PE_PGRS proteins of Mycobacterium tuberculosis: A specialized molecular task force at the forefront of host-pathogen interaction. Virulence 2021; 11:898-915. [PMID: 32713249 PMCID: PMC7550000 DOI: 10.1080/21505594.2020.1785815] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
To the PE_PGRS protein subfamily belongs a group of surface-exposed mycobacterial antigens that in Mycobacterium tuberculosis (Mtb) H37Rv accounts to more than 65 genes, 51 of which are thought to express a functional protein. PE_PGRS proteins share a conserved structural architecture with three main domains: the N-terminal PE domain; the PGRS domain, that can vary in sequence and size and is characterized by the presence of multiple GGA-GGX amino acid repeats; the highly conserved sequence containing the GRPLI motif that links the PE and PGRS domains; the unique C-terminus end that can vary in size from few to up to ≈ 300 amino acids. pe_pgrs genes emerged in slow-growing mycobacteria and expanded and diversified in MTBC and few other pathogenic mycobacteria. Interestingly, despite sequence homology and apparent redundancy, PE_PGRS proteins seem to have evolved a peculiar function. In this review, we summarize the actual knowledge on this elusive protein family in terms of evolution, structure, and function, focusing on the role of PE_PGRS in TB pathogenesis. We provide an original hypothesis on the role of the PE domain and propose a structural model for the polymorphic PGRS domain that might explain how so similar proteins can have different physiological functions.
Collapse
Affiliation(s)
- Flavio De Maio
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario "A. Gemelli" , Rome, Italy.,Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie - Sezione di Microbiologia, Università Cattolica del Sacro Cuore , Rome, Italy
| | - Rita Berisio
- Institute of Bio-Structures and Bio-Imaging - CNR-IBB , Naples, Italy
| | | | - Giovanni Delogu
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie - Sezione di Microbiologia, Università Cattolica del Sacro Cuore , Rome, Italy.,Mater Olbia Hospital , Olbia, Italy
| |
Collapse
|
48
|
Chaiyachat P, Chaiprasert A, Nonghanphithak D, Smithtikarn S, Kamolwat P, Pungrassami P, Reechaipichitkul W, Ong RTH, Teo YY, Faksri K. Whole-genome analysis of drug-resistant Mycobacterium tuberculosis reveals novel mutations associated with fluoroquinolone resistance. Int J Antimicrob Agents 2021; 58:106385. [PMID: 34161790 DOI: 10.1016/j.ijantimicag.2021.106385] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/19/2021] [Accepted: 06/05/2021] [Indexed: 12/13/2022]
Abstract
Multidrug-resistant and extensively drug-resistant tuberculosis (M/XDR-TB) remains a global public-health challenge. Known mutations in quinolone resistance-determination regions cannot fully explain phenotypic fluoroquinolone (FQ) resistance in Mycobacterium tuberculosis (Mtb). The aim of this study was to look for novel mutations in Mtb associated with resistance to FQ drugs using whole-genome sequencing analysis. Whole-genome sequences of 659 Mtb strains, including 214 with phenotypic FQ resistance and 445 pan-susceptible isolates, were explored for mutations associated with FQ resistance overall and with resistance to individual FQ drugs (ofloxacin, levofloxacin, moxifloxacin and gatifloxacin). Three novel genes (recC, Rv2005c and PPE59) associated with FQ resistance were identified (P < 0.00001 based on screening analysis and absence of relevant mutations in a pan-susceptible validation set of 360 strains). Nine novel single nucleotide polymorphisms (SNPs), including in gyrB (G5383A and G6773A), gyrA (G7892A), recC (G725900C and G726857T/C), Rv2005c (C2251373G, G2251420C and C2251725T) and PPE59 (C3847269T), were used for diagnostic performance analysis. Enhancing the known SNP set with five of these novel SNPs, including gyrA [G7892A (Leu247Leu)], recC [G725900C (Leu893Leu) and G726857T/C (Arg484Arg)], Rv2005c [G2251420C (Pro205Arg)] and PPE59 [C3847269T (Asn35Asn)] increased the sensitivity of detection of FQ-resistant Mtb from 83.2% (178/214) to 86.9% (186/214) while maintaining 100% specificity (360/360). No specific mutation associated with resistance to only a single drug (ofloxacin, levofloxacin, moxifloxacin or gatifloxacin) was found. In conclusion, this study reports possible additional mutations associated with FQ resistance in Mtb.
