1
|
da Silva Costa L, Coelho Filho MA, Araújo da Silva MA, Moreira AS, Dos Santos Soares Filho W, Freschi L, da Silva Gesteira A. Revisiting Citrus Rootstocks Polyploidy as a Means to Improve Drought Resilience: Sometimes Less Is More. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39254282 DOI: 10.1111/pce.15126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 09/11/2024]
Abstract
Polyploid varieties have been suggested as an alternative approach to promote drought tolerance in citrus crops. In this study, we compared the responses of diploid and tetraploid Sunki 'Tropical' rootstocks to water deficit when grafted onto 'Valencia' sweet orange trees and subjected to water withholding in isolation or competition experiments under potted conditions. Our results revealed that, when grown in isolation, tetraploid rootstocks took longer to show drought symptoms, but this advantage disappeared when grown in competition under the same soil moisture conditions. The differences in drought responses were mainly associated with variations in endogenous leaf levels of abscisic acid (ABA), hydrogen peroxide (H₂O₂) and carbohydrates among treatments. Overall, tetraploids were more affected by drought in individual experiments, showing higher H₂O₂ production, and in competition experiments, rapidly increasing ABA production to regulate stomatal closure and reduce water loss through transpiration. Therefore, our results highlight the crucial importance of evaluating diploid and tetraploid rootstocks under the same soil moisture conditions to better simulate field conditions, providing important insights to improve selection strategies for more resilient citrus rootstocks.
Collapse
Affiliation(s)
- Lucas da Silva Costa
- Departamento de Biologia, Centro de Genética e Biologia Molecular, Universidade Estadual de Santa Cruz, Ilhéus, Brazil
| | | | - Monique Ayala Araújo da Silva
- Departamento de Biologia, Centro de Genética e Biologia Molecular, Universidade Estadual de Santa Cruz, Ilhéus, Brazil
| | | | | | - Luciano Freschi
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Abelmon da Silva Gesteira
- Departamento de Biologia, Centro de Genética e Biologia Molecular, Universidade Estadual de Santa Cruz, Ilhéus, Brazil
- Embrapa Mandioca e Fruticultura, Cruz das Almas, Brazil
| |
Collapse
|
2
|
Xiao P, Qu J, Wang Y, Fang T, Xiao W, Wang Y, Zhang Y, Khan M, Chen Q, Xu X, Li C, Liu JH. Transcriptome and metabolome atlas reveals contributions of sphingosine and chlorogenic acid to cold tolerance in Citrus. PLANT PHYSIOLOGY 2024; 196:634-650. [PMID: 38875157 DOI: 10.1093/plphys/kiae327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/18/2024] [Accepted: 05/09/2024] [Indexed: 06/16/2024]
Abstract
Citrus is one of the most important fruit crop genera in the world, but many Citrus species are vulnerable to cold stress. Ichang papeda (Citrus ichangensis), a cold-hardy citrus species, holds great potential for identifying valuable metabolites that are critical for cold tolerance in Citrus. However, the metabolic changes and underlying mechanisms that regulate Ichang papeda cold tolerance remain largely unknown. In this study, we compared the metabolomes and transcriptomes of Ichang papeda and HB pummelo (Citrus grandis "Hirado Buntan", a cold-sensitive species) to explore the critical metabolites and genes responsible for cold tolerance. Metabolomic analyses led to the identification of common and genotype-specific metabolites, consistent with transcriptomic alterations. Compared to HB pummelo under cold stress, Ichang papeda accumulated more sugars, flavonoids, and unsaturated fatty acids, which are well-characterized metabolites involved in stress responses. Interestingly, sphingosine and chlorogenic acid substantially accumulated only in Ichang papeda. Knockdown of CiSPT (C. ichangensis serine palmitoyltransferase) and CiHCT2 (C. ichangensis hydroxycinnamoyl-CoA: shikimate hydroxycinnamoyltransferase2), two genes involved in sphingosine and chlorogenic acid biosynthesis, dramatically decreased endogenous sphingosine and chlorogenic acid levels, respectively. This reduction in sphingosine and chlorogenic acid notably compromised the cold tolerance of Ichang papeda, whereas exogenous application of these metabolites increased plant cold tolerance. Taken together, our findings indicate that greater accumulation of a spectrum of metabolites, particularly sphingosine and chlorogenic acid, promotes cold tolerance in cold-tolerant citrus species. These findings broaden our understanding of plant metabolic alterations in response to cold stress and provide valuable targets that can be manipulated to improve Citrus cold tolerance.
Collapse
Affiliation(s)
- Peng Xiao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jing Qu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yue Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tian Fang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wei Xiao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yilei Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yu Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Madiha Khan
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qiyu Chen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaoyong Xu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, China
| | - Chunlong Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Ji-Hong Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| |
Collapse
|
3
|
Lu Z, Huang W, Ge Q, Liang G, Sun L, Wu J, Ghouri F, Shahid MQ, Liu X. Seed development-related genes contribute to high yield heterosis in integrated utilization of elite autotetraploid and neo-tetraploid rice. FRONTIERS IN PLANT SCIENCE 2024; 15:1421207. [PMID: 38933462 PMCID: PMC11204133 DOI: 10.3389/fpls.2024.1421207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024]
Abstract
Introduction Autotetraploid rice holds high resistance to abiotic stress and substantial promise for yield increase, but it could not be commercially used because of low fertility. Thus, our team developed neo-tetraploid rice with high fertility and hybrid vigor when crossed with indica autotetraploid rice. Despite these advances, the molecular mechanisms underlying this heterosis remain poorly understood. Methods An elite indica autotetraploid rice line (HD11) was used to cross with neo-tetraploid rice, and 34 hybrids were obtained to evaluate agronomic traits related to yield. WE-CLSM, RNA-seq, and CRISPR/Cas9 were employed to observe endosperm structure and identify candidate genes from two represent hybrids. Results and discussion These hybrids showed high seed setting and an approximately 55% increase in 1000-grain weight, some of which achieved grain yields comparable to those of the diploid rice variety. The endosperm observations indicated that the starch grains in the hybrids were more compact than those in paternal lines. A total of 119 seed heterosis related genes (SHRGs) with different expressions were identified, which might contribute to high 1000-grain weight heterosis in neo-tetraploid hybrids. Among them, 12 genes had been found to regulate grain weight formation, including OsFl3, ONAC023, OsNAC024, ONAC025, ONAC026, RAG2, FLO4, FLO11, OsISA1, OsNF-YB1, NF-YC12, and OsYUC9. Haplotype analyses of these 12 genes revealed the various effects on grain weight among different haplotypes. The hybrids could polymerize more dominant haplotypes of above grain weight regulators than any homozygous cultivar. Moreover, two SHRGs (OsFl3 and SHRG2) mutants displayed a significant reduction in 1000-grain weight and an increase in grain chalkiness, indicating that OsFl3 and SHRG2 positively regulate grain weight. Our research has identified a valuable indica autotetraploid germplasm for generating strong yield heterosis in combination with neo-tetraploid lines and gaining molecular insights into the regulatory processes of heterosis in tetraploid rice.
Collapse
Affiliation(s)
- Zijun Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- School of Biology and Agriculture, Shaoguan University, Shaoguan, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, China
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Weicong Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, China
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Qi Ge
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, China
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Guobin Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, China
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Lixia Sun
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, China
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Jinwen Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, China
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Fozia Ghouri
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, China
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Muhammad Qasim Shahid
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, China
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Xiangdong Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, China
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
4
|
Shi K, Dong H, Du H, Li Y, Zhou L, Liang C, Şakiroğlu M, Wang Z. The chromosome-level assembly of the wild diploid alfalfa genome provides insights into the full landscape of genomic variations between cultivated and wild alfalfa. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1757-1772. [PMID: 38288521 PMCID: PMC11123407 DOI: 10.1111/pbi.14300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 11/22/2023] [Accepted: 01/15/2024] [Indexed: 05/25/2024]
Abstract
Alfalfa (Medicago sativa L.) is one of the most important forage legumes in the world, including autotetraploid (M. sativa ssp. sativa) and diploid alfalfa (M. sativa ssp. caerulea, progenitor of autotetraploid alfalfa). Here, we reported a high-quality genome of ZW0012 (diploid alfalfa, 769 Mb, contig N50 = 5.5 Mb), which was grouped into the Northern group in population structure analysis, suggesting that our genome assembly filled a major gap among the members of M. sativa complex. During polyploidization, large phenotypic differences occurred between diploids and tetraploids, and the genetic information underlying its massive phenotypic variations remains largely unexplored. Extensive structural variations (SVs) were identified between ZW0012 and XinJiangDaYe (an autotetraploid alfalfa with released genome). We identified 71 ZW0012-specific PAV genes and 1296 XinJiangDaYe-specific PAV genes, mainly involved in defence response, cell growth, and photosynthesis. We have verified the positive roles of MsNCR1 (a XinJiangDaYe-specific PAV gene) in nodulation using an Agrobacterium rhizobia-mediated transgenic method. We also demonstrated that MsSKIP23_1 and MsFBL23_1 (two XinJiangDaYe-specific PAV genes) regulated leaf size by transient overexpression and virus-induced gene silencing analysis. Our study provides a high-quality reference genome of an important diploid alfalfa germplasm and a valuable resource of variation landscape between diploid and autotetraploid, which will facilitate the functional gene discovery and molecular-based breeding for the cultivars in the future.
