1
|
Helmann JD. Metals in Motion: Understanding Labile Metal Pools in Bacteria. Biochemistry 2025. [PMID: 39755956 DOI: 10.1021/acs.biochem.4c00726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Metal ions are essential for all life. In microbial cells, potassium (K+) is the most abundant cation and plays a key role in maintaining osmotic balance. Magnesium (Mg2+) is the dominant divalent cation and is required for nucleic acid structure and as an enzyme cofactor. Microbes typically require the transition metals manganese (Mn), iron (Fe), copper (Cu), and zinc (Zn), although the precise set of metal ions needed to sustain life is variable. Intracellular metal pools can be conceptualized as a chemically complex mixture of rapidly exchanging (labile) ions, complemented by those reservoirs that exchange slowly relative to cell metabolism (sequestered). Labile metal pools are buffered by transient interactions with anionic metabolites and macromolecules, with the ribosome playing a major role. Sequestered metal pools include many metalloproteins, cofactors, and storage depots, with some pools redeployed upon metal depletion. Here, I review the size, composition, and dynamics of intracellular metal pools and highlight the major gaps in understanding.
Collapse
Affiliation(s)
- John D Helmann
- Department of Microbiology, Cornell University, Ithaca, New York 14853-8101, United States
| |
Collapse
|
2
|
Li Q, Li C, Zhong J, Wang Y, Yang Q, Wang B, He W, Huang J, Lin S, Qi F. Metabolic engineering of Escherichia coli for N-methylserotonin biosynthesis. Metab Eng 2025; 87:49-59. [PMID: 39603333 DOI: 10.1016/j.ymben.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/28/2024] [Accepted: 11/24/2024] [Indexed: 11/29/2024]
Abstract
N-methylserotonin (NMS) is a valuable indole alkaloid with therapeutic potential for psychiatric and neurological disorders, and it is used in health foods, cosmetics, and weight loss supplements. However, environmental challenges and low reaction efficiencies significantly hinder cost-effective, large-scale production of NMS in plants or through chemical synthesis. Herein, we have successfully engineered Escherichia coli strains to enhance NMS production from L-tryptophan using whole-cell catalysis. We developed multiple biosynthesis pathways incorporating modules for serotonin (5-hydroxytryptamine, 5-HT), tetrahydromonapterin (MH₄), and S-adenosylmethionine (SAM) synthesis. To enhance MH₄ availability, we employed a high-activity Bacillus subtilis FolE and minimized carbon flux loss through targeted gene knockouts in competitive metabolic pathways, improving 5-HT production. Additionally, we constructed a comprehensive SAM biosynthesis module to facilitate transmethylation by a selected N-methyltransferase fused with ProS2. These engineered modules were coexpressed in two plasmids within the optimized strain NMS-19, producing 128.6 mg/L of NMS in a 5-L bioreactor using fed-batch cultivation-a 92-fold increase over the original strain. This study introduces a viable strategy for NMS production and provides insights into the biosynthesis of SAM-dependent methylated tryptamine derivatives.
Collapse
Affiliation(s)
- Qingchen Li
- Engineering Research Center of Industrial Microbiology of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, Fujian, China
| | - Chenxi Li
- Engineering Research Center of Industrial Microbiology of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, Fujian, China
| | - Jie Zhong
- Engineering Research Center of Industrial Microbiology of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, Fujian, China
| | - Yukun Wang
- Engineering Research Center of Industrial Microbiology of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, Fujian, China
| | - Qinghua Yang
- Engineering Research Center of Industrial Microbiology of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, Fujian, China
| | - Bingmei Wang
- Engineering Research Center of Industrial Microbiology of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, Fujian, China
| | - Wenjin He
- Center of Engineering Technology Research for Microalgae Germplasm Improvement of Fujian, Southern Institute of Oceanography, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, Fujian, China
| | - Jianzhong Huang
- Engineering Research Center of Industrial Microbiology of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, Fujian, China
| | - Shengyuan Lin
- Department of TCM, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, Fujian, China
| | - Feng Qi
- Engineering Research Center of Industrial Microbiology of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, Fujian, China.
| |
Collapse
|
3
|
Capdevila DA, Rondón JJ, Edmonds KA, Rocchio JS, Dujovne MV, Giedroc DP. Bacterial Metallostasis: Metal Sensing, Metalloproteome Remodeling, and Metal Trafficking. Chem Rev 2024; 124:13574-13659. [PMID: 39658019 DOI: 10.1021/acs.chemrev.4c00264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Transition metals function as structural and catalytic cofactors for a large diversity of proteins and enzymes that collectively comprise the metalloproteome. Metallostasis considers all cellular processes, notably metal sensing, metalloproteome remodeling, and trafficking (or allocation) of metals that collectively ensure the functional integrity and adaptability of the metalloproteome. Bacteria employ both protein and RNA-based mechanisms that sense intracellular transition metal bioavailability and orchestrate systems-level outputs that maintain metallostasis. In this review, we contextualize metallostasis by briefly discussing the metalloproteome and specialized roles that metals play in biology. We then offer a comprehensive perspective on the diversity of metalloregulatory proteins and metal-sensing riboswitches, defining general principles within each sensor superfamily that capture how specificity is encoded in the sequence, and how selectivity can be leveraged in downstream synthetic biology and biotechnology applications. This is followed by a discussion of recent work that highlights selected metalloregulatory outputs, including metalloproteome remodeling and metal allocation by metallochaperones to both client proteins and compartments. We close by briefly discussing places where more work is needed to fill in gaps in our understanding of metallostasis.
Collapse
Affiliation(s)
- Daiana A Capdevila
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), C1405 BWE Buenos Aires, Argentina
| | - Johnma J Rondón
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), C1405 BWE Buenos Aires, Argentina
| | - Katherine A Edmonds
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - Joseph S Rocchio
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - Matias Villarruel Dujovne
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), C1405 BWE Buenos Aires, Argentina
| | - David P Giedroc
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| |
Collapse
|
4
|
Schulz V, Galea D, Schleuder G, Strohmeyer P, Große C, Herzberg M, Nies DH. The efflux system CdfX exports zinc that cannot be transported by ZntA in Cupriavidus metallidurans. J Bacteriol 2024; 206:e0029924. [PMID: 39475293 PMCID: PMC11580412 DOI: 10.1128/jb.00299-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/08/2024] [Indexed: 11/22/2024] Open
Abstract
Cupriavidus metallidurans is able to survive exposure to high concentrations of transition metals, but is also able to grow under metal starvation conditions. A prerequisite of cellular zinc homeostasis is a flow equilibrium combining zinc uptake and efflux processes. The mutant strain ∆e4 of the parental plasmid-free strain AE104 with a deletion of all four chromosomally encoded genes of previously known efflux systems ZntA, CadA, DmeF, and FieF was still able to efflux zinc in a pulse-chase experiment, indicating the existence of a fifth efflux system. The gene cdfX, encoding a protein of the cation diffusion facilitator (CDF) family, is located in proximity to the cadA gene, encoding a P-type ATPase. Deletion of cdfX in the ∆e4 mutant resulted in a further decrease in zinc resistance. Pulse-chase experiments with radioactive 65Zn(II) and stable-isotope-enriched 67Zn(II) provided evidence that CdfX was responsible for the residual zinc efflux activity of the mutant strain ∆e4. Reporter gene fusions with cdfX-lacZ indicated that the MerR-type regulator ZntR, the main regulator of zntA expression, was responsible for zinc- and cadmium-dependent upregulation of cdfX expression, especially in mutant cells lacking one or both of the previously characterized efflux systems, ZntA and CadA. Expression of zntR also proved to be controlled by ZntR itself as well as by zinc and cadmium availability. These data indicate that the cdfX-cadA region provides C. metallidurans with a backup system for the zinc-cadmium-exporting P-type ATPase ZntA, with CdfX exporting zinc and CadA cadmium.IMPORTANCEBacteria have evolved the ability to supply the important trace element zinc to zinc-dependent proteins, despite external zinc concentrations varying over a wide range. Zinc homeostasis can be understood as adaptive layering of homeostatic systems, allowing coverage from extreme starvation to extreme resistance. Central to zinc homeostasis is a flow equilibrium of zinc comprising uptake and efflux reactions, which adjusts the cytoplasmic zinc content. This report describes what happens when an imbalance in zinc and cadmium concentrations impairs the central inner-membrane zinc efflux system for zinc by competitive inhibition for this exporter. The problem is solved by activation of Cd-exporting CadA or Zn-exporting CdfX as additional efflux systems.
Collapse
Affiliation(s)
- Vladislava Schulz
- Martin-Luther-University Halle-Wittenberg, Institute for Biology/Microbiology, Halle (Saale), Germany
| | - Diana Galea
- Martin-Luther-University Halle-Wittenberg, Institute for Biology/Microbiology, Halle (Saale), Germany
| | - Grit Schleuder
- Martin-Luther-University Halle-Wittenberg, Institute for Biology/Microbiology, Halle (Saale), Germany
| | - Philipp Strohmeyer
- Martin-Luther-University Halle-Wittenberg, Institute for Biology/Microbiology, Halle (Saale), Germany
| | - Cornelia Große
- Martin-Luther-University Halle-Wittenberg, Institute for Biology/Microbiology, Halle (Saale), Germany
| | - Martin Herzberg
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
| | - Dietrich H. Nies
- Martin-Luther-University Halle-Wittenberg, Institute for Biology/Microbiology, Halle (Saale), Germany
| |
Collapse
|
5
|
He B, Helmann JD. Metalation of Extracytoplasmic Proteins and Bacterial Cell Envelope Homeostasis. Annu Rev Microbiol 2024; 78:83-102. [PMID: 38960447 DOI: 10.1146/annurev-micro-041522-091507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Cell physiology requires innumerable metalloenzymes supported by the selective import of metal ions. Within the crowded cytosol, most enzymes acquire their cognate cofactors from a buffered labile pool. Metalation of membrane-bound and secreted exoenzymes is more problematic since metal concentrations are highly variable outside the cell. Here, we focus on metalloenzymes involved in cell envelope homeostasis. Peptidoglycan synthesis often relies on Zn-dependent hydrolases, and metal-dependent β-lactamases play important roles in antibiotic resistance. In gram-positive bacteria, lipoteichoic acid synthesis requires Mn, with TerC family Mn exporters in a supporting role. For some exoenzymes, metalation occurs in the cytosol, and metalated enzymes are exported through the TAT secretion system. For others, metalation is facilitated by metal exporters, metallochaperones, or partner proteins that enhance metal affinity. To help ensure function, some metalloenzymes can function with multiple metals. Thus, cells employ a diversity of strategies to ensure metalation of enzymes functioning outside the cytosol.
Collapse
Affiliation(s)
- Bixi He
- Department of Microbiology, Cornell University, Ithaca, New York, USA;
| | - John D Helmann
- Department of Microbiology, Cornell University, Ithaca, New York, USA;
| |
Collapse
|
6
|
Galea D, Herzberg M, Nies DH. The metal-binding GTPases CobW2 and CobW3 are at the crossroads of zinc and cobalt homeostasis in Cupriavidus metallidurans. J Bacteriol 2024; 206:e0022624. [PMID: 39041725 PMCID: PMC11340326 DOI: 10.1128/jb.00226-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/03/2024] [Indexed: 07/24/2024] Open
Abstract
The metal-resistant beta-proteobacterium Cupriavidus metallidurans is also able to survive conditions of metal starvation. We show that zinc-starved cells can substitute some of the required zinc with cobalt but not with nickel ions. The zinc importer ZupT was necessary for this process but was not essential for either zinc or cobalt import. The cellular cobalt content was also influenced by the two COG0523-family proteins, CobW2 and CobW3. Pulse-chase experiments with radioactive and isotope-enriched zinc demonstrated that both proteins interacted with ZupT to control the cellular flow-equilibrium of zinc, a central process of zinc homeostasis. Moreover, an antagonistic interplay of CobW2 and CobW3 in the presence of added cobalt caused a growth defect in mutant cells devoid of the cobalt efflux system DmeF. Full cobalt resistance also required a synergistic interaction of ZupT and DmeF. Thus, the two transporters along with CobW2 and CobW3 interact to control cobalt homeostasis in a process that depends on zinc availability. Because ZupT, CobW2, and CobW3 also direct zinc homeostasis, this process links the control of cobalt and zinc homeostasis, which subsequently protects C. metallidurans against cadmium stress and general metal starvation.IMPORTANCEIn bacterial cells, zinc ions need to be allocated to zinc-dependent proteins without disturbance of this process by other transition metal cations. Under zinc-starvation conditions, C. metallidurans floods the cell with cobalt ions, which protect the cell against cadmium toxicity, help withstand metal starvation, and provide cobalt to metal-promiscuous paralogs of essential zinc-dependent proteins. The number of cobalt ions needs to be carefully controlled to avoid a toxic cobalt overload. This is accomplished by an interplay of the zinc importer ZupT with the COG0523-family proteins, CobW3, and CobW2. At high external cobalt concentrations, this trio of proteins additionally interacts with the cobalt efflux system, DmeF, so that these four proteins form an inextricable link between zinc and cobalt homeostasis.
