1
|
Bianchetti R, Ali A, Gururani M. Abscisic acid and ethylene coordinating fruit ripening under abiotic stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 349:112243. [PMID: 39233143 DOI: 10.1016/j.plantsci.2024.112243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024]
Abstract
Fleshy fruit metabolism is intricately influenced by environmental changes, yet the hormonal regulations underlying these responses remain poorly elucidated. ABA and ethylene, pivotal in stress responses across plant vegetative tissues, play crucial roles in triggering fleshy fruit ripening. Their actions are intricately governed by complex mechanisms, influencing key aspects such as nutraceutical compound accumulation, sugar content, and softening parameters. Both hormones are essential orchestrators of significant alterations in fruit development in response to stressors like drought, salt, and temperature fluctuations. These alterations encompass colour development, sugar accumulation, injury mitigation, and changes in cell-wall degradation and ripening progression. This review provides a comprehensive overview of recent research progress on the roles of ABA and ethylene in responding to drought, salt, and temperature stress, as well as the molecular mechanisms controlling ripening in environmental cues. Additionally, we propose further studies aimed at genetic manipulation of ABA and ethylene signalling, offering potential strategies to enhance fleshy fruit resilience in the face of future climate change scenarios.
Collapse
Affiliation(s)
- Ricardo Bianchetti
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Amjad Ali
- Department of Sustainable Crop Production, Università Cattolica Del Sacro Cuore, Via Emilia Parmense 84, Piacenza 29122, Italy
| | - Mayank Gururani
- Biology department, College of Science, UAE University, P.O.Box 15551, Al Ain, United Arab Emirates.
| |
Collapse
|
2
|
Zhao M, Lu H, You Z, Chen H, Wang X, Zhang Y, Wang Y. Olfactory Visualization Sensing Array Made with CelluMOFs to Predict Fruit Ripeness Using Deep Learning. ACS APPLIED MATERIALS & INTERFACES 2024; 16:56623-56633. [PMID: 39403818 DOI: 10.1021/acsami.4c09402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Developing a colorimetry-based artificial scent screening system (i.e., an olfactory visual sensing system) with high sensitivity and accurate pattern recognition for detecting fruit ripeness remains challenging. In this work, we construct a flexible dye/CelluMOFs-based sensor array with improved sensitivity for on-site detection of characteristic gases of fruits and integrate a densely connected convolutional network (DenseNet) into the sensor array, enabling it to recognize unique scent fingerprints and categorize the ripeness of fruits. In the system, CelluMOFs are synthesized through in situ growth of γ-cyclodextrin metal-organic frameworks (γ-CD-MOFs) on flexible fiber filter paper to fabricate a uniform, flexible and porous dye/CelluMOFs sensitive membrane. Compared to the pristine filter paper, the CelluMOFs exhibit increased porosity with a 62 times higher specific surface area and a 3-fold increase in dye loading capacity after 12 h of adsorption. The prepared dye/CelluMOFs sensing film shows outstanding mechanical and detection stability with negligible deviation after 100 cycles of rubbing. The colorimetric visualization arrays with multiple colorimetric dye/CelluMOFs chips, enable the sensitive recognition and detection of nine kinds of characteristic fruit odors and achieve a high response at 8-1500 ppm of trans-2-hexenal, showcasing remarkably low gas detection thresholds. On the basis of the ppm-level limit of detection with high sensitivity, the fabricated colorimetric sensor arrays are typically used for in situ assessment of fruit ripeness by integrating DenseNet. This approach achieves a satisfactory classification accuracy of 99.09% on the validation set, enabling high-precision prediction of fruit ripeness levels.
Collapse
Affiliation(s)
- Mingming Zhao
- School of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, P. R. China
- Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Hangzhou 310058, P. R. China
| | - Huizi Lu
- School of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, P. R. China
- Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Hangzhou 310058, P. R. China
| | - Zhiheng You
- School of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, P. R. China
- Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Hangzhou 310058, P. R. China
| | - Huayun Chen
- School of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, P. R. China
- Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Hangzhou 310058, P. R. China
| | - Xiao Wang
- School of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, P. R. China
- Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Hangzhou 310058, P. R. China
| | - Yaqing Zhang
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311200, P. R. China
| | - Yixian Wang
- School of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, P. R. China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311200, P. R. China
- Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Hangzhou 310058, P. R. China
| |
Collapse
|
3
|
Yang M, He C, Hou G, She M, Zhao M, Hu R, Xiao W, Yu H, Lin Y, Zhang Y, Wang Y, He W, Li M, Chen Q, Zhang Y, Wang X, Tang H, Luo Y. Combining transcriptomics and HPLC to uncover variations in quality formation between 'Benihoppe' and 'Fenyu No.1' strawberries. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:109043. [PMID: 39181084 DOI: 10.1016/j.plaphy.2024.109043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/05/2024] [Accepted: 08/11/2024] [Indexed: 08/27/2024]
Abstract
'Benihoppe' and 'Fenyu No.1' are representative varieties of red and pink strawberries in China, possess distinct hue and flavor profiles. This study analyzed the underlying biochemical and molecular differences of two varieties utilizing transcriptomics and high-performance liquid chromatography (HPLC). Ripening 'Benihoppe' fruits accumulated more sucrose and pelargonin-3-glucoside (P3G) with a little cyanidin and higher firmness. Whereas ripening 'Fenyu No.1' fruits contained more fructose, glucose, malic acid and ascorbic acid (AsA), but less P3G and citric acid. Moreover, genotype significantly influenced phenolic compounds contents in strawberries. Transcriptome analysis revealed that pectin degradation (PL, PG, PE), sucrose synthesis (CWINV, SUS, TPS) and citric acid metabolism (α-OGDH, ICDH, GAD, GS, GDH, PEPCK, AST) were weakened in 'Benihoppe' fruit. In contrast, the synthesis of sucrose (CWINH, SPS), citric acid (CS, PEPC), anthocyanin (F3H, F3'H, F3'5'H, DFR, UFGT and ANS), and citric acid transport (V-ATPase) was enhanced. In 'Fenyu No.1' fruit, the degradation of sucrose, citric acid, and pectin was enhanced, along with the synthesis of malic acid (ME) and ascorbic acid (PMM, MDHAR and GaLUR). However, anthocyanins synthesis, glucose metabolism (HK, G6PI, PFK, G6PDH, PGK, PGM, ENO, PK), fructose metabolism (FK), citric acid synthesis and transport, and AsA degradation (AO, APX) were relatively weak. RT-qPCR results corroborated the transcriptome data. In conclusion, this study revealed the distinctions and characteristics of strawberries with different fruit colors regarding texture, flavor and color formation processes. These findings offer valuable insights for regulating metabolic pathways and identifying key candidate genes to improve strawberry quality.
Collapse
Affiliation(s)
- Min Yang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Caixia He
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Guoyan Hou
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Musha She
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Mantong Zhao
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ruixin Hu
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wenfei Xiao
- Hangzhou Academy of Agricultural Sciences, Hangzhou, 310000, China
| | - Hong Yu
- Hangzhou Academy of Agricultural Sciences, Hangzhou, 310000, China
| | - Yuanxiu Lin
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yunting Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yan Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wen He
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Mengyao Li
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qing Chen
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yong Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaorong Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Haoru Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ya Luo
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
4
|
Chen D, Liu Y, Chen Y, Li B, Chen T, Tian S. Functions of membrane proteins in regulating fruit ripening and stress responses of horticultural crops. MOLECULAR HORTICULTURE 2024; 4:35. [PMID: 39313804 PMCID: PMC11421178 DOI: 10.1186/s43897-024-00111-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/16/2024] [Indexed: 09/25/2024]
Abstract
Fruit ripening is accompanied by the development of fruit quality traits; however, this process also increases the fruit's susceptibility to various environmental stresses, including pathogen attacks and other stress factors. Therefore, modulating the fruit ripening process and defense responses is crucial for maintaining fruit quality and extending shelf life. Membrane proteins play intricate roles in mediating signal transduction, ion transport, and many other important biological processes, thus attracting extensive research interest. This review mainly focuses on the functions of membrane proteins in regulating fruit ripening and defense responses against biotic and abiotic factors, addresses their potential as targets for improving fruit quality and resistance to environmental challenges, and further highlights some open questions to be addressed.
Collapse
Affiliation(s)
- Daoguo Chen
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Haidian District, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuhan Liu
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Haidian District, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yong Chen
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Haidian District, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Boqiang Li
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Haidian District, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Tong Chen
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Haidian District, Beijing, 100093, China.
- China National Botanical Garden, Beijing, 100093, China.
| | - Shiping Tian
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Haidian District, Beijing, 100093, China.
- China National Botanical Garden, Beijing, 100093, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
5
|
Suo J, Liu Y, Yan J, Li Q, Chen W, Liu Z, Zhang Z, Hu Y, Yu W, Yan J, Song L, Wu J. Sucrose promotes cone enlargement via the TgNGA1-TgWRKY47-TgEXPA2 module in Torreya grandis. THE NEW PHYTOLOGIST 2024; 243:1823-1839. [PMID: 39005107 DOI: 10.1111/nph.19972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024]
Abstract
Cone enlargement is a crucial process for seed production and reproduction in gymnosperms. Most of our knowledge of cone development is derived from observing anatomical structure during gametophyte development. Therefore, the exact molecular mechanism underlying cone enlargement after fertilization is poorly understood. Here, we demonstrate that sucrose promotes cone enlargement in Torreya grandis, a gymnosperm species with relatively low rates of cone enlargement, via the TgNGA1-TgWRKY47-TgEXPA2 pathway. Cell expansion plays a significant role in cone enlargement in T. grandis. 13C labeling and sucrose feeding experiments indicated that sucrose-induced changes in cell size and number contribute to cone enlargement in this species. RNA-sequencing analysis, transient overexpression in T. grandis cones, and stable overexpression in tomato (Solanum lycopersicum) suggested that the expansin gene TgEXPA2 positively regulates cell expansion in T. grandis cones. The WRKY transcription factor TgWRKY47 directly enhances TgEXPA2 expression by binding to its promoter. Additionally, the NGATHA transcription factor TgNGA1 directly interacts with TgWRKY47. This interaction suppresses the DNA-binding ability of TgWRKY47, thereby reducing its transcriptional activation on TgEXPA2 without affecting the transactivation ability of TgWRKY47. Our findings establish a link between sucrose and cone enlargement in T. grandis and elucidate the potential underlying molecular mechanism.
Collapse
Affiliation(s)
- Jinwei Suo
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Ya Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Jiawen Yan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Qianxi Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Weijie Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Zhihui Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Zuying Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Yuanyuan Hu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Weiwu Yu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Jingwei Yan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Lili Song
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Jiasheng Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| |
Collapse
|
6
|
Chen X, Gao J, Shen Y. Abscisic acid controls sugar accumulation essential to strawberry fruit ripening via the FaRIPK1-FaTCP7-FaSTP13/FaSPT module. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:1400-1417. [PMID: 38815085 DOI: 10.1111/tpj.16862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 05/05/2024] [Accepted: 05/11/2024] [Indexed: 06/01/2024]
Abstract
Strawberry is considered as a model plant for studying the ripening of abscisic acid (ABA)-regulated non-climacteric fruits, a process in which sugar plays a fundamental role, while how ABA regulates sugar accumulation remains unclear. This study provides a direct line of physiological, biochemical, and molecular evidence that ABA signaling regulates sugar accumulation via the FaRIPK1-FaTCP7-FaSTP13/FaSPT signaling pathway. Herein, FaRIPK1, a red-initial protein kinase 1 previously identified in strawberry fruit, not only interacted with the transcription factor FaTCP7 (TEOSINTE BRANCHEN 1, CYCLOIDEA, and PCF) but also phosphorylated the critical Ser89 and Thr93 sites of FaTCP7, which negatively regulated strawberry fruit ripening, as evidenced by the transient overexpression (OE) and virus-induced gene silencing transgenic system. Furthermore, the DAP-seq experiments revealed that FvTCP7 bound the motif "GTGGNNCCCNC" in the promoters of two sugar transporter genes, FaSTP13 (sugar transport protein 13) and FaSPT (sugar phosphate/phosphate translocator), inhibiting their transcription activities as determined by the electrophoretic mobility shift assay, yeast one-hybrid, and dual-luciferase reporter assays. The downregulated FaSTP13 and FaSPT transcripts in the FaTCP7-OE fruit resulted in a reduction in soluble sugar content. Consistently, the yeast absorption test revealed that the two transporters had hexose transport activity. Especially, the phosphorylation-inhibited binding of FaTCP7 to the promoters of FaSTP13 and FaSPT could result in the release of their transcriptional activities. In addition, the phosphomimetic form FaTCP7S89D or FaTCP7T93D could rescue the phenotype of FaTCP7-OE fruits. Importantly, exogenous ABA treatment enhanced the FaRIPK1-FaTCP7 interaction. Overall, we found direct evidence that ABA signaling controls sugar accumulation during strawberry fruit ripening via the "FaRIPK1-FaTCP7-FaSTP13/FaSPT" module.
