1
|
Li XJ, Deng L, Brandt SL, Goodwin CB, Ma P, Yang Z, Mali RS, Liu Z, Kapur R, Serezani CH, Chan RJ. Role of p85α in neutrophil extra- and intracellular reactive oxygen species generation. Oncotarget 2016; 7:23096-105. [PMID: 27049833 PMCID: PMC5029613 DOI: 10.18632/oncotarget.8500] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 03/23/2016] [Indexed: 12/15/2022] Open
Abstract
Drug resistance is a growing problem that necessitates new strategies to combat pathogens. Neutrophil phagocytosis and production of intracellular ROS, in particular, has been shown to cooperate with antibiotics in the killing of microbes. This study tested the hypothesis that p85α, the regulatory subunit of PI3K, regulates production of intracellular ROS. Genetic knockout of p85α in mice caused decreased expression of catalytic subunits p110α, p110β, and p110δ, but did not change expression levels of the NADPH oxidase complex subunits p67phox, p47phox, and p40phox. When p85α, p55α, and p50α (all encoded by Pik3r1) were deleted, there was an increase in intracellular ROS with no change in phagocytosis in response to both Fcγ receptor and complement receptor stimulation. Furthermore, the increased intracellular ROS correlated with significantly improved neutrophil killing of both methicillin-susceptible and methicillin-resistant S. aureus. Our findings suggest inhibition of p85α as novel approach to improving the clearance of resistant pathogens.
Collapse
Affiliation(s)
- Xing Jun Li
- Department of Pediatrics, Indianapolis, IN, USA
- Herman B Wells Center for Pediatric Research, Indianapolis, IN, USA
| | - Lisa Deng
- Herman B Wells Center for Pediatric Research, Indianapolis, IN, USA
- Department of Medical & Molecular Genetics, Indianapolis, IN, USA
| | | | - Charles B. Goodwin
- Herman B Wells Center for Pediatric Research, Indianapolis, IN, USA
- Department of Medical & Molecular Genetics, Indianapolis, IN, USA
| | - Peilin Ma
- Department of Pathology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Zhenyun Yang
- Department of Pediatrics, Indianapolis, IN, USA
- Herman B Wells Center for Pediatric Research, Indianapolis, IN, USA
| | - Raghu S. Mali
- Department of Pediatrics, Indianapolis, IN, USA
- Herman B Wells Center for Pediatric Research, Indianapolis, IN, USA
| | - Ziyue Liu
- Department of Biostatistics, Indiana University Richard M. Fairbanks School of Public Health, Indianapolis, IN, USA
| | - Reuben Kapur
- Department of Pediatrics, Indianapolis, IN, USA
- Herman B Wells Center for Pediatric Research, Indianapolis, IN, USA
- Department of Medical & Molecular Genetics, Indianapolis, IN, USA
- Department of Microbiology & Immunology, Indianapolis, IN, USA
| | | | - Rebecca J. Chan
- Department of Pediatrics, Indianapolis, IN, USA
- Herman B Wells Center for Pediatric Research, Indianapolis, IN, USA
- Department of Medical & Molecular Genetics, Indianapolis, IN, USA
| |
Collapse
|
2
|
Moon MY, Kim HJ, Li Y, Kim JG, Jeon YJ, Won HY, Kim JS, Kwon HY, Choi IG, Ro E, Joe EH, Choe M, Kwon HJ, Kim HC, Kim YS, Park JB. Involvement of small GTPase RhoA in the regulation of superoxide production in BV2 cells in response to fibrillar Aβ peptides. Cell Signal 2013; 25:1861-9. [PMID: 23707391 DOI: 10.1016/j.cellsig.2013.05.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 05/12/2013] [Indexed: 11/16/2022]
Abstract
Fibrillar amyloid-beta (fAβ) peptide causes neuronal cell death, which is known as Alzheimer's disease. One of the mechanisms for neuronal cell death is the activation of microglia which releases toxic compounds like reactive oxygen species (ROS) in response to fAβ. We observed that fAβ rather than soluble form blocked BV2 cell proliferation of microglial cell line BV2, while N-acetyl-l-cysteine (NAC), a scavenger of superoxide, prevented the cells from death, suggesting that cell death is induced by ROS. Indeed, both fAβ1-42 and fAβ25-35 induced superoxide production in BV2 cells. fAβ25-35 produced superoxide, although fAβ25-35 is not phagocytosed into BV2 cells. Thus, superoxide production by fAβ does not seem to be dependent on phagocytosis of fAβ. Herein we studied how fAβ produces superoxide in BV2. Transfection of dominant negative (DN) RhoA (N19) cDNA plasmid, small hairpin (sh)-RhoA forming plasmid, and Y27632, an inhibitor of Rho-kinase, abrogated the superoxide formation in BV2 cells stimulated by fAβ. Furthermore, fAβ elevated GTP-RhoA level as well as Rac1 and Cdc42. Tat-C3 toxin, sh-RhoA, and Y27632 inhibited the phosphorylation of p47(PHOX). Moreover, peritoneal macrophages from p47(PHOX) (-/-) knockout mouse could not produce superoxide in response to fAβ. These results suggest that RhoA closely engages in the regulation of superoxide production induced by fAβ through phosphorylation of p47(PHOX) in microglial BV2 cells.
Collapse
Affiliation(s)
- Mi-Young Moon
- Department of Biochemistry, Hallym University, Chuncheon, Kangwon-Do 200-702, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Salvemini D, Little JW, Doyle T, Neumann WL. Roles of reactive oxygen and nitrogen species in pain. Free Radic Biol Med 2011; 51:951-66. [PMID: 21277369 PMCID: PMC3134634 DOI: 10.1016/j.freeradbiomed.2011.01.026] [Citation(s) in RCA: 225] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Revised: 01/19/2011] [Accepted: 01/20/2011] [Indexed: 02/07/2023]
Abstract
Peroxynitrite (PN; ONOO⁻) and its reactive oxygen precursor superoxide (SO; O₂•⁻) are critically important in the development of pain of several etiologies including pain associated with chronic use of opiates such as morphine (also known as opiate-induced hyperalgesia and antinociceptive tolerance). This is now an emerging field in which considerable progress has been made in terms of understanding the relative contributions of SO, PN, and nitroxidative stress in pain signaling at the molecular and biochemical levels. Aggressive research in this area is poised to provide the pharmacological basis for development of novel nonnarcotic analgesics that are based upon the unique ability to selectively eliminate SO and/or PN. As we have a better understanding of the roles of SO and PN in pathophysiological settings, targeting PN may be a better therapeutic strategy than targeting SO. This is because, unlike PN, which has no currently known beneficial role, SO may play a significant role in learning and memory. Thus, the best approach may be to spare SO while directly targeting its downstream product, PN. Over the past 15 years, our team has spearheaded research concerning the roles of SO and PN in pain and these results are currently leading to the development of solid therapeutic strategies in this important area.
Collapse
Affiliation(s)
- Daniela Salvemini
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St. Louis, MO 63104, USA.
| | | | | | | |
Collapse
|
4
|
Doyle T, Finley A, Chen Z, Salvemini D. Role for peroxynitrite in sphingosine-1-phosphate-induced hyperalgesia in rats. Pain 2011; 152:643-648. [PMID: 21239112 DOI: 10.1016/j.pain.2010.12.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 11/05/2010] [Accepted: 12/06/2010] [Indexed: 12/22/2022]
Abstract
Sphingosine-1-phosphate (S1P) is an important mediator of inflammation recently shown in in vitro studies to increase the excitability of small-diameter sensory neurons, at least in part, via activation of the S1P(1) receptor subtype. Activation of S1PR(1) has been reported to increase the formation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-derived superoxide (O(2)(·-)) and nitric oxide synthase (NOS)-derived nitric oxide (NO). This process favors the formation of peroxynitrite (ONOO(-) [PN]), a potent mediator of hyperalgesia associated with peripheral and central sensitization. The aims of our study were to determine whether S1P causes peripheral sensitization and thermal hyperalgesia via S1PR(1) activation and PN formation. Intraplantar injection of S1P in rats led to a time-dependent development of thermal hyperalgesia that was blocked by the S1PR(1) antagonist W146, but not its inactive enantiomer W140. The hyperalgesic effects of S1P were mimicked by intraplantar injection of the well-characterized S1PR(1) agonist SEW2871. The development of S1P-induced hyperalgesia was blocked by apocynin, a NADPH oxidase inhibitor; N(G)-nitro-l-arginine methyl ester, a nonselective NOS inhibitor; and by the potent PN decomposition catalysts (FeTM-4-PyP(5+) and MnTE-2-PyP(5+)). Our findings provide mechanistic insight into the signaling pathways engaged by S1P in the development of hyperalgesia and highlight the contribution of the S1P(1) receptor-to-PN signaling in this process. Sphingosine-1-phosphate (S1P)-induced hyperalgesia is mediated by S1P1 receptor activation and mitigated by inhibition or decomposition of peroxynitrite, providing a target pathway for novel pain management strategies.
Collapse
Affiliation(s)
- Tim Doyle
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, 1402 South Grand Blvd, St. Louis, MO 63104, USA
| | | | | | | |
Collapse
|
5
|
Doyle T, Bryant L, Muscoli C, Cuzzocrea S, Esposito E, Chen Z, Salvemini D. Spinal NADPH oxidase is a source of superoxide in the development of morphine-induced hyperalgesia and antinociceptive tolerance. Neurosci Lett 2010; 483:85-9. [PMID: 20637262 DOI: 10.1016/j.neulet.2010.07.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 07/02/2010] [Accepted: 07/07/2010] [Indexed: 10/19/2022]
Abstract
The role of superoxide and its active byproduct peroxynitrite as mediators of nociceptive signaling is emerging. We have recently reported that nitration and inactivation of spinal mitochondrial superoxide dismutase (MnSOD) provides a critical source of these reactive oxygen and nitrogen species during central sensitization associated with the development of morphine-induced hyperalgesia and antinociceptive tolerance. In this study, we demonstrate that activation of spinal NADPH oxidase is another critical source for superoxide generation. Indeed, the development of morphine-induced hyperalgesia and antinociceptive tolerance was associated with increased activation of NADPH oxidase and superoxide release. Co-administration of morphine with systemic delivery of two structurally unrelated NADPH oxidase inhibitors namely apocynin or diphenyleneiodonium (DPI), blocked NADPH oxidase activation and the development of hyperalgesia and antinociceptive tolerance at doses devoid of behavioral side effects. These results suggest that activation of spinal NADPH oxidase contributes to the development of morphine-induced hyperalgesia and antinociceptive tolerance. The role of spinal NADPH oxidase was confirmed by showing that intrathecal delivery of apocynin blocked these events. Our results are the first to implicate the contribution of NADPH oxidase as an enzymatic source of superoxide and thus peroxynitrite in the development of central sensitization associated with morphine-induced hyperalgesia and antinociceptive tolerance. These results continue to support the critical role of these reactive oxygen and nitrogen species in pain while advancing our knowledge of their biomolecular sources.
Collapse
Affiliation(s)
- Tim Doyle
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | | | | | | | | | | | | |
Collapse
|
6
|
Thioredoxin and Cancer: A Role for Thioredoxin in all States of Tumor Oxygenation. Cancers (Basel) 2010; 2:209-32. [PMID: 24281068 PMCID: PMC3835076 DOI: 10.3390/cancers2020209] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2010] [Revised: 03/23/2010] [Accepted: 03/24/2010] [Indexed: 02/06/2023] Open
Abstract
Thioredoxin is a small redox-regulating protein, which plays crucial roles in maintaining cellular redox homeostasis and cell survival and is highly expressed in many cancers. The tumor environment is usually under either oxidative or hypoxic stress and both stresses are known up-regulators of thioredoxin expression. These environments exist in tumors because their abnormal vascular networks result in an unstable oxygen delivery. Therefore, the oxygenation patterns in human tumors are complex, leading to hypoxia/re-oxygenation cycling. During carcinogenesis, tumor cells often become more resistant to hypoxia or oxidative stress-induced cell death and most studies on tumor oxygenation have focused on these two tumor environments. However, recent investigations suggest that the hypoxic cycling occurring within tumors plays a larger role in the contribution to tumor cell survival than either oxidative stress or hypoxia alone. Thioredoxin is known to have important roles in both these cellular responses and several studies implicate thioredoxin as a contributor to cancer progression. However, only a few studies exist that investigate the regulation of thioredoxin in the hypoxic and cycling hypoxic response in cancers. This review focuses on the role of thioredoxin in the various states of tumor oxygenation.
