1
|
Moon K, Song SH, Oh DJ, Park JG, Lee AH, Kwon M. Genome sequence data of Caudoviricetes bacteriophage MK21 infecting Xanthomonas citri, the causative agent of citrus canker. Data Brief 2024; 57:110897. [PMID: 39314900 PMCID: PMC11418155 DOI: 10.1016/j.dib.2024.110897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/25/2024] Open
Abstract
This dataset reports the isolation and genomic characterization of the Caudoviricetes bacteriophage MK21, a novel bacteriophage infecting Xanthomonas citri subsp. citri (XCC), collected from soil samples on Jeju Island, South Korea. The phage was isolated and enriched using double agar layer plaque assays on nutrient media. Genomic analysis revealed that the phage MK21 is a double-stranded circular DNA genome of 43,495 bp, comprising 61 genes with high coding density. The dataset includes detailed genomic information, highlighting genes related to structural components, lysis mechanisms, and DNA/RNA metabolism. Phylogenetic analysis shows a close relationship with Xanthomonas phage CP1, supporting its potential use in comparative genomic studies and the development of antibacterial agents against citrus canker. This dataset offers valuable insights for the advancement of phage therapy and sustainable agricultural practices.
Collapse
Affiliation(s)
- Kira Moon
- Division of Environmental Materials, Honam National Institute of Biological Resources (HNIBR), Mokpo 58762, Republic of Korea
| | - Seung Hui Song
- Division of Environmental Materials, Honam National Institute of Biological Resources (HNIBR), Mokpo 58762, Republic of Korea
| | - Dae-Ju Oh
- Biodiversity Research Institute, Jeju Technopark (JTP), Jeju 63608, Republic of Korea
| | - Ji-Gweon Park
- Biodiversity Research Institute, Jeju Technopark (JTP), Jeju 63608, Republic of Korea
| | - Aslan Hwanwhi Lee
- Division of Environmental Materials, Honam National Institute of Biological Resources (HNIBR), Mokpo 58762, Republic of Korea
| | - Miye Kwon
- Biodiversity Research Institute, Jeju Technopark (JTP), Jeju 63608, Republic of Korea
| |
Collapse
|
2
|
Zerbo KBF, Yameogo F, Wonni I, Somda I. Analysis of the Genetic Variation and Geographic Distribution Patterns of Xanthomonas citri pv. citri Strains in Citrus Production in Burkina Faso. PHYTOPATHOLOGY 2024; 114:2024-2032. [PMID: 38829919 DOI: 10.1094/phyto-04-24-0121-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
It is essential to have a thorough knowledge of the genetic variation among different strains of Xanthomonas citri pv. citri, which is responsible for causing citrus bacterial canker. This understanding is important for studying disease characteristics, population structure, and evolution and ultimately for developing sustainable methods of control. A total of 48 strains obtained from citrus production areas in Burkina Faso in 2012, 2020, and 2021 were subjected to Polymerase Chain reaction (PCR) tests using specific primers. The aim was to examine the distribution of type 3 effectors and determine the geographical origins of the strains. The examination of the distribution of type 3 non-transcription-activator-like effectors (TALEs) revealed a broader range of strains obtained in 2020 and 2021 than in 2012. However, all the strains possessed a shared set of three genes, specifically, XopE2, XopN, and AvrBs2. Furthermore, all examined effectors were observed in the Bobo-Dioulasso region. Regarding the characterization of TALEs, two profiles containing two to three TALEs were discovered. Profile 1, consisting of two TALEs, was found in 37 X. citri pv. citri strains, whereas Profile 2, comprising three TALEs, was detected in 11 strains. Among the three TALEs (A, B, and C) that were identified, TALEs B and C were present in all the strains. The correlation matrix indicated a positive association between the type 3 effector content of strains and the duration of their isolation. Principal component analysis revealed a limited organization of the strains under investigation. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Kevin Ben Fabrice Zerbo
- Centre National de la Recherche Scientifique et Technologique/Institut de l'Environnement et de Recherches Agricoles (INERA)/Laboratoire Mixte International/Observatoire des Agents Pathogènes, Biosécurité et Biodiversité (LMI PathoBios), 01 BP 910, Bobo-Dioulasso, Burkina Faso
- Université Nazi BONI/Clinique des Plantes, 01 BP1091, Bobo-Dioulasso, Burkina Faso
| | - Florence Yameogo
- Centre National de la Recherche Scientifique et Technologique/Institut de l'Environnement et de Recherches Agricoles (INERA)/Laboratoire Mixte International/Observatoire des Agents Pathogènes, Biosécurité et Biodiversité (LMI PathoBios), 01 BP 910, Bobo-Dioulasso, Burkina Faso
- Université Nazi BONI/Clinique des Plantes, 01 BP1091, Bobo-Dioulasso, Burkina Faso
| | - Issa Wonni
- Centre National de la Recherche Scientifique et Technologique/Institut de l'Environnement et de Recherches Agricoles (INERA)/Laboratoire Mixte International/Observatoire des Agents Pathogènes, Biosécurité et Biodiversité (LMI PathoBios), 01 BP 910, Bobo-Dioulasso, Burkina Faso
| | - Irénée Somda
- Université Nazi BONI/Clinique des Plantes, 01 BP1091, Bobo-Dioulasso, Burkina Faso
| |
Collapse
|
3
|
Su H, Wang Y, Xu J, Omar AA, Grosser JW, Wang N. Cas12a RNP-mediated co-transformation enables transgene-free multiplex genome editing, long deletions, and inversions in citrus chromosome. FRONTIERS IN PLANT SCIENCE 2024; 15:1448807. [PMID: 39148610 PMCID: PMC11324552 DOI: 10.3389/fpls.2024.1448807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/19/2024] [Indexed: 08/17/2024]
Abstract
Introduction Citrus canker, caused by Xanthomonas citri subsp. citri (Xcc), is a devastating disease worldwide. Previously, we successfully generated canker-resistant Citrus sinensis cv. Hamlin lines in the T0 generation. This was achieved through the transformation of embryogenic protoplasts using the ribonucleoprotein (RNP) containing Cas12a and one crRNA to edit the canker susceptibility gene, CsLOB1, which led to small indels. Methods Here, we transformed embryogenic protoplasts of Hamlin with RNP containing Cas12a and three crRNAs. Results Among the 10 transgene-free genome-edited lines, long deletions were obtained in five lines. Additionally, inversions were observed in three of the five edited lines with long deletions, but not in any edited lines with short indel mutations, suggesting long deletions maybe required for inversions. Biallelic mutations were observed for each of the three target sites in four of the 10 edited lines when three crRNAs were used, demonstrating that transformation of embryogenic citrus protoplasts with Cas12a and three crRNAs RNP can be very efficient for multiplex editing. Our analysis revealed the absence of off-target mutations in the edited lines. These cslob1 mutant lines were canker- resistant and no canker symptoms were observed after inoculation with Xcc and Xcc growth was significantly reduced in the cslob1 mutant lines compared to the wild type plants. Discussion Taken together, RNP (Cas12a and three crRNAs) transformation of embryogenic protoplasts of citrus provides a promising solution for transgene-free multiplex genome editing with high efficiency and for deletion of long fragments.
Collapse
Affiliation(s)
- Hang Su
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States
| | - Yuanchun Wang
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States
| | - Jin Xu
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States
| | - Ahmad A Omar
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States
- Department of Horticultural Sciences, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States
| | - Jude W Grosser
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States
- Department of Horticultural Sciences, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States
| | - Nian Wang
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States
| |
Collapse
|
4
|
Zhang J, Gao L, Lin H, Liang Y, You M, Ding L, Feng F, Yang B, Liu Y. Discovery of Antibacterial Compounds against Xanthomonas citri subsp. citri from a Marine Fungus Aspergillus terreus SCSIO 41202 and the Mode of Action. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12596-12606. [PMID: 38771666 DOI: 10.1021/acs.jafc.4c02769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Citrus canker, caused by Xanthomonas citri subsp. citri (Xcc), is a severe citrus disease. Currently, copper-containing pesticides are widely used to manage this disease, posing high risks to the environment and human health. This study reports the discovery of naturally occurring anti-Xcc compounds from a deep-sea fungus, Aspergillus terreus SCSIO 41202, and the possible mode of action. The ethyl acetate extract of A. terreus was subjected to bioassay-guided isolation, resulting in the discovery of eight anti-Xcc compounds (1-8) with minimum inhibitory concentrations (MICs) ranging from 0.078 to 0.625 mg/mL. The chemical structures of these eight metabolites were determined by integrative analysis of various spectroscopic data. Among these compounds, Asperporonin A (1) and Asperporonin B (2) were identified as novel compounds with a very unusual structural skeleton. The electronic circular dichroism was used to determine the absolute configurations of 1 and 2 through quantum chemical calculation. A bioconversion pathway involving pinacol rearrangement was proposed to produce the unusual compounds (1-2). Compound 6 exhibited an excellent anti-Xcc effect with a MIC value of 0.078 mg/mL, which was significantly more potent than the positive control CuSO4 (MIC = 0.3125 mg/mL). Compound 6 inhibited cell growth by disrupting biofilm formation, destroying the cell membrane, and inducing the accumulation of reactive oxygen species. In vivo tests indicated that compound 6 is highly effective in controlling citrus canker disease. These results indicate that compounds 1-8, especially 6, have the potential as lead compounds for the development of new, environmentally friendly, and efficient anti-Xcc pesticides.
Collapse
Affiliation(s)
- Jun Zhang
- National Engineering Research Center of Navel Orange, Gannan Normal University, Ganzhou 341000, China
| | - Liangliang Gao
- National Engineering Research Center of Navel Orange, Gannan Normal University, Ganzhou 341000, China
| | - Huiting Lin
- National Engineering Research Center of Navel Orange, Gannan Normal University, Ganzhou 341000, China
| | - Yan Liang
- National Engineering Research Center of Navel Orange, Gannan Normal University, Ganzhou 341000, China
| | - Mingnan You
- National Engineering Research Center of Navel Orange, Gannan Normal University, Ganzhou 341000, China
| | - Lijian Ding
- Department of Marine Pharmacy, Ningbo University, Ningbo 315211, China
| | - Fangjian Feng
- Department of Marine Pharmacy, Ningbo University, Ningbo 315211, China
| | - Bin Yang
- Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510000, P. R. China
| | - Yonghong Liu
- Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510000, P. R. China
| |
Collapse
|
5
|
Alexandrino AV, Barcelos MP, Federico LB, da Silva TG, Cavalca LB, de Moraes CHA, Ferreira H, Taft CA, Behlau F, de Paula Silva CHT, Novo-Mansur MTM. GDP-mannose pyrophosphorylase is an efficient target in Xanthomonas citri for citrus canker control. Microbiol Spectr 2024; 12:e0367323. [PMID: 38722158 PMCID: PMC11237706 DOI: 10.1128/spectrum.03673-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 03/20/2024] [Indexed: 06/06/2024] Open
Abstract
Xanthomonas citri subsp. citri (Xcc) is a bacterium that causes citrus canker, an economically important disease that results in premature fruit drop and reduced yield of fresh fruit. In this study, we demonstrated the involvement of XanB, an enzyme with phosphomannose isomerase (PMI) and guanosine diphosphate-mannose pyrophosphorylase (GMP) activities, in Xcc pathogenicity. Additionally, we found that XanB inhibitors protect the host against Xcc infection. Besides being deficient in motility, biofilm production, and ultraviolet resistance, the xanB deletion mutant was unable to cause disease, whereas xanB complementation restored wild-type phenotypes. XanB homology modeling allowed in silico virtual screening of inhibitors from databases, three of them being suitable in terms of absorption, distribution, metabolism, excretion, and toxicity (ADME/Tox) properties, which inhibited GMP (but not PMI) activity of the Xcc recombinant XanB protein in more than 50%. Inhibitors reduced citrus canker severity up to 95%, similarly to copper-based treatment. xanB is essential for Xcc pathogenicity, and XanB inhibitors can be used for the citrus canker control. IMPORTANCE Xcc causes citrus canker, a threat to citrus production, which has been managed with copper, being required a more sustainable alternative for the disease control. XanB was previously found on the surface of Xcc, interacting with the host and displaying PMI and GMP activities. We demonstrated by xanB deletion and complementation that GMP activity plays a critical role in Xcc pathogenicity, particularly in biofilm formation. XanB homology modeling was performed, and in silico virtual screening led to carbohydrate-derived compounds able to inhibit XanB activity and reduce disease symptoms by 95%. XanB emerges as a promising target for drug design for control of citrus canker and other economically important diseases caused by Xanthomonas sp.
Collapse
Affiliation(s)
- André Vessoni Alexandrino
- Laboratório de Bioquímica e Biologia Molecular Aplicada (LBBMA), Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
- Programa de Pós-Graduação em Biotecnologia (PPGBiotec), Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Mariana Pegrucci Barcelos
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Leonardo Bruno Federico
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Tamiris Garcia da Silva
- Departamento de Pesquisa e Desenvolvimento, Fundo de Defesa da Citricultura, Fundecitrus, Araraquara, São Paulo, Brazil
| | - Lúcia Bonci Cavalca
- Departamento de Bioquímica e Microbiologia, Instituto de Biociências, UNESP, Universidade Estadual Paulista, Rio Claro, São Paulo, Brazil
| | - Carlos Henrique Alves de Moraes
- Laboratório de Bioquímica e Biologia Molecular Aplicada (LBBMA), Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Henrique Ferreira
- Departamento de Bioquímica e Microbiologia, Instituto de Biociências, UNESP, Universidade Estadual Paulista, Rio Claro, São Paulo, Brazil
| | | | - Franklin Behlau
- Departamento de Pesquisa e Desenvolvimento, Fundo de Defesa da Citricultura, Fundecitrus, Araraquara, São Paulo, Brazil
| | | | - Maria Teresa Marques Novo-Mansur
- Laboratório de Bioquímica e Biologia Molecular Aplicada (LBBMA), Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
- Programa de Pós-Graduação em Biotecnologia (PPGBiotec), Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
- Programa de Pós-Graduação em Genética Evolutiva e Biologia Molecular (PPGGEv), Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| |
Collapse
|
6
|
Marin VR, Zamuner CFC, Hypolito GB, Ferrarezi JH, Alleoni N, Caccalano MN, Ferreira H, Sass DC. Antibacterial activity of Cymbopogon species essential oils against Xanthomonas citri and their use in post-harvest treatment for citrus canker management. Lett Appl Microbiol 2024; 77:ovae041. [PMID: 38653726 DOI: 10.1093/lambio/ovae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/09/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024]
Abstract
Citrus canker is a disease caused by the gram-negative bacterium Xanthomonas citri subp. citri (X. citri), which affects all commercially important varieties of citrus and can lead to significant losses. Fruit sanitization with products such as chlorine-based ones can reduce the spread of the disease. While effective, their use raises concerns about safety of the workers. This work proposes essential oils (EOs) as viable alternatives for fruit sanitization. EOs from Cymbopogon species were evaluated as to their antibacterial activity, their effect on the bacterial membrane, and their ability to sanitize citrus fruit. The in vitro assays revealed that the EOs from C. schoenanthus and C. citratus had a lower bactericidal concentration at 312 mg L-1, followed by 625 mg L-1 for C. martini and C. winterianus. Microscopy assay revealed that the bacterial cell membranes were disrupted after 15 min of contact with all EOs tested. Regarding the sanitizing potential, the EOs with higher proportions of geraniol were more effective in sanitizing acid limes. Fruit treated with C. shoenanthus and C. martini showed a reduction of ∼68% in the recovery of viable bacterial cells. Therefore, these EOs can be used as viable natural alternatives in citrus fruit disinfection.