Collapse
Affiliation(s)
- Xuexue Chen
- College of Plant Science and Technology, Beijing University of Agriculture, No. 7 BeiNong Road, Beijing, 102206, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jiahui Gao
- College of Plant Science and Technology, Beijing University of Agriculture, No. 7 BeiNong Road, Beijing, 102206, China
| | - Yuanyue Shen
- College of Plant Science and Technology, Beijing University of Agriculture, No. 7 BeiNong Road, Beijing, 102206, China
| |
Collapse
|
7
|
Cao X, Guo Z, Wang P, Lu S, Li W, Ma Z, Mao J, Chen B. MdbZIP44-MdCPRF2-like- Mdα-GP2 regulate starch and sugar metabolism in apple under nitrogen supply. HORTICULTURE RESEARCH 2024; 11:uhae072. [PMID: 38725457 PMCID: PMC11079487 DOI: 10.1093/hr/uhae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 02/28/2024] [Indexed: 05/12/2024]
Abstract
Nitrogen (N) is regarded as an essential macronutrient and is tightly associated with carbon (C) metabolism in plants. The transcriptome data obtained from this study showed that the expression level of the apple basic leucine zipper (bZIP) transcription factor (TF) MdbZIP44 was up-regulated in 'Oregon Spur Delicious' (Malus domestica Borkh.) apple fruits under nitrogen supply. MdbZIP44 bound to the promoter of Mdα-GP2 gene and inhibited its expression, thereby promoting starch accumulation and decreasing glucose content in apple and tomato fruits. Besides, overexpression of MdbZIP44 promoted sucrose accumulation by regulating the activities of sucrose metabolism-related enzymes and the expression of sugar metabolism-related genes in apple callus and tomato fruits. Furthermore, biochemical assays indicated that MdbZIP44 directly interacted with MdCPRF2-like, another bZIP gene in apple. Meanwhile, this study found that MdCPRF2-like, along with the MdbZIP44 and MdCPRF2-like complex, could activate the expression of Mdα-GP2, respectively. In conclusion, this study provides a new reference for potential mechanisms underlying that MdbZIP44-MdCPRF2-like-Mdα-GP2 regulates starch and sugar metabolism under nitrogen supply.
Collapse
Affiliation(s)
- Xuejing Cao
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhigang Guo
- College of Bioengineering and Biotechnology, Tianshui Normal University, Tianshui 741000, China
| | - Ping Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Shixiong Lu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Wenfang Li
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Zonghuan Ma
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Juan Mao
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Baihong Chen
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
8
|
Rossouw GC, Orr R, Bennett D, Bally ISE. The roles of non-structural carbohydrates in fruiting: a review focusing on mango ( Mangifera indica). FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP23195. [PMID: 38588720 DOI: 10.1071/fp23195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 03/17/2024] [Indexed: 04/10/2024]
Abstract
Reproductive development of fruiting trees, including mango (Mangifera indica L.), is limited by non-structural carbohydrates. Competition for sugars increases with cropping, and consequently, vegetative growth and replenishment of starch reserves may reduce with high yields, resulting in interannual production variability. While the effect of crop load on photosynthesis and the distribution of starch within the mango tree has been studied, the contribution of starch and sugars to different phases of reproductive development requires attention. This review focuses on mango and examines the roles of non-structural carbohydrates in fruiting trees to clarify the repercussions of crop load on reproductive development. Starch buffers the plant's carbon availability to regulate supply with demand, while sugars provide a direct resource for carbon translocation. Sugar signalling and interactions with phytohormones play a crucial role in flowering, fruit set, growth, ripening and retention, as well as regulating starch, sugar and secondary metabolites in fruit. The balance between the leaf and fruit biomass affects the availability and contributions of starch and sugars to fruiting. Crop load impacts photosynthesis and interactions between sources and sinks. As a result, the onset and rate of reproductive processes are affected, with repercussions for fruit size, composition, and the inter-annual bearing pattern.
Collapse
Affiliation(s)
- Gerhard C Rossouw
- Department of Agriculture and Fisheries, Mareeba Research Facility, Mareeba 4880, Qld, Australia
| | - Ryan Orr
- Department of Agriculture and Fisheries, Mareeba Research Facility, Mareeba 4880, Qld, Australia
| | - Dale Bennett
- Department of Agriculture and Fisheries, Mareeba Research Facility, Mareeba 4880, Qld, Australia
| | - Ian S E Bally
- Department of Agriculture and Fisheries, Mareeba Research Facility, Mareeba 4880, Qld, Australia
| |
Collapse
|
9
|
Wang J, Lu Y, Zhang X, Hu W, Lin L, Deng Q, Xia H, Liang D, Lv X. Effects of Potassium-Containing Fertilizers on Sugar and Organic Acid Metabolism in Grape Fruits. Int J Mol Sci 2024; 25:2828. [PMID: 38474075 DOI: 10.3390/ijms25052828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/25/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
To identify suitable potassium fertilizers for grape (Vitis vinifera L.) production and study their mechanism of action, the effects of four potassium-containing fertilizers (complex fertilizer, potassium nitrate, potassium sulfate, and potassium dihydrogen phosphate) on sugar and organic acid metabolism in grape fruits were investigated. Potassium-containing fertilizers increased the activity of sugar and organic acid metabolism-related enzymes at all stages of grape fruit development. During the later stages of fruit development, potassium-containing fertilizers increased the total soluble solid content and the sugar content of the different sugar fractions and decreased the titratable acid content and organic acid content of the different organic acid fractions. At the ripening stage of grape fruit, compared with the control, complex fertilizer, potassium nitrate, potassium sulfate, and potassium dihydrogen phosphate increased the total soluble solid content by 1.5, 1.2, 3.5, and 3.4 percentage points, decreased the titratable acid content by 0.09, 0.06, 0.18, and 0.17 percentage points, respectively, and also increased the total potassium content in grape fruits to a certain degree. Transcriptome analysis of the differentially expressed genes (DEGs) in the berries showed that applying potassium-containing fertilizers enriched the genes in pathways involved in fruit quality, namely, carbon metabolism, carbon fixation in photosynthetic organisms, glycolysis and gluconeogenesis, and fructose and mannose metabolism. Potassium-containing fertilizers affected the expression levels of genes regulating sugar metabolism and potassium ion uptake and transport. Overall, potassium-containing fertilizers can promote sugar accumulation and reduce acid accumulation in grape fruits, and potassium sulfate and potassium dihydrogen phosphate had the best effects among the fertilizers tested.
Collapse
Affiliation(s)
- Jin Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuhang Lu
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Xuemei Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Wenjie Hu
- College of Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Lijin Lin
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Qunxian Deng
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Hui Xia
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Dong Liang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiulan Lv
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
10
|
Stroka MA, Reis L, Souza Los KKD, Pinto CA, Gustani FM, Forney CF, Etto RM, Galvão CW, Ayub RA. The maturation profile triggers differential expression of sugar metabolism genes in melon fruits. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108418. [PMID: 38346367 DOI: 10.1016/j.plaphy.2024.108418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 03/16/2024]
Abstract
Melons are commercially important crops that requires specific quality attributes for successful commercialization, including accumulation of sugars, particularly sucrose. This trait can be influenced by various factors, such as the type of ripening. Cucumis melo L. is an ideal species for studying sugar metabolism because it has both climacteric and non-climacteric cultivars. Thus, this study aimed to examine the gene expression of sucrose metabolism candidates using RT-qPCR, in conjunction with postharvest physiological analyzes and high-performance liquid chromatography-based sugar quantification, in the melon cultivars 'Gaúcho' (climacteric) and 'Eldorado' (non-climacteric). The results showed that sucrose synthase 1 played a role in the synthesis and accumulation of sucrose in both cultivars, whereas sucrose synthase 2 was more highly expressed in 'Gaúcho', contributing to lower hexose content. Invertase inhibitor 1 was more highly expressed in 'Eldorado' and may be involved in sugar-induced maturation. Neutral α-galactosidase had distinct functions, playing a role in substrate synthesis for the growth of young 'Eldorado' fruits, whereas in mature 'Gaúcho' fruits it participated in the metabolism of raffinose family oligosaccharides for sucrose accumulation. The expression of trehalose-6-phosphate synthase genes indicated a greater involvement of these enzymes in the sugar regulation in 'Gaúcho' melons. These findings shed light on the intraspecific differences related to fruit quality attributes in different types of maturation and contribute to a deeper understanding of the underlying molecular mechanisms involved in the metabolism of sugars in melons, which can inform breeding programs aimed at improving fruit quality attributes in this crop.
Collapse
Affiliation(s)
- Marília Aparecida Stroka
- State University of Ponta Grossa, Department of Plant Science and Phytosanitary, Ponta Grossa, Paraná, 84.030-900, Brazil.
| | - Letícia Reis
- State University of Ponta Grossa, Department of Plant Science and Phytosanitary, Ponta Grossa, Paraná, 84.030-900, Brazil.
| | - Kamila Karoline de Souza Los
- State University of Ponta Grossa, Department of Plant Science and Phytosanitary, Ponta Grossa, Paraná, 84.030-900, Brazil.
| | - Calistene Aparecida Pinto
- State University of Ponta Grossa, Department of Plant Science and Phytosanitary, Ponta Grossa, Paraná, 84.030-900, Brazil.
| | - Flávia Maria Gustani
- State University of Ponta Grossa, Department of Plant Science and Phytosanitary, Ponta Grossa, Paraná, 84.030-900, Brazil.
| | - Charles F Forney
- Agriculture and Agri-Food Canada (AAFC), Kentville, Nova Scotia, Canada, B4N 1J5.
| | - Rafael Mazer Etto
- State University of de Ponta Grossa, Department of Chemistry, Ponta Grossa, Paraná, 84.030-900, Brazil.
| | - Carolina Weigert Galvão
- State University of Ponta Grossa, Department of Molecular Biology, Structural and Genetics, Ponta Grossa, Paraná, 84.030-900, Brazil.
| | - Ricardo Antonio Ayub
- State University of Ponta Grossa, Department of Plant Science and Phytosanitary, Paraná, 84.030-900, Brazil.
| |
Collapse
|
11
|
Sun M, Shen Y. Integrating the multiple functions of CHLH into chloroplast-derived signaling fundamental to plant development and adaptation as well as fruit ripening. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 338:111892. [PMID: 37821024 DOI: 10.1016/j.plantsci.2023.111892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 10/01/2023] [Accepted: 10/06/2023] [Indexed: 10/13/2023]
Abstract
Chlorophyll (Chl)-mediated oxygenic photosynthesis sustains life on Earth. Greening leaves play fundamental roles in plant growth and crop yield, correlating with the idea that more Chls lead to better adaptation. However, they face significant challenges from various unfavorable environments. Chl biosynthesis hinges on the first committed step, which involves inserting Mg2+ into protoporphyrin. This step is facilitated by the H subunit of magnesium chelatase (CHLH) and features a conserved mechanism from cyanobacteria to plants. For better adaptation to fluctuating land environments, especially drought, CHLH evolves multiple biological functions, including Chl biosynthesis, retrograde signaling, and abscisic acid (ABA) responses. Additionally, it integrates into various chloroplast-derived signaling pathways, encompassing both retrograde signaling and hormonal signaling. The former comprises ROS (reactive oxygen species), heme, GUN (genomes uncoupled), MEcPP (methylerythritol cyclodiphosphate), β-CC (β-cyclocitral), and PAP (3'-phosphoadenosine-5'-phosphate). The latter involves phytohormones like ABA, ethylene, auxin, cytokinin, gibberellin, strigolactone, brassinolide, salicylic acid, and jasmonic acid. Together, these elements create a coordinated regulatory network tailored to plant development and adaptation. An intriguing example is how drought-mediated improvement of fruit quality provides insights into chloroplast-derived signaling, aiding the shift from vegetative to reproductive growth. In this context, we explore the integration of CHLH's multifaceted roles into chloroplast-derived signaling, which lays the foundation for plant development and adaptation, as well as fruit ripening and quality. In the future, manipulating chloroplast-derived signaling may offer a promising avenue to enhance crop yield and quality through the homeostasis, function, and regulation of Chls.
Collapse
Affiliation(s)
- Mimi Sun
- College of Horticulture, China Agricultural University, Beijing 100193, China; College of Plant Science and Technology, Beijing University of Agriculture, 7 Beinong Road, Changping District, Beijing 102206, China
| | - Yuanyue Shen
- College of Plant Science and Technology, Beijing University of Agriculture, 7 Beinong Road, Changping District, Beijing 102206, China.
| |
Collapse
|
12
|
Liu Y, Liu R, Li F, Yu S, Nie Y, Li JQ, Pan C, Zhu W, Zhou Z, Diao J. Nano-selenium repaired the damage caused by fungicides on strawberry flavor quality and antioxidant capacity by regulating ABA biosynthesis and ripening-related transcription factors. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 198:105753. [PMID: 38225097 DOI: 10.1016/j.pestbp.2023.105753] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/17/2023] [Accepted: 12/18/2023] [Indexed: 01/17/2024]
Abstract
Recently, studies have shown that pesticides may have adverse effects on the flavor quality of the fruits, but there is still a lack of appropriate methods to repair the damage. This study investigated the effects and mechanism of applying the emerging material, nano‑selenium, and two fungicides (Boscalid and Pydiflumetofen) alone or together on the flavor quality and antioxidant capacity of strawberries. The results showed that the two fungicides had a negative impact on strawberry color, flavor, antioxidant capacity and different enzymatic systems. The color damage was mainly attributed to the impact on anthocyanin content. Nano‑selenium alleviated the quality losses by increasing sugar-acid ratio, volatiles, anthocyanin levels, enzyme activities and DPPH scavenging ability and reducing ROS levels. Results also showed that these damage and repair processes were related to the regulation of flavor and ripening related transcription factors (including FaRIF, FaSnRK1, FaMYB10, FaMYB1, FaSnRK2.6 and FaABI1), the upregulation of genes on sugar-acid, volatile, and anthocyanin synthesis pathways, as well as the increase of sucrose and ABA signaling molecules. In addition, the application of nano-Se supplemented the selenium content in fruits, and was harmless to human health. This information is crucial for revealing the mechanisms of flavor damage caused by pesticides to strawberry and the repaired of nano‑selenium, and broadens the researching and applying of nano‑selenium in repairing the damage caused by pesticides.