Collapse
|
7
|
Painter RG, Bonvillain RW, Valentine VG, Lombard GA, LaPlace SG, Nauseef WM, Wang G. The role of chloride anion and CFTR in killing of Pseudomonas aeruginosa by normal and CF neutrophils. J Leukoc Biol 2008; 83:1345-53. [PMID: 18353929 DOI: 10.1189/jlb.0907658] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Chloride anion is essential for myeloperoxidase (MPO) to produce hypochlorous acid (HOCl) in polymorphonuclear neutrophils (PMNs). To define whether chloride availability to PMNs affects their HOCl production and microbicidal capacity, we examined how extracellular chloride concentration affects killing of Pseudomonas aeruginosa (PsA) by normal neutrophils. PMN-mediated bacterial killing was strongly dependent on extracellular chloride concentration. Neutrophils in a chloride-deficient medium killed PsA poorly. However, as the chloride level was raised, the killing efficiency increased in a dose-dependent manner. By using specific inhibitors to selectively block NADPH oxidase, MPO, and cystic fibrosis transmembrane conductance regulator (CFTR) functions, neutrophil-mediated killing of PsA could be attributed to three distinct mechanisms: CFTR-dependent and oxidant-dependent; chloride-dependent but not CFTR- and oxidant-dependent; and independent of any of the tested factors. Therefore, chloride anion is involved in oxidant- and nonoxidant-mediated bacterial killing. We previously reported that neutrophils from CF patients are defective in chlorination of ingested bacteria, suggesting that the chloride channel defect might impair the MPO-hydrogen peroxide-chloride microbicidal function. Here, we compared the competence of killing PsA by neutrophils from normal donors and CF patients. The data demonstrate that the killing rate by CF neutrophils was significantly lower than that by normal neutrophils. CF neutrophils in a chloride-deficient environment had only one-third of the bactericidal capacity of normal neutrophils in a physiological chloride environment. These results suggest that CFTR-dependent chloride anion transport contributes significantly to killing PsA by normal neutrophils and when defective as in CF, may compromise the ability to clear PsA.
Collapse
Affiliation(s)
- Richard G Painter
- Gene Therapy Program, Department of Medicine and Genetics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Cheng L, Cao W, Fiocchi C, Behar J, Biancani P, Harnett KM. HCl-induced inflammatory mediators in cat esophageal mucosa and inflammatory mediators in esophageal circular muscle in an in vitro model of esophagitis. Am J Physiol Gastrointest Liver Physiol 2006; 290:G1307-17. [PMID: 16439466 DOI: 10.1152/ajpgi.00576.2005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Platelet-activating factor (PAF) and interleukin-6 (IL-6) are produced in the esophagus in response to HCl and affect ACh release, causing changes in esophageal motor function similar to esophagitis (Cheng L, Cao W, Fiocchi C, Behar J, Biancani P, and Harnett KM. Am J Physiol Gastrointest Liver Physiol 289: G418-G428, 2005). We therefore examined HCl-activated mechanisms for production of PAF and IL-6 in cat esophageal mucosa and circular muscle. A segment of normal mucosa was tied at both ends, forming a mucosal sac (Cheng L, Cao W, Fiocchi C, Behar J, Biancani P, and Harnett KM. Am J Physiol Gastrointest Liver Physiol 289: G860-G869, 2005) that was filled with acidic Krebs buffer (pH 5.8) or normal Krebs buffer (pH 7.0) as control and kept in oxygenated Krebs buffer for 3 h. The supernatant of the acidic sac (MS-HCl) abolished contraction of normal muscle strips in response to electric field stimulation. The inhibition was reversed by the PAF antagonist CV3988 and by IL-6 antibodies. PAF and IL-6 levels in MS-HCl and mucosa were significantly elevated over control. IL-6 levels in mucosa and supernatant were reduced by CV3988, suggesting that formation of IL-6 depends on PAF. PAF-receptor mRNA levels were not detected by RT-PCR in normal mucosa, but were significantly elevated after exposure to HCl, indicating that HCl causes production of PAF and expression of PAF receptors in esophageal mucosa and that PAF causes production of IL-6. PAF and IL-6, produced in the mucosa, are released to affect the circular muscle layer. In the circular muscle, PAF causes production of additional IL-6 that activates NADPH oxidase to induce production of H(2)O(2). H(2)O(2) causes formation of IL-1beta that may induce production of PAF in the muscle, possibly closing a self-sustaining cycle of production of inflammatory mediators.
Collapse
Affiliation(s)
- Ling Cheng
- Department of Medicine, Rhode Island Hospital and Brown University, Providence, 02903, USA
| | | | | | | | | | | |
Collapse
|
9
|
Moreland JG, Davis AP, Bailey G, Nauseef WM, Lamb FS. Anion channels, including ClC-3, are required for normal neutrophil oxidative function, phagocytosis, and transendothelial migration. J Biol Chem 2006; 281:12277-88. [PMID: 16522634 DOI: 10.1074/jbc.m511030200] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
NADPH oxidase activity, phagocytosis, and cell migration are essential functions of polymorphonuclear leukocytes (PMNs) in host defense. The cytoskeletal reorganization necessary to perform these functions has been extensively studied, but the role of cell volume regulation, which is likely dependent upon anion channels, has not been defined. Mice lacking the anion channel ClC-3 (Clcn3(-/-)) died from presumed sepsis following intravascular catheter placement, whereas Clcn3(+/+) littermates survived. We hypothesized that ClC-3 has a critical role in host defense and reasoned that PMN function would be compromised in these mice. Clcn3(-/-) PMNs displayed markedly reduced NADPH oxidase activity in response to opsonized zymosan and modestly reduced activity after phorbol 12-myristate 13-acetate. Human PMNs treated with the anion channel inhibitors niflumic acid or 5-nitro-2-(3-phenylpropylamino)benzoic acid had a very similar defect. ClC-3 protein was detected in the secretory vesicles and secondary granules of resting PMNs and was up-regulated to the phagosomal membrane. Clcn3(-/-) PMNs and human PMNs lacking normal anion channel function both exhibited reduced uptake of opsonized zymosan at 1, 5, and 10 min in a synchronized phagocytosis assay. Niflumic acid-treated PMNs also had impaired transendothelial migration in vitro, whereas migration in vivo was not altered in Clcn3(-/-) PMNs. Selective inhibition of the swelling-activated chloride channel with tamoxifen profoundly reduced PMN migration but had no effect on NADPH oxidase activity. In summary, PMNs lacking normal anion channel function exhibited reduced NADPH oxidase activity, diminished phagocytosis, and impaired migration. ClC-3 was specifically involved in the respiratory burst and phagocytosis.
Collapse
Affiliation(s)
- Jessica G Moreland
- Division of Critical Care, Department of Pediatrics,The University of Iowa, Iowa City 52242, USA.
| | | | | | | | | |
Collapse
|
10
|
Silliman CC, Wang M. The merits of in vitro versus in vivo modeling in investigation of the immune system. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2006; 21:123-134. [PMID: 21783649 DOI: 10.1016/j.etap.2005.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Immunity is vital for determining self and for the recognition and swift eradication of foreign antigens without harming the host. Innate immunity developed in metazoan, multi-cellular organisms under overwhelming selection pressure of invasive microbes and, although imperfect, has performed admirably to enable the evolution of higher eukaryotes. Adaptive immunity developed within an existing innate immune system to more effectively eradicate foreign antigens, whether from pathogens, malignant cells, or microbial toxins, such that repeated stimulations with foreign antigens are more efficiently excluded. Investigation of the immune system requires both in vivo and in vitro experimentation, not only because of the inherent complexity of immunity and the required pertinence of using higher mammals to not falsely disrupt the immune system, but also to use isolates of the specific cellular and humoral components to determine function, signal transduction, and a possible role of these constituents without the complexity and redundancy of immunity in intact animals. The hypotheses of well-designed in vitro experiments must also be tested in intact in vivo models to determine relevance and to discard artifactual findings secondary to the in vitro environment. The following review outlines the basic constituents and functions of both adaptive and innate immunity to demonstrate the importance of both in vivo and in vitro investigation of immunity in our attempt to define host defense and to decrease morbidity and mortality in humans.
Collapse
Affiliation(s)
- Christopher C Silliman
- Bonfils Blood Center, 717 Yosemite Circle, Denver, CO 80230, USA; Department of Pediatrics, University of Colorado School of Medicine, Denver, CO 80262, USA; Department of Surgery, University of Colorado School of Medicine, Denver, CO 80262, USA
| | | |
Collapse
|
11
|
Ogura K, Nobuhisa I, Yuzawa S, Takeya R, Torikai S, Saikawa K, Sumimoto H, Inagaki F. NMR solution structure of the tandem Src homology 3 domains of p47phox complexed with a p22phox-derived proline-rich peptide. J Biol Chem 2005; 281:3660-8. [PMID: 16326715 DOI: 10.1074/jbc.m505193200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The phagocyte NADPH oxidase plays a crucial role in host defense against microbial infections by generating reactive oxygen species. It is a multisubunit enzyme composed of membrane-bound flavocytochrome b558 as well as cytosolic components, including p47phox, which is essential for assembly of the complex. When phagocytes are activated, the cytosolic components of the NADPH oxidase translocate to flavocytochrome b558 due to binding of the tandem Src homology 3 (SH3) domains of p47phox to a proline-rich region in p22phox, a subunit of flavocytochrome b558. Using NMR titration, we first identified the proline-rich region of p22phox that is essential for binding to the tandem SH3 domains of p47phox. We subsequently determined the solution structure of the p47phox tandem SH3 domains complexed with the proline-rich peptide of p22phox using NMR spectroscopy. In contrast to the intertwined dimer reported for the crystal state, the solution structure is a monomer. The central region of the p22phox peptide forms a polyproline type II helix that is sandwiched by the N- and C-terminal SH3 domains, as was observed in the crystal structure, whereas the C-terminal region of the peptide takes on a short alpha-helical conformation that provides an additional binding site with the N-terminal SH3 domain. Thus, the C-terminal alpha-helical region of the p22phox peptide increases the binding affinity for the tandem SH3 domains of p47phox more than 10-fold.
Collapse
Affiliation(s)
- Kenji Ogura
- Department of Structural Biology, Graduate School of Pharmaceutical Sciences, Hokkaido University, N-12 W-6, Kita-ku, Sapporo 060-0812, Japan
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Femling JK, Nauseef WM, Weiss JP. Synergy between extracellular group IIA phospholipase A2 and phagocyte NADPH oxidase in digestion of phospholipids of Staphylococcus aureus ingested by human neutrophils. THE JOURNAL OF IMMUNOLOGY 2005; 175:4653-61. [PMID: 16177112 DOI: 10.4049/jimmunol.175.7.4653] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Acute inflammatory responses to invading bacteria such as Staphylococcus aureus include mobilization of polymorphonuclear leukocytes (PMN) and extracellular group IIA phospholipase A2 (gIIA-PLA2). Although accumulating coincidentally, the in vitro anti-staphylococcal activities of PMN and gIIA-PLA2 have thus far been studied separately. We now show that degradation of S. aureus phospholipids during and after phagocytosis by human PMN requires the presence of extracellular gIIA-PLA2. The concentration of extracellular gIIA-PLA2 required to produce bacterial digestion was reduced 10-fold by PMN. The effects of added gIIA-PLA2 were greater when present before phagocytosis but even apparent when added after S. aureus were ingested by PMN. Related group V and X PLA2, which are present within PMN granules, do not contribute to bacterial phospholipid degradation during and after phagocytosis even when added at concentrations 30-fold higher than that needed for action of the gIIA-PLA2. The action of added gIIA-PLA2 required catalytically active gIIA-PLA2 and, in PMN, a functional NADPH oxidase but not myeloperoxidase. These findings reveal a novel collaboration between cellular oxygen-dependent and extracellular oxygen-independent host defense systems that may be important in the ultimate resolution of S. aureus infections.