Collapse
Affiliation(s)
- Kun Shi
- College of Grassland Science and TechnologycChina Agricultural UniversityBeijingChina
| | - Hongbin Dong
- College of Grassland Science and TechnologycChina Agricultural UniversityBeijingChina
| | - Huilong Du
- School of Life Sciences, Institute of Life Sciences and Green DevelopmentHebei UniversityBaodingChina
| | - Yuxian Li
- School of Life SciencesNorth China University of Science and TechnologyTangshanChina
| | - Le Zhou
- College of Grassland Science and TechnologycChina Agricultural UniversityBeijingChina
| | - Chengzhi Liang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Muhammet Şakiroğlu
- Department of BioengineeringAdana AlparslanTürkeş Science and Technology UniversityAdanaTurkey
| | - Zan Wang
- College of Grassland Science and TechnologycChina Agricultural UniversityBeijingChina
| |
Collapse
|
5
|
Han Q, Yang L, Xia L, Zhang H, Zhang S. Interspecific grafting promotes poplar growth and drought resistance via regulating phytohormone signaling and secondary metabolic pathways. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108594. [PMID: 38581808 DOI: 10.1016/j.plaphy.2024.108594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/22/2023] [Accepted: 04/01/2024] [Indexed: 04/08/2024]
Abstract
Populus cathayana (C) grafted onto P. deltoides (D) (C/D) can promote growth better than self-grafting (C/C and D/D). However, the mechanisms underlying growth and resistance to drought stress are not clear. In this study, we performed physiological and RNA-seq analysis on the different grafted combinations. It was found that C/D plants exhibited higher growth, net photosynthetic rate, IAA content and intrinsic water use efficiency (WUEi) than C/C and D/D plants under both well-watered and drought-stressed conditions. However, most growth, photosynthetic indices, and IAA content were decreased less in C/D, whereas ABA content, WUEi and root characteristics (e.g., root length, volume, surface area and vitality) were increased more in C/D than in other grafting combinations under drought-stressed conditions. Transcriptomic analysis revealed that the number of differentially expressed genes (DEGs) in leaves of C/D vs C/C (control, 181; drought, 121) was much lower than that in the roots of C/D vs D/D (control, 1639; drought, 1706), indicating that the rootstocks were more responsive to drought resistance. KEGG and GO functional enrichment analysis showed that the enhanced growth and drought resistance of C/D were mainly related to DEGs involved in the pathways of ABA and IAA signaling, and secondary metabolite biosynthesis, especially the pathways for lignin and dopamine synthesis and metabolism. Therefore, our results further demonstrated the dominant role of rootstock in drought resistance, and enriched our knowledge on the mechanism of how interspecific grafting enhanced the growth and drought resistance in poplar.
Collapse
Affiliation(s)
- Qingquan Han
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Le Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Linchao Xia
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Hongxia Zhang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China.
| | - Sheng Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
6
|
Fakhrzad F, Jowkar A. Gene expression analysis of drought tolerance and cuticular wax biosynthesis in diploid and tetraploid induced wallflowers. BMC PLANT BIOLOGY 2024; 24:330. [PMID: 38664602 PMCID: PMC11044323 DOI: 10.1186/s12870-024-05007-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/10/2024] [Indexed: 04/29/2024]
Abstract
Whole-genome doubling leads to cell reprogramming, upregulation of stress genes, and establishment of new pathways of drought stress responses in plants. This study investigated the molecular mechanisms of drought tolerance and cuticular wax characteristics in diploid and tetraploid-induced Erysimum cheiri. According to real-time PCR analysis, tetraploid induced wallflowers exhibited increased expression of several genes encoding transcription factors (TFs), including AREB1 and AREB3; the stress response genes RD29A and ERD1 under drought stress conditions. Furthermore, two cuticular wax biosynthetic pathway genes, CER1 and SHN1, were upregulated in tetraploid plants under drought conditions. Leaf morphological studies revealed that tetraploid leaves were covered with unique cuticular wax crystalloids, which produced a white fluffy appearance, while the diploid leaves were green and smooth. The greater content of epicuticular wax in tetraploid leaves than in diploid leaves can explain the decrease in cuticle permeability as well as the decrease in water loss and improvement in drought tolerance in wallflowers. GC‒MS analysis revealed that the wax components included alkanes, alcohols, aldehydes, and fatty acids. The most abundant wax compound in this plant was alkanes (50%), the most predominant of which was C29. The relative abundance of these compounds increased significantly in tetraploid plants under drought stress conditions. These findings revealed that tetraploid-induced wallflowers presented upregulation of multiple drought-related and wax biosynthesis genes; therefore, polyploidization has proved useful for improving plant drought tolerance.
Collapse
Affiliation(s)
- Fazilat Fakhrzad
- Department of Horticultural Science, College of Agriculture, Shiraz University, P.O. Box: 71441-13131, Shiraz, Iran
| | - Abolfazl Jowkar
- Department of Horticultural Science, College of Agriculture, Shiraz University, P.O. Box: 71441-13131, Shiraz, Iran.
| |
Collapse
|
7
|
Misiukevičius E, Mažeikienė I, Stanys V. Ploidy's Role in Daylily Plant Resilience to Drought Stress Challenges. BIOLOGY 2024; 13:289. [PMID: 38785771 PMCID: PMC11117801 DOI: 10.3390/biology13050289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/15/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024]
Abstract
This study aimed to understand the differences in the performance of diploid and tetraploid daylily cultivars under water deficit conditions, which are essential indicators of drought tolerance. This research revealed that tetraploid daylilies performed better than diploid varieties in arid conditions due to their enhanced adaptability and resilience to water deficit conditions. The analysis of the results highlighted the need to clarify the specific physiological and molecular mechanisms underlying the enhanced drought tolerance observed in tetraploid plants compared to diploids. This research offers valuable knowledge for improving crop resilience and sustainable floricultural practices in changing environmental conditions. The morphological and physiological parameters were analyzed in 19 diploid and 21 tetraploid daylily cultivars under controlled water deficit conditions, and three drought resistance groups were formed based on the clustering of these parameters. In a high drought resistance cluster, 93.3% tetraploid cultivars were exhibited. This study demonstrates the significance of ploidy in shaping plant responses to drought stress. It emphasizes the importance of studying plant responses to water deficit in landscape horticulture to develop drought-tolerant plants and ensure aspects of climate change.
Collapse
Affiliation(s)
- Edvinas Misiukevičius
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, Kaunas Street 30, 54333 Babtai, Lithuania; (I.M.); (V.S.)
| | | | | |
Collapse
|
8
|
Hui T, Bao L, Shi X, Zhang H, Xu K, Wei X, Liang J, Zhang R, Qian W, Zhang M, Su C, Jiao F. Grafting seedling rootstock strengthens tolerance to drought stress in polyploid mulberry (Morus alba L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108441. [PMID: 38377887 DOI: 10.1016/j.plaphy.2024.108441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/06/2024] [Accepted: 02/14/2024] [Indexed: 02/22/2024]
Abstract
The economically adaptable mulberry (Morus alba L.) has a long history of grafting in China, yet the physiological mechanisms and advantages in drought tolerance remain unexplored. In our study, we investigated the responses of self-rooted 2X (diploid), 3X (triploid), and 4X (tetraploid) plants, as well as polyploid plants grafted onto diploid seedling rootstocks (2X/2X, 3X/2X, and 4X/2X) under drought stress. We found that self-rooted diploid plants exhibited the most severe phenotypic damage, lowest water retention, photosynthetic capacity, and the least effective osmotic stress adjustment compared to tetraploid and triploid plants. However, grafted diploid and triploid plants showed effective mitigation of drought-induced damage, with higher relative water content and improved soil water retention. Grafted plants also improved the photosystem response to drought stress through elevated photosynthetic potential, closed stomatal aperture, and faster recovery of chlorophyll biosynthesis in the leaves. Additionally, grafted plants altered osmotic protective compound levels, including starch, soluble sugar, and proline content, thereby enhancing drought resistance. Absolute quantification PCR indicated that the expression levels of proline synthesis-related genes in grafted plants were not influenced after drought stress, whereas they were significantly increased in self-rooted plants. Consequently, our findings support that self-rooted triploid and tetraploid mulberries exhibited superior drought resistance compared to diploid plants. Moreover, grafting onto seedling rootstocks enhanced tolerance against drought stress in diploid and triploid mulberry, but not in tetraploid. Our study provides valuable insights for a comprehensive analysis of physiological effects in response to drought stress between stem-roots and seedling rootstocks.
Collapse
Affiliation(s)
- Tian Hui
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Lijun Bao
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Xiang Shi
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Huihui Zhang
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Ke Xu
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Xinlan Wei
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Jiajun Liang
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Rui Zhang
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Wei Qian
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Minjuan Zhang
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Chao Su
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Feng Jiao
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
9
|
Li X, Zhang L, Wei X, Datta T, Wei F, Xie Z. Polyploidization: A Biological Force That Enhances Stress Resistance. Int J Mol Sci 2024; 25:1957. [PMID: 38396636 PMCID: PMC10888447 DOI: 10.3390/ijms25041957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/01/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
Organisms with three or more complete sets of chromosomes are designated as polyploids. Polyploidy serves as a crucial pathway in biological evolution and enriches species diversity, which is demonstrated to have significant advantages in coping with both biotic stressors (such as diseases and pests) and abiotic stressors (like extreme temperatures, drought, and salinity), particularly in the context of ongoing global climate deterioration, increased agrochemical use, and industrialization. Polyploid cultivars have been developed to achieve higher yields and improved product quality. Numerous studies have shown that polyploids exhibit substantial enhancements in cell size and structure, physiological and biochemical traits, gene expression, and epigenetic modifications compared to their diploid counterparts. However, some research also suggested that increased stress tolerance might not always be associated with polyploidy. Therefore, a more comprehensive and detailed investigation is essential to complete the underlying stress tolerance mechanisms of polyploids. Thus, this review summarizes the mechanism of polyploid formation, the polyploid biochemical tolerance mechanism of abiotic and biotic stressors, and molecular regulatory networks that confer polyploidy stress tolerance, which can shed light on the theoretical foundation for future research.
