1
|
Chen S, Nie K, Wang H, Gao Y, Jiang X, Su H, Wang Z, Tang Y, Lu F, Dong H, Li J. Wu-Mei-Wan enhances brown adipose tissue function and white adipose browning in obese mice via upregulation of HSF1. Chin Med 2025; 20:1. [PMID: 39754217 PMCID: PMC11697821 DOI: 10.1186/s13020-024-01053-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/25/2024] [Indexed: 01/06/2025] Open
Abstract
BACKGROUND This research aims to explore the anti-obesity potential of Wu-Mei-Wan (WMW), particularly its effects on adipose tissue regulation in obese mice induced by a high-fat diet (HFD). The study focuses on understanding the role of heat shock factor 1 (HSF1) in mediating these effects. METHODS HFD-induced obese mice were treated with WMW. Body weight, food intake, and histopathological analysis of adipose tissue were conducted. Brown adipose tissue (BAT) activity was evaluated using Positron Emission Tomography, and ultrastructural changes were examined via transmission electron microscopy. Proteomic analysis identified targets of WMW in obesity treatment. HSF1 expression was inhibited to confirm its role. Molecular docking studied interactions between WMW and HSF1. Short-chain fatty acids (SCFAs) in the intestines were measured to determine if WMW's effects on HSF1 are mediated through SCFAs. Protein expression was assessed using western blot, immunohistochemistry, immunofluorescence and RT-qPCR were employed to detect the mRNA levels. Statistical analyses included t-tests, ANOVA, and non-parametric tests like the Mann-Whitney U test or Kruskal-Wallis test. RESULTS WMW significantly mitigates the adverse effects of a HFD on body weight and glucose metabolism in obese mice. Both low-dose WMW and high-dose WMW treatments led to reduced weight gain and improved glucose tolerance, with low-dose WMW showing more pronounced effects. WMW also reversed structural damage in BAT, enhancing mitochondrial integrity and thermogenic function, particularly at the low dose. Additionally, WMW treatment promoted the browning of WAT, evidenced by increased expression of key thermogenic proteins such as UCP1 and PGC-1α. The increase in HSF1 expression in both BAT and WAT, observed with WMW treatment, was crucial for these beneficial effects, as inhibition of HSF1 negated the positive outcomes. Furthermore, WMW treatment led to elevated levels of short-chain fatty acids SCFAs in the intestines, which are associated with increased HSF1 expression. CONCLUSIONS WMW represents a potent therapeutic strategy for obesity, promoting metabolic health and beneficial modulation of adipose tissue through an HSF1-dependent pathway.
Collapse
Affiliation(s)
- Shen Chen
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Kexin Nie
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Hongzhan Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Yang Gao
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Xinyue Jiang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Hao Su
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Zhi Wang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Yueheng Tang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Fuer Lu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Hui Dong
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| | - Jingbin Li
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| |
Collapse
|
2
|
Wang X, Wu Q, Zhong M, Chen Y, Wang Y, Li X, Zhao W, Ge C, Wang X, Yu Y, Yang S, Wang T, Xie E, Shi W, Min J, Wang F. Adipocyte-derived ferroptotic signaling mitigates obesity. Cell Metab 2024:S1550-4131(24)00456-X. [PMID: 39729998 DOI: 10.1016/j.cmet.2024.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 09/29/2024] [Accepted: 11/12/2024] [Indexed: 12/29/2024]
Abstract
Ferroptosis is characterized as an iron-dependent and lipophilic form of cell death. However, it remains unclear what role ferroptosis has in adipose tissue function and activity. Here, we find a lower ferroptotic signature in the adipose tissue of individuals and mice with obesity. We further find that activation of ferroptotic signaling by a non-lethal dose of ferroptosis agonists significantly reduces lipid accumulation in primary adipocytes and high-fat diet (HFD)-fed mice. Notably, adipocyte-specific overexpression of acyl-coenzyme A synthetase long-chain family member 4 (Acsl4) or deletion of ferritin heavy chain (Fth) protects mice from HFD-induced adipose expansion and metabolic disorders via activation of ferroptotic signaling. Mechanistically, we find that 5,15-dihydroxyeicosatetraenoic acid (5,15-DiHETE) activates ferroptotic signaling, resulting in the degradation of hypoxia-inducible factor-1α (HIF1α), thereby derepressing a thermogenic program regulated by the c-Myc-peroxisome proliferator-activated receptor gamma coactivator-1 beta (Pgc1β) pathway. Our findings suggest that activating ferroptosis signaling in adipose tissues might help to prevent and treat obesity and its related metabolic disorders.
Collapse
Affiliation(s)
- Xue Wang
- The Second Affiliated Hospital, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou 310058, China; The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; School of Public Health, Basic Medical Sciences, School of Pharmacology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China; School of Public Health, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
| | - Qian Wu
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Meijuan Zhong
- School of Public Health, Basic Medical Sciences, School of Pharmacology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Ying Chen
- Ministry of Education Key Laboratory of Metabolism and Molecular Medicine, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yudi Wang
- The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xin Li
- School of Public Health, Basic Medical Sciences, School of Pharmacology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Wenxi Zhao
- The Second Affiliated Hospital, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Chaodong Ge
- The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xinhui Wang
- The Second Affiliated Hospital, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yingying Yu
- The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Sisi Yang
- The Second Affiliated Hospital, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Tianyi Wang
- School of Public Health, Basic Medical Sciences, School of Pharmacology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Enjun Xie
- The Second Affiliated Hospital, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Wanting Shi
- The Second Affiliated Hospital, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Junxia Min
- The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China.
| | - Fudi Wang
- The Second Affiliated Hospital, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou 310058, China; School of Public Health, Basic Medical Sciences, School of Pharmacology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China; School of Public Health, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China.
| |
Collapse
|
3
|
Nagagata BA, Mandarim-de-Lacerda CA, Aguila MB. Melatonin-Supplemented Obese Female Mice Show Less Inflammation in Ovarian Adipocytes and Browning in Subcutaneous Adipocytes. Cell Biochem Funct 2024; 42:e70034. [PMID: 39707618 DOI: 10.1002/cbf.70034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/24/2024] [Accepted: 12/10/2024] [Indexed: 12/23/2024]
Abstract
We hypothesized that melatonin (Mel) supplementation may offer therapeutic benefits for obesity, particularly in women. Therefore, the study evaluated Mel's effects on white adipose tissue (WAT) in diet-induced obese female mice. Four-week-old C57BL/6 females were assigned to either a control diet (C group) or a high-fat diet (HF group) for 6 weeks (n = 20/group). Following this, Mel was administered (10 mg/kg/day) for 8 weeks (n = 10/group), resulting in four groups: C, CMel, HF, and HFMel. The HF group developed obesity. HFMel displayed reduced fat pad size, lower plasma insulin, and improved glucose tolerance and insulin resistance compared to HF. In ovarian WAT (oWAT), HFMel versus HF showed reduced pro-inflammatory markers, less endoplasmic reticulum (ER) stress, and smaller adipocyte size. In subcutaneous WAT (sWAT), HFMel versus HF demonstrated increased adipocyte multiloculation, higher uncoupling protein-1 expression, and elevated thermogenic gene expression. Principal component analysis of gene expressions in oWAT and sWAT revealed significant differences: in oWAT, ER stress and inflammation markers were linked to the HF group, while HFMel and CMel clustered together, indicating a beneficial Mel effect. In sWAT, HFMel and CMel clustered on the opposite side of HF, which is associated with thermogenic gene expressions. In conclusion, the findings demonstrate that Mel supplementation in obese female mice, even when maintained on an HF diet, effectively modulated weight gain and reduced ovarian and subcutaneous fat accumulation. Mel supplementation positively influenced insulin resistance, inflammation, and ER stress while promoting thermogenesis in WAT in obese female mice.
Collapse
Affiliation(s)
- Brenda A Nagagata
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Biomedical Center, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carlos A Mandarim-de-Lacerda
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Biomedical Center, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcia Barbosa Aguila
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Biomedical Center, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
4
|
Turyn J, Stelmanska E, Szrok-Jurga S. Two Regions with Different Expression of Lipogenic Enzymes in Rats' Posterior Subcutaneous Fat Depot. Int J Mol Sci 2024; 25:11546. [PMID: 39519099 PMCID: PMC11546078 DOI: 10.3390/ijms252111546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/20/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Lipid metabolism in various adipose tissue depots can differ vastly. This also applies to lipogenesis, the process of synthesizing fatty acids from acetyl-CoA. This study compared the expression of some lipogenic enzymes: fatty acid synthase (FASN), ATP-citrate lyase (ACLY), and malic enzyme 1 (ME1) in different regions of the posterior subcutaneous adipose tissue in rats. Methods and Results: Posterior subcutaneous adipose tissue collected from twelve-month-old Wistar rats was divided into six parts (A-F). The expression of genes encoding lipogenic enzymes was assessed by measuring their activity and mRNA levels using real-time PCR. In the gluteal region of the fat pad, there were much higher levels of activity and mRNA for these lipogenic enzymes compared to the dorsolumbar region. The mRNA level of FASN increased by more than twentyfold, whereas the level of ME1 and ACLY increased eight- and fivefold respectively. This phenomenon was observed in both old and young animals. Furthermore, the lack of uncoupling protein one (Ucp1) expression suggests that neither the presence of brown adipocytes in the gluteal part nor the transformation of white adipocytes into beige contributed to the observed differences. Conclusion: These results indicate that the gluteal white adipose tissue appears to be a unique and separate subcutaneous fat depot.
Collapse
Affiliation(s)
- Jacek Turyn
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland;
| | | | - Sylwia Szrok-Jurga
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland;
| |
Collapse
|
5
|
Ma Y, Nenkov M, Chen Y, Gaßler N. The Role of Adipocytes Recruited as Part of Tumor Microenvironment in Promoting Colorectal Cancer Metastases. Int J Mol Sci 2024; 25:8352. [PMID: 39125923 PMCID: PMC11313311 DOI: 10.3390/ijms25158352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/15/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Adipose tissue dysfunction, which is associated with an increased risk of colorectal cancer (CRC), is a significant factor in the pathophysiology of obesity. Obesity-related inflammation and extracellular matrix (ECM) remodeling promote colorectal cancer metastasis (CRCM) by shaping the tumor microenvironment (TME). When CRC occurs, the metabolic symbiosis of tumor cells recruits adjacent adipocytes into the TME to supply energy. Meanwhile, abundant immune cells, from adipose tissue and blood, are recruited into the TME, which is stimulated by pro-inflammatory factors and triggers a chronic local pro-inflammatory TME. Dysregulated ECM proteins and cell surface adhesion molecules enhance ECM remodeling and further increase contractibility between tumor and stromal cells, which promotes epithelial-mesenchymal transition (EMT). EMT increases tumor migration and invasion into surrounding tissues or vessels and accelerates CRCM. Colorectal symbiotic microbiota also plays an important role in the promotion of CRCM. In this review, we provide adipose tissue and its contributions to CRC, with a special emphasis on the role of adipocytes, macrophages, neutrophils, T cells, ECM, and symbiotic gut microbiota in the progression of CRC and their contributions to the CRC microenvironment. We highlight the interactions between adipocytes and tumor cells, and potential therapeutic approaches to target these interactions.
Collapse
Affiliation(s)
| | | | | | - Nikolaus Gaßler
- Section Pathology of the Institute of Forensic Medicine, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany (M.N.)
| |
Collapse
|
6
|
Chen J, Pan Y, Lu Y, Fang X, Ma T, Chen X, Wang Y, Fang X, Zhang C, Song C. The Function and Mechanism of Long Noncoding RNAs in Adipogenic Differentiation. Genes (Basel) 2024; 15:875. [PMID: 39062654 PMCID: PMC11275360 DOI: 10.3390/genes15070875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/16/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
Adipocytes are crucial for maintaining energy balance. Adipocyte differentiation involves distinct stages, including the orientation stage, clone amplification stage, clone amplification termination stage, and terminal differentiation stage. Understanding the regulatory mechanisms governing adipogenic differentiation is essential for comprehending the physiological processes and identifying potential biomarkers and therapeutic targets for metabolic diseases, ultimately improving glucose and fat metabolism. Adipogenic differentiation is influenced not only by key factors such as hormones, the peroxisome proliferator-activated receptor (PPAR) family, and the CCATT enhancer-binding protein (C/EBP) family but also by noncoding RNA, including microRNA (miRNA), long noncoding RNA (lncRNA), and circular RNA (circRNA). Among these, lncRNA has been identified as a significant regulator in adipogenic differentiation. Research has demonstrated various ways in which lncRNAs contribute to the molecular mechanisms of adipogenic differentiation. Throughout the adipogenesis process, lncRNAs modulate adipocyte differentiation and development by influencing relevant signaling pathways and transcription factors. This review provides a brief overview of the function and mechanism of lncRNAs in adipogenic differentiation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Chunlei Zhang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China; (J.C.); (Y.P.); (Y.L.); (X.F.); (T.M.); (X.C.); (Y.W.); (X.F.)
| | - Chengchuang Song
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China; (J.C.); (Y.P.); (Y.L.); (X.F.); (T.M.); (X.C.); (Y.W.); (X.F.)
| |
Collapse
|
7
|
Reed JN, Huang J, Li Y, Ma L, Banka D, Wabitsch M, Wang T, Ding W, Björkegren JL, Civelek M. Systems genetics analysis of human body fat distribution genes identifies adipocyte processes. Life Sci Alliance 2024; 7:e202402603. [PMID: 38702075 PMCID: PMC11068934 DOI: 10.26508/lsa.202402603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/06/2024] Open
Abstract
Excess abdominal fat is a sexually dimorphic risk factor for cardio-metabolic disease and is approximated by the waist-to-hip ratio adjusted for body mass index (WHRadjBMI). Whereas this trait is highly heritable, few causal genes are known. We aimed to identify novel drivers of WHRadjBMI using systems genetics. We used two independent cohorts of adipose tissue gene expression and constructed sex- and depot-specific Bayesian networks to model gene-gene interactions from 8,492 genes. Using key driver analysis, we identified genes that, in silico and putatively in vitro, regulate many others. 51-119 key drivers in each network were replicated in both cohorts. In other cell types, 23 of these genes are found in crucial adipocyte pathways: Wnt signaling or mitochondrial function. We overexpressed or down-regulated seven key driver genes in human subcutaneous pre-adipocytes. Key driver genes ANAPC2 and RSPO1 inhibited adipogenesis, whereas PSME3 increased adipogenesis. RSPO1 increased Wnt signaling activity. In differentiated adipocytes, MIGA1 and UBR1 down-regulation led to mitochondrial dysfunction. These five genes regulate adipocyte function, and we hypothesize that they regulate fat distribution.