Collapse
Affiliation(s)
- Pratchakan Chaiyachat
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Khon Kaen University, Khon Kaen, Thailand
| | - Angkana Chaiprasert
- Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Ditthawat Nonghanphithak
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Khon Kaen University, Khon Kaen, Thailand
| | - Saijai Smithtikarn
- Bureau of Tuberculosis, Department of Disease Control, Ministry of Public Health, Thailand
| | - Phalin Kamolwat
- Bureau of Tuberculosis, Department of Disease Control, Ministry of Public Health, Thailand
| | - Petchawan Pungrassami
- Bureau of Tuberculosis, Department of Disease Control, Ministry of Public Health, Thailand
| | - Wipa Reechaipichitkul
- Department of Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Rick Twee-Hee Ong
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore
| | - Yik-Ying Teo
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore; Genome Institute of Singapore, Singapore; Department of Statistics and Applied Probability, National University of Singapore, Singapore; Life Sciences Institute, National University of Singapore, Singapore
| | - Kiatichai Faksri
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Khon Kaen University, Khon Kaen, Thailand.
| |
Collapse
|
49
|
Jackson M, Stevens CM, Zhang L, Zgurskaya HI, Niederweis M. Transporters Involved in the Biogenesis and Functionalization of the Mycobacterial Cell Envelope. Chem Rev 2021; 121:5124-5157. [PMID: 33170669 PMCID: PMC8107195 DOI: 10.1021/acs.chemrev.0c00869] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The biology of mycobacteria is dominated by a complex cell envelope of unique composition and structure and of exceptionally low permeability. This cell envelope is the basis of many of the pathogenic features of mycobacteria and the site of susceptibility and resistance to many antibiotics and host defense mechanisms. This review is focused on the transporters that assemble and functionalize this complex structure. It highlights both the progress and the limits of our understanding of how (lipo)polysaccharides, (glyco)lipids, and other bacterial secretion products are translocated across the different layers of the cell envelope to their final extra-cytoplasmic location. It further describes some of the unique strategies evolved by mycobacteria to import nutrients and other products through this highly impermeable barrier.
Collapse
Affiliation(s)
- Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523-1682, USA
| | - Casey M. Stevens
- University of Oklahoma, Department of Chemistry and Biochemistry, 101 Stephenson Parkway, Norman, OK 73019, USA
| | - Lei Zhang
- Department of Microbiology, University of Alabama at Birmingham, 845 19th Street South, Birmingham, AL 35294, USA
| | - Helen I. Zgurskaya
- University of Oklahoma, Department of Chemistry and Biochemistry, 101 Stephenson Parkway, Norman, OK 73019, USA
| | - Michael Niederweis
- Department of Microbiology, University of Alabama at Birmingham, 845 19th Street South, Birmingham, AL 35294, USA
| |
Collapse
|
50
|
Khan MT, Ali S, Khan AS, Ali A, Khan A, Kaushik AC, Irfan M, Chinnasamy S, Zhang S, Zhang YJ, Cui Z, Wei AJ, Wang Y, Zhao M, Liu K, Wang H, Zeb MT, Wei DQ. Insight into the drug resistance whole genome of Mycobacterium tuberculosis isolates from Khyber Pakhtunkhwa, Pakistan. INFECTION GENETICS AND EVOLUTION 2021; 92:104861. [PMID: 33862292 DOI: 10.1016/j.meegid.2021.104861] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/31/2021] [Accepted: 04/08/2021] [Indexed: 12/17/2022]
Abstract
Whole genome sequencing (WGS) is one of the most reliable methods for detection of drug resistance, genetic diversity in other virulence factor and also evolutionary dynamics of Mycobacterium tuberculosis complex (MTBC). First-line anti-tuberculosis drugs are the major weapons against Mycobacterium tuberculosis (MTB). However, the emergence of drug resistance remained a major obstacle towards global tuberculosis (TB) control program 2030, especially in high burden countries including Pakistan. To overcome the resistance and design potent drugs, genomic variations in drugs targets as well as in the virulence and evolutionary factors might be useful for better understanding and designing potential inhibitors. Here we aimed to find genomic variations