1
|
Cao S, Chen ZJ. Transgenerational epigenetic inheritance during plant evolution and breeding. TRENDS IN PLANT SCIENCE 2024; 29:1203-1223. [PMID: 38806375 PMCID: PMC11560745 DOI: 10.1016/j.tplants.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/12/2024] [Accepted: 04/25/2024] [Indexed: 05/30/2024]
Abstract
Plants can program and reprogram their genomes to create genetic variation and epigenetic modifications, leading to phenotypic plasticity. Although consequences of genetic changes are comprehensible, the basis for transgenerational inheritance of epigenetic variation is elusive. This review addresses contributions of external (environmental) and internal (genomic) factors to the establishment and maintenance of epigenetic memory during plant evolution, crop domestication, and modern breeding. Dynamic and pervasive changes in DNA methylation and chromatin modifications provide a diverse repertoire of epigenetic variation potentially for transgenerational inheritance. Elucidating and harnessing epigenetic inheritance will help us develop innovative breeding strategies and biotechnological tools to improve crop yield and resilience in the face of environmental challenges. Beyond plants, epigenetic principles are shared across sexually reproducing organisms including humans with relevance to medicine and public health.
Collapse
Affiliation(s)
- Shuai Cao
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore
| | - Z Jeffrey Chen
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
2
|
Dong Z, Hu G, Chen Q, Shemyakina EA, Chau G, Whipple CJ, Fletcher JC, Chuck G. A regulatory network controlling developmental boundaries and meristem fates contributed to maize domestication. Nat Genet 2024; 56:2528-2537. [PMID: 39415035 DOI: 10.1038/s41588-024-01943-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 09/09/2024] [Indexed: 10/18/2024]
Abstract
During domestication, early farmers selected different vegetative and reproductive traits, but identifying the causative loci has been hampered by their epistasis and functional redundancy. Using chromatin immunoprecipitation sequencing combined with genome-wide association analysis, we uncovered a developmental regulator that controls both types of trait while acting upstream of multiple domestication loci. tasselsheath4 (tsh4) is a new maize domestication gene that establishes developmental boundaries and specifies meristem fates despite not being expressed within them. TSH4 accomplishes this by using a double-negative feedback loop that targets and represses the very same microRNAs that negatively regulate it. TSH4 functions redundantly with a pair of homologs to positively regulate a suite of domestication loci while specifying the meristem that doubled seed yield in modern maize. TSH4 has a critical role in yield gain and helped generate ideal crop plant architecture, thus explaining why it was a major domestication target.
Collapse
Affiliation(s)
- Zhaobin Dong
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, China.
- University of California, Berkeley/Plant Gene Expression Center, Albany, CA, USA.
| | - Gaoyuan Hu
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, China
| | - Qiuyue Chen
- North Carolina State University, Raleigh, NC, USA
| | - Elena A Shemyakina
- University of California, Berkeley/Plant Gene Expression Center, Albany, CA, USA
| | - Geeyun Chau
- University of California, Berkeley/Plant Gene Expression Center, Albany, CA, USA
| | | | - Jennifer C Fletcher
- University of California, Berkeley/Plant Gene Expression Center, Albany, CA, USA
| | - George Chuck
- University of California, Berkeley/Plant Gene Expression Center, Albany, CA, USA.
| |
Collapse
|
3
|
Cui Y, Xiao X, Wang M, Zhu M, Yuyama N, Zheng J, Xiong C, Liu J, Wang S, Yang Y, Chen J, Cai H. The construction of a maize-teosinte introgression population and quantitative trait loci analysis of their 21 agronomic traits. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 348:112226. [PMID: 39153574 DOI: 10.1016/j.plantsci.2024.112226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/03/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024]
Abstract
Teosinte is a progenitor species of maize (Zea mays ssp. mays) that retains a significant reservoir of genetic resources unaltered via the domestication process. To harness and explore the genetic reservoirs inherent in teosinte, we used the cultivated publicly inbred line H95 and wild species PI566673 (Zea mays ssp. mexicana) to develop a set of introgression lines (ILs), including 366 BC2F5 lines. Using these lines, 12481 high-quality polymorphic homozygous single nucleotide polymorphisms were converted into 2358 bin markers based on Genotyping by Target Sequencing technology. The homozygous introgression ratio in the ILs was approximately 12.1 % and the heterozygous introgression ratio was approximately 5.7 %. Based on the population phenotypic data across 21 important agronomic traits collected in Sanya and Beijing, 185 and 156 quantitative trait loci (QTLs) were detected in Sanya and Beijing, respectively, with 64 stable QTLs detected in both locations. We detected 12 QTL clusters spanning 10 chromosomes consisting of diverse QTLs related to yield traits such as grain size and weight. In addition, we identified useful materials in the ILs for further gene cloning of related variations. For example, some heterogeneous inbred families with superior genetic purity, shorter target heterozygotes, and some ILs exhibit clear morphological variation associated with plant growth, development, and domestication, manifesting traits such as white stalks, sharp seeds, and cob shattering. In conclusion, our results provide a robust foundation for delving into the genetic reservoirs of teosinte, presenting a wealth of genetic resources and offering insight into the genetic architecture underlying maize agronomic traits.
Collapse
Affiliation(s)
- Yiping Cui
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Xin Xiao
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Mumu Wang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Mengjiao Zhu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Nana Yuyama
- Forage Crop Research Institute, Japan Grassland Agricultural and Forage Seed Association, 388-5 Higashiakada, Nasushiobara, Tochigi 329-2742, Japan
| | - Jingru Zheng
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| | - Candong Xiong
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jiangjiang Liu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Sumeng Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Yuru Yang
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jun Chen
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China.
| | - Hongwei Cai
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; Forage Crop Research Institute, Japan Grassland Agricultural and Forage Seed Association, 388-5 Higashiakada, Nasushiobara, Tochigi 329-2742, Japan.
| |
Collapse
|
4
|
Berube B, Ernst E, Cahn J, Roche B, de Santis Alves C, Lynn J, Scheben A, Grimanelli D, Siepel A, Ross-Ibarra J, Kermicle J, Martienssen RA. Teosinte Pollen Drive guides maize diversification and domestication by RNAi. Nature 2024; 633:380-388. [PMID: 39112710 PMCID: PMC11390486 DOI: 10.1038/s41586-024-07788-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/04/2024] [Indexed: 08/17/2024]
Abstract
Selfish genetic elements contribute to hybrid incompatibility and bias or 'drive' their own transmission1,2. Chromosomal drive typically functions in asymmetric female meiosis, whereas gene drive is normally post-meiotic and typically found in males. Here, using single-molecule and single-pollen genome sequencing, we describe Teosinte Pollen Drive, an instance of gene drive in hybrids between maize (Zea mays ssp. mays) and teosinte mexicana (Z. mays ssp. mexicana) that depends on RNA interference (RNAi). 22-nucleotide small RNAs from a non-coding RNA hairpin in mexicana depend on Dicer-like 2 (Dcl2) and target Teosinte Drive Responder 1 (Tdr1), which encodes a lipase required for pollen viability. Dcl2, Tdr1 and the hairpin are in tight pseudolinkage on chromosome 5, but only when transmitted through the male. Introgression of mexicana into early cultivated maize is thought to have been critical to its geographical dispersal throughout the Americas3, and a tightly linked inversion in mexicana spans a major domestication sweep in modern maize4. A survey of maize traditional varieties and sympatric populations of teosinte mexicana reveals correlated patterns of admixture among unlinked genes required for RNAi on at least four chromosomes that are also subject to gene drive in pollen from synthetic hybrids. Teosinte Pollen Drive probably had a major role in maize domestication and diversification, and offers an explanation for the widespread abundance of 'self' small RNAs in the germ lines of plants and animals.
Collapse
Affiliation(s)
- Benjamin Berube
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Evan Ernst
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Jonathan Cahn
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Benjamin Roche
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | | | - Jason Lynn
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Armin Scheben
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | | | - Adam Siepel
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Jeffrey Ross-Ibarra
- Department of Evolution and Ecology, Center for Population Biology and Genome Center, University of California at Davis, Davis, CA, USA
| | - Jerry Kermicle
- Laboratory of Genetics, University of Wisconsin, Madison, WI, USA
| | - Robert A Martienssen
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
| |
Collapse
|
5
|
Milla R, Westgeest AJ, Maestre-Villanueva J, Núñez-Castillo S, Gómez-Fernández A, Vasseur F, Violle C, Balarynová J, Smykal P. Evolutionary pathways to lower biomass allocation to the seed coat in crops: insights from allometric scaling. THE NEW PHYTOLOGIST 2024; 243:466-476. [PMID: 38757753 DOI: 10.1111/nph.19821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/26/2024] [Indexed: 05/18/2024]
Abstract
Crops generally have seeds larger than their wild progenitors´ and with reduced dormancy. In wild plants, seed mass and allocation to the seed coat (a proxy for physical dormancy) scale allometrically so that larger seeds tend to allocate less to the coats. Larger seeds and lightweight coats might thus have evolved as correlated traits in crops. We tested whether 34 crops and 22 of their wild progenitors fit the allometry described in the literature, which would indicate co-selection of both traits during crop evolution. Deviations from the allometry would suggest that other evolutionary processes contribute to explain the emergence of larger, lightweight-coated seeds in crops. Crops fitted the scaling slope but deviated from its intercept in a consistent way: Seed coats of crops were lighter than expected by their seed size. The wild progenitors of crops displayed the same trend, indicating that deviations cannot be solely attributed to artificial selection during or after domestication. The evolution of seeds with small coats in crops likely resulted from a combination of various pressures, including the selection of wild progenitors with coats smaller than other wild plants, further decreases during early evolution under cultivation, and indirect selection due to the seed coat-seed size allometry.
Collapse
Affiliation(s)
- Rubén Milla
- ECOEVO Group, Departamento de Biología, Geología, Física y Química Inorgánica, Instituto de Investigación en Cambio Global (IICG-URJC), Universidad Rey Juan Carlos, Tulipán s/n, Móstoles, 28933, Spain
| | | | - Jorge Maestre-Villanueva
- ECOEVO Group, Departamento de Biología, Geología, Física y Química Inorgánica, Instituto de Investigación en Cambio Global (IICG-URJC), Universidad Rey Juan Carlos, Tulipán s/n, Móstoles, 28933, Spain
| | - Sergio Núñez-Castillo
- ECOEVO Group, Departamento de Biología, Geología, Física y Química Inorgánica, Instituto de Investigación en Cambio Global (IICG-URJC), Universidad Rey Juan Carlos, Tulipán s/n, Móstoles, 28933, Spain
| | - Alicia Gómez-Fernández
- ECOEVO Group, Departamento de Biología, Geología, Física y Química Inorgánica, Instituto de Investigación en Cambio Global (IICG-URJC), Universidad Rey Juan Carlos, Tulipán s/n, Móstoles, 28933, Spain
| | - François Vasseur
- CEFE, Univ Montpellier, CNRS, EPHE-PSL University, IRD, Montpellier, 34090, France
| | - Cyrille Violle
- CEFE, Univ Montpellier, CNRS, EPHE-PSL University, IRD, Montpellier, 34090, France
| | - Jana Balarynová
- Department of Botany, Faculty of Science, Palacky University, Olomouc, CZ-783 71, Czech Republic
| | - Petr Smykal
- Department of Botany, Faculty of Science, Palacky University, Olomouc, CZ-783 71, Czech Republic
| |
Collapse
|
6
|
Yang P, Bai Y, Zhao D, Cui J, Yang W, Gao Y, Zhang J, Wang Z, Wang M, Xue W, Chang J. Identification and functional marker development of SbPLSH1 conferring purple leaf sheath in sorghum. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:137. [PMID: 38769163 DOI: 10.1007/s00122-024-04623-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 04/14/2024] [Indexed: 05/22/2024]
Abstract
KEY MESSAGE We identified a SbPLSH1gene conferring purple leaf sheath in sorghum (sorghumbicolor(L.) Moench)and developed a functional markerfor it. The purple leaf sheath of sorghum, a trait mostly related to anthocyanin deposition, is a visually distinguishable morphological marker widely used to evaluate the purity of crop hybrids. We aimed to dissect the genetic mechanism for leaf sheath color to mine the genes regulating this trait. In this study, two F2 populations were constructed by crossing a purple leaf sheath inbred line (Gaoliangzhe) with two green leaf sheath inbred lines (BTx623 and Silimei). Based on the results of bulked-segregant analysis sequencing, bulk-segregant RNA sequencing, and map-based cloning, SbPLSH1 (Sobic.006G175700), which encodes a bHLH transcription factor on chromosome 6, was identified as the candidate gene for purple leaf sheath in sorghum. Genetic analysis demonstrated that overexpression of SbPLSH1 in Arabidopsis resulted in anthocyanin deposition and purple petiole, while two single-nucleotide polymorphism (SNP) variants on the exon 6 resulted in loss of function. Further haplotype analysis revealed that there were two missense mutations and one cis-acting element mutation in SbPLSH1, which are closely associated with leaf sheath color in sorghum. Based on the variations, a functional marker (LSC4-2) for marker-assisted selection was developed, which has a broad-spectrum capability of distinguishing leaf sheath color in natural variants. In summary, this study lays a foundation for analyzing the genetic mechanism for sorghum leaf sheath color.