Collapse
Affiliation(s)
- Diana Galea
- Molecular Microbiology, Institute for Biology/Microbiology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Martin Herzberg
- Molecular Microbiology, Institute for Biology/Microbiology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
- Department of Environmental Analytical Chemistry, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
| | - Dietrich H. Nies
- Molecular Microbiology, Institute for Biology/Microbiology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
7
|
Stocke KS, Lamont RJ. One-carbon metabolism and microbial pathogenicity. Mol Oral Microbiol 2024; 39:156-164. [PMID: 37224274 PMCID: PMC10667567 DOI: 10.1111/omi.12417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/26/2023]
Abstract
One-carbon metabolism (OCM) pathways are responsible for several functions, producing a number of one-carbon unit intermediates (formyl, methylene, methenyl, methyl) that are required for the synthesis of various amino acids and other biomolecules such as purines, thymidylate, redox regulators, and, in most microbes, folate. As humans must acquire folate from the diet, folate production is a target for antimicrobials such as sulfonamides. OCM impacts the regulation of microbial virulence such that in a number of instances, limiting the availability of para-aminobenzoic acid (pABA), an essential OCM precursor, causes a reduction in pathogenicity. Porphyromonas gingivalis, however, displays increased pathogenicity in response to lower pABA levels, and exogenous pABA exerts a calming influence on heterotypic communities of P. gingivalis with pABA-producing partner species. Differential responses to pABA may reflect both the physiology of the organisms and their host microenvironment. OCM plays an integral role in regulating the global rate of protein translation, where the alarmones ZMP and ZTP sense insufficient stores of intracellular folate and coordinate adaptive responses to compensate and restore folate to sufficient levels. The emerging interconnections between OCM, protein synthesis, and context-dependent pathogenicity provide novel insights into the dynamic host-microbe interface.
Collapse
Affiliation(s)
- Kendall S. Stocke
- Department of Oral Immunology and Infectious Diseases, University of Louisville, Louisville, KY
| | - Richard J. Lamont
- Department of Oral Immunology and Infectious Diseases, University of Louisville, Louisville, KY
| |
Collapse
|
8
|
Osterberg MK, Smith AK, Campbell C, Deredge DJ, Stemmler TL, Giedroc DP. Coupling of zinc and GTP binding drives G-domain folding in Acinetobacter baumannii ZigA. Biophys J 2024; 123:979-991. [PMID: 38459695 PMCID: PMC11052692 DOI: 10.1016/j.bpj.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/22/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024] Open
Abstract
COG0523 proteins, also known as nucleotide-dependent metallochaperones, are a poorly understood class of small P-loop G3E GTPases. Multiple family members play critical roles in bacterial pathogen survival during an infection as part of the adaptive response to host-mediated "nutritional immunity." Our understanding of the structure, dynamics, and molecular-level function of COG0523 proteins, apart from the eukaryotic homolog, Zng1, remains in its infancy. Here, we use X-ray absorption spectroscopy to establish that Acinetobacter baumannii (Ab) ZigA coordinates ZnII using all three cysteines derived from the invariant CXCC motif to form an S3(N/O) coordination complex, a feature inconsistent with the ZnII-bound crystal structure of a distantly related COG0523 protein of unknown function from Escherichia coli, EcYjiA. The binding of ZnII and guanine nucleotides is thermodynamically linked in AbZigA, and this linkage is more favorable for the substrate GTP relative to the product GDP. Part of this coupling originates with nucleotide-induced stabilization of the G-domain tertiary structure as revealed by global thermodynamics measurements and hydrogen-deuterium exchange mass spectrometry (HDX-MS). HDX-MS also reveals that the HDX behavior of the G2 (switch 1) loop is highly sensitive to nucleotide status and becomes more exchange labile in the GDP (product)-bound state. Significant long-range perturbation of local stability in both the G-domain and the C-terminal domain define a candidate binding pocket for a client protein that appears sensitive to nucleotide status (GDP versus GTP). We place these new insights into the structure, dynamics, and energetics of intermolecular metal transfer into the context of a model for AbZigA metallochaperone function.
Collapse
Affiliation(s)
| | - Ally K Smith
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland
| | - Courtney Campbell
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan
| | - Daniel J Deredge
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland
| | - Timothy L Stemmler
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan
| | - David P Giedroc
- Department of Chemistry, Indiana University, Bloomington, Indiana.
| |
Collapse
|
9
|
Chen Z, Niu C, Wei L, Huang Z, Ran S. Genome-wide analysis of acid tolerance genes of Enterococcus faecalis with RNA-seq and Tn-seq. BMC Genomics 2024; 25:261. [PMID: 38454321 PMCID: PMC10921730 DOI: 10.1186/s12864-024-10162-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/26/2024] [Indexed: 03/09/2024] Open
Abstract
Enterococcus faecalis, a formidable nosocomial and community-acquired opportunistic pathogen, can persist a wide range of extreme environments, including low pH and nutrient deficiency. Clarifying the survival mechanism of E. faecalis in low-pH conditions is the key to combating the infectious diseases caused by E. faecalis. In this study, we combined transcriptome profiling (RNA-seq) and transposon insertion sequencing (TIS) to comprehensively understand the genes that confer these features on E. faecalis. The metadata showed that genes whose products are involved in cation transportation and amino acid biosynthesis were predominantly differentially expressed under acid conditions. The products of genes such as opp1C and copY reduced the hydrion concentration in the cell, whereas those of gldA2, gnd2, ubiD, and ubiD2 mainly participated in amino metabolism, increasing matters to neutralize excess acid. These, together with the folE and hexB genes, which are involved in mismatch repair, form a network of E. faecalis genes necessary for its survival under acid conditions.
Collapse
Affiliation(s)
- Zhanyi Chen
- Department of Endodontics and Operative Dentistry, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Chenguang Niu
- Department of Endodontics and Operative Dentistry, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Lifan Wei
- Department of Endodontics and Operative Dentistry, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
- Nucleic acid drug Research and Development Institute, CSPC, Shanghai, China
| | - Zhengwei Huang
- Department of Endodontics and Operative Dentistry, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Shujun Ran
- Department of Endodontics and Operative Dentistry, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- National Clinical Research Center for Oral Diseases, Shanghai, China.
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China.
| |
Collapse
|
10
|
Luna-Bulbarela A, Romero-Gutiérrez MT, Tinoco-Valencia R, Ortiz E, Martínez-Romero ME, Galindo E, Serrano-Carreón L. Response of Bacillus velezensis 83 to interaction with Colletotrichum gloeosporioides resembles a Greek phalanx-style formation: A stress resistant phenotype with antibiosis capacity. Microbiol Res 2024; 280:127592. [PMID: 38199003 DOI: 10.1016/j.micres.2023.127592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/06/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024]
Abstract
Plant growth-promoting rhizobacteria, such as Bacillus spp., establish beneficial associations with plants and may inhibit the growth of phytopathogenic fungi. However, these bacteria are subject to multiple biotic stimuli from their competitors, causing stress and modifying their development. This work is a study of an in vitro interaction between two model microorganisms of socioeconomic relevance, using population dynamics and transcriptomic approaches. Co-cultures of Bacillus velezensis 83 with the phytopathogenic fungus Colletotrichum gloeosporioides 09 were performed to evaluate the metabolic response of the bacteria under conditions of non-nutritional limitation. The bacterial response was associated with the induction of a stress-resistant phenotype, characterized by a lower specific growth rate, but with antimicrobial production capacity. About 12% of co-cultured B. velezensis 83 coding sequences were differentially expressed, including the up-regulation of the general stress response (sigB regulon), and the down-regulation of alternative carbon sources catabolism (glucose preference). Defense strategies in B. velezensis are a determining factor in order to preserve the long-term viability of its population. Mostly, the presence of the fungus does not affect the expression of antibiosis genes, except for those corresponding to surfactin/bacillomycin D production. Indeed, the up-regulation of antibiosis genes expression is associated with bacterial growth, regardless of the presence of the fungus. This behavior in B. velezensis 83 resembles the strategy used by the classical Greek phalanx formation: by sacrificing growth rate and metabolic versatility, resources can be redistributed to defense (stress resistant phenotype) while maintaining the attack (antibiosis capacity). The presented results are the first characterization of the molecular phenotype at the transcriptome level of a biological control agent under biotic stress caused by a phytopathogen without nutrient limitation.
Collapse
Affiliation(s)
- Agustín Luna-Bulbarela
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad #2001, Col. Chamilpa, CP 62210 Cuernavaca, Morelos, Mexico; Agro&Biotecnia S. de R.L. de C.V., Limones 8, Amate Redondo, 62334 Cuernavaca, Morelos, Mexico
| | - María Teresa Romero-Gutiérrez
- Technological Innovation Department, Tlajomulco University Center, University of Guadalajara, 45641 Tlajomulco de Zúñiga, Jalisco, Mexico; Translational Bioengineering Department, Exact Sciences and Engineering University Center, Universidad de Guadalajara, Blvd. Marcelino García Barragán #1421, 44430 Guadalajara, Jalisco, Mexico
| | - Raunel Tinoco-Valencia
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad #2001, Col. Chamilpa, CP 62210 Cuernavaca, Morelos, Mexico
| | - Ernesto Ortiz
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad #2001, Col. Chamilpa, CP 62210 Cuernavaca, Morelos, Mexico
| | - María Esperanza Martínez-Romero
- Ecología Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, Col. Chamilpa, CP 62210 Cuernavaca, Morelos, Mexico
| | - Enrique Galindo
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad #2001, Col. Chamilpa, CP 62210 Cuernavaca, Morelos, Mexico; Agro&Biotecnia S. de R.L. de C.V., Limones 8, Amate Redondo, 62334 Cuernavaca, Morelos, Mexico
| | - Leobardo Serrano-Carreón
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad #2001, Col. Chamilpa, CP 62210 Cuernavaca, Morelos, Mexico; Agro&Biotecnia S. de R.L. de C.V., Limones 8, Amate Redondo, 62334 Cuernavaca, Morelos, Mexico.
| |
Collapse
|
11
|
Schulz V, Galea D, Herzberg M, Nies DH. Protecting the Achilles heel: three FolE_I-type GTP-cyclohydrolases needed for full growth of metal-resistant Cupriavidus metallidurans under a variety of conditions. J Bacteriol 2024; 206:e0039523. [PMID: 38226602 PMCID: PMC10882993 DOI: 10.1128/jb.00395-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 12/15/2023] [Indexed: 01/17/2024] Open
Abstract
In Cupriavidus metallidurans and other bacteria, biosynthesis of the essential biochemical cofactor tetrahydrofolate (THF) initiates from guanosine triphosphate (GTP). This step is catalyzed by FolE_I-type GTP cyclohydrolases, which are either zinc-dependent FolE_IA-type or metal-promiscuous FolE_IB-type enzymes. As THF is also essential for GTP biosynthesis, GTP and THF synthesis form a cooperative cycle, which may be influenced by the cellular homeostasis of zinc and other metal cations. Metal-resistant C. metallidurans harbors one FolE_IA-type and two FolE_IB-type enzymes. All three proteins were produced in Escherichia coli. FolE_IA was indeed zinc dependent and the two FolE_IB enzymes metal-promiscuous GTP cyclohydrolases in vitro, the latter, for example, functioning with iron, manganese, or cobalt. Single and double mutants of C. metallidurans with deletions in the folE_I genes were constructed to analyze the contribution of the individual FolE_I-type enzymes under various conditions. FolE_IA was required in the presence of cadmium, hydrogen peroxide, metal chelators, and under general metal starvation conditions. FolE_IB1 was important when zinc uptake was impaired in cells without the zinc importer ZupT (ZIP family) and in the presence of trimethoprim, an inhibitor of THF biosynthesis. FolE_IB2 was needed under conditions of low zinc and cobalt but high magnesium availability. Together, these data demonstrate that C. metallidurans requires all three enzymes to allow efficient growth under a variety of conditions.IMPORTANCETetrahydrofolate (THF) is an important cofactor in microbial biochemistry. This "Achilles heel" of metabolism has been exploited by anti-metabolites and antibiotics such as sulfonamide and trimethoprim. Since THF is essential for the synthesis of guanosine triphosphate (GTP) and THF biosynthesis starts from GTP, synthesis of both compounds forms a cooperative cycle. The first step of THF synthesis by GTP cyclohydrolases (FolEs) is metal dependent and catalyzed by zinc- or metal-promiscuous enzymes, so that the cooperative THF and GTP synthesis cycle may be influenced by the homeostasis of several metal cations, especially that of zinc. The metal-resistant bacterium C. metallidurans needs three FolEs to grow in environments with both high and low zinc and cadmium content. Consequently, bacterial metal homeostasis is required to guarantee THF biosynthesis.