Collapse
Affiliation(s)
- Jon K Femling
- The Inflammation Program, University of Iowa and Veterans Affairs Medical Center, Iowa City 52242, USA
| | | | | |
Collapse
|
13
|
Yuzawa S, Suzuki NN, Fujioka Y, Ogura K, Sumimoto H, Inagaki F. A molecular mechanism for autoinhibition of the tandem SH3 domains of p47phox, the regulatory subunit of the phagocyte NADPH oxidase. Genes Cells 2005; 9:443-56. [PMID: 15147273 DOI: 10.1111/j.1356-9597.2004.00733.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The phagocyte NADPH oxidase is a multisubunit enzyme responsible for the production of reactive oxygen species. p47(phox) is a cytosolic component of the NADPH oxidase and plays an important role in the assembly of the activated complex. The structural determination of the tandem SH3 domains of p47(phox) is crucial for elucidation of the molecular mechanism of the activation of p47(phox). We determined the X-ray crystal structure of the tandem SH3 domains with the polybasic/autoinhibitory region (PBR/AIR) of p47(phox). The GAPPR sequence involved in PBR/AIR forms a left-handed polyproline type-II helix (PPII) and interacts with the conserved SH3 binding surfaces of the SH3 domains simultaneously. These SH3 domains are related by a 2-fold pseudosymmetry axis at the centre of the binding groove and interact with the single PPII helix formed by the GAPPR sequence with opposite orientation. In addition, a number of intra-molecular interactions among the SH3 domains, PBR/AIR and the linker tightly hold the architecture of the tandem SH3 domains into the compact structure and stabilize the autoinhibited form synergistically. Phosphorylation of the serine residues in PBR/AIR could destabilize and successively release the intra-molecular interactions. Thus, the overall structure could be rearranged from the autoinhibitory conformation to the active conformation and the PPII ligand binding surfaces on the SH3 domains are now unmasked, which enables their interaction with the target sequence in p22(phox).
Collapse
Affiliation(s)
- Satoru Yuzawa
- Department of Structural Biology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | | | | | | | | | | |
Collapse
|
14
|
Smoot L, Zhang H, Klaiman C, Schultz R, Pober B. Medical overview and genetics of Williams-Beuren syndrome. PROGRESS IN PEDIATRIC CARDIOLOGY 2005. [DOI: 10.1016/j.ppedcard.2005.04.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
15
|
Räisänen SR, Alatalo SL, Ylipahkala H, Halleen JM, Cassady AI, Hume DA, Väänänen HK. Macrophages overexpressing tartrate-resistant acid phosphatase show altered profile of free radical production and enhanced capacity of bacterial killing. Biochem Biophys Res Commun 2005; 331:120-6. [PMID: 15845367 DOI: 10.1016/j.bbrc.2005.03.133] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2005] [Indexed: 02/07/2023]
Abstract
Activated macrophages and osteoclasts express high amounts of tartrate-resistant acid phosphatase (TRACP, acp5). TRACP has a binuclear iron center with a redox-active iron that has been shown to catalyze the formation of reactive oxygen species (ROS) by Fenton's reaction. Previous studies suggest that ROS generated by TRACP may participate in degradation of endocytosed bone matrix products in resorbing osteoclasts and degradation of foreign compounds during antigen presentation in activated macrophages. Here we have compared free radical production in macrophages of TRACP overexpressing (TRACP+) and wild-type (WT) mice. TRACP overexpression increased both ROS levels and superoxide production. Nitric oxide production was increased in activated macrophages of WT mice, but not in TRACP+ mice. Macrophages from TRACP+ mice showed increased capacity of bacterial killing. Recombinant TRACP enzyme was capable of bacterial killing in the presence of hydrogen peroxide. These results suggest that TRACP has an important biological function in immune defense system.
Collapse
Affiliation(s)
- Seija R Räisänen
- Institute of Biomedicine, Department of Anatomy, University of Turku, Turku, Finland
| | | | | | | | | | | | | |
Collapse
|
16
|
Kerkhoff C, Nacken W, Benedyk M, Dagher MC, Sopalla C, Doussiere J. The arachidonic acid-binding protein S100A8/A9 promotes NADPH oxidase activation by interaction with p67phox and Rac-2. FASEB J 2005; 19:467-9. [PMID: 15642721 DOI: 10.1096/fj.04-2377fje] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The Ca2+- and arachidonic acid-binding S100A8/A9 protein complex was recently identified by in vitro studies as a novel partner of the phagocyte NADPH oxidase. The present study demonstrated its functional relevance by the impaired oxidase activity in neutrophil-like NB4 cells, after specific blockage of S100A9 expression, and bone marrow polymorphonuclear neutrophils from S100A9-/- mice. The impaired oxidase activation could also be mimicked in a cell-free system by pretreatment of neutrophil cytosol with an S100A9-specific antibody. Further analyses gave insights into the molecular mechanisms by which S100A8/A9 promoted NADPH oxidase activation. In vitro analysis of oxidase activation as well as protein-protein interaction studies revealed that S100A8 is the privileged interaction partner for the NADPH oxidase complex since it bound to p67phox and Rac, whereas S100A9 did interact with neither p67phox nor p47phox. Moreover, S100A8/A9 transferred the cofactor arachidonic acid to NADPH oxidase as shown by the impotence of a mutant S100A8/A9 complex unable to bind arachidonic acid to enhance NADPH oxidase activity. It is concluded that S100A8/A9 plays an important role in phagocyte NADPH oxidase activation.
Collapse
Affiliation(s)
- Claus Kerkhoff
- Institute of Experimental Dermatology, University of Münster, Germany.
| | | | | | | | | | | |
Collapse
|
17
|
Mizrahi A, Molshanski-Mor S, Weinbaum C, Zheng Y, Hirshberg M, Pick E. Activation of the phagocyte NADPH oxidase by Rac Guanine nucleotide exchange factors in conjunction with ATP and nucleoside diphosphate kinase. J Biol Chem 2004; 280:3802-11. [PMID: 15557278 DOI: 10.1074/jbc.m410257200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activation of the phagocyte NADPH oxidase is the consequence of the assembly of membranal cytochrome b559 with the cytosolic components p47phox, p67phox, and the GTPase Rac and is mimicked by a cell-free system comprising these components and an activator. We designed a variant of this system, consisting of membranes, p67phox) prenylated Rac1-GDP, and the Rac-specific guanine nucleotide exchange factor (GEF) Trio, in which oxidase activation is induced in the absence of an activator and p47phox. We now show that: 1) Trio and another Rac GEF (Tiam1) act by inducing GDP to GTP exchange on prenylated Rac1-GDP and that our earlier assertion that activation is GTP-independent is explained by contamination of p67phox preparations with GTP and/or ATP. 2) Oxidase activation by Rac GEFs is supported not only by GTP but also by ATP. 3) Non-hydrolysable GTP analogs are active, whereas ATP analogs, incapable of gamma-phosphoryl transfer, are inactive. 4) The ability of ATP to support GEF-induced oxidase activation is explained by ATP serving as a gamma-phosphoryl donor for a membrane-localized nucleoside diphosphate kinase (NDPK), converting GDP to GTP. 5) The existence of a NDPK in macrophage membranes is proven by functional, enzymatic, and immunologic criteria. 6) NDPK acts on free GDP, and the newly formed GTP is bound again to Rac. 7) Free GDP is derived exclusively by dissociation from prenylated Rac1-GDP, mediated by GEF. NDPK and GEF appear to be functionally linked in the sense that the availability of GDP, serving as substrate for NDPK, is dependent on the level of activity of GEF.
Collapse
Affiliation(s)
- Ariel Mizrahi
- Julius Friedrich Cohnheim-Minerva Center for Phagocyte Research and the Ela Kodesz Institute of Host Defense against Infectious Diseases, Sackler School of Medicine, Tel Aviv University, PO Box 39040, Tel Aviv 69978, Israel
| | | | | | | | | | | |
Collapse
|
18
|
Abstract
Stimulated phagocytes undergo a burst in respiration whereby molecular oxygen is converted to superoxide anion through the action of an NADPH-dependent oxidase. The multicomponent phagocyte oxidase is unassembled and inactive in resting cells but assembles at the plasma or phagosomal membrane upon phagocyte activation. Oxidase components include flavocytochrome b558, an integral membrane heterodimer comprised of gp91phox and p22phox, and three cytosolic proteins, p47phox, p67phox, and Rac1 or Rac2, depending on the species and phagocytic cell. In a sense, the phagocyte oxidase is spatially regulated, with critical elements segregated in the membrane and cytosol but ready to undergo nearly immediate assembly and activation in response to stimulation. To achieve such spatial regulation, the individual components in the resting phagocyte adopt conformations that mask potentially interactive structural domains that might mediate productive intermolecular associations and oxidase assembly. In response to stimulation, post-translational modifications of the oxidase components release these constraints and thereby render potential interfaces accessible and interactive, resulting in translocation of the cytosolic elements to the membrane where the functional oxidase is assembled and active. This review summarizes data on the structural features of the phagocyte oxidase components and on the agonist-dependent conformational rearrangements that contribute to oxidase assembly and activation.
Collapse
Affiliation(s)
- William M Nauseef
- Inflammation Program and Department of Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, D160 MTF, 2501 Crosspark Road, Coralville, IA 52241, USA.
| |
Collapse
|
19
|
IJdo JW, Mueller AC. Neutrophil NADPH oxidase is reduced at the Anaplasma phagocytophilum phagosome. Infect Immun 2004; 72:5392-401. [PMID: 15322037 PMCID: PMC517486 DOI: 10.1128/iai.72.9.5392-5401.2004] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The intracellular organism Anaplasma phagocytophilum causes human granulocytic ehrlichiosis and specifically infects and multiplies in neutrophilic granulocytes. Previous reports have suggested that, for its survival, this bacterium suppresses the neutrophil respiratory burst. To investigate the mechanism of survival, we first assessed the kinetics of A. phagocytophilum entry into neutrophils by using double-labeling confocal microscopy. At 30, 60, 120, and 240 min of incubation, 25, 50, 55, and 70% of neutrophils contained bacteria, respectively. The neutrophil respiratory burst in the presence of A. phagocytophilum was assessed by a kinetic cytochrome c assay and by measurement of oxygen consumption. Neutrophils in the presence of A. phagocytophilum did not produce a significant respiratory burst, but A. phagocytophilum did not inhibit the neutrophil respiratory burst when phorbol myristate acetate was added. Immunoelectron microscopy of neutrophils infected with A. phagocytophilum or Escherichia coli revealed that NADPH oxidase subunits gp91(phox) and p22(phox) were significantly reduced at the A. phagocytophilum phagosome after 1 and 4 h of incubation. In neutrophils incubated simultaneously with A. phagocytophilum and E. coli for 30, 60, and 90 min, gp91(phox) was present on 20, 14, and 10% of the A. phagocytophilum phagosomes, whereas p22(phox) was present in 11, 5, and 4% of the phagosomes, respectively. Similarly, on E. coli phagosomes, gp91(phox) was present in 62, 64, and 65%, whereas p22(phox) was detected in 54, 48, and 48%. We conclude that A. phagocytophilum does not suppress a global respiratory burst and that, under identical conditions in the same cells, A. phagocytophilum, but not E. coli, significantly reduces gp91(phox) and p22(phox) from its phagosome membrane.