Collapse
Affiliation(s)
- Puyuan Yang
- College of Agronomy, Hebei Agricultural University, Baoding, 071000, China
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071000, China
| | - Yuzhe Bai
- College of Agronomy, Hebei Agricultural University, Baoding, 071000, China
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071000, China
| | - Dongting Zhao
- College of Agronomy, Hebei Agricultural University, Baoding, 071000, China
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071000, China
| | - Jianghui Cui
- College of Agronomy, Hebei Agricultural University, Baoding, 071000, China
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071000, China
| | - Weiping Yang
- College of Agronomy, Hebei Agricultural University, Baoding, 071000, China
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071000, China
| | - Yukun Gao
- College of Agronomy, Hebei Agricultural University, Baoding, 071000, China
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071000, China
| | - Jiandong Zhang
- College of Agronomy, Hebei Agricultural University, Baoding, 071000, China
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071000, China
| | - Zhibo Wang
- College of Agronomy, Hebei Agricultural University, Baoding, 071000, China
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071000, China
| | - Meng Wang
- College of Agronomy, Hebei Agricultural University, Baoding, 071000, China
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071000, China
| | - Wei Xue
- Baoding Vocational and Technical College, Baoding, 071000, China
| | - Jinhua Chang
- College of Agronomy, Hebei Agricultural University, Baoding, 071000, China.
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071000, China.
| |
Collapse
|
7
|
Ribeiro TDS, Lollar MJ, Sprengelmeyer QD, Huang Y, Benson DM, Orr MS, Johnson ZC, Corbett-Detig RB, Pool JE. Recombinant inbred line panels inform the genetic architecture and interactions of adaptive traits in Drosophila melanogaster. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.14.594228. [PMID: 38798433 PMCID: PMC11118405 DOI: 10.1101/2024.05.14.594228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The distribution of allelic effects on traits, along with their gene-by-gene and gene-by-environment interactions, contributes to the phenotypes available for selection and the trajectories of adaptive variants. Nonetheless, uncertainty persists regarding the effect sizes underlying adaptations and the importance of genetic interactions. Herein, we aimed to investigate the genetic architecture and the epistatic and environmental interactions involving loci that contribute to multiple adaptive traits using two new panels of Drosophila melanogaster recombinant inbred lines (RILs). To better fit our data, we re-implemented functions from R/qtl (Broman et al. 2003) using additive genetic models. We found 14 quantitative trait loci (QTL) underlying melanism, wing size, song pattern, and ethanol resistance. By combining our mapping results with population genetic statistics, we identified potential new genes related to these traits. None of the detected QTLs showed clear evidence of epistasis, and our power analysis indicated that we should have seen at least one significant interaction if sign epistasis or strong positive epistasis played a pervasive role in trait evolution. In contrast, we did find roles for gene-by-environment interactions involving pigmentation traits. Overall, our data suggest that the genetic architecture of adaptive traits often involves alleles of detectable effect, that strong epistasis does not always play a role in adaptation, and that environmental interactions can modulate the effect size of adaptive alleles.
Collapse
Affiliation(s)
- Tiago da Silva Ribeiro
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Matthew J. Lollar
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | | | - Yuheng Huang
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Derek M. Benson
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Megan S. Orr
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Zachary C. Johnson
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Russell B. Corbett-Detig
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, 95064, USA
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA, 95064, USA
| | - John E. Pool
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
8
|
Di Pasquale GM, Stagnati L, Lezzi A, Lanubile A, Marocco A, Rossi G, Busconi M. Morphological and Genetic Characterization of Maize Landraces Adapted to Marginal Hills in North-West Italy. PLANTS (BASEL, SWITZERLAND) 2024; 13:1030. [PMID: 38611559 PMCID: PMC11013090 DOI: 10.3390/plants13071030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024]
Abstract
The growing interest in maize landraces over the past two decades has led to the need to characterize the Italian maize germplasm. In Italy, hundreds of maize landraces have been developed, but only a few of them have been genetically characterized, and even fewer are currently employed in agriculture or for breeding purposes. In the present study, 13 maize landraces of the west Emilia-Romagna region were morphologically and genetically characterized. These accessions were sampled in 1954 from three provinces, Modena, Parma, and Piacenza, during the characterization project of Italian maize landraces. The morphological characterization of these 13 accessions was performed according to the UPOV protocol CPVO/TP2/3, examining 34 phenotypic traits. A total of 820 individuals were genotyped with 10 SSR markers. The genetic characterization revealed 74 different alleles, a FST mean value of 0.13, and a Nm mean of 1.73 over all loci. Moreover, AMOVA analysis disclosed a low degree of differentiation among accessions, with only 13% of genetic variability found between populations, supporting PCoA analysis results, where the first two coordinates explained only 16% of variability. Structure analysis, supported by PCoA, showed that only four accessions were clearly distinguished for both K = 4 and 6. Italian landraces can be useful resources to be employed in maize breeding programs for the development of new varieties, adapted to different environmental conditions, in order to increase crop resilience and expand the maize cultivation area.
Collapse
Affiliation(s)
- Giovanni Maria Di Pasquale
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Lorenzo Stagnati
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
- Research Centre for Biodiversity and Ancient DNA, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Alessandra Lezzi
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Alessandra Lanubile
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
- Research Centre for Biodiversity and Ancient DNA, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Adriano Marocco
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
- Research Centre for Biodiversity and Ancient DNA, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Graziano Rossi
- Department of Earth and Environmental Sciences, Università di Pavia, Via S. Epifanio 14, 27100 Pavia, Italy
| | - Matteo Busconi
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| |
Collapse
|
9
|
Cao S, Zhang H, Liu Y, Sun Y, Chen ZJ. Cytoplasmic genome contributions to domestication and improvement of modern maize. BMC Biol 2024; 22:64. [PMID: 38481288 PMCID: PMC10938767 DOI: 10.1186/s12915-024-01859-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 02/28/2024] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND Studies on maize evolution and domestication are largely limited to the nuclear genomes, and the contribution of cytoplasmic genomes to selection and domestication of modern maize remains elusive. Maize cytoplasmic genomes have been classified into fertile (NA and NB) and cytoplasmic-nuclear male-sterility (CMS-S, CMS-C, and CMS-T) groups, but their contributions to modern maize breeding have not been systematically investigated. RESULTS Here we report co-selection and convergent evolution between nuclear and cytoplasmic genomes by analyzing whole genome sequencing data of 630 maize accessions modern maize and its relatives, including 24 fully assembled mitochondrial and chloroplast genomes. We show that the NB cytotype is associated with the expansion of modern maize to North America, gradually replaces the fertile NA cytotype probably through unequal division, and predominates in over 90% of modern elite inbred lines. The mode of cytoplasmic evolution is increased nucleotypic diversity among the genes involved in photosynthesis and energy metabolism, which are driven by selection and domestication. Furthermore, genome-wide association study reveals correlation of cytoplasmic nucleotypic variation with key agronomic and reproductive traits accompanied with the diversification of the nuclear genomes. CONCLUSIONS Our results indicate convergent evolution between cytoplasmic and nuclear genomes during maize domestication and breeding. These new insights into the important roles of mitochondrial and chloroplast genomes in maize domestication and improvement should help select elite inbred lines to improve yield stability and crop resilience of maize hybrids.
Collapse
Affiliation(s)
- Shuai Cao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 1 Weigang Road, Nanjing, 210095, China
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Huanhuan Zhang
- Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, Shanxi Agricultural University, Shanxi, Taiyuan, 030031, China
| | - Yang Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 1 Weigang Road, Nanjing, 210095, China
| | - Yi Sun
- Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, Shanxi Agricultural University, Shanxi, Taiyuan, 030031, China
| | - Z Jeffrey Chen
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
10
|
Jiao S, Mamidi S, Chamberlin MA, Beatty M, Thatcher S, Simcox KD, Maina F, Wang-Nan H, Johal GS, Heetland L, Marla SR, Meeley RB, Schmutz J, Morris GP, Multani DS. Parallel tuning of semi-dwarfism via differential splicing of Brachytic1 in commercial maize and smallholder sorghum. THE NEW PHYTOLOGIST 2023; 240:1930-1943. [PMID: 37737036 DOI: 10.1111/nph.19273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 08/19/2023] [Indexed: 09/23/2023]
Abstract
In the current genomic era, the search and deployment of new semi-dwarf alleles have continued to develop better plant types in all cereals. We characterized an agronomically optimal semi-dwarf mutation in Zea mays L. and a parallel polymorphism in Sorghum bicolor L. We cloned the maize brachytic1 (br1-Mu) allele by a modified PCR-based Sequence Amplified Insertion Flanking Fragment (SAIFF) approach. Histology and RNA-Seq elucidated the mechanism of semi-dwarfism. GWAS linked a sorghum plant height QTL with the Br1 homolog by resequencing a West African sorghum landraces panel. The semi-dwarf br1-Mu allele encodes an MYB transcription factor78 that positively regulates stalk cell elongation by interacting with the polar auxin pathway. Semi-dwarfism is due to differential splicing and low functional Br1 wild-type transcript expression. The sorghum ortholog, SbBr1, co-segregates with the major plant height QTL qHT7.1 and is alternatively spliced. The high frequency of the Sbbr1 allele in African landraces suggests that African smallholder farmers used the semi-dwarf allele to improve plant height in sorghum long before efforts to introduce Green Revolution-style varieties in the 1960s. Surprisingly, variants for differential splicing of Brachytic1 were found in both commercial maize and smallholder sorghum, suggesting parallel tuning of plant architecture across these systems.
Collapse
Affiliation(s)
- Shuping Jiao
- Corteva Agriscience, 7300 NW 62nd Ave, Johnston, IA, 50131, USA
| | - Sujan Mamidi
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | | | - Mary Beatty
- Corteva Agriscience, 7300 NW 62nd Ave, Johnston, IA, 50131, USA
| | - Shawn Thatcher
- Corteva Agriscience, 7300 NW 62nd Ave, Johnston, IA, 50131, USA
| | - Kevin D Simcox
- Corteva Agriscience, 7300 NW 62nd Ave, Johnston, IA, 50131, USA
| | - Fanna Maina
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA
| | - Hu Wang-Nan
- Corteva Agriscience, 7300 NW 62nd Ave, Johnston, IA, 50131, USA
| | - Gurmukh S Johal
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Lynn Heetland
- Corteva Agriscience, 7300 NW 62nd Ave, Johnston, IA, 50131, USA
| | - Sandeep R Marla
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA
| | - Robert B Meeley
- Corteva Agriscience, 7300 NW 62nd Ave, Johnston, IA, 50131, USA
| | - Jeremy Schmutz
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | - Geoffrey P Morris
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA
- Soil & Crop Sciences, Colorado State University, Plant Sciences Building, Fort Collins, CO, 11111, USA
| | - Dilbag S Multani
- Corteva Agriscience, 7300 NW 62nd Ave, Johnston, IA, 50131, USA
- Napigen Inc., 200 Powder Mill Road, Delaware Innovation Space - E500, Wilmington, DE, 19803, USA
| |
Collapse
|
11
|
Berube B, Ernst E, Cahn J, Roche B, de Santis Alves C, Lynn J, Scheben A, Siepel A, Ross-Ibarra J, Kermicle J, Martienssen R. Teosinte Pollen Drive guides maize diversification and domestication by RNAi. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.12.548689. [PMID: 37503269 PMCID: PMC10370002 DOI: 10.1101/2023.07.12.548689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Meiotic drivers subvert Mendelian expectations by manipulating reproductive development to bias their own transmission. Chromosomal drive typically functions in asymmetric female meiosis, while gene drive is normally postmeiotic and typically found in males. Using single molecule and single-pollen genome sequencing, we describe Teosinte Pollen Drive, an instance of gene drive in hybrids between maize (Zea mays ssp. mays) and teosinte mexicana (Zea mays ssp. mexicana), that depends on RNA interference (RNAi). 22nt small RNAs from a non-coding RNA hairpin in mexicana depend on Dicer-Like 2 (Dcl2) and target Teosinte Drive Responder 1 (Tdr1), which encodes a lipase required for pollen viability. Dcl2, Tdr1, and the hairpin are in tight pseudolinkage on chromosome 5, but only when transmitted through the male. Introgression of mexicana into early cultivated maize is thought to have been critical to its geographical dispersal throughout the Americas, and a tightly linked inversion in mexicana spans a major domestication sweep in modern maize. A survey of maize landraces and sympatric populations of teosinte mexicana reveals correlated patterns of admixture among unlinked genes required for RNAi on at least 4 chromosomes that are also subject to gene drive in pollen from synthetic hybrids. Teosinte Pollen Drive likely played a major role in maize domestication and diversification, and offers an explanation for the widespread abundance of "self" small RNAs in the germlines of plants and animals.