Collapse
Affiliation(s)
- Vítor Rodrigues Marin
- São Paulo State University (UNESP), Institute of Biosciences, Rio Claro, SP 13506-900, Brazil
| | | | | | | | - Natália Alleoni
- São Paulo State University (UNESP), Institute of Biosciences, Rio Claro, SP 13506-900, Brazil
| | - Mario Nicolas Caccalano
- São Paulo State University (UNESP), Institute of Biosciences, Rio Claro, SP 13506-900, Brazil
| | - Henrique Ferreira
- São Paulo State University (UNESP), Institute of Biosciences, Rio Claro, SP 13506-900, Brazil
| | - Daiane Cristina Sass
- São Paulo State University (UNESP), Institute of Biosciences, Rio Claro, SP 13506-900, Brazil
| |
Collapse
|
7
|
Ferrarezi JH, Marin VR, Vieira G, Ferreira H, Sette LD, Sass DC. Bisdechlorogeodin from antarctic Pseudogymnoascus sp. LAMAI 2784 for citrus canker control. J Appl Microbiol 2024; 135:lxae093. [PMID: 38599631 DOI: 10.1093/jambio/lxae093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/29/2024] [Accepted: 04/09/2024] [Indexed: 04/12/2024]
Abstract
AIMS Citrus canker caused by Xanthomonas citri subsp. citri (X. citri) is a disease of economic importance. Control of this disease includes the use of metallic copper, which is harmful to the environment and human health. Previous studies showed that the crude extract from the fungus Pseudogymnoascus sp. LAMAI 2784 isolated from Antarctic soil had in vitro antibacterial action against X. citri. The aim of the present study was to expand the applications of this extract. METHODS AND RESULTS In greenhouse assays, the crude extract was able to reduce bacterial infection on citrus leaves from 1.55 lesions/cm2 (untreated plants) to 0.04 lesions/cm2. Bisdechlorogeodin was identified as the main compound of the bioactive fraction produced by Pseudogymnoascus sp. LAMAI 2784, which inhibited bacterial growth in vitro (IC90 ≈ 156 µg ml-1) and permeated 80% of X. citri cells, indicating that the membrane is the primary target. CONCLUSION The present results showed that the bioactive fraction of the extract is mainly composed of the compound bisdechlorogeodin, which is likely responsible for the biological activity against X. citri, and the main mechanism of action is the targeting of the cell membrane. This study indicates that bisdechlorogeodin has valuable potential for the control of X. citri.
Collapse
Affiliation(s)
- Juliano H Ferrarezi
- São Paulo State University (UNESP), Institute of Biosciences, Department of General and Applied Biology, Avenue 24 A, 1515, Rio Claro, SP, Brazil
| | - Vítor R Marin
- São Paulo State University (UNESP), Institute of Biosciences, Department of General and Applied Biology, Avenue 24 A, 1515, Rio Claro, SP, Brazil
| | - Gabrielle Vieira
- São Paulo State University (UNESP), Institute of Biosciences, Department of General and Applied Biology, Avenue 24 A, 1515, Rio Claro, SP, Brazil
| | - Henrique Ferreira
- São Paulo State University (UNESP), Institute of Biosciences, Department of General and Applied Biology, Avenue 24 A, 1515, Rio Claro, SP, Brazil
| | - Lara D Sette
- São Paulo State University (UNESP), Institute of Biosciences, Department of General and Applied Biology, Avenue 24 A, 1515, Rio Claro, SP, Brazil
| | - Daiane C Sass
- São Paulo State University (UNESP), Institute of Biosciences, Department of General and Applied Biology, Avenue 24 A, 1515, Rio Claro, SP, Brazil
| |
Collapse
|
8
|
Raeisi H, Safarnejad MR, Alavi SM, de Oliveira Andrade M, Farrokhi N, Elahinia SA. Transient expression of anti-HrpE scFv antibody reduces the hypersensitive response in non-host plant against bacterial phytopathogen Xanthomonas citri subsp. citri. Sci Rep 2024; 14:7121. [PMID: 38531981 DOI: 10.1038/s41598-024-57355-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/18/2024] [Indexed: 03/28/2024] Open
Abstract
Citrus canker is a bacterial disease caused by Xanthomonas citri subsp. citri (Xcc) that affects the citrus industry worldwide. Hrp pili subunits (HrpE), an essential component of Type III secretion system (T3SS) bacteria, play a crucial role in the pathogenesis of Xcc by transporting effector proteins into the host cell and causing canker symptoms. Therefore, development of antibodies that block HrpE can suppress disease progression. In this study, a specific scFv detecting HrpE was developed using phage display technique and characterized using sequencing, ELISA, Western blotting, and molecular docking. In addition, a plant expression vector of pCAMBIA-scFvH6 was constructed and agroinfiltrated into Nicotiana tabacum cv. Samson leaves. The hypersensitive response (HR) in the leaves of transformed and non-transformed plants was evaluated by inoculating leaves with Xcc. After three rounds of biopanning of the phage library, a specific human scFv antibody, named scFvH6, was identified that showed high binding activity against HrpE in ELISA and Western blotting. Molecular docking results showed that five intermolecular hydrogen bonds are involved in HrpE-scFvH6 interaction, confirming the specificity and high binding activity of scFvH6. Successful transient expression of pCAMBIA-scFvH6 in tobacco leaves was verified using immunoassay tests. The binding activity of plant-produced scFvH6 to detect HrpE in Western blotting and ELISA was similar to that of bacterial-produced scFvH6 antibody. Interestingly, tobacco plants expressing scFvH6 showed a remarkable reduction in HR induced by Xcc compared with control plants, so that incidence of necrotic lesions was significantly higher in non-transformed controls (≥ 1.5 lesions/cm2) than in the plants producing scFvH6 (≤ 0.5 lesions/cm2) after infiltration with Xcc inoculum. Our results revealed that the expression of scFvH6 in tobacco leaves can confer resistance to Xcc, indicating that this approach could be considered to provide resistance to citrus bacterial canker disease.
Collapse
Affiliation(s)
- Hamideh Raeisi
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Shahid Arabi Ave., Yemen St., Velenjak, Tehran, Iran.
| | - Mohammad Reza Safarnejad
- Department of Plant Viruses, Agricultural Research Education and Extension Organization of Iran, Iranian Research Institute of Plant Protection, Tehran, Iran
| | - Seyed Mehdi Alavi
- Department of Plant Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Maxuel de Oliveira Andrade
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Naser Farrokhi
- Departement of Cell & Molecular Biology, Faculty of Life Sciences & Biotechnology, Shahid Beheshti University G.C, Evin, Tehran, Iran
| | - Seyed Ali Elahinia
- Department of Plant Protection, College of Agricultural Sciences, Guilan University, Rasht, Iran
| |
Collapse
|
9
|
Jia H, Omar AA, Xu J, Dalmendray J, Wang Y, Feng Y, Wang W, Hu Z, Grosser JW, Wang N. Generation of transgene-free canker-resistant Citrus sinensis cv. Hamlin in the T0 generation through Cas12a/CBE co-editing. FRONTIERS IN PLANT SCIENCE 2024; 15:1385768. [PMID: 38595767 PMCID: PMC11002166 DOI: 10.3389/fpls.2024.1385768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 03/15/2024] [Indexed: 04/11/2024]
Abstract
Citrus canker disease affects citrus production. This disease is caused by Xanthomonas citri subsp. citri (Xcc). Previous studies confirmed that during Xcc infection, PthA4, a transcriptional activator like effector (TALE), is translocated from the pathogen to host plant cells. PthA4 binds to the effector binding elements (EBEs) in the promoter region of canker susceptibility gene LOB1 (EBEPthA4-LOBP) to activate its expression and subsequently cause canker symptoms. Previously, the Cas12a/CBE co-editing method was employed to disrupt EBEPthA4-LOBP of pummelo, which is highly homozygous. However, most commercial citrus cultivars are heterozygous hybrids and more difficult to generate homozygous/biallelic mutants. Here, we employed Cas12a/CBE co-editing method to edit EBEPthA4-LOBP of Hamlin (Citrus sinensis), a commercial heterozygous hybrid citrus cultivar grown worldwide. Binary vector GFP-p1380N-ttLbCas12a:LOBP1-mPBE:ALS2:ALS1 was constructed and shown to be functional via Xcc-facilitated agroinfiltration in Hamlin leaves. This construct allows the selection of transgene-free regenerants via GFP, edits ALS to generate chlorsulfuron-resistant regenerants as a selection marker for genome editing resulting from transient expression of the T-DNA via nCas9-mPBE:ALS2:ALS1, and edits gene(s) of interest (i.e., EBEPthA4-LOBP in this study) through ttLbCas12a, thus creating transgene-free citrus. Totally, 77 plantlets were produced. Among them, 8 plantlets were transgenic plants (#HamGFP1 - #HamGFP8), 4 plantlets were transgene-free (#HamNoGFP1 - #HamNoGFP4), and the rest were wild type. Among 4 transgene-free plantlets, three lines (#HamNoGFP1, #HamNoGFP2 and #HamNoGFP3) contained biallelic mutations in EBEpthA4, and one line (#HamNoGFP4) had homozygous mutations in EBEpthA4. We achieved 5.2% transgene-free homozygous/biallelic mutation efficiency for EBEPthA4-LOBP in C. sinensis cv. Hamlin, compared to 1.9% mutation efficiency for pummelo in a previous study. Importantly, the four transgene-free plantlets and 3 transgenic plantlets that survived were resistant against citrus canker. Taken together, Cas12a/CBE co-editing method has been successfully used to generate transgene-free canker-resistant C. sinensis cv. Hamlin in the T0 generation via biallelic/homozygous editing of EBEpthA4 of the canker susceptibility gene LOB1.
Collapse
Affiliation(s)
- Hongge Jia
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL, United States
| | - Ahmad A. Omar
- Citrus Research and Education Center, Horticultural Sciences Department, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL, United States
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Jin Xu
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL, United States
| | - Javier Dalmendray
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL, United States
| | - Yuanchun Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL, United States
| | - Yu Feng
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL, United States
| | - Wenting Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL, United States
| | - Zhuyuan Hu
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL, United States
| | - Jude W. Grosser
- Citrus Research and Education Center, Horticultural Sciences Department, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL, United States
| | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL, United States
| |
Collapse
|
10
|
Mohaimin AZ, Krishnamoorthy S, Shivanand P. A critical review on bioaerosols-dispersal of crop pathogenic microorganisms and their impact on crop yield. Braz J Microbiol 2024; 55:587-628. [PMID: 38001398 PMCID: PMC10920616 DOI: 10.1007/s42770-023-01179-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Bioaerosols are potential sources of pathogenic microorganisms that can cause devastating outbreaks of global crop diseases. Various microorganisms, insects and viroids are known to cause severe crop diseases impeding global agro-economy. Such losses threaten global food security, as it is estimated that almost 821 million people are underfed due to global crisis in food production. It is estimated that global population would reach 10 billion by 2050. Hence, it is imperative to substantially increase global food production to about 60% more than the existing levels. To meet the increasing demand, it is essential to control crop diseases and increase yield. Better understanding of the dispersive nature of bioaerosols, seasonal variations, regional diversity and load would enable in formulating improved strategies to control disease severity, onset and spread. Further, insights on regional and global bioaerosol composition and dissemination would help in predicting and preventing endemic and epidemic outbreaks of crop diseases. Advanced knowledge of the factors influencing disease onset and progress, mechanism of pathogen attachment and penetration, dispersal of pathogens, life cycle and the mode of infection, aid the development and implementation of species-specific and region-specific preventive strategies to control crop diseases. Intriguingly, development of R gene-mediated resistant varieties has shown promising results in controlling crop diseases. Forthcoming studies on the development of an appropriately stacked R gene with a wide range of resistance to crop diseases would enable proper management and yield. The article reviews various aspects of pathogenic bioaerosols, pathogen invasion and infestation, crop diseases and yield.
Collapse
Affiliation(s)
- Abdul Zul'Adly Mohaimin
- Environmental and Life Sciences Programme, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Bandar Seri Begawan, BE1410, Brunei Darussalam
| | - Sarayu Krishnamoorthy
- Environmental and Life Sciences Programme, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Bandar Seri Begawan, BE1410, Brunei Darussalam
| | - Pooja Shivanand
- Environmental and Life Sciences Programme, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Bandar Seri Begawan, BE1410, Brunei Darussalam.
| |
Collapse
|
11
|
Dilarri G, de Lencastre Novaes LC, Jakob F, Schwaneberg U, Ferreira H. Bifunctional peptides as alternatives to copper-based formulations to control citrus canker. Appl Microbiol Biotechnol 2024; 108:196. [PMID: 38324214 PMCID: PMC10850181 DOI: 10.1007/s00253-023-12908-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/24/2023] [Accepted: 10/03/2023] [Indexed: 02/08/2024]
Abstract
Citrus canker is an infectious bacterial disease and one of the major threats to the orange juice industry, a multibillion-dollar market that generates hundreds of thousands of jobs worldwide. This disease is caused by the Gram-negative bacterium Xanthomonas citri subsp. citri. In Brazil, the largest producer and exporter of concentrate orange juice, the control of citrus canker is exerted by integrated management practices, in which cupric solutions are intensively used in the orchards to refrain bacterial spreading. Copper ions accumulate and are as heavy metals toxic to the environment. Therefore, the aim of the present work was to evaluate bifunctional fusion proteins (BiFuProts) as novel and bio-/peptide-based alternatives to copper formulations to control citrus canker. BiFuProts are composed of an anchor peptide able to bind to citrus leaves, and an antimicrobial "killer" peptide to protect against bacterial infections of plants. The selected BiFuProt (Mel-CgDEF) was bactericidal against X. citri at 125 μg mL-1, targeting the bacterial cytoplasmic membrane within the first minutes of contact. The results in the greenhouse assays proved that Mel-CgDEF at 250 μg mL-1 provided protection against X. citri infection on the leaves, significantly reducing the number of lesions by area when compared with the controls. Overall, the present work showed that the BiFuProt Mel-CgDEF is a biobased and biodegradable possible alternative for substitute cupric formulations. KEY POINTS: • The bifunctional fusion protein Mel-CgDEF was effective against Xanthomonas citri. • Mel-CgDEF action mechanism was the disruption of the cytoplasmic membrane. • Mel-CgDEF protected citrus leaves against citrus canker disease.
Collapse
Affiliation(s)
- Guilherme Dilarri
- Department of Fisheries Engineering and Biological Sciences, Santa Catarina State University (UDESC), Rua Coronel Fernandes Martins 270, Postal code, Laguna, SC, 88790-000, Brazil
| | | | - Felix Jakob
- DWI - Leibniz-Institute for Interactive Materials, Forckenbeckstraße 50, Postal code, 52056, Aachen, Germany
| | - Ulrich Schwaneberg
- DWI - Leibniz-Institute for Interactive Materials, Forckenbeckstraße 50, Postal code, 52056, Aachen, Germany.
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, Postal code, 52074, Aachen, Germany.
| | - Henrique Ferreira
- Institute of Biosciences, Biochemistry Building, Department of General and Applied Biology, State University of Sao Paulo (UNESP), Avenida 24-A 1515, Postal code, Rio Claro, SP, 13506-900, Brazil.
| |
Collapse
|
12
|
Prado GS, Rocha DC, dos Santos LN, Contiliani DF, Nobile PM, Martinati-Schenk JC, Padilha L, Maluf MP, Lubini G, Pereira TC, Monteiro-Vitorello CB, Creste S, Boscariol-Camargo RL, Takita MA, Cristofani-Yaly M, de Souza AA. CRISPR technology towards genome editing of the perennial and semi-perennial crops citrus, coffee and sugarcane. FRONTIERS IN PLANT SCIENCE 2024; 14:1331258. [PMID: 38259920 PMCID: PMC10801916 DOI: 10.3389/fpls.2023.1331258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/14/2023] [Indexed: 01/24/2024]
Abstract
Gene editing technologies have opened up the possibility of manipulating the genome of any organism in a predicted way. CRISPR technology is the most used genome editing tool and, in agriculture, it has allowed the expansion of possibilities in plant biotechnology, such as gene knockout or knock-in, transcriptional regulation, epigenetic modification, base editing, RNA editing, prime editing, and nucleic acid probing or detection. This technology mostly depends on in vitro tissue culture and genetic transformation/transfection protocols, which sometimes become the major challenges for its application in different crops. Agrobacterium-mediated transformation, biolistics, plasmid or RNP (ribonucleoprotein) transfection of protoplasts are some of the commonly used CRISPR delivery methods, but they depend on the genotype and target gene for efficient editing. The choice of the CRISPR system (Cas9, Cas12), CRISPR mechanism (plasmid or RNP) and transfection technique (Agrobacterium spp., PEG solution, lipofection) directly impacts the transformation efficiency and/or editing rate. Besides, CRISPR/Cas technology has made countries rethink regulatory frameworks concerning genetically modified organisms and flexibilize regulatory obstacles for edited plants. Here we present an overview of the state-of-the-art of CRISPR technology applied to three important crops worldwide (citrus, coffee and sugarcane), considering the biological, methodological, and regulatory aspects of its application. In addition, we provide perspectives on recently developed CRISPR tools and promising applications for each of these crops, thus highlighting the usefulness of gene editing to develop novel cultivars.