in the first-line drugs targets, along with other virulence and evolutionary factors among the circulating isolates in Khyber Pakhtunkhwa, Pakistan. Samples were collected and drug susceptibility testing (DST) was performed as per WHO standard. The resistance samples were subjected to WGS. Among the five whole genome sequences, three samples (NCBI BioProject Accession: PRJNA629298, PRJNA629388) harbored 1997, 1162, and 2053 mutations. Some novel mutations have been detected in drugs targets. Similarly, numerous novel variants have also been detected in virulency and evolutionary factors, PE, PPE, and secretory system of MTB isolates. Exploring the genomic variations among the circulating isolates in geographical specific locations might be useful for future drug designing. To the best of our knowledge, this is the first study that provides useful data regarding the insight genomic variations in virulency, evolutionary factors including ESX and PE/PPE as well as drug targets, for better understanding and management of TB in a WHO declared high burden country.
Collapse
Affiliation(s)
- Muhammad Tahir Khan
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Sajid Ali
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Anwar Sheed Khan
- Department of Microbiology, Kohat University of Science and Technology and Provincial Tuberculosis Reference Laboratory, Peshawar, Pakistan.
| | - Arif Ali
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, and Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China; Peng Cheng Laboratory, Vanke Cloud City Phase I Building 8, Xili Street, Nanshan District, Shenzhen, Guangdong 518055, China.
| | - Abbas Khan
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, and Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China; Peng Cheng Laboratory, Vanke Cloud City Phase I Building 8, Xili Street, Nanshan District, Shenzhen, Guangdong 518055, China.
| | | | - Muhammad Irfan
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA.
| | - Sathishkumar Chinnasamy
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, and Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China; Peng Cheng Laboratory, Vanke Cloud City Phase I Building 8, Xili Street, Nanshan District, Shenzhen, Guangdong 518055, China
| | - Shulin Zhang
- Department of Immunology and Microbiology, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.
| | - Yu-Juan Zhang
- College of Life Sciences, Chongqing Normal University, Chongqing, China.
| | - Zhilei Cui
- Zhilei Cui, Department of Respiratory Medicine, XinHua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Amie Jinghua Wei
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, and Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China; Peng Cheng Laboratory, Vanke Cloud City Phase I Building 8, Xili Street, Nanshan District, Shenzhen, Guangdong 518055, China
| | - Yanjie Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, and Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China; Peng Cheng Laboratory, Vanke Cloud City Phase I Building 8, Xili Street, Nanshan District, Shenzhen, Guangdong 518055, China
| | - Mingzhu Zhao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, and Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China; Peng Cheng Laboratory, Vanke Cloud City Phase I Building 8, Xili Street, Nanshan District, Shenzhen, Guangdong 518055, China.
| | - Kejia Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, and Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China; Peng Cheng Laboratory, Vanke Cloud City Phase I Building 8, Xili Street, Nanshan District, Shenzhen, Guangdong 518055, China.
| | - Heng Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, and Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China; Peng Cheng Laboratory, Vanke Cloud City Phase I Building 8, Xili Street, Nanshan District, Shenzhen, Guangdong 518055, China.
| | - Muhammad Tariq Zeb
- Khyber Medical University and Senior Research Officer, In-charge Genomic Laboratory, Veterinary Research Institute, Peshawar 25000, Pakistan
| | - Dong Qing Wei
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, and Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China; Peng Cheng Laboratory, Vanke Cloud City Phase I Building 8, Xili Street, Nanshan District, Shenzhen, Guangdong 518055, China.
| |
Collapse
|