Collapse
Affiliation(s)
- Jordan N Reed
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Jiansheng Huang
- Novo Nordisk Research Center China, Novo Nordisk A/S, Beijing, China
| | - Yong Li
- Novo Nordisk Research Center China, Novo Nordisk A/S, Beijing, China
| | - Lijiang Ma
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dhanush Banka
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Martin Wabitsch
- Division of Paediatric Endocrinology and Diabetes, Department of Paediatrics and Adolescent Medicine, Ulm University Medical Centre, Ulm, Germany
| | - Tianfang Wang
- Novo Nordisk Research Center China, Novo Nordisk A/S, Beijing, China
| | - Wen Ding
- Novo Nordisk Research Center China, Novo Nordisk A/S, Beijing, China
| | - Johan Lm Björkegren
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Mete Civelek
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
8
|
Osikoya O, Hula N, da Silva RDNO, Goulopoulou S. Perivascular Adipose Tissue and Uterine Artery Adaptations to Pregnancy. Microcirculation 2024; 31:e12857. [PMID: 38826057 DOI: 10.1111/micc.12857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/28/2024] [Accepted: 04/22/2024] [Indexed: 06/04/2024]
Abstract
Pregnancy is characterized by longitudinal maternal, physiological adaptations to support the development of a fetus. One of the cardinal maternal adaptations during a healthy pregnancy is a progressive increase in uterine artery blood flow. This facilitates sufficient blood supply for the development of the placenta and the growing fetus. Regional hemodynamic changes in the uterine circulation, such as a vast reduction in uterine artery resistance, are mainly facilitated by changes in uterine artery reactivity and myogenic tone along with remodeling of the uterine arteries. These regional changes in vascular reactivity have been attributed to pregnancy-induced adaptations of cell-to-cell communication mechanisms, with an emphasis on the interaction between endothelial and vascular smooth muscle cells. Perivascular adipose tissue (PVAT) is considered the fourth layer of the vascular wall and contributes to the regulation of vascular reactivity in most vascular beds and most species. This review focuses on mechanisms of uterine artery reactivity and the role of PVAT in pregnancy-induced maternal vascular adaptations, with an emphasis on the uterine circulation.
Collapse
Affiliation(s)
- Oluwatobiloba Osikoya
- Department of Physiology and Anatomy, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas, USA
| | - Nataliia Hula
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University, Loma Linda, California, USA
| | - Renée de Nazaré Oliveira da Silva
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University, Loma Linda, California, USA
| | - Styliani Goulopoulou
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University, Loma Linda, California, USA
- Department of Gynecology and Obstetrics, Loma Linda University, Loma Linda, California, USA
| |
Collapse
|
9
|
Shao H, Zhang H, Jia D. The Role of Exerkines in Obesity-Induced Disruption of Mitochondrial Homeostasis in Thermogenic Fat. Metabolites 2024; 14:287. [PMID: 38786764 PMCID: PMC11122964 DOI: 10.3390/metabo14050287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
There is a notable correlation between mitochondrial homeostasis and metabolic disruption. In this review, we report that obesity-induced disruption of mitochondrial homeostasis adversely affects lipid metabolism, adipocyte differentiation, oxidative capacity, inflammation, insulin sensitivity, and thermogenesis in thermogenic fat. Elevating mitochondrial homeostasis in thermogenic fat emerges as a promising avenue for developing treatments for metabolic diseases, including enhanced mitochondrial function, mitophagy, mitochondrial uncoupling, and mitochondrial biogenesis. The exerkines (e.g., myokines, adipokines, batokines) released during exercise have the potential to ameliorate mitochondrial homeostasis, improve glucose and lipid metabolism, and stimulate fat browning and thermogenesis as a defense against obesity-associated metabolic diseases. This comprehensive review focuses on the manifold benefits of exercise-induced exerkines, particularly emphasizing their influence on mitochondrial homeostasis and fat thermogenesis in the context of metabolic disorders associated with obesity.
Collapse
Affiliation(s)
- Hui Shao
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; (H.S.); (H.Z.)
- Graduate School of Harbin Sport University, Harbin Sport University, Harbin 150006, China
| | - Huijie Zhang
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; (H.S.); (H.Z.)
| | - Dandan Jia
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; (H.S.); (H.Z.)
| |
Collapse
|
10
|
Yu M, Qin K, Fan J, Zhao G, Zhao P, Zeng W, Chen C, Wang A, Wang Y, Zhong J, Zhu Y, Wagstaff W, Haydon RC, Luu HH, Ho S, Lee MJ, Strelzow J, Reid RR, He TC. The evolving roles of Wnt signaling in stem cell proliferation and differentiation, the development of human diseases, and therapeutic opportunities. Genes Dis 2024; 11:101026. [PMID: 38292186 PMCID: PMC10825312 DOI: 10.1016/j.gendis.2023.04.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 03/18/2023] [Accepted: 04/12/2023] [Indexed: 02/01/2024] Open
Abstract
The evolutionarily conserved Wnt signaling pathway plays a central role in development and adult tissue homeostasis across species. Wnt proteins are secreted, lipid-modified signaling molecules that activate the canonical (β-catenin dependent) and non-canonical (β-catenin independent) Wnt signaling pathways. Cellular behaviors such as proliferation, differentiation, maturation, and proper body-axis specification are carried out by the canonical pathway, which is the best characterized of the known Wnt signaling paths. Wnt signaling has emerged as an important factor in stem cell biology and is known to affect the self-renewal of stem cells in various tissues. This includes but is not limited to embryonic, hematopoietic, mesenchymal, gut, neural, and epidermal stem cells. Wnt signaling has also been implicated in tumor cells that exhibit stem cell-like properties. Wnt signaling is crucial for bone formation and presents a potential target for the development of therapeutics for bone disorders. Not surprisingly, aberrant Wnt signaling is also associated with a wide variety of diseases, including cancer. Mutations of Wnt pathway members in cancer can lead to unchecked cell proliferation, epithelial-mesenchymal transition, and metastasis. Altogether, advances in the understanding of dysregulated Wnt signaling in disease have paved the way for the development of novel therapeutics that target components of the Wnt pathway. Beginning with a brief overview of the mechanisms of canonical and non-canonical Wnt, this review aims to summarize the current knowledge of Wnt signaling in stem cells, aberrations to the Wnt pathway associated with diseases, and novel therapeutics targeting the Wnt pathway in preclinical and clinical studies.
Collapse
Affiliation(s)
- Michael Yu
- School of Medicine, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Kevin Qin
- School of Medicine, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jiaming Fan
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, The School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Guozhi Zhao
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Piao Zhao
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Wei Zeng
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Neurology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong 523475, China
| | - Connie Chen
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Annie Wang
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Yonghui Wang
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Clinical Laboratory Medicine, Shanghai Jiaotong University School of Medicine, Shanghai 200000, China
| | - Jiamin Zhong
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, The School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yi Zhu
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Orthopaedic Surgery, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - William Wagstaff
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Rex C. Haydon
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Hue H. Luu
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Sherwin Ho
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Michael J. Lee
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jason Strelzow
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Russell R. Reid
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Suture Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Suture Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| |
Collapse
|
11
|
Abdillah AM, Yun JW. Capsaicin induces ATP-dependent thermogenesis via the activation of TRPV1/β3-AR/α1-AR in 3T3-L1 adipocytes and mouse model. Arch Biochem Biophys 2024; 755:109975. [PMID: 38531438 DOI: 10.1016/j.abb.2024.109975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 03/22/2024] [Accepted: 03/22/2024] [Indexed: 03/28/2024]
Abstract
Capsaicin (CAP) is a natural bioactive compound in chili pepper that activates the transient receptor potential vanilloid subfamily 1 (TRPV1) and is known to stimulate uncoupling protein 1 (UCP1)-dependent thermogenesis. However, its effect on ATP-dependent thermogenesis remains unknown. In this study, we employed qRT-PCR, immunoblot, staining method, and assay kit to investigate the role of CAP on ATP-dependent thermogenesis and its modulatory roles on the TRPV1, β3-adrenergic receptor (β3-AR), and α1-AR using in vitro and in vivo models. The studies showed that CAP treatment in high-fat diet-induced obese mice resulted in lower body weight gain and elevated ATP-dependent thermogenic effectors' protein and gene expression through ATP-consuming calcium and creatine futile cycles. In both in vitro and in vivo experiments, CAP treatment elevated the protein and gene expressions of sarcoendoplasmic/endoplasmic reticulum calcium ATPase 2 (SERCA2), ryanodine receptor 2 (RYR2), creatine kinase B (CKB), and creatine kinase mitochondrial 2 (CKMT2) mediated by the activation of β3-AR, α1-AR, and TRPV1. Our study showed that CAP increased intracellular Ca2+ levels and the expression of voltage-dependent anion channel (VDAC) and mitochondrial calcium uniporter (MCU) which indicates that increased mitochondrial Ca2+ levels lead to increased expression of oxidative phosphorylation protein complexes as a result of ATP-futile cycle activation. A mechanistic study in 3T3-L1 adipocytes revealed that CAP induces UCP1- and ATP-dependent thermogenesis mediated by the β3-AR/PKA/p38MAPK/ERK as well as calcium-dependent α1-AR/TRPV1/CaMKII/AMPK/SIRT1 pathway. Taken together, we identified CAP's novel functional and modulatory roles in UCP1- and ATP-dependent thermogenesis, which is important for developing therapeutic strategies for combating obesity and metabolic diseases.
Collapse
Affiliation(s)
- Alfin Mohammad Abdillah
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk, 38453, Republic of Korea
| | - Jong Won Yun
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk, 38453, Republic of Korea.
| |
Collapse
|
12
|
Quan Y, Li J, Cai J, Liao Y, Zhang Y, Lu F. Transplantation of beige adipose organoids fabricated using adipose acellular matrix hydrogel improves metabolic dysfunction in high-fat diet-induced obesity and type 2 diabetes mice. J Cell Physiol 2024; 239:e31191. [PMID: 38219044 DOI: 10.1002/jcp.31191] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/22/2023] [Accepted: 12/28/2023] [Indexed: 01/15/2024]
Abstract
Transplantation of brown adipose tissue (BAT) is a promising approach for treating obesity and metabolic disorders. However, obtaining sufficient amounts of functional BAT or brown adipocytes for transplantation remains a major challenge. In this study, we developed a hydrogel that combining adipose acellular matrix (AAM) and GelMA and HAMA that can be adjusted for stiffness by modulating the duration of light-crosslinking. We used human white adipose tissue-derived microvascular fragments to create beige adipose organoids (BAO) that were encapsulated in either a soft or stiff AAM hydrogel. We found that BAOs cultivated in AAM hydrogels with high stiffness demonstrated increased metabolic activity and upregulation of thermogenesis-related genes. When transplanted into obese and type 2 diabetes mice, the HFD + BAO group showed sustained improvements in metabolic rate, resulting in significant weight loss and decreased blood glucose levels. Furthermore, the mice showed a marked reduction in nonalcoholic liver steatosis, indicating improved liver function. In contrast, transplantation of 2D-cultured beige adipocytes failed to produce these beneficial effects. Our findings demonstrate the feasibility of fabricating beige adipose organoids in vitro and administering them by injection, which may represent a promising therapeutic approach for obesity and diabetes.
Collapse
Affiliation(s)
- Yuping Quan
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, P. R. China
- Department of Plastic Surgery and Regenerative Medicine, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jian Li
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, P. R. China
| | - Junrong Cai
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, P. R. China
| | - Yunjun Liao
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, P. R. China
| | - Yuteng Zhang
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, P. R. China
| | - Feng Lu
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, P. R. China
| |
Collapse
|
13
|
Anderson JM, Arnold WD, Huang W, Ray A, Owendoff G, Cao L. Long-term effects of a fat-directed FGF21 gene therapy in aged female mice. Gene Ther 2024; 31:95-104. [PMID: 37699965 DOI: 10.1038/s41434-023-00422-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/25/2023] [Accepted: 08/31/2023] [Indexed: 09/14/2023]
Abstract
Fibroblast growth factor 21 (FGF21) has been developed as a potential therapeutic agent for metabolic syndromes. Moreover, FGF21 is considered a pro-longevity hormone because transgenic mice overexpressing FGF21 display extended lifespan, raising the possibility of using FGF21 to promote healthy aging. We recently showed that visceral fat directed FGF21 gene therapy improves metabolic and immune health in insulin resistant BTBR mice. Here, we used a fat directed rAAV-FGF21 vector in 17-month-old female mice to investigate whether long-term FGF21 gene transfer could mitigate aging-related functional decline. Animals with FGF21 treatment displayed a steady, significant lower body weight over 7-month of the study compared to age-matched control mice. FGF21 treatment reduced adiposity and increased relative lean mass and energy expenditure associated with almost 100 folds higher serum level of FGF21. However, those changes were not translated into benefits on muscle function and did not affect metabolic function of liver. Overall, we have demonstrated that a single dose of fat-directed AAV-FGF21 treatment can provide a sustainable, high serum level of FGF21 over long period of time, and mostly influences adipose tissue homeostasis and energy expenditure. High levels of FGF21 alone in aged mice is not sufficient to improve liver or muscle functions.