Collapse
Affiliation(s)
- Guilherme Souza Prado
- Citrus Research Center “Sylvio Moreira” – Agronomic Institute (IAC), Cordeirópolis, Brazil
| | - Dhiôvanna Corrêia Rocha
- Citrus Research Center “Sylvio Moreira” – Agronomic Institute (IAC), Cordeirópolis, Brazil
- Institute of Biology, State University of Campinas (Unicamp), Campinas, Brazil
| | - Lucas Nascimento dos Santos
- Citrus Research Center “Sylvio Moreira” – Agronomic Institute (IAC), Cordeirópolis, Brazil
- Institute of Biology, State University of Campinas (Unicamp), Campinas, Brazil
| | - Danyel Fernandes Contiliani
- Sugarcane Research Center – Agronomic Institute (IAC), Ribeirão Preto, Brazil
- Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Paula Macedo Nobile
- Sugarcane Research Center – Agronomic Institute (IAC), Ribeirão Preto, Brazil
| | | | - Lilian Padilha
- Coffee Center of the Agronomic Institute of Campinas (IAC), Campinas, Brazil
- Embrapa Coffee, Brazilian Agricultural Research Corporation, Brasília, Federal District, Brazil
| | - Mirian Perez Maluf
- Coffee Center of the Agronomic Institute of Campinas (IAC), Campinas, Brazil
- Embrapa Coffee, Brazilian Agricultural Research Corporation, Brasília, Federal District, Brazil
| | - Greice Lubini
- Sugarcane Research Center – Agronomic Institute (IAC), Ribeirão Preto, Brazil
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Tiago Campos Pereira
- Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, Brazil
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, Brazil
| | | | - Silvana Creste
- Sugarcane Research Center – Agronomic Institute (IAC), Ribeirão Preto, Brazil
- Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, Brazil
| | | | - Marco Aurélio Takita
- Citrus Research Center “Sylvio Moreira” – Agronomic Institute (IAC), Cordeirópolis, Brazil
| | | | | |
Collapse
|
13
|
Xu J, Zhang Y, Li J, Teper D, Sun X, Jones D, Wang Y, Tao J, Goss EM, Jones JB, Wang N. Phylogenomic analysis of 343 Xanthomonas citri pv. citri strains unravels introduction history and dispersal paths. PLoS Pathog 2023; 19:e1011876. [PMID: 38100539 PMCID: PMC10756548 DOI: 10.1371/journal.ppat.1011876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/29/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023] Open
Abstract
Xanthomonas citri pv. citri (Xcc) causes the devastating citrus canker disease. Xcc is known to have been introduced into Florida, USA in at least three different events in 1915, 1986 and 1995 with the first two claimed to be eradicated. It was questioned whether the Xcc introduction in 1986 has been successfully eradicated. Furthermore, it is unknown how Xcc has spread throughout the citrus groves in Florida. In this study, we investigated the population structure of Xcc to address these questions. We sequenced the whole genome of 343 Xcc strains collected from Florida groves between 1997 and 2016. Our analysis revealed two distinct clusters of Xcc. Our data strongly indicate that the claimed eradication of the 1986 Xcc introduction was not successful and Xcc strains from 1986 introduction were present in samples from at least 8 counties collected after 1994. Importantly, our data revealed that the Cluster 2 strains, which are present in all 20 citrus-producing counties sampled in Florida, originated from the Xcc introduction event in the Miami area in 1995. Our data suggest that Polk County is the epicenter of the dispersal of Cluster 2 Xcc strains, which is consistent with the fact that three major hurricanes passed through Polk County in 2004. As copper-based products have been extensively used to control citrus canker, we also investigated whether Xcc strains have developed resistance to copper. Notably, none of the 343 strains contained known copper resistance genes. Twenty randomly selected Xcc strains displayed sensitivity to copper. Overall, this study provides valuable insights into the introduction, eradication, spread, and copper resistance of Xcc in Florida.
Collapse
Affiliation(s)
- Jin Xu
- Citrus Research and Education Center, Department of Microbiology and Cell Science, IFAS, University of Florida, Lake Alfred, Florida, United States of America
| | - Yanan Zhang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, IFAS, University of Florida, Lake Alfred, Florida, United States of America
| | - Jinyun Li
- Citrus Research and Education Center, Department of Microbiology and Cell Science, IFAS, University of Florida, Lake Alfred, Florida, United States of America
| | - Doron Teper
- Citrus Research and Education Center, Department of Microbiology and Cell Science, IFAS, University of Florida, Lake Alfred, Florida, United States of America
| | - Xiaoan Sun
- Florida Department of Agriculture and Consumer Services, Gainesville, Florida, United States of America
| | - Debra Jones
- Florida Department of Agriculture and Consumer Services, Gainesville, Florida, United States of America
| | - Yayu Wang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Jin Tao
- Guangdong Magigene Biotechnology Co., Ltd., Guangzhou, China
| | - Erica M. Goss
- Department of Plant Pathology, IFAS, University of Florida, Gainesville, Florida, United States of America
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
| | - Jeffrey B. Jones
- Department of Plant Pathology, IFAS, University of Florida, Gainesville, Florida, United States of America
| | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, IFAS, University of Florida, Lake Alfred, Florida, United States of America
| |
Collapse
|
14
|
Trinh J, Li T, Franco JY, Toruño TY, Stevens DM, Thapa SP, Wong J, Pineda R, de Dios EÁ, Kahn TL, Seymour DK, Ramadugu C, Coaker GL. Variation in microbial feature perception in the Rutaceae family with immune receptor conservation in citrus. PLANT PHYSIOLOGY 2023; 193:689-707. [PMID: 37144828 PMCID: PMC10686701 DOI: 10.1093/plphys/kiad263] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 03/27/2023] [Accepted: 04/09/2023] [Indexed: 05/06/2023]
Abstract
Although much is known about the responses of model plants to microbial features, we still lack an understanding of the extent of variation in immune perception across members of a plant family. In this work, we analyzed immune responses in Citrus and wild relatives, surveying 86 Rutaceae genotypes with differing leaf morphologies and disease resistances. We found that responses to microbial features vary both within and between members. Species in 2 subtribes, the Balsamocitrinae and Clauseninae, can recognize flagellin (flg22), cold shock protein (csp22), and chitin, including 1 feature from Candidatus Liberibacter species (csp22CLas), the bacterium associated with Huanglongbing. We investigated differences at the receptor level for the flagellin receptor FLAGELLIN SENSING 2 (FLS2) and the chitin receptor LYSIN MOTIF RECEPTOR KINASE 5 (LYK5) in citrus genotypes. We characterized 2 genetically linked FLS2 homologs from "Frost Lisbon" lemon (Citrus ×limon, responsive) and "Washington navel" orange (Citrus ×aurantium, nonresponsive). Surprisingly, FLS2 homologs from responsive and nonresponsive genotypes were expressed in Citrus and functional when transferred to a heterologous system. "Washington navel" orange weakly responded to chitin, whereas "Tango" mandarin (C. ×aurantium) exhibited a robust response. LYK5 alleles were identical or nearly identical between the 2 genotypes and complemented the Arabidopsis (Arabidopsis thaliana) lyk4/lyk5-2 mutant with respect to chitin perception. Collectively, our data indicate that differences in chitin and flg22 perception in these citrus genotypes are not the results of sequence polymorphisms at the receptor level. These findings shed light on the diversity of perception of microbial features and highlight genotypes capable of recognizing polymorphic pathogen features.
Collapse
Affiliation(s)
- Jessica Trinh
- Department of Plant Pathology, University of California, Davis, CA 95616, USA
| | - Tianrun Li
- Department of Plant Pathology, University of California, Davis, CA 95616, USA
| | - Jessica Y Franco
- Department of Plant Pathology, University of California, Davis, CA 95616, USA
| | - Tania Y Toruño
- Department of Plant Pathology, University of California, Davis, CA 95616, USA
| | - Danielle M Stevens
- Department of Plant Pathology, University of California, Davis, CA 95616, USA
| | - Shree P Thapa
- Department of Plant Pathology, University of California, Davis, CA 95616, USA
| | - Justin Wong
- Department of Plant Pathology, University of California, Davis, CA 95616, USA
| | - Rebeca Pineda
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Emmanuel Ávila de Dios
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Tracy L Kahn
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Danelle K Seymour
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Chandrika Ramadugu
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Gitta L Coaker
- Department of Plant Pathology, University of California, Davis, CA 95616, USA
| |
Collapse
|
15
|
Alexandrino AV, Prieto EL, Nicolela NCS, da Silva Marin TG, Dos Santos TA, de Oliveira da Silva JPM, da Cunha AF, Behlau F, Novo-Mansur MTM. Xylose Isomerase Depletion Enhances Virulence of Xanthomonas citri subsp. citri in Citrus aurantifolia. Int J Mol Sci 2023; 24:11491. [PMID: 37511250 PMCID: PMC10380989 DOI: 10.3390/ijms241411491] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 07/30/2023] Open
Abstract
Citrus canker, caused by the bacterium Xanthomonas citri (Xcc), is one of the most devastating diseases for the citrus industry. Xylose is a constituent of the cell wall of plants, and the ability of Xcc to use this carbohydrate may play a role in virulence. Xcc has two genes codifying for xylose isomerase (XI), a bifunctional enzyme that interconverts D-xylose into D-xylulose and D-glucose into D-fructose. The aim of this work was to investigate the functional role of the two putative XI ORFs, XAC1776 (xylA1) and XAC4225 (xylA2), in Xcc pathogenicity. XI-coding genes of Xcc were deleted, and the single mutants (XccΔxylA1 or XccΔxylA2) or the double mutant (XccΔxylA1ΔxylA2) remained viable. The deletion of one or both XI genes (xylA1 and/or xylA2) increased the aggressiveness of the mutants, causing disease symptoms. RT-qPCR analysis of wild strain and xylA deletion mutants grown in vivo and in vitro revealed that the highest expression level of hrpX and xylR was observed in vivo for the double mutant. The results indicate that XI depletion increases the expression of the hrp regulatory genes in Xcc. We concluded that the intracellular accumulation of xylose enhances Xcc virulence.
Collapse
Affiliation(s)
- André Vessoni Alexandrino
- Laboratório de Bioquímica e Biologia Molecular Aplicada-LBBMA, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos 13565-905, SP, Brazil
- Programa de Pós-Graduação em Biotecnologia-PPGBiotec, Universidade Federal de São Carlos, São Carlos 13565-905, SP, Brazil
| | - Evandro Luis Prieto
- Laboratório de Bioquímica e Biologia Molecular Aplicada-LBBMA, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos 13565-905, SP, Brazil
- Programa de Pós-Graduação em Genética Evolutiva e Biologia Molecular-PPGGEv, Universidade Federal de São Carlos, São Carlos 13565-905, SP, Brazil
| | - Nicole Castro Silva Nicolela
- Laboratório de Bioquímica e Biologia Molecular Aplicada-LBBMA, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos 13565-905, SP, Brazil
| | | | | | - João Pedro Maia de Oliveira da Silva
- Programa de Pós-Graduação em Genética Evolutiva e Biologia Molecular-PPGGEv, Universidade Federal de São Carlos, São Carlos 13565-905, SP, Brazil
- Laboratório de Bioquímica e Genética Aplicada-LBGA, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos 13565-905, SP, Brazil
| | - Anderson Ferreira da Cunha
- Programa de Pós-Graduação em Genética Evolutiva e Biologia Molecular-PPGGEv, Universidade Federal de São Carlos, São Carlos 13565-905, SP, Brazil
- Laboratório de Bioquímica e Genética Aplicada-LBGA, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos 13565-905, SP, Brazil
| | - Franklin Behlau
- Fundo de Defesa da Citricultura-Fundecitrus, Araraquara 14807-040, SP, Brazil
| | - Maria Teresa Marques Novo-Mansur
- Laboratório de Bioquímica e Biologia Molecular Aplicada-LBBMA, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos 13565-905, SP, Brazil
- Programa de Pós-Graduação em Biotecnologia-PPGBiotec, Universidade Federal de São Carlos, São Carlos 13565-905, SP, Brazil
- Programa de Pós-Graduação em Genética Evolutiva e Biologia Molecular-PPGGEv, Universidade Federal de São Carlos, São Carlos 13565-905, SP, Brazil
| |
Collapse
|
16
|
Liu HW, Su SS, Ma SY, Li T, Fang W, Ding Y, Liu ST, Zhang JR, Xiang HM, Zhou X, Yang S. Discovery and Structural Optimization of 1,2,3,4-Tetrahydro-β-carbolines as Novel Reactive Oxygen Species Inducers for Controlling Intractable Plant Bacterial Diseases. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37450840 DOI: 10.1021/acs.jafc.3c02615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Nowadays, reactive oxygen species (ROS) have been acknowledged as promising bactericidal targets against pesticide-resistant bacteria. Herein, to further excavate more excellent ROS inducers, simple 1,2,3,4-tetrahydro-β-carboline derivatives containing a 3-aminopropanamide moiety were prepared and assessed for their antibacterial potency. Notably, three promising compounds displayed significant antibacterial potency. Compound I29 exhibits excellent in vitro bioactivity, with an EC50 value of 5.73 μg/mL, and admirable in vivo activities (protective activity of 55.74% and curative activity of 65.50%) toward Xanthomonas oryzae pv. oryzae. Compound I16 has good activity in vitro, with an EC50 of 3.43 μg/mL, and outstanding bioactivities in vivo (protective activity of 92.50% and curative activity of 59.68%) against Xanthomonas axonopodis pv. citri. Compound I6 shows excellent in vitro bioactivity (EC50 = 2.86 μg/mL) and significant protective activity (94.02%) for preventing Pseudomonas syringae pv. actinidiae. Antibacterial mechanism investigations indicate that these compounds disrupt the balance of the redox system to kill bacteria. These simple 1,2,3,4-tetrahydro-β-carboline derivatives are promising leads to the discovery of bactericidal agents.
Collapse
Affiliation(s)
- Hong-Wu Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - Shan-Shan Su
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - Si-Yue Ma
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - Ting Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - Wang Fang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - Yue Ding
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - Shi-Tao Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - Jun-Rong Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - Hong-Mei Xiang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - Xiang Zhou
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - Song Yang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| |
Collapse
|
17
|
Su H, Wang Y, Xu J, Omar AA, Grosser JW, Calovic M, Zhang L, Feng Y, Vakulskas CA, Wang N. Generation of the transgene-free canker-resistant Citrus sinensis using Cas12a/crRNA ribonucleoprotein in the T0 generation. Nat Commun 2023; 14:3957. [PMID: 37402755 DOI: 10.1038/s41467-023-39714-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/26/2023] [Indexed: 07/06/2023] Open
Abstract
Citrus canker caused by Xanthomonas citri subsp. citri (Xcc) is a destructive citrus disease worldwide. Generating disease-resistant cultivars is the most effective, environmentally friendly and economic approach for disease control. However, citrus traditional breeding is lengthy and laborious. Here, we develop transgene-free canker-resistant Citrus sinensis lines in the T0 generation within 10 months through transformation of embryogenic protoplasts with Cas12a/crRNA ribonucleoprotein to edit the canker susceptibility gene CsLOB1. Among the 39 regenerated lines, 38 are biallelic/homozygous mutants, demonstrating a 97.4% biallelic/homozygous mutation rate. No off-target mutations are detected in the edited lines. Canker resistance of the cslob1-edited lines results from both abolishing canker symptoms and inhibiting Xcc growth. The transgene-free canker-resistant C. sinensis lines have received regulatory approval by USDA APHIS and are exempted from EPA regulation. This study provides a sustainable and efficient citrus canker control solution and presents an efficient transgene-free genome-editing strategy for citrus and other crops.
Collapse
Affiliation(s)
- Hang Su
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, USA
| | - Yuanchun Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, USA
| | - Jin Xu
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, USA
| | - Ahmad A Omar
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, USA
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Jude W Grosser
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, USA
| | - Milica Calovic
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, USA
| | - Liyang Zhang
- Integrated DNA Technologies, Inc, Coralville, IA, USA
| | - Yu Feng
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, USA
| | | | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, USA.
| |
Collapse
|
18
|
de Souza-Neto RR, Vasconcelos FNDC, Teper D, Carvalho IGB, Takita MA, Benedetti CE, Wang N, de Souza AA. The Expansin Gene CsLIEXP1 Is a Direct Target of CsLOB1 in Citrus. PHYTOPATHOLOGY 2023; 113:1266-1277. [PMID: 36825333 DOI: 10.1094/phyto-11-22-0424-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Transcription activator-like effectors are key virulence factors of Xanthomonas. They are secreted into host plant cells and mimic transcription factors inducing the expression of host susceptibility (S) genes. In citrus, CsLOB1 is a direct target of PthA4, the primary effector associated with citrus canker symptoms. CsLOB1 is a transcription factor, and its expression is required for canker symptoms induced by Xanthomonas citri subsp. citri. Several genes are up-regulated by PthA4; however, only CsLOB1 was described as an S gene induced by PthA4. Here, we investigated whether other up-regulated genes could be direct targets of PthA4 or CsLOB1. Seven up-regulated genes by PthA4 were investigated; however, an expansin-coding gene was more induced than CsLOB1. In Nicotiana benthamiana transient expression experiments, we demonstrate that the expansin-coding gene, referred here to as CsLOB1-INDUCED EXPANSIN 1 (CsLIEXP1), is not a direct target of PthA4, but CsLOB1. Interestingly, CsLIEXP1 was induced by CsLOB1 even without the predicted CsLOB1 binding site, which suggested that CsLOB1 has other unknown binding sites. We also investigated the minimum promoter regulated by CsLOB1, and this region and LOB1 domain were conserved among citrus species and relatives, which suggests that the interaction PthA4-CsLOB1-CsLIEXP1 is conserved in citrus species and relatives. This is the first study that experimentally demonstrated a CsLOB1 downstream target and lays the foundation to identify other new targets. In addition, we demonstrated that the CsLIEXP1 is a putative S gene indirectly induced by PthA4, which may serve as the target for genome editing to generate citrus canker-resistant varieties.