Collapse
Affiliation(s)
- Jacob W IJdo
- Inflammation Program, Department of Internal Medicine, Division of Rheumatology, C312GH, University of Iowa, Iowa City, IA, USA.
| | | |
Collapse
|
20
|
Quinn MT, Gauss KA. Structure and regulation of the neutrophil respiratory burst oxidase: comparison with nonphagocyte oxidases. J Leukoc Biol 2004; 76:760-81. [PMID: 15240752 DOI: 10.1189/jlb.0404216] [Citation(s) in RCA: 345] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Neutrophils play an essential role in the body's innate defense against pathogens and are one of the primary mediators of the inflammatory response. To defend the host, neutrophils use a wide range of microbicidal products, such as oxidants, microbicidal peptides, and lytic enzymes. The generation of microbicidal oxidants by neutrophils results from the activation of a multiprotein enzyme complex known as the reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, which is responsible for transferring electrons from NADPH to O2, resulting in the formation of superoxide anion. During oxidase activation, cytosolic oxidase proteins translocate to the phagosome or plasma membrane, where they assemble around a central membrane-bound component known as flavocytochrome b. This process is highly regulated, involving phosphorylation, translocation, and multiple conformational changes. Originally, it was thought that the NADPH oxidase was restricted to phagocytes and used solely in host defense. However, recent studies indicate that similar NADPH oxidase systems are present in a wide variety of nonphagocytic cells. Although the nature of these nonphagocyte NADPH oxidases is still being defined, it is clear that they are functionally distinct from the phagocyte oxidases. It should be noted, however, that structural features of many nonphagocyte oxidase proteins do seem to be similar to those of their phagocyte counterparts. In this review, key structural and functional features of the neutrophil NADPH oxidase and its protein components are described, including a consideration of transcriptional and post-translational regulatory features. Furthermore, relevant details about structural and functional features of various nonphagocyte oxidase proteins will be included for comparison.
Collapse
Affiliation(s)
- Mark T Quinn
- Department of Veterinary Molecular Biology, Montana State University, Bozeman 59717-3610, USA.
| | | |
Collapse
|
21
|
Yuzawa S, Ogura K, Horiuchi M, Suzuki NN, Fujioka Y, Kataoka M, Sumimoto H, Inagaki F. Solution Structure of the Tandem Src Homology 3 Domains of p47 in an Autoinhibited Form. J Biol Chem 2004; 279:29752-60. [PMID: 15123602 DOI: 10.1074/jbc.m401457200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The phagocyte NADPH oxidase is a multisubunit enzyme responsible for the generation of superoxide anions (O(2).) that kill invading microorganisms. p47(phox) is a cytosolic subunit of the phagocyte NADPH oxidase, which plays a crucial role in the assembly of the activated NADPH oxidase complex. The molecular shapes of the p47(phox) tandem SH3 domains either with or without a polybasic/autoinhibitory region (PBR/AIR) at the C terminus were studied using small angle x-ray scattering. The tandem SH3 domains with PBR/AIR formed a compact globular structure, whereas the tandem SH3 domains lacking the PBR/AIR formed an elongated structure. Alignment anisotropy analysis by NMR based on the residual dipolar couplings revealed that the tandem SH3 domains with PBR/AIR were in good agreement with a globular module corresponding to the split half of the intertwisted dimer in crystalline state. The structure of the globular module was elucidated to represent a solution structure of the tandem SH3 domain in the autoinhibited form, where the PBR/AIR bundled the tandem SH3 domains and the linker forming a closed structure. Once PBR/AIR is released by phosphorylation, rearrangements of the SH3 domains may occur, forming an open structure that binds to the cytoplasmic proline-rich region of membrane-bound p22(phox).
Collapse
Affiliation(s)
- Satoru Yuzawa
- Department of Structural Biology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Tsunawaki S, Yoshida LS, Nishida S, Kobayashi T, Shimoyama T. Fungal metabolite gliotoxin inhibits assembly of the human respiratory burst NADPH oxidase. Infect Immun 2004; 72:3373-82. [PMID: 15155643 PMCID: PMC415710 DOI: 10.1128/iai.72.6.3373-3382.2004] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Reactive oxygen species are a critical weapon in the killing of Aspergillus fumigatus by polymorphonuclear leukocytes (PMN), as demonstrated by severe aspergillosis in chronic granulomatous disease. In the present study, A. fumigatus-produced mycotoxins (fumagillin, gliotoxin [GT], and helvolic acid) are examined for their effects on the NADPH oxidase activity in human PMN. Of these mycotoxins, only GT significantly and stoichiometrically inhibits phorbol myristate acetate (PMA)-stimulated O2- generation, while the other two toxins are ineffective. The inhibition is dependent on the disulfide bridge of GT, which interferes with oxidase activation but not catalysis of the activated oxidase. Specifically, GT inhibits PMA-stimulated events: p47phox phosphorylation, its incorporation into the cytoskeleton, and the membrane translocation of p67phox, p47phox, and p40phox, which are crucial steps in the assembly of the active NADPH oxidase. Thus, damage to p47phox phosphorylation is likely a key to inhibiting NADPH oxidase activation. GT does not inhibit the membrane translocation of Rac2. The inhibition of p47phox phosphorylation is due to the defective membrane translocation of protein kinase C (PKC) betaII rather than an effect of GT on PKC betaII activity, suggesting a failure of PKC betaII to associate with the substrate, p47phox, on the membrane. These results suggest that A. fumigatus may confront PMN by inhibiting the assembly of the NADPH oxidase with its hyphal product, GT.
Collapse
Affiliation(s)
- Shohko Tsunawaki
- Department of Infectious Diseases, National Research Institute for Child Health and Development, Setagaya, Tokyo 154-8567, Japan.
| | | | | | | | | |
Collapse
|
23
|
Abstract
We reviewed here the formation of free radicals and its effect physiologically. Studies mentioned above have indicated that free radical/ROS/RNS involvement in brain aging is direct as well as correlative. Increasing evidence demonstrates that accumulation of oxidation of DNA, proteins, and lipids by free radicals are responsible for the functional decline in aged brains. Also, lipid peroxidation products, such as MDA, HNE, and acrolein, were reported to react with DNA and proteins to produce further damage in aged brains. Therefore, the impact of free radicals on brain aging is pronounced. It has been estimated that 10,000 oxidative interactions occur between DNA and endogenously generated free radicals per human cell per day, and at least one of every three proteins in the cell of older animals is dysfunctional as an enzyme or structural protein, due to oxidative modification. Although these estimated numbers reveal that free radical-mediated protein and DNA modification play significant roles in the deterioration of aging brain, they do not imply that free radical damages are the only cause of functional decline in aged brain. Nevertheless,although other factors may be involved in the cascade of damaging effects in the brain, the key role of free radicals in this process cannot be underestimated. This article has examined the role and formation of free radicals in brain aging. We propose that free radicals are critical to cell damage in aged brain and endogenous, and that exogenous antioxidants, therefore, may play effective roles in therapeutic strategies for age-related neurodegenerative disorders.
Collapse
Affiliation(s)
- H Fai Poon
- Department of Chemistry, Center of Membrane Sciences, University of Kentucky, Lexington 40506, USA
| | | | | | | |
Collapse
|
24
|
Hashida S, Yuzawa S, Suzuki NN, Fujioka Y, Takikawa T, Sumimoto H, Inagaki F, Fujii H. Binding of FAD to cytochrome b558 is facilitated during activation of the phagocyte NADPH oxidase, leading to superoxide production. J Biol Chem 2004; 279:26378-86. [PMID: 15102859 DOI: 10.1074/jbc.m309724200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The superoxide-producing phagocyte NADPH oxidase can be reconstituted in a cell-free system. The activity of NADPH oxidase is dependent on FAD, but the physiological status of FAD in the oxidase is not fully elucidated. To clarify the role of FAD in NADPH oxidase, FAD-free full-length recombinant p47(phox), p67(phox), p40(phox), and Rac were prepared, and the activity was reconstituted with these proteins and purified cytochrome b(558) (cyt b(558)) with different amounts of FAD. A remarkably high activity, over 100 micromol/s/micromol heme, was obtained in the oxidase with purified cyt b(558), ternary complex (p47-p67-p40(phox)), and Rac. From titration with FAD of the activity of NADPH oxidase reconstituted with purified FAD-devoid cyt b, the dissociation constant K(d) of FAD in cyt b(558) of reconstituted oxidase was estimated as nearly 1 nm. We also examined addition of FAD on the assembly process in reconstituted oxidase. The activity was remarkably enhanced when FAD was present during assembly process, and the efficacy of incorporating FAD into the vacant FAD site in purified cyt b(558) increased, compared when FAD was added after assembly processes. The absorption spectra of reconstituted oxidase under anaerobiosis showed that incorporation of FAD into cyt b(558) recovered electron flow from NADPH to heme. From both K(d) values of FAD and the amount of incorporated FAD in cyt b(558) of reconstituted oxidase, in combination with spectra, we propose the model in which the K(d) values of FAD in cyt b(558) is changeable after activation and FAD binding works as a switch to regulate electron transfer in NADPH oxidase.
Collapse
Affiliation(s)
- Shukichi Hashida
- Department of Structural Biology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Brown GE, Stewart MQ, Bissonnette SA, Elia AEH, Wilker E, Yaffe MB. Distinct ligand-dependent roles for p38 MAPK in priming and activation of the neutrophil NADPH oxidase. J Biol Chem 2004; 279:27059-68. [PMID: 15102856 DOI: 10.1074/jbc.m314258200] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In response to certain cytokines and inflammatory mediators, the activity of the neutrophil NADPH oxidase enzyme is primed for enhanced superoxide production when the cells receive a subsequent oxidase-activating stimulus. The relative role of p38 MAPK in the priming and activation processes is incompletely understood. We have developed a 2-step assay that allows the relative contributions of p38 MAPK activity in priming to be distinguished from those involved in oxidase activation. Using this assay, together with in vitro kinase assays and immunochemical studies, we report that p38 MAPK plays a critical role in TNFalpha priming of the human and porcine NADPH oxidase for superoxide production in response to complement-opsonized zymosan (OpZ), but little, if any, role in neutrophil priming by platelet-activating factor (PAF) for OpZ-dependent responses. The OpZ-mediated activation process per se is independent of p38 MAPK activity, in contrast to oxidase activation by fMLP, where 70% of the response is eliminated by p38 MAPK inhibitors regardless of the priming agent. We further report that incubation of neutrophils with TNFalpha results in the p38 MAPK-dependent phosphorylation of a subpopulation of p47(phox) and p67(phox) molecules, whereas PAF priming results in phosphorylation only of p67(phox). Despite these phosphorylations, TNFalpha priming does not result in significant association of either of these oxidase subunits with neutrophil membranes, demonstrating that the molecular basis for priming does not appear to involve preassembly of the NADPH oxidase holoenzyme/cytochrome complex prior to oxidase activation.