Collapse
Affiliation(s)
- Jacqueline M Anderson
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA
- The Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - W David Arnold
- NextGen Precision Health, University of Missouri, Columbia, MO, USA
- Department of Physical Medicine and Rehabilitation, University of Missouri, Columbia, MO, USA
| | - Wei Huang
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA
- The Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Alissa Ray
- Department of Neurology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Gregory Owendoff
- Department of Neurology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Lei Cao
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA.
- The Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
14
|
Guimarães AC, de Moura EG, Silva SG, Lopes BP, Bertasso IM, Pietrobon CB, Quitete FT, de Oliveira Malafaia T, Souza ÉPG, Lisboa PC, de Oliveira E. Citrus aurantium L. and synephrine improve brown adipose tissue function in adolescent mice programmed by early postnatal overfeeding. Front Nutr 2024; 10:1278121. [PMID: 38274208 PMCID: PMC10809993 DOI: 10.3389/fnut.2023.1278121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/06/2023] [Indexed: 01/27/2024] Open
Abstract
Introduction and aims Obesity is a multifactorial condition with high health risk, associated with important chronic disorders such as diabetes, dyslipidemia, and cardiovascular dysfunction. Citrus aurantium L. (C. aurantium) is a medicinal plant, and its active component, synephrine, a β-3 adrenergic agonist, can be used for weight loss. We investigated the effects of C. aurantium and synephrine in obese adolescent mice programmed by early postnatal overfeeding. Methods Three days after birth, male Swiss mice were divided into a small litter (SL) group (3 pups) and a normal litter (NL) group (9 pups). At 30 days old, SL and NL mice were treated with C. aurantium standardized to 6% synephrine, C. aurantium with 30% synephrine, isolated synephrine, or vehicle for 19 days. Results The SL group had a higher body weight than the NL group. Heart rate and blood pressure were not elevated. The SL group had hyperleptinemia and central obesity that were normalized by C. aurantium and synephrine. In brown adipose tissue, the SL group showed a higher lipid droplet sectional area, less nuclei, a reduction in thermogenesis markers related to thermogenesis (UCP-1, PRDM16, PGC-1α and PPARg), and mitochondrial disfunction. C. aurantium and synephrine treatment normalized these parameters. Conclusion Our data indicates that the treatment with C. aurantium and synephrine could be a promising alternative for the control of some obesity dysfunction, such as improvement of brown adipose tissue dysfunction and leptinemia.
Collapse
Affiliation(s)
- Andressa Cardoso Guimarães
- Laboratory of Physiology of Nutrition and Development, Department of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Egberto Gaspar de Moura
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Stephanie Giannini Silva
- Laboratory of Physiology of Nutrition and Development, Department of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bruna Pereira Lopes
- Laboratory of Physiology of Nutrition and Development, Department of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Iala Milene Bertasso
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carla Bruna Pietrobon
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda Torres Quitete
- Laboratory for Studies of Interactions Between Nutrition and Genetics, Department of Basic and Experimental Nutrition, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tayanne de Oliveira Malafaia
- Laboratory of Physiology of Nutrition and Development, Department of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Érica Patrícia Garcia Souza
- Laboratory of Physiology of Nutrition and Development, Department of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patrícia Cristina Lisboa
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Elaine de Oliveira
- Laboratory of Physiology of Nutrition and Development, Department of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
15
|
Liu J, Zhou J, Luan Y, Li X, Meng X, Liao W, Tang J, Wang Z. cGAS-STING, inflammasomes and pyroptosis: an overview of crosstalk mechanism of activation and regulation. Cell Commun Signal 2024; 22:22. [PMID: 38195584 PMCID: PMC10775518 DOI: 10.1186/s12964-023-01466-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/28/2023] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND Intracellular DNA-sensing pathway cGAS-STING, inflammasomes and pyroptosis act as critical natural immune signaling axes for microbial infection, chronic inflammation, cancer progression and organ degeneration, but the mechanism and regulation of the crosstalk network remain unclear. Cellular stress disrupts mitochondrial homeostasis, facilitates the opening of mitochondrial permeability transition pore and the leakage of mitochondrial DNA to cell membrane, triggers inflammatory responses by activating cGAS-STING signaling, and subsequently induces inflammasomes activation and the onset of pyroptosis. Meanwhile, the inflammasome-associated protein caspase-1, Gasdermin D, the CARD domain of ASC and the potassium channel are involved in regulating cGAS-STING pathway. Importantly, this crosstalk network has a cascade amplification effect that exacerbates the immuno-inflammatory response, worsening the pathological process of inflammatory and autoimmune diseases. Given the importance of this crosstalk network of cGAS-STING, inflammasomes and pyroptosis in the regulation of innate immunity, it is emerging as a new avenue to explore the mechanisms of multiple disease pathogenesis. Therefore, efforts to define strategies to selectively modulate cGAS-STING, inflammasomes and pyroptosis in different disease settings have been or are ongoing. In this review, we will describe how this mechanistic understanding is driving possible therapeutics targeting this crosstalk network, focusing on the interacting or regulatory proteins, pathways, and a regulatory mitochondrial hub between cGAS-STING, inflammasomes, and pyroptosis. SHORT CONCLUSION This review aims to provide insight into the critical roles and regulatory mechanisms of the crosstalk network of cGAS-STING, inflammasomes and pyroptosis, and to highlight some promising directions for future research and intervention.
Collapse
Affiliation(s)
- Jingwen Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Jing Zhou
- The Second Hospital of Ningbo, Ningbo, 315099, China
| | - Yuling Luan
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiaoying Li
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200080, China
| | - Xiangrui Meng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Wenhao Liao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Jianyuan Tang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
| | - Zheilei Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
| |
Collapse
|
16
|
Wen X, Xiao Y, Xiao H, Tan X, Wu B, Li Z, Wang R, Xu X, Li T. Bisphenol S induces brown adipose tissue whitening and aggravates diet-induced obesity in an estrogen-dependent manner. Cell Rep 2023; 42:113504. [PMID: 38041811 DOI: 10.1016/j.celrep.2023.113504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/06/2023] [Accepted: 11/10/2023] [Indexed: 12/04/2023] Open
Abstract
Bisphenol S (BPS) exposure has been implied epidemiologically to increase obesity risk, but the underlying mechanism is unclear. Here, we propose that BPS exposure at an environmentally relevant dose aggravates diet-induced obesity in female mice by inducing brown adipose tissue (BAT) whitening. We explored the underlying mechanism by which KDM5A-associated demethylation of the trimethylation of lysine 4 on histone H3 (H3K4me3) in thermogenic genes is overactivated in BAT upon BPS exposure, leading to the reduced expression of thermogenic genes. Further studies have suggested that BPS activates KDM5A transcription in BAT by binding to glucocorticoid receptor (GR) in an estrogen-dependent manner. Estrogen-estrogen receptors facilitate the accessibility of the KDM5A gene promoter to BPS-activated GR by recruiting the activator protein 1 (AP-1) complex. These results indicate that BAT is another important target of BPS and that targeting KDM5A-related signals may serve as an approach to counteract the BPS-induced susceptivity to obesity.
Collapse
Affiliation(s)
- Xue Wen
- Department of Plastic and Burn Surgery, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, China; Department of Anesthesiology, Laboratory of Mitochondria and Metabolism, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yang Xiao
- Department of Plastic and Burn Surgery, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Haitao Xiao
- Department of Plastic and Burn Surgery, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Xueqin Tan
- Department of Plastic and Burn Surgery, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, China; Department of Anesthesiology, Laboratory of Mitochondria and Metabolism, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Beiyi Wu
- Department of Plastic and Burn Surgery, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, China; Department of Anesthesiology, Laboratory of Mitochondria and Metabolism, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Zehua Li
- Department of Plastic and Burn Surgery, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, China; Department of Anesthesiology, Laboratory of Mitochondria and Metabolism, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Ru Wang
- Department of Plastic and Burn Surgery, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Xuewen Xu
- Department of Plastic and Burn Surgery, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, China.
| | - Tao Li
- Department of Anesthesiology, Laboratory of Mitochondria and Metabolism, West China Hospital of Sichuan University, Chengdu 610041, China.
| |
Collapse
|
17
|
Zhang W, Liu S, Kong L, Wu S, Zhong Z, Yu L, Yang Q, Zhang J, Li J, Zheng G. Lipopolysaccharide-induced persistent inflammation ameliorates fat accumulation by promoting adipose browning in vitro and in vivo. Int J Biol Macromol 2023; 252:126511. [PMID: 37625745 DOI: 10.1016/j.ijbiomac.2023.126511] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/16/2023] [Accepted: 08/23/2023] [Indexed: 08/27/2023]
Abstract
This work aimed to explore whether the persistent inflammation induced by lipopolysaccharide (LPS) ameliorates fat accumulation by promoting adipose browning in vitro and in vivo. LPS over 1 ng/mL reduced lipid accumulation while increasing the expressions of specific genes involved in inflammation, mitochondrial biogenesis, and adipose browning in 3T3-L1 adipocytes. Moreover, LPS in intraperitoneal injection decreased white adipose tissue weight and elevated interscapular brown adipose tissue weight in mice. According to RT-PCR and western blot analysis results, the expressions of genes and proteins related to inflammation, mitochondrial biogenesis, lipolysis, and brown or beige markers in different tissues were elevated after LPS intervention. Cumulatively, LPS-induced persistent inflammation may potentially ameliorate fat accumulation by facilitating adipose browning in 3T3-L1 adipocytes and mice. These results offer new perspectives into the effect of persistent inflammation induced by LPS on regulating fat metabolism, thereby reducing fat accumulation by boosting adipose browning procedure.
Collapse
Affiliation(s)
- Wenkai Zhang
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Shanshan Liu
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Li Kong
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Shaofu Wu
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Zhen Zhong
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Longhui Yu
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Qinru Yang
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jinfeng Zhang
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jingen Li
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Guodong Zheng
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
18
|
Tian D, Zeng X, Gong Y, Zheng Y, Zhang J, Wu Z. HDAC1 inhibits beige adipocyte-mediated thermogenesis through histone crotonylation of Pgc1a/Ucp1. Cell Signal 2023; 111:110875. [PMID: 37640195 DOI: 10.1016/j.cellsig.2023.110875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 08/08/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
Obesity, one of the most serious public health issues, is caused by the imbalance of energy intake and energy expenditure. Increasing energy expenditure via induction of adipose tissue browning has become an appealing strategy to treat obesity and associated metabolic complications. Although histone modifications have been confirmed to regulate cellular energy metabolism, the involved biochemical mechanism of thermogenesis in adipose tissue is not completely understood. Herein, we report that class I histone deacetylases (HDAC) inhibitor MS275 increased PGC1α/UCP1 protein levels in inguinal white adipose tissue (iWAT) concomitant with elevated energy expenditure, reduced obesity and ameliorated glucose tolerance compared to control littermates. H3K18cr and H3K18ac levels were elevated after MS275 treatment. MS275 also promoted the transcription of Pgc1α and Ucp1 by enhancing the enrichment of H3K18cr and H3K18ac in the Pgc1α/Ucp1 enhancer and promoter, with a notable increase in H3K18cr. Mechanistically, the deletion of Hdac1 in beige adipocyte increases H3K18cr levels in enhancers and promoters of Pgc1α and Ucp1 genes, regulated the chromosomal state, thereby affecting the transcription of Pgc1α/Ucp1. Taken together, HDAC1 inhibits beige adipocyte-mediated thermogenesis through histone crotonylation of Pgc1a/Ucp1. This finding may provide a therapeutic strategy through increasing energy expenditure in obesity and related metabolic disorders.
Collapse
Affiliation(s)
- Dingyuan Tian
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China; Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin 300134, China
| | - Xiaojiao Zeng
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China; Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin 300134, China
| | - Yihui Gong
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China; Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin 300134, China
| | - Yin Zheng
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong 250021, China
| | - Jun Zhang
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong 250021, China
| | - Zhongming Wu
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China; Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin 300134, China; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong 250021, China.
| |
Collapse
|
19
|
Yu P, Wang W, Guo W, Cheng L, Wan Z, Cheng Y, Shen Y, Xu F. Pioglitazone-Enhanced Brown Fat Whitening Contributes to Weight Gain in Diet-Induced Obese Mice. Exp Clin Endocrinol Diabetes 2023; 131:595-604. [PMID: 37729949 DOI: 10.1055/a-2178-9113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
INTRODUCTION Pioglitazone is an insulin sensitizer used for the treatment of type 2 diabetes mellitus (T2DM) by activating peroxisome proliferator-activated receptor gamma. This study aimed to investigate the effects of pioglitazone on white adipose tissue (WAT) and brown adipose tissue (BAT) in diet-induced obese (DIO) mice. METHODS C57BL/6 mice were treated with pioglitazone (30 mg/kg/day) for 4 weeks after a 16-week high-fat diet (HFD) challenge. Body weight gain, body fat mass, energy intake, and glucose homeostasis were measured during or after the treatment. Histopathology was observed by hematoxylin and eosin, oil red O, immunohistochemistry, and immunofluorescence staining. Expression of thermogenic and mitochondrial biogenesis-related genes was detected by quantitative real-time PCR and western blotting. RESULTS After 4-week pioglitazone treatment, the fasting blood glucose levels, glucose tolerance, and insulin sensitivity were significantly improved, but the body weight gain and fat mass were increased in DIO mice. Compared with the HFD group, pioglitazone did not significantly affect the weights of liver and WAT in both subcutaneous and epididymal regions. Unexpectedly, the weight of BAT was increased after pioglitazone treatment. Histological staining revealed that pioglitazone ameliorated hepatic steatosis, reduced the adipocyte size in WAT, but increased the adipocyte size in BAT. CONCLUSION Though pioglitazone can promote lipolysis, thermogenesis, and mitochondrial function in WAT, it leads to impaired thermogenesis, and mitochondrial dysfunction in BAT. In conclusion, pioglitazone could promote the browning of WAT but led to the whitening of BAT; the latter might be a new potential mechanism of pioglitazone-induced weight gain during T2DM treatment.