Collapse
Affiliation(s)
- Reinaldo Rodrigues de Souza-Neto
- Citrus Research Center "Sylvio Moreira", Agronomic Institute-IAC, Brazil
- Departament of Genetics, Evolution and Bioagents, Institute of Biology, University of Campinas, Brazil
| | | | - Doron Teper
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, Agricultural Research Organization, Volcani Center, Israel
| | | | | | - Celso Eduardo Benedetti
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Brazil
| | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences (IFAS), University of Florida, U.S.A
| | | |
Collapse
|
19
|
Lin H, Liang Y, Kaliaperumal K, Xiong Q, Duan S, Jiang Y, Zhang J. Linoleic acid from the endophytic fungus Diaporthe sp. HT-79 inhibits the growth of Xanthomonas citri subsp. citri by destructing the cell membrane and producing reactive oxygen species (ROS). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 192:105423. [PMID: 37105613 DOI: 10.1016/j.pestbp.2023.105423] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/29/2023] [Accepted: 04/05/2023] [Indexed: 06/19/2023]
Abstract
Citrus canker disease caused by Xanthomonas citri subsp. citri (Xac) severely influences the quality and quantity of citrus fruits. The current management of this disease mainly relies on the application of copper-associated chemicals, which poses a threat to human health and the environment. The present study isolated an endophytic fungus HT-79 from the healthy navel orange tree, whose crude fermentation product significantly inhibited the growth of Xac. The strain HT-79 was identified as a species of the Diaporthe genus. The petroleum ether extract (PEE) of the crude fermentation product of HT-79 exhibited remarkable activity against Xac with a MIC (minimum inhibitory concentration) value of 0.0625 mg/mL, significantly better than the positive control CuSO4 (MIC = 0.125 mg/mL). Bioassay-guided isolation of PEE resulted in the discovery of one highly potent anti-Xac subfraction, namely fraction 5 (MIC = 0.0156 mg/mL). Gas chromatography-mass spectrometry (GC-MS) analysis revealed that fraction 5 mainly consisted of palmitic acid (18.17%), ethyl palmitate (15.66%), linoleic acid (6.80%), oleic acid (18.32%), ethyl linoleate (21.58%), ethyl oleate (15.87%), and ethyl stearate (3.60%). Among these seven compounds, linoleic acid (MIC = 0.0078 mg/mL) was found to be the most potent against Xac, followed by oleic acid (MIC = 0.0156 mg/mL), while all others were less pronounced than CuSO4. Linoleic acid highly inhibited the growth of Xac via the destruction of the cell membrane and overproduction of reactive oxygen species (ROS). A preliminary in vivo experiment revealed that linoleic acid was effective in the control of citrus canker disease.
Collapse
Affiliation(s)
- Huiting Lin
- National Engineering Research Center of Navel Orange, Gannan Normal University, Ganzhou 341000, China
| | - Yan Liang
- National Engineering Research Center of Navel Orange, Gannan Normal University, Ganzhou 341000, China
| | - Kumaravel Kaliaperumal
- National Engineering Research Center of Navel Orange, Gannan Normal University, Ganzhou 341000, China; Department of Orthodontics, Saveetha Dental College, Saveetha University, Chennai, 600077, India
| | - Qin Xiong
- National Engineering Research Center of Navel Orange, Gannan Normal University, Ganzhou 341000, China
| | - Shuo Duan
- National Engineering Research Center of Navel Orange, Gannan Normal University, Ganzhou 341000, China
| | - Yueming Jiang
- National Engineering Research Center of Navel Orange, Gannan Normal University, Ganzhou 341000, China; South China Botanical Garden, Chinese Academy of Science, Guangzhou, 510650, China
| | - Jun Zhang
- National Engineering Research Center of Navel Orange, Gannan Normal University, Ganzhou 341000, China; South China Botanical Garden, Chinese Academy of Science, Guangzhou, 510650, China.
| |
Collapse
|
20
|
Martin AP, Martínez MF, Chiesa MA, Garcia L, Gerhardt N, Uviedo F, Torres PS, Marano MR. Priming crop plants with rosemary (Salvia rosmarinus Spenn, syn Rosmarinus officinalis L.) extract triggers protective defense response against pathogens. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 197:107644. [PMID: 36996636 DOI: 10.1016/j.plaphy.2023.107644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/28/2023] [Accepted: 03/13/2023] [Indexed: 06/19/2023]
Abstract
Plant bioactive compounds provide novel straightforward approaches to control plant diseases. Rosemary (Salvia rosmarinus)-derived extracts carry many prominent pharmacological activities, including antimicrobial and antioxidant, mainly due to its phenolic compounds, rosmarinic acid (RA), carnosic acid and carnosol. However, the effects of these extracts on plant diseases are still unknown, which constrains its potential application as bioprotectant in the agricultural production. In this study we demonstrate the antiviral effect of the aqueous rosemary extract (ARE) against tobacco necrosis virus strain A (TNVA) in ARE-treated tobacco (Nicotiana tabacum) plants. Our results show that ARE-treatment enhances plant defense response, contributing to reduce virus replication and systemic movement in tobacco plants. RA, the main phenolic compound detected in this extract, is one of the main inducers of TNVA control. The ARE-induced protection in TNVA-infected plants was characterized by the expression of H2O2 scavengers and defense-related genes, involving salicylic acid- and jasmonic acid-regulated pathways. Furthermore, treatment with ARE in lemon (Citrus limon) and soybean (Glycine max) leaves protects the plants against Xanthomonas citri subsp. citri and Diaporthe phaseolorum var. meridionalis, respectively. Additionally, ARE treatment also promotes growth and development, suggesting a biostimulant activity in soybean. These results open the way for the potential use of ARE as a bioprotective agent in disease management.
Collapse
Affiliation(s)
- Ana Paula Martin
- Instituto de Biología Molecular y Celular de Rosario (IBR)-Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Ocampo y Esmeralda S/N, S2002 FHN, Rosario, Argentina; Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Suipacha 590, S2002LRK, Rosario, Argentina
| | - María Florencia Martínez
- Instituto de Biología Molecular y Celular de Rosario (IBR)-Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Ocampo y Esmeralda S/N, S2002 FHN, Rosario, Argentina
| | - María Amalia Chiesa
- Laboratorio de Eco-Fisiología Vegetal (LEFIVE), Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR)-UNR/CONICET, Parque Villarino S/N, 2125, Zavalla, Santa Fe, Argentina
| | - Lucila Garcia
- Instituto de Biología Molecular y Celular de Rosario (IBR)-Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Ocampo y Esmeralda S/N, S2002 FHN, Rosario, Argentina; Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Suipacha 590, S2002LRK, Rosario, Argentina
| | - Nadia Gerhardt
- Instituto de Biología Molecular y Celular de Rosario (IBR)-Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Ocampo y Esmeralda S/N, S2002 FHN, Rosario, Argentina; Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Suipacha 590, S2002LRK, Rosario, Argentina
| | - Facundo Uviedo
- Instituto de Biología Molecular y Celular de Rosario (IBR)-Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Ocampo y Esmeralda S/N, S2002 FHN, Rosario, Argentina
| | - Pablo S Torres
- Instituto de Biología Molecular y Celular de Rosario (IBR)-Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Ocampo y Esmeralda S/N, S2002 FHN, Rosario, Argentina
| | - María Rosa Marano
- Instituto de Biología Molecular y Celular de Rosario (IBR)-Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Ocampo y Esmeralda S/N, S2002 FHN, Rosario, Argentina; Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Suipacha 590, S2002LRK, Rosario, Argentina.
| |
Collapse
|
21
|
Shahbaz E, Ali M, Shafiq M, Atiq M, Hussain M, Balal RM, Sarkhosh A, Alferez F, Sadiq S, Shahid MA. Citrus Canker Pathogen, Its Mechanism of Infection, Eradication, and Impacts. PLANTS (BASEL, SWITZERLAND) 2022; 12:plants12010123. [PMID: 36616252 PMCID: PMC9824702 DOI: 10.3390/plants12010123] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/14/2022] [Accepted: 12/13/2022] [Indexed: 05/16/2023]
Abstract
Citrus canker is a ravaging bacterial disease threatening citrus crops. Its major types are Asiatic Canker, Cancrosis B, and Cancrosis C, caused by Xanthomonas citri pv. citri (Xcc), Xanthomonas citri pv. aurantifolii pathotype-B (XauB), and pathotype-C (XauC), respectively. The bacterium enters its host through stomata and wounds, from which it invades the intercellular spaces in the apoplast. It produces erumpent corky necrotic lesions often surrounded by a chlorotic halo on the leaves, young stems, and fruits, which causes dark spots, defoliation, reduced photosynthetic rate, rupture of leaf epidermis, dieback, and premature fruit drop in severe cases. Its main pathogenicity determinant gene is pthA, whose variants are present in all citrus canker-causing pathogens. Countries where citrus canker is not endemic adopt different methods to prevent the introduction of the pathogen into the region, eradicate the pathogen, and minimize its dissemination, whereas endemic regions require an integrated management program to control the disease. The main aim of the present manuscript is to shed light on the pathogen profile, its mechanism of infection, and fruitful strategies for disease management. Although an adequate method to completely eradicate citrus canker has not been introduced so far, many new methods are under research to abate the disease.
Collapse
Affiliation(s)
- Esha Shahbaz
- Department of Food Sciences, Faculty of Agricultural Sciences, University of the Punjab, Lahore 54590, Pakistan
| | - Mobeen Ali
- Department of Horticulture, Faculty of Agricultural Sciences, University of the Punjab, Lahore 54590, Pakistan
| | - Muhammad Shafiq
- Department of Horticulture, Faculty of Agricultural Sciences, University of the Punjab, Lahore 54590, Pakistan
| | - Muhammad Atiq
- Department of Plant Pathology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Mujahid Hussain
- Horticultural Science Department, North Florida Research and Education Center, University of Florida/IFAS, Quincy, FL 32351, USA
| | - Rashad Mukhtar Balal
- Department of Horticulture, College of Agriculture, University of Sargodha, Sargodha 40100, Pakistan
| | - Ali Sarkhosh
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | - Fernando Alferez
- Horticultural Science Department, Southwest Florida Research and Education Center, University of Florida/IFAS, Immokalee, FL 34142, USA
| | - Saleha Sadiq
- Department of Horticulture, Faculty of Agricultural Sciences, University of the Punjab, Lahore 54590, Pakistan
| | - Muhammad Adnan Shahid
- Horticultural Science Department, North Florida Research and Education Center, University of Florida/IFAS, Quincy, FL 32351, USA
- Correspondence:
| |
Collapse
|
22
|
Sena-Vélez M, Ferragud E, Redondo C, Graham JH, Cubero J. Chemotactic Responses of Xanthomonas with Different Host Ranges. Microorganisms 2022; 11:microorganisms11010043. [PMID: 36677335 PMCID: PMC9866238 DOI: 10.3390/microorganisms11010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/05/2022] [Accepted: 12/19/2022] [Indexed: 12/25/2022] Open
Abstract
Xanthomonas citri pv. citri (Xcc) (X. citri subsp. citri) type A is the causal agent of citrus bacterial canker (CBC) on most Citrus spp. and close relatives. Two narrow-host-range strains of Xcc, Aw and A*, from Florida and Southwest Asia, respectively, infect only Mexican lime (Citrus aurantifolia) and alemow (C. macrophylla). In the initial stage of infection, these xanthomonads enter via stomata to reach the apoplast. Herein, we investigated the differences in chemotactic responses for wide and narrow-host-range strains of Xcc A, X. euvesicatoria pv. citrumelonis (X. alfalfae subsp. citrumelonis), the causal agent of citrus bacterial spot, and X. campestris pv. campestris, the crucifer black rot pathogen. These strains of Xanthomonas were compared for carbon source use, the chemotactic responses toward carbon compounds, chemotaxis sensor content, and responses to apoplastic fluids from Citrus spp. and Chinese cabbage (Brassica pekinensis). Different chemotactic responses occurred for carbon sources and apoplastic fluids, depending on the Xanthomonas strain and the host plant from which the apoplastic fluid was derived. Differential chemotactic responses to carbon sources and citrus apoplasts suggest that these Xanthomonas strains sense host-specific signals that facilitate their location and entry of stomatal openings or wounds.
Collapse
Affiliation(s)
- Marta Sena-Vélez
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC) EA 1207, L’institut National de Recherche pour L’agriculture, L’alimentation et L’environneme (INRAE) USC1328, Orléans University, BP 6759, CEDEX 2, 45067 Orléans, France
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), 28040 Madrid, Spain
| | - Elisa Ferragud
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), 28040 Madrid, Spain
| | - Cristina Redondo
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), 28040 Madrid, Spain
| | - James H. Graham
- Citrus Research and Education Center (CREC), University of Florida, 700 Experiment Station Road, Lake Alfred, FL 33850-2299, USA
| | - Jaime Cubero
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), 28040 Madrid, Spain
- Correspondence: ; Tel.: +34-913474162
| |
Collapse
|
23
|
Saldanha LL, Allard PM, Dilarri G, Codesido S, González-Ruiz V, Queiroz EF, Ferreira H, Wolfender JL. Metabolomic- and Molecular Networking-Based Exploration of the Chemical Responses Induced in Citrus sinensis Leaves Inoculated with Xanthomonas citri. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14693-14705. [PMID: 36350271 DOI: 10.1021/acs.jafc.2c05156] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Citrus canker, caused by the bacterium Xanthomonas citri subsp. citri (X. citri), is a plant disease affecting Citrus crops worldwide. However, little is known about defense compounds in Citrus. Here, we conducted a mass spectrometry-based metabolomic approach to obtain an overview of the chemical responses of Citrus leaves to X. citri infection. To facilitate result interpretation, the multivariate analyses were combined with molecular networking to identify biomarkers. Metabolite variations among untreated and X. citri-inoculated Citrus samples under greenhouse conditions highlighted induced defense biomarkers. Notably, the plant tryptophan metabolism pathway was activated, leading to the accumulation of N-methylated tryptamine derivatives. This finding was subsequently confirmed in symptomatic leaves in the field. Several tryptamine derivatives showed inhibitory effects in vitro against X. citri. This approach has enabled the identification of new chemically related biomarker groups and their dynamics in the response of Citrus leaves to Xanthomonas infection.