Collapse
Affiliation(s)
- Glenn E Brown
- Department of Surgery, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02130, USA
| | | | | | | | | | | |
Collapse
|
26
|
Sarfstein R, Gorzalczany Y, Mizrahi A, Berdichevsky Y, Molshanski-Mor S, Weinbaum C, Hirshberg M, Dagher MC, Pick E. Dual Role of Rac in the Assembly of NADPH Oxidase, Tethering to the Membrane and Activation of p67. J Biol Chem 2004; 279:16007-16. [PMID: 14761978 DOI: 10.1074/jbc.m312394200] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
NADPH oxidase activation involves the assembly of membrane-localized cytochrome b559 with the cytosolic components p47phox, p67phox, and the small GTPase Rac. Assembly is mimicked by a cell-free system consisting of membranes and cytosolic components, activated by an anionic amphiphile. We reported that a chimeric construct, consisting of residues 1-212 of p67phox and full-length Rac1, activates the oxidase in vitro in an amphiphile-dependent manner, and when prenylated, in the absence of amphiphile and p47phox. We subjected chimera p67phox-(1-212)-Rac1 to mutational analysis and found that: 1) replacement of a single basic residue at the C terminus of the Rac1 moiety by glutamine is sufficient for loss of activity by the non-prenylated chimera; replacement of all six basic residues by glutamines is required for loss of activity by the prenylated chimera. 2) A V204A mutation in the activation domain of the p67phox moiety leads to a reduction in activity. 3) Mutating residues, known to participate in the interaction between free p67phox and Rac1, in the p67phox-(R102E) or Rac1 (A27K, G30S) moieties of the chimera, leads to a marked decrease in activity, indicating a requirement for intrachimeric bonds, in addition to the engineered fusion. 4) Chimeras, inactive because of mutations A27K or G30S in the Rac1 moiety, are reactivated by supplementation with exogenous Rac1-GTP but not with exogenous p67phox. This demonstrates that Rac has a dual role in the assembly of NADPH oxidase. One is to tether p67phox to the membrane; the other is to induce an "activating" conformational change in p67phox.
Collapse
Affiliation(s)
- Rive Sarfstein
- Julius Friedrich Cohnheim-Minerva Center for Phagocyte Research and the Ela Kodesz Institute of Host Defense against Infectious Diseases, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Bhat RS, Bhaskaran M, Mongia A, Hitosugi N, Singhal PC. Morphine-induced macrophage apoptosis: oxidative stress and strategies for modulation. J Leukoc Biol 2004; 75:1131-8. [PMID: 15039469 DOI: 10.1189/jlb.1203639] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Occurrence of macrophage apoptosis has been implicated for the altered immune function found in an opiate milieu. In the present study, we evaluated the role of oxidative stress in morphine-induced macrophage apoptosis. Morphine promoted the apoptosis of macrophages. This effect of morphine was associated with the production of superoxide and nitric oxide (NO). Antioxidants provided protection against morphine-induced macrophage injury. In addition, diphenyleneiodonium chloride, an inhibitor of reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activation, attenuated the proapoptotic effect of morphine. Antitransforming growth factor-beta (anti-TGF-beta) antibody and propranolol (an inhibitor of the phospholipase D pathway) inhibited morphine-induced superoxide generation as well as apoptosis. N'-Tetraacetic acid tetra (acetoxymethyl) ester, a calcium-chelating agent, inhibited morphine-induced apoptosis, whereas thapsigargin (a calcium agonist) stimulated macrophage apoptosis under basal as well as morphine-stimulated states. These studies suggest that morphine-induced macrophage apoptosis is mediated through downstream signaling involving TGF-beta and NO production. Moreover, there is NADPH oxidation activation involving phospholipase D and Ca(2+), leading to the generation of superoxide. In in vivo studies, administration of N-acetyl cysteine and preinduction of heme oxygenase activity and epoetin alpha prevented morphine-induced peritoneal macrophage apoptosis, thus further confirming the role of oxidative stress in morphine-induced macrophage apoptosis.
Collapse
Affiliation(s)
- Rajani S Bhat
- Long Island Jewish Medical Center, 410 Lakeville Road, Suite 207, New Hyde Park, NY 11040, USA
| | | | | | | | | |
Collapse
|
28
|
Abrahams VM, Collins JE, Wira CR, Fanger MW, Yeaman GR. Inhibition of Human Polymorphonuclear Cell Oxidative Burst by 17-β-estradiol and 2,3,7,8-tetrachlorodibenzo-p-dioxin. Am J Reprod Immunol 2003; 50:463-72. [PMID: 14750553 DOI: 10.1046/j.8755-8920.2003.00111.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
PROBLEM Polymorphonuclear cell (PMN) function may be directly influenced by 17-beta-estradiol and the endocrine disruptor, 2,3,7,8-tetrachloro-dibenzo-p-dioxin (TCDD). This may have significant consequences on PMN function within the female reproductive tract. This study evaluated the effects of 17-beta-estradiol and TCDD on PMN oxidative burst. METHOD OF STUDY Peripheral blood PMN were isolated from normal male donors. Following treatment with 17-beta-estradiol, TCDD or both, PMN were stimulated with phorbol 12-myristate 13-acetate. Superoxide production was measured by lucigenin-enhanced chemiluminescence. RESULTS Following 24-hr culture with either 17-beta-estradiol or TCDD, PMN superoxide production was significantly reduced, however, no such inhibition was observed when PMN were cultured with both estradiol and TCDD. Using antagonists, the estradiol and TCDD effects on PMN superoxide production was shown to be estrogen and aryl hydrocarbon receptor mediated. CONCLUSIONS Estradiol and TCDD influence PMN oxidative burst through receptor mediated events. Such altered PMN function may have profound effects upon the normal endometrial cycle.
Collapse
Affiliation(s)
- Vikki M Abrahams
- Department of Microbiology and Immunology, Dartmouth Medical School, 1 Medical Center Drive, Lebanon, NH 03756, USA.
| | | | | | | | | |
Collapse
|
29
|
Noda Y, Kohjima M, Izaki T, Ota K, Yoshinaga S, Inagaki F, Ito T, Sumimoto H. Molecular recognition in dimerization between PB1 domains. J Biol Chem 2003; 278:43516-24. [PMID: 12920115 DOI: 10.1074/jbc.m306330200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The PB1 (Phox and Bem 1) domain is a recently identified module that mediates formation of a heterodimeric complex with other PB1 domain, e.g. the complexes between the phagocyte oxidase activators p67phox and p40phox and between the yeast polarity proteins Bem1p and Cdc24p. These PB1 domains harbor either a conserved lysine residue on one side or an acidic OPCA (OPR/PC/AID) motif around the other side; the lysine of p67phox or Bem1p likely binds to the OPCA of p40phox or Cdc24p, respectively, via electrostatic interactions. To further understand molecular recognition by PB1 domains, here we investigate the interactions mediated by proteins presenting both the lysine and OPCA on a single PB1 domain, namely Par6, atypical protein kinase C (aPKC), and ZIP. Par6 and aPKC form a complex via the interaction of the Par6 lysine with aPKC-OPCA but not via that between the aPKC lysine and Par6-OPCA, thereby localizing to the tight junction of epithelial cells. aPKC also uses its OPCA to interact with ZIP, another protein that has a PB1 domain presenting both the lysine and OPCA, whereas aPKC binds via the conserved lysine to MEK5 in the same manner as ZIP interacts with MEK5. In addition, ZIP can form a homotypic complex via the conserved electrostatic interactions. Thus the PB1 domain appears to be a protein module that fully exploits its two mutually interacting elements in molecular recognition to expand its repertoire of protein-protein interactions.
Collapse
Affiliation(s)
- Yukiko Noda
- Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Takeya R, Ueno N, Kami K, Taura M, Kohjima M, Izaki T, Nunoi H, Sumimoto H. Novel human homologues of p47phox and p67phox participate in activation of superoxide-producing NADPH oxidases. J Biol Chem 2003; 278:25234-46. [PMID: 12716910 DOI: 10.1074/jbc.m212856200] [Citation(s) in RCA: 291] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The catalytic core of a superoxide-producing NADPH oxidase (Nox) in phagocytes is gp91phox/Nox2, a membrane-integrated protein that forms a heterodimer with p22phox to constitute flavocytochrome b558. The cytochrome becomes activated by interacting with the adaptor proteins p47phox and p67phox as well as the small GTPase Rac. Here we describe the cloning of human cDNAs for novel proteins homologous to p47phox and p67phox, designated p41nox and p51nox, respectively; the former is encoded by NOXO1 (Nox organizer 1), and the latter is encoded by NOXA1 (Nox activator 1). The novel homologue p41nox interacts with p22phox via the two tandem SH3 domains, as does p47phox. The protein p51nox as well as p67phox can form a complex with p47phox and with p41nox via the C-terminal SH3 domain and binds to GTP-bound Rac via the N-terminal domain containing four tetratricopeptide repeat motifs. These bindings seem to play important roles, since p47phox and p67phox activate the phagocyte oxidase via the same interactions. Indeed, p41nox and p51nox are capable of replacing the corresponding classical homologue in activation of gp91phox. Nox1, a homologue of gp91phox, also can be activated in cells, when it is coexpressed with p41nox and p51nox, with p41nox and p67phox, or with p47phox and p51nox; in the former two cases, Nox1 is partially activated without any stimulants added, suggesting that p41nox is normally in an active state. Thus, the novel homologues p41nox and p51nox likely function together or in combination with a classical one, thereby activating the two Nox family oxidases.
Collapse
Affiliation(s)
- Ryu Takeya
- Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Burritt JB, Foubert TR, Baniulis D, Lord CI, Taylor RM, Mills JS, Baughan TD, Roos D, Parkos CA, Jesaitis AJ. Functional epitope on human neutrophil flavocytochrome b558. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:6082-9. [PMID: 12794137 DOI: 10.4049/jimmunol.170.12.6082] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
mAb NL7 was raised against purified flavocytochrome b(558), important in host defense and inflammation. NL7 recognized the gp91(phox) flavocytochrome b(558) subunit by immunoblot and bound to permeabilized neutrophils and neutrophil membranes. Epitope mapping by phage display analysis indicated that NL7 binds the (498)EKDVITGLK(506) region of gp91(phox). In a cell-free assay, NL7 inhibited in vitro activation of the NADPH oxidase in a concentration-dependent manner, and had marginal effects on the oxidase substrate Michaelis constant (K(m)). mAb NL7 did not inhibit translocation of p47(phox), p67(phox), or Rac to the plasma membrane, and bound its epitope on gp91(phox) independently of cytosolic factor translocation. However, after assembly of the NADPH oxidase complex, mAb NL7 bound the epitope but did not inhibit the generation of superoxide. Three-dimensional modeling of the C-terminal domain of gp91(phox) on a corn nitrate reductase template suggests close proximity of the NL7 epitope to the proposed NADPH binding site, but significant separation from the proposed p47(phox) binding sites. We conclude that the (498)EKDVITGLK(506) segment resides on the cytosolic surface of gp91(phox) and represents a region important for oxidase function, but not substrate or cytosolic component binding.
Collapse
Affiliation(s)
- James B Burritt
- Department of Microbiology, Montana State University, Bozeman, MT 59717, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Groemping Y, Lapouge K, Smerdon SJ, Rittinger K. Molecular basis of phosphorylation-induced activation of the NADPH oxidase. Cell 2003; 113:343-55. [PMID: 12732142 DOI: 10.1016/s0092-8674(03)00314-3] [Citation(s) in RCA: 294] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The multi-subunit NADPH oxidase complex plays a crucial role in host defense against microbial infection through the production of reactive oxygen species. Activation of the NADPH oxidase requires the targeting of a cytoplasmic p40-p47-p67(phox) complex to the membrane bound heterodimeric p22-gp91(phox) flavocytochrome. This interaction is prevented in the resting state due to an auto-inhibited conformation of p47(phox). The X-ray structure of the auto-inhibited form of p47(phox) reveals that tandem SH3 domains function together to maintain the cytoplasmic complex in an inactive form. Further structural and biochemical data show that phosphorylation of p47(phox) activates a molecular switch that relieves the inhibitory intramolecular interaction. This permits p47(phox) to interact with the cytoplasmic tail of p22(phox) and initiate formation of the active, membrane bound enzyme complex.