Collapse
Affiliation(s)
- Benjamin Berube
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor NY11724
| | - Evan Ernst
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor NY11724
| | - Jonathan Cahn
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor NY11724
| | - Benjamin Roche
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor NY11724
| | | | - Jason Lynn
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor NY11724
| | - Armin Scheben
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor NY11724
| | - Adam Siepel
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor NY11724
| | - Jeffrey Ross-Ibarra
- Dept. of Evolution & Ecology, Center for Population Biology and Genome Center, University of California, Davis CA
| | - Jerry Kermicle
- Laboratory of Genetics, University of Wisconsin, Madison WI
| | - Rob Martienssen
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor NY11724
| |
Collapse
|
12
|
Man J, Harrington TA, Lally K, Bartlett ME. Asymmetric Evolution of Protein Domains in the Leucine-Rich Repeat Receptor-Like Kinase Family of Plant Signaling Proteins. Mol Biol Evol 2023; 40:msad220. [PMID: 37787619 PMCID: PMC10588794 DOI: 10.1093/molbev/msad220] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/29/2023] [Accepted: 09/26/2023] [Indexed: 10/04/2023] Open
Abstract
The coding sequences of developmental genes are expected to be deeply conserved, with cis-regulatory change driving the modulation of gene function. In contrast, proteins with roles in defense are expected to evolve rapidly, in molecular arms races with pathogens. However, some gene families include both developmental and defense genes. In these families, does the tempo and mode of evolution differ between genes with divergent functions, despite shared ancestry and structure? The leucine-rich repeat receptor-like kinase (LRR-RLKs) protein family includes members with roles in plant development and defense, thus providing an ideal system for answering this question. LRR-RLKs are receptors that traverse plasma membranes. LRR domains bind extracellular ligands; RLK domains initiate intracellular signaling cascades in response to ligand binding. In LRR-RLKs with roles in defense, LRR domains evolve faster than RLK domains. To determine whether this asymmetry extends to LRR-RLKs that function primarily in development, we assessed evolutionary rates and tested for selection acting on 11 subfamilies of LRR-RLKs, using deeply sampled protein trees. To assess functional evolution, we performed heterologous complementation assays in Arabidopsis thaliana (Arabidopsis). We found that the LRR domains of all tested LRR-RLK proteins evolved faster than their cognate RLK domains. All tested subfamilies of LRR-RLKs had strikingly similar patterns of molecular evolution, despite divergent functions. Heterologous transformation experiments revealed that multiple mechanisms likely contribute to the evolution of LRR-RLK function, including escape from adaptive conflict. Our results indicate specific and distinct evolutionary pressures acting on LRR versus RLK domains, despite diverse organismal roles for LRR-RLK proteins.
Collapse
Affiliation(s)
- Jarrett Man
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01002, USA
| | - T A Harrington
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01002, USA
| | - Kyra Lally
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01002, USA
| | - Madelaine E Bartlett
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01002, USA
| |
Collapse
|
13
|
Lo Y, Bruxaux J, Rodríguez de la Vega RC, O'Donnell S, Snirc A, Coton M, Le Piver M, Le Prieur S, Roueyre D, Dupont J, Houbraken J, Debuchy R, Ropars J, Giraud T, Branca A. Domestication in dry-cured meat Penicillium fungi: Convergent specific phenotypes and horizontal gene transfers without strong genetic subdivision. Evol Appl 2023; 16:1637-1660. [PMID: 37752962 PMCID: PMC10519415 DOI: 10.1111/eva.13591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/17/2023] [Accepted: 08/18/2023] [Indexed: 09/28/2023] Open
Abstract
Some fungi have been domesticated for food production, with genetic differentiation between populations from food and wild environments, and food populations often acquiring beneficial traits through horizontal gene transfers (HGTs). Studying their adaptation to human-made substrates is of fundamental and applied importance for understanding adaptation processes and for further strain improvement. We studied here the population structures and phenotypes of two distantly related Penicillium species used for dry-cured meat production, P. nalgiovense, the most common species in the dry-cured meat food industry, and P. salamii, used locally by farms. Both species displayed low genetic diversity, lacking differentiation between strains isolated from dry-cured meat and those from other environments. Nevertheless, the strains collected from dry-cured meat within each species displayed slower proteolysis and lipolysis than their wild conspecifics, and those of P. nalgiovense were whiter. Phenotypically, the non-dry-cured meat strains were more similar to their sister species than to their conspecific dry-cured meat strains, indicating an evolution of specific phenotypes in dry-cured meat strains. A comparison of available Penicillium genomes from various environments revealed HGTs, particularly between P. nalgiovense and P. salamii (representing almost 1.5 Mb of cumulative length). HGTs additionally involved P. biforme, also found in dry-cured meat products. We further detected positive selection based on amino acid changes. Our findings suggest that selection by humans has shaped the P. salamii and P. nalgiovense populations used for dry-cured meat production, which constitutes domestication. Several genetic and phenotypic changes were similar in P. salamii, P. nalgiovense and P. biforme, indicating convergent adaptation to the same human-made environment. Our findings have implications for fundamental knowledge on adaptation and for the food industry: the discovery of different phenotypes and of two mating types paves the way for strain improvement by conventional breeding, to elucidate the genomic bases of beneficial phenotypes and to generate diversity.
Collapse
Affiliation(s)
- Ying‐Chu Lo
- IDEEV – Laboratoire Ecologie, Systématique et Evolution, CNRS, AgroParisTechUniversité Paris‐SaclayGif‐sur‐YvetteFrance
| | - Jade Bruxaux
- IDEEV – Laboratoire Ecologie, Systématique et Evolution, CNRS, AgroParisTechUniversité Paris‐SaclayGif‐sur‐YvetteFrance
- Department of Ecology and Environmental ScienceUmeå UniversityUmeåSweden
| | | | - Samuel O'Donnell
- IDEEV – Laboratoire Ecologie, Systématique et Evolution, CNRS, AgroParisTechUniversité Paris‐SaclayGif‐sur‐YvetteFrance
| | - Alodie Snirc
- IDEEV – Laboratoire Ecologie, Systématique et Evolution, CNRS, AgroParisTechUniversité Paris‐SaclayGif‐sur‐YvetteFrance
| | - Monika Coton
- Univ Brest, Laboratoire Universitaire de Biodiversité et Ecologie MicrobiennePlouzanéFrance
| | - Mélanie Le Piver
- Laboratoire Interprofessionnel de Production – SAS L.I.PAurillacFrance
| | - Stéphanie Le Prieur
- IDEEV – Laboratoire Ecologie, Systématique et Evolution, CNRS, AgroParisTechUniversité Paris‐SaclayGif‐sur‐YvetteFrance
| | - Daniel Roueyre
- Laboratoire Interprofessionnel de Production – SAS L.I.PAurillacFrance
| | - Joëlle Dupont
- Origine, Structure, Evolution de la Biodiversité, UMR 7205 CNRS‐MNHN, Muséum National d'Histoire NaturelleParis Cedex 05France
| | - Jos Houbraken
- Westerdijk Fungal Biodiversity InstituteUtrechtThe Netherlands
| | - Robert Debuchy
- Université Paris‐Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC)Gif‐sur‐YvetteFrance
| | - Jeanne Ropars
- IDEEV – Laboratoire Ecologie, Systématique et Evolution, CNRS, AgroParisTechUniversité Paris‐SaclayGif‐sur‐YvetteFrance
| | - Tatiana Giraud
- IDEEV – Laboratoire Ecologie, Systématique et Evolution, CNRS, AgroParisTechUniversité Paris‐SaclayGif‐sur‐YvetteFrance
| | - Antoine Branca
- IDEEV – Laboratoire Ecologie, Systématique et Evolution, CNRS, AgroParisTechUniversité Paris‐SaclayGif‐sur‐YvetteFrance
- IDEEV – Laboratoire Evolution, Génomes Comportement, EcologieCNRS Université Paris Saclay UMR 9191, IRD UMR 247Gif‐sur‐YvetteFrance
| |
Collapse
|
14
|
Liu H, Cheng H, Xu J, Hu J, Zhao C, Xing L, Wang M, Wu Z, Peng D, Yu N, Liu J. Genetic diversity and population structure of Polygonatum cyrtonema Hua in China using SSR markers. PLoS One 2023; 18:e0290605. [PMID: 37651363 PMCID: PMC10470896 DOI: 10.1371/journal.pone.0290605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/11/2023] [Indexed: 09/02/2023] Open
Abstract
Polygonatum cyrtonema Hua is a perennial herbaceous plant of the Polygonatum genus, belonging to the Liliaceae family, with significant medicinal and nutritional value. In China, this species is a traditional medicinal and edible herb with a long history of application and is widely appreciated by the people. However, as the demand for medicinal herbs continues to grow, excessive harvesting has led to the depletion of wild resources and the risk of genetic erosion. In addition, the chaotic cultivation of varieties and the lack of high quality germplasm resources have led to inconsistent quality of medical materials. Therefore, it is urgent to conduct genetic diversity evaluation of this species and establish a sound conservation plan. This study assessed the genetic diversity and population structure of 96 samples collected from seven regions in China using the simple sequence repeat (SSR) molecular marker technology. In this study, a total of 60 alleles (Na) were detected across the 10 polymorphic SSR markers used, with an average of 6.0 alleles generated per locus. The values of polymorphic information content (PIC) values ranged from 0.3396 to 0.8794, with an average value of 0.6430. The average value of the effective number of alleles (Ne) was 2.761, and the average value of the Shannon's information index (I) was 1.196. The population structure analysis indicates that the Polygonatum cyrtonema Hua germplasm can be classified into three subpopulations (JZ, QY, JD) at the molecular level, which corresponds to the previous subgroups identified based on individual plant phenotypic traits. Analysis of Molecular Variance (AMOVA) showed that 74% of the genetic variation was between individuals within populations in different regions. The phylogenetic analysis of the 96 germplasm samples divided them into three main populations. The QY and JD subpopulations are largely clustered together, which could be attributed to their mountainous distribution and the local climate environment. The genetic differentiation coefficient (Fst) value was low at 0.065, indicating relatively low population differentiation. The ratio of the genetic differentiation coefficient (Fst) between the JZ population and the other two populations (QY and JD) is much higher than the ratio between the QY and JD populations. Based on the clustering results and the ratio of the genetic differentiation coefficient (Fst), it can be inferred that the genetic relationship between the QY and JD subpopulations is closer, with a certain degree of genetic differentiation from the JZ subpopulation. This study supports the conservation of germplasm resources of Polygonatum cyrtonema Hua in China and provides new parental material for germplasm genetic improvement and breeding programs.
Collapse
Affiliation(s)
- Heng Liu
- Department of Biopharmaceuticals, College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui Province, China
| | - He Cheng
- Department of Biopharmaceuticals, College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui Province, China
| | - Jun Xu
- Department of Biopharmaceuticals, College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui Province, China
| | - Jiayi Hu
- Department of Biopharmaceuticals, College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui Province, China
| | - Chenchen Zhao
- Department of Biopharmaceuticals, College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui Province, China
| | - Lihua Xing
- Department of Biopharmaceuticals, College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui Province, China
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, Anhui Province, China
| | - Mengjin Wang
- Department of Biopharmaceuticals, College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui Province, China
| | - Zhendong Wu
- Anhui Qingyang County Jiuhua traditional Chinese Medicinal Materials Technology Co., Ltd, Chizhou City, Anhui Province, China
| | - Daiyin Peng
- Department of Biopharmaceuticals, College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui Province, China
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, Anhui Province, China
| | - Nianjun Yu
- Department of Biopharmaceuticals, College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui Province, China
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, Anhui Province, China
| | - Junling Liu
- Department of Biopharmaceuticals, College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui Province, China
- Anhui Provincial Institutes for Food and Drug Control, Hefei, Anhui Province, China
| |
Collapse
|
15
|
Tavares H, Readshaw A, Kania U, de Jong M, Pasam RK, McCulloch H, Ward S, Shenhav L, Forsyth E, Leyser O. Artificial selection reveals complex genetic architecture of shoot branching and its response to nitrate supply in Arabidopsis. PLoS Genet 2023; 19:e1010863. [PMID: 37616321 PMCID: PMC10482290 DOI: 10.1371/journal.pgen.1010863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 09/06/2023] [Accepted: 07/08/2023] [Indexed: 08/26/2023] Open
Abstract
Quantitative traits may be controlled by many loci, many alleles at each locus, and subject to genotype-by-environment interactions, making them difficult to map. One example of such a complex trait is shoot branching in the model plant Arabidopsis, and its plasticity in response to nitrate. Here, we use artificial selection under contrasting nitrate supplies to dissect the genetic architecture of this complex trait, where loci identified by association mapping failed to explain heritability estimates. We found a consistent response to selection for high branching, with correlated responses in other traits such as plasticity and flowering time. Genome-wide scans for selection and simulations suggest that at least tens of loci control this trait, with a distinct genetic architecture between low and high nitrate treatments. While signals of selection could be detected in the populations selected for high branching on low nitrate, there was very little overlap in the regions selected in three independent populations. Thus the regulatory network controlling shoot branching can be tuned in different ways to give similar phenotypes.