Collapse
Affiliation(s)
- Yuping Liu
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan west road 2, Beijing 100193, China
| | - Rui Liu
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan west road 2, Beijing 100193, China
| | - Feifei Li
- The Administrative Office of Beijing Shisanling Forestry Farm, China
| | - Simin Yu
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan west road 2, Beijing 100193, China
| | - Yufan Nie
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan west road 2, Beijing 100193, China
| | - Jia-Qi Li
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan west road 2, Beijing 100193, China
| | - Canping Pan
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan west road 2, Beijing 100193, China; Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Haikou 570311, China
| | - Wentao Zhu
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan west road 2, Beijing 100193, China
| | - Zhiqiang Zhou
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan west road 2, Beijing 100193, China
| | - Jinling Diao
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan west road 2, Beijing 100193, China.
| |
Collapse
|
13
|
Kim YN, Choi JH, Kim SY, Yoon YE, Choe H, Lee KA, Kantharaj V, Kim MJ, Lee YB. Biostimulatory Effects of Chlorella fusca CHK0059 on Plant Growth and Fruit Quality of Strawberry. PLANTS (BASEL, SWITZERLAND) 2023; 12:4132. [PMID: 38140459 PMCID: PMC10747820 DOI: 10.3390/plants12244132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/09/2023] [Accepted: 12/10/2023] [Indexed: 12/24/2023]
Abstract
Green algae have been receiving widespread attention for their use as biofertilizers for agricultural production, but more studies are required to increase the efficiency of their use. This study aimed to investigate the effects of different levels of Chlorella fusca CHK0059 application on strawberry plant growth and fruit quality. A total of 800 strawberry seedlings were planted in a greenhouse and were grown for seven months under different Chlorella application rates: 0 (control), 0.1, 0.2, and 0.4% of the optimal cell density (OCD; 1.0 × 107 cells mL-1). The Chlorella application was conducted weekly via an irrigation system, and the characteristics of fruit samples were monitored monthly over a period of five months. The growth (e.g., phenotype, dry weight, and nutrition) and physiological (e.g., Fv/Fm and chlorophylls) parameters of strawberry plants appeared to be enhanced by Chlorella application over time, an enhancement which became greater as the application rate increased. Likewise, the hardness and P content of strawberry fruits had a similar trend. Meanwhile, 0.2% OCD treatment induced the highest values of soluble solid content (9.3-12 °Brix) and sucrose content (2.06-2.97 g 100 g-1) in the fruits as well as fruit flavor quality indices (e.g., sugars:acids ratio and sweetness index) during the monitoring, whilst control treatment represented the lowest values. In addition, the highest anthocyanin content in fruits was observed in 0.4% OCD treatment, which induced the lowest incidence of grey mold disease (Botrytis cinerea) on postharvest fruits for 45 days. Moreover, a high correlation between plants' nutrients and photosynthetic variables and fruits' sucrose and anthocyanin contents was identified through the results of principal component analysis. Overall, C. fusca CHK0059 application was found to promote the overall growth and performance of strawberry plants, contributing to the improvement of strawberry quality and yield, especially in 0.2% OCD treatment.
Collapse
Affiliation(s)
- Young-Nam Kim
- Division of Applied Life Science (BK21), Gyeongsang National University, Jinju 52828, Republic of Korea
- Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jun Hyeok Choi
- Division of Applied Life Science (BK21), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Song Yeob Kim
- Division of Applied Life Science (BK21), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Young-Eun Yoon
- Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Hyeonji Choe
- Division of Applied Life Science (BK21), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Keum-Ah Lee
- Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Vimalraj Kantharaj
- Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Min-Jeong Kim
- Organic Agriculture Division, National Academy of Agriculture Science, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Yong Bok Lee
- Division of Applied Life Science (BK21), Gyeongsang National University, Jinju 52828, Republic of Korea
- Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
14
|
Kishor PBK, Guddimalli R, Kulkarni J, Singam P, Somanaboina AK, Nandimandalam T, Patil S, Polavarapu R, Suravajhala P, Sreenivasulu N, Penna S. Impact of Climate Change on Altered Fruit Quality with Organoleptic, Health Benefit, and Nutritional Attributes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:17510-17527. [PMID: 37943146 DOI: 10.1021/acs.jafc.3c03312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
As a consequence of global climate change, acute water deficit conditions, soil salinity, and high temperature have been on the rise in their magnitude and frequency, which have been found to impact plant growth and development negatively. However, recent evidence suggests that many fruit plants that face moderate abiotic stresses can result in beneficial effects on the postharvest storage characters of the fruits. Salinity, drought, and high temperature conditions stimulate the synthesis of abscisic acid (ABA), and secondary metabolites, which are vital for fruit quality. The secondary metabolites like phenolic acids and anthocyanins that accumulate under abiotic stress conditions have antioxidant activity, and therefore, such fruits have health benefits too. It has been noticed that fruits accumulate more sugar and anthocyanins owing to upregulation of phenylpropanoid pathway enzymes. The novel information that has been generated thus far indicates that the growth environment during fruit development influences the quality components of the fruits. But the quality depends on the trade-offs between productivity, plant defense, and the frequency, duration, and intensity of stress. In this review, we capture the current knowledge of the irrigation practices for optimizing fruit production in arid and semiarid regions and enhancement in the quality of fruit with the application of exogenous ABA and identify gaps that exist in our understanding of fruit quality under abiotic stress conditions.
Collapse
Affiliation(s)
- P B Kavi Kishor
- Department of Genetics, Osmania University, Hyderabad 500 007, India
| | | | - Jayant Kulkarni
- Department of Botany, Savithribai Phule Pune University, Pune 411 007, India
| | - Prashant Singam
- Department of Genetics, Osmania University, Hyderabad 500 007, India
| | - Anil Kumar Somanaboina
- Department of Biotechnology, Vignan's Foundation for Science, Technology & Research Deemed to be University, Vadlamudi, Guntur 522 213, Andhra Pradesh, India
| | - Tejaswi Nandimandalam
- Department of Biotechnology, Vignan's Foundation for Science, Technology & Research Deemed to be University, Vadlamudi, Guntur 522 213, Andhra Pradesh, India
| | - Swaroopa Patil
- Department of Botany, Shivaji University, Kolhapur 416 004, Maharashtra, India
| | - Rathnagiri Polavarapu
- Genomix Molecular Diagnostics Pvt. Ltd., Pragathi Nagar, Kukatapally, Hyderabad 500 072, India
| | - Prashanth Suravajhala
- Amrita School of Biotechnology, Amrita Vishwavidyapeetham, Clappana, 690 525, Amritapuri, Vallikavu, Kerala, India & Bioclues.org, Hyderabad, India
| | - Nese Sreenivasulu
- Consumer-Driven Grain Quality and Nutrition Research Unit, International Rice Research Institute, Los Banos, DAPO Box 7777, Metro Manil 1301, Philippines
| | - Suprasanna Penna
- Amity Centre for Nuclear Biotechnology, Amity Institute of Biotechnology, Amity University of Maharashtra, Mumbai 410 206, India
| |
Collapse
|
15
|
He X, Solis CA, Chavan SG, Maier C, Wang Y, Liang W, Klause N, Ghannoum O, Cazzonelli CI, Tissue DT, Chen ZH. Novel transcriptome networks are associated with adaptation of capsicum fruit development to a light-blocking glasshouse film. FRONTIERS IN PLANT SCIENCE 2023; 14:1280314. [PMID: 38023880 PMCID: PMC10658010 DOI: 10.3389/fpls.2023.1280314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 10/13/2023] [Indexed: 12/01/2023]
Abstract
Light-blocking films (LBFs) can contribute to significant energy savings for protected cropping via altering light transmitting, such as UVA, photosynthetically active radiation, blue and red spectra affecting photosynthesis, and capsicum yield. Here, we investigated the effects of LBF on orange color capsicum (O06614, Capsicum annuum L.) fruit transcriptome at 35 (mature green) and 65 (mature ripe) days after pollination (DAP) relative to untreated control in a high-technology glasshouse. The results of targeted metabolites showed that LBF significantly promotes the percentage of lutein but decreased the percentage of zeaxanthin and neoxanthin only at 35 DAP. At 35 DAP, fruits were less impacted by LBF treatment (versus control) with a total of 1,192 differentially expressed genes (DEGs) compared with that at 65 DAP with 2,654 DEGs. Response to stress and response to light stimulus in biological process of Gene Ontology were found in 65-DAP fruits under LBF vs. control, and clustering analysis revealed a predominant role of light receptors and phytohormone signaling transduction as well as starch and sucrose metabolism in LBF adaptation. The light-signaling DEGs, UV light receptor UVR8, transcription factors phytochrome-interacting factor 4 (PIF4), and an E3 ubiquitin ligase (COP1) were significantly downregulated at 65 DAP. Moreover, key DEGs in starch and sucrose metabolism (SUS, SUC, and INV), carotenoid synthesis (PSY2 and BCH1), ascorbic acid biosynthesis (VTC2, AAO, and GME), abscisic acid (ABA) signaling (NCED3, ABA2, AO4, and PYL2/4), and phenylpropanoid biosynthesis (PAL and DFR) are important for the adaptation of 65-DAP fruits to LBF. Our results provide new candidate genes for improving quality traits of low-light adaptation of capsicum in protected cropping.
Collapse
Affiliation(s)
- Xin He
- National Vegetable Protected Cropping Centre, Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Celymar A. Solis
- School of Science, Western Sydney University, Penrith, NSW, Australia
| | - Sachin G. Chavan
- National Vegetable Protected Cropping Centre, Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Chelsea Maier
- National Vegetable Protected Cropping Centre, Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Yuanyuan Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Weiguang Liang
- National Vegetable Protected Cropping Centre, Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Norbert Klause
- National Vegetable Protected Cropping Centre, Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Oula Ghannoum
- National Vegetable Protected Cropping Centre, Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Christopher I. Cazzonelli
- National Vegetable Protected Cropping Centre, Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - David T. Tissue
- National Vegetable Protected Cropping Centre, Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
- Global Centre for Land Based Innovation, Western Sydney University, Richmond, NSW, Australia
| | - Zhong-Hua Chen
- National Vegetable Protected Cropping Centre, Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
- School of Science, Western Sydney University, Penrith, NSW, Australia
| |
Collapse
|
16
|
Liu X, Liu Y, Zhou Y, Hu C, Tan Q, Sun X, Wu S. Magnesium accelerates changes in the fruit ripening and carotenoid accumulation in Satsuma Mandarin pulp. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 204:108082. [PMID: 37852070 DOI: 10.1016/j.plaphy.2023.108082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 10/20/2023]
Abstract
This study aims to further examine the effect of Magnesium (Mg) application on fruit quality and carotenoid metabolism in Satsuma mandarin pulp. For this, a field experiment was using 20-year-old Satsuma mandarin (C. unshiu Marc.) for two treatment; (1) CK treatment (without Mg), (2) Mg fertilizer treatment (200 g MgO plant-1). Compared with CK, Mg treatment substantially raised the Mg content in pulp at 90 to 150 DAF (the fruit expansion period), increasing by 15.69%-21.74%. Mg treatment also increased fruit TSS content by 15.84% and 9.88%, decreased fruit TA content in by 34.25% and 33.26% at 195 DAF and 210 DAF (the fruit ripening period). Moreover, at 120 to 195 DAF, Mg treatment significantly increased the levels of lutein, β-cryptoxanthin, zeaxanthin and violaxanthin in the pulp. This can be explained by the increased expression of important biosynthetic genes, including CitPSY, CitPDS, CitLCYb1, CitLCYb2, CitLCYe, CitHYb, and CitZEP, that played a role in altering the carotenoid composition. The findings of this research offer a novel approach for augmenting both the economic and nutritional worth of citrus fruits.
Collapse
Affiliation(s)
- Xiaoman Liu
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China
| | - Yan Liu
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China
| | - Yuan Zhou
- Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, PR China
| | - Chengxiao Hu
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China
| | - Qiling Tan
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China.
| | - Xuecheng Sun
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China
| | - Songwei Wu
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China
| |
Collapse
|
17
|
Perotti MF, Posé D, Martín-Pizarro C. Non-climacteric fruit development and ripening regulation: 'the phytohormones show'. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6237-6253. [PMID: 37449770 PMCID: PMC10627154 DOI: 10.1093/jxb/erad271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023]
Abstract
Fruit ripening involves numerous physiological, structural, and metabolic changes that result in the formation of edible fruits. This process is controlled at different molecular levels, with essential roles for phytohormones, transcription factors, and epigenetic modifications. Fleshy fruits are classified as either climacteric or non-climacteric species. Climacteric fruits are characterized by a burst in respiration and ethylene production at the onset of ripening, while regulation of non-climacteric fruit ripening has been commonly attributed to abscisic acid (ABA). However, there is controversy as to whether mechanisms regulating fruit ripening are shared between non-climacteric species, and to what extent other hormones contribute alongside ABA. In this review, we summarize classic and recent studies on the accumulation profile and role of ABA and other important hormones in the regulation of non-climacteric fruit development and ripening, as well as their crosstalk, paying special attention to the two main non-climacteric plant models, strawberry and grape. We highlight both the common and different roles of these regulators in these two crops, and discuss the importance of the transcriptional and environmental regulation of fruit ripening, as well as the need to optimize genetic transformation methodologies to facilitate gene functional analyses.
Collapse
Affiliation(s)
- María Florencia Perotti
- Departamento de Mejora Genética y Biotecnología, Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’ (IHSM), Universidad de Málaga - Consejo Superior de Investigaciones Científicas, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, UMA, Málaga, Spain
| | - David Posé
- Departamento de Mejora Genética y Biotecnología, Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’ (IHSM), Universidad de Málaga - Consejo Superior de Investigaciones Científicas, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, UMA, Málaga, Spain
| | - Carmen Martín-Pizarro
- Departamento de Mejora Genética y Biotecnología, Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’ (IHSM), Universidad de Málaga - Consejo Superior de Investigaciones Científicas, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, UMA, Málaga, Spain
| |
Collapse
|
18
|
Lu D, Wu Y, Zhang J, Qi Y, Zhang Y, Pan Q. Visualizing the Distribution of Jujube Metabolites at Different Maturity Stages Using Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging. Foods 2023; 12:3795. [PMID: 37893688 PMCID: PMC10606910 DOI: 10.3390/foods12203795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Chinese jujube (also called Chinese date, Ziziphus jujuba Mill.) is an economically important tree in China and provides a rich source of sugars, vitamins, and bioactive components, all of which are indispensable and essential for the composition and participation in life processes of the human body. However, the location of these metabolites in jujube fruits has not been determined. This study applied matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) to investigate the spatial distribution of sugars, organic acids, and other key components in jujube fruits at different developmental periods. Soluble sugars such as hexoses and sucrose/maltose significantly increase with fruit ripening, while organic acids show an overall trend of initially increasing and then decreasing. Procyanidins and rutin exhibit specific distributions in the fruit periphery and peel. These findings suggest that MALDI-MSI can be used to study the spatial distribution of nutritional components in jujube fruits, providing insights into the changes and spatial distribution of substances during jujube fruit development. This technique offers a scientific basis for jujube breeding, utilization, and production.