Collapse
Affiliation(s)
- Luiz Leonardo Saldanha
- Biochemistry Building, Department of General and Applied Biology, Institute of Biosciences, State University of São Paulo, Rio Claro, 13506-900 São Paulo, Brazil
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva 4, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva 4, Switzerland
| | - Pierre-Marie Allard
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva 4, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva 4, Switzerland
- Departement of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Guilherme Dilarri
- Biochemistry Building, Department of General and Applied Biology, Institute of Biosciences, State University of São Paulo, Rio Claro, 13506-900 São Paulo, Brazil
| | - Santiago Codesido
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva 4, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva 4, Switzerland
| | - Víctor González-Ruiz
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva 4, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva 4, Switzerland
| | - Emerson Ferreira Queiroz
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva 4, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva 4, Switzerland
| | - Henrique Ferreira
- Biochemistry Building, Department of General and Applied Biology, Institute of Biosciences, State University of São Paulo, Rio Claro, 13506-900 São Paulo, Brazil
| | - Jean-Luc Wolfender
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva 4, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva 4, Switzerland
| |
Collapse
|
24
|
Wang W, Feng M, Li X, Chen F, Zhang Z, Yang W, Shao C, Tao L, Zhang Y. Antibacterial Activity of Aureonuclemycin Produced by Streptomyces aureus Strain SPRI-371. Molecules 2022; 27:molecules27155041. [PMID: 35956994 PMCID: PMC9370760 DOI: 10.3390/molecules27155041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/31/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
Actinomycetes play a vital role as one of the most important natural resources for both pharmaceutical and agricultural applications. The actinomycete strain SPRI-371, isolated from soil collected in Jiangsu province, China, was classified as Streptomyces aureus based on its morphological, physiological, biochemical and molecular biological characteristics. Its bacterial activity metabolites were identified as aureonuclemycin (ANM), belonging to adenosine derivatives with the molecular formula C16H19N5O9 for ANM A and C10H13N5O3 for ANM B. Simultaneously, the industrial fermentation process of a mutated S. aureus strain SPRI-371 was optimized in a 20 m3 fermentation tank, featuring a rotation speed of 170 rpm, a pressure of 0.05 MPa, an inoculum age of 36−40 h and a dissolved oxygen level maintained at 1−30% within 40−80 h and at >60% in the later period, resulting in an ANM yield of >3700 mg/L. In the industrial separation of fermentation broth, the sulfuric acid solution was selected to adjust pH and 4# resin was used for adsorption. Then, it was resolved with 20% ethanol solution and concentrated in a vacuum (60−65 °C), with excellent results. Antibacterial experiments showed that ANM was less active or inactive against Xanthomonas oryzae pv. oryzae, Xanthomonas citri subsp. citri and Xanthomonas oryzae pv. oryzicola and most bacteria, yeast and fungi in vitro. However, in vivo experiments showed that ANM exhibited extremely significant protective and therapeutic activity against diseases caused by X. oryzae pv. oryzae and X. oryzae pv. oryzicola in rice and X. citri in oranges and lemons. In field trials, ANM A 150 gai/ha + ANM B 75 gai/ha exhibited excellent therapeutic activity against rice bacterial leaf blight, citrus canker and rice bacterial leaf streak. Furthermore, as the dosage and production cost of ANM are lower than those of commercial drugs, it has good application prospects.
Collapse
Affiliation(s)
- Weiguo Wang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Minkang Feng
- Shanghai Jiading District Agricultural Machinery Technology Promotion Station, Shanghai 201800, China
| | - Xiaomeng Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Feiyu Chen
- School of Bioengineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhihao Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Wenlong Yang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Chen Shao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Liming Tao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yang Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- Correspondence:
| |
Collapse
|
25
|
Mulema J, Day R, Nunda W, Akutse KS, Bruce AY, Gachamba S, Haukeland S, Kahuthia-Gathu R, Kibet S, Koech A, Kosiom T, Miano DW, Momanyi G, Murungi LK, Muthomi JW, Mwangi J, Mwangi M, Mwendo N, Nderitu JH, Nyasani J, Otipa M, Wambugu S, Were E, Makale F, Doughty L, Edgington S, Rwomushana I, Kenis M. Prioritization of invasive alien species with the potential to threaten agriculture and biodiversity in Kenya through horizon scanning. Biol Invasions 2022. [DOI: 10.1007/s10530-022-02824-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
AbstractInvasive alien species (IAS) rank among the most significant drivers of species extinction and ecosystem degradation resulting in significant impacts on socio-economic development. The recent exponential spread of IAS in most of Africa is attributed to poor border biosecurity due to porous borders that have failed to prevent initial introductions. In addition, countries lack adequate information about potential invasions and have limited capacity to reduce the risk of invasions. Horizon scanning is an approach that prioritises the risks of potential IAS through rapid assessments. A group of 28 subject matter experts used an adapted methodology to assess 1700 potential IAS on a 5-point scale for the likelihood of entry and establishment, potential socio-economic impact, and impact on biodiversity. The individual scores were combined to rank the species according to their overall potential risk for the country. Confidence in individual and overall scores was recorded on a 3-point scale. This resulted in a priority list of 120 potential IAS (70 arthropods, 9 nematodes, 15 bacteria, 19 fungi/chromist, 1 viroid, and 6 viruses). Options for risk mitigation such as full pest risk analysis and detection surveys were suggested for prioritised species while species for which no immediate action was suggested, were added to the plant health risk register and a recommendation was made to regularly monitor the change in risk. By prioritising risks, horizon scanning guides resource allocation to interventions that are most likely to reduce risk and is very useful to National Plant Protection Organisations and other relevant stakeholders.
Collapse
|
26
|
Long Y, Luo R, Xu Z, Cheng S, Li L, Ma H, Bao M, Li M, Ouyang Z, Wang N, Duan S. A Fluorescent Reporter-Based Evaluation Assay for Antibacterial Components Against Xanthomonas citri subsp. citri. Front Microbiol 2022; 13:864963. [PMID: 35602035 PMCID: PMC9114712 DOI: 10.3389/fmicb.2022.864963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/05/2022] [Indexed: 11/13/2022] Open
Abstract
Xanthomonas citri subsp. citri (Xcc) is the agent of citrus bacterial canker (CBC) disease, which has significantly reduced citrus quantity and quality in many producing areas worldwide. Copper-based bactericides are the primary products for CBC control and management, but the problems derived from copper-resistant and environmental contamination have become issues of anxiety. Thus, there is a need to find alternative antibacterial products instead of relying on a single type of agent. This study developed a method to evaluate the inhibition of antibacterial agents using the fluorescence-labeled recombinant Xcc strain (Xcc-eYFP). The optimization of timelines and parameters for the evaluation of antibacterial agents involved the use of a Spark™ multimode microplate reader. This evaluation and screening method can be applied to bactericides, cocktail-mixture formulations, antagonistic bacteria, and derived metabolites. The results showed that the minimum inhibitory concentration (MIC) of commercial bactericides determined by fluorescence agrees with the MIC values determined by the conventional method. A screened cocktail-mixture bactericide presents more activity than the individual agents during the protective effects. Notably, this method has been further developed in the screening of Xcc-antagonistic bacterial strains. In summary, we provide a validated strategy for screening and evaluation of different antibacterial components for inhibition against Xcc for CBC control and management.
Collapse
Affiliation(s)
- Yunfei Long
- China-USA Citrus Huanglongbing Joint Laboratory, National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou, China
| | - Ruifang Luo
- China-USA Citrus Huanglongbing Joint Laboratory, National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou, China
| | - Zhou Xu
- China-USA Citrus Huanglongbing Joint Laboratory, National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou, China
| | - Shuyuan Cheng
- China-USA Citrus Huanglongbing Joint Laboratory, National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou, China
| | - Ling Li
- China-USA Citrus Huanglongbing Joint Laboratory, National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou, China
| | - Haijie Ma
- College of Agricultural and Food Sciences, Zhejiang A&F University, Hangzhou, China
| | - Minli Bao
- China-USA Citrus Huanglongbing Joint Laboratory, National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou, China
| | - Min Li
- China-USA Citrus Huanglongbing Joint Laboratory, National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou, China
| | - Zhigang Ouyang
- China-USA Citrus Huanglongbing Joint Laboratory, National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou, China
| | - Nian Wang
- Department of Microbiology and Cell Science, Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States
| | - Shuo Duan
- China-USA Citrus Huanglongbing Joint Laboratory, National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou, China
| |
Collapse
|
27
|
Dilarri G, Zamuner CFC, Bacci M, Ferreira H. Evaluation of calcium hydroxide, calcium hypochlorite, peracetic acid, and potassium bicarbonate as citrus fruit sanitizers. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:1739-1747. [PMID: 35531424 PMCID: PMC9046501 DOI: 10.1007/s13197-021-05185-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 06/03/2021] [Accepted: 06/20/2021] [Indexed: 05/03/2023]
Abstract
Xanthomonas citri (X. citri) is a quarentenary plant pathogen and the causal agent of the citrus canker. X. citri forms biofilms and remains fixed on the surface of plant tissues, especially on leaves and fruits. Considering this, all the citrus fruits have to be sanitized before they can be commercialized. NaOCl is the main sanitizer used to decontaminate fruits in the world. Due to its toxicity, treatment with NaOCl is no longer accepted by some Europe Union countries. Therefore, the aim of this work was to evaluate potassium bicarbonate (KHCO3), calcium hydroxide (Ca(OH)2), calcium hypochlorite (Ca(OCl)2) and peracetic acid (CH3CO3H) as alternatives to NaOCl for the sanitization of citrus fruit. By monitoring cell respiration and bacterial growth, we determined that peracetic acid and calcium hypochlorite exhibit bactericidal action against X. citri. Time-response growth curves and membrane integrity analyses showed that peracetic acid and calcium hypochlorite target the bacterial cytoplasmatic membrane, which is probably responsible for cell death in the first minutes of contact. The simulation of the sanitization process of citrus fruit in packinghouses showed that only peracetic acid exhibited a performance comparable to NaOCl. Among the tested compounds, peracetic acid constitutes an efficient and safer alternative to NaOCl.
Collapse
Affiliation(s)
- Guilherme Dilarri
- Department of General and Applied Biology, São Paulo State University (UNESP), Av. 24A, 1515, Bela Vista, Rio Claro, SP 13506-900 Brazil
| | - Caio Felipe Cavicchia Zamuner
- Department of General and Applied Biology, São Paulo State University (UNESP), Av. 24A, 1515, Bela Vista, Rio Claro, SP 13506-900 Brazil
| | - Mauricio Bacci
- Department of General and Applied Biology, São Paulo State University (UNESP), Av. 24A, 1515, Bela Vista, Rio Claro, SP 13506-900 Brazil
| | - Henrique Ferreira
- Department of General and Applied Biology, São Paulo State University (UNESP), Av. 24A, 1515, Bela Vista, Rio Claro, SP 13506-900 Brazil
| |
Collapse
|
28
|
Qi PY, Zhang TH, Feng YM, Wang MW, Shao WB, Zeng D, Jin LH, Wang PY, Zhou X, Yang S. Exploring an Innovative Strategy for Suppressing Bacterial Plant Disease: Excavated Novel Isopropanolamine-Tailored Pterostilbene Derivatives as Potential Antibiofilm Agents. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4899-4911. [PMID: 35437986 DOI: 10.1021/acs.jafc.2c00590] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Bacterial biofilms are the root cause of persistent and chronic phytopathogenic bacterial infections. Therefore, developing novel agrochemicals that target the biofilm of phytopathogenic bacteria has been regarded as an innovative tactic to suppress their invasive infection or decrease bacterial drug resistance. In this study, a series of natural pterostilbene (PTE) derivatives were designed, and their antibacterial potency and antibiofilm ability were assessed. Notably, compound C1 displayed excellent antibacterial potency in vitro, affording an EC50 value of 0.88 μg mL-1 against Xoo (Xanthomonas oryzae pv. oryzae). C1 could significantly reduce biofilm formation and extracellular polysaccharides (EPS). Furthermore, C1 also possessed remarkable inhibitory activity against bacterial extracellular enzymes, pathogenicity, and other virulence factors. Subsequently, pathogenicity experiments were further conducted to verify the above primary outcomes. More importantly, C1 with pesticide additives displayed excellent control efficiency. Given these promising profiles, these pterostilbene derivatives can serve as novel antibiofilm agents to suppress plant pathogenic bacteria.
Collapse
Affiliation(s)
- Pu-Ying Qi
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Tai-Hong Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Yu-Mei Feng
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Ming-Wei Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Wu-Bin Shao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Dan Zeng
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Lin-Hong Jin
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Pei-Yi Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Xiang Zhou
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Song Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| |
Collapse
|
29
|
Duan S, Long Y, Cheng S, Li J, Ouyang Z, Wang N. Rapid Evaluation of the Resistance of Citrus Germplasms Against Xanthomonas citri subsp. citri. PHYTOPATHOLOGY 2022; 112:765-774. [PMID: 34495678 DOI: 10.1094/phyto-04-21-0175-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Xanthomonas citri subsp. citri (Xcc) is the causal agent of citrus bacterial canker (CBC), one of the most devastating citrus diseases. Most commercial citrus varieties are susceptible to CBC. However, some citrus varieties and wild citrus germplasms are CBC resistant and are promising in genetic increases in citrus resistance against CBC. We aimed to evaluate citrus germplasms for resistance against CBC. First, we developed a rapid evaluation method based on enhanced yellow fluorescent protein (eYFP)-labeled Xcc. The results demonstrated that eYFP does not affect the growth and virulence of Xcc. Xcc-eYFP allows measurement of bacterial titers but is more efficient and rapid than the plate colony counting method. Next, we evaluated citrus germplasms collected in China. Based on symptoms and bacterial titers, we identified that two citrus germplasms ('Ichang' papeda and 'Huapi' kumquat) are resistant, whereas eight citrus germplasms ('Chongyi' wild mandarin, 'Mangshan' wild mandarin, 'Ledong' kumquat, 'Dali' citron, 'Yiliang' citron, 'Longyan' kumquat, 'Bawang' kumquat, and 'Daoxian' wild mandarin) are tolerant. In summary, we have developed a rapid evaluation method to test the resistance of citrus plants against CBC. This method was successfully used to identify two highly canker-resistant citrus germplasms and eight citrus germplasms with canker tolerance. These results could be leveraged in traditional breeding contexts or be used to identify canker resistance genes to increase the disease resistance of commercial citrus varieties via biotechnological approaches.
Collapse
Affiliation(s)
- Shuo Duan
- Citrus Huanglongbing Joint Laboratory, National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou, Jiangxi 341000, China
| | - Yunfei Long
- Citrus Huanglongbing Joint Laboratory, National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou, Jiangxi 341000, China
| | - Shuyuan Cheng
- Citrus Huanglongbing Joint Laboratory, National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou, Jiangxi 341000, China
| | - Jinyun Li
- Citrus Research and Education Center, Department of Microbiology and Cell Science, University of Florida, Lake Alfred, FL 33850, U.S.A
| | - Zhigang Ouyang
- Citrus Huanglongbing Joint Laboratory, National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou, Jiangxi 341000, China
| | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, University of Florida, Lake Alfred, FL 33850, U.S.A
| |
Collapse
|
30
|
Shi Y, Yang X, Ye X, Feng J, Cheng T, Zhou X, Liu DX, Xu L, Wang J. The Methyltransferase HemK Regulates the Virulence and Nutrient Utilization of the Phytopathogenic Bacterium Xanthomonas citri Subsp. citri. Int J Mol Sci 2022; 23:ijms23073931. [PMID: 35409293 PMCID: PMC8999716 DOI: 10.3390/ijms23073931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 11/18/2022] Open
Abstract
Citrus canker, caused by the bacterium Xanthomonas citri subsp. citri (Xcc), seriously affects fruit quality and yield, leading to significant economic losses around the world. Understanding the mechanism of Xcc virulence is important for the effective control of Xcc infection. In this report, we investigate the role of a protein named HemK in the regulation of the virulence traits of Xcc. The hemK gene was deleted in the Xcc jx-6 background, and the ΔhemK mutant phenotypically displayed significantly decreased motility, biofilm formation, extracellular enzymes, and polysaccharides production, as well as increased sensitivity to oxidative stress and high temperatures. In accordance with the role of HemK in the regulation of a variety of virulence-associated phenotypes, the deletion of hemK resulted in reduced virulence on citrus plants as well as a compromised hypersensitive response on a non-host plant, Nicotiana benthamiana. These results indicated that HemK is required for the virulence of Xcc. To characterize the regulatory effect of hemK deletion on gene expression, RNA sequencing analysis was conducted using the wild-type Xcc jx-6 strain and its isogenic ΔhemK mutant strain, grown in XVM2 medium. Comparative transcriptome analysis of these two strains revealed that hemK deletion specifically changed the expression of several virulence-related genes associated with the bacterial secretion system, chemotaxis, and quorum sensing, and the expression of various genes related to nutrient utilization including amino acid metabolism, carbohydrate metabolism, and energy metabolism. In conclusion, our results indicate that HemK plays an essential role in virulence, the regulation of virulence factor synthesis, and the nutrient utilization of Xcc.
Collapse
Affiliation(s)
- Yu Shi
- Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (Y.S.); (X.Y.); (X.Y.); (J.F.); (T.C.); (X.Z.); (D.X.L.)
| | - Xiaobei Yang
- Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (Y.S.); (X.Y.); (X.Y.); (J.F.); (T.C.); (X.Z.); (D.X.L.)
| | - Xiaoxin Ye
- Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (Y.S.); (X.Y.); (X.Y.); (J.F.); (T.C.); (X.Z.); (D.X.L.)
| | - Jiaying Feng
- Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (Y.S.); (X.Y.); (X.Y.); (J.F.); (T.C.); (X.Z.); (D.X.L.)
| | - Tianfang Cheng
- Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (Y.S.); (X.Y.); (X.Y.); (J.F.); (T.C.); (X.Z.); (D.X.L.)
| | - Xiaofan Zhou
- Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (Y.S.); (X.Y.); (X.Y.); (J.F.); (T.C.); (X.Z.); (D.X.L.)