Collapse
Affiliation(s)
- Vladislava Schulz
- Molecular Microbiology, Martin-Luther-University Halle-Wittenberg, Halle/Saale, Germany
| | - Diana Galea
- Molecular Microbiology, Martin-Luther-University Halle-Wittenberg, Halle/Saale, Germany
| | - Martin Herzberg
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
| | - Dietrich H. Nies
- Molecular Microbiology, Martin-Luther-University Halle-Wittenberg, Halle/Saale, Germany
| |
Collapse
|
12
|
Hussein A, Fan S, Lopez-Redondo M, Kenney I, Zhang X, Beckstein O, Stokes DL. Energy coupling and stoichiometry of Zn 2+/H + antiport by the prokaryotic cation diffusion facilitator YiiP. eLife 2023; 12:RP87167. [PMID: 37906094 PMCID: PMC10617992 DOI: 10.7554/elife.87167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023] Open
Abstract
YiiP from Shewanella oneidensis is a prokaryotic Zn2+/H+ antiporter that serves as a model for the Cation Diffusion Facilitator (CDF) superfamily, members of which are generally responsible for homeostasis of transition metal ions. Previous studies of YiiP as well as related CDF transporters have established a homodimeric architecture and the presence of three distinct Zn2+ binding sites named A, B, and C. In this study, we use cryo-EM, microscale thermophoresis and molecular dynamics simulations to address the structural and functional roles of individual sites as well as the interplay between Zn2+ binding and protonation. Structural studies indicate that site C in the cytoplasmic domain is primarily responsible for stabilizing the dimer and that site B at the cytoplasmic membrane surface controls the structural transition from an inward facing conformation to an occluded conformation. Binding data show that intramembrane site A, which is directly responsible for transport, has a dramatic pH dependence consistent with coupling to the proton motive force. A comprehensive thermodynamic model encompassing Zn2+ binding and protonation states of individual residues indicates a transport stoichiometry of 1 Zn2+ to 2-3 H+ depending on the external pH. This stoichiometry would be favorable in a physiological context, allowing the cell to use the proton gradient as well as the membrane potential to drive the export of Zn2+.
Collapse
Affiliation(s)
- Adel Hussein
- Department of Biochemistry and Molecular Pharmacology, NYU School of MedicineNew YorkUnited States
| | - Shujie Fan
- Department of Physics, Arizona State UniversityTempeUnited States
| | - Maria Lopez-Redondo
- Department of Biochemistry and Molecular Pharmacology, NYU School of MedicineNew YorkUnited States
| | - Ian Kenney
- Department of Physics, Arizona State UniversityTempeUnited States
| | - Xihui Zhang
- Department of Biochemistry and Molecular Pharmacology, NYU School of MedicineNew YorkUnited States
| | - Oliver Beckstein
- Department of Physics, Arizona State UniversityTempeUnited States
| | - David L Stokes
- Department of Biochemistry and Molecular Pharmacology, NYU School of MedicineNew YorkUnited States
| |
Collapse
|
13
|
Zhang L, Braynen J, Fahey A, Chopra K, Cifani P, Tadesse D, Regulski M, Hu F, van Dam HJJ, Xie M, Ware D, Blaby-Haas CE. Two related families of metal transferases, ZNG1 and ZNG2, are involved in acclimation to poor Zn nutrition in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2023; 14:1237722. [PMID: 37965006 PMCID: PMC10642216 DOI: 10.3389/fpls.2023.1237722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/02/2023] [Indexed: 11/16/2023]
Abstract
Metal homeostasis has evolved to tightly modulate the availability of metals within the cell, avoiding cytotoxic interactions due to excess and protein inactivity due to deficiency. Even in the presence of homeostatic processes, however, low bioavailability of these essential metal nutrients in soils can negatively impact crop health and yield. While research has largely focused on how plants assimilate metals, acclimation to metal-limited environments requires a suite of strategies that are not necessarily involved in metal transport across membranes. The identification of these mechanisms provides a new opportunity to improve metal-use efficiency and develop plant foodstuffs with increased concentrations of bioavailable metal nutrients. Here, we investigate the function of two distinct subfamilies of the nucleotide-dependent metallochaperones (NMCs), named ZNG1 and ZNG2, that are found in plants, using Arabidopsis thaliana as a reference organism. AtZNG1 (AT1G26520) is an ortholog of human and fungal ZNG1, and like its previously characterized eukaryotic relatives, localizes to the cytosol and physically interacts with methionine aminopeptidase type I (AtMAP1A). Analysis of AtZNG1, AtMAP1A, AtMAP2A, and AtMAP2B transgenic mutants are consistent with the role of Arabidopsis ZNG1 as a Zn transferase for AtMAP1A, as previously described in yeast and zebrafish. Structural modeling reveals a flexible cysteine-rich loop that we hypothesize enables direct transfer of Zn from AtZNG1 to AtMAP1A during GTP hydrolysis. Based on proteomics and transcriptomics, loss of this ancient and conserved mechanism has pleiotropic consequences impacting the expression of hundreds of genes, including those involved in photosynthesis and vesicle transport. Members of the plant-specific family of NMCs, ZNG2A1 (AT1G80480) and ZNG2A2 (AT1G15730), are also required during Zn deficiency, but their target protein(s) remain to be discovered. RNA-seq analyses reveal wide-ranging impacts across the cell when the genes encoding these plastid-localized NMCs are disrupted.
Collapse
Affiliation(s)
- Lifang Zhang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States
| | - Janeen Braynen
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States
| | - Audrey Fahey
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States
| | - Kriti Chopra
- Computational Science Initiative, Brookhaven National Laboratory, Upton, NY, United States
| | - Paolo Cifani
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States
| | - Dimiru Tadesse
- Biology Department, Brookhaven National Laboratory, Upton, NY, United States
| | - Michael Regulski
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States
| | - Fangle Hu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States
| | - Hubertus J. J. van Dam
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY, United States
| | - Meng Xie
- Biology Department, Brookhaven National Laboratory, Upton, NY, United States
| | - Doreen Ware
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States
- USDA ARS NAA Robert W. Holley Center for Agriculture and Health, Agricultural Research Service, Ithaca, NY, United States
| | - Crysten E. Blaby-Haas
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| |
Collapse
|
14
|
Herzberg C, Meißner J, Warneke R, Stülke J. The many roles of cyclic di-AMP to control the physiology of Bacillus subtilis. MICROLIFE 2023; 4:uqad043. [PMID: 37954098 PMCID: PMC10636490 DOI: 10.1093/femsml/uqad043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/21/2023] [Accepted: 10/19/2023] [Indexed: 11/14/2023]
Abstract
The dinucleotide cyclic di-AMP (c-di-AMP) is synthesized as a second messenger in the Gram-positive model bacterium Bacillus subtilis as well as in many bacteria and archaea. Bacillus subtilis possesses three diadenylate cyclases and two phosphodiesterases that synthesize and degrade the molecule, respectively. Among the second messengers, c-di-AMP is unique since it is essential for B. subtilis on the one hand but toxic upon accumulation on the other. This role as an "essential poison" is related to the function of c-di-AMP in the control of potassium homeostasis. C-di-AMP inhibits the expression and activity of potassium uptake systems by binding to riboswitches and transporters and activates the activity of potassium exporters. In this way, c-di-AMP allows the adjustment of uptake and export systems to achieve a balanced intracellular potassium concentration. C-di-AMP also binds to two dedicated signal transduction proteins, DarA and DarB. Both proteins seem to interact with other proteins in their apo state, i.e. in the absence of c-di-AMP. For DarB, the (p)ppGpp synthetase/hydrolase Rel and the pyruvate carboxylase PycA have been identified as targets. The interactions trigger the synthesis of the alarmone (p)ppGpp and of the acceptor molecule for the citric acid cycle, oxaloacetate, respectively. In the absence of c-di-AMP, many amino acids inhibit the growth of B. subtilis. This feature can be used to identify novel players in amino acid homeostasis. In this review, we discuss the different functions of c-di-AMP and their physiological relevance.
Collapse
Affiliation(s)
- Christina Herzberg
- Department of General Microbiology, GZMB, Georg-August-University Göttingen, Grisebachstr. 8, 37077 Göttingen, Germany
| | - Janek Meißner
- Department of General Microbiology, GZMB, Georg-August-University Göttingen, Grisebachstr. 8, 37077 Göttingen, Germany
| | - Robert Warneke
- Department of General Microbiology, GZMB, Georg-August-University Göttingen, Grisebachstr. 8, 37077 Göttingen, Germany
| | - Jörg Stülke
- Department of General Microbiology, GZMB, Georg-August-University Göttingen, Grisebachstr. 8, 37077 Göttingen, Germany
| |
Collapse
|
15
|
He B, Sachla AJ, Helmann JD. TerC proteins function during protein secretion to metalate exoenzymes. Nat Commun 2023; 14:6186. [PMID: 37794032 PMCID: PMC10550928 DOI: 10.1038/s41467-023-41896-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/14/2023] [Indexed: 10/06/2023] Open
Abstract
Cytosolic metalloenzymes acquire metals from buffered intracellular pools. How exported metalloenzymes are appropriately metalated is less clear. We provide evidence that TerC family proteins function in metalation of enzymes during export through the general secretion (Sec-dependent) pathway. Bacillus subtilis strains lacking MeeF(YceF) and MeeY(YkoY) have a reduced capacity for protein export and a greatly reduced level of manganese (Mn) in the secreted proteome. MeeF and MeeY copurify with proteins of the general secretory pathway, and in their absence the FtsH membrane protease is essential for viability. MeeF and MeeY are also required for efficient function of the Mn2+-dependent lipoteichoic acid synthase (LtaS), a membrane-localized enzyme with an extracytoplasmic active site. Thus, MeeF and MeeY, representative of the widely conserved TerC family of membrane transporters, function in the co-translocational metalation of Mn2+-dependent membrane and extracellular enzymes.
Collapse
Affiliation(s)
- Bixi He
- Department of Microbiology, Cornell University, 370 Wing Hall, 123 Wing Drive, Ithaca, NY, 14853-8101, USA
| | - Ankita J Sachla
- Department of Microbiology, Cornell University, 370 Wing Hall, 123 Wing Drive, Ithaca, NY, 14853-8101, USA
| | - John D Helmann
- Department of Microbiology, Cornell University, 370 Wing Hall, 123 Wing Drive, Ithaca, NY, 14853-8101, USA.
| |
Collapse
|
16
|
Kunkle DE, Skaar EP. Moving metals: How microbes deliver metal cofactors to metalloproteins. Mol Microbiol 2023; 120:547-554. [PMID: 37408317 PMCID: PMC10592388 DOI: 10.1111/mmi.15117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/08/2023] [Accepted: 06/13/2023] [Indexed: 07/07/2023]
Abstract
First row d-block metal ions serve as vital cofactors for numerous essential enzymes and are therefore required nutrients for all forms of life. Despite this requirement, excess free transition metals are toxic. Free metal ions participate in the production of noxious reactive oxygen species and mis-metalate metalloproteins, rendering enzymes catalytically inactive. Thus, bacteria require systems to ensure metalloproteins are properly loaded with cognate metal ions to maintain protein function, while avoiding metal-mediated cellular toxicity. In this perspective we summarize the current mechanistic understanding of bacterial metallocenter maturation with specific emphasis on metallochaperones; a group of specialized proteins that both shield metal ions from inadvertent reactions and distribute them to cognate target metalloproteins. We highlight several recent advances in the field that have implicated new classes of proteins in the distribution of metal ions within bacterial proteins, while speculating on the future of the field of bacterial metallobiology.