Collapse
Affiliation(s)
- Dongye Lu
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China; (D.L.); (Y.W.); (Y.Q.)
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing 100093, China
- Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing 100093, China
- Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture and Rural Affairs, Beijing 100093, China
| | - Yang Wu
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China; (D.L.); (Y.W.); (Y.Q.)
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing 100093, China
- Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing 100093, China
- Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture and Rural Affairs, Beijing 100093, China
| | - Junmin Zhang
- Beijing Forestry Workstation, Beijing Municipal Forestry and Parks Buteau, Beijing 100013, China;
| | - Yuanyong Qi
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China; (D.L.); (Y.W.); (Y.Q.)
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing 100093, China
- Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing 100093, China
- Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture and Rural Affairs, Beijing 100093, China
| | - Yuping Zhang
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China; (D.L.); (Y.W.); (Y.Q.)
| | - Qinghua Pan
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China; (D.L.); (Y.W.); (Y.Q.)
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing 100093, China
- Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing 100093, China
- Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture and Rural Affairs, Beijing 100093, China
| |
Collapse
|
19
|
Qian T, Wang X, Liu J, Shi M, Zhao J, Sun P, Zheng G, Fang C, Xie X. ATP-binding cassette protein ABCC8 promotes anthocyanin accumulation in strawberry fruits. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108037. [PMID: 37722280 DOI: 10.1016/j.plaphy.2023.108037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/20/2023]
Abstract
Anthocyanins are important health-promoting flavonoid compounds that substantially contribute to fruit quality. Anthocyanin biosynthesis and most regulatory mechanisms are relatively well understood. However, the functions of anthocyanin transport genes in strawberry fruit remain unclear. In this study, a gene encoding an ATP-binding cassette (ABC) protein of type C, ABCC8, was isolated from strawberry fruits. qRT-PCR analysis demonstrated that the transcript levels of FvABCC8 were the highest and were strongly correlated with anthocyanin accumulation during strawberry fruit ripening. Transient overexpression and RNAi of FvABCC8 led to an increase and decrease in anthocyanin content in strawberry fruits, respectively. Moreover, the ABCC8 promoter was activated by MYB and bHLH transcription factors MYB10, bHLH33, and MYC1. Sucrose enhanced anthocyanin accumulation in FvABCC8-overexpressing Arabidopsis, particularly at higher concentrations. FvABCC8-overexpressing lines were less sensitive to ABA during seed germination and seedling development. These results suggest that strawberry vacuolar anthocyanin transport may be mediated by the ABCC transporter ABCC8, the expression of which may be regulated by transcription factors MYB10, bHLH33, and MYC1.
Collapse
Affiliation(s)
- Ting Qian
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Xiaoshan Wang
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Jingjing Liu
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Mengyun Shi
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Jing Zhao
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Peipei Sun
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Guanghui Zheng
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Congbing Fang
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China.
| | - Xingbin Xie
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
20
|
Mansouri S, Koushesh Saba M, Sarikhani H. Exogenous melatonin delays strawberry fruit ripening by suppressing endogenous ABA signaling. Sci Rep 2023; 13:14209. [PMID: 37648845 PMCID: PMC10468519 DOI: 10.1038/s41598-023-41311-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/24/2023] [Indexed: 09/01/2023] Open
Abstract
Ripening as a physico-chemical change is part of a continuous developmental process and hormones play a major role in this processes. The present study was carried out to investigate the effect of external melatonin (0 and 10 μM) injection at the light green stage on the ripening of strawberry fruit. The fruit was sampled for morphological, biochemical, and gene expression analysis during (0, 5, 10, and 15 days after treatment). The results showed a lower accumulation of anthocyanin content was observed in fruits treated with 10 μM. The injection of 10 μM melatonin caused a lower total soluble solid content and fruit color, and higher titratable acidity and softening. The total phenol content was higher in fruit treated with 10 µM melatonin, accompanied by increased PAL enzyme activity and gene expression, increased DPPH scavenging capacity, and higher content of quercetin, gallic, caffeic, and chlorogenic acids. The delay in fruit ripening was associated with suppression of H2O2 level and endogenous ABA accumulation caused by lower expression of NCEDs genes. In general, it is concluded that activating the melatonin ROS scavenging cascade might be responsible for the delayed ripening and development of strawberry fruit. Therefore, our study demonstrates that the exogenous application of 10 μM melatonin can slow the ripening of strawberry fruit.
Collapse
Affiliation(s)
- Sirvan Mansouri
- Department of Horticultural Science, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
- Research Center of Strawberry Improvement and Breeding, University of Kurdistan, Sanandaj, Iran
| | - Mahmoud Koushesh Saba
- Department of Horticultural Science, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran.
- Research Center of Strawberry Improvement and Breeding, University of Kurdistan, Sanandaj, Iran.
| | - Hassan Sarikhani
- Department of Horticultural Science, Bu-Ali Sina University, Hamedan, Iran.
| |
Collapse
|
21
|
Chai L, Wang H, Yu H, Pang E, Lu T, Li Y, Jiang W, Li Q. Girdling promotes tomato fruit enlargement by enhancing fruit sink strength and triggering cytokinin accumulation. FRONTIERS IN PLANT SCIENCE 2023; 14:1174403. [PMID: 37396637 PMCID: PMC10312241 DOI: 10.3389/fpls.2023.1174403] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 05/24/2023] [Indexed: 07/04/2023]
Abstract
Girdling is a horticultural technique that enhances fruit size by allocating more carbohydrates to fruits, yet its underlying mechanisms are not fully understood. In this study, girdling was applied to the main stems of tomato plants 14 days after anthesis. Following girdling, there was a significant increase in fruit volume, dry weight, and starch accumulation. Interestingly, although sucrose transport to the fruit increased, the fruit's sucrose concentration decreased. Girdling also led to an increase in the activities of enzymes involved in sucrose hydrolysis and AGPase, and to an upregulation in the expression of key genes related to sugar transport and utilization. Moreover, the assay of carboxyfluorescein (CF) signal in detached fruit indicated that girdled fruits exhibited a greater ability to take up carbohydrates. These results indicate that girdling improves sucrose unloading and sugar utilization in fruit, thereby enhancing fruit sink strength. In addition, girdling induced cytokinin (CK) accumulation, promoted cell division in the fruit, and upregulated the expression of genes related to CK synthesis and activation. Furthermore, the results of a sucrose injection experiment suggested that increased sucrose import induced CK accumulation in the fruit. This study sheds light on the mechanisms by which girdling promotes fruit enlargement and provides novel insights into the interaction between sugar import and CK accumulation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Qiang Li
- *Correspondence: Qiang Li, ; Weijie Jiang,
| |
Collapse
|
22
|
Baldwin A, Dhorajiwala R, Roberts C, Dimitrova S, Tu S, Jones S, Ludlow RA, Cammarisano L, Davoli D, Andrews R, Kent NA, Spadafora ND, Müller CT, Rogers HJ. Storage of halved strawberry fruits affects aroma, phytochemical content and gene expression, and is affected by pre-harvest factors. FRONTIERS IN PLANT SCIENCE 2023; 14:1165056. [PMID: 37324675 PMCID: PMC10264638 DOI: 10.3389/fpls.2023.1165056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/02/2023] [Indexed: 06/17/2023]
Abstract
Introduction Strawberry fruit are highly valued for their aroma which develops during ripening. However, they have a short shelf-life. Low temperature storage is routinely used to extend shelf-life for transport and storage in the supply chain, however cold storage can also affect fruit aroma. Some fruit continue to ripen during chilled storage; however, strawberries are a non-climacteric fruit and hence ripening postharvest is limited. Although most strawberry fruit is sold whole, halved fruit is also used in ready to eat fresh fruit salads which are of increasing consumer demand and pose additional challenges to fresh fruit storage. Methods To better understand the effects of cold storage, volatilomic and transcriptomic analyses were applied to halved Fragaria x ananassa cv. Elsanta fruit stored at 4 or 8°C for up to 12 days over two growing seasons. Results and discussion The volatile organic compound (VOC) profile differed between 4 or 8°C on most days of storage. Major differences were detected between the two different years of harvest indicating that aroma change at harvest and during storage is highly dependent on environmental factors during growth. The major component of the aroma profile in both years was esters. Over 3000 genes changed in expression over 5 days of storage at 8°C in transcriptome analysis. Overall, phenylpropanoid metabolism, which may also affect VOCs, and starch metabolism were the most significantly affected pathways. Genes involved in autophagy were also differentially expressed. Expression of genes from 43 different transcription factor (TF) families changed in expression: mostly they were down-regulated but NAC and WRKY family genes were mainly up-regulated. Given the high ester representation amongst VOCs, the down-regulation of an alcohol acyl transferase (AAT) during storage is significant. A total of 113 differentially expressed genes were co-regulated with the AAT gene, including seven TFs. These may be potential AAT regulators.
Collapse
Affiliation(s)
- Ashley Baldwin
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | | | - Callum Roberts
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Simone Dimitrova
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Sarah Tu
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Stephanie Jones
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | | | | | - Daniela Davoli
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Robert Andrews
- School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Nicholas A. Kent
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Natasha D. Spadafora
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | | | - Hilary J. Rogers
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
23
|
Hou G, Yang M, He C, Jiang Y, Peng Y, She M, Li X, Chen Q, Li M, Zhang Y, Lin Y, Zhang Y, Wang Y, He W, Wang X, Tang H, Luo Y. Genome-Wide Identification and Comparative Transcriptome Methods Reveal FaMDHAR50 Regulating Ascorbic Acid Regeneration and Quality Formation of Strawberry Fruits. Int J Mol Sci 2023; 24:ijms24119510. [PMID: 37298465 DOI: 10.3390/ijms24119510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/21/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Ascorbic acid (AsA) is a crucial water-soluble antioxidant in strawberry fruit, but limited research is currently available on the identification and functional validation of key genes involved in AsA metabolism in strawberries. This study analyzed the FaMDHAR gene family identification, which includes 168 genes. Most of the products of these genes are predicted to exist in the chloroplast and cytoplasm. The promoter region is rich in cis-acting elements related to plant growth and development, stress and light response. Meanwhile, the key gene FaMDHAR50 that positively regulates AsA regeneration was identified through comparative transcriptome analysis of 'Benihoppe' strawberry (WT) and its natural mutant (MT) with high AsA content (83 mg/100 g FW). The transient overexpression experiment further showed that overexpression of FaMDHAR50 significantly enhanced the AsA content by 38% in strawberry fruit, with the upregulated expression of structural genes involved in AsA biosynthesis (FaGalUR and FaGalLDH) and recycling and degradation (FaAPX, FaAO and FaDHAR) compared with that of the control. Moreover, increased sugar (sucrose, glucose and fructose) contents and decreased firmness and citric acid contents were observed in the overexpressed fruit, which were accompanied by the upregulation of FaSNS, FaSPS, FaCEL1 and FaACL, as well as the downregulation of FaCS. Additionally, the content of pelargonidin 3-glucoside markedly decreased, while cyanidin chloride increased significantly. In summary, FaMDHAR50 is a key positive regulatory gene involved in AsA regeneration in strawberry fruit, which also plays an important role in the formation of fruit flavor, apperance and texture during strawberry fruit ripening.
Collapse
Affiliation(s)
- Guoyan Hou
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Min Yang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Caixia He
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuyan Jiang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuting Peng
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Musha She
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Xin Li
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Qing Chen
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Mengyao Li
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yong Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuanxiu Lin
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yunting Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Wen He
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaorong Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Haoru Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Ya Luo
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
24
|
Ji Q, Wang R, Chen K, Xie Z, Li S, Wang D, Zhang A, Xu Y, Li S, Cui J, Liu S, Zhou J, Wang L. Comparative transcriptome profiling analysis provides insight into the mechanisms for sugar change in Chinese jujube (Ziziphus jujuba Mill.) under rain-proof cultivation. THE PLANT GENOME 2023:e20341. [PMID: 37144674 DOI: 10.1002/tpg2.20341] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 05/06/2023]
Abstract
Chinese jujube (Ziziphus jujuba Mill.) is a globally popular and economically important fruit that is rich in bioactive compounds with strong anti-cancer effects. Rain-proof cultivation is widely used to cultivate Chinese jujube, as it helps avoid rainfall damage during fruit harvest. Although the sugar content of jujube fruits differs between rain-proof and open-field cultivation, the underlying molecular mechanisms are unknown. Here, we analyzed the levels of sugar content, sugar accumulation pattern, and transcriptome profiles of jujube fruits at five developmental stages grown under rain-proof and open-field cultivation modes. The sugar content of jujube fruits was significantly higher under rain-proof cultivation than under open-field cultivation, although the sugar composition and sugar accumulation patterns were comparable. Comparative analysis of transcriptomic profiles showed that rain-proof cultivation enhanced the intrinsic metabolic activity of fruit development. Gene expression and correlation analyses suggested that ZjSPS, ZjSS, ZjHXK, and ZjINV regulate the development-related changes in sugar content in jujube fruits grown under rain-proof cultivation. Temperature, humidity, and moisture conditions were key climatic factors affecting sugar accumulation. Our results provide insights into the molecular mechanisms regulating sugar content and sugar accumulation in Chinese jujube fruits grown under rain-proof cultivation, and we provide genetic resources for studying the development mechanism of Chinese jujube fruit.