Collapse
Affiliation(s)
- Xiaoying Li
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T & R Base of Zhengzhou University, Zhengzhou 450002, China
| | - Luyue Zhang
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaochun Wei
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T & R Base of Zhengzhou University, Zhengzhou 450002, China
| | - Tanusree Datta
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Fang Wei
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Zhengqing Xie
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
10
|
Aleza P, Garavello MF, Rouiss H, Benedict AC, Garcia-Lor A, Hernández M, Navarro L, Ollitrault P. Inheritance pattern of tetraploids pummelo, mandarin, and their interspecific hybrid sour orange is highly influenced by their phylogenomic structure. FRONTIERS IN PLANT SCIENCE 2023; 14:1327872. [PMID: 38143579 PMCID: PMC10739408 DOI: 10.3389/fpls.2023.1327872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 11/20/2023] [Indexed: 12/26/2023]
Abstract
Citrus polyploidy is associated with a wide range of morphological, genetic, and physiological changes that are often advantageous for breeding. Citrus triploid hybrids are very interesting as new seedless varieties. However, tetraploid rootstocks promote adaptation to different abiotic stresses and promote resilience. Triploid and tetraploid hybrids can be obtained through sexual hybridizations using tetraploid parents (2x × 4x, 4x × 2x, or 4x × 4x), but more knowledge is needed about the inheritance pattern of tetraploid parents to optimize the efficiency of triploid varieties and tetraploid rootstock breeding strategies. In this work, we have analyzed the inheritance pattern of three tetraploid genotypes: 'Chandler' pummelo (Citrus maxima) and 'Cleopatra' mandarin (Citrus reticulata), which represent two clear examples of autotetraploid plants constituted by the genome of a single species, and the 'Sevillano' sour orange, which is an allotetraploid interspecific hybrid between C. maxima and C. reticulata. Polymorphic simple sequence repeat (SSR) and single-nucleotide polymorphism (SNP) markers were used to estimate parental heterozygosity restitution, and allele frequencies for centromeric loci were used to calculate the preferential pairing rate related to the proportion of disomic and tetrasomic segregation. The tetraploid pummelo and mandarin displayed tetrasomic segregation. Sour orange evidenced a clear intermediate inheritance for five of the nine chromosomes (1, 2, 5, 7, and 8), a slight tendency toward tetrasomic inheritance on chromosome 3, and intermediate inheritance with a tendency toward disomy for chromosomes 4, 6, and 9. These results indicate that the interspecific versus intraspecific phylogenomic origin affects preferential pairing and, therefore, the inheritance patterns. Despite its high level of heterozygosity, the important preferential chromosome pairing observed in sour orange results in a limited diversity of the genotypic variability of its diploid gametes, and consequently, a large part of the genetic value of the original diploid sour orange is transferred to the tetraploid progenies.
Collapse
Affiliation(s)
- Pablo Aleza
- Departamento de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias (IVIA), Moncada, Valencia, Spain
| | - Miguel Fernando Garavello
- Concordia Agricultural Experimental Station, National Agricultural Technology Institute, Concordia, Entre Ríos, Argentina
| | - Houssem Rouiss
- Departamento de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias (IVIA), Moncada, Valencia, Spain
| | - Ana Cristina Benedict
- Departamento de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias (IVIA), Moncada, Valencia, Spain
| | - Andres Garcia-Lor
- Departamento de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias (IVIA), Moncada, Valencia, Spain
| | - Maria Hernández
- Departamento de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias (IVIA), Moncada, Valencia, Spain
| | - Luis Navarro
- Departamento de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias (IVIA), Moncada, Valencia, Spain
| | - Patrick Ollitrault
- Centre de coopération internationale en recherche agronomique pour le développement Centre de coopération internationale en recherche agronomique pour le développement (CIRAD), Amélioration Génétique et Adaptation des Plantes Méditerranéennes et Tropicales (UMR AGAP) Institut, Montpellier, France
- AGAP Institut, Univ Montpellier, Centre de coopération internationale en recherche agronomique pour le développement (CIRAD), INRAE, Institut Agro, Montpellier, France
| |
Collapse
|
11
|
Lin J, Zhang B, Zou J, Luo Z, Yang H, Zhou P, Chen X, Zhou W. Induction of tetraploids in Paper Mulberry (Broussonetia papyrifera (L.) L'Hér. ex Vent.) by colchicine. BMC PLANT BIOLOGY 2023; 23:574. [PMID: 37978431 PMCID: PMC10655367 DOI: 10.1186/s12870-023-04487-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/25/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Broussonetia papyrifera (L.) L'Hér. ex Vent. has the characteristics of strong stress resistance, high crude protein content, and pruning tolerance. It is an ecological, economic, and medicinal plant. Polyploid plants usually perform better than their corresponding diploid plants in terms of nutrients, active substances, and stress resistance. RESULTS In this study, the leaves, calli, and seeds of diploid B. papyrifera were used for tetraploid induction by colchicine. The induction effect of colchicine on B. papyrifera was summarized through the early morphology, chromosome count and flow cytometry. It was concluded that the best induction effect (18.6%) was obtained when the leaves of B. papyrifera were treated in liquid MS (Murashige and Skoog) medium containing 450 mg·L-1 colchicine for 3 d. The comparative analysis of the growth characteristics of diploid and tetraploid B. papyrifera showed that tetraploid B. papyrifera has larger ground diameter, larger stomata, thicker palisade tissue and thicker sponge tissue than diploid B. papyrifera. In addition, the measurement of photosynthetic features also showed that tetraploids had higher chlorophyll content and higher photosynthetic rates. CONCLUSION This study showed that tetraploid B. papyrifera could be obtained by treating leaves, callus and seeds with liquid and solid colchicine, but the induction efficiency was different. Moreover, there were differences in stomata, leaf cell structure and photosynthetic features between tetraploid B. papyrifera and its corresponding diploid. The induced tetraploid B. papyrifera can provide a technical basis and breeding material for the creation of B. papyrifera germplasm resources in the future.
Collapse
Affiliation(s)
- Jiana Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources (South China Agricultural University), Guangzhou, 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, Guangzhou, 510642, China
- Guangdong Province Research Center of Woody Forage Engineering Technology, Guangzhou, 510642, China
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Bingnan Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources (South China Agricultural University), Guangzhou, 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, Guangzhou, 510642, China
- Guangdong Province Research Center of Woody Forage Engineering Technology, Guangzhou, 510642, China
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Jintuo Zou
- Guangdong Engineering Technology Research Center of Agricultural and Forestry Biomass, South China Agricultural University, Guangzhou, 510642, China
| | - Zhen Luo
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Hao Yang
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Peng Zhou
- Guangdong Eco-Engineering Polytechnic, Guangzhou, 510642, China
| | - Xiaoyang Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources (South China Agricultural University), Guangzhou, 510642, China.
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, Guangzhou, 510642, China.
| | - Wei Zhou
- Guangdong Province Research Center of Woody Forage Engineering Technology, Guangzhou, 510642, China.
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
12
|
Liu X, Gao T, Liu C, Mao K, Gong X, Li C, Ma F. Fruit crops combating drought: Physiological responses and regulatory pathways. PLANT PHYSIOLOGY 2023; 192:1768-1784. [PMID: 37002821 PMCID: PMC10315311 DOI: 10.1093/plphys/kiad202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 06/19/2023]
Abstract
Drought is a common stress in agricultural production. Thus, it is imperative to understand how fruit crops respond to drought and to develop drought-tolerant varieties. This paper provides an overview of the effects of drought on the vegetative and reproductive growth of fruits. We summarize the empirical studies that have assessed the physiological and molecular mechanisms of the drought response in fruit crops. This review focuses on the roles of calcium (Ca2+) signaling, abscisic acid (ABA), reactive oxygen species signaling, and protein phosphorylation underlying the early drought response in plants. We review the resulting downstream ABA-dependent and ABA-independent transcriptional regulation in fruit crops under drought stress. Moreover, we highlight the positive and negative regulatory mechanisms of microRNAs in the drought response of fruit crops. Lastly, strategies (including breeding and agricultural practices) to improve the drought resistance of fruit crops are outlined.