Collapse
Affiliation(s)
- Dillon E. Kunkle
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Eric P. Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
17
|
Hussein A, Fan S, Lopez-Redondo M, Kenney I, Zhang X, Beckstein O, Stokes DL. Energy Coupling and Stoichiometry of Zn 2+/H + Antiport by the Cation Diffusion Facilitator YiiP. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.23.529644. [PMID: 36865113 PMCID: PMC9980050 DOI: 10.1101/2023.02.23.529644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
YiiP is a prokaryotic Zn2+/H+ antiporter that serves as a model for the Cation Diffusion Facilitator (CDF) superfamily, members of which are generally responsible for homeostasis of transition metal ions. Previous studies of YiiP as well as related CDF transporters have established a homodimeric architecture and the presence of three distinct Zn2+ binding sites named A, B, and C. In this study, we use cryo-EM, microscale thermophoresis and molecular dynamics simulations to address the structural and functional roles of individual sites as well as the interplay between Zn2+ binding and protonation. Structural studies indicate that site C in the cytoplasmic domain is primarily responsible for stabilizing the dimer and that site B at the cytoplasmic membrane surface controls the structural transition from an inward facing conformation to an occluded conformation. Binding data show that intramembrane site A, which is directly responsible for transport, has a dramatic pH dependence consistent with coupling to the proton motive force. A comprehensive thermodynamic model encompassing Zn2+ binding and protonation states of individual residues indicates a transport stoichiometry of 1 Zn2+ to 2-3 H+ depending on the external pH. This stoichiometry would be favorable in a physiological context, allowing the cell to use the proton gradient as well as the membrane potential to drive the export of Zn2+.
Collapse
Affiliation(s)
- Adel Hussein
- Dept. of Cell Biology, NYU School of Medicine, New York, NY 10016 USA
| | - Shujie Fan
- Dept. of Physics, Arizona State University, Tempe AZ
| | | | - Ian Kenney
- Dept. of Physics, Arizona State University, Tempe AZ
| | - Xihui Zhang
- Dept. of Cell Biology, NYU School of Medicine, New York, NY 10016 USA
| | | | - David L Stokes
- Dept. of Cell Biology, NYU School of Medicine, New York, NY 10016 USA
| |
Collapse
|
18
|
He B, Sachla AJ, Helmann JD. TerC Proteins Function During Protein Secretion to Metalate Exoenzymes. RESEARCH SQUARE 2023:rs.3.rs-2860473. [PMID: 37292672 PMCID: PMC10246235 DOI: 10.21203/rs.3.rs-2860473/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cytosolic metalloenzymes acquire metals from buffered intracellular pools. How exported metalloenzymes are appropriately metalated is less clear. We provide evidence that TerC family proteins function in metalation of enzymes during export through the general secretion (Sec-dependent) pathway. Bacillus subtilis strains lacking MeeF(YceF) and MeeY(YkoY) have a reduced capacity for protein export and a greatly reduced level of manganese (Mn) in the secreted proteome. MeeF and MeeY copurify with proteins of the general secretory pathway, and in their absence the FtsH membrane protease is essential for viability. MeeF and MeeY are also required for efficient function of the Mn2+-dependent lipoteichoic acid synthase (LtaS), a membrane-localized enzyme with an extracytoplasmic active site. Thus, MeeF and MeeY, representative of the widely conserved TerC family of membrane transporters, function in the co-translocational metalation of Mn2+-dependent membrane and extracellular enzymes.
Collapse
Affiliation(s)
- Bixi He
- Department of Microbiology, Cornell University, 370 Wing Hall, 123 Wing Drive, Ithaca, New York 14853-8101, USA
| | - Ankita J. Sachla
- Department of Microbiology, Cornell University, 370 Wing Hall, 123 Wing Drive, Ithaca, New York 14853-8101, USA
| | - John D. Helmann
- Department of Microbiology, Cornell University, 370 Wing Hall, 123 Wing Drive, Ithaca, New York 14853-8101, USA
| |
Collapse
|
19
|
Keller MR, Dörr T. Bacterial metabolism and susceptibility to cell wall-active antibiotics. Adv Microb Physiol 2023; 83:181-219. [PMID: 37507159 PMCID: PMC11024984 DOI: 10.1016/bs.ampbs.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Bacterial infections are increasingly resistant to antimicrobial therapy. Intense research focus has thus been placed on identifying the mechanisms that bacteria use to resist killing or growth inhibition by antibiotics and the ways in which bacteria share these traits with one another. This work has led to the advancement of new drugs, combination therapy regimens, and a deeper appreciation for the adaptability seen in microorganisms. However, while the primary mechanisms of action of most antibiotics are well understood, the more subtle contributions of bacterial metabolic state to repairing or preventing damage caused by antimicrobials (thereby promoting survival) are still understudied. Here, we review a modern viewpoint on a classical system: examining bacterial metabolism's connection to antibiotic susceptibility. We dive into the relationship between metabolism and antibiotic efficacy through the lens of growth rate, energy state, resource allocation, and the infection environment, focusing on cell wall-active antibiotics.
Collapse
Affiliation(s)
- Megan Renee Keller
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, United States
| | - Tobias Dörr
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, United States; Department of Microbiology, Cornell University, Ithaca, NY, United States; Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, NY, United States.
| |
Collapse
|
20
|
He B, Sachla AJ, Helmann JD. TerC Proteins Function During Protein Secretion to Metalate Exoenzymes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.10.536223. [PMID: 37090602 PMCID: PMC10120614 DOI: 10.1101/2023.04.10.536223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Cytosolic metalloenzymes acquire metals from buffered intracellular pools. How exported metalloenzymes are appropriately metalated is less clear. We provide evidence that TerC family proteins function in metalation of enzymes during export through the general secretion (Sec-dependent) pathway. Bacillus subtilis strains lacking MeeF(YceF) and MeeY(YkoY) have a reduced capacity for protein export and a greatly reduced level of manganese (Mn) in the secreted proteome. MeeF and MeeY copurify with proteins of the general secretory pathway, and in their absence the FtsH membrane protease is essential for viability. MeeF and MeeY are also required for efficient function of the Mn 2+ -dependent lipoteichoic acid synthase (LtaS), a membrane-localized enzyme with an extracytoplasmic active site. Thus, MeeF and MeeY, representative of the widely conserved TerC family of membrane transporters, function in the co-translocational metalation of Mn 2+ -dependent membrane and extracellular enzymes.
Collapse
Affiliation(s)
- Bixi He
- Department of Microbiology, Cornell University, 370 Wing Hall, 123 Wing Drive, Ithaca, New York 14853-8101, USA
| | - Ankita J. Sachla
- Department of Microbiology, Cornell University, 370 Wing Hall, 123 Wing Drive, Ithaca, New York 14853-8101, USA
| | - John D. Helmann
- Department of Microbiology, Cornell University, 370 Wing Hall, 123 Wing Drive, Ithaca, New York 14853-8101, USA
| |
Collapse
|
21
|
Bremer E, Calteau A, Danchin A, Harwood C, Helmann JD, Médigue C, Palsson BO, Sekowska A, Vallenet D, Zuniga A, Zuniga C. A model industrial workhorse:
Bacillus subtilis
strain 168 and its genome after a quarter of a century. Microb Biotechnol 2023; 16:1203-1231. [PMID: 37002859 DOI: 10.1111/1751-7915.14257] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/20/2023] [Indexed: 04/04/2023] Open
Abstract
The vast majority of genomic sequences are automatically annotated using various software programs. The accuracy of these annotations depends heavily on the very few manual annotation efforts that combine verified experimental data with genomic sequences from model organisms. Here, we summarize the updated functional annotation of Bacillus subtilis strain 168, a quarter century after its genome sequence was first made public. Since the last such effort 5 years ago, 1168 genetic functions have been updated, allowing the construction of a new metabolic model of this organism of environmental and industrial interest. The emphasis in this review is on new metabolic insights, the role of metals in metabolism and macromolecule biosynthesis, functions involved in biofilm formation, features controlling cell growth, and finally, protein agents that allow class discrimination, thus allowing maintenance management, and accuracy of all cell processes. New 'genomic objects' and an extensive updated literature review have been included for the sequence, now available at the International Nucleotide Sequence Database Collaboration (INSDC: AccNum AL009126.4).
Collapse
Affiliation(s)
- Erhard Bremer
- Department of Biology, Laboratory for Microbiology and Center for Synthetic Microbiology (SYNMIKRO) Philipps‐University Marburg Marburg Germany
| | - Alexandra Calteau
- LABGeM, Génomique Métabolique, CEA, Genoscope, Institut de Biologie François Jacob Université d'Évry, Université Paris‐Saclay, CNRS Évry France
| | - Antoine Danchin
- School of Biomedical Sciences, Li KaShing Faculty of Medicine Hong Kong University Pokfulam SAR Hong Kong China
| | - Colin Harwood
- Centre for Bacterial Cell Biology, Biosciences Institute Newcastle University Baddiley Clark Building Newcastle upon Tyne UK
| | - John D. Helmann
- Department of Microbiology Cornell University Ithaca New York USA
| | - Claudine Médigue
- LABGeM, Génomique Métabolique, CEA, Genoscope, Institut de Biologie François Jacob Université d'Évry, Université Paris‐Saclay, CNRS Évry France
| | - Bernhard O. Palsson
- Department of Bioengineering University of California San Diego La Jolla USA
| | | | - David Vallenet
- LABGeM, Génomique Métabolique, CEA, Genoscope, Institut de Biologie François Jacob Université d'Évry, Université Paris‐Saclay, CNRS Évry France
| | - Abril Zuniga
- Department of Biology San Diego State University San Diego California USA
| | - Cristal Zuniga
- Bioinformatics and Medical Informatics Graduate Program San Diego State University San Diego California USA
| |
Collapse
|
22
|
Abstract
Living systems are built from a small subset of the atomic elements, including the bulk macronutrients (C,H,N,O,P,S) and ions (Mg,K,Na,Ca) together with a small but variable set of trace elements (micronutrients). Here, we provide a global survey of how chemical elements contribute to life. We define five classes of elements: those that are (i) essential for all life, (ii) essential for many organisms in all three domains of life, (iii) essential or beneficial for many organisms in at least one domain, (iv) beneficial to at least some species, and (v) of no known beneficial use. The ability of cells to sustain life when individual elements are absent or limiting relies on complex physiological and evolutionary mechanisms (elemental economy). This survey of elemental use across the tree of life is encapsulated in a web-based, interactive periodic table that summarizes the roles chemical elements in biology and highlights corresponding mechanisms of elemental economy.
Collapse
Affiliation(s)
- Kaleigh A Remick
- Department of Microbiology, Cornell University, New York, NY, United States
| | - John D Helmann
- Department of Microbiology, Cornell University, New York, NY, United States.
| |
Collapse
|
23
|
Murdoch CC, Skaar EP. Nutritional immunity: the battle for nutrient metals at the host-pathogen interface. Nat Rev Microbiol 2022; 20:657-670. [PMID: 35641670 PMCID: PMC9153222 DOI: 10.1038/s41579-022-00745-6] [Citation(s) in RCA: 208] [Impact Index Per Article: 69.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2022] [Indexed: 12/21/2022]
Abstract
Trace metals are essential micronutrients required for survival across all kingdoms of life. From bacteria to animals, metals have critical roles as both structural and catalytic cofactors for an estimated third of the proteome, representing a major contributor to the maintenance of cellular homeostasis. The reactivity of metal ions engenders them with the ability to promote enzyme catalysis and stabilize reaction intermediates. However, these properties render metals toxic at high concentrations and, therefore, metal levels must be tightly regulated. Having evolved in close association with bacteria, vertebrate hosts have developed numerous strategies of metal limitation and intoxication that prevent bacterial proliferation, a process termed nutritional immunity. In turn, bacterial pathogens have evolved adaptive mechanisms to survive in conditions of metal depletion or excess. In this Review, we discuss mechanisms by which nutrient metals shape the interactions between bacterial pathogens and animal hosts. We explore the cell-specific and tissue-specific roles of distinct trace metals in shaping bacterial infections, as well as implications for future research and new therapeutic development.
Collapse
Affiliation(s)
- Caitlin C Murdoch
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Eric P Skaar
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Vanderbilt Institute for Chemical Biology, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
24
|
Song X, Lin S, Hu Z, Liu Y, Deng Y, Tang YZ. Possible functions of CobW domain-containing (CBWD) genes in dinoflagellates using Karlodinium veneficum as a representative. HARMFUL ALGAE 2022; 117:102274. [PMID: 35944961 DOI: 10.1016/j.hal.2022.102274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 05/30/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Since > 91% of dinoflagellates are proven auxotrophs of vitamin B12 and the cobalamin synthetase W (CobW) is a key gene involved in vitamin B12 synthesis pathway, a number of CobW domain-containing (CBWD) genes in dinoflagellates (DinoCBWDs) were surprisedly found from our transcriptomic and meta-transcriptomic studies. A total of 88 DinoCBWD genes were identified from the genomes and transcriptomes of four dinoflagellates, with five being cloned for full-lengths and characterized using the cosmopolitan and ecologically-important dinoflagellates Karlodinium veneficum and Scrippsiella trochoidea (synonym of Scrippsiella acuminata). DinoCBWDs were verified being irrelevant to vitamin B12 biosynthesis due to their transcriptions irresponsive to vitamin B12 levels and their phylogenetic positions. A comprehensive phylogenetic analysis demonstrated 75 out of the 88 DinoCBWD genes identified belong to three subfamilies of COG0523 protein family, of which most prokaryotic members are reported to be metallochaperones and the eukaryotic members are ubiquitously found but mostly unknown for their functions. Our results from K. veneficum demonstrated DinoCBWDs are associated with metal homeostasis and other divergent functions, with four KvCBWDs involving in zinc homeostasis and KvCBWD1 likely functioning as Fe-type nitrile hydratase activator. In addition, conserved motif analysis revealed the structural foundation of KvCBWD proteins that are consistent with previously described CBWD proteins with GTPase activity and metal binding. Our results provide a stepping-stone toward better understanding the functions of DinoCBWDs and the COG0523 family.