Collapse
Affiliation(s)
- Hugo Tavares
- Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Anne Readshaw
- Department of Biology, University of York, York, United Kingdom
| | - Urszula Kania
- Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Maaike de Jong
- Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Raj K. Pasam
- Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Hayley McCulloch
- Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Sally Ward
- Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
- Department of Biology, University of York, York, United Kingdom
| | - Liron Shenhav
- Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Elizabeth Forsyth
- Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Ottoline Leyser
- Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
- Department of Biology, University of York, York, United Kingdom
| |
Collapse
|
16
|
Khaipho-Burch M, Ferebee T, Giri A, Ramstein G, Monier B, Yi E, Romay MC, Buckler ES. Elucidating the patterns of pleiotropy and its biological relevance in maize. PLoS Genet 2023; 19:e1010664. [PMID: 36943844 PMCID: PMC10030035 DOI: 10.1371/journal.pgen.1010664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 02/09/2023] [Indexed: 03/23/2023] Open
Abstract
Pleiotropy-when a single gene controls two or more seemingly unrelated traits-has been shown to impact genes with effects on flowering time, leaf architecture, and inflorescence morphology in maize. However, the genome-wide impact of biological pleiotropy across all maize phenotypes is largely unknown. Here, we investigate the extent to which biological pleiotropy impacts phenotypes within maize using GWAS summary statistics reanalyzed from previously published metabolite, field, and expression phenotypes across the Nested Association Mapping population and Goodman Association Panel. Through phenotypic saturation of 120,597 traits, we obtain over 480 million significant quantitative trait nucleotides. We estimate that only 1.56-32.3% of intervals show some degree of pleiotropy. We then assess the relationship between pleiotropy and various biological features such as gene expression, chromatin accessibility, sequence conservation, and enrichment for gene ontology terms. We find very little relationship between pleiotropy and these variables when compared to permuted pleiotropy. We hypothesize that biological pleiotropy of common alleles is not widespread in maize and is highly impacted by nuisance terms such as population structure and linkage disequilibrium. Natural selection on large standing natural variation in maize populations may target wide and large effect variants, leaving the prevalence of detectable pleiotropy relatively low.
Collapse
Affiliation(s)
| | - Taylor Ferebee
- Department of Computational Biology, Cornell University, Ithaca, New York
| | - Anju Giri
- Institute for Genomic Diversity, Cornell University, Ithaca, New York
| | - Guillaume Ramstein
- Institute for Genomic Diversity, Cornell University, Ithaca, New York
- Center for Quantitative Genetics and Genomics, Aarhus University, Aarhus, Denmark
| | - Brandon Monier
- Institute for Genomic Diversity, Cornell University, Ithaca, New York
| | - Emily Yi
- Institute for Genomic Diversity, Cornell University, Ithaca, New York
| | - M Cinta Romay
- Institute for Genomic Diversity, Cornell University, Ithaca, New York
| | - Edward S Buckler
- Section of Plant Breeding and Genetics, Cornell University, Ithaca, New York
- Institute for Genomic Diversity, Cornell University, Ithaca, New York
- USDA-ARS, Ithaca, New York, United States of America
| |
Collapse
|
17
|
Cheng L, Li M, Wang Y, Han Q, Hao Y, Qiao Z, Zhang W, Qiu L, Gong A, Zhang Z, Li T, Luo S, Tang L, Liu D, Yin H, Lu S, Balbuena TS, Zhao Y. Transcriptome-based variations effectively untangling the intraspecific relationships and selection signals in Xinyang Maojian tea population. FRONTIERS IN PLANT SCIENCE 2023; 14:1114284. [PMID: 36890899 PMCID: PMC9986275 DOI: 10.3389/fpls.2023.1114284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
As one of the world's top three popular non-alcoholic beverages, tea is economically and culturally valuable. Xinyang Maojian, this elegant green tea, is one of the top ten famous tea in China and has gained prominence for thousands of years. However, the cultivation history of Xinyang Maojian tea population and selection signals of differentiation from the other major variety Camellia sinensis var. assamica (CSA) remain unclear. We newly generated 94 Camellia sinensis (C. sinensis) transcriptomes including 59 samples in the Xinyang area and 35 samples collected from 13 other major tea planting provinces in China. Comparing the very low resolution of phylogeny inferred from 1785 low-copy nuclear genes with 94 C. sinensis samples, we successfully resolved the phylogeny of C. sinensis samples by 99,115 high-quality SNPs from the coding region. The sources of tea planted in the Xinyang area were extensive and complex. Specifically, Shihe District and Gushi County were the two earliest tea planting areas in Xinyang, reflecting a long history of tea planting. Furthermore, we identified numerous selection sweeps during the differentiation of CSA and CSS and these positive selection genes are involved in many aspects such as regulation of secondary metabolites synthesis, amino acid metabolism, photosynthesis, etc. Numerous specific selective sweeps of modern cultivars were annotated with functions in various different aspects, indicating the CSS and CSA populations possibly underwent independent specific domestication processes. Our study indicated that transcriptome-based SNP-calling is an efficient and cost-effective method in untangling intraspecific phylogenetic relationships. This study provides a significant understanding of the cultivation history of the famous Chinese tea Xinyang Maojian and unravels the genetic basis of physiological and ecological differences between the two major tea subspecies.
Collapse
Affiliation(s)
- Lin Cheng
- Henan International Joint Laboratory of Tea-oil tree Biology and High Value Utilization, Xinyang Normal University, Xinyang, Henan, China
- College of Life Sciences, Xinyang Normal University, Xinyang, Henan, China
| | - Mengge Li
- Henan International Joint Laboratory of Tea-oil tree Biology and High Value Utilization, Xinyang Normal University, Xinyang, Henan, China
- College of Life Sciences, Xinyang Normal University, Xinyang, Henan, China
| | - Yachao Wang
- Laboratory of Systematic Evolution and Biogeography of Woody Plants, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Qunwei Han
- Henan International Joint Laboratory of Tea-oil tree Biology and High Value Utilization, Xinyang Normal University, Xinyang, Henan, China
- College of Life Sciences, Xinyang Normal University, Xinyang, Henan, China
| | - Yanlin Hao
- Henan International Joint Laboratory of Tea-oil tree Biology and High Value Utilization, Xinyang Normal University, Xinyang, Henan, China
- College of Life Sciences, Xinyang Normal University, Xinyang, Henan, China
| | - Zhen Qiao
- Henan International Joint Laboratory of Tea-oil tree Biology and High Value Utilization, Xinyang Normal University, Xinyang, Henan, China
- College of Life Sciences, Xinyang Normal University, Xinyang, Henan, China
| | - Wei Zhang
- College of Life Sciences, Xinyang Normal University, Xinyang, Henan, China
| | - Lin Qiu
- Institute of Forestry Science, Xinyang Forestry Bureau, Xinyang, Henan, China
| | - Andong Gong
- Henan International Joint Laboratory of Tea-oil tree Biology and High Value Utilization, Xinyang Normal University, Xinyang, Henan, China
- College of Life Sciences, Xinyang Normal University, Xinyang, Henan, China
| | - Zhihan Zhang
- College of Engineering and Technology, Northeast Forestry University, Harbin, China
| | - Tao Li
- College of Agriculture, Guizhou University, Guiyang, China
| | - Shanshan Luo
- College of Agriculture, Guizhou University, Guiyang, China
| | - Linshuang Tang
- College of Agriculture, Guizhou University, Guiyang, China
| | - Daliang Liu
- College of Agriculture, Guizhou University, Guiyang, China
| | - Hao Yin
- College of Agriculture, Guizhou University, Guiyang, China
| | - Song Lu
- College of Agriculture, Guizhou University, Guiyang, China
| | - Tiago Santana Balbuena
- Department of Agricultural, Livestock and Environmental Biotechnology, Sao Paulo State University, Jaboticabal, Brazil
| | - Yiyong Zhao
- College of Agriculture, Guizhou University, Guiyang, China
| |
Collapse
|
18
|
The role of non-additive gene action on gene expression variation in plant domestication. EvoDevo 2023; 14:3. [PMID: 36765382 PMCID: PMC9912502 DOI: 10.1186/s13227-022-00206-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 12/05/2022] [Indexed: 02/12/2023] Open
Abstract
BACKGROUND Plant domestication is a remarkable example of rapid phenotypic transformation of polygenic traits, such as organ size. Evidence from a handful of study cases suggests this transformation is due to gene regulatory changes that result in non-additive phenotypes. Employing data from published genetic crosses, we estimated the role of non-additive gene action in the modulation of transcriptional landscapes in three domesticated plants: maize, sunflower, and chili pepper. Using A. thaliana, we assessed the correlation between gene regulatory network (GRN) connectivity properties, transcript abundance variation, and gene action. Finally, we investigated the propagation of non-additive gene action in GRNs. RESULTS We compared crosses between domesticated plants and their wild relatives to a set of control crosses that included a pair of subspecies evolving under natural selection and a set of inbred lines evolving under domestication. We found abundance differences on a higher portion of transcripts in crosses between domesticated-wild plants relative to the control crosses. These transcripts showed non-additive gene action more often in crosses of domesticated-wild plants than in our control crosses. This pattern was strong for genes associated with cell cycle and cell fate determination, which control organ size. We found weak but significant negative correlations between the number of targets of trans-acting genes (Out-degree) and both the magnitude of transcript abundance difference a well as the absolute degree of dominance. Likewise, we found that the number of regulators that control a gene's expression (In-degree) is weakly but negatively correlated with the magnitude of transcript abundance differences. We observed that dominant-recessive gene action is highly propagable through GRNs. Finally, we found that transgressive gene action is driven by trans-acting regulators showing additive gene action. CONCLUSIONS Our study highlights the role of non-additive gene action on modulating domestication-related traits, such as organ size via regulatory divergence. We propose that GRNs are shaped by regulatory changes at genes with modest connectivity, which reduces the effects of antagonistic pleiotropy. Finally, we provide empirical evidence of the propagation of non-additive gene action in GRNs, which suggests a transcriptional epistatic model for the control of polygenic traits, such as organ size.
Collapse
|
19
|
Wang K, Zhang Z, Sha X, Yu P, Li Y, Zhang D, Liu X, He G, Li Y, Wang T, Guo J, Chen J, Li C. Identification of a new QTL underlying seminal root number in a maize-teosinte population. FRONTIERS IN PLANT SCIENCE 2023; 14:1132017. [PMID: 36824192 PMCID: PMC9941338 DOI: 10.3389/fpls.2023.1132017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
Seminal roots play an important role in acquisition of water and nutrients by maize seedlings. Compared with its teosinte ancestor, maize underwent a change in seminal root number (SRN). Although several key genes controlling SRN have been cloned, identification and utilization of new genes from teosinte would be useful for improving maize root architecture. In this study, a maize-teosinte BC2F6 population containing 206 individuals genotyped by resequencing was used to conduct high-resolution quantitative trait locus (QTL) mapping of SRN. A new major QTL on chromosome 7 (qSRN7) was identified. Differentially expressed genes (DEGs) based on RNA-Seq were identified between two inbred lines with no SRN and multiple SRN at two periods of seminal roots primordia formation. A total of 116 DEGs detected in at least one period were identified within the qSRN7 interval. Three DEGs (Zm00001d021572, Zm00001d021579 and Zm00001d021861) associated with SRN were identified through regional association mapping. When compared with reported domestication-related selective sweeps, Zm00001d021572 was selected during maize domestication. Our findings provide important insights into the genetic basis of SRN and identify a promising candidate gene for further studies on SRN.
Collapse
Affiliation(s)
- Kailiang Wang
- College of Agriculture, Shanxi Agricultural University, Jinzhong, China
| | - Zhen Zhang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - XiaoQian Sha
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Peng Yu
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany
- Emmy Noether Group Root Functional Biology, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany
| | - Yongxiang Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dengfeng Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xuyang Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guanhua He
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yu Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tianyu Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jie Guo
- College of Agriculture, Shanxi Agricultural University, Jinzhong, China
| | - Jiafa Chen
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Chunhui Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
20
|
Muis A, Ryley MJ, Tan YP, Suharjo R, Nonci N, Danaatmadja Y, Hidayat I, Widiastuti A, Widinugraheni S, Shivas RG, Thines M. Peronosclerospora neglecta sp. nov.—a widespread and overlooked threat to corn (maize) production in the tropics. Mycol Prog 2023. [DOI: 10.1007/s11557-022-01862-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Abstract
Downy mildew is a serious threat to corn (maize) production in the tropics and subtropics. Corn is native to Central America, and was introduced into South-East Asia by the Spanish colonisers in the 1700s. Corn is evolutionarily naïve to downy mildews of the genus Peronosclerospora. Consequently, corn monocultures are particularly susceptible to a variety of Peronosclerospora species, which spread to the crop from local grasses. Globally, corn is one of the most important crops for both humans and livestock. Several downy mildews of corn have been identified as potential threats to global food security, and trade with corn seeds is strictly regulated to avoid spreading the pathogens. Despite their importance, little is known about the biodiversity of graminicolous downy mildews, because their identification has often relied on variable morphological features, such as conidial dimensions. DNA barcodes for most species have become available only recently. During surveys for downy mildews on corn in Indonesia, a previously unrecognised species of Peronosclerospora was found and investigated using a combination of morphological characters and molecular phylogenetic analyses. The new species, introduced here as Peronosclerospora neglecta, is widely distributed in South-East Asia from Thailand to eastern Indonesia. The impact of this downy mildew can be severe, with complete crop losses in heavily affected fields. Given the aggressiveness of the species, close surveillance is warranted to restrict its further spread.