Collapse
Affiliation(s)
- Qing Ji
- Puer University, Puer, Yunnan, China
| | | | - Kai Chen
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
| | | | | | - Dawei Wang
- Key Laboratory for Forest Resource Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China
| | - Ao Zhang
- Puer University, Puer, Yunnan, China
| | - Yumei Xu
- Puer University, Puer, Yunnan, China
| | - Shenghui Li
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
| | - Junjun Cui
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
| | - Sha Liu
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
| | - Jun Zhou
- College of Life Science and Engineering, North Minzu University, Yinchuan, China
| | - Lihu Wang
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
| |
Collapse
|
25
|
Li J, Zhu R, Zhang M, Cao B, Li X, Song B, Liu Z, Wu J. Natural variations in the PbCPK28 promoter regulate sugar content through interaction with PbTST4 and PbVHA-A1 in pear. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:124-141. [PMID: 36710644 DOI: 10.1111/tpj.16126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 01/12/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Soluble sugars play an important role in plant growth, development and fruit quality. Pear fruits have demonstrated a considerable improvement in sugar quality during their long history of selection. However, little is known about the underlying molecular mechanisms accompanying the changes in fruit sugar content as a result of selection by horticulturists. Here, we identified a calcium-dependent protein kinase (PbCPK28), which is located on LG15 and is present within a selective sweep region, thus linked to the quantitative trait loci for soluble solids. Association analysis indicates that a single nucleotide polymorphism-13 variation (SNP13T/C ) in the PbCPK28 regulatory region led to fructose content diversity in pear. Elevated expression of PbCPK28 resulted in significantly increased fructose levels in pear fruits. Furthermore, PbCPK28 interacts with and phosphorylates PbTST4, a proton antiporter, thereby coupling the sugar import into the vacuole with proton export. We demonstrated that residues S277 and S314 of PbTST4 are crucial for its function. Additionally, PbCPK28 interacts with and phosphorylates the vacuolar hydrogen proton pump PbVHA-A1, which could provide proton motive forces for PbTST4. We also found that the T11 and Y120 phosphorylation sites in PbVHA-A1 are essential for its function. Evolution analysis and yeast-two-hybrid results support that the CPK-TST/CPK-VHA-A regulatory network is highly conserved in plants, especially the corresponding phosphorylation sites. Together, our work identifies an agriculturally important natural variation and an important regulatory network, allowing genetic improvement of fruit sugar contents in pears through modulation of PbCPK28 expression and phosphorylation of PbTST4 and PbVHA-A1.
Collapse
Affiliation(s)
- Jiaming Li
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Rongxiang Zhu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Mingyue Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Beibei Cao
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Xiaolong Li
- College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang, 311200, China
| | - Bobo Song
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Zhongchi Liu
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, 20742, USA
| | - Jun Wu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu, 210014, China
| |
Collapse
|
26
|
Jiang L, Lin Y, Wang L, Peng Y, Yang M, Jiang Y, Hou G, Liu X, Li M, Zhang Y, Zhang Y, Chen Q, Wang Y, He W, Wang X, Tang H, Luo Y. Genome-wide identification and expression profiling reveal the regulatory role of U-box E3 ubiquitin ligase genes in strawberry fruit ripening and abiotic stresses resistance. FRONTIERS IN PLANT SCIENCE 2023; 14:1171056. [PMID: 37035055 PMCID: PMC10078948 DOI: 10.3389/fpls.2023.1171056] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 03/10/2023] [Indexed: 06/19/2023]
Abstract
The plant U-box (PUB) proteins are a type of E3 ubiquitin ligases well known for their functions in response to various stresses. They are also related to fruit development and ripening. However, PUB members possess such roles that remain unclear in strawberry. In this study, 155 PUB genes were identified in octoploid strawberry and classified into four groups. Their promoters possessed a variety of cis-acting elements, most of which are associated with abiotic stresses, followed by phytohormones response and development. Protein-protein interaction analysis suggested that FaU-box members could interact with each other as well as other proteins involved in hormone signaling and stress resistance. Transcriptome-based and RT-qPCR expression analysis revealed the potential involvement of FaU-box genes in resistance to stresses and fruit ripening. Of these, FaU-box98 and FaU-box136 were positively while FaU-box52 was negatively related to strawberry ripening. FaU-box98 comprehensively participated in resistance of ABA, cold, and salt, while FaU-box83 and FaU-box136 were broadly associated with drought and salt stresses. FaU-box18 and FaU-box52 were ABA-specific; FaU-box3 was specific to salt stress. In addition, the functional analysis of a randomly selected FaU-box (FaU-box127) showed that the transient overexpression of FaU-box127 promoted the ripening of strawberry fruit, along with significant changes in the expression levels of some ripening-related genes and the content of organic acid and soluble sugar. Overall, these findings provided comprehensive information about the FaU-box gene family and identified the potential FaU-box members participating in stress resistance and strawberry fruit ripening regulation.
Collapse
Affiliation(s)
- Leiyu Jiang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Yuanxiu Lin
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
- Institute of Pomology & Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Liangxin Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Yuting Peng
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Min Yang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Yuyan Jiang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Guoyan Hou
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Xiaoyang Liu
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Mengyao Li
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Yunting Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
- Institute of Pomology & Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Yong Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Qing Chen
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Yan Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
- Institute of Pomology & Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Wen He
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
- Institute of Pomology & Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Xiaorong Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
- Institute of Pomology & Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Haoru Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
- Institute of Pomology & Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Ya Luo
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
27
|
Wang Y, Xiao Y, Sun Y, Zhang X, Du B, Turupu M, Yao Q, Gai S, Tong S, Huang J, Li T. Two B-box proteins, PavBBX6/9, positively regulate light-induced anthocyanin accumulation in sweet cherry. PLANT PHYSIOLOGY 2023:kiad137. [PMID: 36930566 DOI: 10.1093/plphys/kiad137] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Anthocyanin production in bicolored sweet cherry (Prunus avium cv. Rainier) fruit is induced by light exposure, leading to red coloration. The phytohormone abscisic acid (ABA) is essential for this process, but the regulatory relationships that link light and ABA with anthocyanin-associated coloration are currently unclear. In this study, we determined that light treatment of bicolored sweet cherry fruit increased anthocyanin accumulation and induced ABA production and that ABA participates in light-modulated anthocyanin accumulation in bicolored sweet cherry. Two B-box (BBX) genes, PavBBX6/9, were highly induced by light and ABA treatments, as was anthocyanin accumulation. The ectopic expression of PavBBX6 or PavBBX9 in Arabidopsis (Arabidopsis thaliana) increased anthocyanin biosynthesis and ABA accumulation. Overexpressing PavBBX6 or PavBBX9 in sweet cherry calli also enhanced light-induced anthocyanin biosynthesis and ABA accumulation. Additionally, transient overexpression of PavBBX6 or PavBBX9 in sweet cherry peel increased anthocyanin and ABA contents, whereas silencing either gene had the opposite effects. PavBBX6 and PavBBX9 directly bound to the G-box elements in the promoter of UDP glucose-flavonoid-3-O-glycosyltransferase (PavUFGT), a key gene for anthocyanin biosynthesis, and 9-cis-epoxycarotenoid dioxygenase 1 (PavNCED1), a key gene for ABA biosynthesis, and enhanced their activities. These results suggest that PavBBX6 and PavBBX9 positively regulate light-induced anthocyanin and ABA biosynthesis by promoting PavUFGT and PavNCED1 expression, respectively. Our study provides insights into the relationship between the light-induced ABA biosynthetic pathway and anthocyanin accumulation in bicolored sweet cherry fruit.
Collapse
Affiliation(s)
- Yanyan Wang
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yuqin Xiao
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yueting Sun
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xiang Zhang
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Bingyang Du
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Maihemuti Turupu
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Qisheng Yao
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Shilin Gai
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Shi Tong
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Jing Huang
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Tianhong Li
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
28
|
Jiang L, Chen X, Gu X, Deng M, Li X, Zhou A, Suo M, Gao W, Lin Y, Wang Y, He W, Li M, Chen Q, Zhang Y, Luo Y, Wang X, Tang H, Zhang Y. Light Quality and Sucrose-Regulated Detached Ripening of Strawberry with Possible Involvement of Abscisic Acid and Auxin Signaling. Int J Mol Sci 2023; 24:ijms24065681. [PMID: 36982763 PMCID: PMC10058270 DOI: 10.3390/ijms24065681] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/04/2023] [Accepted: 03/09/2023] [Indexed: 03/19/2023] Open
Abstract
The regulation of detached ripening is significant for prolonging fruit shelf life. Although light quality and sucrose affecting strawberry fruit ripening have been widely reported, little information is available about how they co-regulate the strawberry detached ripening process. In this study, different light qualities (red light—RL, blue light—BL, and white light—WL) and 100 mM sucrose were applied to regulate the ripening of initial red fruits detached from the plant. The results showed RL-treated samples (RL + H2O, RL + 100 mM sucrose) had brighter and purer skin color with a higher L*, b*, and C* value, and promoted the ascorbic acid. Almost all light treatments significantly decreased TSS/TA (total soluble solid/titratable acid) and soluble sugar/TA ratio, which is exacerbated by the addition of sucrose. Blue or red light in combination with sucrose notably increased total phenolic content and decreased malondialdehyde (MDA) accumulation. In addition, blue or red light combined with sucrose increased abscisic acid (ABA) content and promoted ABA signaling by inducing ABA-INSENSITIVE 4 (ABI4) expression and inhibiting SUCROSE NONFERMENTING1-RELATED PROTEIN KINASE 2.6 (SnRK2.6) expression. The strawberries exposed to blue and red light significantly improved auxin (IAA) content compared to the control (0 d), whereas the addition of sucrose inhibited IAA accumulation. Moreover, sucrose treatment suppressed the AUXIN/INDOLE-3-ACETIC ACID 11 (AUX/IAA11) and AUXIN RESPONSE FACTOR 6 (ARF6) expression under different light qualities. Overall, these results indicated that RL/BL + 100 mM sucrose might promote the detached ripening of strawberries by regulating abscisic acid and auxin signaling.
Collapse
Affiliation(s)
- Leiyu Jiang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Xinpeng Chen
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Xianjie Gu
- Mianyang Academy of Agricultural Sciences, Mianyang 621000, China
| | - Meiyi Deng
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaotong Li
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Aiyang Zhou
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Mengyue Suo
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Weiliang Gao
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuanxiu Lin
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Wen He
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Mengyao Li
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Qing Chen
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yong Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Ya Luo
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaorong Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Haoru Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: (H.T.); (Y.Z.)
| | - Yunting Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: (H.T.); (Y.Z.)
| |
Collapse
|
29
|
Liu Y, Liu R, Deng Y, Zheng M, Yu S, Nie Y, Li JQ, Pan C, Zhou Z, Diao J. Insights into the Mechanism of Flavor Loss in Strawberries Induced by Two Fungicides Integrating Transcriptome and Metabolome Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3906-3919. [PMID: 36788782 DOI: 10.1021/acs.jafc.2c08157] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Consumers have been complaining about the deterioration of the flavor of strawberries. The use of pesticides could have potential impacts on fruit flavor but the mechanisms are unclear. Here, we spayed boscalid and difenoconazole on the small green fruit of strawberries to investigate their effect on fruit flavor quality and the mechanism. The results indicated that both fungicides decreased the contents of soluble sugar and nutrients but increased acids in mature fruits, changed the levels of volatiles, and caused oxidative damage, which ultimately reduced the flavor quality of strawberries, and the negative effect of boscalid was greater. Combined with transcriptome and metabolome, boscalid altered the genes in sugar-acid metabolism (SUT, SPS, and INV), volatiles (FaQR, FaOMT, FaLOX, and FaAAT), and amino acid synthesis pathways and metabolites. This study elaborated on the effects of fungicides on the flavor quality of strawberries from physiological-biochemical and molecular levels and laid the foundation for improving the strawberry flavor quality.
Collapse
Affiliation(s)
- Yuping Liu
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Rui Liu
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Yue Deng
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Meiling Zheng
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Simin Yu
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Yufan Nie
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Jia-Qi Li
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Canping Pan
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
- Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Haikou 570311, China
| | - Zhiqiang Zhou
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Jinling Diao
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| |
Collapse
|
30
|
Spence C. On the manipulation, and meaning(s), of color in food: A historical perspective. J Food Sci 2023; 88:5-20. [PMID: 36579463 DOI: 10.1111/1750-3841.16439] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/30/2022]
Abstract
While there has long been public concern over the use of artificial/synthetic food colors, it should be remembered that food and drink products (e.g., red wine) have been purposefully colored for millennia. This narrative historical review highlights a number of reasons that food and drink have been colored, including to capture the shopper's visual attention through to signaling the likely taste/flavor. Over the course of the last century, there has, on occasion, also been interest in the playful, or sometimes even deliberately discombobulating, use of food coloring by modernist chefs and others. The coloring (or absence of color) of food and drink can, though, sometimes also take on more of a symbolic meaning, and, in a few cases, specific food colors may acquire a signature, or branded (i.e., semantic) association. That said, with food color being associated with so many different potential "meanings," it is an open question as to which meaning the consumer will associate with any given instance of color in food, and what role context may play in their decision. Laboratory-based sensory science research may not necessarily successfully capture the full range of meanings that may be associated with food color in the mind of the consumer. Nevertheless, it seems likely that food color will continue to play an important role in dictating consumer behavior in the years to come, even though the visual appearance of food is increasingly being mediated via technological means, including virtual and augmented reality.