Collapse
Affiliation(s)
- Piaojian Yu
- Department of Endocrinology and Metabolism, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, Guangdong Province, China
- Guangzhou Municipal Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University
| | - Wei Wang
- Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, Guangdong Province, China
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Wanrong Guo
- Department of Endocrinology and Metabolism, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, Guangdong Province, China
| | - Lidan Cheng
- Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, Guangdong Province, China
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Zhiping Wan
- Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, Guangdong Province, China
- Department of Infectious Diseases, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Yanglei Cheng
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Yunfeng Shen
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
- Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang, Jiangxi Province, China
| | - Fen Xu
- Department of Endocrinology and Metabolism, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, Guangdong Province, China
- Guangzhou Municipal Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University
| |
Collapse
|
20
|
Wang Y, Li T, Yang C, Wu Y, Liu Y, Yang X. Eurotium cristatum from Fu Brick Tea Promotes Adipose Thermogenesis by Boosting Colonic Akkermansia muciniphila in High-Fat-Fed Obese Mice. Foods 2023; 12:3716. [PMID: 37893609 PMCID: PMC10606327 DOI: 10.3390/foods12203716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/23/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023] Open
Abstract
This study investigated the potential fat-thermogenic effects of Eurotium cristatum, and elucidated the underlying mechanisms. The 12-week administration of E. cristatum in HFD-fed obese mice reduced body weight and improved glucolipid metabolism disorders. The administration of E. cristatum also efficiently promoted thermogenesis by increasing the expression of UCP1 and PRDM16 in both interscapular brown adipose tissue (iBAT) and inguinal white adipose tissue (iWAT) of HFD-fed mice. Furthermore, E. cristatum shaped the gut microbiome by increasing the abundance of Parabacteroides and Akkermansia muciniphila, and also elevated the levels of cecal short-chain fatty acids, particularly propionate and acetate. Of note, A. muciniphila was highly negatively correlated with body weight gain (r = -0.801, p < 0.05) and the iWAT index (r = -0.977, p < 0.01), suggesting that A. muciniphila may play an important role in the thermogenic mobilization induced by E. cristatum. Continuous supplementation with A. muciniphila suppressed adipose accumulation, improved glucolipid metabolism, and enhanced the thermogenic activity of iWAT and iBAT. Collectively, our results propose that boosted A. muciniphila acts as a key microbe in tea-derived probiotic E. cristatum-mediated fat-thermogenic and anti-obesity effects.
Collapse
Affiliation(s)
| | | | | | | | | | - Xingbin Yang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China (T.L.)
| |
Collapse
|
21
|
Reed JN, Huang J, Li Y, Ma L, Banka D, Wabitsch M, Wang T, Ding W, Björkegren JLM, Civelek M. Systems genetics analysis of human body fat distribution genes identifies Wnt signaling and mitochondrial activity in adipocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.06.556534. [PMID: 37732278 PMCID: PMC10508754 DOI: 10.1101/2023.09.06.556534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
BACKGROUND Excess fat in the abdomen is a sexually dimorphic risk factor for cardio-metabolic disease. The relative storage between abdominal and lower-body subcutaneous adipose tissue depots is approximated by the waist-to-hip ratio adjusted for body mass index (WHRadjBMI). Genome-wide association studies (GWAS) identified 346 loci near 495 genes associated with WHRadjBMI. Most of these genes have unknown roles in fat distribution, but many are expressed and putatively act in adipose tissue. We aimed to identify novel sex- and depot-specific drivers of WHRadjBMI using a systems genetics approach. METHODS We used two independent cohorts of adipose tissue gene expression with 362 - 444 males and 147 - 219 females, primarily of European ancestry. We constructed sex- and depot- specific Bayesian networks to model the gene-gene interactions from 8,492 adipose tissue genes. Key driver analysis identified genes that, in silico and putatively in vitro, regulate many others, including the 495 WHRadjBMI GWAS genes. Key driver gene function was determined by perturbing their expression in human subcutaneous pre-adipocytes using lenti-virus or siRNA. RESULTS 51 - 119 key drivers in each network were replicated in both cohorts. We used single-cell expression data to select replicated key drivers expressed in adipocyte precursors and mature adipocytes, prioritized genes which have not been previously studied in adipose tissue, and used public human and mouse data to nominate 53 novel key driver genes (10 - 21 from each network) that may regulate fat distribution by altering adipocyte function. In other cell types, 23 of these genes are found in crucial adipocyte pathways: Wnt signaling or mitochondrial function. We selected seven genes whose expression is highly correlated with WHRadjBMI to further study their effects on adipogenesis/Wnt signaling (ANAPC2, PSME3, RSPO1, TYRO3) or mitochondrial function (C1QTNF3, MIGA1, PSME3, UBR1).Adipogenesis was inhibited in cells overexpressing ANAPC2 and RSPO1 compared to controls. RSPO1 results are consistent with a positive correlation between gene expression in the subcutaneous depot and WHRadjBMI, therefore lower relative storage in the subcutaneous depot. RSPO1 inhibited adipogenesis by increasing β-catenin activation and Wnt-related transcription, thus repressing PPARG and CEBPA. PSME3 overexpression led to more adipogenesis than controls. In differentiated adipocytes, MIGA1 and UBR1 downregulation led to mitochondrial dysfunction, with lower oxygen consumption than controls; MIGA1 knockdown also lowered UCP1 expression. SUMMARY ANAPC2, MIGA1, PSME3, RSPO1, and UBR1 affect adipocyte function and may drive body fat distribution.
Collapse
|
22
|
Pestel J, Blangero F, Watson J, Pirola L, Eljaafari A. Adipokines in obesity and metabolic-related-diseases. Biochimie 2023; 212:48-59. [PMID: 37068579 DOI: 10.1016/j.biochi.2023.04.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/03/2023] [Accepted: 04/13/2023] [Indexed: 04/19/2023]
Abstract
The discovery of leptin in the 1990s led to a reconsideration of adipose tissue (AT) as not only a fatty acid storage organ, but also a proper endocrine tissue. AT is indeed capable of secreting bioactive molecules called adipokines for white AT or batokines for brown/beige AT, which allow communication with numerous organs, especially brain, heart, liver, pancreas, and/or the vascular system. Adipokines exert pro or anti-inflammatory activities. An equilibrated balance between these two sets ensures homeostasis of numerous tissues and organs. During the development of obesity, AT remodelling leads to an alteration of its endocrine activity, with increased secretion of pro-inflammatory adipokines relative to the anti-inflammatory ones, as shown in the graphical abstract. Pro-inflammatory adipokines take part in the initiation of local and systemic inflammation during obesity and contribute to comorbidities associated to obesity, as detailed in the present review.
Collapse
Affiliation(s)
- Julien Pestel
- INSERM U1060-CarMeN /Université Claude Bernard Lyon 1/INRAE/ Université Claude Bernard Lyon 1: Laboratoire CarMeN, 165 chemin du Grand Revoyet, CHLS, 69310 Pierre Bénite, France
| | - Ferdinand Blangero
- INSERM U1060-CarMeN /Université Claude Bernard Lyon 1/INRAE/ Université Claude Bernard Lyon 1: Laboratoire CarMeN, 165 chemin du Grand Revoyet, CHLS, 69310 Pierre Bénite, France
| | - Julia Watson
- INSERM U1060-CarMeN /Université Claude Bernard Lyon 1/INRAE/ Université Claude Bernard Lyon 1: Laboratoire CarMeN, 165 chemin du Grand Revoyet, CHLS, 69310 Pierre Bénite, France
| | - Luciano Pirola
- INSERM U1060-CarMeN /Université Claude Bernard Lyon 1/INRAE/ Université Claude Bernard Lyon 1: Laboratoire CarMeN, 165 chemin du Grand Revoyet, CHLS, 69310 Pierre Bénite, France
| | - Assia Eljaafari
- INSERM U1060-CarMeN /Université Claude Bernard Lyon 1/INRAE/ Université Claude Bernard Lyon 1: Laboratoire CarMeN, 165 chemin du Grand Revoyet, CHLS, 69310 Pierre Bénite, France; Hospices Civils de Lyon: 2 quai des Célestins, 69001 Lyon, France.
| |
Collapse
|
23
|
Han SY, Kim J, Kim BK, Whang WK, Min H. Effects of caffeoylquinic acid analogs derived from aerial parts of Artemisia iwayomogi on adipogenesis. Food Sci Biotechnol 2023; 32:1215-1223. [PMID: 37362808 PMCID: PMC10289966 DOI: 10.1007/s10068-023-01262-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/22/2022] [Accepted: 01/10/2023] [Indexed: 02/09/2023] Open
Abstract
Artemisia iwayomogi (AI) is a perennial herb found in Korea. Its ground parts are dried and used in food and traditional medicine for treating hepatitis, inflammation, cholelithiasis, and jaundice. In this study, the anti-obesity effects of single compounds isolated from AI extracts on adipose tissue were investigated. Results demonstrated that caffeoylquinic acid analogs strongly inhibited adipocyte differentiation from 3T3-L1 preadipocytes and reduced neutral lipids in differentiated adipocytes. Accordingly, lipid accumulation in adipocytes decreased, and lipid droplets became granulated. Caffeoylquinic acid analogs suppressed the expression of adipocyte differentiation marker genes, namely, Cebpa, Lep, and Fabp4, but it induced the expression of Ucp1, Ppargc1a, and Fgf21, which are browning biomarkers. Therefore, caffeoylquinic acid analogs from AI inhibited preadipocyte differentiation and induced adipose tissue browning, suggesting that these compounds could be promising therapeutic agents for obesity.
Collapse
Affiliation(s)
- Su-Young Han
- College of Pharmacy, Chung-Ang University, 84 Heukseokro, Dongjakgu, Seoul, 06974 Korea
| | - Jisu Kim
- College of Pharmacy, Chung-Ang University, 84 Heukseokro, Dongjakgu, Seoul, 06974 Korea
| | - Bo Kyeong Kim
- College of Pharmacy, Chung-Ang University, 84 Heukseokro, Dongjakgu, Seoul, 06974 Korea
| | - Wan Kyunn Whang
- College of Pharmacy, Chung-Ang University, 84 Heukseokro, Dongjakgu, Seoul, 06974 Korea
| | - Hyeyoung Min
- College of Pharmacy, Chung-Ang University, 84 Heukseokro, Dongjakgu, Seoul, 06974 Korea
| |
Collapse
|
24
|
Jones IC, Carnagarin R, Armstrong J, Lin DPL, Baxter-Holland M, Elahy M, Dass CR. Pigment Epithelium-Derived Factor: Inhibition of Phosphorylation of Insulin Receptor (IR)/IR Substrate (IRS), Osteogeneration from Adipocytes, and Increased Levels Due to Doxorubicin Exposure. Pharmaceutics 2023; 15:1960. [PMID: 37514146 PMCID: PMC10384968 DOI: 10.3390/pharmaceutics15071960] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
OBJECTIVES Pigment epithelium-derived factor (PEDF) has been recently linked to insulin resistance and is capable of differentiating myocytes to bone. We examined in more detail the intricate signalling of the insulin pathway influenced by PEDF in skeletal myocytes. We tested whether this serpin is also capable of generating de novo bone from adipocytes in vitro and in vivo, and how the anticancer drug doxorubicin links with PEDF and cellular metabolism. METHODS AND KEY FINDINGS We demonstrate that PEDF can inhibit phosphorylation of insulin receptor (IR) and insulin receptor substrate (IRS) in skeletal myocytes. PEDF constitutively activates p42/44 MAPK/Erk, but paradoxically does not affect mitogenic signalling. PEDF did not perturb either mitochondrial activity or proliferation in cells representing mesenchymal stem cells, cardiomyocytes, and skeletal myocytes and adipocytes. PEDF induced transdifferentiation of adipocytes to osteoblasts, promoting bone formation in cultured adipocytes in vitro and gelfoam fatpad implants in vivo. Bone formation in white adipose tissue (WAT) was better than in brown adipose tissue (BAT). The frontline anticancer drug doxorubicin increased levels of PEDF in a human breast cancer cell line, mirroring the in vivo finding where cardiac muscle tissue was stained increasingly for PEDF as the dose of doxorubicin increased in mice. PEDF also increased levels of reactive oxygen species (ROS) and glutathione (GSH) in the breast cancer cell line. CONCLUSIONS PEDF may be used to regenerate bone from adipose tissue in cases of trauma such as fractures or bone cancers. The increased presence of PEDF in doxorubicin-treated tumour cells need further exploration, and could be useful therapeutically in future. The safety of PEDF administration in vivo was further demonstrated in this study.