Collapse
|
21
|
Li K, Tassinari A, Giuliani S, Rosignoli S, Urbany C, Tuberosa R, Salvi S. QTL mapping identifies novel major loci for kernel row number-associated ear fasciation, ear prolificacy and tillering in maize ( Zea mays L.). FRONTIERS IN PLANT SCIENCE 2023; 13:1017983. [PMID: 36704171 PMCID: PMC9871824 DOI: 10.3389/fpls.2022.1017983] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 12/14/2022] [Indexed: 05/31/2023]
Abstract
Maize ear fasciation originates from excessive or abnormal proliferation of the ear meristem and usually manifests as flattened multiple-tipped ear and/or disordered kernel arrangement. Ear prolificacy expresses as multiple ears per plant or per node. Both ear fasciation and prolificacy can affect grain yield. The genetic control of the two traits was studied using two recombinant inbred line populations (B73 × Lo1016 and Lo964 × Lo1016) with Lo1016 and Lo964 as donors of ear fasciation and prolificacy, respectively. Ear fasciation-related traits, number of kernel rows (KRN), ear prolificacy and number of tillers were phenotyped in multi-year field experiments. Ear fasciation traits and KRN showed relatively high heritability (h 2 > 0.5) except ratio of ear diameters. For all ear fasciation-related traits, fasciation level positively correlated with KRN (0.30 ≤ r ≤ 0.68). Prolificacy and tillering were not correlated and their h 2 ranged from 0.41 to 0.78. QTL mapping identified four QTLs for ear fasciation, on chromosomes 1 (two QTLs), 5 and 7, the latter two overlapping with QTLs for number of kernel rows. Notably, at these QTLs, the Lo1016 alleles increased both ear fasciation and KRN across populations, thus showing potential breeding applicability. Four and five non-overlapping QTLs were mapped for ear prolificacy and tillering, respectively. Two ear fasciation QTLs, qFas1.2 and qFas7, overlapped with fasciation QTLs mapped in other studies and spanned compact plant2 and ramosa1 candidate genes. Our study identified novel ear fasciation loci and alleles positively affecting grain yield components, and ear prolificacy and tillering loci which are unexpectedly still segregating in elite maize materials, contributing useful information for genomics-assisted breeding programs.
Collapse
Affiliation(s)
- Kai Li
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Bologna, Italy
| | - Alberto Tassinari
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Bologna, Italy
| | - Silvia Giuliani
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Bologna, Italy
| | - Serena Rosignoli
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Bologna, Italy
| | | | - Roberto Tuberosa
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Bologna, Italy
| | - Silvio Salvi
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Bologna, Italy
| |
Collapse
|
22
|
Impacts of the Green Revolution on Rhizosphere Microbiology Related to Nutrient Acquisition. Appl Microbiol 2022. [DOI: 10.3390/applmicrobiol2040076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
The Green Revolution (GR) involved selective breeding of cereals and the use of high fertilizer inputs with the goal of increasing crop yields to alleviate hunger. As a result of both greater use of inorganic fertilizers and the introduction of semi-dwarf cultivars, grain yield increased globally and hunger was alleviated in certain areas of the world. However, these changes in varietal selection and fertilization regimes have impacted soil fertility and the root-associated microbiome. Higher rates of inorganic fertilizer application resulted in reduced rhizosphere microbial diversity, while semi-dwarf varieties displayed a greater abundance of rhizosphere microbes associated with nitrogen utilization. Ultimately, selection for beneficial aboveground traits during the GR led to healthier belowground traits and nutrient uptake capabilities.
Collapse
|
23
|
Zuo (左胜) S, Guo (郭新异) X, Mandáková T, Edginton M, Al-Shehbaz IA, Lysak MA. Genome diploidization associates with cladogenesis, trait disparity, and plastid gene evolution. PLANT PHYSIOLOGY 2022; 190:403-420. [PMID: 35670733 PMCID: PMC9434143 DOI: 10.1093/plphys/kiac268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 05/09/2022] [Indexed: 05/20/2023]
Abstract
Angiosperm genome evolution was marked by many clade-specific whole-genome duplication events. The Microlepidieae is one of the monophyletic clades in the mustard family (Brassicaceae) formed after an ancient allotetraploidization. Postpolyploid cladogenesis has resulted in the extant c. 17 genera and 60 species endemic to Australia and New Zealand (10 species). As postpolyploid genome diploidization is a trial-and-error process under natural selection, it may proceed with different intensity and be associated with speciation events. In Microlepidieae, different extents of homoeologous recombination between the two parental subgenomes generated clades marked by slow ("cold") versus fast ("hot") genome diploidization. To gain a deeper understanding of postpolyploid genome evolution in Microlepidieae, we analyzed phylogenetic relationships in this tribe using complete chloroplast sequences, entire 35S rDNA units, and abundant repetitive sequences. The four recovered intra-tribal clades mirror the varied diploidization of Microlepidieae genomes, suggesting that the intrinsic genomic features underlying the extent of diploidization are shared among genera and species within one clade. Nevertheless, even congeneric species may exert considerable morphological disparity (e.g. in fruit shape), whereas some species within different clades experience extensive morphological convergence despite the different pace of their genome diploidization. We showed that faster genome diploidization is positively associated with mean morphological disparity and evolution of chloroplast genes (plastid-nuclear genome coevolution). Higher speciation rates in perennials than in annual species were observed. Altogether, our results confirm the potential of Microlepidieae as a promising subject for the analysis of postpolyploid genome diploidization in Brassicaceae.
Collapse
Affiliation(s)
| | | | - Terezie Mandáková
- CEITEC – Central European Institute of Technology, Masaryk University, Brno, CZ-625 00, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, CZ-625 00, Czech Republic
| | - Mark Edginton
- Queensland Herbarium, Department of Environment and Science, Brisbane Botanic Gardens, Mt Coot-tha Road, Toowong, QLD 4066, Australia
| | | | | |
Collapse
|
24
|
Andersson L, Purugganan M. Molecular genetic variation of animals and plants under domestication. Proc Natl Acad Sci U S A 2022; 119:e2122150119. [PMID: 35858409 PMCID: PMC9335317 DOI: 10.1073/pnas.2122150119] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Domesticated plants and animals played crucial roles as models for evolutionary change by means of natural selection and for establishing the rules of inheritance, originally proposed by Charles Darwin and Gregor Mendel, respectively. Here, we review progress that has been made during the last 35 y in unraveling the molecular genetic variation underlying the stunning phenotypic diversity in crops and domesticated animals that inspired Mendel and Darwin. We notice that numerous domestication genes, crucial for the domestication process, have been identified in plants, whereas animal domestication appears to have a polygenic background with no obvious "domestication genes" involved. Although model organisms, such as Drosophila and Arabidopsis, have replaced domesticated species as models for basic research, the latter are still outstanding models for evolutionary research because phenotypic change in these species represents an evolutionary process over thousands of years. A consequence of this is that some alleles contributing to phenotypic diversity have evolved by accumulating multiple changes in the same gene. The continued molecular characterization of crops and farm animals with ever sharper tools is essential for future food security.
Collapse
Affiliation(s)
- Leif Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, SE-751 23 Uppsala, Sweden
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843-4458
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden
| | - Michael Purugganan
- Center for Genomics and Systems Biology, New York University, New York, NY 10003
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, 129188, United Arab Emirates
| |
Collapse
|
25
|
Zhou X, Wang D, Mao Y, Zhou Y, Zhao L, Zhang C, Liu Y, Chen J. The Organ Size and Morphological Change During the Domestication Process of Soybean. FRONTIERS IN PLANT SCIENCE 2022; 13:913238. [PMID: 35755657 PMCID: PMC9221068 DOI: 10.3389/fpls.2022.913238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Soybean is one of the most important legume crops that can provide the rich source of protein and oil for human beings and livestock. In the twenty-one century, the total production of soybean is seriously behind the needs of a growing world population. Cultivated soybean [Glycine max (L.) Merr.] was domesticated from wild soybean (G. soja Sieb. and Zucc.) with the significant morphology and organ size changes in China around 5,000 years ago, including twisted stems to erect stems, small seeds to large seeds. Then it was spread worldwide to become one of the most popular and important crops. The release of the reference soybean genome and omics data provides powerful tools for researchers and breeders to dissect the functional genes and apply the germplasm in their work. Here, we summarized the function genes related to yield traits and organ size in soybean, including stem growth habit, leaf size and shape, seed size and weight. In addition, we also summarized the selection of organ traits during soybean domestication. In the end, we also discussed the application of new technology including the gene editing on the basic research and breeding of soybean, and the challenges and research hotspots in the future.
Collapse
Affiliation(s)
- Xuan Zhou
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dongfa Wang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Yawen Mao
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yueqiong Zhou
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Limei Zhao
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Chunbao Zhang
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Yu Liu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
| | - Jianghua Chen
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
- School of Life Sciences, University of Science and Technology of China, Hefei, China
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, China
| |
Collapse
|
26
|
Brophy JAN. Toward synthetic plant development. PLANT PHYSIOLOGY 2022; 188:738-748. [PMID: 34904660 PMCID: PMC8825267 DOI: 10.1093/plphys/kiab568] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/01/2021] [Indexed: 06/14/2023]
Abstract
The ability to engineer plant form will enable the production of novel agricultural products designed to tolerate extreme stresses, boost yield, reduce waste, and improve manufacturing practices. While historically, plants were altered through breeding to change their size or shape, advances in our understanding of plant development and our ability to genetically engineer complex eukaryotes are leading to the direct engineering of plant structure. In this review, I highlight the central role of auxin in plant development and the synthetic biology approaches that could be used to turn auxin-response regulators into powerful tools for modifying plant form. I hypothesize that recoded, gain-of-function auxin response proteins combined with synthetic regulation could be used to override endogenous auxin signaling and control plant structure. I also argue that auxin-response regulators are key to engineering development in nonmodel plants and that single-cell -omics techniques will be essential for characterizing and modifying auxin response in these plants. Collectively, advances in synthetic biology, single-cell -omics, and our understanding of the molecular mechanisms underpinning development have set the stage for a new era in the engineering of plant structure.
Collapse
Affiliation(s)
- Jennifer A N Brophy
- Department of Bioengineering, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
27
|
Calfee E, Gates D, Lorant A, Perkins MT, Coop G, Ross-Ibarra J. Selective sorting of ancestral introgression in maize and teosinte along an elevational cline. PLoS Genet 2021; 17:e1009810. [PMID: 34634032 PMCID: PMC8530355 DOI: 10.1371/journal.pgen.1009810] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/21/2021] [Accepted: 09/07/2021] [Indexed: 12/02/2022] Open
Abstract
While often deleterious, hybridization can also be a key source of genetic variation and pre-adapted haplotypes, enabling rapid evolution and niche expansion. Here we evaluate these opposing selection forces on introgressed ancestry between maize (Zea mays ssp. mays) and its wild teosinte relative, mexicana (Zea mays ssp. mexicana). Introgression from ecologically diverse teosinte may have facilitated maize's global range expansion, in particular to challenging high elevation regions (> 1500 m). We generated low-coverage genome sequencing data for 348 maize and mexicana individuals to evaluate patterns of introgression in 14 sympatric population pairs, spanning the elevational range of mexicana, a teosinte endemic to the mountains of Mexico. While recent hybrids are commonly observed in sympatric populations and mexicana demonstrates fine-scale local adaptation, we find that the majority of mexicana ancestry tracts introgressed into maize over 1000 generations ago. This mexicana ancestry seems to have maintained much of its diversity and likely came from a common ancestral source, rather than contemporary sympatric populations, resulting in relatively low FST between mexicana ancestry tracts sampled from geographically distant maize populations. Introgressed mexicana ancestry in maize is reduced in lower-recombination rate quintiles of the genome and around domestication genes, consistent with pervasive selection against introgression. However, we also find mexicana ancestry increases across the sampled elevational gradient and that high introgression peaks are most commonly shared among high-elevation maize populations, consistent with introgression from mexicana facilitating adaptation to the highland environment. In the other direction, we find patterns consistent with adaptive and clinal introgression of maize ancestry into sympatric mexicana at many loci across the genome, suggesting that maize also contributes to adaptation in mexicana, especially at the lower end of its elevational range. In sympatric maize, in addition to high introgression regions we find many genomic regions where selection for local adaptation maintains steep gradients in introgressed mexicana ancestry across elevation, including at least two inversions: the well-characterized 14 Mb Inv4m on chromosome 4 and a novel 3 Mb inversion Inv9f surrounding the macrohairless1 locus on chromosome 9. Most outlier loci with high mexicana introgression show no signals of sweeps or local sourcing from sympatric populations and so likely represent ancestral introgression sorted by selection, resulting in correlated but distinct outcomes of introgression in different contemporary maize populations.