Collapse
Affiliation(s)
- Charles Spence
- Crossmodal Research Laboratory, Department of Experimental Psychology, University of Oxford, Oxford, UK
| |
Collapse
|
31
|
Ghazzawy HS, Alqahtani N, Munir M, Alghanim NS, Mohammed M. Combined Impact of Irrigation, Potassium Fertilizer, and Thinning Treatments on Yield, Skin Separation, and Physicochemical Properties of Date Palm Fruits. PLANTS (BASEL, SWITZERLAND) 2023; 12:1003. [PMID: 36903864 PMCID: PMC10005418 DOI: 10.3390/plants12051003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Orchard cultural practices, i.e., irrigation, fertilizer, and fruit thinning, are crucially encompassed to enhance fruit yield and quality. Appropriate irrigation and fertilizer inputs improve plant growth and fruit quality, but their overuse leads to the degradation of the ecosystem and water quality, and other biological concerns. Potassium fertilizer improves fruit sugar and flavor and accelerates fruit ripening. Bunch thinning also significantly reduces the crop burden and improves the physicochemical characteristics of the fruit. Therefore, the present study aims to appraise the combined impact of irrigation, sulfate of potash (SOP) fertilizer, and fruit bunch thinning practices on fruit yield and quality of date palm cv. Sukary under the agro-climatic condition of the Al-Qassim (Buraydah) region, Kingdom of Saudi Arabia. To achieve these objectives, four irrigation levels (80, 100, 120, and 140% of crop evapotranspiration (ETc), three SOP fertilizer doses (2.5, 5, and 7.5 kg palm-1), and three fruit bunch thinning levels (8, 10, and 12 bunches palm-1) were applied. The effects of these factors were determined on fruit bunch traits, physicochemical fruit characteristics, fruit texture profile, fruit color parameters, fruit skin separation disorder, fruit grading, and yield attributes. The findings of the present study showed that the lowest (80% ETc) and highest (140% ETc) irrigation water levels, lowest SOP fertilizer dose (2.5 kg palm-1), and retaining the highest number of fruit bunch per tree (12 bunches) had a negative effect on most yield and quality attributes of date palm cv. Sukary. However, maintaining the date palm water requirement at 100 and 120% ETc, applying SOP fertilizer doses at 5 and 7.5 kg palm-1, and retaining 8-10 fruit bunches per palm had significantly positive effects on the fruit yield and quality characteristics. Therefore, it is concluded that applying 100% ETc irrigation water combined with a 5 kg palm-1 SOP fertilizer dose and maintaining 8-10 fruit bunches per palm is more equitable than other treatment combinations.
Collapse
Affiliation(s)
- Hesham S. Ghazzawy
- Date Palm Research Center of Excellence, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Central Laboratory for Date Palm Research and Development, Agriculture Research Center, Giza 12511, Egypt
| | - Nashi Alqahtani
- Date Palm Research Center of Excellence, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Food and Nutrition Sciences, College of Agricultural and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Muhammad Munir
- Date Palm Research Center of Excellence, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Naser S. Alghanim
- Date Palm Research Center Al-Ahsa, Ministry of Environment, Water and Agriculture, Al Mubarraz 36321, Saudi Arabia
| | - Maged Mohammed
- Date Palm Research Center of Excellence, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Agricultural and Biosystems Engineering, Faculty of Agriculture, Menoufia University, Shebin El Koum 32514, Egypt
| |
Collapse
|
32
|
Elbar S, Maytal Y, David I, Carmeli-Weissberg M, Shaya F, Barnea-Danino Y, Bustan A, Harpaz-Saad S. Abscisic acid plays a key role in the regulation of date palm fruit ripening. FRONTIERS IN PLANT SCIENCE 2023; 13:1066142. [PMID: 36874915 PMCID: PMC9981646 DOI: 10.3389/fpls.2022.1066142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/21/2022] [Indexed: 06/18/2023]
Abstract
The date palm (Phoenix dactylifera L.) fruit is of major importance for the nutrition of broad populations in the world's desert strip; yet it is sorely understudied. Understanding the mechanism regulating date fruit development and ripening is essential to customise date crop to the climatic change, which elaborates yield losses due to often too early occurring wet season. This study aimed to uncover the mechanism regulating date fruit ripening. To that end, we followed the natural process of date fruit development and the effects of exogenous hormone application on fruit ripening in the elite cultivar 'Medjool'. The results of the current study indicate that the onset of fruit ripening occurre once the seed had reached maximum dry weight. From this point, fruit pericarp endogenous abscisic acid (ABA) levels consistently increased until fruit harvest. The final stage in fruit ripening, the yellow-to-brown transition, was preceded by an arrest of xylem-mediated water transport into the fruit. Exogenous ABA application enhanced fruit ripening when applied just before the green-to-yellow fruit color transition. Repeated ABA applications hastened various fruit ripening processes, resulting in earlier fruit harvest. The data presented supports a pivotal role for ABA in the regulation of date fruit ripening.
Collapse
Affiliation(s)
- Saar Elbar
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University of Jerusalem, Rehovot, Israel
| | - Yochai Maytal
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University of Jerusalem, Rehovot, Israel
| | - Itzhak David
- Ramat-Negev Desert Agro-Research Centre, Halutza, Israel
| | - Mira Carmeli-Weissberg
- Department of Fruit Tree Sciences, The Volcani Center, Agricultural Research Organization, Rishon LeZion, Israel
| | - Felix Shaya
- Department of Fruit Tree Sciences, The Volcani Center, Agricultural Research Organization, Rishon LeZion, Israel
| | | | - Amnon Bustan
- Ramat-Negev Desert Agro-Research Centre, Halutza, Israel
| | - Smadar Harpaz-Saad
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
33
|
Barbosa ACO, Rocha DS, Silva GCB, Santos MGM, Camillo LR, de Oliveira PHGA, Cavalari AA, Costa MGC. Dynamics of the sucrose metabolism and related gene expression in tomato fruits under water deficit. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:159-172. [PMID: 36875726 PMCID: PMC9981854 DOI: 10.1007/s12298-023-01288-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
The impact of water deficit on sucrose metabolism in sink organs like the fruit remains poorly known despite the need to improve fruit crops resilience to drought in the face of climate change. The present study investigated the effects of water deficit on sucrose metabolism and related gene expression in tomato fruits, aiming to identify candidate genes for improving fruit quality upon low water availability. Tomato plants were subjected to irrigated control and water deficit (-60% water supply compared to control) treatments, which were applied from the first fruit set to first fruit maturity stages. The results have shown that water deficit significantly reduced fruit dry biomass and number, among other plant physiological and growth variables, but substantially increased the total soluble solids content. The determination of soluble sugars on the basis of fruit dry weight revealed an active accumulation of sucrose and concomitant reduction in glucose and fructose levels in response to water deficit. The complete repertoire of genes encoding sucrose synthase (SUSY1-7), sucrose-phosphate synthase (SPS1-4), and cytosolic (CIN1-8), vacuolar (VIN1-2) and cell wall invertases (WIN1-4) was identified and characterized, of which SlSUSY4, SlSPS1, SlCIN3, SlVIN2, and SlCWIN2 were shown to be positively regulated by water deficit. Collectively, these results show that water deficit regulates positively the expression of certain genes from different gene families related to sucrose metabolism in fruits, favoring the active accumulation of sucrose in this organ under water-limiting conditions. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01288-7.
Collapse
Affiliation(s)
- Ana C. O. Barbosa
- Centro de Biotecnologia e Genética, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Bahia 45662-900 Brazil
| | - Dilson S. Rocha
- Centro de Biotecnologia e Genética, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Bahia 45662-900 Brazil
| | - Glaucia C. B. Silva
- Centro de Biotecnologia e Genética, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Bahia 45662-900 Brazil
| | - Miguel G. M. Santos
- Centro de Biotecnologia e Genética, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Bahia 45662-900 Brazil
| | - Luciana R. Camillo
- Centro de Biotecnologia e Genética, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Bahia 45662-900 Brazil
| | - Paulo H. G. A. de Oliveira
- Centro de Biotecnologia e Genética, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Bahia 45662-900 Brazil
| | - Aline A. Cavalari
- Departamento de Ciências Biológicas, Universidade Federal de São Paulo, São Paulo, Diadema 09913-030 Brazil
| | - Marcio G. C. Costa
- Centro de Biotecnologia e Genética, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Bahia 45662-900 Brazil
| |
Collapse
|
34
|
Bai Q, Chen X, Zheng Z, Feng J, Zhang Y, Shen Y, Huang Y. Vacuolar Phosphate Transporter1 (VPT1) may transport sugar in response to soluble sugar status of grape fruits. HORTICULTURE RESEARCH 2023; 10:uhac260. [PMID: 37533675 PMCID: PMC10392026 DOI: 10.1093/hr/uhac260] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/17/2022] [Indexed: 08/04/2023]
Abstract
Vacuolar Phosphate Transporter1 (VPT1)-mediated phosphate uptake in the vacuoles is essential to plant development and fruit ripening. Interestingly, here we find that the VPT1 may transport sugar in response to soluble sugar status of fruits. The VvVPT1 protein isolated from grape (Vitis vinifera) berries was tonoplast-localized and contains SPX (Syg1/Pho81/XPR1) and MFS (major facilitator superfamily) domains. Its mRNA expression was significantly increased during fruit ripening and induced by sucrose. Functional analyses based on transient transgenic systems in grape berry showed that VvVPT1 positively regulated berry ripening and significantly affected hexose contents, fruit firmness, and ripening-related gene expression. The VPT1 proteins (Grape VvVPT1, strawberry FaVPT1, and Arabidopsis AtVPT1) all showed low affinity for phosphate verified in yeast system, while they appear different in sugar transport capacity, consistent with fruit sugar status. Thus, our findings reveal a role for VPT1 in fruit ripening, associated to its SPX and MFS domains in direct transport of soluble sugar available into the vacuole, and open potential avenues for genetic improvement in fleshy fruit.
Collapse
Affiliation(s)
| | | | | | - Jinjing Feng
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Yanjun Zhang
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Yuanyue Shen
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | | |
Collapse
|
35
|
Li BJ, Shi YN, Jia HR, Yang XF, Sun YF, Lu J, Giovannoni JJ, Jiang GH, Rose JKC, Chen KS. Abscisic acid mediated strawberry receptacle ripening involves the interplay of multiple phytohormone signaling networks. FRONTIERS IN PLANT SCIENCE 2023; 14:1117156. [PMID: 36794230 PMCID: PMC9923025 DOI: 10.3389/fpls.2023.1117156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/06/2023] [Indexed: 06/18/2023]
Abstract
As a canonical non-climacteric fruit, strawberry (Fragaria spp.) ripening is mainly mediated by abscisic acid (ABA), which involves multiple other phytohormone signalings. Many details of these complex associations are not well understood. We present an coexpression network, involving ABA and other phytohormone signalings, based on weighted gene coexpression network analysis of spatiotemporally resolved transcriptome data and phenotypic changes of strawberry receptacles during development and following various treatments. This coexpression network consists of 18,998 transcripts and includes transcripts related to phytohormone signaling pathways, MADS and NAC family transcription factors and biosynthetic pathways associated with fruit quality. Members of eight phytohormone signaling pathways are predicted to participate in ripening and fruit quality attributes mediated by ABA, of which 43 transcripts were screened to consist of the hub phytohormone signalings. In addition to using several genes reported from previous studies to verify the reliability and accuracy of this network, we explored the role of two hub signalings, small auxin up-regulated RNA 1 and 2 in receptacle ripening mediated by ABA, which are also predicted to contribute to fruit quality. These results and publicly accessible datasets provide a valuable resource to elucidate ripening and quality formation mediated by ABA and involves multiple other phytohormone signalings in strawberry receptacle and serve as a model for other non-climacteric fruits.
Collapse
Affiliation(s)
- Bai-Jun Li
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, China
- State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| | - Yan-Na Shi
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, China
- State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| | - Hao-Ran Jia
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, China
| | - Xiao-Fang Yang
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yun-Fan Sun
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, China
| | - Jiao Lu
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, China
| | - James J. Giovannoni
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
- United States Department of Agriculture – Agricultural Research Service and Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY, United States
| | - Gui-Hua Jiang
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jocelyn K. C. Rose
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| | - Kun-Song Chen
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, China
- State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| |
Collapse
|
36
|
Li N, Yu J, Yang J, Wang S, Yu L, Xu F, Yang C. Metabolomic analysis reveals key metabolites alleviating green spots under exogenous sucrose spraying in air-curing cigar tobacco leaves. Sci Rep 2023; 13:1311. [PMID: 36693869 PMCID: PMC9873923 DOI: 10.1038/s41598-023-27968-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 01/10/2023] [Indexed: 01/25/2023] Open
Abstract
Cigar variety CX-010 tobacco leaves produce localized green spots during the air-curing period, and spraying exogenous sucrose effectively alleviates the occurrence of the green spots. To investigate the alleviation effect of exogenous sucrose spraying, the total water content and the number and size of green spots on tobacco leaves were investigated during the air-curing period under four treatments; CK (pure water), T1 (0.1 M sucrose), T2 (0.2 M sucrose) and T3 (0.4 M sucrose). The results showed that the total water content of tobacco leaves showed a trend of T3 < CK < T2 < T1 in the early air-curing stage, and the number and size of green spots showed a trend of T3 < T2 < T1 < CK. All sucrose treatments alleviated the green spot phenomenon, and T3 had the fewest green spots. Thus, the tobacco leaves of the T3 and CK treatments at two air-curing stages were used to perform metabolomics analysis with nontargeted liquid chromatography‒mass spectrometry to determine the physiological mechanism. A total of 259 and 178 differentially abundant metabolites (DAMs) between T3- and CK-treated tobacco leaves were identified in the early air-curing and the end of air-curing stages, respectively. These DAMs mainly included lipid and lipid-like molecules, carbohydrates, and organic acids and their derivatives. Based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, the T3 treatment significantly altered carbohydrate metabolism (pentose phosphate pathway, sucrose and starch metabolism and galactose metabolism) and amino acid metabolism (tyrosine metabolism and tryptophan metabolism) in air-curing tobacco leaves. Sucrose treatment alleviated green spots by altering DAMs that affected chlorophyll degradation, such as tyrosine and citric acid, to promote the normal degradation of chlorophyll.