Collapse
Affiliation(s)
- Isobel C Jones
- Curtin Medical School, Curtin University, Bentley, WA 6102, Australia
- School of Medicine, University of Notre Dame, Fremantle, WA 6160, Australia
| | - Revathy Carnagarin
- Dobney Hypertension Centre, School of Medicine-Royal Perth Hospital Unit, Faculty of Medicine, Dentistry & Health Sciences, University of Western Australia, Perth, WA 6009, Australia
- School of Pharmacy, Curtin University, Bentley, WA 6102, Australia
| | - Jo Armstrong
- School of Pharmacy, Curtin University, Bentley, WA 6102, Australia
| | - Daphne P L Lin
- School of Pharmacy, Curtin University, Bentley, WA 6102, Australia
| | - Mia Baxter-Holland
- School of Pharmacy and Biomedical Sciences, Curtin University, Bentley, WA 6102, Australia
| | - Mina Elahy
- School of Pharmacy and Biomedical Sciences, Curtin University, Bentley, WA 6102, Australia
- School of Medical Sciences, University of New South Wales, Kensington, NSW 2052, Australia
| | - Crispin R Dass
- Curtin Medical School, Curtin University, Bentley, WA 6102, Australia
- School of Pharmacy, Curtin University, Bentley, WA 6102, Australia
- School of Pharmacy and Biomedical Sciences, Curtin University, Bentley, WA 6102, Australia
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia
| |
Collapse
|
25
|
Arwood ML, Sun IH, Patel CH, Sun IM, Oh MH, Bettencourt IA, Claiborne MD, Chan-Li Y, Zhao L, Waickman AT, Mavrothalassitis O, Wen J, Aja S, Powell JD. Serendipitous Discovery of T Cell-Produced KLK1b22 as a Regulator of Systemic Metabolism. Immunohorizons 2023; 7:493-507. [PMID: 37358498 PMCID: PMC10580127 DOI: 10.4049/immunohorizons.2300016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/05/2023] [Indexed: 06/27/2023] Open
Abstract
In order to study mechanistic/mammalian target of rapamycin's role in T cell differentiation, we generated mice in which Rheb is selectively deleted in T cells (T-Rheb-/- C57BL/6J background). During these studies, we noted that T-Rheb-/- mice were consistently heavier but had improved glucose tolerance and insulin sensitivity as well as a marked increase in beige fat. Microarray analysis of Rheb-/- T cells revealed a marked increase in expression of kallikrein 1-related peptidase b22 (Klk1b22). Overexpression of KLK1b22 in vitro enhanced insulin receptor signaling, and systemic overexpression of KLK1b22 in C57BL/6J mice also enhances glucose tolerance. Although KLK1B22 expression was markedly elevated in the T-Rheb-/- T cells, we never observed any expression in wild-type T cells. Interestingly, in querying the mouse Immunologic Genome Project, we found that Klk1b22 expression was also increased in wild-type 129S1/SVLMJ and C3HEJ mice. Indeed, both strains of mice demonstrate exceptionally improved glucose tolerance. This prompted us to employ CRISPR-mediated knockout of KLK1b22 in 129S1/SVLMJ mice, which in fact led to reduced glucose tolerance. Overall, our studies reveal (to our knowledge) a novel role for KLK1b22 in regulating systemic metabolism and demonstrate the ability of T cell-derived KLK1b22 to regulate systemic metabolism. Notably, however, further studies have revealed that this is a serendipitous finding unrelated to Rheb.
Collapse
Affiliation(s)
- Matthew L. Arwood
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney-Kimmel Comprehensive Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Im-Hong Sun
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney-Kimmel Comprehensive Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Chirag H. Patel
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney-Kimmel Comprehensive Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Im-Meng Sun
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney-Kimmel Comprehensive Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Min-Hee Oh
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney-Kimmel Comprehensive Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Ian A. Bettencourt
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney-Kimmel Comprehensive Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Michael D. Claiborne
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney-Kimmel Comprehensive Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Yee Chan-Li
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Liang Zhao
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney-Kimmel Comprehensive Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Adam T. Waickman
- State University of New York Upstate Medical University, Syracuse, NY
| | - Orestes Mavrothalassitis
- Department of Anesthesia, University of California, San Francisco School of Medicine, San Francisco, CA
| | - Jiayu Wen
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney-Kimmel Comprehensive Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Susan Aja
- Center for Metabolism and Obesity Research, Johns Hopkins Medicine, Baltimore, MD
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Jonathan D. Powell
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney-Kimmel Comprehensive Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
26
|
Xu J, Zhang LW, Feng H, Tang Y, Fu SQ, Liu XM, Zhu XY. The Chinese herbal medicine Dai-Zong-Fang promotes browning of white adipocytes in vivo and in vitro by activating PKA pathway to ameliorate obesity. Front Pharmacol 2023; 14:1176443. [PMID: 37251344 PMCID: PMC10211343 DOI: 10.3389/fphar.2023.1176443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/28/2023] [Indexed: 05/31/2023] Open
Abstract
Introduction: The global prevalence of obesity is rising rapidly. Conversion of white adipose tissue (WAT) into beige adipose tissue with heat-consuming characteristics, i.e., WAT browning, effectively inhibits obesity. Dai-Zong-Fang (DZF), a traditional Chinese medicine formula, has long been used to treat metabolic syndrome and obesity. This study aimed to explore the pharmacological mechanism of DZF against obesity. Methods: In vivo, C57BL/6J mice were fed high-fat diets to establish the diet-induced obese (DIO) model. DZF (0.40 g/kg and 0.20 g/kg) and metformin (0.15 g/kg, positive control drug) were used as intervention drugs for six weeks, respectively. The effects of DZF on body size, blood glucose and lipid level, structure and morphology of adipocytes and browning of inguinal WAT (iWAT) in DIO mice were observed. In vitro, mature 3T3-L1 adipocytes were used as the model. Concentrations of DZF (0.8 mg/mL and 0.4 mg/mL) were selected according to the Cell Counting Kit-8 (CCK8). After 2d intervention, lipid droplet morphology was observed by BODIPY493/503 staining, and mitochondria number was observed by mito-tracker Green staining. H-89 dihydrochloride, a PKA inhibitor, was used to observe the change in browning markers' expression. The expression levels of browning markers UCP1 and PGC-1α and key molecules of PKA pathway were detected in vivo and in vitro. Results: In vivo, compared with vehicle control group, 0.40 g/kg DZF significantly reduced obesity in DIO mice from body weight, abdomen circumference, Lee's index, and WAT/body weight (p < 0.01 or p < 0.001). 0.40 g/kg DZF also significantly reduced fasting blood glucose (FBG), serum triglycerides (TG), total cholesterol (TC), and low-density lipoprotein cholesterol (LDL-C) (p < 0.01 or p < 0.001). The iWAT's morphology and mitochondria were browning after DZF intervention. In HE-staining, the lipid droplets became smaller, and the number of mitochondria increased. The mitochondrial structure was remodeled under the electron microscope. The expression of UCP1, PGC-1α and PKA was elevated in iWAT detected by RT-qPCR (p < 0.05 or p < 0.001). In vitro, compared with the control group, 0.8 mg/mL DZF intervention significantly increased the number of mitochondria and expression of UCP1, PGC-1α, PKA, and pCREB (p < 0.05 or p < 0.01). In contrast, UCP1 and PGC-1α expression were significantly reversed after adding PKA inhibitor H-89 dihydrochloride. Conclusion: DZF can promote UCP1 expression by activating the PKA pathway, thereby promoting browning of WAT, attenuating obesity, and reducing obesity-related glucose and lipid metabolism abnormalities, indicating that DZF has the potential to be selected as an anti-obesity drug to benefit obese patients.
Collapse
Affiliation(s)
- Jing Xu
- Department of Laboratory of Diabetes, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Li-Wei Zhang
- Department of Laboratory of Diabetes, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hui Feng
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yang Tang
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Shou-Qiang Fu
- Department of Laboratory of Diabetes, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xi-Ming Liu
- Department of Laboratory of Diabetes, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiao-Yun Zhu
- Department of Laboratory of Diabetes, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
27
|
Park SJ, Sharma A, Lee HJ. Postbiotics against Obesity: Perception and Overview Based on Pre-Clinical and Clinical Studies. Int J Mol Sci 2023; 24:6414. [PMID: 37047387 PMCID: PMC10095054 DOI: 10.3390/ijms24076414] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/13/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Overweight and obesity are significant global public health concerns that are increasing in prevalence at an alarming rate. Numerous studies have demonstrated the benefits of probiotics against obesity. Postbiotics are the next generation of probiotics that include bacteria-free extracts and nonviable microorganisms that may be advantageous to the host and are being increasingly preferred over regular probiotics. However, the impact of postbiotics on obesity has not been thoroughly investigated. Therefore, the goal of this review is to gather in-depth data on the ability of postbiotics to combat obesity. Postbiotics have been reported to have significant potential in alleviating obesity. This review comprehensively discusses the anti-obesity effects of postbiotics in cellular, animal, and clinical studies. Postbiotics exert anti-obesity effects via multiple mechanisms, with the major mechanisms including increased energy expenditure, reduced adipogenesis and adipocyte differentiation, suppression of food intake, inhibition of lipid absorption, regulation of lipid metabolism, and regulation of gut dysbiosis. Future research should include further in-depth studies on strain identification, scale-up of postbiotics, identification of underlying mechanisms, and well-defined clinical studies. Postbiotics could be a promising dietary intervention for the prevention and management of obesity.
Collapse
Affiliation(s)
- Seon-Joo Park
- Department of Food and Nutrition, College of Bionanotechnology, Gachon University, Seongnam-si 13120, Republic of Korea;
- Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam-si 13120, Republic of Korea
| | - Anshul Sharma
- Department of Food and Nutrition, College of Bionanotechnology, Gachon University, Seongnam-si 13120, Republic of Korea;
| | - Hae-Jeung Lee
- Department of Food and Nutrition, College of Bionanotechnology, Gachon University, Seongnam-si 13120, Republic of Korea;
- Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam-si 13120, Republic of Korea
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea
| |
Collapse
|
28
|
Gao S, Lu B, Zhou R, Gao W. Research progress of mechanisms of fat necrosis after autologous fat grafting: A review. Medicine (Baltimore) 2023; 102:e33220. [PMID: 36897702 PMCID: PMC9997804 DOI: 10.1097/md.0000000000033220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 02/16/2023] [Indexed: 03/11/2023] Open
Abstract
Currently, autologous fat grafting is the common surgery employed in the department of plastic and cosmetic surgery. Complications after fat grafting (such as fat necrosis, calcification, and fat embolism) are the difficulties and hotspots of the current research. Fat necrosis is one of the most common complications after fat grafting, which directly affects the survival rate and surgical effect. In recent years, researchers in various countries have achieved great results on the mechanism of fat necrosis through further clinical and basic studies. We summarize recent research progress on fat necrosis in order to provide theoretical basis for diminishing it.
Collapse
Affiliation(s)
- Shenzhen Gao
- Department of Plastic and Cosmetic Surgery, The Affiliated Friendship Plastic Surgery Hospital of Nanjing Medical University, Nanjing, China
| | - Baixue Lu
- Department of Plastic and Cosmetic Surgery, The Affiliated Friendship Plastic Surgery Hospital of Nanjing Medical University, Nanjing, China
| | - Rong Zhou
- Department of Plastic and Cosmetic Surgery, The Affiliated Friendship Plastic Surgery Hospital of Nanjing Medical University, Nanjing, China
| | - Weicheng Gao
- Department of Plastic and Cosmetic Surgery, The Affiliated Friendship Plastic Surgery Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
29
|
Unveiling the Role of the Proton Gateway, Uncoupling Proteins (UCPs), in Cancer Cachexia. Cancers (Basel) 2023; 15:cancers15051407. [PMID: 36900198 PMCID: PMC10000250 DOI: 10.3390/cancers15051407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/30/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Uncoupling proteins (UCPs) are identified as carriers of proton ions between the mitochondrial inner membrane and the mitochondrial matrix. ATP is mainly generated through oxidative phosphorylation in mitochondria. The proton gradient is generated across the inner mitochondrial membrane and the mitochondrial matrix, which facilitates a smooth transfer of electrons across ETC complexes. Until now, it was thought that the role of UCPs was to break the electron transport chain and thereby inhibit the synthesis of ATP. UCPs allow protons to pass from the inner mitochondrial membrane to the mitochondrial matrix and decrease the proton gradient across the membrane, which results in decreased ATP synthesis and increased production of heat by mitochondria. In recent years, the role of UCPs in other physiological processes has been deciphered. In this review, we first highlighted the different types of UCPs and their precise location across the body. Second, we summarized the role of UCPs in different diseases, mainly metabolic disorders such as obesity and diabetes, cardiovascular complications, cancer, wasting syndrome, neurodegenerative diseases, and kidney complications. Based on our findings, we conclude that UCPs play a major role in maintaining energy homeostasis, mitochondrial functions, ROS production, and apoptosis. Finally, our findings reveal that mitochondrial uncoupling by UCPs may treat many diseases, and extensive clinical studies are required to meet the unmet need of certain diseases.
Collapse
|
30
|
Fatty Acids as Potent Modulators of Autophagy Activity in White Adipose Tissue. Biomolecules 2023; 13:biom13020255. [PMID: 36830623 PMCID: PMC9953325 DOI: 10.3390/biom13020255] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
A high-fat diet is one of the causative factors of obesity. The dietary profile of fatty acids is also an important variable in developing obesity, as saturated fatty acids are more obesogenic than monounsaturated and polyunsaturated fatty acids. Overweight and obesity are inseparably connected with the excess of adipose tissue in the body, characterized by hypertrophy and hyperplasia of fat cells, which increases the risk of developing metabolic syndrome. Changes observed within hypertrophic adipocytes result in elevated oxidative stress, unfolded protein accumulation, and increased endoplasmic reticulum (ER) stress. One of the processes involved in preservation of cellular homeostasis is autophagy, which is defined as an intracellular lysosome-dependent degradation system that serves to recycle available macromolecules and eliminate damaged organelles. In obesity, activation of autophagy is increased and the process appears to be regulated by different types of dietary fatty acids. This review describes the role of autophagy in adipose tissue and summarizes the current understanding of the effects of saturated and unsaturated fatty acids in autophagy modulation in adipocytes.