Collapse
Affiliation(s)
- Xiaomin Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Tengteng Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Changhai Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ke Mao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiaoqing Gong
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Chao Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
13
|
Padilla YG, Gisbert-Mullor R, López-Galarza S, Albacete A, Martínez-Melgarejo PA, Calatayud Á. Short-term water stress responses of grafted pepper plants are associated with changes in the hormonal balance. FRONTIERS IN PLANT SCIENCE 2023; 14:1170021. [PMID: 37180400 PMCID: PMC10167040 DOI: 10.3389/fpls.2023.1170021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/05/2023] [Indexed: 05/16/2023]
Abstract
Phytohormones play an important role in regulating the plant behavior to drought. In previous studies, NIBER® pepper rootstock showed tolerance to drought in terms of production and fruit quality compared to ungrafted plants. In this study, our hypothesis was that short-term exposure to water stress in young, grafted pepper plants would shed light on tolerance to drought in terms of modulation of the hormonal balance. To validate this hypothesis, fresh weight, water use efficiency (WUE) and the main hormone classes were analyzed in self-grafted pepper plants (variety onto variety, V/V) and variety grafted onto NIBER® (V/N) at 4, 24, and 48h after severe water stress was induced by PEG addition. After 48h, WUE in V/N was higher than in V/V, due to major stomata closure to maintain water retention in the leaves. This can be explained by the higher abscisic acid (ABA) levels observed in the leaves of V/N plants. Despite the interaction between ABA and the ethylene precursor, 1-aminocyclopropane-1-carboxylic acid (ACC), in relation to stomata closure is controversial, we observed an important increase of ACC at the end of the experiment in V/N plants coinciding with an important rise of the WUE and ABA. The maximum concentration of jasmonic acid and salicylic acid after 48h was found in the leaves of V/N, associated with their role in abiotic stress signaling and tolerance. Respect to auxins and cytokinins, the highest concentrations were linked to water stress and NIBER®, but this effect did not occur for gibberellins. These results show that hormone balance was affected by water stress and rootstock genotype, where NIBER® rootstock displayed a better ability to overcome short-term water stress.
Collapse
Affiliation(s)
- Yaiza Gara Padilla
- Departamento de Horticultura, Instituto Valenciano de Investigaciones Agrarias, Moncada, Valencia, Spain
| | - Ramón Gisbert-Mullor
- Departamento de Producción Vegetal, Centro Valenciano de Estudios sobre el Riego (CVER), Universitat Politècnica de València, Valencia, Spain
| | - Salvador López-Galarza
- Departamento de Producción Vegetal, Centro Valenciano de Estudios sobre el Riego (CVER), Universitat Politècnica de València, Valencia, Spain
| | - Alfonso Albacete
- Department of Plant Nutrition, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Murcia, Spain
- Institute for Agro-Environmental Research and Development of Murcia (IMIDA), Department of Plant Production and Agrotechnology, Murcia, Spain
| | | | - Ángeles Calatayud
- Departamento de Horticultura, Instituto Valenciano de Investigaciones Agrarias, Moncada, Valencia, Spain
| |
Collapse
|
14
|
Calvez L, Dereeper A, Perdereau A, Mournet P, Miranda M, Bruyère S, Hufnagel B, Froelicher Y, Lemainque A, Morillon R, Ollitrault P. Meiotic Behaviors of Allotetraploid Citrus Drive the Interspecific Recombination Landscape, the Genetic Structures, and Traits Inheritance in Tetrazyg Progenies Aiming to Select New Rootstocks. PLANTS (BASEL, SWITZERLAND) 2023; 12:1630. [PMID: 37111854 PMCID: PMC10146282 DOI: 10.3390/plants12081630] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/29/2023] [Accepted: 04/06/2023] [Indexed: 06/19/2023]
Abstract
Sexual breeding at the tetraploid level is a promising strategy for rootstock breeding in citrus. Due to the interspecific origin of most of the conventional diploid citrus rootstocks that produced the tetraploid germplasm, the optimization of this strategy requires better knowledge of the meiotic behavior of the tetraploid parents. This work used Genotyping By Sequencing (GBS) data from 103 tetraploid hybrids to study the meiotic behavior and generate a high-density recombination landscape for their tetraploid intergenic Swingle citrumelo and interspecific Volkamer lemon progenitors. A genetic association study was performed with root architecture traits. For citrumelo, high preferential chromosome pairing was revealed and led to an intermediate inheritance with a disomic tendency. Meiosis in Volkamer lemon was more complex than that of citrumelo, with mixed segregation patterns from disomy to tetrasomy. The preferential pairing resulted in low interspecific recombination levels and high interspecific heterozygosity transmission by the diploid gametes. This meiotic behavior affected the efficiency of Quantitative Trait Loci (QTL) detection. Nevertheless, it enabled a high transmission of disease and pest resistance candidate genes from P. trifoliata that are heterozygous in the citrumelo progenitor. The tetrazyg strategy, using doubled diploids of interspecific origin as parents, appears to be efficient in transferring the dominant traits selected at the parental level to the tetraploid progenies.
Collapse
Affiliation(s)
- Lény Calvez
- UMR AGAP, CIRAD, F-97170 Petit-Bourg, France; (L.C.); (A.D.); (S.B.); (B.H.)
- UMR AGAP, Institut Agro, CIRAD, INRAE, University of Montpellier, F-34060 Montpellier, France; (P.M.); (M.M.); (Y.F.); (R.M.)
| | - Alexis Dereeper
- UMR AGAP, CIRAD, F-97170 Petit-Bourg, France; (L.C.); (A.D.); (S.B.); (B.H.)
- UMR AGAP, Institut Agro, CIRAD, INRAE, University of Montpellier, F-34060 Montpellier, France; (P.M.); (M.M.); (Y.F.); (R.M.)
| | - Aude Perdereau
- Genoscope, Institut de Biologie François-Jacob, Commissariat à l’Energie Atomique (CEA), Université Paris-Saclay, F-91000 Evry, France; (A.P.)
| | - Pierre Mournet
- UMR AGAP, Institut Agro, CIRAD, INRAE, University of Montpellier, F-34060 Montpellier, France; (P.M.); (M.M.); (Y.F.); (R.M.)
- UMR AGAP, CIRAD, F-34398 Montpellier, France
| | - Maëva Miranda
- UMR AGAP, Institut Agro, CIRAD, INRAE, University of Montpellier, F-34060 Montpellier, France; (P.M.); (M.M.); (Y.F.); (R.M.)
- UMR AGAP, CIRAD, F-34398 Montpellier, France
| | - Saturnin Bruyère
- UMR AGAP, CIRAD, F-97170 Petit-Bourg, France; (L.C.); (A.D.); (S.B.); (B.H.)
- UMR AGAP, Institut Agro, CIRAD, INRAE, University of Montpellier, F-34060 Montpellier, France; (P.M.); (M.M.); (Y.F.); (R.M.)
| | - Barbara Hufnagel
- UMR AGAP, CIRAD, F-97170 Petit-Bourg, France; (L.C.); (A.D.); (S.B.); (B.H.)
- UMR AGAP, Institut Agro, CIRAD, INRAE, University of Montpellier, F-34060 Montpellier, France; (P.M.); (M.M.); (Y.F.); (R.M.)
| | - Yann Froelicher
- UMR AGAP, Institut Agro, CIRAD, INRAE, University of Montpellier, F-34060 Montpellier, France; (P.M.); (M.M.); (Y.F.); (R.M.)
- UMR AGAP, CIRAD, F-20230 San Giuliano, France
| | - Arnaud Lemainque
- Genoscope, Institut de Biologie François-Jacob, Commissariat à l’Energie Atomique (CEA), Université Paris-Saclay, F-91000 Evry, France; (A.P.)
| | - Raphaël Morillon
- UMR AGAP, Institut Agro, CIRAD, INRAE, University of Montpellier, F-34060 Montpellier, France; (P.M.); (M.M.); (Y.F.); (R.M.)
- UMR AGAP, CIRAD, F-34398 Montpellier, France
| | - Patrick Ollitrault
- UMR AGAP, Institut Agro, CIRAD, INRAE, University of Montpellier, F-34060 Montpellier, France; (P.M.); (M.M.); (Y.F.); (R.M.)
- UMR AGAP, CIRAD, F-34398 Montpellier, France
| |
Collapse
|
15
|
Losada JM, Blanco-Moure N, Fonollá A, Martínez-Ferrí E, Hormaza JI. Hydraulic trade-offs underlie enhanced performance of polyploid trees under soil water deficit. PLANT PHYSIOLOGY 2023:kiad204. [PMID: 37002827 DOI: 10.1093/plphys/kiad204] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 03/03/2023] [Accepted: 03/30/2023] [Indexed: 06/19/2023]
Abstract
The relationships between aerial organ morpho-anatomy of woody polyploid plants with their functional hydraulics under water stress remain largely understudied. We evaluated growth-associated traits, aerial organ xylem anatomy, and physiological parameters of diploid, triploid, and tetraploid genotypes of atemoyas (Annona cherimola x Annona squamosa), which belong to the woody perennial genus Annona (Annonaceae), testing their performance under long-term soil water reduction. The contrasting phenotypes of vigorous triploids and dwarf tetraploids consistently showed stomatal size-density trade-off. The vessel elements in aerial organs were ∼1.5 times wider in polyploids compared with diploids, and triploids displayed the lowest vessel density. Plant hydraulic conductance was higher in well-irrigated diploids while their tolerance to drought was lower. The phenotypic disparity of atemoya polyploids associated with contrasting leaf and stem xylem porosity traits that coordinate to regulate water balances between the trees and the belowground and aboveground environments. Polyploid trees displayed better performance under soil water scarcity, presenting as more sustainable agricultural and forestry genotypes to cope with water stress.