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
| | - Ding Xiang Liu
- Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (Y.S.); (X.Y.); (X.Y.); (J.F.); (T.C.); (X.Z.); (D.X.L.)
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
| | - Linghui Xu
- Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (Y.S.); (X.Y.); (X.Y.); (J.F.); (T.C.); (X.Z.); (D.X.L.)
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (L.X.); (J.W.)
| | - Junxia Wang
- Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (Y.S.); (X.Y.); (X.Y.); (J.F.); (T.C.); (X.Z.); (D.X.L.)
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (L.X.); (J.W.)
| |
Collapse
|
31
|
Agronomic Performance of Sweet Orange Genotypes under the Brazilian Humid Subtropical Climate. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8030254] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The diversification of Citrus spp. orchards, for both scion and rootstock genotypes, is essential to prevent outbreaks of insects and diseases, improve yield and fruit quality, and extend harvesting and industrial juice processing. Furthermore, this enables growers to obtain higher off-season profits. Citrus plantings were prohibited in most regions of the state of Paraná in the past due to the spread of citrus canker disease. Therefore, this study aimed to evaluate the agronomic performance of distinct early- and mid-season sweet orange cultivars (C. sinensis (L.) Osbeck) regarding vegetative growth, fruit quality, and yield under the Brazilian humid subtropical climate in order to select new alternatives of sweet orange for the industrial and fresh fruit markets. The experimental orchard was planted in 2012 with 15 sweet orange cultivars (early-maturing: Bahia Cabula, Diva, Cadenera, Marrs, Midsweet, Paulista, Rubi, and Westin; mid-season maturing: Berna Peret, Jaffa, Khalily White, Fukuhara, Seleta do Rio, Seleta Tardia, and Shamouti) grafted on Rangpur lime (C. limonia (L.) Osbeck). The experimental design was randomized blocks with three replicates and five trees per plot, analyzed between each maturation group. Data were submitted to analysis of variance followed by Tukey’s test (p ≤ 0.05). Regarding the early-season cultivars, Diva had the tallest trees with largest canopy diameter and volume, differing from Marrs, which had the smallest trees. Shamouti and Khalily White trees were greatly different from all other mid-season cultivars and produced low fruit load over the evaluated period. The early-season Midsweet scored the highest yield and technological index, similar to the mid-season Berna Peret, producing fruits of high juice quality. These genotypes are more effective under the current situation faced by the citrus industry, as the economic life of orchards has been reduced due huanglongbing (HLB). Altogether, Midsweet and Berna Peret genotypes, previously reported as being less susceptible to citrus canker under the same soil–climate condition, are precocious and exhibit higher agronomic potential to be planted in humid subtropical climates, including Brazil and other similar areas around the world.
Collapse
|
32
|
Jia H, Omar AA, Orbović V, Wang N. Biallelic Editing of the LOB1 Promoter via CRISPR/Cas9 Creates Canker-Resistant 'Duncan' Grapefruit. PHYTOPATHOLOGY 2022; 112:308-314. [PMID: 34213958 DOI: 10.1094/phyto-04-21-0144-r] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Citrus canker caused by Xanthomonas citri subsp. citri is one of the most devastating citrus diseases worldwide. Generating disease-resistant citrus varieties is considered one of the most efficient and environmentally friendly measures for controlling canker. X. citri subsp. citri causes canker symptoms by inducing the expression of canker susceptibility gene LOB1 via PthA4, a transcription activator-like (TAL) effector, by binding to the effector binding element (EBE) in the promoter region. In previous studies, canker-resistant plants were generated by mutating the coding region or the EBE of LOB1. However, homozygous or biallelic canker-resistant plants have not been generated for commercial citrus varieties, such as grapefruit (Citrus paradisi), which usually contain two alleles of LOB1 and thus, have two types of LOB1 promoter sequences: TI LOBP and TII LOBP. Two different sgRNAs were used to target both EBE types. Both 35S promoter and Yao promoter were used to drive the expression of SpCas9p to modify EBEPthA4-LOBP in grapefruit. Using 'Duncan' grapefruit epicotyls as explants, 19 genome-edited grapefruit plants were generated with one biallelic mutant line (#DunYao7). X. citri subsp. citri caused canker symptoms on wild-type and nonbiallelic mutant plants but not on #DunYao7. XccPthA4 mutant containing the designer TAL effector dLOB1.5, which recognizes a conserved sequence in both wild-type and #DunYao7, caused canker symptoms on both wild-type and #DunYao7. No off-target mutations were detected in #DunYao7. This study represents the first time that CRISPR-mediated genome editing has been successfully used to generate disease-resistant plants for 'Duncan' grapefruit, paving the way for using disease-resistant varieties to control canker.
Collapse
Affiliation(s)
- Hongge Jia
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred 33850, U.S.A
| | - Ahmad A Omar
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred 33850, U.S.A
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt
| | - Vladimir Orbović
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred 33850, U.S.A
| | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred 33850, U.S.A
| |
Collapse
|
33
|
Jia H, Wang Y, Su H, Huang X, Wang N. LbCas12a-D156R Efficiently Edits LOB1 Effector Binding Elements to Generate Canker-Resistant Citrus Plants. Cells 2022; 11:cells11030315. [PMID: 35159125 PMCID: PMC8834406 DOI: 10.3390/cells11030315] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/07/2022] [Accepted: 01/14/2022] [Indexed: 12/17/2022] Open
Abstract
Citrus canker caused by Xanthomonas citri subsp. citri (Xcc) is an economically important disease in most citrus production regions worldwide. Xcc secretes a transcriptional activator like effector (TALE) PthA4 to bind to the effector binding elements (EBEs) in the promoter region of canker susceptibility gene LOB1 to activate its expression, which in turn causes canker symptoms. Editing the EBE region with Cas9/gRNA has been used to generate canker resistant citrus plants. However, most of the EBE-edited lines generated contain indels of 1–2 bp, which has higher possibility to be overcome by PthA4 adaptation. The adaptation capacity of TALEs inversely correlates with the number of mismatches with the EBE. LbCas12a/crRNA is known to generate longer deletion than Cas9. In this study, we used a temperature-tolerant and more efficient LbCas12a variant (ttLbCas12a), harboring the single substitution D156R, to modify the EBE region of LOB1. We first constructed GFP-p1380N-ttLbCas12a:LOBP, which was shown to be functional via Xcc-facilitated agroinfiltration in Pummelo (Citrus maxima) leaves. Subsequently, we stably expressed ttLbCas12a:LOBP in Pummelo. Eight transgenic lines were generated, with seven lines showing 100% mutations of the EBE, among which one line is homozygous. The EBE-edited lines had the ttLbCas12a-mediated deletions of up to 10 bp. Importantly, the seven lines were canker resistant and no off-targets were detected. In summary, ttLbCas12a can be used to efficiently generate biallelic/homozygous citrus mutant lines with short deletions, thus providing a useful tool for the functional study and breeding of citrus.
Collapse
|
34
|
Huang X, Wang Y, Wang N. Highly Efficient Generation of Canker-Resistant Sweet Orange Enabled by an Improved CRISPR/Cas9 System. FRONTIERS IN PLANT SCIENCE 2022; 12:769907. [PMID: 35087548 PMCID: PMC8787272 DOI: 10.3389/fpls.2021.769907] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/09/2021] [Indexed: 06/02/2023]
Abstract
Sweet orange (Citrus sinensis) is the most economically important species for the citrus industry. However, it is susceptible to many diseases including citrus bacterial canker caused by Xanthomonas citri subsp. citri (Xcc) that triggers devastating effects on citrus production. Conventional breeding has not met the challenge to improve disease resistance of sweet orange due to the long juvenility and other limitations. CRISPR-mediated genome editing has shown promising potentials for genetic improvements of plants. Generation of biallelic/homozygous mutants remains difficult for sweet orange due to low transformation rate, existence of heterozygous alleles for target genes, and low biallelic editing efficacy using the CRISPR technology. Here, we report improvements in the CRISPR/Cas9 system for citrus gene editing. Based on the improvements we made previously [dicot codon optimized Cas9, tRNA for multiplexing, a modified sgRNA scaffold with high efficiency, citrus U6 (CsU6) to drive sgRNA expression], we further improved our CRISPR/Cas9 system by choosing superior promoters [Cestrum yellow leaf curling virus (CmYLCV) or Citrus sinensis ubiquitin (CsUbi) promoter] to drive Cas9 and optimizing culture temperature. This system was able to generate a biallelic mutation rate of up to 89% for Carrizo citrange and 79% for Hamlin sweet orange. Consequently, this system was used to generate canker-resistant Hamlin sweet orange by mutating the effector binding element (EBE) of canker susceptibility gene CsLOB1, which is required for causing canker symptoms by Xcc. Six biallelic Hamlin sweet orange mutant lines in the EBE were generated. The biallelic mutants are resistant to Xcc. Biallelic mutation of the EBE region abolishes the induction of CsLOB1 by Xcc. This study represents a significant improvement in sweet orange gene editing efficacy and generating disease-resistant varieties via CRISPR-mediated genome editing. This improvement in citrus genome editing makes genetic studies and manipulations of sweet orange more feasible.
Collapse
|
35
|
Costa J, Pothier JF, Boch J, Stefani E, Jacques M, Catara V, Koebnik R. Integrating science on Xanthomonadaceae for sustainable plant disease management in Europe. MOLECULAR PLANT PATHOLOGY 2021; 22:1461-1463. [PMID: 34755430 PMCID: PMC8578814 DOI: 10.1111/mpp.13150] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 09/28/2021] [Accepted: 09/28/2021] [Indexed: 05/27/2023]
Affiliation(s)
- Joana Costa
- Centre for Functional EcologyDepartment of Life SciencesUniversity of CoimbraCoimbraPortugal
- Laboratory for PhytopathologyInstituto Pedro NunesCoimbraPortugal
| | - Joël F. Pothier
- Institute for Natural Resource SciencesEnvironmental Genomics and Systems Biology Research GroupZurich University of Applied SciencesWädenswilSwitzerland
| | - Jens Boch
- Department of Plant BiotechnologyInstitute of Plant GeneticsLeibniz Universität HannoverHannoverGermany
| | - Emilio Stefani
- Department of Life SciencesUniversity of Modena and Reggio EmiliaReggio EmiliaItaly
| | | | - Vittoria Catara
- Department of Agriculture, Food and EnvironmentUniversity of CataniaCataniaItaly
| | - Ralf Koebnik
- Plant Health Institute of MontpellierUniversity of Montpellier, CIRAD, INRAE, Institut AgroIRDMontpellierFrance
| |
Collapse
|
36
|
Plasmids do not consistently stabilize cooperation across bacteria but may promote broad pathogen host-range. Nat Ecol Evol 2021; 5:1624-1636. [PMID: 34750532 PMCID: PMC7612097 DOI: 10.1038/s41559-021-01573-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 09/27/2021] [Indexed: 11/24/2022]
Abstract
Horizontal gene transfer via plasmids could favour cooperation in bacteria, because transfer of a cooperative gene turns non-cooperative cheats into cooperators. This hypothesis has received support from theoretical, genomic and experimental analyses. In contrast, we show here, with a comparative analysis across 51 diverse species, that genes for extracellular proteins, which are likely to act as cooperative ‘public goods’, were not more likely to be carried on either: (i) plasmids compared to chromosomes; or (ii) plasmids that transfer at higher rates. Our results were supported by theoretical modelling which showed that while horizontal gene transfer can help cooperative genes initially invade a population, it has less influence on the longer-term maintenance of cooperation. Instead, we found that genes for extracellular proteins were more likely to be on plasmids when they coded for pathogenic virulence traits, in pathogenic bacteria with a broad host-range.
Collapse
|
37
|
Shimada T, Endo T, Fujii H, Rodríguez A, Yoshioka T, Peña L, Omura M. Biological and molecular characterization of linalool-mediated field resistance against Xanthomonas citri subsp. citri in citrus trees. TREE PHYSIOLOGY 2021; 41:2171-2188. [PMID: 33960371 DOI: 10.1093/treephys/tpab063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
The biological and molecular traits of the Ponkan mandarin (Citrus reticulata Blanco) were characterized in an investigation of the mechanisms of field resistance against citrus canker disease caused by the bacterial pathogen, Xanthomonas citri subsp. citri (Xcc). Various conventional citrus varieties that show diverse responses to Xcc were investigated, and the temporal changes in Xcc titer in response to linalool concentrations among the varieties revealed differences in Xcc proliferation trends in the inoculated leaves of the immune, field-resistant and susceptible varieties. In addition, increased linalool accumulation was inversely related to Xcc titers in the field-resistant varieties, which is likely caused by host--pathogen interactions. Quantitative trait locus (QTL) analysis using the F1 population of the resistant Ponkan mandarin and susceptible 'Harehime' ('E-647' × 'Miyagawa-wase') cultivar revealed that linalool accumulation and Xcc susceptibility QTLs overlapped. These results provide novel insights into the molecular mechanisms of linalool-mediated field resistance to Xcc, and suggest that high linalool concentrations in leaves has an antibacterial effect and becomes a candidate-biomarker target for citrus breeding to produce seedlings with linalool-mediated field resistance against Xcc.