Collapse
|
31
|
Zhang K, Li T, Li Q, Nie C, Sun Y, Xue L, Wang Y, Fan M, Qian H, Li Y, Wang L. 5-Heptadecylresorcinol Regulates the Metabolism of Thermogenic Fat and Improves the Thermogenic Capacity of Aging Mice via a Sirtuin 3-Adenosine Monophosphate-Activated Protein Kinase Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:557-568. [PMID: 36535764 DOI: 10.1021/acs.jafc.2c07073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
5-Heptadecylresorcinol (AR-C17), a well-known biomarker for whole grain rye consumption, is a primary homolog of alkylresorcinols. In this study, the effects of AR-C17 on the thermogenesis of brown adipocytes and 3T3-L1 adipocytes were investigated. The results showed that AR-C17 increased sirtuin 3 (Sirt3) expression, and the expressions of specific thermogenic genes in adipocytes were increased. Furthermore, AR-C17 increased the mitochondrial functions during the thermogenic activation of adipocytes. In in vivo study, AR-C17 increased the cold tolerance and thermogenic capacity of adipose tissues in aging mice. In addition, Sirt3 activity was required for AR-C17-induced thermogenesis. Meanwhile, AR-C17 increased adenosine monophosphate-activated protein kinase (AMPK) phosphorylation, and AMPK was involved in the regulation of AR-C17 on thermogenic adipocytes. Mechanically, AR-C17 upregulated a Sirt3-AMPK positive-feedback loop in adipocytes and further increased the expression of uncoupling protein 1 to activate thermogenesis. This study indicated that AR-C17 could be a promising thermogenic activator of adipocytes to alleviate obesity and aging-associated metabolic diseases.
Collapse
Affiliation(s)
- Kuiliang Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Tingting Li
- Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Qiang Li
- China National Institute of Standardization, Beijing 100015, China
| | - Chenzhipeng Nie
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yujie Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Lamei Xue
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yu Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Mingcong Fan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Haifeng Qian
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yan Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Li Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
32
|
Cai Z, He B. Adipose tissue aging: An update on mechanisms and therapeutic strategies. Metabolism 2023; 138:155328. [PMID: 36202221 DOI: 10.1016/j.metabol.2022.155328] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/20/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022]
Abstract
Aging is a complex biological process characterized by a progressive loss of physiological integrity and increased vulnerability to age-related diseases. Adipose tissue plays central roles in the maintenance of whole-body metabolism homeostasis and has recently attracted significant attention as a biological driver of aging and age-related diseases. Here, we review the most recent advances in our understanding of the molecular and cellular mechanisms underlying age-related decline in adipose tissue function. In particular, we focus on the complex inter-relationship between metabolism, immune, and sympathetic nervous system within adipose tissue during aging. Moreover, we discuss the rejuvenation strategies to delay aging and extend lifespan, including senescent cell ablation (senolytics), dietary intervention, physical exercise, and heterochronic parabiosis. Understanding the pathological mechanisms that underlie adipose tissue aging will be critical for the development of new intervention strategies to slow or reverse aging and age-related diseases.
Collapse
Affiliation(s)
- Zhaohua Cai
- Heart Center, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai 200030, China
| | - Ben He
- Heart Center, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai 200030, China.
| |
Collapse
|
33
|
Lu G, Hu R, Tao T, Hu M, Dong Z, Wang C. Regulatory role of atrial natriuretic peptide in brown adipose tissue: A narrative review. Obes Rev 2023; 24:e13522. [PMID: 36336901 DOI: 10.1111/obr.13522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 09/15/2022] [Accepted: 10/17/2022] [Indexed: 11/09/2022]
Abstract
Atrial natriuretic peptide (ANP) has been considered to exert an essential role as a cardiac secretory hormone in the regulation of hemodynamic homeostasis. As the research progresses, the role of ANP in the crosstalk between heart and lipid metabolism has become an interesting topic that is attracting the interest of researchers. The regulation of ANP in lipid metabolism shows favorable effects, particularly the activation of brown adipose tissue (BAT). The complex regulatory network of ANP on BAT has not been fully outlined. This narrative review critically evaluated the existing literature on the regulatory effects of ANP on BAT. In general, we have summarized the expression of ANP and its receptors in various human tissues, analyzed the progress of research on the relationship between the ANP and BAT, and described several potential pathways of ANP to BAT. Exogenous ANP, natriuretic peptide receptor C (NPRC) deficiency, cold exposure, bariatric surgery, and cardiac or renal insufficiency could all contribute to BAT expression by increasing circulating ANP levels.
Collapse
Affiliation(s)
- Guanhua Lu
- Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China.,Guangdong-Hong Kong-Macao Joint University Laboratory of Metabolic and Molecular Medicine, The University of Hong Kong and Jinan University, Guangzhou, Guangdong Province, China
| | - Ruixiang Hu
- Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China.,Guangdong-Hong Kong-Macao Joint University Laboratory of Metabolic and Molecular Medicine, The University of Hong Kong and Jinan University, Guangzhou, Guangdong Province, China
| | - Tian Tao
- Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China.,Guangdong-Hong Kong-Macao Joint University Laboratory of Metabolic and Molecular Medicine, The University of Hong Kong and Jinan University, Guangzhou, Guangdong Province, China
| | - Min Hu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
| | - Zhiyong Dong
- Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China.,Guangdong-Hong Kong-Macao Joint University Laboratory of Metabolic and Molecular Medicine, The University of Hong Kong and Jinan University, Guangzhou, Guangdong Province, China
| | - Cunchuan Wang
- Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China.,Guangdong-Hong Kong-Macao Joint University Laboratory of Metabolic and Molecular Medicine, The University of Hong Kong and Jinan University, Guangzhou, Guangdong Province, China
| |
Collapse
|
34
|
Ruze R, Liu T, Zou X, Song J, Chen Y, Xu R, Yin X, Xu Q. Obesity and type 2 diabetes mellitus: connections in epidemiology, pathogenesis, and treatments. Front Endocrinol (Lausanne) 2023; 14:1161521. [PMID: 37152942 PMCID: PMC10161731 DOI: 10.3389/fendo.2023.1161521] [Citation(s) in RCA: 154] [Impact Index Per Article: 77.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/06/2023] [Indexed: 05/09/2023] Open
Abstract
The prevalence of obesity and diabetes mellitus (DM) has been consistently increasing worldwide. Sharing powerful genetic and environmental features in their pathogenesis, obesity amplifies the impact of genetic susceptibility and environmental factors on DM. The ectopic expansion of adipose tissue and excessive accumulation of certain nutrients and metabolites sabotage the metabolic balance via insulin resistance, dysfunctional autophagy, and microbiome-gut-brain axis, further exacerbating the dysregulation of immunometabolism through low-grade systemic inflammation, leading to an accelerated loss of functional β-cells and gradual elevation of blood glucose. Given these intricate connections, most available treatments of obesity and type 2 DM (T2DM) have a mutual effect on each other. For example, anti-obesity drugs can be anti-diabetic to some extent, and some anti-diabetic medicines, in contrast, have been shown to increase body weight, such as insulin. Meanwhile, surgical procedures, especially bariatric surgery, are more effective for both obesity and T2DM. Besides guaranteeing the availability and accessibility of all the available diagnostic and therapeutic tools, more clinical and experimental investigations on the pathogenesis of these two diseases are warranted to improve the efficacy and safety of the available and newly developed treatments.
Collapse
Affiliation(s)
- Rexiati Ruze
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tiantong Liu
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, China
- School of Medicine, Tsinghua University, Beijing, China
| | - Xi Zou
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianlu Song
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuan Chen
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ruiyuan Xu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinpeng Yin
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qiang Xu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, China
- *Correspondence: Qiang Xu,
| |
Collapse
|
35
|
Ali U, Wabitsch M, Tews D, Colitti M. Effects of allicin on human Simpson-Golabi-Behmel syndrome cells in mediating browning phenotype. Front Endocrinol (Lausanne) 2023; 14:1141303. [PMID: 36936145 PMCID: PMC10014806 DOI: 10.3389/fendo.2023.1141303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/17/2023] [Indexed: 03/05/2023] Open
Abstract
INTRODUCTION Obesity is a major health problem because it is associated with increased risk of cardiovascular disease, diabetes, hypertension, and some cancers. Strategies to prevent or reduce obesity focus mainly on the possible effects of natural compounds that can induce a phenotype of browning adipocytes capable of releasing energy in the form of heat. Allicin, a bioactive component of garlic with numerous pharmacological functions, is known to stimulate energy metabolism. METHODS In the present study, the effects of allicin on human Simpson-Golabi-Behmel Syndrome (SGBS) cells were investigated by quantifying the dynamics of lipid droplets (LDs) and mitochondria, as well as transcriptomic changes after six days of differentiation. RESULTS Allicin significantly promoted the reduction in the surface area and size of LDs, leading to the formation of multilocular adipocytes, which was confirmed by the upregulation of genes related to lipolysis. The increase in the number and decrease in the mean aspect ratio of mitochondria in allicin-treated cells indicate a shift in mitochondrial dynamics toward fission. The structural results are confirmed by transcriptomic analysis showing a significant arrangement of gene expression associated with beige adipocytes, in particular increased expression of T-box transcription factor 1 (TBX1), uncoupling protein 1 (UCP1), PPARG coactivator 1 alpha (PPARGC1A), peroxisome proliferator-activated receptor alpha (PPARA), and OXPHOS-related genes. The most promising targets are nuclear genes such as retinoid X receptor alpha (RXRA), retinoid X receptor gamma (RXRG), nuclear receptor subfamily 1 group H member 3 (NR1H3), nuclear receptor subfamily 1 group H member 4 (NR1H4), PPARA, and oestrogen receptor 1 (ESR1). DISCUSSION Transcriptomic data and the network pharmacology-based approach revealed that genes and potential targets of allicin are involved in ligand-activated transcription factor activity, intracellular receptor signalling, regulation of cold-induced thermogenesis, and positive regulation of lipid metabolism. The present study highlights the potential role of allicin in triggering browning in human SGBS cells by affecting the LD dynamics, mitochondrial morphology, and expression of brown marker genes. Understanding the potential targets through which allicin promotes this effect may reveal the underlying signalling pathways and support these findings.
Collapse
Affiliation(s)
- Uzair Ali
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Martin Wabitsch
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Daniel Tews
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Monica Colitti
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
- *Correspondence: Monica Colitti,
| |
Collapse
|
36
|
Nikolic M, Novakovic J, Ramenskaya G, Kokorekin V, Jeremic N, Jakovljevic V. Cooling down with Entresto. Can sacubitril/valsartan combination enhance browning more than coldness? Diabetol Metab Syndr 2022; 14:175. [PMID: 36419097 PMCID: PMC9686067 DOI: 10.1186/s13098-022-00944-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/04/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND It is a growing importance to induce a new treatment approach to encourage weight loss but also to improve maintenance of lost weight. It has been shown that promotion of brown adipose tissue (BAT) function or acquisition of BAT characteristics in white adipose tissue (terms referred as "browning") can be protective against obesity. MAIN TEXT Amongst numerous established environmental influences on BAT activity, cold exposure is the best interested technique due to its not only effects on of BAT depots in proliferation process but also de novo differentiation of precursor cells via β-adrenergic receptor activation. A novel combination drug, sacubitril/valsartan, has been shown to be more efficient in reducing cardiovascular events and heart failure readmission compared to conventional therapy. Also, this combination of drugs increases the postprandial lipid oxidation contributing to energy expenditure, promotes lipolysis in adipocytes and reduces body weight. To date, there is no research examining potential of combined sacubitril/valsartan use to promote browning or mechanisms in the basis of this thermogenic process. CONCLUSION Due to the pronounced effects of cold and sacubitril/valsartan treatment on function and metabolism of BAT, the primary goal of further research should focused on investigation of the synergistic effects of the sacubitril/valsartan treatment at low temperature environmental conditions.
Collapse
Affiliation(s)
- Marina Nikolic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Jovana Novakovic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | | | | | - Nevena Jeremic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia.
- First Moscow State Medical University IM Sechenov, Moscow, Russia.
| | - Vladimir Jakovljevic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
- Department of Human Pathology, First Moscow State Medical University IM Sechenov, Moscow, Russia
| |
Collapse
|
37
|
Liang J, Jia Y, Yu H, Yan H, Shen Q, Xu Y, Li Y, Yang M. 5-Aza-2'-Deoxycytidine Regulates White Adipocyte Browning by Modulating miRNA-133a/Prdm16. Metabolites 2022; 12:1131. [PMID: 36422269 PMCID: PMC9695087 DOI: 10.3390/metabo12111131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/03/2022] [Accepted: 11/15/2022] [Indexed: 01/27/2024] Open
Abstract
The conversion of white adipocytes into brown adipocytes improves their thermogenesis and promotes energy consumption. Epigenetic modifications affect related genes and interfere with energy metabolism, and these are the basis of new ideas for obesity treatment. Neonatal mice show high levels of DNA hypermethylation in white adipose tissue early in life and low levels in brown adipose tissue. Thus, we considered that the regulation of DNA methylation may play a role in the conversion of white adipose to brown. We observed growth indicators, lipid droplets of adipocytes, brown fat specific protein, and miRNA-133a after treatment with 5-Aza-2'-deoxycytidine. The expression of Prdm16 and Ucp-1 in adipocytes was detected after inhibiting miRNA-133a. The results showed a decrease in total lipid droplet formation and an increased expression of the brown fat specific proteins Prdm16 and Ucp-1. This study indicated that 5-Aza-2'-deoxycytidine promotes white adipocyte browning following DNA demethylation, possibly via the modulation of miR-133a and Prdm16.