Collapse
Affiliation(s)
- Juan M Losada
- Department of Subtropical Fruit Crops. Institute for Mediterranean and Subtropical Horticulture "La Mayora" (IHSM La Mayora - CSIC - UMA. Av. Dr. Wienberg s/n. Algarrobo-Costa, 29750, Málaga, Spain
| | - Nuria Blanco-Moure
- Department of Subtropical Fruit Crops. Institute for Mediterranean and Subtropical Horticulture "La Mayora" (IHSM La Mayora - CSIC - UMA. Av. Dr. Wienberg s/n. Algarrobo-Costa, 29750, Málaga, Spain
| | - Andrés Fonollá
- Department of Subtropical Fruit Crops. Institute for Mediterranean and Subtropical Horticulture "La Mayora" (IHSM La Mayora - CSIC - UMA. Av. Dr. Wienberg s/n. Algarrobo-Costa, 29750, Málaga, Spain
| | - Elsa Martínez-Ferrí
- Fruticultura Subtropical y Mediterránea, IFAPA, JA, Associated Unit to CSIC by IHSM and IAS. Department of Natural and Forest Resources (IFAPA). Cortijo de la Cruz, 29140, Málaga, Spain
| | - José I Hormaza
- Department of Subtropical Fruit Crops. Institute for Mediterranean and Subtropical Horticulture "La Mayora" (IHSM La Mayora - CSIC - UMA. Av. Dr. Wienberg s/n. Algarrobo-Costa, 29750, Málaga, Spain
| |
Collapse
|
16
|
Kaseb MO, Umer MJ, Lu X, He N, Anees M, El-Remaly E, Yousef AF, Salama EAA, Kalaji HM, Liu W. Comparative physiological and biochemical mechanisms in diploid, triploid, and tetraploid watermelon (Citrullus lanatus L.) grafted by branches. Sci Rep 2023; 13:4993. [PMID: 36973331 PMCID: PMC10043263 DOI: 10.1038/s41598-023-32225-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Seed production for polyploid watermelons is costly, complex, and labor-intensive. Tetraploid and triploid plants produce fewer seeds/fruit, and triploid embryos have a harder seed coat and are generally weaker than diploid seeds. In this study, we propagated tetraploid and triploid watermelons by grafting cuttings onto gourd rootstock (C. maxima × C. mochata). We used three different scions: the apical meristem (AM), one-node (1N), and two-node (2N) branches of diploid, triploid, and tetraploid watermelon plants. We then evaluated the effects of grafting on plant survival, some biochemical traits, oxidants, antioxidants, and hormone levels at different time points. We found significant differences between the polyploid watermelons when the 1N was used as a scion. Tetraploid watermelons had the highest survival rates and the highest levels of hormones, carbohydrates, and antioxidant activity compared to diploid watermelons, which may explain the high compatibility of tetraploid watermelons and the deterioration of the graft zone in diploid watermelons. Our results show that hormone production and enzyme activity with high carbohydrate content, particularly in the 2-3 days after transplantation, contribute to a high survival rate. Sugar application resulted in increased carbohydrate accumulation in the grafted combination. This study also presents an alternative and cost-effective approach to producing more tetraploid and triploid watermelon plants for breeding and seed production by using branches as sprouts.
Collapse
Affiliation(s)
- Mohamed Omar Kaseb
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Henan Joint International Research Laboratory of Fruits and Cucurbits Biological Science in South Asia, Zhengzhou, 450009, China.
- Cross Pollenated Plants Department, Horticulture Research Institute, Agriculture Research Center, Giza, 12611, Egypt.
| | - Muhammad Jawad Umer
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Henan Joint International Research Laboratory of Fruits and Cucurbits Biological Science in South Asia, Zhengzhou, 450009, China
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, 455000, China
| | - Xuqiang Lu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Henan Joint International Research Laboratory of Fruits and Cucurbits Biological Science in South Asia, Zhengzhou, 450009, China
| | - Nan He
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Henan Joint International Research Laboratory of Fruits and Cucurbits Biological Science in South Asia, Zhengzhou, 450009, China
| | - Muhammad Anees
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Henan Joint International Research Laboratory of Fruits and Cucurbits Biological Science in South Asia, Zhengzhou, 450009, China
| | - Eman El-Remaly
- Cross Pollenated Plants Department, Horticulture Research Institute, Agriculture Research Center, Giza, 12611, Egypt
| | - Ahmed Fathy Yousef
- Department of Horticulture, College of Agriculture, University of Al-Azhar (Branch Assiut), Assiut, 71524, Egypt
| | - Ehab A A Salama
- Agricultural Botany Department, Faculty of Agriculture Saba Basha, Alexandria University, Alexandria, 21531, Egypt
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, TNAU, Coimbatore, 641003, India
| | - Hazem M Kalaji
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences SGGW, Warsaw, Poland
- Institute of Technology and Life Sciences, National Research Institute, Falenty, Al. Hrabska 3, 05-090, Raszyn, Poland
| | - Wenge Liu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Henan Joint International Research Laboratory of Fruits and Cucurbits Biological Science in South Asia, Zhengzhou, 450009, China.
| |
Collapse
|
17
|
Das Laha S, Das D, Ghosh T, Podder S. Enrichment of intrinsically disordered residues in ohnologs facilitates abiotic stress resilience in Brassica rapa. JOURNAL OF PLANT RESEARCH 2023; 136:239-251. [PMID: 36607467 DOI: 10.1007/s10265-022-01432-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 12/18/2022] [Indexed: 06/17/2023]
Abstract
Arabidopsis thaliana and Brassica rapa are in the same evolutionary lineage, although the latter experienced an additional whole genome triplication event. Therefore, it would be intriguing to investigate the traits that gene duplication imposes to mediate plant stress tolerance. Here, we noticed that B. rapa abiotic stress resistance (ASR) genes which code at least one stress responsive domain have a significantly higher number of paralogs than A. thaliana. Analysing the disordered content of the ASR genes in both species, we found that intrinsically disordered residues (IDR) are specifically enriched in whole genome duplication (WGD) derived paralogs. Subsequently, domain similarity analysis between WGD pairs of both species has revealed that majority of WGD pairs in B. rapa did not share domains with each other. Furthermore, domain enrichment analysis has shown that B. rapa paralogs contain 36 distinct stress responsive enriched domains, significantly higher than A. thaliana paralogs. Next, we performed MSA to investigate the domain conservation between orthologs and ohnologs pairs, we found that 80.13% of B. rapa ohnologs acquire new domains, depicting the fact that ohnologs play a significant role in stress-related behaviours. The average IDR content of the ohnologs enriching new domains after gene duplication in B. rapa (0.19), is also significantly higher than A. thaliana (0.04). Interestingly, we also found that all of these attributes i.e., exhibiting higher number of WGD paralogs and enhancement of IDR in ASR genes of B. rapa compared to A. thaliana is exclusive for ASR genes only. No such significant differences were observed in randomly selected non-ASR genes between the two species. Together these results provide strong support for the hypothesis that augmentation of IDR content followed by a whole genome duplication event imposes the stress resistance potentiality in B. rapa. This research will shed light on the mechanism of how B. rapa is able to successfully adapt to stress over the evolutionary timescale.
Collapse
Affiliation(s)
- Shayani Das Laha
- Department of Microbiology, Raiganj University, Raiganj, West Bengal, India
| | - Deepyaman Das
- Department of Microbiology, Raiganj University, Raiganj, West Bengal, India
| | - Tapash Ghosh
- Department of Microbiology, Raiganj University, Raiganj, West Bengal, India
- Department of Bioinformatics, Bose Institute, Kolkata, West Bengal, India
| | - Soumita Podder
- Department of Microbiology, Raiganj University, Raiganj, West Bengal, India.
| |
Collapse
|
18
|
Eisenring M, Lindroth RL, Flansburg A, Giezendanner N, Mock KE, Kruger EL. Genotypic variation rather than ploidy level determines functional trait expression in a foundation tree species in the presence and absence of environmental stress. ANNALS OF BOTANY 2023; 131:229-242. [PMID: 35641114 PMCID: PMC9904343 DOI: 10.1093/aob/mcac071] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/28/2022] [Indexed: 05/25/2023]
Abstract
BACKGROUND AND AIMS At the population level, genetic diversity is a key determinant of a tree species' capacity to cope with stress. However, little is known about the relative importance of the different components of genetic diversity for tree stress responses. We compared how two sources of genetic diversity, genotype and cytotype (i.e. differences in ploidy levels), influence growth, phytochemical and physiological traits of Populus tremuloides in the presence and absence of environmental stress. METHODS In a series of field studies, we first assessed variation in traits across diploid and triploid aspen genotypes from Utah and Wisconsin under non-stressed conditions. In two follow-up experiments, we exposed diploid and triploid aspen genotypes from Wisconsin to individual and interactive drought stress and defoliation treatments and quantified trait variations under stress. KEY RESULTS We found that (1) tree growth and associated traits did not differ significantly between ploidy levels under non-stressed conditions. Instead, variation in tree growth and most other traits was driven by genotypic and population differences. (2) Genotypic differences were critical for explaining variation of most functional traits and their responses to stress. (3) Ploidy level played a subtle role in shaping traits and trait stress responses, as its influence was typically obscured by genotypic differences. (4) As an exception to the third conclusion, we showed that triploid trees expressed 17 % higher foliar defence (tremulacin) levels, 11 % higher photosynthesis levels and 23 % higher rubisco activity under well-watered conditions. Moreover, triploid trees displayed greater drought resilience than diploids as they produced 35 % more new tissue than diploids when recovering from drought stress. CONCLUSION Although ploidy level can strongly influence the ecology of tree species, those effects may be relatively small in contrast to the effects of genotypic variation in highly diverse species.