Collapse
Affiliation(s)
- Nanfen Li
- Microelement Research Center, College of Resource and Environment, Huazhong Agricultural University, Wuhan, China
| | - Jun Yu
- Tobacco Research Institute of Hubei Province, Wuhan, China
| | - Jinpeng Yang
- Tobacco Research Institute of Hubei Province, Wuhan, China.
| | - Sheliang Wang
- Microelement Research Center, College of Resource and Environment, Huazhong Agricultural University, Wuhan, China
| | - Lianying Yu
- Microelement Research Center, College of Resource and Environment, Huazhong Agricultural University, Wuhan, China
| | - Fangsen Xu
- Microelement Research Center, College of Resource and Environment, Huazhong Agricultural University, Wuhan, China.
| | - Chunlei Yang
- Tobacco Research Institute of Hubei Province, Wuhan, China.
| |
Collapse
|
37
|
New Insights into MdSPS4-Mediated Sucrose Accumulation under Different Nitrogen Levels Revealed by Physiological and Transcriptomic Analysis. Int J Mol Sci 2022; 23:ijms232416073. [PMID: 36555711 PMCID: PMC9782777 DOI: 10.3390/ijms232416073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/10/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Nitrogen nutrition participates in many physiological processes and understanding the physiological and molecular mechanisms of apple responses to nitrogen is very significant for improving apple quality. This study excavated crucial genes that regulates sugar metabolism in response to nitrogen in apples through physiology and transcriptome analysis, so as to lay a theoretical foundation for improving fruit quality. In this paper, the content of sugar and organic acid in apple fruit at different developmental periods under different nitrogen levels (0, 150, 300, and 600 kg·hm-2) were determined. Then, the transcriptomic analysis was performed in 120 days after bloom (DAB) and 150 DAB. The results showed that the fructose and glucose content were the highest at 120 DAB under 600 kg·hm-2 nitrogen level. Meanwhile, different nitrogen treatments decreased malate content in 30 and 60 DAB. RNA-seq analysis revealed a total of 4537 UniGenes were identified as differentially expressed genes (DEGs) under nitrogen treatments. Among these DEGs, 2362 (52.06%) were up-regulated and 2175 (47.94%) were down-regulated. The gene co-expression clusters revealed that most DEGs were significantly annotated in the photosynthesis, glycolysis/gluconeogenesis, pyruvate metabolism, carbon metabolism, carbon fixation in photosynthetic organisms and plant hormone signal transduction pathways. The key transcription factor genes (ERF, NAC, WRKY, and C2H2 genes) were differentially expressed in apple fruit. Sugar and acid metabolism-related genes (e.g., HXK1, SPS4, SS2, PPC16-2, and MDH2 genes) exhibited significantly up-regulated expression at 120 DAB, whereas they were down-regulated at 150 DAB. Furthermore, the MdSPS4 gene overexpression positively promoted sucrose accumulation in apple callus and fruit. In conclusion, the combinational analysis of transcriptome and the functional validation of the MdSPS4 gene provides new insights into apple responses to different nitrogen levels.
Collapse
|
38
|
Yi SN, Mao JX, Zhang XY, Li XM, Zhang ZH, Li H. FveARF2 negatively regulates fruit ripening and quality in strawberry. FRONTIERS IN PLANT SCIENCE 2022; 13:1023739. [PMID: 36388474 PMCID: PMC9660248 DOI: 10.3389/fpls.2022.1023739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Auxin response factors (ARFs) are transcription factors that play important roles in plants. ARF2 is a member of the ARF family and participates in many plant growth and developmental processes. However, the role of ARF2 in strawberry fruit quality remains unclear. In this study, FveARF2 was isolated from the woodland strawberry 'Ruegen' using reverse transcription-polymerase chain reaction (RT-PCR), which showed that FveARF2 expression levels were higher in the stem than in other organs of the 'Ruegen' strawberry. Moreover, FaARF2 was higher in the white fruit stage of cultivated strawberry fruit than in other stage. Subcellular localization analysis showed that FveARF2 is located in the nucleus, while transcriptional activation assays showed that FveARF2 inhibited transcription in yeast. Silencing FveARF2 in cultivated strawberry fruit revealed earlier coloration and higher soluble solid, sugar, and anthocyanin content in the transgenic fruit than in the control fruit, overexpression of FveARF2 in strawberry fruit delayed ripening and lower soluble solid, sugar, and anthocyanin content compared to the control fruit. Gene expression analysis indicated that the transcription levels of the fruit ripening genes FaSUT1, FaOMT, and FaCHS increased in FveARF2-RNAi fruit and decreased in FveARF2-OE fruit, when compared with the control. Furthermore, yeast one-hybrid (Y1H) and GUS activity experiments showed that FveARF2 can directly bind to the AuxRE (TGTCTC) element in the FaSUT1, FaOMT, and FaCHS promoters in vitro and in vivo. Potassium ion supplementation improved the quality of strawberry fruit, while silencing FveARF2 increased potassium ion content in transgenic fruit. The Y1H and GUS activity experiments also confirmed that FveARF2 could directly bind to the promoter of FveKT12, a potassium transporter gene, and inhibited its expression. Taken together, we found that FveARF2 can negatively regulate strawberry fruit ripening and quality, which provides new insight for further study of the molecular mechanism of strawberry fruit ripening.
Collapse
Affiliation(s)
- Shan-na Yi
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Jian-xin Mao
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Xin-yu Zhang
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Vegetable Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, China
| | - Xiao-ming Li
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Zhi-hong Zhang
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - He Li
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
39
|
Lee BP, Spence C. Crossmodal correspondences between basic tastes and visual design features: A narrative historical review. Iperception 2022; 13:20416695221127325. [PMID: 36246303 PMCID: PMC9558874 DOI: 10.1177/20416695221127325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/01/2022] [Indexed: 11/26/2022] Open
Abstract
People tend to associate abstract visual features with basic taste qualities. This narrative historical review critically evaluates the literature on these associations, often referred to as crossmodal correspondences, between basic tastes and visual design features such as color hue and shape curvilinearity. The patterns, discrepancies, and evolution in the development of the research are highlighted while the mappings that have been reported to date are summarized. The review also reflects on issues of cross-cultural validity and deviations in the matching patterns that are observed when correspondences are assessed with actual tastants versus with verbal stimuli. The various theories that have been proposed to account for different classes of crossmodal correspondence are discussed, among which the statistical and affective (or emotional-mediation) accounts currently appear most promising. Several critical research questions for the future are presented to address the gaps that have been identified in the literature and help validate the popular theories on the origin and operations of visual-taste correspondences.
Collapse
Affiliation(s)
- Byron P. Lee
- Byron P. Lee, New Radcliffe House,
Radcliffe Observatory Quarter, Woodstock Road, Oxford OX2 6GG, UK.
| | | |
Collapse
|
40
|
Sánchez-Gómez C, Posé D, Martín-Pizarro C. Insights into transcription factors controlling strawberry fruit development and ripening. FRONTIERS IN PLANT SCIENCE 2022; 13:1022369. [PMID: 36299782 PMCID: PMC9589285 DOI: 10.3389/fpls.2022.1022369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Fruit ripening is a highly regulated and complex process involving a series of physiological and biochemical changes aiming to maximize fruit organoleptic traits to attract herbivores, maximizing therefore seed dispersal. Furthermore, this process is of key importance for fruit quality and therefore consumer acceptance. In fleshy fruits, ripening involves an alteration in color, in the content of sugars, organic acids and secondary metabolites, such as volatile compounds, which influence flavor and aroma, and the remodeling of cell walls, resulting in the softening of the fruit. The mechanisms underlying these processes rely on the action of phytohormones, transcription factors and epigenetic modifications. Strawberry fruit is considered a model of non-climacteric species, as its ripening is mainly controlled by abscisic acid. Besides the role of phytohormones in the regulation of strawberry fruit ripening, a number of transcription factors have been identified as important regulators of these processes to date. In this review, we present a comprehensive overview of the current knowledge on the role of transcription factors in the regulation of strawberry fruit ripening, as well as in compiling candidate regulators that might play an important role but that have not been functionally studied to date.
Collapse
Affiliation(s)
| | - David Posé
- *Correspondence: David Posé, ; Carmen Martín-Pizarro,
| | | |
Collapse
|
41
|
Wang W, Fan D, Hao Q, Jia W. Signal transduction in non-climacteric fruit ripening. HORTICULTURE RESEARCH 2022; 9:uhac190. [PMID: 36329721 PMCID: PMC9622361 DOI: 10.1093/hr/uhac190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 08/18/2022] [Indexed: 06/16/2023]
Abstract
Fleshy fruit ripening involves changes in numerous cellular processes and metabolic pathways, resulting from the coordinated actions of diverse classes of structural and regulatory proteins. These include enzymes, transporters and complex signal transduction systems. Many aspects of the signaling machinery that orchestrates the ripening of climacteric fruits, such as tomato (Solanum lycopersicum), have been elucidated, but less is known about analogous processes in non-climacteric fruits. The latter include strawberry (Fragaria x ananassa) and grape (Vitis vinifera), both of which are used as non-climacteric fruit experimental model systems, although they originate from different organs: the grape berry is a true fruit derived from the ovary, while strawberry is an accessory fruit that is derived from the floral receptacle. In this article, we summarize insights into the signal transduction events involved in strawberry and grape berry ripening. We highlight the mechanisms underlying non-climacteric fruit ripening, the multiple primary signals and their integrated action, individual signaling components, pathways and their crosstalk, as well as the associated transcription factors and their signaling output.
Collapse
Affiliation(s)
| | | | - Qing Hao
- Corresponding authors: E-mail: ;
| | | |
Collapse
|
42
|
Liu S, Long J, Zhang L, Gao J, Dong T, Wang Y, Peng C. Arabidopsis sucrose transporter 4 (AtSUC4) is involved in high sucrose-mediated inhibition of root elongation. BIOTECHNOL BIOTEC EQ 2022. [DOI: 10.1080/13102818.2022.2101942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Affiliation(s)
- Siwen Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, PR China
| | - Jianmei Long
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, PR China
| | - Liding Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, PR China
| | - Jiayu Gao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, PR China
| | - Tiantian Dong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, PR China
| | - Ying Wang
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, PR China
| | - Changcao Peng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, PR China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, PR China
| |
Collapse
|
43
|
Zhang X, Li B, Duan R, Han C, Wang L, Yang J, Wang L, Wang S, Su Y, Xue H. Transcriptome Analysis Reveals Roles of Sucrose in Anthocyanin Accumulation in 'Kuerle Xiangli' ( Pyrus sinkiangensis Yü). Genes (Basel) 2022; 13:genes13061064. [PMID: 35741826 PMCID: PMC9222499 DOI: 10.3390/genes13061064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/10/2022] [Accepted: 06/12/2022] [Indexed: 12/02/2022] Open
Abstract
Pear (Pyrus L.) is one of the most important temperate fruit crops worldwide, with considerable economic value and significant health benefits. Red-skinned pears have an attractive appearance and relatively high anthocyanin accumulation, and are especially favored by customers. Abnormal weather conditions usually reduce the coloration of red pears. The application of exogenous sucrose obviously promotes anthocyanins accumulation in ‘Kuerle Xiangli’ (Pyrus sinkiangensis Yü); however, the underlying molecular mechanism of sucrose-mediated fruit coloration remains largely unknown. In this study, comprehensive transcriptome analysis was performed to identify the essential regulators and pathways associated with anthocyanin accumulation. The differentially expressed genes enriched in Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes items were analyzed. The transcript levels of some anthocyanin biosynthetic regulatory genes and structural genes were significantly induced by sucrose treatment. Sucrose application also stimulated the expression of some sugar transporter genes. Further RT-qPCR analysis confirmed the induction of anthocyanin biosynthetic genes. Taken together, the results revealed that sucrose promotes pear coloration most likely by regulating sugar metabolism and anthocyanin biosynthesis, and this study provides a comprehensive understanding of the complex molecular mechanisms underlying the coloration of red-skinned pear.
Collapse
Affiliation(s)
- Xiangzhan Zhang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (X.Z.); (B.L.); (R.D.); (C.H.); (L.W.); (J.Y.); (L.W.); (S.W.); (Y.S.)
- Key Laboratory of Fruit Breeding Technology of Ministry of Agriculture and Rural Affairs, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
- Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Bo Li
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (X.Z.); (B.L.); (R.D.); (C.H.); (L.W.); (J.Y.); (L.W.); (S.W.); (Y.S.)
- Key Laboratory of Fruit Breeding Technology of Ministry of Agriculture and Rural Affairs, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
- Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Ruiwei Duan
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (X.Z.); (B.L.); (R.D.); (C.H.); (L.W.); (J.Y.); (L.W.); (S.W.); (Y.S.)
- Key Laboratory of Fruit Breeding Technology of Ministry of Agriculture and Rural Affairs, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
- Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Chunhong Han
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (X.Z.); (B.L.); (R.D.); (C.H.); (L.W.); (J.Y.); (L.W.); (S.W.); (Y.S.)
- Key Laboratory of Fruit Breeding Technology of Ministry of Agriculture and Rural Affairs, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
- Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
- College of Horticulture and Plant Conservation, Henan University of Science and Technology, Luoyang 471023, China
| | - Lei Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (X.Z.); (B.L.); (R.D.); (C.H.); (L.W.); (J.Y.); (L.W.); (S.W.); (Y.S.)
- Key Laboratory of Fruit Breeding Technology of Ministry of Agriculture and Rural Affairs, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
- Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Jian Yang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (X.Z.); (B.L.); (R.D.); (C.H.); (L.W.); (J.Y.); (L.W.); (S.W.); (Y.S.)