Collapse
Affiliation(s)
- Erin Calfee
- Center for Population Biology, University of California, Davis, California, United States of America
- Department of Evolution and Ecology, University of California, Davis, California, United States of America
| | - Daniel Gates
- Department of Evolution and Ecology, University of California, Davis, California, United States of America
| | - Anne Lorant
- Department of Plant Sciences, University of California, Davis, California, United States of America
| | - M. Taylor Perkins
- Department of Evolution and Ecology, University of California, Davis, California, United States of America
| | - Graham Coop
- Center for Population Biology, University of California, Davis, California, United States of America
- Department of Evolution and Ecology, University of California, Davis, California, United States of America
| | - Jeffrey Ross-Ibarra
- Center for Population Biology, University of California, Davis, California, United States of America
- Department of Evolution and Ecology, University of California, Davis, California, United States of America
- Genome Center, University of California, Davis, California, United States of America
| |
Collapse
|
28
|
Razzaq A, Wani SH, Saleem F, Yu M, Zhou M, Shabala S. Rewilding crops for climate resilience: economic analysis and de novo domestication strategies. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6123-6139. [PMID: 34114599 DOI: 10.1093/jxb/erab276] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/09/2021] [Indexed: 05/08/2023]
Abstract
To match predicted population growth, annual food production should be doubled by 2050. This is not achievable by current agronomical and breeding practices, due to the impact of climate changes and associated abiotic stresses on agricultural production systems. Here, we analyze the impact of global climate trends on crop productivity and show that the overall loss in crop production from climate-driven abiotic stresses may exceed US$170 billion year-1 and represents a major threat to global food security. We also show that abiotic stress tolerance had been present in wild progenitors of modern crops but was lost during their domestication. We argue for a major shift in our paradigm of crop breeding, focusing on climate resilience, and call for a broader use of wild relatives as a major tool in this process. We argue that, while molecular tools are currently in place to harness the potential of climate-resilient genes present in wild relatives, the complex polygenic nature of tolerance traits remains a major bottleneck in this process. Future research efforts should be focused not only on finding appropriate wild relatives but also on development of efficient cell-based high-throughput phenotyping platforms allowing assessment of the in planta operation of key genes.
Collapse
Affiliation(s)
- Ali Razzaq
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisald 38040,Pakistan
| | - Shabir Hussain Wani
- Mountain Research Center for Field Crops, Khudwani, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, J&K,India
| | - Fozia Saleem
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisald 38040,Pakistan
| | - Min Yu
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000,China
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tas 7001,Australia
| | - Sergey Shabala
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000,China
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tas 7001,Australia
| |
Collapse
|
29
|
Razzaq A, Saleem F, Wani SH, Abdelmohsen SAM, Alyousef HA, Abdelbacki AMM, Alkallas FH, Tamam N, Elansary HO. De-novo Domestication for Improving Salt Tolerance in Crops. FRONTIERS IN PLANT SCIENCE 2021; 12:681367. [PMID: 34603347 PMCID: PMC8481614 DOI: 10.3389/fpls.2021.681367] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/12/2021] [Indexed: 05/21/2023]
Abstract
Global agriculture production is under serious threat from rapidly increasing population and adverse climate changes. Food security is currently a huge challenge to feed 10 billion people by 2050. Crop domestication through conventional approaches is not good enough to meet the food demands and unable to fast-track the crop yields. Also, intensive breeding and rigorous selection of superior traits causes genetic erosion and eliminates stress-responsive genes, which makes crops more prone to abiotic stresses. Salt stress is one of the most prevailing abiotic stresses that poses severe damages to crop yield around the globe. Recent innovations in state-of-the-art genomics and transcriptomics technologies have paved the way to develop salinity tolerant crops. De novo domestication is one of the promising strategies to produce superior new crop genotypes through exploiting the genetic diversity of crop wild relatives (CWRs). Next-generation sequencing (NGS) technologies open new avenues to identifying the unique salt-tolerant genes from the CWRs. It has also led to the assembly of highly annotated crop pan-genomes to snapshot the full landscape of genetic diversity and recapture the huge gene repertoire of a species. The identification of novel genes alongside the emergence of cutting-edge genome editing tools for targeted manipulation renders de novo domestication a way forward for developing salt-tolerance crops. However, some risk associated with gene-edited crops causes hurdles for its adoption worldwide. Halophytes-led breeding for salinity tolerance provides an alternative strategy to identify extremely salt tolerant varieties that can be used to develop new crops to mitigate salinity stress.
Collapse
Affiliation(s)
- Ali Razzaq
- Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Pakistan
| | - Fozia Saleem
- Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Pakistan
| | - Shabir Hussain Wani
- Division of Genetics and Plant Breeding, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Shaimaa A. M. Abdelmohsen
- Physics Department, Faculty of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Haifa A. Alyousef
- Physics Department, Faculty of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | | | - Fatemah H. Alkallas
- Physics Department, Faculty of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Nissren Tamam
- Physics Department, Faculty of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Hosam O. Elansary
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
30
|
Garibaldi LA, Aizen MA, Sáez A, Gleiser G, Strelin MM, Harder LD. The influences of progenitor filtering, domestication selection and the boundaries of nature on the domestication of grain crops. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13819] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Lucas A. Garibaldi
- Universidad Nacional de Río Negro Instituto de Investigaciones en Recursos Naturales Agroecología y Desarrollo Rural San Carlos de Bariloche Río Negro Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas Instituto de Investigaciones en Recursos Naturales Agroecología y Desarrollo Rural San Carlos de Bariloche Río Negro Argentina
| | - Marcelo A. Aizen
- Grupo de Ecología de la Polinización Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA)Universidad Nacional del Comahue ‐ CONICET San Carlos de Bariloche, Rio Negro Argentina
- Wissenschaftskolleg zu Berlin Berlin Germany
| | - Agustín Sáez
- Grupo de Ecología de la Polinización Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA)Universidad Nacional del Comahue ‐ CONICET San Carlos de Bariloche, Rio Negro Argentina
| | - Gabriela Gleiser
- Grupo de Ecología de la Polinización Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA)Universidad Nacional del Comahue ‐ CONICET San Carlos de Bariloche, Rio Negro Argentina
| | - Marina M. Strelin
- Grupo de Ecología de la Polinización Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA)Universidad Nacional del Comahue ‐ CONICET San Carlos de Bariloche, Rio Negro Argentina
| | - Lawrence D. Harder
- Department of Biological Sciences University of Calgary Calgary AB Canada
| |
Collapse
|
31
|
Strable J. Developmental genetics of maize vegetative shoot architecture. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2021; 41:19. [PMID: 37309417 PMCID: PMC10236122 DOI: 10.1007/s11032-021-01208-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/25/2021] [Indexed: 06/13/2023]
Abstract
More than 1.1 billion tonnes of maize grain were harvested across 197 million hectares in 2019 (FAOSTAT 2020). The vast global productivity of maize is largely driven by denser planting practices, higher yield potential per area of land, and increased yield potential per plant. Shoot architecture, the three-dimensional structural arrangement of the above-ground plant body, is critical to maize grain yield and biomass. Structure of the shoot is integral to all aspects of modern agronomic practices. Here, the developmental genetics of the maize vegetative shoot is reviewed. Plant architecture is ultimately determined by meristem activity, developmental patterning, and growth. The following topics are discussed: shoot apical meristem, leaf architecture, axillary meristem and shoot branching, and intercalary meristem and stem activity. Where possible, classical and current studies in maize developmental genetics, as well as recent advances leveraged by "-omics" analyses, are highlighted within these sections. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-021-01208-1.
Collapse
Affiliation(s)
- Josh Strable
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853 USA
- Present Address: Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695 USA
| |
Collapse
|
32
|
Labroo MR, Studer AJ, Rutkoski JE. Heterosis and Hybrid Crop Breeding: A Multidisciplinary Review. Front Genet 2021; 12:643761. [PMID: 33719351 PMCID: PMC7943638 DOI: 10.3389/fgene.2021.643761] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/08/2021] [Indexed: 11/24/2022] Open
Abstract
Although hybrid crop varieties are among the most popular agricultural innovations, the rationale for hybrid crop breeding is sometimes misunderstood. Hybrid breeding is slower and more resource-intensive than inbred breeding, but it allows systematic improvement of a population by recurrent selection and exploitation of heterosis simultaneously. Inbred parental lines can identically reproduce both themselves and their F1 progeny indefinitely, whereas outbred lines cannot, so uniform outbred lines must be bred indirectly through their inbred parents to harness heterosis. Heterosis is an expected consequence of whole-genome non-additive effects at the population level over evolutionary time. Understanding heterosis from the perspective of molecular genetic mechanisms alone may be elusive, because heterosis is likely an emergent property of populations. Hybrid breeding is a process of recurrent population improvement to maximize hybrid performance. Hybrid breeding is not maximization of heterosis per se, nor testing random combinations of individuals to find an exceptional hybrid, nor using heterosis in place of population improvement. Though there are methods to harness heterosis other than hybrid breeding, such as use of open-pollinated varieties or clonal propagation, they are not currently suitable for all crops or production environments. The use of genomic selection can decrease cycle time and costs in hybrid breeding, particularly by rapidly establishing heterotic pools, reducing testcrossing, and limiting the loss of genetic variance. Open questions in optimal use of genomic selection in hybrid crop breeding programs remain, such as how to choose founders of heterotic pools, the importance of dominance effects in genomic prediction, the necessary frequency of updating the training set with phenotypic information, and how to maintain genetic variance and prevent fixation of deleterious alleles.
Collapse
Affiliation(s)
| | | | - Jessica E. Rutkoski
- Department of Crop Sciences, University of Illinois at Urbana–Champaign, Urbana, IL, United States
| |
Collapse
|
33
|
Chen Q, Li W, Tan L, Tian F. Harnessing Knowledge from Maize and Rice Domestication for New Crop Breeding. MOLECULAR PLANT 2021; 14:9-26. [PMID: 33316465 DOI: 10.1016/j.molp.2020.12.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/05/2020] [Accepted: 12/09/2020] [Indexed: 05/11/2023]
Abstract
Crop domestication has fundamentally altered the course of human history, causing a shift from hunter-gatherer to agricultural societies and stimulating the rise of modern civilization. A greater understanding of crop domestication would provide a theoretical basis for how we could improve current crops and develop new crops to deal with environmental challenges in a sustainable manner. Here, we provide a comprehensive summary of the similarities and differences in the domestication processes of maize and rice, two major staple food crops that feed the world. We propose that maize and rice might have evolved distinct genetic solutions toward domestication. Maize and rice domestication appears to be associated with distinct regulatory and evolutionary mechanisms. Rice domestication tended to select de novo, loss-of-function, coding variation, while maize domestication more frequently favored standing, gain-of-function, regulatory variation. At the gene network level, distinct genetic paths were used to acquire convergent phenotypes in maize and rice domestication, during which different central genes were utilized, orthologous genes played different evolutionary roles, and unique genes or regulatory modules were acquired for establishing new traits. Finally, we discuss how the knowledge gained from past domestication processes, together with emerging technologies, could be exploited to improve modern crop breeding and domesticate new crops to meet increasing human demands.
Collapse
Affiliation(s)
- Qiuyue Chen
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China; Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Weiya Li
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Lubin Tan
- State Key Laboratory of Agrobiotechnology, National Center for Evaluation of Agricultural Wild Plants (Rice), MOE Laboratory of Crop Heterosis and Utilization, China Agricultural University, Beijing 100193, China.
| | - Feng Tian
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
34
|
Xu G, Lyu J, Li Q, Liu H, Wang D, Zhang M, Springer NM, Ross-Ibarra J, Yang J. Evolutionary and functional genomics of DNA methylation in maize domestication and improvement. Nat Commun 2020; 11:5539. [PMID: 33139747 PMCID: PMC7606521 DOI: 10.1038/s41467-020-19333-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 10/08/2020] [Indexed: 12/23/2022] Open
Abstract
DNA methylation is a ubiquitous chromatin feature, present in 25% of cytosines in the maize genome, but variation and evolution of the methylation landscape during maize domestication remain largely unknown. Here, we leverage whole-genome sequencing (WGS) and whole-genome bisulfite sequencing (WGBS) data on populations of modern maize, landrace, and teosinte (Zea mays ssp. parviglumis) to estimate epimutation rates and selection coefficients. We find weak evidence for direct selection on DNA methylation in any context, but thousands of differentially methylated regions (DMRs) are identified population-wide that are correlated with recent selection. For two trait-associated DMRs, vgt1-DMR and tb1-DMR, HiChIP data indicate that the interactive loops between DMRs and respective downstream genes are present in B73, a modern maize line, but absent in teosinte. Our results enable a better understanding of the evolutionary forces acting on patterns of DNA methylation and suggest a role of methylation variation in adaptive evolution. Variation and evolution of DNA methylation during maize domestication remain largely unknown. Here, the authors generate genome and methylome sequencing data as well as HiChIP-based interactome data to investigate the adaptive and phenotypic consequences of methylation variations in maize.