Collapse
Affiliation(s)
- Takehiko Shimada
- Department of Citriculture, Institute of Fruit Tree and Tea Science (NIFTS), National Agriculture and Bio-oriented Research Organization (NARO), Okitsu nakachou 485-6, Shimizu-ku, Shizuoka 424-0292, Japan
| | - Tomoko Endo
- Department of Citriculture, Institute of Fruit Tree and Tea Science (NIFTS), National Agriculture and Bio-oriented Research Organization (NARO), Okitsu nakachou 485-6, Shimizu-ku, Shizuoka 424-0292, Japan
| | - Hiroshi Fujii
- Department of Citriculture, Institute of Fruit Tree and Tea Science (NIFTS), National Agriculture and Bio-oriented Research Organization (NARO), Okitsu nakachou 485-6, Shimizu-ku, Shizuoka 424-0292, Japan
| | - Ana Rodríguez
- Fundecitrus, Av. Dr. Adhemar de Barros Pereira, 201.14807-040 Vila Melhado, Araraquara, Sao Paulo, Brazil
- Department of Biotechnology and Plant Improvement of Cultivated Species, Instituto de Biologia Molecular y Celular de Plantas (IBMCP/CSIC-UPV), Ingeniero Fausto Elio, Valencia 46022, Spain
| | - Terutaka Yoshioka
- Department of Citriculture, Institute of Fruit Tree and Tea Science (NIFTS), National Agriculture and Bio-oriented Research Organization (NARO), Okitsu nakachou 485-6, Shimizu-ku, Shizuoka 424-0292, Japan
| | - Leandro Peña
- Fundecitrus, Av. Dr. Adhemar de Barros Pereira, 201.14807-040 Vila Melhado, Araraquara, Sao Paulo, Brazil
- Department of Biotechnology and Plant Improvement of Cultivated Species, Instituto de Biologia Molecular y Celular de Plantas (IBMCP/CSIC-UPV), Ingeniero Fausto Elio, Valencia 46022, Spain
| | - Mitsuo Omura
- Faculty of Agriculture, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka 422-8529, Japan
| |
Collapse
|
38
|
Zhang Y, Andrade MO, Wang W, Teper D, Romeo T, Wang N. Examination of the Global Regulon of CsrA in Xanthomonas citri subsp. citri Using Quantitative Proteomics and Other Approaches. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:1236-1249. [PMID: 34282945 DOI: 10.1094/mpmi-05-21-0113-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The RNA-binding protein CsrA is a global posttranscriptional regulator and controls many physiological processes and virulence traits. Deletion of csrA caused loss of virulence, reduced motility and production of xanthan gum and substantial increase in glycogen accumulation, as well as enhanced bacterial aggregation and cell adhesion in Xanthomonas spp. How CsrA controls these traits is poorly understood. In this study, an isobaric tag for relative and absolute quantitation (iTRAQ)-based proteomic analysis was conducted to compare the protein profile of wild-type strain Xanthomonas citri subsp. citri and the isogenic ΔcsrA strain. A total of 2,374 proteins were identified, and 284 were considered to be differentially expressed proteins (DEPS), among which 151 proteins were up-regulated and 133 were down-regulated in the ΔcsrA strain with respect to the wild-type strain. Enrichment analysis and a protein-protein interaction network analysis showed that CsrA regulates bacterial secretion systems, flagella, and xanthan gum biosynthesis. Several proteins encoded by the gumB operon were down-regulated, whereas proteins associated with flagellum assembly and the type IV secretion system were up-regulated in the ΔcsrA strain relative to the Xcc306 strain. These results were confirmed by β-glucuronidase assay or Western blot. RNA secondary structure prediction and a gel-shift assay indicated that CsrA binds to the Shine-Dalgarno sequence of virB5. In addition, the iTRAQ analysis identified 248 DEPs that were not previously identified in transcriptome analyses. Among them, CsrA regulates levels of eight regulatory proteins (ColR, GacA, GlpR, KdgR, MoxR, PilH, RecX, and YgiX), seven TonB-dependent receptors, four outer membrane proteins, and two ferric enterobactin receptors. Taken together, this study greatly expands understanding of the regulatory network of CsrA in X. citri subsp. citri.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Yanan Zhang
- Citrus Research and Education Center, Department of Microbiology and Cell Sciences, University of Florida, 700 Experiment Station Road, Lake Alfred FL 33850, U.S.A
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan, 655011, China
| | - Maxuel O Andrade
- Citrus Research and Education Center, Department of Microbiology and Cell Sciences, University of Florida, 700 Experiment Station Road, Lake Alfred FL 33850, U.S.A
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Centre for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
| | - Wenting Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Sciences, University of Florida, 700 Experiment Station Road, Lake Alfred FL 33850, U.S.A
- Department of Plant Pathology, University of Florida, Gainesville FL 32611, U.S.A
| | - Doron Teper
- Citrus Research and Education Center, Department of Microbiology and Cell Sciences, University of Florida, 700 Experiment Station Road, Lake Alfred FL 33850, U.S.A
| | - Tony Romeo
- Department of Microbiology and Cell Sciences, University of Florida, Gainesville FL 32611, U.S.A
| | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Sciences, University of Florida, 700 Experiment Station Road, Lake Alfred FL 33850, U.S.A
| |
Collapse
|
39
|
Huang CJ, Wu TL, Zheng PX, Ou JY, Ni HF, Lin YC. Comparative Genomic Analysis Uncovered Evolution of Pathogenicity Factors, Horizontal Gene Transfer Events, and Heavy Metal Resistance Traits in Citrus Canker Bacterium Xanthomonas citri subsp. citri. Front Microbiol 2021; 12:731711. [PMID: 34557177 PMCID: PMC8453159 DOI: 10.3389/fmicb.2021.731711] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/18/2021] [Indexed: 12/30/2022] Open
Abstract
Background: Worldwide citrus production is severely threatened by Asiatic citrus canker which is caused by the proteobacterium Xanthomonas citri subsp. citri. Foliar sprays of copper-based bactericides are frequently used to control plant bacterial diseases. Despite the sequencing of many X. citri strains, the genome diversity and distribution of genes responsible for metal resistance in X. citri subsp. citri strains from orchards with different management practices in Taiwan are not well understood. Results: The genomes of three X. citri subsp. citri strains including one copper-resistant strain collected from farms with different management regimes in Taiwan were sequenced by Illumina and Nanopore sequencing and assembled into complete circular chromosomes and plasmids. CRISPR spoligotyping and phylogenomic analysis indicated that the three strains were located in the same phylogenetic lineages and shared ∼3,000 core-genes with published X. citri subsp. citri strains. These strains differed mainly in the CRISPR repeats and pathogenicity-related plasmid-borne transcription activator-like effector (TALE)-encoding pthA genes. The copper-resistant strain has a unique, large copper resistance plasmid due to an unusual ∼40 kbp inverted repeat. Each repeat contains a complete set of the gene cluster responsible for copper and heavy metal resistance. Conversely, the copper sensitive strains carry no metal resistance genes in the plasmid. Through comparative analysis, the origin and evolution of the metal resistance clusters was resolved. Conclusion: Chromosomes remained constant among three strains collected in Taiwan, but plasmids likely played an important role in maintaining pathogenicity and developing bacterial fitness in the field. The evolution of pathogenicity factors and horizontal gene transfer events were observed in the three strains. These data suggest that agricultural management practices could be a potential trigger for the evolution of citrus canker pathogens. The decrease in the number of CRISPR repeats and pthA genes might be the result of adaptation to a less stressful environment. The metal resistance genes in the copper resistant X. citri strain likely originated from the Mauritian strain not the local copper-resistant X. euvesicatoria strain. This study highlights the importance of plasmids as 'vehicles' for exchanging genetic elements between plant pathogenic bacteria and contributing to bacterial adaptation to the environment.
Collapse
Affiliation(s)
- Chien-Jui Huang
- Department of Plant Medicine, National Chiayi University, Chiayi, Taiwan
| | - Ting-Li Wu
- Biotechnology Center in Southern Taiwan, Agricultural Biotechnology Research Center, Academia Sinica, Tainan, Taiwan
| | - Po-Xing Zheng
- Biotechnology Center in Southern Taiwan, Agricultural Biotechnology Research Center, Academia Sinica, Tainan, Taiwan
| | - Jheng-Yang Ou
- Biotechnology Center in Southern Taiwan, Agricultural Biotechnology Research Center, Academia Sinica, Tainan, Taiwan
| | - Hui-Fang Ni
- Department of Plant Protection, Chiayi Agricultural Experiment Station, Taiwan Agricultural Research Institute, Chiayi, Taiwan
| | - Yao-Cheng Lin
- Biotechnology Center in Southern Taiwan, Agricultural Biotechnology Research Center, Academia Sinica, Tainan, Taiwan
| |
Collapse
|
40
|
Iantas J, Savi DC, Schibelbein RDS, Noriler SA, Assad BM, Dilarri G, Ferreira H, Rohr J, Thorson JS, Shaaban KA, Glienke C. Endophytes of Brazilian Medicinal Plants With Activity Against Phytopathogens. Front Microbiol 2021; 12:714750. [PMID: 34539608 PMCID: PMC8442585 DOI: 10.3389/fmicb.2021.714750] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/03/2021] [Indexed: 12/14/2022] Open
Abstract
Plant diseases caused by phytopathogens are responsible for significant crop losses worldwide. Resistance induction and biological control have been exploited in agriculture due to their enormous potential. In this study, we investigated the antimicrobial potential of endophytic fungi of leaves and petioles of medicinal plants Vochysia divergens and Stryphnodendron adstringens located in two regions of high diversity in Brazil, Pantanal, and Cerrado, respectively. We recovered 1,304 fungal isolates and based on the characteristics of the culture, were assigned to 159 phenotypes. One isolate was selected as representative of each phenotype and studied for antimicrobial activity against phytopathogens. Isolates with better biological activities were identified based on DNA sequences and phylogenetic analyzes. Among the 159 representative isolates, extracts from 12 endophytes that inhibited the mycelial growth (IG) of Colletotrichum abscissum (≥40%) were selected to expand the antimicrobial analysis. The minimum inhibitory concentrations (MIC) of the extracts were determined against citrus pathogens, C. abscissum, Phyllosticta citricarpa and Xanthomonas citri subsp. citri and the maize pathogen Fusarium graminearum. The highest activity against C. abscissum were from extracts of Pseudofusicoccum stromaticum CMRP4328 (IG: 83% and MIC: 40 μg/mL) and Diaporthe vochysiae CMRP4322 (IG: 75% and MIC: 1 μg/mL), both extracts also inhibited the development of post-bloom fruit drop symptoms in citrus flowers. The extracts were promising in inhibiting the mycelial growth of P. citricarpa and reducing the production of pycnidia in citrus leaves. Among the isolates that showed activity, the genus Diaporthe was the most common, including the new species D. cerradensis described in this study. In addition, high performance liquid chromatography, UV detection, and mass spectrometry and thin layer chromatography analyzes of extracts produced by endophytes that showed high activity, indicated D. vochysiae CMRP4322 and P. stromaticum CMRP4328 as promising strains that produce new bioactive natural products. We report here the capacity of endophytic fungi of medicinal plants to produce secondary metabolites with biological activities against phytopathogenic fungi and bacteria. The description of the new species D. cerradensis, reinforces the ability of medicinal plants found in Brazil to host a diverse group of fungi with biotechnological potential.
Collapse
Affiliation(s)
- Jucélia Iantas
- Postgraduate Program of Microbiology, Parasitology and Pathology, Department of Pathology, Federal University of Paraná, Curitiba, Brazil
| | - Daiani Cristina Savi
- Department of Biomedicine, Centro Universitário Católica de Santa Catarina, Joinville, Brazil
- Postgraduate Program of Genetics, Federal University of Paraná, Curitiba, Brazil
| | - Renata da Silva Schibelbein
- Postgraduate Program of Microbiology, Parasitology and Pathology, Department of Pathology, Federal University of Paraná, Curitiba, Brazil
| | - Sandriele Aparecida Noriler
- Postgraduate Program of Microbiology, Parasitology and Pathology, Department of Pathology, Federal University of Paraná, Curitiba, Brazil
| | | | - Guilherme Dilarri
- Department of General and Applied Biology, Biosciences Institute, State University of São Paulo, Rio Claro, Brazil
| | - Henrique Ferreira
- Department of General and Applied Biology, Biosciences Institute, State University of São Paulo, Rio Claro, Brazil
| | - Jürgen Rohr
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, United States
| | - Jon S. Thorson
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, United States
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, KY, United States
| | - Khaled A. Shaaban
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, United States
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, KY, United States
| | - Chirlei Glienke
- Postgraduate Program of Microbiology, Parasitology and Pathology, Department of Pathology, Federal University of Paraná, Curitiba, Brazil
- Postgraduate Program of Genetics, Federal University of Paraná, Curitiba, Brazil
| |
Collapse
|
41
|
Teper D, Xu J, Pandey SS, Wang N. PthAW1, a Transcription Activator-Like Effector of Xanthomonas citri subsp. citri, Promotes Host-Specific Immune Responses. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:1033-1047. [PMID: 33970668 DOI: 10.1094/mpmi-01-21-0026-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Citrus canker disease caused by Xanthomonas citri subsp. citri is one of the most destructive diseases in citrus. X. citri subsp. citri pathotypes display different host ranges. X. citri subsp. citri strain A (XccA) causes canker disease in most commercial citrus varieties, whereas strain AW (XccAW), which is genetically similar to XccA, infects only lime and alemow. Understanding the mechanism that determines the host range of pathogens is critical to investigating and utilizing host resistance. We hypothesized that XccAW would undergo mutations in genes that restrict its host range when artificially inoculated into incompatible citrus varieties. To test this hypothesis, we used an experimental evolution approach to identify phenotypic traits and genetic loci associated with the adaptation of XccAW to incompatible sweet orange. Repeated inoculation and reisolation cycles improved the ability of three independent XccAW strains to colonize sweet orange. Adapted XccAW strains displayed increased expression of type III secretion system and effector genes. Genome sequencing analysis indicated that two of the adapted strains harbored mutations in pthAW1, a transcription activator-like effector (TALE) gene, that corresponded to the removal of one or two repeats from the central DNA-binding repeat region. Introduction of the original but not the adapted pthAW1 variants into XccA abolished its ability to cause canker symptoms in sweet orange, Meyer lemon, and clementine but not in other XccAW-resistant citrus varieties. The original pthAW1, when expressed in XccA, induced ion leakage and the expression of pathogenesis-related genes but had no effect on CsLOB1 expression in sweet orange. Our study has identified a novel host-specific avirulence TALE and demonstrated active adaptive rearrangements of the TALE repeat array during host adaptation.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Doron Teper
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, 700 Experiment Station Road, Lake Alfred, FL 33850, U.S.A
| | - Jin Xu
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, 700 Experiment Station Road, Lake Alfred, FL 33850, U.S.A
| | - Sheo Shankar Pandey
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, 700 Experiment Station Road, Lake Alfred, FL 33850, U.S.A
| | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, 700 Experiment Station Road, Lake Alfred, FL 33850, U.S.A
| |
Collapse
|
42
|
Gupta PK, Balyan HS, Gautam T. SWEET genes and TAL effectors for disease resistance in plants: Present status and future prospects. MOLECULAR PLANT PATHOLOGY 2021; 22:1014-1026. [PMID: 34076324 PMCID: PMC8295518 DOI: 10.1111/mpp.13075] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/13/2021] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
SWEET genes encode sugar transporter proteins and often function as susceptibility (S) genes. Consequently, the recessive alleles of these SWEET genes provide resistance. This review summarizes the available literature on the molecular basis of the role of SWEET genes (as S genes) in the host and corresponding transcription activator-like effectors (TALEs) secreted by the pathogen. The review has four major sections, which follow a brief introduction: The first part gives some details about the occurrence and evolution of SWEET genes in approximately 30 plant species; the second part gives some details about systems where (a) SWEET genes with and without TALEs and (b) TALEs without SWEET genes cause different diseases; the third part summarizes the available information about TALEs along with interfering/truncated TALEs secreted by the pathogens; this section also summarizes the available information on effector-binding elements (EBEs) available in the promoters of either the SWEET genes or the Executor R genes; the code that is used for binding of TALEs to EBEs is also described in this section; the fourth part gives some details about the available approaches that are being used or can be used in the future for exploiting SWEET genes for developing disease-resistant cultivars. The review concludes with a section giving conclusions and future possibilities of using SWEET genes for developing disease-resistant cultivars using different approaches, including conventional breeding and genome editing.
Collapse
Affiliation(s)
| | | | - Tinku Gautam
- Department of Genetics and Plant BreedingCCS UniversityMeerutIndia
| |
Collapse
|
43
|
Behlau F, Belasque J, Leite RP, Filho AB, Gottwald TR, Graham JH, Scandelai LHM, Primiano IV, Bassanezi RB, Ayres AJ. Relative Contribution of Windbreak, Copper Sprays, and Leafminer Control for Citrus Canker Management and Prevention of Crop Loss in Sweet Orange Trees. PLANT DISEASE 2021; 105:2097-2105. [PMID: 33373290 DOI: 10.1094/pdis-10-20-2153-re] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The management of citrus canker, caused by Xanthomonas citri subsp. citri, has been widely studied in endemic areas because of the importance of the disease in several citrus-producing countries. A set of control measures is well established, but no study has investigated the efficiency of each measure individually and their combination for disease suppression. This study comprised a 3-year field study to assess the relative contribution of three measures for the control of citrus canker and reduction of crop losses. Windbreak (Wb), copper sprays (Cu), and leafminer control (Lc) were assessed in eight different combinations in a split-split plot design. The orchard was composed of 'Valencia' sweet orange trees grafted onto 'Rangpur' lime. Casuarina cunninghamiana trees were used as Wb. Cu and Lc sprays were performed every 21 days throughout the year. Individually, Cu showed the highest contribution for canker control, followed by Wb. Lc had no effect on reducing citrus canker. Wb+Cu showed the highest efficiency for control of the disease. This combination reduced the incidence of diseased trees by approximately 60%, and the incidence of diseased leaves and fruit by ≥90% and increased the yield in 2.0- to 2.6-fold in comparison with the unmanaged plots. Cu sprays were important for reducing disease incidence and crop losses, whereas Wb had an additional contribution in minimizing the incidence of cankered, non-marketable fruit. The results indicated that the adoption of these measures of control may depend on the characteristics of the orchard and destination of the production.