- Key Laboratory of Fruit Breeding Technology of Ministry of Agriculture and Rural Affairs, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
- Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Long Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (X.Z.); (B.L.); (R.D.); (C.H.); (L.W.); (J.Y.); (L.W.); (S.W.); (Y.S.)
- Key Laboratory of Fruit Breeding Technology of Ministry of Agriculture and Rural Affairs, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
- Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Suke Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (X.Z.); (B.L.); (R.D.); (C.H.); (L.W.); (J.Y.); (L.W.); (S.W.); (Y.S.)
- Key Laboratory of Fruit Breeding Technology of Ministry of Agriculture and Rural Affairs, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
- Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Yanli Su
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (X.Z.); (B.L.); (R.D.); (C.H.); (L.W.); (J.Y.); (L.W.); (S.W.); (Y.S.)
- Key Laboratory of Fruit Breeding Technology of Ministry of Agriculture and Rural Affairs, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
- Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Huabai Xue
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (X.Z.); (B.L.); (R.D.); (C.H.); (L.W.); (J.Y.); (L.W.); (S.W.); (Y.S.)
- Key Laboratory of Fruit Breeding Technology of Ministry of Agriculture and Rural Affairs, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
- Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
- Correspondence:
| |
Collapse
|
44
|
Martínez-Rivas FJ, Blanco-Portales R, Molina-Hidalgo FJ, Caballero JL, Perez de Souza L, Alseekh S, Fernie AR, Muñoz-Blanco J, Rodríguez-Franco A. Azacytidine arrests ripening in cultivated strawberry (Fragaria × ananassa) by repressing key genes and altering hormone contents. BMC PLANT BIOLOGY 2022; 22:278. [PMID: 35672704 PMCID: PMC9172142 DOI: 10.1186/s12870-022-03670-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Strawberry ripening involves a number of irreversible biochemical reactions that cause sensory changes through accumulation of sugars, acids and other compounds responsible for fruit color and flavor. The process, which is strongly dependent on methylation marks in other fruits such as tomatoes and oranges, is highly controlled and coordinated in strawberry. RESULTS Repeated injections of the hypomethylating compound 5-azacytidine (AZA) into green and unripe Fragaria × ananassa receptacles fully arrested the ripening of the fruit. The process, however, was reversible since treated fruit parts reached full maturity within a few days after AZA treatment was stopped. Transcriptomic analyses showed that key genes responsible for the biosynthesis of anthocyanins, phenylpropanoids, and hormones such as abscisic acid (ABA) were affected by the AZA treatment. In fact, AZA downregulated genes associated with ABA biosynthetic genes but upregulated genes associated with its degradation. AZA treatment additionally downregulated a number of essential transcription factors associated with the regulation and control of ripening. Metabolic analyses revealed a marked imbalance in hormone levels, with treated parts accumulating auxins, gibberellins and ABA degradation products, as well as metabolites associated with unripe fruits. CONCLUSIONS AZA completely halted strawberry ripening by altering the hormone balance, and the expression of genes involves in hormone biosynthesis and degradation processes. These results contradict those previously obtained in other climacteric and fleshly fruits, where AZA led to premature ripening. In any case, our results suggests that the strawberry ripening process is governed by methylation marks.
Collapse
Affiliation(s)
- Félix Juan Martínez-Rivas
- Department of Biochemistry and Molecular Biology, University of Cordoba, Edificio Severo Ochoa, Campus de Rabanales, E-14014, Córdoba, Spain.
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany.
| | - Rosario Blanco-Portales
- Department of Biochemistry and Molecular Biology, University of Cordoba, Edificio Severo Ochoa, Campus de Rabanales, E-14014, Córdoba, Spain
| | - Francisco Javier Molina-Hidalgo
- Department of Biochemistry and Molecular Biology, University of Cordoba, Edificio Severo Ochoa, Campus de Rabanales, E-14014, Córdoba, Spain
| | - José Luis Caballero
- Department of Biochemistry and Molecular Biology, University of Cordoba, Edificio Severo Ochoa, Campus de Rabanales, E-14014, Córdoba, Spain
| | - Leonardo Perez de Souza
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Saleh Alseekh
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
- Center of Plant Systems Biology and Biotechnology, Ruski Blvd. 139, 4000, Plovdiv, Bulgaria
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
- Center of Plant Systems Biology and Biotechnology, Ruski Blvd. 139, 4000, Plovdiv, Bulgaria
| | - Juan Muñoz-Blanco
- Department of Biochemistry and Molecular Biology, University of Cordoba, Edificio Severo Ochoa, Campus de Rabanales, E-14014, Córdoba, Spain.
| | - Antonio Rodríguez-Franco
- Department of Biochemistry and Molecular Biology, University of Cordoba, Edificio Severo Ochoa, Campus de Rabanales, E-14014, Córdoba, Spain.
| |
Collapse
|
45
|
The Effects of Bagging on Color Change and Chemical Composition in ‘Jinyan’ Kiwifruit (Actinidia chinensis). HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8060478] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
To explore the effect of bagging on the nutritional quality and color of kiwifruit (Actinidia spp.), the fruits of yellow-fleshed kiwifruit cultivars were analyzed after bagging treatment. Bagging treatment promoted the degreening of mesocarp and increased brightness. Bagging significantly reduced the accumulation of dry matter, titratable acids, starch, sucrose, fructose, and glucose during kiwifruit development. Additionally, bagging significantly reduced the accumulation of chlorophyll and carotenoids during development, whereas after debagging, the chlorophyll and carotenoid contents were significantly increased. Gene expression analysis showed that during most of the fruit development periods, the chlorophyll biosynthesis genes AcRCBS, AcGLUTR, and AcCHLG, and degradation genes AcCBR, AcPAO, AcPPH, AcCLH, and AcSGR had significantly lower expression levels in bagged fruit. Bagging also inhibited the expression of carotenoid metabolism genes, especially AcSGR and AcLCYB, which may play a key role in the process of fruit development during bagging by decreasing the accumulation of chlorophyll and carotenoids in kiwifruit. Additionally, bagging significantly reduced the content of AsA. The expression of the AsA biosynthesis genes AcPMI2, AcGPP2, and AcGalDH in bagged fruit was significantly lower than in the control, indicating that these may be the key genes responsible for the difference in the accumulation of AsA after bagging.
Collapse
|
46
|
Li M, Li B, Yang M, Wang L, Hou G, Lin Y, Zhang Y, Zhang Y, Chen Q, Wang Y, He W, Wang X, Tang H, Yang G, Luo Y. Genome-Wide Identification and Expression of MAPK Gene Family in Cultivated Strawberry and Their Involvement in Fruit Developing and Ripening. Int J Mol Sci 2022; 23:ijms23095201. [PMID: 35563593 PMCID: PMC9104773 DOI: 10.3390/ijms23095201] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 12/10/2022] Open
Abstract
Studies on many plants have shown that mitogen-activated protein kinases (MAPKs) are key proteins involved in regulating plant responses to biotic and abiotic stresses. However, their involvement in cultivated strawberry development and ripening remains unclear. In this study, 43 FaMAPK gene family members were identified in the genome of cultivated strawberry (Fragaria × ananassa), phylogenetic analysis indicated that FaMAPKs could be classified into four groups. Systematic analysis of the conserved motif, exon-intron structure showed that there were significant varieties between different groups in structure, but in the same group they were similar. Multiple cis-regulatory elements associated with phytohormone response, and abiotic and biotic stresses were predicted in the promoter regions of FaMAPK genes. Transcriptional analysis showed that all FaMAPK genes were expressed at all developmental stages. Meanwhile, the effect of exogenous ABA and sucrose on the expression profile of FaMAPKs was investigated. Exogenous ABA, sucrose, and ABA plus sucrose treatments upregulated the expression of FaMAPK genes and increased the content of endogenous ABA, sucrose, and anthocyanin in strawberry fruits, suggesting that ABA and sucrose might be involved in the FaMAPK-mediated regulation of strawberry fruit ripening. Based on the obtained results, MAPK genes closely related to the ripening of strawberries were screened to provide a theoretical basis and support for future research on strawberries.
Collapse
Affiliation(s)
- Mengyao Li
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Binghua Li
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Min Yang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Liangxin Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Guoyan Hou
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuanxiu Lin
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Pomology & Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yunting Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Pomology & Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yong Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Qing Chen
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Pomology & Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Wen He
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Pomology & Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaorong Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Pomology & Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Haoru Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Pomology & Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Guichuan Yang
- Departmental and Municipal Co-Construction of Crops Genetic Improvement of Hill Land Key Laboratory of Sichuan, Nanchong 637000, China
| | - Ya Luo
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
47
|
Siebeneichler TJ, Crizel RL, Reisser PL, Perin EC, da Silva Messias R, Rombaldi CV, Galli V. Changes in the abscisic acid, phenylpropanoids and ascorbic acid metabolism during strawberry fruit growth and ripening. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104398] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
48
|
Analysis of Apple Fruit (Malus × domestica Borkh.) Quality Attributes Obtained from Organic and Integrated Production Systems. SUSTAINABILITY 2022. [DOI: 10.3390/su14095300] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The aim of this study was to compare total phenolic content (TPC), radical-scavenging activity (RSA), total anthocyanin content (TAC), sugar and polyphenolic profiles of two apple cultivars (‘Discovery’ and ‘Red Aroma Orelind’) from organic and integrated production systems in climatic conditions of Western Norway. Sixteen sugars and four sugar alcohols and 19 polyphenols were found in the peel, but less polyphenols were detected in the pulp. The peel of both apples and in both production systems had significantly higher TPC and RSA than the pulp. The peel from integrated apples had higher TPC than the peel from organic apples, while organic apples had higher TAC than the integrated. Sucrose and glucose levels were higher in organic apples; fructose was cultivar dependent while minor sugars were higher in integrated fruits. The most abundant polyphenolic compound in the peel of the tested cultivars was quercetin 3-O-galactoside, while chlorogenic acid was most abundant in the pulp. Regarding polyphenols, phloretin, phloridzin, protocatechuic acid, baicalein and naringenin were higher in organic apple, while quercetin 3-O-galactoside, kaempferol 3-O-glucoside, chlorogenic acid and syringic acid was higher in integrated fruits. In conclusion, organic ‘Discovery’ and integrated ‘Red Aroma Orelind’ had higher bioavailability of health related compounds from the peel and the pulp.
Collapse
|
49
|
Wen S, Neuhaus HE, Cheng J, Bie Z. Contributions of sugar transporters to crop yield and fruit quality. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2275-2289. [PMID: 35139196 DOI: 10.1093/jxb/erac043] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 02/04/2022] [Indexed: 05/09/2023]
Abstract
The flux, distribution, and storage of soluble sugars regulate crop yield in terms of starch, oil, protein, and total carbohydrates, and affect the quality of many horticultural products. Sugar transporters contribute to phloem loading and unloading. The mechanisms of phloem loading have been studied in detail, but the complex and diverse mechanisms of phloem unloading and sugar storage in sink organs are less explored. Unloading and subsequent transport mechanisms for carbohydrates vary in different sink organs. Analyzing the transport and storage mechanisms of carbohydrates in important storage organs, such as cereal seeds, fruits, or stems of sugarcane, will provide information for genetic improvements to increase crop yield and fruit quality. This review discusses current research progress on sugar transporters involved in carbohydrate unloading and storage in sink organs. The roles of sugar transporters in crop yield and the accumulation of sugars are also discussed to highlight their contribution to efficient breeding.
Collapse
Affiliation(s)
- Suying Wen
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University and Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, 430070, PR China
| | - H Ekkehard Neuhaus
- Plant Physiology, University of Kaiserslautern, D-67653 Kaiserslautern, Germany
| | - Jintao Cheng
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University and Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, 430070, PR China
| | - Zhilong Bie
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University and Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, 430070, PR China
| |
Collapse
|
50
|
Liang R, Su Y, Qin X, Gao Z, Fu Z, Qiu H, Lin X, Zhu J. Comparative transcriptomic analysis of two Cucumis melo var. saccharinus germplasms differing in fruit physical and chemical characteristics. BMC PLANT BIOLOGY 2022; 22:193. [PMID: 35410167 PMCID: PMC9004126 DOI: 10.1186/s12870-022-03550-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/21/2022] [Indexed: 05/31/2023]
Abstract
BACKGROUND Hami melon (Cucumis melo var. saccharinus) is a popular fruit in China because of its excellent taste, which is largely determined by its physicochemical characteristics, including flesh texture, sugar content, aroma, and nutrient composition. However, the mechanisms by which these characteristics are regulated have not yet been determined. In this study, we monitored changes in the fruits of two germplasms that differed in physicochemical characteristics throughout the fruit development period. RESULTS Ripe fruit of the bred variety 'Guimi' had significantly higher soluble sugar contents than the fruit of the common variety 'Yaolong.' Additionally, differences in fruit shape and color between these two germplasms were observed during development. Comparative transcriptome analysis, conducted to identify regulators and pathways underlying the observed differences at corresponding stages of development, revealed a higher number of differentially expressed genes (DEGs) in Guimi than in Yaolong. Moreover, most DEGs detected during early fruit development in Guimi were associated with cell wall biogenesis. Temporal analysis of the identified DEGs revealed similar trends in the enrichment of downregulated genes in both germplasms, although there were differences in the enrichment trends of upregulated genes. Further analyses revealed trends in differential changes in multiple genes involved in cell wall biogenesis and sugar metabolism during fruit ripening. CONCLUSIONS We identified several genes associated with the ripening of Hami melons, which will provide novel insights into the molecular mechanisms underlying the development of fruit characteristics in these melons.
Collapse
Affiliation(s)
- Renfan Liang
- Guangxi Academy of Agricultural Sciences, Nanning, 530007, China.
| | - Yicheng Su
- Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Xiaojuan Qin
- Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Zhongkui Gao
- Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Zhixin Fu
- Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Huijun Qiu
- Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Xu Lin
- Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Jinlian Zhu
- Guangxi Normal University for Nationalities, Chongzuo, 532200, China
| |
Collapse
|