Collapse
Affiliation(s)
- Gen Xu
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA.,Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Jing Lyu
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA.,Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Qing Li
- Department of Plant Biology, Microbial and Plant Genomics Institute, University of Minnesota, Saint Paul, MN, 55108, USA.,National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Han Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Fragrant Hill, Beijing, 100093, China
| | - Dafang Wang
- Division of Math and Sciences, Delta State University, Cleveland, MS, 38733, USA
| | - Mei Zhang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Fragrant Hill, Beijing, 100093, China
| | - Nathan M Springer
- Department of Plant Biology, Microbial and Plant Genomics Institute, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Jeffrey Ross-Ibarra
- Department of Evolution and Ecology, Center for Population Biology and Genome Center, University of California, Davis, CA, 95616, USA
| | - Jinliang Yang
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA. .,Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA.
| |
Collapse
|
35
|
Triticum population sequencing provides insights into wheat adaptation. Nat Genet 2020; 52:1412-1422. [PMID: 33106631 DOI: 10.1038/s41588-020-00722-w] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 09/22/2020] [Indexed: 01/01/2023]
Abstract
Bread wheat expanded its habitat from a core area of the Fertile Crescent to global environments within ~10,000 years. The genetic mechanisms of this remarkable evolutionary success are not well understood. By whole-genome sequencing of populations from 25 subspecies within the genera Triticum and Aegilops, we identified composite introgression from wild populations contributing to a substantial portion (4-32%) of the bread wheat genome, which increased the genetic diversity of bread wheat and allowed its divergent adaptation. Meanwhile, convergent adaptation to human selection showed 2- to 16-fold enrichment relative to random expectation-a certain set of genes were repeatedly selected in Triticum species despite their drastic differences in ploidy levels and growing zones, indicating the important role of evolutionary constraints in shaping the adaptive landscape of bread wheat. These results showed the genetic necessities of wheat as a global crop and provided new perspectives on transferring adaptive success across species for crop improvement.
Collapse
|
36
|
Soyk S, Benoit M, Lippman ZB. New Horizons for Dissecting Epistasis in Crop Quantitative Trait Variation. Annu Rev Genet 2020; 54:287-307. [PMID: 32870731 DOI: 10.1146/annurev-genet-050720-122916] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Uncovering the genes, variants, and interactions underlying crop diversity is a frontier in plant genetics. Phenotypic variation often does not reflect the cumulative effect of individual gene mutations. This deviation is due to epistasis, in which interactions between alleles are often unpredictable and quantitative in effect. Recent advances in genomics and genome-editing technologies are elevating the study of epistasis in crops. Using the traits and developmental pathways that were major targets in domestication and breeding, we highlight how epistasis is central in guiding the behavior of the genetic variation that shapes quantitative trait variation. We outline new strategies that illuminate how quantitative epistasis from modified gene dosage defines background dependencies. Advancing our understanding of epistasis in crops can reveal new principles and approaches to engineering targeted improvements in agriculture.
Collapse
Affiliation(s)
- Sebastian Soyk
- Center for Integrative Genomics, University of Lausanne, CH-1005 Lausanne, Switzerland;
| | - Matthias Benoit
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA; .,Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Zachary B Lippman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA; .,Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| |
Collapse
|
37
|
Díaz-Valenzuela E, Sawers RH, Cibrián-Jaramillo A. Cis- and Trans-Regulatory Variations in the Domestication of the Chili Pepper Fruit. Mol Biol Evol 2020; 37:1593-1603. [PMID: 32031611 PMCID: PMC7253206 DOI: 10.1093/molbev/msaa027] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The process of domestication requires the rapid transformation of the wild morphology into the cultivated forms that humans select for. This process often takes place through changes in the regulation of genes, yet, there is no definite pattern on the role of cis- and trans-acting regulatory variations in the domestication of the fruit among crops. Using allele-specific expression and network analyses, we characterized the regulatory patterns and the inheritance of gene expression in wild and cultivated accessions of chili pepper, a crop with remarkable fruit morphological variation. We propose that gene expression differences associated to the cultivated form are best explained by cis-regulatory hubs acting through trans-regulatory cascades. We show that in cultivated chili, the expression of genes associated with fruit morphology is partially recessive with respect to those in the wild relative, consistent with the hybrid fruit phenotype. Decreased expression of fruit maturation and growth genes in cultivated chili suggest that selection for loss-of-function took place in its domestication. Trans-regulatory changes underlie the majority of the genes showing regulatory divergence and had larger effect sizes on gene expression than cis-regulatory variants. Network analysis of selected cis-regulated genes, including ARP9 and MED25, indicated their interaction with many transcription factors involved in organ growth and fruit ripening. Differentially expressed genes linked to cis-regulatory variants and their interactions with downstream trans-acting genes have the potential to drive the morphological differences observed between wild and cultivated fruits and provide an attractive mechanism of morphological transformation during the domestication of the chili pepper.
Collapse
Affiliation(s)
- Erik Díaz-Valenzuela
- Ecological and Evolutionary Genomics Laboratory, Unidad de Genomica Avanzada (Langebio), Irapuato, Guanajuato, México
| | - Ruairidh H Sawers
- Department of Plant Science, The Pennsylvania State University, University Park State College, University Park, PA
| | - Angélica Cibrián-Jaramillo
- Ecological and Evolutionary Genomics Laboratory, Unidad de Genomica Avanzada (Langebio), Irapuato, Guanajuato, México
| |
Collapse
|
38
|
Denham T, Barton H, Castillo C, Crowther A, Dotte-Sarout E, Florin SA, Pritchard J, Barron A, Zhang Y, Fuller DQ. The domestication syndrome in vegetatively propagated field crops. ANNALS OF BOTANY 2020; 125:581-597. [PMID: 31903489 PMCID: PMC7102979 DOI: 10.1093/aob/mcz212] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/02/2020] [Indexed: 05/09/2023]
Abstract
BACKGROUND Vegetatively propagated crops are globally significant in terms of current agricultural production, as well as for understanding the long-term history of early agriculture and plant domestication. Today, significant field crops include sugarcane (Saccharum officinarum), potato (Solanum tuberosum), manioc (Manihot esculenta), bananas and plantains (Musa cvs), sweet potato (Ipomoea batatas), yams (Dioscorea spp.) and taro (Colocasia esculenta). In comparison with sexually reproduced crops, especially cereals and legumes, the domestication syndrome in vegetatively propagated field crops is poorly defined. AIMS AND SCOPE Here, a range of phenotypic traits potentially comprising a syndrome associated with early domestication of vegetatively propagated field crops is proposed, including: mode of reproduction, yield of edible portion, ease of harvesting, defensive adaptations, timing of production and plant architecture. The archaeobotanical visibility of these syndrome traits is considered with a view to the reconstruction of the geographical and historical pathways of domestication for vegetatively propagated field crops in the past. CONCLUSIONS Although convergent phenotypic traits are identified, none of them are ubiquitous and some are divergent. In contrast to cereals and legumes, several traits seem to represent varying degrees of plastic response to growth environment and practices of cultivation, as opposed to solely morphogenetic 'fixation'.
Collapse
Affiliation(s)
- Tim Denham
- School of Archaeology and Anthropology, College of Arts and Social Sciences, Australian National University, Canberra ACT 0200, Australia
- For correspondence. E-mail
| | - Huw Barton
- School of Archaeology and Ancient History, University of Leicester, University Road, Leicester, UK
| | - Cristina Castillo
- University College London, Institute of Archaeology, 31–34 Gordon Square, London, UK
| | - Alison Crowther
- School of Social Science, University of Queensland, Brisbane, Australia
- Department of Archaeology, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Emilie Dotte-Sarout
- School of Archaeology and Anthropology, College of Arts and Social Sciences, Australian National University, Canberra ACT 0200, Australia
- School of Social Sciences, Faculty of Arts, Business, Law & Education, University of Western Australia, Perth, Australia
| | - S Anna Florin
- School of Social Science, University of Queensland, Brisbane, Australia
| | - Jenifer Pritchard
- School of Archaeology and Anthropology, College of Arts and Social Sciences, Australian National University, Canberra ACT 0200, Australia
| | - Aleese Barron
- School of Archaeology and Anthropology, College of Arts and Social Sciences, Australian National University, Canberra ACT 0200, Australia
| | - Yekun Zhang
- School of Archaeology and Anthropology, College of Arts and Social Sciences, Australian National University, Canberra ACT 0200, Australia
| | - Dorian Q Fuller
- University College London, Institute of Archaeology, 31–34 Gordon Square, London, UK
- School of Archaeology and Museology, Northwest University, Xian, Shaanxi, China
| |
Collapse
|
39
|
Lee HY, Ro NY, Patil A, Lee JH, Kwon JK, Kang BC. Uncovering Candidate Genes Controlling Major Fruit-Related Traits in Pepper via Genotype-by-Sequencing Based QTL Mapping and Genome-Wide Association Study. FRONTIERS IN PLANT SCIENCE 2020; 11:1100. [PMID: 32793261 PMCID: PMC7390901 DOI: 10.3389/fpls.2020.01100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/03/2020] [Indexed: 05/09/2023]
Abstract
All modern pepper accessions are products of the domestication of wild Capsicum species. However, due to the limited availability of genome-wide association study (GWAS) data and selection signatures for various traits, domestication-related genes have not been identified in pepper. Here, to address this problem, we obtained data for major fruit-related domestication traits (fruit length, width, weight, pericarp thickness, and fruit position) using a highly diverse panel of 351 pepper accessions representing the worldwide Capsicum germplasm. Using a genotype-by-sequencing (GBS) method, we developed 187,966 genome-wide high-quality SNP markers across 230 C. annuum accessions. Linkage disequilibrium (LD) analysis revealed that the average length of the LD blocks was 149 kb. Using GWAS, we identified 111 genes that were linked to 64 significant LD blocks. We cross-validated the GWAS results using 17 fruit-related QTLs and identified 16 causal genes thought to be associated with fruit morphology-related domestication traits, with molecular functions such as cell division and expansion. The significant LD blocks and candidate genes identified in this study provide unique molecular footprints for deciphering the domestication history of Capsicum. Further functional validation of these candidate genes should accelerate the cloning of genes for major fruit-related traits in pepper.
Collapse
Affiliation(s)
- Hea-Young Lee
- Department of Plant Science, Plant Genomics and Breeding Institute and Vegetable Breeding Research Center, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Na-Young Ro
- National Academy of Agricultural Science, National Agrobiodiversity Center, Rural Development Administration, Jeonju, South Korea
| | - Abhinandan Patil
- Department of Plant Science, Plant Genomics and Breeding Institute and Vegetable Breeding Research Center, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Joung-Ho Lee
- Department of Plant Science, Plant Genomics and Breeding Institute and Vegetable Breeding Research Center, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Jin-Kyung Kwon
- Department of Plant Science, Plant Genomics and Breeding Institute and Vegetable Breeding Research Center, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Byoung-Cheorl Kang
- Department of Plant Science, Plant Genomics and Breeding Institute and Vegetable Breeding Research Center, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- *Correspondence: Byoung-Cheorl Kang,
| |
Collapse
|
40
|
Abstract
Maize is an excellent model for the study of plant adaptation. Indeed, post domestication maize quickly adapted to a host of new environments across the globe. And work over the last decade has begun to highlight the role of the wild relatives of maize-the teosintes Zea mays ssp. parviglumis and ssp. mexicana-as excellent models for dissecting long-term local adaptation.Although human-driven selection associated with maize domestication has been extensively studied, the genetic basis of natural variation is still poorly understood. Here we review studies on the genetic basis of adaptation and plasticity in maize and its wild relatives. We highlight a range of different processes that contribute to adaptation and discuss evidence from natural, cultivated, and experimental populations. From an applied perspective, understanding the genetic bases of adaptation and the contribution of plasticity will provide us with new tools to both better understand and mitigate the effect of climate changes on natural and cultivated populations.
Collapse
|
41
|
Li M, Klein LL, Duncan KE, Jiang N, Chitwood DH, Londo JP, Miller AJ, Topp CN. Characterizing 3D inflorescence architecture in grapevine using X-ray imaging and advanced morphometrics: implications for understanding cluster density. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:6261-6276. [PMID: 31504758 PMCID: PMC6859732 DOI: 10.1093/jxb/erz394] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 08/21/2019] [Indexed: 05/18/2023]
Abstract
Inflorescence architecture provides the scaffold on which flowers and fruits develop, and consequently is a primary trait under investigation in many crop systems. Yet the challenge remains to analyse these complex 3D branching structures with appropriate tools. High information content datasets are required to represent the actual structure and facilitate full analysis of both the geometric and the topological features relevant to phenotypic variation in order to clarify evolutionary and developmental inflorescence patterns. We combined advanced imaging (X-ray tomography) and computational approaches (topological and geometric data analysis and structural simulations) to comprehensively characterize grapevine inflorescence architecture (the rachis and all branches without berries) among 10 wild Vitis species. Clustering and correlation analyses revealed unexpected relationships, for example pedicel branch angles were largely independent of other traits. We identified multivariate traits that typified species, which allowed us to classify species with 78.3% accuracy, versus 10% by chance. Twelve traits had strong signals across phylogenetic clades, providing insight into the evolution of inflorescence architecture. We provide an advanced framework to quantify 3D inflorescence and other branched plant structures that can be used to tease apart subtle, heritable features for a better understanding of genetic and environmental effects on plant phenotypes.