Collapse
Affiliation(s)
- Jia Liang
- Department of Pharmacology, Binzhou Medical University, Yantai 264003, China
| | - Ying Jia
- Department of Pharmacology, Binzhou Medical University, Yantai 264003, China
| | - Huixin Yu
- Department of Pharmacology, Binzhou Medical University, Yantai 264003, China
| | - Haijing Yan
- Department of Pharmacology, Binzhou Medical University, Yantai 264003, China
| | - Qingyu Shen
- Department of Pharmacology, Binzhou Medical University, Yantai 264003, China
| | - Yong Xu
- Department of Pharmacology, Binzhou Medical University, Yantai 264003, China
| | - Yana Li
- Department of Pathophysiology, Binzhou Medical University, Yantai 264003, China
| | - Meizi Yang
- Department of Pharmacology, Binzhou Medical University, Yantai 264003, China
| |
Collapse
|
38
|
Li C, Chen Q, Liu Y, Sun Z, Shen Z, Li S, Cha D, Sun C. Methionine enkephalin promotes white fat browning through cAMP/PKA pathway. Life Sci 2022; 312:121189. [PMID: 36396109 DOI: 10.1016/j.lfs.2022.121189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/01/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022]
Abstract
AIMS Obesity and its related metabolic disorders, including insulin resistance and fatty liver, have become a serious global public health problem. Previous studies have shown Methionine Enkephalin (MetEnk) has the potential on adipocyte browning, however, its effects on the potential mechanisms of its regulation in browning as well as its improvement in energy metabolic homeostasis remain to be deciphered. MAIN METHODS C57BL/6J male mice were fed with high-fat diet (HFD) to induce obesity model, and MetEnk was injected subcutaneously to detect changes in the metabolic status of mice, adipocytes and HepG2 cells were also treated with MetEnk, and transcriptomic, metabolomic were used to detect the changes of lipid metabolism, mitochondrial function, inflammation and other related factors. KEY FINDINGS We found that MetEnk effectively protected against obesity weight gain in HFD-induced C57BL/6J mice, significantly improved glucose tolerance and insulin sensitivity, reduced the expression levels of interleukin 6 (IL-6), promoted white fat browning, moreover, using a combination of transcriptomic, metabolomic and inhibitors, it was found that MetEnk improved mitochondrial function, promoted thermogenesis and lipolysis by activating cAMP/PKA pathway in adipocytes, further analysis found that MetEnk also promoted lipolysis and alleviated inflammation through AMP-activated protein kinase (AMPK) pathway in mice liver and HepG2 cells. SIGNIFICANCE Our study provides profound evidence for the role of MetEnk in improving lipid metabolism disorders. This study provides a mechanical foundation for investigating the potential of MetEnk to improve obesity and its associated metabolic disorders.
Collapse
Affiliation(s)
- Chaowei Li
- Northwest Agriculture and Forestry University College of Animal Science and Technology, Yangling, Shaanxi 712100, China
| | - Qi Chen
- Northwest Agriculture and Forestry University College of Animal Science and Technology, Yangling, Shaanxi 712100, China
| | - Yanrong Liu
- Northwest Agriculture and Forestry University College of Animal Science and Technology, Yangling, Shaanxi 712100, China
| | - Zhuwen Sun
- Northwest Agriculture and Forestry University College of Animal Science and Technology, Yangling, Shaanxi 712100, China
| | - Zhentong Shen
- Northwest Agriculture and Forestry University College of Animal Science and Technology, Yangling, Shaanxi 712100, China
| | - Shuhan Li
- Northwest Agriculture and Forestry University College of Animal Science and Technology, Yangling, Shaanxi 712100, China
| | - Dingrui Cha
- Northwest Agriculture and Forestry University College of Animal Science and Technology, Yangling, Shaanxi 712100, China
| | - Chao Sun
- Northwest Agriculture and Forestry University College of Animal Science and Technology, Yangling, Shaanxi 712100, China.
| |
Collapse
|
39
|
Du H, Shi L, Wang Q, Yan T, Wang Y, Zhang X, Yang C, Zhao Y, Yang X. Fu Brick Tea Polysaccharides Prevent Obesity via Gut Microbiota-Controlled Promotion of Adipocyte Browning and Thermogenesis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:13893-13903. [PMID: 36264038 DOI: 10.1021/acs.jafc.2c04888] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The antiobesity efficacy and underlying mechanisms of polysaccharides extracted from Fu brick tea (FBTP) were investigated. An 8-week administration of FBTP dose-dependently inhibited increases in body weight and weights of the epididymal-, retroperitoneal- and inguinal-white adipose tissues and stimulated beige-fat development and brown adipose tissue-derived nonshivering thermogenesis in high-fat diet-induced obese mice. FBTP protected against obesity-associated abnormality in serum adiponectin and leptin, indicating its positive regulation of energy metabolism. FBTP reversed gut dysbiosis by enriching beneficial bacteria, for example, Lactobacillus, Parabacteroides, Akkermansia, Bifidobacterium, and Roseburia. Results from the fecal microbiota transplantation further confirmed that FBTP-induced microbial shifts contributed to adipose browning and thermogenesis, thereby alleviating host adiposity, glucose homeostasis, dyslipidemia, and its related hepatic steatosis. Our study demonstrates the great potential of FBTP with prebiotic-like activities in preventing diet-induced obesity and its related metabolic complications via gut microbiota-derived enhancement of fat burning and energy expenditures.
Collapse
Affiliation(s)
- Haiping Du
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Lin Shi
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Qi Wang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Tao Yan
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Yu Wang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Xiangnan Zhang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Chengcheng Yang
- Key Laboratory of Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Yan Zhao
- Key Laboratory of Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| |
Collapse
|
40
|
Xiong X, Xia M, Niu A, Zhang Y, Yin T, Huang Q. Dihydromyricetin contributes to weight loss via pro-browning mediated by mitochondrial fission in white adipose. Eur J Pharmacol 2022; 935:175345. [DOI: 10.1016/j.ejphar.2022.175345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/29/2022]
|
41
|
Martinez-Tellez B, Sanchez-Delgado G, Acosta FM, Alcantara JMA, Amaro-Gahete FJ, Martinez-Avila WD, Merchan-Ramirez E, Muñoz-Hernandez V, Osuna-Prieto FJ, Jurado-Fasoli L, Xu H, Ortiz-Alvarez L, Arias-Tellez MJ, Mendez-Gutierrez A, Labayen I, Ortega FB, Schönke M, Rensen PCN, Aguilera CM, Llamas-Elvira JM, Gil Á, Ruiz JR. No evidence of brown adipose tissue activation after 24 weeks of supervised exercise training in young sedentary adults in the ACTIBATE randomized controlled trial. Nat Commun 2022; 13:5259. [PMID: 36097264 PMCID: PMC9467993 DOI: 10.1038/s41467-022-32502-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 08/02/2022] [Indexed: 01/06/2023] Open
Abstract
Exercise modulates both brown adipose tissue (BAT) metabolism and white adipose tissue (WAT) browning in murine models. Whether this is true in humans, however, has remained unknown. An unblinded randomized controlled trial (ClinicalTrials.gov ID: NCT02365129) was therefore conducted to study the effects of a 24-week supervised exercise intervention, combining endurance and resistance training, on BAT volume and activity (primary outcome). The study was carried out in the Sport and Health University Research Institute and the Virgen de las Nieves University Hospital of the University of Granada (Spain). One hundred and forty-five young sedentary adults were assigned to either (i) a control group (no exercise, n = 54), (ii) a moderate intensity exercise group (MOD-EX, n = 48), or (iii) a vigorous intensity exercise group (VIG-EX n = 43) by unrestricted randomization. No relevant adverse events were recorded. 97 participants (34 men, 63 women) were included in the final analysis (Control; n = 35, MOD-EX; n = 31, and VIG-EX; n = 31). We observed no changes in BAT volume (Δ Control: −22.2 ± 52.6 ml; Δ MOD-EX: −15.5 ± 62.1 ml, Δ VIG-EX: −6.8 ± 66.4 ml; P = 0.771) or 18F-fluorodeoxyglucose uptake (SUVpeak Δ Control: −2.6 ± 3.1 ml; Δ MOD-EX: −1.2 ± 4.8, Δ VIG-EX: −2.2 ± 5.1; p = 0.476) in either the control or the exercise groups. Thus, we did not find any evidence of an exercise-induced change on BAT volume or activity in young sedentary adults. Exercise modulates brown adipose tissue (BAT) metabolism in murine models. Here the authors report that there is no evidence that 24 weeks of supervised exercise training modulates BAT volume or function in young sedentary adults in the ACTIBATE randomized controlled trial.
Collapse
Affiliation(s)
- Borja Martinez-Tellez
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain.,Department of Medicine, Division of Endocrinology and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands.,Department of Education, Faculty of Education Sciences and SPORT Research Group (CTS-1024), CERNEP Research Center, University of Almería, Almería, Spain
| | - Guillermo Sanchez-Delgado
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain.,Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Francisco M Acosta
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain.,Turku PET Centre, University of Turku, Turku, Finland.,Turku PET Centre, Turku University Hospital, Turku, Finland.,InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Juan M A Alcantara
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Francisco J Amaro-Gahete
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain.,EFFECTS-262 Research Group, Department of Physiology, School of Medicine, University of Granada, Granada, Spain
| | - Wendy D Martinez-Avila
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Elisa Merchan-Ramirez
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Victoria Muñoz-Hernandez
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Francisco J Osuna-Prieto
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain.,Department of Analytical Chemistry, University of Granada, Granada, Spain.,Research and Development of Functional Food Center (CIDAF), Granada, Spain
| | - Lucas Jurado-Fasoli
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Huiwen Xu
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain.,Department of Biochemistry and Molecular Biology II, "José Mataix Verdú" Institute of Nutrition and Food Technology (INYTA), Biomedical Research Center (CIBM), University of Granada, Granada, Spain
| | - Lourdes Ortiz-Alvarez
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain.,Department of Biochemistry and Molecular Biology II, "José Mataix Verdú" Institute of Nutrition and Food Technology (INYTA), Biomedical Research Center (CIBM), University of Granada, Granada, Spain
| | - María J Arias-Tellez
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain.,Department of Nutrition, Faculty of Medicine, University of Chile, Independence, 1027, Santiago, Chile
| | - Andrea Mendez-Gutierrez
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain.,Department of Biochemistry and Molecular Biology II, "José Mataix Verdú" Institute of Nutrition and Food Technology (INYTA), Biomedical Research Center (CIBM), University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria, ibs.Granada, Granada, Spain.,CIBER Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Madrid, Spain
| | - Idoia Labayen
- Institute for Innovation & Sustainable Development in Food Chain (IS-FOOD), Public University of Navarra, Campus de Arrosadía, 31008, Pamplona, Spain
| | - Francisco B Ortega
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain.,Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Milena Schönke
- Department of Medicine, Division of Endocrinology and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Patrick C N Rensen
- Department of Medicine, Division of Endocrinology and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Concepción M Aguilera
- Department of Biochemistry and Molecular Biology II, "José Mataix Verdú" Institute of Nutrition and Food Technology (INYTA), Biomedical Research Center (CIBM), University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria, ibs.Granada, Granada, Spain.,CIBER Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Madrid, Spain
| | - José M Llamas-Elvira
- Instituto de Investigación Biosanitaria, ibs.Granada, Granada, Spain.,Nuclear Medicine Service, Virgen de las Nieves University Hospital, Granada, Spain.,Nuclear Medicine Department, Biohealth Research Institute in Granada, Granada, Spain
| | - Ángel Gil
- Department of Biochemistry and Molecular Biology II, "José Mataix Verdú" Institute of Nutrition and Food Technology (INYTA), Biomedical Research Center (CIBM), University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria, ibs.Granada, Granada, Spain.,CIBER Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Madrid, Spain
| | - Jonatan R Ruiz
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain. .,Instituto de Investigación Biosanitaria, ibs.Granada, Granada, Spain.
| |
Collapse
|
42
|
Heikal LA, El-Kamel AH, Mehanna RA, Khalifa HM, Hassaan PS. Improved oral nutraceutical-based intervention for the management of obesity: pterostilbene-loaded chitosan nanoparticles. Nanomedicine (Lond) 2022; 17:1055-1075. [PMID: 36066036 DOI: 10.2217/nnm-2022-0158] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To formulate and assess the oral anti-obesity effect of polymeric-based pterostilbene (PS)-loaded nanoparticles. Methods: Pterostilbene-hydroxypropyl β-cyclodextrin inclusion complex loaded in chitosan nanoparticles (PS/HPβCD-NPs) were prepared and characterized in vitro. Cytotoxicity, pharmacokinetics and anti-obesity effects were assessed on Caco-2 cell line and high-fat-diet-induced obesity rat model, respectively. In vivo assessment included histological examination, protein and gene expression of obesity biomarkers in adipose tissues. Results: Safe PS/HPβCD-NPs were successfully prepared with improved bioavailability compared with free PS. PS/HPβCD-NPs showed an improved anti-obesity effect, as supported by histological examination, lipid profile, UCP1 gene expression and protein expression of SIRT1, COX2, IL-6 and leptin. Conclusion: Orally administered PS nanoparticles represent a new and promising anti-obesity strategy owing to the sustainable weight loss and minimal side effects; this may be of great socio-economic impact.