Collapse
Affiliation(s)
- Yvonne Groemping
- Division of Protein Structure, National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | | | | | | |
Collapse
|
33
|
Ago T, Kuribayashi F, Hiroaki H, Takeya R, Ito T, Kohda D, Sumimoto H. Phosphorylation of p47phox directs phox homology domain from SH3 domain toward phosphoinositides, leading to phagocyte NADPH oxidase activation. Proc Natl Acad Sci U S A 2003; 100:4474-9. [PMID: 12672956 PMCID: PMC153580 DOI: 10.1073/pnas.0735712100] [Citation(s) in RCA: 170] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2002] [Indexed: 11/18/2022] Open
Abstract
Protein-phosphoinositide interaction participates in targeting proteins to membranes where they function correctly and is often modulated by phosphorylation of lipids. Here we show that protein phosphorylation of p47(phox), a cytoplasmic activator of the microbicidal phagocyte oxidase (phox), elicits interaction of p47(phox) with phosphoinositides. Although the isolated phox homology (PX) domain of p47(phox) can interact directly with phosphoinositides, the lipid-binding activity of this protein is normally suppressed by intramolecular interaction of the PX domain with the C-terminal Src homology 3 (SH3) domain, and hence the wild-type full-length p47(phox) is incapable of binding to the lipids. The W263R substitution in this SH3 domain, abrogating the interaction with the PX domain, leads to a binding of p47(phox) to phosphoinositides. The findings indicate that disruption of the intramolecular interaction renders the PX domain accessible to the lipids. This conformational change is likely induced by phosphorylation of p47(phox), because protein kinase C treatment of the wild-type p47(phox) but not of a mutant protein with the S303304328A substitution culminates in an interaction with phosphoinositides. Furthermore, although the wild-type p47(phox) translocates upon cell stimulation to membranes to activate the oxidase, neither the kinase-insensitive p47(phox) nor lipid-binding-defective proteins, one lacking the PX domain and the other carrying the R90K substitution in this domain, migrates. Thus the protein phosphorylation-driven conformational change of p47(phox) enables its PX domain to bind to phosphoinositides, the interaction of which plays a crucial role in recruitment of p47(phox) from the cytoplasm to membranes and subsequent activation of the phagocyte oxidase.
Collapse
Affiliation(s)
- Tetsuro Ago
- Medical Institute of Bioregulation, Kyushu University, and Department of Molecular and Structural Biology, Kyushu University Graduate School of Medicine, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | |
Collapse
|
34
|
Tincu JA, Menzel LP, Azimov R, Sands J, Hong T, Waring AJ, Taylor SW, Lehrer RI. Plicatamide, an antimicrobial octapeptide from Styela plicata hemocytes. J Biol Chem 2003; 278:13546-53. [PMID: 12569105 DOI: 10.1074/jbc.m211332200] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Plicatamide (Phe-Phe-His-Leu-His-Phe-His-dc Delta DOPA), where dc Delta DOPA represents decarboxy-(E)-alpha,beta-dehydro-3,4-dihydroxyphenylalanine, is a potently antimicrobial octapeptide from the blood cells of the solitary tunicate, Styela plicata. Wild type and methicillin-resistant Staphylococcus aureus (MRSA) responded to plicatamide exposure with a massive potassium efflux that began within seconds. Soon thereafter, treated bacteria largely ceased consuming oxygen, and most became nonviable. Native plicatamide also formed cation-selective channels in model lipid bilayers composed of bacterial lipids. Methicillin-resistant S. aureus treated with plicatamide for 5 min contained prominent mesosomes as well as multiple, small dome-shaped surface protrusions that suggested the involvement of osmotic forces in its antimicrobial effects. To ascertain the contribution of the C-terminal dc Delta DOPA residue to antimicrobial activity, we synthesized several analogues of plicatamide that lacked it. One of these peptides, PL-101 (Phe-Phe-His-Leu-His-Phe-His-Tyr-amide), closely resembled native plicatamide in its antimicrobial activity and its ability to induce potassium efflux. Plicatamide was potently hemolytic for human red blood cells but did not lyse ovine erythrocytes. The small size, rapid action, and potent anti-staphylococcal activity of plicatamide and PL-101 make them intriguing subjects for future antimicrobial peptide design.
Collapse
Affiliation(s)
- J Andy Tincu
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093-0204, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Swain SD, Siemsen DW, Nelson LK, Sipes KM, Hanson AJ, Quinn MT. Inhibition of the neutrophil NADPH oxidase by adenosine is associated with increased movement of flavocytochrome b between subcellular fractions. Inflammation 2003; 27:45-58. [PMID: 12772776 DOI: 10.1023/a:1022639228723] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Adenosine is a potent inhibitor of reactive oxygen species (ROS) production by the NADPH oxidase in fMLF-stimulated neutrophils. Although much is known about the pharamacology and signal transduction of this effect, it is not known how adenosine affects assembly and localization of the NADPH oxidase components within the neutrophil. We report here that adenosine pretreatment of fMLF-stimulated neutrophils results in decreased plasma membrane/secretory granule content of the flavocytochrome b components (p22phox and gp91phox) of the NADPH oxidase, which correlates with inhibition of ROS production. Adenosine treatment did not affect upregulation of secretory and specific granule surface markers, confirming that degranulation was not impaired by adenosine. However, adenosine treatment did result in increased movement of cell-surface flavocytochrome b to heavy granule fractions in fMLF-stimulated neutrophils. These data suggest that adenosine-mediated effects on neutrophil ROS production are due, in part to endocytosis and/or redistribution of flavocytochrome b between various subcellular compartments.
Collapse
Affiliation(s)
- Steve D Swain
- Department of Veterinary Molecular Biology, Montana State University, Bozeman, MT 59717, USA
| | | | | | | | | | | |
Collapse
|
36
|
Kuribayashi F, Nunoi H, Wakamatsu K, Tsunawaki S, Sato K, Ito T, Sumimoto H. The adaptor protein p40(phox) as a positive regulator of the superoxide-producing phagocyte oxidase. EMBO J 2002; 21:6312-20. [PMID: 12456638 PMCID: PMC136946 DOI: 10.1093/emboj/cdf642] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Activation of the superoxide-producing phagocyte NADPH oxidase, crucial in host defense, requires the cytosolic proteins p67(phox) and p47(phox). They translocate to the membrane upon cell stimulation and activate flavocytochrome b(558), the membrane-integrated catalytic core of this enzyme system. The activators p67(phox) and p47(phox) form a ternary complex together with p40(phox), an adaptor protein with unknown function, comprising the PX/PB2, SH3 and PC motif- containing domains: p40(phox) associates with p67(phox) via binding of the p40(phox) PC motif to the p67(phox) PB1 domain, while p47(phox) directly interacts with p67(phox) but not with p40(phox). Here we show that p40(phox) enhances membrane translocation of p67(phox) and p47(phox) in stimulated cells, which leads to facilitated production of superoxide. The enhancement cannot be elicited by a mutant p40(phox) carrying the D289A substitution in PC or a p67(phox) with the K355A substitution in PB1, each being defective in binding to its respective partner. Thus p40(phox) participates in activation of the phagocyte oxidase by regulating membrane recruitment of p67(phox) and p47(phox) via the PB1-PC interaction with p67(phox).
Collapse
Affiliation(s)
- Futoshi Kuribayashi
- Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Department of Molecular and Structural Biology, Kyushu University Graduate School of Medical Science, Fukuoka 812-8582, Department of Pediatrics, Miyazaki Medical College, Miyazaki 889-1692, Department of Biochemical and Chemical Engineering, Faculty of Engineering, Gunma University, Kiryu 376-8515, CREST JST (Japan Science and Technology), Department of Infectious Disease, National Children’s Medical Research Center, Tokyo 154-8509, Department of Environmental Science, Faculty of Human Environmental Science, Fukuoka Women’s University, Fukuoka 813-8529 and Division of Genome Biology, Cancer Research Institute, Kanazawa University, Kanazawa 920-0934, Japan Corresponding author e-mail:
| | - Hiroyuki Nunoi
- Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Department of Molecular and Structural Biology, Kyushu University Graduate School of Medical Science, Fukuoka 812-8582, Department of Pediatrics, Miyazaki Medical College, Miyazaki 889-1692, Department of Biochemical and Chemical Engineering, Faculty of Engineering, Gunma University, Kiryu 376-8515, CREST JST (Japan Science and Technology), Department of Infectious Disease, National Children’s Medical Research Center, Tokyo 154-8509, Department of Environmental Science, Faculty of Human Environmental Science, Fukuoka Women’s University, Fukuoka 813-8529 and Division of Genome Biology, Cancer Research Institute, Kanazawa University, Kanazawa 920-0934, Japan Corresponding author e-mail:
| | - Kaori Wakamatsu
- Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Department of Molecular and Structural Biology, Kyushu University Graduate School of Medical Science, Fukuoka 812-8582, Department of Pediatrics, Miyazaki Medical College, Miyazaki 889-1692, Department of Biochemical and Chemical Engineering, Faculty of Engineering, Gunma University, Kiryu 376-8515, CREST JST (Japan Science and Technology), Department of Infectious Disease, National Children’s Medical Research Center, Tokyo 154-8509, Department of Environmental Science, Faculty of Human Environmental Science, Fukuoka Women’s University, Fukuoka 813-8529 and Division of Genome Biology, Cancer Research Institute, Kanazawa University, Kanazawa 920-0934, Japan Corresponding author e-mail:
| | - Shohko Tsunawaki
- Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Department of Molecular and Structural Biology, Kyushu University Graduate School of Medical Science, Fukuoka 812-8582, Department of Pediatrics, Miyazaki Medical College, Miyazaki 889-1692, Department of Biochemical and Chemical Engineering, Faculty of Engineering, Gunma University, Kiryu 376-8515, CREST JST (Japan Science and Technology), Department of Infectious Disease, National Children’s Medical Research Center, Tokyo 154-8509, Department of Environmental Science, Faculty of Human Environmental Science, Fukuoka Women’s University, Fukuoka 813-8529 and Division of Genome Biology, Cancer Research Institute, Kanazawa University, Kanazawa 920-0934, Japan Corresponding author e-mail:
| | - Kazuki Sato
- Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Department of Molecular and Structural Biology, Kyushu University Graduate School of Medical Science, Fukuoka 812-8582, Department of Pediatrics, Miyazaki Medical College, Miyazaki 889-1692, Department of Biochemical and Chemical Engineering, Faculty of Engineering, Gunma University, Kiryu 376-8515, CREST JST (Japan Science and Technology), Department of Infectious Disease, National Children’s Medical Research Center, Tokyo 154-8509, Department of Environmental Science, Faculty of Human Environmental Science, Fukuoka Women’s University, Fukuoka 813-8529 and Division of Genome Biology, Cancer Research Institute, Kanazawa University, Kanazawa 920-0934, Japan Corresponding author e-mail:
| | - Takashi Ito
- Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Department of Molecular and Structural Biology, Kyushu University Graduate School of Medical Science, Fukuoka 812-8582, Department of Pediatrics, Miyazaki Medical College, Miyazaki 889-1692, Department of Biochemical and Chemical Engineering, Faculty of Engineering, Gunma University, Kiryu 376-8515, CREST JST (Japan Science and Technology), Department of Infectious Disease, National Children’s Medical Research Center, Tokyo 154-8509, Department of Environmental Science, Faculty of Human Environmental Science, Fukuoka Women’s University, Fukuoka 813-8529 and Division of Genome Biology, Cancer Research Institute, Kanazawa University, Kanazawa 920-0934, Japan Corresponding author e-mail:
| | - Hideki Sumimoto
- Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Department of Molecular and Structural Biology, Kyushu University Graduate School of Medical Science, Fukuoka 812-8582, Department of Pediatrics, Miyazaki Medical College, Miyazaki 889-1692, Department of Biochemical and Chemical Engineering, Faculty of Engineering, Gunma University, Kiryu 376-8515, CREST JST (Japan Science and Technology), Department of Infectious Disease, National Children’s Medical Research Center, Tokyo 154-8509, Department of Environmental Science, Faculty of Human Environmental Science, Fukuoka Women’s University, Fukuoka 813-8529 and Division of Genome Biology, Cancer Research Institute, Kanazawa University, Kanazawa 920-0934, Japan Corresponding author e-mail:
| |
Collapse
|
37
|
Gauss KA, Bunger PL, Siemsen DW, Young CJ, Nelson-Overton L, Prigge JR, Swain SD, Quinn MT. Molecular analysis of the bison phagocyte NADPH oxidase: cloning and sequencing of five NADPH oxidase cDNAs. Comp Biochem Physiol B Biochem Mol Biol 2002; 133:1-12. [PMID: 12223206 DOI: 10.1016/s1096-4959(02)00090-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
During the host defense process, neutrophils migrate into infected tissues where they become activated, resulting in the assembly of a superoxide anion-generating complex known as the NADPH oxidase. Despite the importance of this system in animal host defense, almost nothing is known about the NADPH oxidase in neutrophils from wild ruminant species. In the present studies, we provide a molecular analysis of the bison leukocyte NADPH oxidase. Using reverse transcriptase-polymerase chain reaction and rapid amplification of cDNA ends, we cloned and sequenced the full-length cDNAs for five bison NADPH oxidase components: p22(phox), p40(phox), p47(phox) and p67(phox), and gp91(phox). When compared to other species, the deduced amino acid sequences of the bison homologs were most similar to those of bovine. Interestingly, a bison p40(phox) alternative splice product was isolated, which was similar to that observed for human p40(phox) in that the cDNAs contained sequence from intron 8. Consistent with the high degree of similarity between bison and bovine amino acid sequences, immunoblot analysis showed that the bison homologs migrated similarly to their bovine counterparts. Overall, these studies show that the bison and bovine NADPH oxidase genes are highly conserved between these two species, despite their divergence from a common ancestor over 1 million years ago.