Collapse
Affiliation(s)
| | - Richard L Lindroth
- Department of Entomology, University of Wisconsin-Madison, 1630 Linden Dr., Madison, WI, USA
| | - Amy Flansburg
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, 1630 Linden Dr., Madison, WIUSA
| | - Noreen Giezendanner
- Department of Entomology, University of Wisconsin-Madison, 1630 Linden Dr., Madison, WI, USA
| | - Karen E Mock
- Department of Wildland Resources and Ecology Center, 5230 Old Main Hill, Utah State University, Logan, UT, USA
| | - Eric L Kruger
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, 1630 Linden Dr., Madison, WIUSA
| |
Collapse
|
19
|
Zhan N, Li L, Zhang L, He W, Yang Q, Bi F, Deng G, Kiggundu A, Yi G, Sheng O. Transcriptome and metabolome profiling provide insights into hormone-mediated enhanced growth in autotetraploid seedlings of banana (Musa spp.). FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2023. [DOI: 10.3389/fsufs.2022.1070108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
IntroductionReconstructive breeding based on autotetraploids to generate triploid varieties is a promising breeding strategy in banana (Musa spp.). Therefore understanding the molecular mechanisms underlying the phenotypic differences between the original diploid and its autopolyploid derivatives is of significant importance in such breeding programs of banana.MethodsIn this study, a number of non-chimeric autotetraploid plants, confirmed by flow cytometry and chromosome counting were obtained using colchicine treatment of ‘Pisang Berlin' (AA Group), a diploid banana cultivar highly resistant to Fusarium wilt Tropical Race 4 (Foc TR4) and widely cultivated in Asia.Results and discussionThe autotetraploids showed significant increase in plant height, pseudostem diameter, root length, leaf thickness, leaf area, and leaf chlorophyll content. Transcriptomic analysis indicated that differentially expressed genes were mainly enriched in plant hormone signal transduction, mitogen-activated protein kinase (MAPK) signaling pathway, and carbon fixation in photosynthetic organelles. The genes related to the metabolism, transport or signaling of auxin, abscisic acid (ABA), cytokinin (CTK) and gibberellin (GA), as well as the genes encoding essential enzymes in photosynthetic CO2 fixation were differentially expressed in leaves of autotetraploids and most of them were up-regulated. Metabolomic analysis revealed that the differentially accumulated metabolites were mainly involved in plant hormone signal transduction, porphyrin and chlorophyll metabolism, indole alkaloid biosynthesis, and carbon fixation in photosynthetic organelles. The results therefore, demonstrate that the hormones IAA, ABA, and photosynthetic regulation may play a vital role in the observed enhancement in the autotetraploids. These could be used as molecular and biochemical markers to facilitate the generation of triploid progenies as suitable new varieties for cultivation.
Collapse
|
20
|
Wang Y, Zuo L, Wei T, Zhang Y, Zhang Y, Ming R, Bachar D, Xiao W, Madiha K, Chen C, Fan Q, Li C, Liu JH. CHH methylation of genes associated with fatty acid and jasmonate biosynthesis contributes to cold tolerance in autotetraploids of Poncirus trifoliata. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:2327-2343. [PMID: 36218272 DOI: 10.1111/jipb.13379] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Polyploids have elevated stress tolerance, but the underlying mechanisms remain largely elusive. In this study, we showed that naturally occurring tetraploid plants of trifoliate orange (Poncirus trifoliata (L.) Raf.) exhibited enhanced cold tolerance relative to their diploid progenitors. Transcriptome analysis revealed that whole-genome duplication was associated with higher expression levels of a range of well-characterized cold stress-responsive genes. Global DNA methylation profiling demonstrated that the tetraploids underwent more extensive DNA demethylation in comparison with the diploids under cold stress. CHH methylation in the promoters was associated with up-regulation of related genes, whereas CG, CHG, and CHH methylation in the 3'-regions was relevant to gene down-regulation. Of note, genes involved in unsaturated fatty acids (UFAs) and jasmonate (JA) biosynthesis in the tetraploids displayed different CHH methylation in the gene flanking regions and were prominently up-regulated, consistent with greater accumulation of UFAs and JA when exposed to the cold stress. Collectively, our findings explored the difference in cold stress response between diploids and tetraploids at both transcriptional and epigenetic levels, and gained new insight into the molecular mechanisms underlying enhanced cold tolerance of the tetraploid. These results contribute to uncovering a novel regulatory role of DNA methylation in better cold tolerance of polyploids.
Collapse
Affiliation(s)
- Yue Wang
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lanlan Zuo
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tonglu Wei
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yu Zhang
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yang Zhang
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ruhong Ming
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dahro Bachar
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wei Xiao
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Khan Madiha
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chuanwu Chen
- Guangxi Key Laboratory of Citrus Biology, Guangxi Academy of Specialty Crops, Guilin, 541004, China
| | - Qijun Fan
- Guangxi Key Laboratory of Citrus Biology, Guangxi Academy of Specialty Crops, Guilin, 541004, China
| | - Chunlong Li
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ji-Hong Liu
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
21
|
Zhang M, Tan FQ, Fan YJ, Wang TT, Song X, Xie KD, Wu XM, Zhang F, Deng XX, Grosser JW, Guo WW. Acetylome reprograming participates in the establishment of fruit metabolism during polyploidization in citrus. PLANT PHYSIOLOGY 2022; 190:2519-2538. [PMID: 36135821 PMCID: PMC9706433 DOI: 10.1093/plphys/kiac442] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 08/30/2022] [Indexed: 06/16/2023]
Abstract
Polyploidization leads to novel phenotypes and is a major force in evolution. However, the relationship between the evolution of new traits and variations in the post-translational modifications (PTM) of proteins during polyploidization has not been studied. Acetylation of lysine residues is a common protein PTM that plays a critical regulatory role in central metabolism. To test whether changes in metabolism in citrus fruit is associated with the reprogramming of lysine acetylation (Kac) in non-histone proteins during allotetraploidization, we performed a global acetylome analysis of fruits from a synthetic allotetraploid citrus and its diploid parents. A total of 4,175 Kac sites were identified on 1,640 proteins involved in a wide range of fruit traits. In the allotetraploid, parental dominance (i.e. resemblance to one of the two parents) in specific fruit traits, such as fruit acidity and flavonol metabolism, was highly associated with parental Kac level dominance in pertinent enzymes. This association is due to Kac-mediated regulation of enzyme activity. Moreover, protein Kac probably contributes to the discordance between the transcriptomic and proteomic variations during allotetraploidization. The acetylome reprogramming can be partially explained by the expression pattern of several lysine deacetylases (KDACs). Overexpression of silent information regulator 2 (CgSRT2) and histone deacetylase 8 (CgHDA8) diverted metabolic flux from primary metabolism to secondary metabolism and partially restored a metabolic status to the allotetraploid, which expressed attenuated levels of CgSRT2 and CgHDA8. Additionally, KDAC inhibitor treatment greatly altered metabolism in citrus fruit. Collectively, these findings reveal the important role of acetylome reprogramming in trait evolution during polyploidization.
Collapse
Affiliation(s)
- Miao Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Feng-Quan Tan
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Yan-Jie Fan
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Ting-Ting Wang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Xin Song
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Kai-Dong Xie
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiao-Meng Wu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Fan Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Xiu-Xin Deng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Jude W Grosser
- Citrus Research and Education Center, University of Florida, 700 Experiment Station Road, Lake Alfred, Florida 33850, USA
| | - Wen-Wu Guo
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
22
|
Islam MM, Deepo DM, Nasif SO, Siddique AB, Hassan O, Siddique AB, Paul NC. Cytogenetics and Consequences of Polyploidization on Different Biotic-Abiotic Stress Tolerance and the Potential Mechanisms Involved. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11202684. [PMID: 36297708 PMCID: PMC9609754 DOI: 10.3390/plants11202684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/22/2022] [Accepted: 09/24/2022] [Indexed: 06/12/2023]
Abstract
The application of polyploidy in sustainable agriculture has already brought much appreciation among researchers. Polyploidy may occur naturally or can be induced in the laboratory using chemical or gaseous agents and results in complete chromosome nondisjunction. This comprehensive review described the potential of polyploidization on plants, especially its role in crop improvement for enhanced production and host-plant resistance development against pests and diseases. An in-depth investigation on techniques used in the induction of polyploidy, cytogenetic evaluation methods of different ploidy levels, application, and current research trends is also presented. Ongoing research has mainly aimed to bring the recurrence in polyploidy, which is usually detected by flow cytometry, chromosome counting, and cytogenetic techniques such as fluorescent in situ hybridization (FISH) and genomic in situ hybridization (GISH). Polyploidy can bring about positive consequences in the growth and yield attributes of crops, making them more tolerant to abiotic and biotic stresses. However, the unexpected change in chromosome set and lack of knowledge on the mechanism of stress alleviation is hindering the application of polyploidy on a large scale. Moreover, a lack of cost-benefit analysis and knowledge gaps on the socio-economic implication are predominant. Further research on polyploidy coupling with modern genomic technologies will help to bring real-world market prospects in the era of changing climate. This review on polyploidy provides a solid foundation to do next-generation research on crop improvement.