Collapse
Affiliation(s)
- Xiaoying Song
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Siheng Lin
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Zhangxi Hu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Yuyang Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Yunyan Deng
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China.
| | - Ying Zhong Tang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|
25
|
Martin JE, Waters LS. Regulation of Bacterial Manganese Homeostasis and Usage During Stress Responses and Pathogenesis. Front Mol Biosci 2022; 9:945724. [PMID: 35911964 PMCID: PMC9334652 DOI: 10.3389/fmolb.2022.945724] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/21/2022] [Indexed: 11/13/2022] Open
Abstract
Manganese (Mn) plays a multifaceted role in the survival of pathogenic and symbiotic bacteria in eukaryotic hosts, and it is also important for free-living bacteria to grow in stressful environments. Previous research has uncovered components of the bacterial Mn homeostasis systems that control intracellular Mn levels, many of which are important for virulence. Multiple studies have also identified proteins that use Mn once it is inside the cell, including Mn-specific enzymes and enzymes transiently loaded with Mn for protection during oxidative stress. Emerging evidence continues to reveal proteins involved in maintaining Mn homeostasis, as well as enzymes that can bind Mn. For some of these enzymes, Mn serves as an essential cofactor. For other enzymes, mismetallation with Mn can lead to inactivation or poor activity. Some enzymes may even potentially be regulated by differential metallation with Mn or zinc (Zn). This review focuses on new developments in regulatory mechanisms that affect Mn homeostasis and usage, additional players in Mn import that increase bacterial survival during pathogenesis, and the interplay between Mn and other metals during Mn-responsive physiological processes. Lastly, we highlight lessons learned from fundamental research that are now being applied to bacterial interactions within larger microbial communities or eukaryotic hosts.
Collapse
Affiliation(s)
- Julia E. Martin
- Department of Biological Sciences, Idaho State University, Pocatello, ID, United States
| | - Lauren S. Waters
- Department of Chemistry, University of Wisconsin Oshkosh, Oshkosh, WI, United States
| |
Collapse
|
26
|
Chen YY, O'Halloran TV. A zinc chaperone mediates the flow of an inorganic commodity to an important cellular client. Cell 2022; 185:2013-2015. [PMID: 35688131 DOI: 10.1016/j.cell.2022.05.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 01/27/2023]
Abstract
Zinc is an essential element in living organisms, yet little is known about how cells ensure that zinc is allocated to the correct metalloproteins. Papers in Cell and Cell Reports demonstrate that the ZNG1 family of GTPases have metallochaperone functions: they directly transfer zinc to, and thereby activate, methionine aminopeptidases that are crucial for protein modification during or after translation.
Collapse
Affiliation(s)
- Yu-Ying Chen
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Thomas V O'Halloran
- Department of Microbiology and Molecular Genetics, Department of Chemistry, and Elemental Health Institute, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
27
|
Zhang M, Liu G, Zhang Y, Chen T, Feng S, Cai R, Lu C. The Second Class of Tetrahydrofolate (THF-II) Riboswitches Recognizes the Tetrahydrofolic Acid Ligand via Local Conformation Changes. Int J Mol Sci 2022; 23:ijms23115903. [PMID: 35682583 PMCID: PMC9180208 DOI: 10.3390/ijms23115903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/02/2022] [Accepted: 05/06/2022] [Indexed: 02/05/2023] Open
Abstract
Riboswitches are regulatory noncoding RNAs found in bacteria, fungi and plants, that modulate gene expressions through structural changes in response to ligand binding. Understanding how ligands interact with riboswitches in solution can shed light on the molecular mechanisms of this ancient regulators. Previous studies showed that riboswitches undergo global conformation changes in response to ligand binding to relay information. Here, we report conformation switching models of the recently discovered tetrahydrofolic acid-responsive second class of tetrahydrofolate (THF-II) riboswitches in response to ligand binding. Using a combination of selective 2′-hydroxyl acylation, analyzed by primer extension (SHAPE) assay, 3D modeling and small-angle X-ray scattering (SAXS), we found that the ligand specifically recognizes and reshapes the THF-II riboswitch loop regions, but does not affect the stability of the P3 helix. Our results show that the THF-II riboswitch undergoes only local conformation changes in response to ligand binding, rearranging the Loop1-P3-Loop2 region and rotating Loop1 from a ~120° angle to a ~75° angle. This distinct conformation changes suggest a unique regulatory mechanism of the THF-II riboswitch, previously unseen in other riboswitches. Our findings may contribute to the fields of RNA sensors and drug design.
Collapse
Affiliation(s)
- Minmin Zhang
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China; (M.Z.); (Y.Z.); (T.C.); (S.F.)
| | - Guangfeng Liu
- National Center for Protein Science Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China;
| | - Yunlong Zhang
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China; (M.Z.); (Y.Z.); (T.C.); (S.F.)
| | - Ting Chen
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China; (M.Z.); (Y.Z.); (T.C.); (S.F.)
| | - Shanshan Feng
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China; (M.Z.); (Y.Z.); (T.C.); (S.F.)
| | - Rujie Cai
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
- Correspondence: (R.C.); (C.L.); Tel.: +86-21-6779-2740 (C.L.)
| | - Changrui Lu
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China; (M.Z.); (Y.Z.); (T.C.); (S.F.)
- Correspondence: (R.C.); (C.L.); Tel.: +86-21-6779-2740 (C.L.)
| |
Collapse
|
28
|
Pasquini M, Grosjean N, Hixson KK, Nicora CD, Yee EF, Lipton M, Blaby IK, Haley JD, Blaby-Haas CE. Zng1 is a GTP-dependent zinc transferase needed for activation of methionine aminopeptidase. Cell Rep 2022; 39:110834. [PMID: 35584675 DOI: 10.1016/j.celrep.2022.110834] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/28/2022] [Accepted: 04/27/2022] [Indexed: 12/12/2022] Open
Abstract
The evolution of zinc (Zn) as a protein cofactor altered the functional landscape of biology, but dependency on Zn also created an Achilles' heel, necessitating adaptive mechanisms to ensure Zn availability to proteins. A debated strategy is whether metallochaperones exist to prioritize essential Zn-dependent proteins. Here, we present evidence for a conserved family of putative metal transferases in human and fungi, which interact with Zn-dependent methionine aminopeptidase type I (MetAP1/Map1p/Fma1). Deletion of the putative metal transferase in Saccharomyces cerevisiae (ZNG1; formerly YNR029c) leads to defective Map1p function and a Zn-deficiency growth defect. In vitro, Zng1p can transfer Zn2+ or Co2+ to apo-Map1p, but unlike characterized copper chaperones, transfer is dependent on GTP hydrolysis. Proteomics reveal mis-regulation of the Zap1p transcription factor regulon because of loss of ZNG1 and Map1p activity, suggesting that Zng1p is required to avoid a compounding effect of Map1p dysfunction on survival during Zn limitation.
Collapse
Affiliation(s)
- Miriam Pasquini
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Nicolas Grosjean
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Kim K Hixson
- The Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Carrie D Nicora
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Estella F Yee
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Mary Lipton
- The Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Ian K Blaby
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - John D Haley
- Department of Pathology and Biological Mass Spectrometry Facility, Stony Brook University, Stony Brook, NY 11794, USA
| | - Crysten E Blaby-Haas
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA; Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
29
|
Yu Y, Su J, Xu J, Li YP, Alwathnani HA, Wu Z, Ji C, Feng R, Rensing C, Herzberg M. As(III) Exposure Induces a Zinc Scarcity Response and Restricts Iron Uptake in High-Level Arsenic-Resistant Paenibacillus taichungensis Strain NC1. Appl Environ Microbiol 2022; 88:e0031222. [PMID: 35435714 PMCID: PMC9088362 DOI: 10.1128/aem.00312-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 03/15/2022] [Indexed: 11/20/2022] Open
Abstract
The Gram-positive bacterium Paenibacillus taichungensis NC1 was isolated from the Zijin gold-copper mine and shown to display high resistance to arsenic (MICs of 10 mM for arsenite in minimal medium). Genome sequencing indicated the presence of a number of potential arsenic resistance determinants in NC1. Global transcriptomic analysis under arsenic stress showed that NC1 not only directly upregulated genes in an arsenic resistance operon but also responded to arsenic toxicity by increasing the expression of genes encoding antioxidant functions, such as cat, perR, and gpx. In addition, two highly expressed genes, marR and arsV, encoding a putative flavin-dependent monooxygenase and located adjacent to the ars resistance operon, were highly induced by As(III) exposure and conferred resistance to arsenic and antimony compounds. Interestingly, the zinc scarcity response was induced under exposure to high concentrations of arsenite, and genes responsible for iron uptake were downregulated, possibly to cope with oxidative stress associated with As toxicity. IMPORTANCE Microbes have the ability to adapt and respond to a variety of conditions. To better understand these processes, we isolated the arsenic-resistant Gram-positive bacterium Paenibacillus taichungensis NC1 from a gold-copper mine. The transcriptome responding to arsenite exposure showed induction of not only genes encoding arsenic resistance determinants but also genes involved in the zinc scarcity response. In addition, many genes encoding functions involved in iron uptake were downregulated. These results help to understand how bacteria integrate specific responses to arsenite exposure with broader physiological responses.
Collapse
Affiliation(s)
- Yanshuang Yu
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Junming Su
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Junqiang Xu
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yuan Ping Li
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Hend A. Alwathnani
- Department of Botany and Microbiology, King Saud University, Riyadh, Saudi Arabia
| | - Zengling Wu
- Zijin Mining Group Co., Ltd., Shanghang, Fujian, China
| | - Changqing Ji
- Zijin Mining Group Co., Ltd., Shanghang, Fujian, China
| | - Renwei Feng
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Christopher Rensing
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Martin Herzberg
- Institute of Microbiology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
30
|
Kellogg RM, Moosburner MA, Cohen NR, Hawco NJ, McIlvin MR, Moran DM, DiTullio GR, Subhas AV, Allen AE, Saito MA. Adaptive responses of marine diatoms to zinc scarcity and ecological implications. Nat Commun 2022; 13:1995. [PMID: 35422102 PMCID: PMC9010474 DOI: 10.1038/s41467-022-29603-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/23/2022] [Indexed: 01/16/2023] Open
Abstract
AbstractScarce dissolved surface ocean concentrations of the essential algal micronutrient zinc suggest that Zn may influence the growth of phytoplankton such as diatoms, which are major contributors to marine primary productivity. However, the specific mechanisms by which diatoms acclimate to Zn deficiency are poorly understood. Using global proteomic analysis, we identified two proteins (ZCRP-A/B, Zn/Co Responsive Protein A/B) among four diatom species that became abundant under Zn/Co limitation. Characterization using reverse genetic techniques and homology data suggests putative Zn/Co chaperone and membrane-bound transport complex component roles for ZCRP-A (a COG0523 domain protein) and ZCRP-B, respectively. Metaproteomic detection of ZCRPs along a Pacific Ocean transect revealed increased abundances at the surface (<200 m) where dZn and dCo were scarcest, implying Zn nutritional stress in marine algae is more prevalent than previously recognized. These results demonstrate multiple adaptive responses to Zn scarcity in marine diatoms that are deployed in low Zn regions of the Pacific Ocean.
Collapse
|
31
|
Subirana MA, Riemschneider S, Hause G, Dobritzsch D, Schaumlöffel D, Herzberg M. High spatial resolution imaging of subcellular macro and trace element distribution during phagocytosis. Metallomics 2022; 14:6530650. [PMID: 35179212 DOI: 10.1093/mtomcs/mfac011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/10/2022] [Indexed: 11/13/2022]
Abstract
The bioavailability of trace elements in the course of evolution had an essential influence on the emergence of life itself. This is reflected in the co-evolution between eukaryotes and prokaryotes. In this study, the influence and cellular distribution of bioelements during phagocytosis at the host-pathogen interface was investigated using high-resolution nanoscale secondary ion mass spectrometry (NanoSIMS) and quantitative inductively coupled plasma mass spectrometry (ICP-MS). In the eukaryotic murine macrophages (RAW 264.7 cell line), the cellular Fe / Zn ratio was found to be balanced, whereas the dominance of iron in the prokaryotic cells of the pathogen Salmonella enterica Serovar Enteritidis was about 90% compared to zinc. This confirms the evolutionary increased zinc requirement of the eukaryotic animal cell. Using NanoSIMS, the Cs+ primary ion source allowed high spatial resolution mapping of cell morphology down to subcellular level. At a comparable resolution, several low abundant trace elements could be mapped during phagocytosis with a RF plasma O- primary ion source. An enrichment of copper and nickel could be detected in the prokaryotic cells. Surprisingly, an accumulation of cobalt in the area of nuclear envelope was observed indicating an interesting but still unknown distribution of this trace element in murine macrophages.