Collapse
Affiliation(s)
- Katherine A Gauss
- Department of Veterinary Molecular Biology and Center for Bison and Wildlife Health, Montana State University, Bozeman, MT 59717, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Splettstoesser WD, Schuff-Werner P. Oxidative stress in phagocytes--"the enemy within". Microsc Res Tech 2002; 57:441-55. [PMID: 12112427 DOI: 10.1002/jemt.10098] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Phagocytes represent a powerful defense system against invading microorganisms that threaten the life or functional integrity of the host. The capacity to generate and release substantial amounts of reactive oxygen species is a unique property of activated polymorphonuclear and mononuclear phagocytes. The crucial role of these molecules in killing microorganisms and their consecutive contribution to tissue damage during injury and inflammation is widely known. Although much research has been done to explore the molecular events involved in the interaction of oxygen intermediates with microbes or host tissue, surprisingly little attention has been paid to the effect of reactive metabolites on the phagocyte itself. This fact is especially surprising, since it is apparent that the activated phagocyte is directly exposed to its own toxic metabolites. The potential damage occurring during excessive radical formation might notably alter the vital functions of these primarily immunocompetent cells. Moreover, the critical role of oxygen radicals in apoptosis of leukocytes has been recently revealed. Apoptosis is now supposed to represent a key mechanism in neutrophil deactivation and resolution of inflammation. Therefore, this review will focus on the delicate balance between released oxidants and antioxidative protection within the phagocytes themselves. General and phagocyte-specific antioxidative mechanisms, which have co-evolved with the radical generating machinery of phagocytes, are discussed, since the outcome of local inflammation can directly depend on this antioxidative capacity and might range from adequate elimination of the pathogen with minimal acute tissue damage to progression towards a systemic inflammatory response syndrome.
Collapse
Affiliation(s)
- Wolf D Splettstoesser
- German Armed Forces Medical Academy, Institute of Microbiology, D-80937 Munich, Germany
| | | |
Collapse
|
39
|
Gorzalczany Y, Alloul N, Sigal N, Weinbaum C, Pick E. A prenylated p67phox-Rac1 chimera elicits NADPH-dependent superoxide production by phagocyte membranes in the absence of an activator and of p47phox: conversion of a pagan NADPH oxidase to monotheism. J Biol Chem 2002; 277:18605-10. [PMID: 11896062 DOI: 10.1074/jbc.m202114200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activation of the superoxide-generating NADPH oxidase of phagocytes is the result of the assembly of a membrane-localized flavocytochrome (cytochrome b(559)) with the cytosolic components p47(phox), p67(phox), and the small GTPase Rac. Activation can be reproduced in an in vitro system in which cytochrome b(559)-containing membranes are mixed with cytosolic components in the presence of an anionic amphiphile. We proposed that the essential event in activation is the interaction between p67(phox) and cytochrome b(559) and that Rac and p47(phox) serve as carriers for p67(phox) to the membrane. When prenylated, Rac can fulfill the carrier function by itself, supporting oxidase activation by p67(phox) in the absence of p47(phox) and amphiphile. We now show that a single chimeric protein, consisting of residues 1-212 of p67(phox) and full-length Rac1 (residues 1-192), prenylated in vitro and exchanged to GTP, becomes a potent oxidase activator in the absence of any other component or stimulus. Oxidase activation by prenylated chimera p67(phox) (1-212)-Rac1 (1-192) is accompanied by its spontaneous association with membranes. Prenylated chimeras p67(phox) (1-212)-Rac1 (178-192) and p67(phox) (1-212)-Rac1 (189-192), containing specific C-terminal regions of Rac1, are inactive; the activity of the first but not of the second chimera can be rescued by supplementation with exogenous nonprenylated Rac1-GTP. An analysis of prenylated p67(phox)-Rac1 chimeras suggests that the basic requirements for oxidase activation are: (i) a "two signals" membrane-localizing motif present in Rac, comprising the prenyl group and a C-terminal polybasic sequence and (ii) an intrachimeric or extrachimeric protein-protein interaction between p67(phox) and Rac1, causing a conformational change in the "activation domain" in p67(phox).
Collapse
Affiliation(s)
- Yara Gorzalczany
- Julius Friedrich Cohnheim-Minerva Center for Phagocyte Research, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | | | |
Collapse
|
40
|
Miller FJ, Sharp WJ, Fang X, Oberley LW, Oberley TD, Weintraub NL. Oxidative stress in human abdominal aortic aneurysms: a potential mediator of aneurysmal remodeling. Arterioscler Thromb Vasc Biol 2002; 22:560-5. [PMID: 11950691 DOI: 10.1161/01.atv.0000013778.72404.30] [Citation(s) in RCA: 202] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abdominal aortic aneurysm (AAA) is an inflammatory disorder characterized by localized connective tissue degradation and smooth muscle cell (SMC) apoptosis, leading to aortic dilatation and rupture. Reactive oxygen species are abundantly produced during inflammatory processes and can stimulate connective tissue-degrading proteases and apoptosis of SMCs. We hypothesized that reactive oxygen species are locally increased in AAA and lead to enhanced oxidative stress. In aortas from patients undergoing surgical repair, superoxide levels (measured by lucigenin-enhanced chemiluminescence) were 2.5-fold higher in the AAA segments compared with the adjacent nonaneurysmal aortic (NA) segments (6638+/-2164 versus 2675+/-1027 relative light units for 5 minutes per millimeter squared, respectively; n=7). Formation of thiobarbituric acid-reactive substances and conjugated dienes, 2 indices of lipid peroxidation, were increased 3-fold in AAA compared with NA segments. Immunostaining for nitrotyrosine was significantly greater in AAA tissue. Dihydroethidium staining indicated that increased superoxide in AAA segments was localized to infiltrating inflammatory cells and to SMCs. Expression of the NADPH oxidase subunits p47(phox) and p22(phox) and NAD(P)H oxidase activity were increased in AAA segments compared with NA segments. Thus, oxidative stress is markedly increased in AAA, in part through the activation of NAD(P)H oxidase, and may contribute to the disease pathogenesis.
Collapse
Affiliation(s)
- Francis J Miller
- Department of Internal Medicine, University of Iowa College of Medicine, Iowa City, USA.
| | | | | | | | | | | |
Collapse
|
41
|
Lapouge K, Smith SJM, Groemping Y, Rittinger K. Architecture of the p40-p47-p67phox complex in the resting state of the NADPH oxidase. A central role for p67phox. J Biol Chem 2002; 277:10121-8. [PMID: 11796733 DOI: 10.1074/jbc.m112065200] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The phagocyte NADPH oxidase is a multiprotein enzyme whose subunits are partitioned between the cytosol and plasma membrane in resting cells. Upon exposure to appropriate stimuli multiple phosphorylation events in the cytosolic components take place, which induce rearrangements in a number of protein-protein interactions, ultimately leading to translocation of the cytoplasmic complex to the membrane. To understand the molecular mechanisms that underlie the assembly and activation process we have carried out a detailed study of the protein-protein interactions that occur in the p40-p47-p67(phox) complex of the resting oxidase. Here we show that this complex contains one copy of each protein, which assembles to form a heterotrimeric complex. The apparent high molecular weight of this complex, as observed by gel filtration studies, is due to an extended, non-globular shape rather than to the presence of multiple copies of any of the proteins. Isothermal titration calorimetry measurements of the interactions between the individual components of this complex demonstrate that p67(phox) is the primary binding partner of p47(phox) in the resting state. These findings, in combination with earlier reports, allow us to propose a model for the architecture of the resting complex in which p67(phox) acts as the bridging molecule that connects p40(phox) and p47(phox).
Collapse
Affiliation(s)
- Karine Lapouge
- Division of Protein Structure, National Institute for Medical Research, Mill Hill, London NW7 1AA, United Kingdom
| | | | | | | |
Collapse
|
42
|
Dahan I, Issaeva I, Gorzalczany Y, Sigal N, Hirshberg M, Pick E. Mapping of functional domains in the p22(phox) subunit of flavocytochrome b(559) participating in the assembly of the NADPH oxidase complex by "peptide walking". J Biol Chem 2002; 277:8421-32. [PMID: 11733522 DOI: 10.1074/jbc.m109778200] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The superoxide-generating NADPH oxidase complex of phagocytes consists of a membranal heterodimeric flavocytochrome (cytochrome b(559)), composed of gp91(phox) and p22(phox) subunits, and four cytosolic proteins, p47(phox), p67(phox), p40(phox), and the small GTPase Rac (1 or 2). All redox stations involved in electron transport from NADPH to oxygen are located in gp91(phox). NADPH oxidase activation is the consequence of assembly of cytochrome b(559) with cytosolic proteins, a process reproducible in a cell-free system, consisting of phagocyte membranes, and recombinant cytosolic components, activated by an anionic amphiphile. p22(phox) is believed to act as a linker between the cytosolic components and gp91(phox). We applied "peptide walking" to mapping of domains in p22(phox) participating in NADPH oxidase assembly. Ninety one synthetic overlapping pentadecapeptides, spanning the p22(phox) sequence, were tested for the ability to inhibit NADPH oxidase activation in the cell-free system and to bind individual cytosolic NADPH oxidase components. We conclude the following. 1) The p22(phox) subunit of cytochrome b(559) serves as an anchor for both p47(phox) and p67(phox). 2) p47(phox) binds not only to the proline-rich region, located at residues 151-160 in the cytosolic C terminus of p22(phox), but also to a domain (residues 51-63) located on a loop exposed to the cytosol. 3) p67(phox) shares with p47(phox) the ability to bind to the proline-rich region (residues 151-160) and also binds to two additional domains, in the cytosolic loop (residues 81-91) and at the start of the cytosolic tail (residues 111-115). 4) The binding affinity of p67(phox) for p22(phox) peptides is lower than that of p47(phox). 5) Binding of both p47(phox) and p67(phox) to proline-rich p22(phox) peptides occurs in the absence of an anionic amphiphile. A revised membrane topology model of p22(phox) is proposed, the core of which is the presence of a functionally important cytosolic loop (residues 51-91).