Collapse
Affiliation(s)
- Lamia A Heikal
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, El-Khartoum square, Azarita, Postal code: 21521, Alexandria, Egypt
| | - Amal H El-Kamel
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, El-Khartoum square, Azarita, Postal code: 21521, Alexandria, Egypt
| | - Radwa A Mehanna
- Department of Medical Physiology, Faculty of Medicine, Alexandria University, Alexandria, Egypt.,Centre of Excellence for Research in Regenerative Medicine and its Applications CERRMA, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Hoda M Khalifa
- Department of Histology & Cell Biology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Passainte S Hassaan
- Department of Medical Physiology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
43
|
Jiang S, Lin J, Zhang Q, Liao Y, Lu F, Cai J. The fates of different types of adipose tissue after transplantation in mice. FASEB J 2022; 36:e22510. [PMID: 36004579 DOI: 10.1096/fj.202200408r] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/27/2022] [Accepted: 08/09/2022] [Indexed: 11/11/2022]
Abstract
Fat grafting is one of the most commonly applied procedure for soft-tissue repair. However, it remains unclear whether the type of adipose tissue would have any effects on fat graft survival. The present study aimed to determine fates of fat grafting of three different types of fat tissue. In this study, mice were randomly divided into three groups, white adipose tissue (WAT) group, beige adipose tissue (beige AT) group and brown adipose tissue (BAT) group. Before transplantation, donor mice were injected with rosiglitazone or phosphate-buffered saline (PBS). The WAT and BAT were obtained from PBS-treated mice while beige AT was obtained from the rosiglitazone-treated mice. Three types of fat tissue (150 mg each) were transplanted in three groups, respectively, and harvested at 2, 4 or 12 weeks. The BAT and beige AT contained smaller adipocytes and expressed higher level of uncoupling protein-1 gene. The retention rate of the transplanted fat was significantly higher for beige than for white fat, but was significantly lower for brown than for white fat. Transplanted brown fat was characterized by upregulated inflammation and high endoplasmic reticulum stress. By contrast, fat grafts in beige AT group showed the best adipogenic capacity, moderate inflammation level and superior angiongenesis. In vitro, under hypoxic condition, fewer apoptotic cells were found in beige adipocyte group than that in brown and white adipocyte group. Conditioned medium from brown adipocytes induced M1 polarization of RAW 264.7 macrophages while that from beige adipocytes effectively promoted M2 polarization. Therefore, we suggest that beige AT provides a new potential choice for fat grafting because of low inflammation and superior survival but BAT might not be ideal for fat grafting due to its poor survival.
Collapse
Affiliation(s)
- Shenglu Jiang
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, P. R. China.,Department of Basic Medical Sciences, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, P. R. China
| | - Jiayan Lin
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, P. R. China
| | - Qian Zhang
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, P. R. China
| | - Yunjun Liao
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, P. R. China
| | - Feng Lu
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, P. R. China
| | - Junrong Cai
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, P. R. China
| |
Collapse
|
44
|
Qing H, Hu J, Fu H, Zhao Z, Nong W, Wang J, Yang F, Zhao S. Activation of thermogenesis pathways in testis of diet-induced obesity mice. Reprod Biol 2022; 22:100652. [DOI: 10.1016/j.repbio.2022.100652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/30/2022] [Accepted: 05/19/2022] [Indexed: 11/15/2022]
|
45
|
Lin K, Zhu L, Yang L. Gut and obesity/metabolic disease: Focus on microbiota metabolites. MedComm (Beijing) 2022; 3:e171. [PMID: 36092861 PMCID: PMC9437302 DOI: 10.1002/mco2.171] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 11/10/2022] Open
Abstract
Obesity is often associated with the risk of chronic inflammation and other metabolic diseases, such as diabetes, cardiovascular disease, and cancer. The composition and activity of the gut microbiota play an important role in this process, affecting a range of physiological processes, such as nutrient absorption and energy metabolism. The active gut microbiota can produce a large number of physiologically active substances during the process of intestinal metabolism and reproduction, including short-chain/long-chain fatty acids, secondary bile acids, and tryptophan metabolites with beneficial effects on metabolism, as well as negative metabolites, including trimethylamine N-oxide, delta-valerobetaine, and imidazole propionate. How gut microbiota specifically affect and participate in metabolic and immune activities, especially the metabolites directly produced by gut microbiota, has attracted extensive attention. So far, some animal and human studies have shown that gut microbiota metabolites are correlated with host obesity, energy metabolism, and inflammation. Some pathways and mechanisms are slowly being discovered. Here, we will focus on the important metabolites of gut microbiota (beneficial and negative), and review their roles and mechanisms in obesity and related metabolic diseases, hoping to provide a new perspective for the treatment and remission of obesity and other metabolic diseases from the perspective of metabolites.
Collapse
Affiliation(s)
- Ke Lin
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Lixin Zhu
- Guangdong Institute of GastroenterologyGuangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseaseSixth Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouChina
- Department of Colorectal SurgerySixth Affiliated HospitalSun Yat‐Sen UniversityGuangzhouChina
| | - Li Yang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for BiotherapyWest China HospitalSichuan UniversityChengduChina
| |
Collapse
|
46
|
New Advances in Human Thermophysiology. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081261. [PMID: 36013440 PMCID: PMC9410286 DOI: 10.3390/life12081261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/17/2022] [Indexed: 11/17/2022]
|
47
|
Colitti M, Ali U, Wabitsch M, Tews D. Transcriptomic analysis of Simpson Golabi Behmel syndrome cells during differentiation exhibit BAT-like function. Tissue Cell 2022; 77:101822. [DOI: 10.1016/j.tice.2022.101822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/13/2022] [Accepted: 05/13/2022] [Indexed: 11/25/2022]
|
48
|
Choi M, Mukherjee S, Yun JW. Colchicine stimulates browning via antagonism of GABA receptor B and agonism of β3-adrenergic receptor in 3T3-L1 white adipocytes. Mol Cell Endocrinol 2022; 552:111677. [PMID: 35598717 DOI: 10.1016/j.mce.2022.111677] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 11/20/2022]
Abstract
Colchicine has been used for therapeutic purposes and has attracted considerable attention because of its association with tubulin and the inhibition of small tubular polymerization. Although several studies have examined the possible preventive role of colchicine in metabolic diseases, its role in adipocytes is largely unknown. This study examined the novel functional role of colchicine in adipocytes demonstrating that colchicine stimulates browning in cultured white adipocytes. Colchicine stimulates browning by increasing the brown- and beige fat-specific markers in 3T3-L1 white adipocytes. Interestingly, colchicine decreased the expression of the main lipolytic proteins (ATGL, p-HSL) while it activated Ces3, suggesting a possibility for supplying essential fatty acids for inducing thermogenesis. Molecular docking analysis showed that colchicine has a strong affinity against GABA-BR and β3-AR, and its binding activity with GABA-BR (-26.52 kJ/mol) was stronger than β3-AR (-20.71 kJ/mol). Mechanistic studies were conducted by treating the cells separately with agonists and antagonists of GABA-BR and β3-AR to understand the molecular mechanism underlying the browning effect of colchicine. The results showed that colchicine stimulates browning via the antagonism of GABA-BR and the agonism of β3-AR in 3T3-L1 white adipocytes. The colchicine-mediated activation of β3-AR stimulated the PKA/p38 MAPK signaling pathway, where consequently ATF2 acted as a positive regulator, but AFT4 was a negative regulator for the induction of browning.
Collapse
Affiliation(s)
- MinJi Choi
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk, 38453, Republic of Korea
| | - Sulagna Mukherjee
- Laboratory of Metabolic Signaling,Institute of Bioengineering, School of Life Sciences, EPFL, CH-1015 Lausanne, Switzerland.
| | - Jong Won Yun
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk, 38453, Republic of Korea.
| |
Collapse
|
49
|
You H, Deng X, Bai Y, He J, Cao H, Che Q, Guo J, Su Z. The Ameliorative Effect of COST on Diet-Induced Lipid Metabolism Disorders by Regulating Intestinal Microbiota. Mar Drugs 2022; 20:md20070444. [PMID: 35877737 PMCID: PMC9317995 DOI: 10.3390/md20070444] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/03/2022] [Accepted: 07/04/2022] [Indexed: 01/27/2023] Open
Abstract
(1) Background: Chitosan oligosaccharides, with an average molecular weight ≤ 1000 Da (COST), is a natural marine product that has the potential to improve intestinal microflora and resist lipid metabolism disorders. (2) Methods: First, by establishing a mice model of lipid metabolism disorder induced by a high fat and high sugar diet, it is proven that COST can reduce lipid metabolism disorder, which may play a role in regulating intestinal microorganisms. Then, the key role of COST in the treatment of intestinal microorganisms is further confirmed through the method of COST-treated feces and fecal bacteria transplantation. (3) Conclusions: intestinal microbiota plays a key role in COST inhibition of lipid metabolism disorder induced by a high fat and high sugar diet. In particular, COST may play a central regulatory role in microbiota, including Bacteroides, Akkermansia, and Desulfovibrio. Taken together, our work suggests that COST may improve the composition of gut microbes, increase the abundance of beneficial bacteria, improve lipid metabolism disorders, and inhibit the development of metabolic disorders.
Collapse
Affiliation(s)
- Huimin You
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; (H.Y.); (X.D.)
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xiaoyi Deng
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; (H.Y.); (X.D.)
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yan Bai
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China; (Y.B.); (J.H.)
| | - Jincan He
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China; (Y.B.); (J.H.)
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, China;
| | - Qishi Che
- Guangzhou Rainhome Pharm & Tech Co., Ltd., Science City, Guangzhou 510663, China;
| | - Jiao Guo
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Correspondence: (J.G.); (Z.S.)
| | - Zhengquan Su
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; (H.Y.); (X.D.)
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Correspondence: (J.G.); (Z.S.)
| |
Collapse
|
50
|
Xue L, Sun J, Liu J, Hu C, Wu D, Nie C, Zhang K, Wang Y, Zhao L, Li X, Lu Y, Zhang L, Zhang D, Fan M, Qian H, Jiang H, Wong J, Li Y, Ying H, Chow BKC, Wang L, Li Y. Maternal secretin ameliorates obesity by promoting white adipose tissue browning in offspring. EMBO Rep 2022; 23:e54132. [PMID: 35652247 PMCID: PMC9253765 DOI: 10.15252/embr.202154132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 04/26/2022] [Accepted: 05/05/2022] [Indexed: 12/09/2023] Open
Abstract
Our knowledge of the coordination of intergenerational inheritance and offspring metabolic reprogramming by gastrointestinal endocrine factors is largely unknown. Here, we showed that secretin (SCT), a brain-gut peptide, is downregulated by overnutrition in pregnant mice and women. More importantly, genetic loss of SCT in the maternal gut results in undesirable phenotypes developed in offspring including enhanced high-fat diet (HFD)-induced obesity and attenuated browning of inguinal white adipose tissue (iWAT). Mechanistically, loss of maternal SCT represses iWAT browning in offspring by a global change in genome methylation pattern through upregulation of DNMT1. SCT functions to facilitate ubiquitination and degradation of DNMT1 by activating AMPKα, which contributes to the observed alteration of DNMT1 in progeny. Lastly, we showed that SCT treatment during pregnancy can reduce the development of obesity and improve glucose tolerance and insulin resistance in offspring of HFD-fed females, suggesting that SCT may serve as a novel biomarker or a strategy for preventing metabolic diseases.
Collapse
Affiliation(s)
- Lamei Xue
- State Key Laboratory of Food Science and TechnologySchool of Food Science and TechnologyJiangnan UniversityWuxiChina
| | - Juan Sun
- State Key Laboratory of Food Science and TechnologySchool of Food Science and TechnologyJiangnan UniversityWuxiChina
| | - Jinxin Liu
- State Key Laboratory of Food Science and TechnologySchool of Food Science and TechnologyJiangnan UniversityWuxiChina
| | - Chaoping Hu
- Department of Neuromuscular DiseaseChildren’s Hospital of Fudan UniversityShanghaiChina
| | - Dandan Wu
- Shanghai Key Laboratory of StomatologyDepartment of Oral & Cranio‐maxillofacial ScienceShanghai 9th People's HospitalCollege of StomatologySchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Chenzhipeng Nie
- State Key Laboratory of Food Science and TechnologySchool of Food Science and TechnologyJiangnan UniversityWuxiChina
| | - Kuiliang Zhang
- State Key Laboratory of Food Science and TechnologySchool of Food Science and TechnologyJiangnan UniversityWuxiChina
| | - Yu Wang
- State Key Laboratory of Food Science and TechnologySchool of Food Science and TechnologyJiangnan UniversityWuxiChina
| | - Lei Zhao
- Department of Neuromuscular DiseaseChildren’s Hospital of Fudan UniversityShanghaiChina
| | - Xihua Li
- Department of Neuromuscular DiseaseChildren’s Hospital of Fudan UniversityShanghaiChina
| | - Yan Lu
- Department of Endocrinology and MetabolismZhongshan HospitalFudan UniversityShanghaiChina
| | - Li Zhang
- Joint International Research Laboratory of CNS RegenerationGuangdong‐Hong Kong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhouChina
| | - Duo Zhang
- Clinical and Experimental TherapeuticsCollege of PharmacyUniversity of Georgia and Charlie Norwood VA Medical CenterAugustaGAUSA
| | - Mingcong Fan
- State Key Laboratory of Food Science and TechnologySchool of Food Science and TechnologyJiangnan UniversityWuxiChina
| | - Haifeng Qian
- State Key Laboratory of Food Science and TechnologySchool of Food Science and TechnologyJiangnan UniversityWuxiChina
| | - Haowen Jiang
- State Key Laboratory of Drug ResearchShanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
| | - Jiemin Wong
- Shanghai Key Laboratory of Regulatory BiologyFengxian District Central Hospital‐ECNU Joint Center of Translational MedicineInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghaiChina
| | - Yuying Li
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food SafetyShanghai Institutes for Biological SciencesChinese Academy of SciencesShanghaiChina
| | - Hao Ying
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food SafetyShanghai Institutes for Biological SciencesChinese Academy of SciencesShanghaiChina
| | - Billy KC Chow
- School of Biological SciencesUniversity of Hong KongHong KongChina
| | - Li Wang
- State Key Laboratory of Food Science and TechnologySchool of Food Science and TechnologyJiangnan UniversityWuxiChina
| | - Yan Li
- State Key Laboratory of Food Science and TechnologySchool of Food Science and TechnologyJiangnan UniversityWuxiChina
| |
Collapse
|