Collapse
Affiliation(s)
- Maria Angels Subirana
- CNRS, Université de Pau et des Pays de l'Adour, E2S UPPA, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux (IPREM), UMR 5254, 64000 Pau, France
| | - Sina Riemschneider
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), 04103 Leipzig, Germany
| | - Gerd Hause
- Martin-Luther-University Halle-Wittenberg, Biozentrum, Weinbergweg 22, 06120 Halle (Saale), Germany
| | - Dirk Dobritzsch
- Martin-Luther-University Halle-Wittenberg, Core Facility - Proteomic Mass Spectrometry, Kurt-Mothes-Str. 3a, 06120 Halle (Saale), Germany
| | - Dirk Schaumlöffel
- CNRS, Université de Pau et des Pays de l'Adour, E2S UPPA, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux (IPREM), UMR 5254, 64000 Pau, France.,Peoples' Friendship University of Russia (RUDN University), Mklukho-Maklaya str. 6, 117198 Moscow, Russia
| | - Martin Herzberg
- Martin-Luther-University Halle-Wittenberg, Institute for Biology/Microbiology, Kurt-Mothes-Str. 3, 06120 Halle/Saale, Germany
| |
Collapse
|
32
|
Loss of mobile genomic islands in metal resistant, hydrogen-oxidizing Cupriavidus metallidurans. Appl Environ Microbiol 2021; 88:e0204821. [PMID: 34910578 DOI: 10.1128/aem.02048-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genome of the metal resistant, hydrogen-oxidizing bacterium Cupriavidus metallidurans strain CH34 contains horizontally acquired plasmids and genomic islands. Metal-resistance determinants on the two plasmids may exert genetic dominance over other related determinants. To investigate whether these recessive determinants can be activated in the absence of the dominant ones, the transcriptome of the highly zinc-sensitive deletion mutant Δe4 (ΔcadA ΔzntA ΔdmeF ΔfieF) of the plasmid-free parent AE104 was characterized using gene arrays. As a consequence of some unexpected results, close examination by PCR and genomic re-resequencing of strains CH34, AE104, Δe4 and others revealed that the genomic islands CMGIs 2, 3, 4, D, E, but no other islands or recessive determinants, were deleted in some of these strains. Provided CH34 wild type was kept under alternating zinc and nickel selection pressure, no comparable deletions occurred. All current data suggest that genes were actually deleted and were not, as previously surmised, simply absent from the respective strain. As a consequence, a cured database was compiled from the newly generated and previously published gene array data. Analysis of data from this database indicated that some genes of recessive, no longer needed determinants were nevertheless expressed and up-regulated. Their products may interact with those of the dominant determinants to mediate a mosaic phenotype. The ability to contribute to such a mosaic phenotype may prevent deletion of the recessive determinant. The data suggest that the bacterium actively modifies its genome to deal with metal stress and the same time ensures metal homeostasis. Significance In their natural environment, bacteria continually acquire genes by horizontal gene transfer and newly acquired determinants may become dominant over related ones already present in the host genome. When a bacterium is taken into laboratory culture, it is isolated from the horizontal gene transfer network. It can no longer gain genes, but instead may lose them. This was indeed observed in Cupriavidus metallidurans for loss key metal-resistance determinants when no selection pressure was continuously kept. However, some recessive metal-resistance determinants were maintained in the genome. It is proposed that they might contribute some accessory genes to related dominant resistance determinants, for instance periplasmic metal-binding proteins or two-component regulatory systems. Alternatively, they may only remain in the genome because their DNA serves as a scaffold for the nucleoid. Using C. metallidurans as an example, this study sheds light on the fate and function of horizontally acquired genes in bacteria.
Collapse
|
33
|
Smethurst DGJ, Shcherbik N. Interchangeable utilization of metals: New perspectives on the impacts of metal ions employed in ancient and extant biomolecules. J Biol Chem 2021; 297:101374. [PMID: 34732319 PMCID: PMC8633580 DOI: 10.1016/j.jbc.2021.101374] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 02/08/2023] Open
Abstract
Metal ions provide considerable functionality across biological systems, and their utilization within biomolecules has adapted through changes in the chemical environment to maintain the activity they facilitate. While ancient earth's atmosphere was rich in iron and manganese and low in oxygen, periods of atmospheric oxygenation significantly altered the availability of certain metal ions, resulting in ion replacement within biomolecules. This adaptation mechanism has given rise to the phenomenon of metal cofactor interchangeability, whereby contemporary proteins and nucleic acids interact with multiple metal ions interchangeably, with different coordinated metals influencing biological activity, stability, and toxic potential. The ability of extant organisms to adapt to fluctuating metal availability remains relevant in a number of crucial biomolecules, including the superoxide dismutases of the antioxidant defense systems and ribonucleotide reductases. These well-studied and ancient enzymes illustrate the potential for metal interchangeability and adaptive utilization. More recently, the ribosome has also been demonstrated to exhibit interchangeable interactions with metal ions with impacts on function, stability, and stress adaptation. Using these and other examples, here we review the biological significance of interchangeable metal ions from a new angle that combines both biochemical and evolutionary viewpoints. The geochemical pressures and chemical properties that underlie biological metal utilization are discussed in the context of their impact on modern disease states and treatments.
Collapse
Affiliation(s)
- Daniel G J Smethurst
- Department for Cell Biology and Neuroscience, School of Osteopathic Medicine, Rowan University, Stratford, New Jersey, USA.
| | - Natalia Shcherbik
- Department for Cell Biology and Neuroscience, School of Osteopathic Medicine, Rowan University, Stratford, New Jersey, USA.
| |
Collapse
|
34
|
Reed CJ, Hutinet G, de Crécy-Lagard V. Comparative Genomic Analysis of the DUF34 Protein Family Suggests Role as a Metal Ion Chaperone or Insertase. Biomolecules 2021; 11:1282. [PMID: 34572495 PMCID: PMC8469502 DOI: 10.3390/biom11091282] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/20/2021] [Accepted: 08/24/2021] [Indexed: 12/12/2022] Open
Abstract
Members of the DUF34 (domain of unknown function 34) family, also known as the NIF3 protein superfamily, are ubiquitous across superkingdoms. Proteins of this family have been widely annotated as "GTP cyclohydrolase I type 2" through electronic propagation based on one study. Here, the annotation status of this protein family was examined through a comprehensive literature review and integrative bioinformatic analyses that revealed varied pleiotropic associations and phenotypes. This analysis combined with functional complementation studies strongly challenges the current annotation and suggests that DUF34 family members may serve as metal ion insertases, chaperones, or metallocofactor maturases. This general molecular function could explain how DUF34 subgroups participate in highly diversified pathways such as cell differentiation, metal ion homeostasis, pathogen virulence, redox, and universal stress responses.
Collapse
Affiliation(s)
- Colbie J. Reed
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA; (C.J.R.); (G.H.)
| | - Geoffrey Hutinet
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA; (C.J.R.); (G.H.)
| | - Valérie de Crécy-Lagard
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA; (C.J.R.); (G.H.)
- Genetics Institute, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
35
|
Edmonds KA, Jordan MR, Giedroc DP. COG0523 proteins: a functionally diverse family of transition metal-regulated G3E P-loop GTP hydrolases from bacteria to man. Metallomics 2021; 13:6327566. [PMID: 34302342 PMCID: PMC8360895 DOI: 10.1093/mtomcs/mfab046] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/15/2021] [Indexed: 01/13/2023]
Abstract
Transition metal homeostasis ensures that cells and organisms obtain sufficient metal to meet cellular demand while dispensing with any excess so as to avoid toxicity. In bacteria, zinc restriction induces the expression of one or more Zur (zinc-uptake repressor)-regulated Cluster of Orthologous Groups (COG) COG0523 proteins. COG0523 proteins encompass a poorly understood sub-family of G3E P-loop small GTPases, others of which are known to function as metallochaperones in the maturation of cobalamin (CoII) and NiII cofactor-containing metalloenzymes. Here, we use genomic enzymology tools to functionally analyse over 80 000 sequences that are evolutionarily related to Acinetobacter baumannii ZigA (Zur-inducible GTPase), a COG0523 protein and candidate zinc metallochaperone. These sequences segregate into distinct sequence similarity network (SSN) clusters, exemplified by the ZnII-Zur-regulated and FeIII-nitrile hydratase activator CxCC (C, Cys; X, any amino acid)-containing COG0523 proteins (SSN cluster 1), NiII-UreG (clusters 2, 8), CoII-CobW (cluster 4), and NiII-HypB (cluster 5). A total of five large clusters that comprise ≈ 25% of all sequences, including cluster 3 which harbors the only structurally characterized COG0523 protein, Escherichia coli YjiA, and many uncharacterized eukaryotic COG0523 proteins. We also establish that mycobacterial-specific protein Y (Mpy) recruitment factor (Mrf), which promotes ribosome hibernation in actinomycetes under conditions of ZnII starvation, segregates into a fifth SSN cluster (cluster 17). Mrf is a COG0523 paralog that lacks all GTP-binding determinants as well as the ZnII-coordinating Cys found in CxCC-containing COG0523 proteins. On the basis of this analysis, we discuss new perspectives on the COG0523 proteins as cellular reporters of widespread nutrient stress induced by ZnII limitation.
Collapse
Affiliation(s)
- Katherine A Edmonds
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, USA
| | - Matthew R Jordan
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, USA.,Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
| | - David P Giedroc
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, USA.,Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
36
|
The zinc transporter ZnuABC is critical for the virulence of Chromobacterium violaceum and contributes to diverse zinc-dependent physiological processes. Infect Immun 2021; 89:e0031121. [PMID: 34370507 DOI: 10.1128/iai.00311-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chromobacterium violaceum is a ubiquitous environmental bacterium that causes sporadic life-threatening infections in humans. How C. violaceum acquires zinc to colonize environmental and host niches is unknown. In this work, we demonstrated that C. violaceum employs the zinc uptake system ZnuABC to overcome zinc limitation in the host, ensuring the zinc supply for several physiological demands. Our data indicated that the C. violaceum ZnuABC transporter is encoded in a zur-CV_RS15045-CV_RS15040-znuCBA operon. This operon was repressed by the zinc uptake regulator Zur and derepressed in the presence of the host protein calprotectin (CP) and the synthetic metal chelator EDTA. A ΔznuCBA mutant strain showed impaired growth under these zinc-chelated conditions. Moreover, the deletion of znuCBA provoked a reduction in violacein production, swimming motility, biofilm formation, and bacterial competition. Remarkably, the ΔznuCBA mutant strain was highly attenuated for virulence in an in vivo mouse infection model and showed a low capacity to colonize the liver, grow in the presence of CP, and resist neutrophil killing. Overall, our findings demonstrate that ZnuABC is essential for C. violaceum virulence, contributing to subvert the zinc-based host nutritional immunity.
Collapse
|
37
|
Shire DM, Kustka AB. Proteomic responses of the coccolithophore Emiliania huxleyi to zinc limitation and trace metal substitution. Environ Microbiol 2021; 24:819-834. [PMID: 34139058 DOI: 10.1111/1462-2920.15644] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/26/2021] [Accepted: 06/15/2021] [Indexed: 11/30/2022]
Abstract
Zinc concentrations in pelagic surface waters are within the range that limits growth in marine phytoplankton cultures. However, the influence of zinc on marine primary production and phytoplankton communities is not straightforward due to largely uncharacterized abilities for some phytoplankton to access zinc species that may not be universally bioavailable and substitute zinc with cobalt or cadmium. We used a quantitative proteomic approach to investigate these strategies and other responses to zinc limitation in the coccolithophore Emiliania huxleyi, a dominant species in low zinc waters. Zinc limitation resulted in the upregulation of metal transport proteins (ZIP, TroA-like) and COG0523 metallochaperones. Some proteins were uniquely sensitive to growth under replete zinc, substitution of zinc with cobalt, or enhancement of growth with cadmium, and may be useful as biomarkers of zinc stress or substitution in situ. Several proteins specifically upregulated under cobalt-supported or cadmium-enhanced growth appear to reflect stress responses, despite titration of these metals to optimal nutritive levels. Relief from zinc limitation by zinc or cadmium resulted in increased expression of a δ-carbonic anhydrase. Our inability to detect metal binding enzymes that are specifically induced under cobalt- or cadmium-supported growth suggests cambialism is important for zinc substitution in E. huxleyi.