Collapse
Affiliation(s)
- Md Mazharul Islam
- Department of Horticultural Science, Kyungpook National University, Daegu 41566, Korea
- Research and Development, Horticultural Crop Breeding, Quality Feeds Limited, Dhaka 1230, Bangladesh
| | - Deen Mohammad Deepo
- Department of Horticultural Science, Kyungpook National University, Daegu 41566, Korea
| | - Saifullah Omar Nasif
- Global Centre for Environmental Remediation (GCER), College of Engineering Science and Environment, The University of Newcastle, Newcastle, NSW 2308, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), ATC Building, The University of Newcastle, Newcastle, NSW 2308, Australia
| | - Abu Bakar Siddique
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, 90736 Umeå, Sweden
| | - Oliul Hassan
- Department of Ecology and Environmental System, College of Ecology and Environmental Sciences, Kyungpook National University, Sangju 37224, Korea
| | - Abu Bakar Siddique
- Department of Plant Biology, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden
| | - Narayan Chandra Paul
- Kumho Life Science Laboratory, Department of Integrative Food Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Korea
| |
Collapse
|
23
|
Yang L, Xia L, Zeng Y, Han Q, Zhang S. Grafting enhances plants drought resistance: Current understanding, mechanisms, and future perspectives. FRONTIERS IN PLANT SCIENCE 2022; 13:1015317. [PMID: 36275555 PMCID: PMC9583147 DOI: 10.3389/fpls.2022.1015317] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/20/2022] [Indexed: 05/28/2023]
Abstract
Drought, one of the most severe and complex abiotic stresses, is increasingly occurring due to global climate change and adversely affects plant growth and yield. Grafting is a proven and effective tool to enhance plant drought resistance ability by regulating their physiological and molecular processes. In this review, we have summarized the current understanding, mechanisms, and perspectives of the drought stress resistance of grafted plants. Plants resist drought through adaptive changes in their root, stem, and leaf morphology and structure, stomatal closure modulation to reduce transpiration, activating osmoregulation, enhancing antioxidant systems, and regulating phytohormones and gene expression changes. Additionally, the mRNAs, miRNAs and peptides crossing the grafted healing sites also confer drought resistance. However, the interaction between phytohormones, establishment of the scion-rootstock communication through genetic materials to enhance drought resistance is becoming a hot research topic. Therefore, our review provides not only physiological evidences for selecting drought-resistant rootstocks or scions, but also a clear understanding of the potential molecular effects to enhance drought resistance using grafted plants.
Collapse
Affiliation(s)
- Le Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Linchao Xia
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yi Zeng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Qingquan Han
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, China
| | - Sheng Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
24
|
In Vitro Polyploid Induction of Highbush Blueberry through De Novo Shoot Organogenesis. PLANTS 2022; 11:plants11182349. [PMID: 36145750 PMCID: PMC9504489 DOI: 10.3390/plants11182349] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 08/30/2022] [Accepted: 09/05/2022] [Indexed: 11/18/2022]
Abstract
Polyploid induction is of utmost importance in horticultural plants for the development of new varieties with desirable morphological and physiological traits. Polyploidy may occur naturally due to the formation of unreduced gametes or can be artificially induced by doubling the number of chromosomes in somatic cells. In this experiment, a protocol for in vitro polyploid induction of highbush blueberry (Vaccinium corymbosum L.) leaf tissues was studied by using different concentrations of colchicine and oryzalin. Oryzalin was found to be highly toxic to this species, while the adventitious shoot organogenesis media enriched with 25 and 250 µM colchicine was able to induce polyploidization, with significant differences among the treatments used. Higher concentrations of both antimitotic agents led to the browning and death of the leaf tissues. The polyploids obtained showed several morphological differences when compared with the diploid shoots. Flow cytometry analysis was used to confirm the ploidy level of the regenerated shoots, demonstrating that a total of 15 tetraploids and 34 mixoploids were obtained. The stomatal sizes (length and width) of the tetraploids were larger than those of the diploids, but a reduced stomatal density was observed as compared to the controls. These shoots will be acclimatized and grown until they reach the reproductive phase in order to test their potential appeal as new varieties or their use for breeding and genetic improvement.
Collapse
|
25
|
Fernandes P, Colavolpe MB, Serrazina S, Costa RL. European and American chestnuts: An overview of the main threats and control efforts. FRONTIERS IN PLANT SCIENCE 2022; 13:951844. [PMID: 36092400 PMCID: PMC9449730 DOI: 10.3389/fpls.2022.951844] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Chestnuts are multipurpose trees significant for the economy and wildlife. These trees are currently found around the globe, demonstrating their genetic adaptation to different environmental conditions. Several biotic and abiotic stresses have challenged these species, contributing to the decline of European chestnut production and the functional extinction of the American chestnut. Several efforts started over the last century to understand the cellular, molecular, and genetic interactions behind all chestnut biotic and abiotic interactions. Most efforts have been toward breeding for the primary diseases, chestnut blight and ink disease caused by the pathogens, Cryphonectria parasitica and Phytophthora cinnamomi, respectively. In Europe and North America, researchers have been using the Asian chestnut species, which co-evolved with the pathogens, to introgress resistance genes into the susceptible species. Breeding woody trees has several limitations which can be mostly related to the long life cycles of these species and the big genome landscapes. Consequently, it takes decades to improve traits of interest, such as resistance to pathogens. Currently, the availability of genome sequences and next-generation sequencing techniques may provide new tools to help overcome most of the problems tree breeding is still facing. This review summarizes European and American chestnut's main biotic stresses and discusses breeding and biotechnological efforts developed over the last decades, having ink disease and chestnut blight as the main focus. Climate change is a rising concern, and in this context, the adaptation of chestnuts to adverse environmental conditions is of extreme importance for chestnut production. Therefore, we also discuss the abiotic challenges on European chestnuts, where the response to abiotic stress at the genetic and molecular level has been explored.
Collapse
Affiliation(s)
- Patrícia Fernandes
- Instituto Nacional de Investigação Agrária e Veterinária, I.P., Oeiras, Portugal
- Green-It Bioresources for Sustainability, ITQB NOVA, Oeiras, Portugal
- Department of Environmental Biology, State University of New York College of Environmental Science and Forestry, Syracuse, NY, United States
| | | | - Susana Serrazina
- BioISI – Biosystems and Integrative Sciences Institute, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
| | - Rita Lourenço Costa
- Instituto Nacional de Investigação Agrária e Veterinária, I.P., Oeiras, Portugal
- Centro de Estudos Florestais, Instituto Superior de Agronomia, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
26
|
Jiang J, Yang N, Li L, Qin G, Ren K, Wang H, Deng J, Ding D. Tetraploidy in Citrus wilsonii Enhances Drought Tolerance via Synergistic Regulation of Photosynthesis, Phosphorylation, and Hormonal Changes. FRONTIERS IN PLANT SCIENCE 2022; 13:875011. [PMID: 35574073 PMCID: PMC9096895 DOI: 10.3389/fpls.2022.875011] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 03/25/2022] [Indexed: 06/15/2023]
Abstract
Polyploidy varieties have been reported to exhibit higher stress tolerance relative to their diploid relatives, however, the underlying molecular and physiological mechanisms remain poorly understood. In this study, a batch of autotetraploid Citrus wilsonii were identified from a natural seedling population, and these tetraploid seedlings exhibited greater tolerance to drought stress than their diploids siblings. A global transcriptome analysis revealed that a large number of genes involved in photosynthesis response were enriched in tetraploids under drought stress, which was consistent with the changes in photosynthetic indices including Pn, gs, Tr, Ci, and chlorophyll contents. Compared with diploids, phosphorylation was also modified in the tetraploids after drought stress, as detected through tandem mass tag (TMT)-labeled proteomics. Additionally, tetraploids prioritized the regulation of plant hormone signal transduction at the transcriptional level after drought stress, which was also demonstrated by increased levels of IAA, ABA, and SA and reduced levels of GA3 and JA. Collectively, our results confirmed that the synergistic regulation of photosynthesis response, phosphorylation modification and plant hormone signaling resulted in drought tolerance of autotetraploid C. wilsonii germplasm.
Collapse
Affiliation(s)
- Jinglong Jiang
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, China
| | - Ni Yang
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, China
| | - Li Li
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, China
| | - Gongwei Qin
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, China
| | - Kexin Ren
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, China
| | - Haotian Wang
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, China
| | - Jiarui Deng
- Chenggu Fruit Industry Technical Guidance Station, Chenggu, China
| | - Dekuan Ding
- Chenggu Fruit Industry Technical Guidance Station, Chenggu, China
| |
Collapse
|
27
|
Kaseb MO, Umer MJ, Anees M, Zhu H, Zhao S, Lu X, He N, El-Remaly E, El-Eslamboly A, Yousef AF, Salama EAA, Alrefaei AF, Kalaji HM, Liu W. Transcriptome Profiling to Dissect the Role of Genome Duplication on Graft Compatibility Mechanisms in Watermelon. BIOLOGY 2022; 11:575. [PMID: 35453774 PMCID: PMC9029962 DOI: 10.3390/biology11040575] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
Watermelon (Citrullus lanatus) is a popular crop worldwide. Compared to diploid seeded watermelon, triploid seedless watermelon cultivars are in great demand. Grafting in triploid and tetraploid watermelon produces few seedlings. To learn more about how genome duplication affects graft compatibility, we compared the transcriptomes of tetraploid and diploid watermelons grafted on squash rootstock using a splicing technique. WGCNA was used to compare the expression of differentially expressed genes (DEGs) between diploid and tetraploid watermelon grafted seedlings at 0, 3, and 15 days after grafting (DAG). Only four gene networks/modules correlated significantly with phenotypic characteristics. We found 11 genes implicated in hormone, AOX, and starch metabolism in these modules based on intramodular significance and RT-qPCR. Among these genes, two were linked with IAA (r2 = 0.81), one with ZR (r2 = 0.85) and one with POD (r2 = 0.74). In the MElightsteelblue1 module, Cla97C11G224830 gene was linked with CAT (r2 = 0.81). Two genes from the MEivory module, Cla97C07G139710 and Cla97C04G077300, were highly linked with SOD (r2 = 0.72). Cla97C01G023850 and Cla97C01G006680 from the MEdarkolivegreen module were associated with sugars and starch (r2 = 0.87). Tetraploid grafted seedlings had higher survival rates and hormone, AOX, sugar, and starch levels than diploids. We believe that compatibility is a complicated issue that requires further molecular research. We found that genome duplication dramatically altered gene expression in the grafted plants' IAA and ZR signal transduction pathways and AOX biosynthesis pathways, regulating hormone levels and improving plant survival.