Collapse
Affiliation(s)
- Franklin Behlau
- Departamento de Pesquisa e Desenvolvimento, Fundo de Defesa da Citricultura (Fundecitrus), Araraquara, São Paulo 14807-040, Brazil
| | - José Belasque
- Departamento de Fitopatologia e Nematologia, Escola Superior de Agricultura "Luiz de Queiroz," Universidade de São Paulo, Piracicaba, São Paulo 13416-382, Brazil
| | - Rui P Leite
- Laboratório de Bacteriologia, Instituto de Desenvolvimento Rural do Paraná, Londrina, Paraná 86047-902, Brazil
| | - Armando Bergamin Filho
- Departamento de Fitopatologia e Nematologia, Escola Superior de Agricultura "Luiz de Queiroz," Universidade de São Paulo, Piracicaba, São Paulo 13416-382, Brazil
| | - Timothy R Gottwald
- United States Department of Agriculture, Agricultural Research Service, Fort Pierce, FL 34945, U.S.A
| | - James H Graham
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850, U.S.A
| | - Luis H M Scandelai
- Departamento de Pesquisa e Desenvolvimento, Fundo de Defesa da Citricultura (Fundecitrus), Araraquara, São Paulo 14807-040, Brazil
| | - Isabela V Primiano
- Departamento de Pesquisa e Desenvolvimento, Fundo de Defesa da Citricultura (Fundecitrus), Araraquara, São Paulo 14807-040, Brazil
| | - Renato B Bassanezi
- Departamento de Pesquisa e Desenvolvimento, Fundo de Defesa da Citricultura (Fundecitrus), Araraquara, São Paulo 14807-040, Brazil
| | - Antonio J Ayres
- Departamento de Pesquisa e Desenvolvimento, Fundo de Defesa da Citricultura (Fundecitrus), Araraquara, São Paulo 14807-040, Brazil
| |
Collapse
|
44
|
Ribeiro C, Xu J, Teper D, Lee D, Wang N. The transcriptome landscapes of citrus leaf in different developmental stages. PLANT MOLECULAR BIOLOGY 2021; 106:349-366. [PMID: 33871796 DOI: 10.1007/s11103-021-01154-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
The temporal expression profiles of citrus leaves explain the sink-source transition of immature leaves to mature leaves and provide knowledge regarding the differential responses of mature and immature leaves to biotic stress such as citrus canker and Asian citrus psyllid (Diaphorina citri). Citrus is an important fruit crop worldwide. Different developmental stages of citrus leaves are associated with distinct features, such as differences in susceptibilities to pathogens and insects, as well as photosynthetic capacity. Here, we investigated the mechanisms underlying these distinctions by comparing the gene expression profiles of mature and immature citrus leaves. Immature (stages V3 and V4), transition (stage V5), and mature (stage V6) Citrus sinensis leaves were chosen for RNA-seq analyses. Carbohydrate biosynthesis, photosynthesis, starch biosynthesis, and disaccharide metabolic processes were enriched among the upregulated differentially expressed genes (DEGs) in the V5 and V6 stages compared with that in the V3 and V4 stages. Glucose level was found to be higher in V5 and V6 than in V3 and V4. Among the four stages, the largest number of DEGs between contiguous stages were identified between V5 and V4, consistent with a change from sink to source, as well as with the sucrose and starch quantification data. The differential expression profiles related to cell wall synthesis, secondary metabolites such as flavonoids and terpenoids, amino acid biosynthesis, and immunity between immature and mature leaves may contribute to their different responses to Asian citrus psyllid infestation. The expression data suggested that both the constitutive and induced gene expression of immunity-related genes plays important roles in the greater resistance of mature leaves against Xanthomonas citri compared with immature leaves. The gene expression profiles in the different stages can help identify stage-specific promoters for the manipulation of the expression of citrus traits according to the stage. The temporal expression profiles explain the sink-source transition of immature leaves to mature leaves and provide knowledge regarding the differential responses to biotic stress.
Collapse
Affiliation(s)
- Camila Ribeiro
- Citrus Research & Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL, 33850, USA
| | - Jin Xu
- Citrus Research & Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL, 33850, USA
| | - Doron Teper
- Citrus Research & Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL, 33850, USA
| | - Donghwan Lee
- Citrus Research & Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL, 33850, USA
| | - Nian Wang
- Citrus Research & Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL, 33850, USA.
| |
Collapse
|
45
|
Effects of the Quinone Oxidoreductase WrbA on Escherichia coli Biofilm Formation and Oxidative Stress. Antioxidants (Basel) 2021; 10:antiox10060919. [PMID: 34204135 PMCID: PMC8229589 DOI: 10.3390/antiox10060919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/30/2021] [Accepted: 06/02/2021] [Indexed: 12/31/2022] Open
Abstract
The effects of natural compounds on biofilm formation have been extensively studied, with the goal of identifying biofilm formation antagonists at sub-lethal concentrations. Salicylic and cinnamic acids are some examples of these compounds that interact with the quinone oxidoreductase WrbA, a potential biofilm modulator and an antibiofilm compound biomarker. However, WrbA’s role in biofilm development is still poorly understood. To investigate the key roles of WrbA in biofilm maturation and oxidative stress, Escherichia coli wild-type and ∆wrbA mutant strains were used. Furthermore, we reported the functional validation of WrbA as a molecular target of salicylic and cinnamic acids. The lack of WrbA did not impair planktonic growth, but rather affected the biofilm formation through a mechanism that depends on reactive oxygen species (ROS). The loss of WrbA function resulted in an ROS-sensitive phenotype that showed reductions in biofilm-dwelling cells, biofilm thickness, matrix polysaccharide content, and H2O2 tolerance. Endogenous oxidative events in the mutant strain generated a stressful condition to which the bacterium responded by increasing the catalase activity to compensate for the lack of WrbA. Cinnamic and salicylic acids inhibited the quinone oxidoreductase activity of purified recombinant WrbA. The effects of these antibiofilm molecules on WrbA function was proven for the first time.
Collapse
|
46
|
Caccalano MN, Dilarri G, Zamuner CFC, Domingues DS, Ferreira H. Hexanoic acid: a new potential substitute for copper-based agrochemicals against citrus canker. J Appl Microbiol 2021; 131:2488-2499. [PMID: 34008224 DOI: 10.1111/jam.15125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/29/2021] [Accepted: 04/11/2021] [Indexed: 01/16/2023]
Abstract
AIMS The aim of the study is to evaluate hexanoic acid (HA) as an alternative to manage citrus canker. METHODS AND RESULTS The minimal growth inhibitory concentration of HA against Xanthomonas citri subsp. citri was determined at 2·15 mmol l-1 using a respiratory activity assay. Growth curves at different pH values showed that growth inhibition was not due to media acidification induced by HA. The germination rate and root elongation of Lactuca sativa seeds exposed to different concentrations of HA (varying from 0·86 to 5·16 mmol l-1 ) were assessed to screen for phytotoxicity. The acid exhibited low phytotoxicity for L. sativa at 1·29 and 2·58 mmol l-1 . To evaluate the ability of HA to protect citrus against X. citri infection, leaves of Citrus sinensis were sprayed with the acid and subsequently challenged with X. citri. HA at 3·44 mmol l-1 was able to protect citrus against infection, showing a reduction of three orders of magnitude in the number of citrus canker lesions per cm2 when compared to the untreated negative control. CONCLUSION HA is a potential alternative to copper for citrus canker management. SIGNIFICANCE AND IMPACT OF THE STUDY HA inhibits X. citri growth, exhibits low phytotoxicity and is an alternative to copper for the protection of citrus plants against bacterial infection.
Collapse
Affiliation(s)
- M N Caccalano
- Department of General and Applied Biology, Sao Paulo State University (UNESP), Rio Claro, Brazil
| | - G Dilarri
- Department of General and Applied Biology, Sao Paulo State University (UNESP), Rio Claro, Brazil
| | - C F C Zamuner
- Department of General and Applied Biology, Sao Paulo State University (UNESP), Rio Claro, Brazil
| | - D S Domingues
- Department of Biodiversity, Sao Paulo State University (UNESP), Rio Claro, Brazil
| | - H Ferreira
- Department of General and Applied Biology, Sao Paulo State University (UNESP), Rio Claro, Brazil
| |
Collapse
|
47
|
Zou X, Du M, Liu Y, Wu L, Xu L, Long Q, Peng A, He Y, Andrade M, Chen S. CsLOB1 regulates susceptibility to citrus canker through promoting cell proliferation in citrus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:1039-1057. [PMID: 33754403 DOI: 10.1111/tpj.15217] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/18/2021] [Accepted: 02/23/2021] [Indexed: 05/25/2023]
Abstract
Citrus sinensis lateral organ boundary 1 (CsLOB1) was previously identified as a critical disease susceptibility gene for citrus bacterial canker, which is caused by Xanthomonas citri subsp. citri (Xcc). However, the molecular mechanisms of CsLOB1 in citrus response to Xcc are still elusive. Here, we constructed transgenic plants overexpressing and RNAi-silencing of CsLOB1 using the canker-disease susceptible 'wanjincheng' orange (C. sinensis Osbeck) as explants. CsLOB1-overexpressing plants exhibited dwarf phenotypes with smaller and thicker leaf, increased branches and adventitious buds clustered on stems. These phenotypes were followed by a process of pustule- and canker-like development that exhibited enhanced cell proliferation. Pectin depolymerization and expansin accumulation were enhanced by CsLOB1 overexpression, while cellulose and hemicellulose synthesis were increased by CsLOB1 silence. Whilst overexpression of CsLOB1 increased susceptibility, RNAi-silencing of CsLOB1 enhanced resistance to canker disease without impairing pathogen entry. Transcriptome analysis revealed that CsLOB1 positively regulated cell wall degradation and modification processes, cytokinin metabolism, and cell division. Additionally, 565 CsLOB1-targeted genes were identified in chromatin immunoprecipitation-sequencing (ChIP-seq) experiments. Motif discovery analysis revealed that the most highly overrepresented binding sites had a conserved 6-bp 'GCGGCG' consensus DNA motif. RNA-seq and ChIP-seq data suggested that CsLOB1 directly activates the expression of four genes involved in cell wall remodeling, and three genes that participate in cytokinin and brassinosteroid hormone pathways. Our findings indicate that CsLOB1 promotes cell proliferation by mechanisms depending on cell wall remodeling and phytohormone signaling, which may be critical to citrus canker development and bacterial growth in citrus.
Collapse
Affiliation(s)
- Xiuping Zou
- Citrus Research Institute, Chinese Academy of Agricultural Sciences/Southwest University, Chongqing, 400712, P. R. China
| | - Meixia Du
- Citrus Research Institute, Chinese Academy of Agricultural Sciences/Southwest University, Chongqing, 400712, P. R. China
| | - Yunuo Liu
- Citrus Research Institute, Chinese Academy of Agricultural Sciences/Southwest University, Chongqing, 400712, P. R. China
| | - Liu Wu
- Citrus Research Institute, Chinese Academy of Agricultural Sciences/Southwest University, Chongqing, 400712, P. R. China
| | - Lanzhen Xu
- Citrus Research Institute, Chinese Academy of Agricultural Sciences/Southwest University, Chongqing, 400712, P. R. China
| | - Qin Long
- Citrus Research Institute, Chinese Academy of Agricultural Sciences/Southwest University, Chongqing, 400712, P. R. China
| | - Aihong Peng
- Citrus Research Institute, Chinese Academy of Agricultural Sciences/Southwest University, Chongqing, 400712, P. R. China
| | - Yongrui He
- Citrus Research Institute, Chinese Academy of Agricultural Sciences/Southwest University, Chongqing, 400712, P. R. China
| | - Maxuel Andrade
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
| | - Shanchun Chen
- Citrus Research Institute, Chinese Academy of Agricultural Sciences/Southwest University, Chongqing, 400712, P. R. China
| |
Collapse
|
48
|
Differential gene responses in different varieties of pomegranate during the pathogenesis of Xanthomonas axonopodis pv. punicae. 3 Biotech 2021; 11:180. [PMID: 33927971 DOI: 10.1007/s13205-021-02721-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 03/05/2021] [Indexed: 01/15/2023] Open
Abstract
Bacterial blight (BB) caused by Xanthomonas axonopodis pv. punicae (Xap) is the major scourge in pomegranate cultivation leading to an extensive yield loss up to 60-80%. Hence, identifying a novel resistance source for BB is very necessary for developing a suitable management strategy. Host range analysis and cross-inoculation studies revealed that Xap is specific to pomegranate and there are no alternative hosts to the pathogen. Screening of 149 accessions recorded the varied disease resistance levels with mean disease severity of 30.67%. Accession lines IC318735, IC318724, and IC318762 exhibited maximum disease tolerance by exhibiting the lowest disease severity of 4.91, 5.66, and 6.82%, respectively. Comparative expression analysis of defence genes in IC318724 and IC318735 recorded significant upregulation of phenylalanine ammonia-lyase (PAL), callose synthase-3 (CS3), chitinase, pathogenesis-related protein-1 (PR1), and pathogenesis-related protein-10 (PR10), indicating these genes might be actively involved in conferring disease tolerance. Abiotic elicitors were tested to induce systemic resistance in agronomically superior and widely adapted variety Bhagwa for managing BB of pomegranate. Among the various elicitors tested; proline (600 ppm), gamma-aminobutyric acid (600 ppm), chitosan (600 ppm), β-aminobutyric acid (200 ppm), laminarin (600 ppm), and eugenol (200 ppm) recorded maximum disease protection in prophylactic treatment with disease protection of 89.59, 88.59, 87.15, 86.08, 81.05, and 78.72%, respectively. Similar observations were recorded when these were applied as curative treatment. The present study will broaden our understanding of host-pathogen interactions during BB infection in pomegranate, also aid in developing ideal approach for developing effective disease management. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02721-y.
Collapse
|
49
|
Long Q, Du M, Long J, Xie Y, Zhang J, Xu L, He Y, Li Q, Chen S, Zou X. Transcription factor WRKY22 regulates canker susceptibility in sweet orange (Citrus sinensis Osbeck) by enhancing cell enlargement and CsLOB1 expression. HORTICULTURE RESEARCH 2021; 8:50. [PMID: 33642585 PMCID: PMC7917094 DOI: 10.1038/s41438-021-00486-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/30/2020] [Accepted: 12/13/2020] [Indexed: 05/27/2023]
Abstract
Pathological hypertrophy (cell enlargement) plays an important role in the development of citrus canker, but its regulators are largely unknown. Although WRKY22 is known to be involved in pathogen-triggered immunity and positively regulates resistance to bacterial pathogens in Arabidopsis, rice and pepper, the CRISPR/Cas9-mediated partial knockout of CsWRKY22 improves resistance to Xanthomonas citri subsp. citri (Xcc) in Wanjincheng orange (Citrus sinensis Osbeck). Here, we demonstrate that CsWRKY22 is a nucleus-localized transcriptional activator. CsWRKY22-overexpressing plants exhibited dwarf phenotypes that had wrinkled and thickened leaves and were more sensitive to Xcc, whereas CsWRKY22-silenced plants showed no visible phenotype changes and were more resistant to Xcc. Microscopic observations revealed that the overexpression of CsWRKY22 increased cell size in the spongy mesophyll. Transcriptome analysis showed that cell growth-related pathways, such as the auxin and brassinosteroid hormonal signaling and cell wall organization and biogenesis pathways, were significantly upregulated upon CsWRKY22 overexpression. Interestingly, CsWRKY22 activated the expression of CsLOB1, which is a key gene regulating susceptibility to citrus canker. We further confirmed that CsWRKY22 bound directly to the W-boxes just upstream of the transcription start site of CsLOB1 in vivo and in vitro. We conclude that CsWRKY22 enhances susceptibility to citrus canker by promoting host hypertrophy and CsLOB1 expression. Thus, our study provides new insights into the mechanism regulating pathological hypertrophy and the function of WRKY22 in citrus.
Collapse
Affiliation(s)
- Qin Long
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing, People's Republic of China
| | - Meixia Du
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing, People's Republic of China
| | - Junhong Long
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing, People's Republic of China
| | - Yu Xie
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing, People's Republic of China
| | - Jingyun Zhang
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing, People's Republic of China
| | - Lanzhen Xu
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing, People's Republic of China
| | - Yongrui He
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing, People's Republic of China
| | - Qiang Li
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing, People's Republic of China
| | - Shanchun Chen
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing, People's Republic of China.
| | - Xiuping Zou
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing, People's Republic of China.
| |
Collapse
|
50
|
Single- or double-membrane-bound vesicles and P, Ca, and Fe-containing granules in Xanthomonas citri cultured on a solid medium. Micron 2021; 143:103024. [PMID: 33549851 DOI: 10.1016/j.micron.2021.103024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 01/22/2021] [Accepted: 01/22/2021] [Indexed: 11/21/2022]
Abstract
The organelle-like structures of Xanthomonas citri, a bacterial pathogen that causes citrus canker, were investigated using an analytical transmission electron microscope. After high-pressure freezing, the bacteria were then freeze-substituted for imaging and element analysis. Miniscule electron-dense structures of varying shapes without a membrane enclosure were frequently observed near the cell poles in a 3-day culture. The bacteria formed cytoplasmic electron-dense spherical structures measuring approximately 50 nm in diameter. Furthermore, X. citri produced electron-dense or translucent ellipsoidal intracellular or extracellular granules. Single- or double-membrane-bound vesicles, including outer-inner membrane vesicles, were observed both inside and outside the cells. Most cells had been lysed in the 3-week X. citri culture, but they harbored one or two electron-dense spherical structures. Contrast-inverted scanning transmission electron microscopy images revealed distinct white spherical structures within the cytoplasm of X. citri. Likewise, energy-dispersive X-ray spectrometry showed the spatial heterogeneity and co-localization of phosphorus, oxygen, calcium, and iron only in the cytoplasmic electron-dense spherical structures, thus corroborating the nature of polyphosphate granules.
Collapse
|