Collapse
Affiliation(s)
- Iris Dahan
- Julius Friedrich Cohnheim-Minerva Center for Phagocyte Research and the Ela Kodesz Institute of Host Defense against Infectious Diseases, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | | | | | |
Collapse
|
43
|
Gauss KA, Mascolo PL, Siemsen DW, Nelson LK, Bunger PL, Pagano PJ, Quinn MT. Cloning and sequencing of rabbit leukocyte NADPH oxidase genes reveals a unique p67
phox
homolog. J Leukoc Biol 2002. [DOI: 10.1189/jlb.71.2.319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Katherine A. Gauss
- Department of Veterinary Molecular Biology, Montana State University, Bozeman; and
| | - Patrice L. Mascolo
- Department of Veterinary Molecular Biology, Montana State University, Bozeman; and
| | - Daniel W. Siemsen
- Department of Veterinary Molecular Biology, Montana State University, Bozeman; and
| | - Laura K. Nelson
- Department of Veterinary Molecular Biology, Montana State University, Bozeman; and
| | - Peggy L. Bunger
- Department of Veterinary Molecular Biology, Montana State University, Bozeman; and
| | - Patrick J. Pagano
- Division of Hypertension and Vascular Research, Henry Ford Hospital, Detroit, Michigan
| | - Mark T. Quinn
- Department of Veterinary Molecular Biology, Montana State University, Bozeman; and
| |
Collapse
|
44
|
Abstract
Proton (equivalents) are primary participants in the control and potency of the NADPH oxidase. Both the cytosolic and intraphagosomal pH are influenced during oxidase activation, and maintenance of the optimal environment requires the coordinated action of a series of sophisticated, highly regulated H(+) transporters, including the Na(+)/H(+) exchange, vacuolar H(+)-ATPase, and H(+)-conductive pathway(s). In addition, protons that are produced during some of the NADPH oxidase reactions then are substrates for the dismutation of superoxide, which precedes production of additional bactericidal agents. In this review, pH homeostasis is shown in conjunction with the NADPH oxidase to present an integrated picture of leukocyte physiology during the phagocytic response.
Collapse
Affiliation(s)
- Andrzej Jankowski
- Cell Biology Programme, Research Institute, The Hospital for Sick Children, Toronto, M5G 1X8, Canada
| | | |
Collapse
|
45
|
Gauss KA, Bunger PL, Quinn MT. AP‐1 is essential for p67
phox
promoter activity. J Leukoc Biol 2002. [DOI: 10.1189/jlb.71.1.163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Katherine A. Gauss
- Department of Veterinary Molecular Biology, Montana State University, Bozeman
| | - Peggy L. Bunger
- Department of Veterinary Molecular Biology, Montana State University, Bozeman
| | - Mark T. Quinn
- Department of Veterinary Molecular Biology, Montana State University, Bozeman
| |
Collapse
|
46
|
Bauer G. Signaling and proapoptotic functions of transformed cell-derived reactive oxygen species. Prostaglandins Leukot Essent Fatty Acids 2002; 66:41-56. [PMID: 12051956 DOI: 10.1054/plef.2001.0332] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Transformed fibroblasts generate extracellular superoxide anions through the recently identified membrane-associated NADPH oxidase. These cell-derived superoxide anions exhibit signaling functions such as regulation of proliferation and maintenance of the transformed state. Their dismutation product hydrogen peroxide regulates the intracellular level of catalase, whose activity has been observed to be upregulated in certain transformed cells. After glutathione depletion, transformed cell-derived reactive oxygen species (ROS) exhibit apoptosis-inducing potential through the metal-catalyzed Haber-Weiss reaction. Moreover, transformed cell-derived ROS represent key elements for selective and efficient apoptosis induction by natural antitumor systems (such as fibroblasts, granulocytes and macrophages). These effector cells release peroxidase, which utilizes target cell-derived hydrogen peroxide for HOCl synthesis. In a second step, HOCl interacts with target cell-derived superoxide anions and forms apoptosis-inducing hydroxyl radicals. In a parallel signaling pathway, effector cell-derived NO interacts with target cell-derived superoxide anions and generates the apoptosis inducer peroxynitrite. Therefore, transformed cell-derived ROS determine transformed cells as selective targets for induction of apoptosis by these effector systems. It is therefore proposed that transformed cell derived ROS interact with associated cells to exhibit directed and specific signaling functions, some of which are beneficial and some of which can become detrimental to transformed cells.
Collapse
Affiliation(s)
- G Bauer
- Abteilung Virologie, Institut für Medizinische Mikrobiologie und Hygiene, Universität Freiburg, Germany.
| |
Collapse
|
47
|
Abstract
Reactive oxygen species (ROS) are known mediators of intracellular signaling cascades. Excessive production of ROS may, however, lead to oxidative stress, loss of cell function, and ultimately apoptosis or necrosis. A balance between oxidant and antioxidant intracellular systems is hence vital for cell function, regulation, and adaptation to diverse growth conditions. Thioredoxin reductase (TrxR) in conjunction with thioredoxin (Trx) is a ubiquitous oxidoreductase system with antioxidant and redox regulatory roles. In mammals, extracellular forms of Trx also have cytokine-like effects. Mammalian TrxR has a highly reactive active site selenocysteine residue resulting in a profound reductive capacity, reducing several substrates in addition to Trx. Due to the reactivity of TrxR, the enzyme is inhibited by many clinically used electrophilic compounds including nitrosoureas, aurothioglucose, platinum compounds, and retinoic acid derivatives. The properties of TrxR in combination with the functions of Trx position this system at the core of cellular thiol redox control and antioxidant defense. In this review, we focus on the reactions of the Trx system with ROS molecules and different cellular antioxidant enzymes. We summarize the TrxR-catalyzed regeneration of several antioxidant compounds, including ascorbic acid (vitamin C), selenium-containing substances, lipoic acid, and ubiquinone (Q10). We also discuss the general cellular effects of TrxR inhibition. Dinitrohalobenzenes constitute a unique class of immunostimulatory TrxR inhibitors and we consider the immunomodulatory effects of dinitrohalobenzene compounds in view of their reactions with the Trx system.
Collapse
Affiliation(s)
- J Nordberg
- Medical Nobel Institute for Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | | |
Collapse
|
48
|
Foubert TR, Bleazard JB, Burritt JB, Gripentrog JM, Baniulis D, Taylor RM, Jesaitis AJ. Identification of a spectrally stable proteolytic fragment of human neutrophil flavocytochrome b composed of the NH2-terminal regions of gp91(phox) and p22(phox). J Biol Chem 2001; 276:38852-61. [PMID: 11504718 DOI: 10.1074/jbc.m104373200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A heme-bearing polypeptide core of human neutrophil flavocytochrome b(558) was isolated by applying high performance, size exclusion, liquid chromatography to partially purified Triton X-100-solubilized flavocytochrome b that had been exposed to endoproteinase Glu-C for 1 h. The fragment was composed of two polypeptides of 60-66 and 17 kDa by SDS-polyacrylamide gel electrophoresis and retained a native heme absorbance spectrum that was stable for several days when stored at 4 degrees C in detergent-containing buffer. These properties suggested that the majority of the flavocytochrome b heme environment remained intact. Continued digestion up to 4.5 h yielded several heme-associated fragments that were variable in composition between experiments. Digestion beyond 4.5 h resulted in a gradual loss of recoverable heme. N-Linked deglycosylation and reduction and alkylation of the 1-h digestion fragment did not affect the electrophoretic mobility of the 17-kDa fragment but reduced the 60-66-kDa fragment to 39 kDa. Sequence and immunoblot analyses identified the fragments as the NH(2)-terminal 320-363 amino acid residues of gp91(phox) and the NH(2)-terminal 169-171 amino acid residues of p22(phox). These findings provide direct evidence that the primarily hydrophobic NH(2)-terminal regions of flavocytochrome b are responsible for heme ligation.
Collapse
Affiliation(s)
- T R Foubert
- Department of Microbiology, Montana State University, Bozeman, Montana 59717-3520, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Gozal E, Forman HJ, Torres M. ADP stimulates the respiratory burst without activation of ERK and AKT in rat alveolar macrophages. Free Radic Biol Med 2001; 31:679-87. [PMID: 11522453 DOI: 10.1016/s0891-5849(01)00630-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Alveolar macrophages (AM) are the first line of defense against infection in the lungs. We previously showed that the production of superoxide and hydrogen peroxide, i.e., the respiratory burst, is stimulated by adenine nucleotides (ADP >> ATP) in rat AM through signaling pathways involving calcium and protein kinase C. Here, we further show that ADP induces a rapid increase in the tyrosine phosphorylation of several proteins that was reduced by the tyrosine kinase inhibitor genistein, which also inhibited the respiratory burst. Interestingly, ADP did not trigger the activation of the mitogen-activated protein kinases ERK1 and ERK2, or that of protein kinase B/AKT, a downstream target of the phosphatidylinositol 3-kinase (PI3K) pathway. This is in contrast to another stimulus of the respiratory burst, zymosan-activated serum (ZAS), which activates both the ERK and PI3K pathways. Thus, this study demonstrates that the receptor for ADP in rat AM is not coupled to the ERK and AKT pathways and, that neither the ERK pathway nor AKT is essential to induce the activation of the NAPDH oxidase by ADP in rat AM while tyrosine kinases appeared to be required. The rate and amount of hydrogen peroxide released by the ADP-stimulated respiratory burst was similar to that produced by ZAS stimulation. The absence of ERK activation after ADP stimulation therefore suggests that hydrogen peroxide is not sufficient to activate the ERK pathway in rat AM. Nonetheless, as hydrogen peroxide was necessary for ERK activation by ZAS, this indicates that, in contrast to ADP, ZAS stimulates a pathway that is targeted by hydrogen peroxide and leads to ERK activation.
Collapse
Affiliation(s)
- E Gozal
- Department of Molecular Pharmacology and Toxicology, School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | | | | |
Collapse
|
50
|
Biberstine-Kinkade KJ, DeLeo FR, Epstein RI, LeRoy BA, Nauseef WM, Dinauer MC. Heme-ligating histidines in flavocytochrome b(558): identification of specific histidines in gp91(phox). J Biol Chem 2001; 276:31105-12. [PMID: 11413138 DOI: 10.1074/jbc.m103327200] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The phagocyte NADPH-dependent oxidase generates superoxide (O(2)) by reducing molecular oxygen through flavocytochrome b(558) (flavocytochrome b), a heterodimeric oxidoreductase composed of gp91(phox) and p22(phox) subunits. Although each flavocytochrome b molecule contains two heme groups, their precise distribution within the heterodimer is unknown. Among functionally and/or structurally related oxidoreductases, histidines at codons 101, 111, 115, 119, 209, 210, and 222 of gp91(phox) are conserved and potential candidates to ligate heme. We compared biochemical and functional features of normal flavocytochrome b with those in cells expressing gp91(phox) harboring amino acid substitutions at each of these histidines. Surface expression of flavocytochrome b and heterodimer formation were relatively unaffected in cells expressing gp91(phox) H111L, H119L, or H210L. These mutations also had no effect on the flavocytochrome b heme spectrum, although NADPH oxidase activity was decreased in cells expressing gp91(phox) H119L or H210L. In contrast, gp65 was not processed to gp91(phox), heterodimers did not form, and flavocytochrome b was not expressed on the surface of cells expressing gp91(phox) H101L, H115L, H115D, H209C, H209Y, H222L, H222C, or H222R. Similarly, this subset of mutants lacked detectable O(2)-generating activity, and flavocytochrome b purified from these cells contained little or no heme. These findings demonstrate that His(101), His(115), His(209), and His(222) of gp91(phox) are critical for heme binding and biosynthetic maturation of flavocytochrome b.
Collapse
Affiliation(s)
- K J Biberstine-Kinkade
- Department of Pediatrics (Hematology/Oncology), Wells Center for Pediatric Research, Riley Hospital for Children, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | | | | | |
Collapse
|