Collapse
Affiliation(s)
- David M Shire
- Department of Earth and Environmental Science, Rutgers University-Newark, Newark, NJ, USA
| | - Adam B Kustka
- Department of Earth and Environmental Science, Rutgers University-Newark, Newark, NJ, USA
| |
Collapse
|
38
|
Calculating metalation in cells reveals CobW acquires Co II for vitamin B 12 biosynthesis while related proteins prefer Zn II. Nat Commun 2021; 12:1195. [PMID: 33608553 PMCID: PMC7895991 DOI: 10.1038/s41467-021-21479-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 01/25/2021] [Indexed: 02/01/2023] Open
Abstract
Protein metal-occupancy (metalation) in vivo has been elusive. To address this challenge, the available free energies of metals have recently been determined from the responses of metal sensors. Here, we use these free energy values to develop a metalation-calculator which accounts for inter-metal competition and changing metal-availabilities inside cells. We use the calculator to understand the function and mechanism of GTPase CobW, a predicted CoII-chaperone for vitamin B12. Upon binding nucleotide (GTP) and MgII, CobW assembles a high-affinity site that can obtain CoII or ZnII from the intracellular milieu. In idealised cells with sensors at the mid-points of their responses, competition within the cytosol enables CoII to outcompete ZnII for binding CobW. Thus, CoII is the cognate metal. However, after growth in different [CoII], CoII-occupancy ranges from 10 to 97% which matches CobW-dependent B12 synthesis. The calculator also reveals that related GTPases with comparable ZnII affinities to CobW, preferentially acquire ZnII due to their relatively weaker CoII affinities. The calculator is made available here for use with other proteins.
Collapse
|
39
|
Osman D, Cooke A, Young TR, Deery E, Robinson NJ, Warren MJ. The requirement for cobalt in vitamin B 12: A paradigm for protein metalation. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2021; 1868:118896. [PMID: 33096143 PMCID: PMC7689651 DOI: 10.1016/j.bbamcr.2020.118896] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 12/20/2022]
Abstract
Vitamin B12, cobalamin, is a cobalt-containing ring-contracted modified tetrapyrrole that represents one of the most complex small molecules made by nature. In prokaryotes it is utilised as a cofactor, coenzyme, light sensor and gene regulator yet has a restricted role in assisting only two enzymes within specific eukaryotes including mammals. This deployment disparity is reflected in another unique attribute of vitamin B12 in that its biosynthesis is limited to only certain prokaryotes, with synthesisers pivotal in establishing mutualistic microbial communities. The core component of cobalamin is the corrin macrocycle that acts as the main ligand for the cobalt. Within this review we investigate why cobalt is paired specifically with the corrin ring, how cobalt is inserted during the biosynthetic process, how cobalt is made available within the cell and explore the cellular control of cobalt and cobalamin levels. The partitioning of cobalt for cobalamin biosynthesis exemplifies how cells assist metalation.
Collapse
Affiliation(s)
- Deenah Osman
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; Department of Chemistry, Durham University, Durham DH1 3LE, UK.
| | - Anastasia Cooke
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK.
| | - Tessa R Young
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; Department of Chemistry, Durham University, Durham DH1 3LE, UK.
| | - Evelyne Deery
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK.
| | - Nigel J Robinson
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; Department of Chemistry, Durham University, Durham DH1 3LE, UK.
| | - Martin J Warren
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK; Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK; Biomedical Research Centre, University of East Anglia, Norwich NR4 7TJ, UK.
| |
Collapse
|
40
|
Identification of Zinc-Dependent Mechanisms Used by Group B Streptococcus To Overcome Calprotectin-Mediated Stress. mBio 2020; 11:mBio.02302-20. [PMID: 33173000 PMCID: PMC7667036 DOI: 10.1128/mbio.02302-20] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Group B Streptococcus (GBS) asymptomatically colonizes the female reproductive tract but is a common causative agent of meningitis. GBS meningitis is characterized by extensive infiltration of neutrophils carrying high concentrations of calprotectin, a metal chelator. To persist within inflammatory sites and cause invasive disease, GBS must circumvent host starvation attempts. Here, we identified global requirements for GBS survival during calprotectin challenge, including known and putative systems involved in metal ion transport. We characterized the role of zinc import in tolerating calprotectin stress in vitro and in a mouse model of infection. We observed that a global zinc uptake mutant was less virulent than the parental GBS strain and found calprotectin knockout mice to be equally susceptible to infection by wild-type (WT) and mutant strains. These findings suggest that calprotectin production at the site of infection results in a zinc-limited environment and reveals the importance of GBS metal homeostasis to invasive disease. Nutritional immunity is an elegant host mechanism used to starve invading pathogens of necessary nutrient metals. Calprotectin, a metal-binding protein, is produced abundantly by neutrophils and is found in high concentrations within inflammatory sites during infection. Group B Streptococcus (GBS) colonizes the gastrointestinal and female reproductive tracts and is commonly associated with severe invasive infections in newborns such as pneumonia, sepsis, and meningitis. Although GBS infections induce robust neutrophil recruitment and inflammation, the dynamics of GBS and calprotectin interactions remain unknown. Here, we demonstrate that disease and colonizing isolate strains exhibit susceptibility to metal starvation by calprotectin. We constructed a mariner transposon (Krmit) mutant library in GBS and identified 258 genes that contribute to surviving calprotectin stress. Nearly 20% of all underrepresented mutants following treatment with calprotectin are predicted metal transporters, including known zinc systems. As calprotectin binds zinc with picomolar affinity, we investigated the contribution of GBS zinc uptake to overcoming calprotectin-imposed starvation. Quantitative reverse transcriptase PCR (qRT-PCR) revealed a significant upregulation of genes encoding zinc-binding proteins, adcA, adcAII, and lmb, following calprotectin exposure, while growth in calprotectin revealed a significant defect for a global zinc acquisition mutant (ΔadcAΔadcAIIΔlmb) compared to growth of the GBS wild-type (WT) strain. Furthermore, mice challenged with the ΔadcAΔadcAIIΔlmb mutant exhibited decreased mortality and significantly reduced bacterial burden in the brain compared to mice infected with WT GBS; this difference was abrogated in calprotectin knockout mice. Collectively, these data suggest that GBS zinc transport machinery is important for combatting zinc chelation by calprotectin and establishing invasive disease.
Collapse
|
41
|
Meni A, Yukl ET. Structural Features Mediating Zinc Binding and Transfer in the AztABCD Zinc Transporter System. Biomolecules 2020; 10:biom10081156. [PMID: 32781785 PMCID: PMC7463823 DOI: 10.3390/biom10081156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 12/27/2022] Open
Abstract
Many bacteria require ATP binding cassette (ABC) transporters for the import of the essential metal zinc from limited environments. These systems rely on a periplasmic or cell-surface solute binding protein (SBP) to bind zinc with high affinity and specificity. AztABCD is one such zinc transport system recently identified in a large group of diverse bacterial species. In addition to a classical SBP (AztC), the operon also includes a periplasmic metallochaperone (AztD) shown to transfer zinc directly to AztC. Crystal structures of both proteins from Paracoccus denitrificans have been solved and suggest several structural features on each that may be important for zinc binding and transfer. Here we determine zinc binding affinity, dissociation kinetics, and transfer kinetics for several deletion mutants as well as a crystal structure for one of them. The results indicate specific roles for loop structures on AztC and an N-terminal motif on AztD in zinc binding and transfer. These data are consistent with a structural transfer model proposed previously and provide further mechanistic insight into the processes of zinc binding and transfer.
Collapse
|
42
|
Zhang Y, Sen S, Giedroc DP. Iron Acquisition by Bacterial Pathogens: Beyond Tris-Catecholate Complexes. Chembiochem 2020; 21:1955-1967. [PMID: 32180318 PMCID: PMC7367709 DOI: 10.1002/cbic.201900778] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/06/2020] [Indexed: 12/11/2022]
Abstract
Sequestration of the essential nutrient iron from bacterial invaders that colonize the vertebrate host is a central feature of nutritional immunity and the "fight over transition metals" at the host-pathogen interface. The iron quota for many bacterial pathogens is large, as iron enzymes often make up a significant share of the metalloproteome. Iron enzymes play critical roles in respiration, energy metabolism, and other cellular processes by catalyzing a wide range of oxidation-reduction, electron transfer, and oxygen activation reactions. In this Concept article, we discuss recent insights into the diverse ways that bacterial pathogens acquire this essential nutrient, beyond the well-characterized tris-catecholate FeIII complexes, in competition and cooperation with significant host efforts to cripple these processes. We also discuss pathogen strategies to adapt their metabolism to less-than-optimal iron concentrations, and briefly speculate on what might be an integrated adaptive response to the concurrent limitation of both iron and zinc in the infected host.
Collapse
Affiliation(s)
- Yifan Zhang
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, USA
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405-7102, USA
| | - Sambuddha Sen
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, USA
| | - David P Giedroc
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, USA
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405-7102, USA
| |
Collapse
|
43
|
Danchin A, Sekowska A, You C. One-carbon metabolism, folate, zinc and translation. Microb Biotechnol 2020; 13:899-925. [PMID: 32153134 PMCID: PMC7264889 DOI: 10.1111/1751-7915.13550] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 02/17/2020] [Indexed: 12/16/2022] Open
Abstract
The translation process, central to life, is tightly connected to the one-carbon (1-C) metabolism via a plethora of macromolecule modifications and specific effectors. Using manual genome annotations and putting together a variety of experimental studies, we explore here the possible reasons of this critical interaction, likely to have originated during the earliest steps of the birth of the first cells. Methionine, S-adenosylmethionine and tetrahydrofolate dominate this interaction. Yet, 1-C metabolism is unlikely to be a simple frozen accident of primaeval conditions. Reactive 1-C species (ROCS) are buffered by the translation machinery in a way tightly associated with the metabolism of iron-sulfur clusters, zinc and potassium availability, possibly coupling carbon metabolism to nitrogen metabolism. In this process, the highly modified position 34 of tRNA molecules plays a critical role. Overall, this metabolic integration may serve both as a protection against the deleterious formation of excess carbon under various growth transitions or environmental unbalanced conditions and as a regulator of zinc homeostasis, while regulating input of prosthetic groups into nascent proteins. This knowledge should be taken into account in metabolic engineering.
Collapse
Affiliation(s)
- Antoine Danchin
- AMAbiotics SASInstitut Cochin24 rue du Faubourg Saint‐Jacques75014ParisFrance
- School of Biomedical SciencesLi Ka Shing Faculty of MedicineThe University of Hong KongS.A.R. Hong KongChina
| | - Agnieszka Sekowska
- AMAbiotics SASInstitut Cochin24 rue du Faubourg Saint‐Jacques75014ParisFrance
| | - Conghui You
- Shenzhen Key Laboratory of Microbial Genetic EngineeringCollege of Life Sciences and OceanologyShenzhen University1066 Xueyuan Rd518055ShenzhenChina
| |
Collapse
|
44
|
Abstract
The second messenger molecule cyclic di-AMP (c-di-AMP) is formed by many bacteria and archaea. In many species that produce c-di-AMP, this second messenger is essential for viability on rich medium. Recent research has demonstrated that c-di-AMP binds to a large number of proteins and riboswitches, which are often involved in potassium and osmotic homeostasis. c-di-AMP becomes dispensable if the bacteria are cultivated on minimal media with low concentrations of osmotically active compounds. Thus, the essentiality of c-di-AMP does not result from an interaction with a single essential target but rather from the multilevel control of complex homeostatic processes. This review summarizes current knowledge on the homeostasis of c-di-AMP and its function(s) in the control of cellular processes.
Collapse
Affiliation(s)
- Jörg Stülke
- Department of General Microbiology, Göttingen Center for Molecular Biosciences (GZMB), Georg-August-University Göttingen, 37077 Göttingen, Germany;
| | - Larissa Krüger
- Department of General Microbiology, Göttingen Center for Molecular Biosciences (GZMB), Georg-August-University Göttingen, 37077 Göttingen, Germany;
| |
Collapse
|
45
|
Jordan MR, Wang J, Capdevila DA, Giedroc DP. Multi-metal nutrient restriction and crosstalk in metallostasis systems in microbial pathogens. Curr Opin Microbiol 2020; 55:17-25. [PMID: 32062305 DOI: 10.1016/j.mib.2020.01.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/03/2020] [Accepted: 01/09/2020] [Indexed: 12/26/2022]
Abstract
Transition metals from manganese to zinc function as catalytic and structural cofactors for an amazing diversity of proteins and enzymes, and thus are essential for all forms of life. During infection, inflammatory host proteins limit the accessibility of multiple transition metals to invading pathogens in a process termed nutritional immunity. In order to respond to host-mediated metal starvation, bacteria employ both protein and RNA-based mechanisms to sense prevailing transition metal concentrations that collectively regulate systems-level strategies to maintain cellular metallostasis. In this review, we discuss a number of recent advances in our understanding of how bacteria orchestrate the adaptive response to host-mediated multi-metal restriction, highlighting crosstalk among these regulatory systems.