Collapse
Affiliation(s)
- Mao Li
- Donald Danforth Plant Science Center, St Louis, MO, USA
| | - Laura L Klein
- Donald Danforth Plant Science Center, St Louis, MO, USA
- Department of Biology, Saint Louis University, St Louis, MO, USA
| | | | - Ni Jiang
- Donald Danforth Plant Science Center, St Louis, MO, USA
| | - Daniel H Chitwood
- Department of Horticulture, Michigan State University, East Lansing, MI, USA
- Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Jason P Londo
- United States Department of Agriculture, Agricultural Research Service: Grape Genetics Research Unit, Geneva, NY, USA
| | - Allison J Miller
- Donald Danforth Plant Science Center, St Louis, MO, USA
- Department of Biology, Saint Louis University, St Louis, MO, USA
| | | |
Collapse
|
42
|
Ortíz-Ceballos AI, Ortiz-Gamino D, Andrade-Torres A, Pérez-Rodríguez P, López-Ortega M. Pontoscolex corethrurus: A homeless invasive tropical earthworm? PLoS One 2019; 14:e0222337. [PMID: 31539381 PMCID: PMC6754163 DOI: 10.1371/journal.pone.0222337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 08/27/2019] [Indexed: 11/18/2022] Open
Abstract
The presence of earthworm species in crop fields is as old as agriculture itself. The earthworms Pontoscolex corethrurus (invasive) and Balanteodrilus pearsei (native) are associated with the emergence of agriculture and sedentism in the region Amazon and Maya, respectively. Both species have shifted their preference from their natural habitat to the cropland niche. They contrast in terms of intensification of agricultural land use (anthropic impact to the symbiotic soil microbiome). P. corethrurus inhabits conventional agroecosystems, while B. pearsei thrives in traditional agroecosystems, i.e., P. corethrurus has not yet been recorded in soils where B. pearsei dwells. The demographic behavior of these two earthworm species was assessed in the laboratory over 100 days, according to their origin (OE; P. corethrurus and B. pearsei) food quality (FQ; soil only, maize stubble, Mucuna pruriens), and soil moisture (SM; 25, 33, 42%). The results showed that OE, FQ, SM, and the OE x FQ interaction were highly significant for the survival, growth, and reproduction of earthworms. P. corethrurus showed a lower survival rate (> mortality). P. corethrurus survivors fed a diet of low-to-intermediate nutritional quality (soil and stubble maize, respectively) showed a greater capacity to grow and reproduce; however, it was surpassed by the native earthworm when fed a high-quality diet (M. pruriens). Besides, P. corethrurus displayed a low cocoon hatching (emergence of juveniles). These results suggest that the presence of the invasive species was associated with a negative interaction with the soil microbiota where the native species dwells, and with the absence of natural mutualistic bacteria (gut, nephridia, and cocoons). These results are consistent with the absence of P. corethrurus in milpa and pasture-type agricultural niches managed by peasants (agroecologists) to grow food regularly through biological soil management. Results reported here suggest that P. corethrurus is an invasive species that is neither wild nor domesticated, that is, its eco-evolutionary phylogeny needs to be derived based on its symbionts.
Collapse
Affiliation(s)
- Angel I. Ortíz-Ceballos
- Instituto de Biotecnología y Ecología Aplicada (INBIOTECA), Universidad Veracruzana, Col. Emiliano Zapata, Xalapa, Veracruz, México
- * E-mail:
| | - Diana Ortiz-Gamino
- Instituto de Biotecnología y Ecología Aplicada (INBIOTECA), Universidad Veracruzana, Col. Emiliano Zapata, Xalapa, Veracruz, México
| | - Antonio Andrade-Torres
- Instituto de Biotecnología y Ecología Aplicada (INBIOTECA), Universidad Veracruzana, Col. Emiliano Zapata, Xalapa, Veracruz, México
| | - Paulino Pérez-Rodríguez
- Programa de Estadística, Campus Montecillo, Colegio de Postgraduados, Montecillo, Estado de México, México
| | - Maurilio López-Ortega
- Instituto de Biotecnología y Ecología Aplicada (INBIOTECA), Universidad Veracruzana, Col. Emiliano Zapata, Xalapa, Veracruz, México
| |
Collapse
|
43
|
Eshed Y, Lippman ZB. Revolutions in agriculture chart a course for targeted breeding of old and new crops. Science 2019; 366:science.aax0025. [PMID: 31488704 DOI: 10.1126/science.aax0025] [Citation(s) in RCA: 151] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The dominance of the major crops that feed humans and their livestock arose from agricultural revolutions that increased productivity and adapted plants to large-scale farming practices. Two hormone systems that universally control flowering and plant architecture, florigen and gibberellin, were the source of multiple revolutions that modified reproductive transitions and proportional growth among plant parts. Although step changes based on serendipitous mutations in these hormone systems laid the foundation, genetic and agronomic tuning were required for broad agricultural benefits. We propose that generating targeted genetic variation in core components of both systems would elicit a wider range of phenotypic variation. Incorporating this enhanced diversity into breeding programs of conventional and underutilized crops could help to meet the future needs of the human diet and promote sustainable agriculture.
Collapse
Affiliation(s)
- Yuval Eshed
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel.
| | - Zachary B Lippman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA. .,Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| |
Collapse
|
44
|
He F, Pasam R, Shi F, Kant S, Keeble-Gagnere G, Kay P, Forrest K, Fritz A, Hucl P, Wiebe K, Knox R, Cuthbert R, Pozniak C, Akhunova A, Morrell PL, Davies JP, Webb SR, Spangenberg G, Hayes B, Daetwyler H, Tibbits J, Hayden M, Akhunov E. Exome sequencing highlights the role of wild-relative introgression in shaping the adaptive landscape of the wheat genome. Nat Genet 2019; 51:896-904. [PMID: 31043759 DOI: 10.1038/s41588-019-0382-2] [Citation(s) in RCA: 168] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 02/26/2019] [Indexed: 11/09/2022]
Abstract
Introgression is a potential source of beneficial genetic diversity. The contribution of introgression to adaptive evolution and improvement of wheat as it was disseminated worldwide remains unknown. We used targeted re-sequencing of 890 diverse accessions of hexaploid and tetraploid wheat to identify wild-relative introgression. Introgression, and selection for improvement and environmental adaptation, each reduced deleterious allele burden. Introgression increased diversity genome wide and in regions harboring major agronomic genes, and contributed alleles explaining a substantial proportion of phenotypic variation. These results suggest that historic gene flow from wild relatives made a substantial contribution to the adaptive diversity of modern bread wheat.
Collapse
Affiliation(s)
- Fei He
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
| | - Raj Pasam
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, Victoria, Australia
| | - Fan Shi
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, Victoria, Australia
| | - Surya Kant
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, Victoria, Australia
| | | | - Pippa Kay
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, Victoria, Australia
| | - Kerrie Forrest
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, Victoria, Australia
| | - Allan Fritz
- Department of Agronomy, Kansas State University, Manhattan, KS, USA
| | - Pierre Hucl
- Crop Development Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Krystalee Wiebe
- Crop Development Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Ron Knox
- Swift Current Research and Development Centre, Swift Current, Saskatchewan, Canada
| | - Richard Cuthbert
- Swift Current Research and Development Centre, Swift Current, Saskatchewan, Canada
| | - Curtis Pozniak
- Crop Development Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Alina Akhunova
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA.,Integrated Genomics Facility, Kansas State University, Manhattan, KS, USA
| | - Peter L Morrell
- Department of Agronomy and Plant Genetics, University of Minnesota, St Paul, MN, USA
| | - John P Davies
- Corteva Agriscience, Agriculture Division of DowDuPont, Indianapolis, IN, USA
| | - Steve R Webb
- Corteva Agriscience, Agriculture Division of DowDuPont, Indianapolis, IN, USA
| | - German Spangenberg
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, Victoria, Australia.,School of Applied Systems Biology, La Trobe University, Bundoora, Victoria, Australia
| | - Ben Hayes
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, Victoria, Australia.,Queensland Alliance for Agriculture and Food Innovation, Centre for Animal Science, University of Queensland, St Lucia, Queensland, Australia
| | - Hans Daetwyler
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, Victoria, Australia.,School of Applied Systems Biology, La Trobe University, Bundoora, Victoria, Australia
| | - Josquin Tibbits
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, Victoria, Australia.,School of Applied Systems Biology, La Trobe University, Bundoora, Victoria, Australia
| | - Matthew Hayden
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, Victoria, Australia. .,School of Applied Systems Biology, La Trobe University, Bundoora, Victoria, Australia.
| | - Eduard Akhunov
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA.
| |
Collapse
|
45
|
Ramstein GP, Jensen SE, Buckler ES. Breaking the curse of dimensionality to identify causal variants in Breeding 4. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:559-567. [PMID: 30547185 PMCID: PMC6439136 DOI: 10.1007/s00122-018-3267-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 12/07/2018] [Indexed: 05/18/2023]
Abstract
In the past, plant breeding has undergone three major transformations and is currently transitioning to a new technological phase, Breeding 4. This phase is characterized by the development of methods for biological design of plant varieties, including transformation and gene editing techniques directed toward causal loci. The application of such technologies will require to reliably estimate the effect of loci in plant genomes by avoiding the situation where the number of loci assayed (p) surpasses the number of plant genotypes (n). Here, we discuss approaches to avoid this curse of dimensionality (n ≪ p), which will involve analyzing intermediate phenotypes such as molecular traits and component traits related to plant morphology or physiology. Because these approaches will rely on novel data types such as DNA sequences and high-throughput phenotyping images, Breeding 4 will call for analyses that are complementary to traditional quantitative genetic studies, being based on machine learning techniques which make efficient use of sequence and image data. In this article, we will present some of these techniques and their application for prioritizing causal loci and developing improved varieties in Breeding 4.
Collapse
Affiliation(s)
- Guillaume P Ramstein
- Institute for Genomic Diversity, Institute of Biotechnology, Cornell University, 175 Biotechnology Building, Ithaca, NY, 14853, USA.
| | - Sarah E Jensen
- Section of Plant Breeding and Genetics, Cornell University, Ithaca, NY, 14853, USA
| | - Edward S Buckler
- Institute for Genomic Diversity, Institute of Biotechnology, Cornell University, 175 Biotechnology Building, Ithaca, NY, 14853, USA
- Section of Plant Breeding and Genetics, Cornell University, Ithaca, NY, 14853, USA
- United States Department of Agriculture, Agricultural Research Service, Ithaca, NY, 14853, USA
| |
Collapse
|
46
|
Gros-Balthazard M, Hazzouri KM, Flowers JM. Genomic Insights into Date Palm Origins. Genes (Basel) 2018; 9:genes9100502. [PMID: 30336633 PMCID: PMC6211059 DOI: 10.3390/genes9100502] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 10/03/2018] [Accepted: 10/03/2018] [Indexed: 11/16/2022] Open
Abstract
With the development of next-generation sequencing technology, the amount of date palm (Phoenix dactylifera L.) genomic data has grown rapidly and yielded new insights into this species and its origins. Here, we review advances in understanding of the evolutionary history of the date palm, with a particular emphasis on what has been learned from the analysis of genomic data. We first record current genomic resources available for date palm including genome assemblies and resequencing data. We discuss new insights into its domestication and diversification history based on these improved genomic resources. We further report recent discoveries such as the existence of wild ancestral populations in remote locations of Oman and high differentiation between African and Middle Eastern populations. While genomic data are consistent with the view that domestication took place in the Gulf region, they suggest that the process was more complex involving multiple gene pools and possibly a secondary domestication. Many questions remain unanswered, especially regarding the genetic architecture of domestication and diversification. We provide a road map to future studies that will further clarify the domestication history of this iconic crop.
Collapse
Affiliation(s)
- Muriel Gros-Balthazard
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Saadiyat Island, P.O. Box 129188, Abu Dhabi, UAE.
| | - Khaled Michel Hazzouri
- Khalifa Center for Genetic Engineering and Biotechnology (KCGEB), United Arab Emirates University, P.O. Box 15551, Al Ain, UAE.
| | - Jonathan Mark Flowers
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Saadiyat Island, P.O. Box 129188, Abu Dhabi, UAE.
- Department of Biology, Center for Genomics and Systems Biology, 12 Waverly Place, New York University, New York, NY 10003, USA.
| |
Collapse
|
47
|
Rendón-Anaya M, Herrera-Estrella A. The advantage of parallel selection of domestication genes to accelerate crop improvement. Genome Biol 2018; 19:147. [PMID: 30266085 PMCID: PMC6161459 DOI: 10.1186/s13059-018-1537-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A recent study identifies a locus controlling seed dormancy – a key trait of the ‘domestication syndrome’ – that has been selected for in parallel across multiple crop families.
Collapse
Affiliation(s)
- Martha Rendón-Anaya
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, PO Box 7080, SE-750 07, Uppsala, Sweden
| | - Alfredo Herrera-Estrella
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN (Cinvestav), 36821 Irapuato, Guanajuato, Mexico.
| |
Collapse
|