Collapse
Affiliation(s)
- Matthew R Jordan
- Departments of Chemistry and of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, United States
| | - Jiefei Wang
- Departments of Chemistry and of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, United States
| | - Daiana A Capdevila
- Fundación Instituto Leloir, Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina
| | - David P Giedroc
- Departments of Chemistry and of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, United States.
| |
Collapse
|
46
|
Bacillus subtilis Regulators MntR and Zur Participate in Redox Cycling, Antibiotic Sensitivity, and Cell Wall Plasticity. J Bacteriol 2020; 202:JB.00547-19. [PMID: 31818924 DOI: 10.1128/jb.00547-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/26/2019] [Indexed: 01/03/2023] Open
Abstract
The Bacillus subtilis MntR and Zur transcriptional regulators control homeostasis of manganese and zinc, two essential elements required in various cellular processes. In this work, we describe the global impact of mntR and zur deletions at the protein level. Using a comprehensive proteomic approach, we showed that 33 and 55 proteins are differentially abundant in ΔmntR and Δzur cells, respectively, including proteins involved in metal acquisition, translation, central metabolism, and cell wall homeostasis. In addition, both mutants showed modifications in intracellular metal ion pools, with significant Mg2+ accumulation in the ΔmntR mutant. Phenotypic and morphological analyses of ΔmntR and Δzur mutants revealed their high sensitivity to lysozyme, beta-lactam antibiotics, and external oxidative stress. Mutant strains had a modified cell wall thickness and accumulated lower levels of intracellular reactive oxygen species (ROS) than the wild-type strain. Remarkably, our results highlight an intimate connection between MntR, Zur, antibiotic sensitivity, and cell wall structure.IMPORTANCE Manganese and zinc are essential transition metals involved in many fundamental cellular processes, including protection against external oxidative stress. In Bacillus subtilis, Zur and MntR are key transcriptional regulators of zinc and manganese homeostasis, respectively. In this work, proteome analysis of B. subtilis wild-type, ΔmntR, and Δzur strains provided new insights into bacterial adaptation to deregulation of essential metal ions. Deletions of mntR and zur genes increased bacterial sensitivity to lysozyme, beta-lactam antibiotics, and external oxidative stress and impacted the cell wall thickness. Overall, these findings highlight that Zur and MntR regulatory networks are connected to antibiotic sensitivity and cell wall plasticity.
Collapse
|
47
|
Mazhar SH, Herzberg M, Ben Fekih I, Zhang C, Bello SK, Li YP, Su J, Xu J, Feng R, Zhou S, Rensing C. Comparative Insights Into the Complete Genome Sequence of Highly Metal Resistant Cupriavidus metallidurans Strain BS1 Isolated From a Gold-Copper Mine. Front Microbiol 2020; 11:47. [PMID: 32117100 PMCID: PMC7019866 DOI: 10.3389/fmicb.2020.00047] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 01/10/2020] [Indexed: 12/12/2022] Open
Abstract
The highly heavy metal resistant strain Cupriavidus metallidurans BS1 was isolated from the Zijin gold–copper mine in China. This was of particular interest since the extensively studied, closely related strain, C. metallidurans CH34 was shown to not be only highly heavy metal resistant but also able to reduce metal complexes and biomineralizing them into metallic nanoparticles including gold nanoparticles. After isolation, C. metallidurans BS1 was characterized and complete genome sequenced using PacBio and compared to CH34. Many heavy metal resistance determinants were identified and shown to have wide-ranging similarities to those of CH34. However, both BS1 and CH34 displayed extensive genome plasticity, probably responsible for significant differences between those strains. BS1 was shown to contain three prophages, not present in CH34, that appear intact and might be responsible for shifting major heavy metal resistance determinants from plasmid to chromid (CHR2) in C. metallidurans BS1. Surprisingly, the single plasmid – pBS1 (364.4 kbp) of BS1 contains only a single heavy metal resistance determinant, the czc determinant representing RND-type efflux system conferring resistance to cobalt, zinc and cadmium, shown here to be highly similar to that determinant located on pMOL30 in C. metallidurans CH34. However, in BS1 another homologous czc determinant was identified on the chromid, most similar to the czc determinant from pMOL30 in CH34. Other heavy metal resistance determinants such as cnr and chr determinants, located on megaplasmid pMOL28 in CH34, were shown to be adjacent to the czc determinant on chromid (CHR2) in BS1. Additionally, other heavy metal resistance determinants such as pbr, cop, sil, and ars were located on the chromid (CHR2) and not on pBS1 in BS1. A diverse range of genomic rearrangements occurred in this strain, isolated from a habitat of constant exposure to high concentrations of copper, gold and other heavy metals. In contrast, the megaplasmid in BS1 contains mostly genes encoding unknown functions, thus might be more of an evolutionary playground where useful genes could be acquired by horizontal gene transfer and possibly reshuffled to help C. metallidurans BS1 withstand the intense pressure of extreme concentrations of heavy metals in its environment.
Collapse
Affiliation(s)
- Sohaib H Mazhar
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China.,Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Martin Herzberg
- Molecular Microbiology, Institute for Biology/Microbiology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Ibtissem Ben Fekih
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chenkang Zhang
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China.,College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Suleiman Kehinde Bello
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuan Ping Li
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Junming Su
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Junqiang Xu
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Renwei Feng
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Christopher Rensing
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China.,Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
48
|
Metallochaperones Are Needed for Mycobacterium tuberculosis and Escherichia coli Nicotinamidase-Pyrazinamidase Activity. J Bacteriol 2020; 202:JB.00331-19. [PMID: 31636108 PMCID: PMC6941528 DOI: 10.1128/jb.00331-19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 10/04/2019] [Indexed: 11/20/2022] Open
Abstract
Tuberculosis is an infectious disease caused by the bacterium Mycobacterium tuberculosis and remains one of the major causes of disease and death worldwide. Pyrazinamide is a key drug used in the treatment of tuberculosis, yet its mechanism of action is not fully understood, and testing strains of M. tuberculosis for pyrazinamide resistance is not easy with the tools that are presently available. The significance of the present research is that a metallochaperone-like protein may be crucial to pyrazinamide’s mechanisms of action and of resistance. This may support the development of improved tools to detect pyrazinamide resistance, which would have significant implications for the clinical management of patients with tuberculosis: drug regimens that are appropriately tailored to the resistance profile of a patient’s individual strain lead to better clinical outcomes, reduced onward transmission of infection, and reduction of the development of resistant strains that are more challenging and expensive to treat. Mycobacterium tuberculosis nicotinamidase-pyrazinamidase (PZAse) is a metalloenzyme that catalyzes conversion of nicotinamide-pyrazinamide to nicotinic acid-pyrazinoic acid. This study investigated whether a metallochaperone is required for optimal PZAse activity. M. tuberculosis and Escherichia coli PZAses (PZAse-MT and PZAse-EC, respectively) were inactivated by metal depletion (giving PZAse-MT–Apo and PZAse-EC–Apo). Reactivation with the E. coli metallochaperone ZnuA or Rv2059 (the M. tuberculosis analog) was measured. This was repeated following proteolytic and thermal treatment of ZnuA and Rv2059. The CDC1551 M. tuberculosis reference strain had the Rv2059 coding gene knocked out, and PZA susceptibility and the pyrazinoic acid (POA) efflux rate were measured. ZnuA (200 μM) achieved 65% PZAse-EC–Apo reactivation. Rv2059 (1 μM) and ZnuA (1 μM) achieved 69% and 34.3% PZAse-MT–Apo reactivation, respectively. Proteolytic treatment of ZnuA and Rv2059 and application of three (but not one) thermal shocks to ZnuA significantly reduced the capacity to reactivate PZAse-MT–Apo. An M. tuberculosis Rv2059 knockout strain was Wayne positive and susceptible to PZA and did not have a significantly different POA efflux rate than the reference strain, although a trend toward a lower efflux rate was observed after knockout. The metallochaperone Rv2059 restored the activity of metal-depleted PZAse in vitro. Although Rv2059 is important in vitro, it seems to have a smaller effect on PZA susceptibility in vivo. It may be important to mechanisms of action and resistance to pyrazinamide in M. tuberculosis. Further studies are needed for confirmation. IMPORTANCE Tuberculosis is an infectious disease caused by the bacterium Mycobacterium tuberculosis and remains one of the major causes of disease and death worldwide. Pyrazinamide is a key drug used in the treatment of tuberculosis, yet its mechanism of action is not fully understood, and testing strains of M. tuberculosis for pyrazinamide resistance is not easy with the tools that are presently available. The significance of the present research is that a metallochaperone-like protein may be crucial to pyrazinamide’s mechanisms of action and of resistance. This may support the development of improved tools to detect pyrazinamide resistance, which would have significant implications for the clinical management of patients with tuberculosis: drug regimens that are appropriately tailored to the resistance profile of a patient’s individual strain lead to better clinical outcomes, reduced onward transmission of infection, and reduction of the development of resistant strains that are more challenging and expensive to treat.
Collapse
|
49
|
Lonergan ZR, Skaar EP. Nutrient Zinc at the Host-Pathogen Interface. Trends Biochem Sci 2019; 44:1041-1056. [PMID: 31326221 PMCID: PMC6864270 DOI: 10.1016/j.tibs.2019.06.010] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/13/2019] [Accepted: 06/25/2019] [Indexed: 12/12/2022]
Abstract
Zinc is an essential cofactor required for life and, as such, mechanisms exist for its homeostatic maintenance in biological systems. Despite the evolutionary distance between vertebrates and microbial life, there are parallel mechanisms to balance the essentiality of zinc with its inherent toxicity. Vertebrates regulate zinc homeostasis through a complex network of metal transporters and buffering systems that respond to changes in nutritional zinc availability or inflammation. Fine-tuning of this network becomes crucial during infections, where host nutritional immunity attempts to limit zinc availability to pathogens. However, accumulating evidence demonstrates that pathogens have evolved mechanisms to subvert host-mediated zinc withholding, and these metal homeostasis systems are important for survival within the host. We discuss here the mechanisms of vertebrate and bacterial zinc homeostasis and mobilization, as well as recent developments in our understanding of microbial zinc acquisition.
Collapse
Affiliation(s)
- Zachery R Lonergan
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA; Microbe-Host Interactions Training Program, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Eric P Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
50
|
Nies DH. The ancient alarmone ZTP and zinc homeostasis in Bacillus subtilis. Mol Microbiol 2019; 112:741-746. [PMID: 31220391 DOI: 10.1111/mmi.14332] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2019] [Indexed: 12/26/2022]
Abstract
In Bacillus subtilis a sophisticated regulatory circuit that involves Z nucleoside triphosphate (ZTP) is recruited to optimize cellular zinc distribution when cytoplasmic zinc is scarce. This process uses enzymatic reactions to measure the pool of available zinc ions and amplifies this signal to control the activity of zinc chaperones. The ZTP-dependent regulatory circuit that is exploited for zinc homeostasis controls purine and folate biosynthesis, which starts with GTP as initial substrate. Low concentrations of formyl-tetrahydrofolate (fTHF) lead to accumulation of the intermediate 5'-phosphoribosyl-4-carboxyamide-5-aminoimidazole (AICAR or ZMP), which is pyrophosphorylated by another intermediate to ZTP. This alarmone activates expression of genes using a ZTP-dependent riboswitch in many bacterial strains. In this way, the cellular folate concentration controls folate biosynthesis via the enzymatic activity of the fTHF-dependent AICAR-transforming reaction. Zinc distribution control is layered onto this circuit. The 'sensor' is the activity of the initial reaction of folate synthesis from GTP, which is catalyzed by a zinc-dependent enzyme FolEIA or its metal-cambialistic paralog FolEIB . Consequently, low zinc lowers folate levels, causing AICAR accumulation and ZTP formation. In addition to the riboswitch, ZTP activates the zinc chaperone ZagA of the COG0523 protein family, which efficiently allocate zinc to zinc-dependent enzymes such as FolEIA .
Collapse
Affiliation(s)
- Dietrich H Nies
- Molecular Microbiology, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06099 Halle/Saale, Germany
| |
Collapse
|