Collapse
Affiliation(s)
- Mohamed Omar Kaseb
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Henan Joint International Research Laboratory of Fruits and Cucurbits Biological Science in South Asia, Zhengzhou 450009, China; (M.O.K.); (M.J.U.); (M.A.); (H.Z.); (S.Z.); (X.L.); (N.H.)
- Cross Pollenated Plants Department, Horticulture Research Institute, Agriculture Research Center, Giza 12119, Egypt; (E.E.-R.); (A.E.-E.)
| | - Muhammad Jawad Umer
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Henan Joint International Research Laboratory of Fruits and Cucurbits Biological Science in South Asia, Zhengzhou 450009, China; (M.O.K.); (M.J.U.); (M.A.); (H.Z.); (S.Z.); (X.L.); (N.H.)
- State Key Laboratory of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Muhammad Anees
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Henan Joint International Research Laboratory of Fruits and Cucurbits Biological Science in South Asia, Zhengzhou 450009, China; (M.O.K.); (M.J.U.); (M.A.); (H.Z.); (S.Z.); (X.L.); (N.H.)
| | - Hongju Zhu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Henan Joint International Research Laboratory of Fruits and Cucurbits Biological Science in South Asia, Zhengzhou 450009, China; (M.O.K.); (M.J.U.); (M.A.); (H.Z.); (S.Z.); (X.L.); (N.H.)
| | - Shengjie Zhao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Henan Joint International Research Laboratory of Fruits and Cucurbits Biological Science in South Asia, Zhengzhou 450009, China; (M.O.K.); (M.J.U.); (M.A.); (H.Z.); (S.Z.); (X.L.); (N.H.)
| | - Xuqiang Lu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Henan Joint International Research Laboratory of Fruits and Cucurbits Biological Science in South Asia, Zhengzhou 450009, China; (M.O.K.); (M.J.U.); (M.A.); (H.Z.); (S.Z.); (X.L.); (N.H.)
| | - Nan He
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Henan Joint International Research Laboratory of Fruits and Cucurbits Biological Science in South Asia, Zhengzhou 450009, China; (M.O.K.); (M.J.U.); (M.A.); (H.Z.); (S.Z.); (X.L.); (N.H.)
| | - Eman El-Remaly
- Cross Pollenated Plants Department, Horticulture Research Institute, Agriculture Research Center, Giza 12119, Egypt; (E.E.-R.); (A.E.-E.)
| | - Ahmed El-Eslamboly
- Cross Pollenated Plants Department, Horticulture Research Institute, Agriculture Research Center, Giza 12119, Egypt; (E.E.-R.); (A.E.-E.)
| | - Ahmed F. Yousef
- Department of Horticulture, College of Agriculture, Al-Azhar University (Branch Assiut), Assiut 71524, Egypt;
| | - Ehab A. A. Salama
- Agricultural Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt;
| | - Abdulwahed Fahad Alrefaei
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 1145, Saudi Arabia;
| | - Hazem M. Kalaji
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences SGGW, 02-787 Warsaw, Poland;
- Institute of Technology and Life Sciences–National Research Institute (ITP), 05-090 Raszyn, Poland
| | - Wenge Liu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Henan Joint International Research Laboratory of Fruits and Cucurbits Biological Science in South Asia, Zhengzhou 450009, China; (M.O.K.); (M.J.U.); (M.A.); (H.Z.); (S.Z.); (X.L.); (N.H.)
| |
Collapse
|
28
|
Lv C, Li F, Ai X, Bi H. H 2O 2 participates in ABA regulation of grafting-induced chilling tolerance in cucumber. PLANT CELL REPORTS 2022; 41:1115-1130. [PMID: 35260922 DOI: 10.1007/s00299-022-02841-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/01/2022] [Indexed: 05/20/2023]
Abstract
Rootstock provides more abscisic acid (ABA) content to scions to increase the chilling tolerance of seedlings. H2O2 is involved in ABA regulation of grafting-induced chilling tolerance of cucumber. Here we examined the role of ABA in the response of grafted cucumber to chilling stress. The data showed chilling induced an increase in leaf and root ABA content and there was a positive correlation between ABA content and the chilling tolerance of the varieties. The increase of ABA content and NCED mRNA abundance in the leaf of both Cs/Cs (self-root) and Cs/Cm (grafted with pumpkin as rootstock) showed a delay under aerial stress compared with those under whole plant and root-zone stress. Intriguingly, an increase in ABA in xylem was found under whole-plant and root-zone chilling stress but was not detected under aerial stress, implying the increases in ABA content in leaves were mainly from root ABA transportation. Compared to Cs/Cs, a higher ABA content and NCED mRNA abundance were observed in Cs/Cm, which showed that Cm could output more ABA than Cs. The removal of endogenous ABA decreased the difference in chilling tolerance induced by Cm, as evidenced by the observed similar oxidative stress levels and photosynthetic capacity between Cs/Cs and Cs/Cm after chilling stress. Moreover, we found that the H2O2 signal in grafted cucumber could respond to chilling stress earlier than the H2O2 signal in self-rooted cucumber. The inhibition of endogenous H2O2 decreased the chilling tolerance of grafted cucumber induced by ABA by reducing photosynthesis and the mRNA abundance of CBF1 and COR. Thus, our results indicate that H2O2, as the downstream signal, participated in the rootstock-induced chilling tolerance of grafted seedlings induced by ABA.
Collapse
Affiliation(s)
- Chunyu Lv
- State Key Laboratory of Crop Biology, Key Laboratory of Crop Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Fude Li
- State Key Laboratory of Crop Biology, Key Laboratory of Crop Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Xizhen Ai
- State Key Laboratory of Crop Biology, Key Laboratory of Crop Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Huangai Bi
- State Key Laboratory of Crop Biology, Key Laboratory of Crop Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| |
Collapse
|
29
|
Lourkisti R, Froelicher Y, Morillon R, Berti L, Santini J. Enhanced Photosynthetic Capacity, Osmotic Adjustment and Antioxidant Defenses Contribute to Improve Tolerance to Moderate Water Deficit and Recovery of Triploid Citrus Genotypes. Antioxidants (Basel) 2022; 11:antiox11030562. [PMID: 35326213 PMCID: PMC8944853 DOI: 10.3390/antiox11030562] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 11/22/2022] Open
Abstract
Currently, drought stress is a major issue for crop productivity, and future climate models predict a rise in frequency and severity of drought episodes. Polyploidy has been related to improved tolerance of plants to environmental stresses. In Citrus breeding programs, the use of triploidy is an effective way to produce seedless fruits, one of the greatest consumer expectations. The current study used physiological and biochemical parameters to assess the differential responses to moderate water deficit of 3x genotypes compared to 2x genotypes belonging to the same hybridization. Both parents, the mandarin Fortune and Ellendale tangor, were also included in the experimental design, while the 2x common clementine tree was used as reference. Water deficit affects leaf water status, as well as physiological and detoxification processes. Triploid genotypes showed a better ability to maintain water status through increased proline content and photosynthetic capacity. Moreover, less oxidative damage was associated with stronger antioxidant defenses in triploid genotypes. We also found that triploidy improved the recovery capacity after a water deficit episode.
Collapse
Affiliation(s)
- Radia Lourkisti
- Laboratoire de Biochimie et Biologie Moléculaire du Végétal, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR), 6134 Sciences pour l’Environnement (SPE), Université de Corse, 20250 Corte, France; (L.B.); (J.S.)
- Correspondence: ; Tel.: +33-420-202-268
| | - Yann Froelicher
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), UMR AGAP Institut, INRAE, Institut Agro, University Montpellier, 34398 Montpellier, France; (Y.F.); (R.M.)
- CIRAD, UMR AGAP, 20230 San Giuliano, France
| | - Raphaël Morillon
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), UMR AGAP Institut, INRAE, Institut Agro, University Montpellier, 34398 Montpellier, France; (Y.F.); (R.M.)
- CIRAD, UMR AGAP Institut, 34398 Montpellier, France
| | - Liliane Berti
- Laboratoire de Biochimie et Biologie Moléculaire du Végétal, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR), 6134 Sciences pour l’Environnement (SPE), Université de Corse, 20250 Corte, France; (L.B.); (J.S.)
| | - Jérémie Santini
- Laboratoire de Biochimie et Biologie Moléculaire du Végétal, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR), 6134 Sciences pour l’Environnement (SPE), Université de Corse, 20250 Corte, France; (L.B.); (J.S.)
| |
Collapse
|
30
|
Li M, Hou L, Zhang C, Yang W, Liu X, Zhao H, Pang X, Li Y. Genome-Wide Identification of Direct Targets of ZjVND7 Reveals the Putative Roles of Whole-Genome Duplication in Sour Jujube in Regulating Xylem Vessel Differentiation and Drought Tolerance. FRONTIERS IN PLANT SCIENCE 2022; 13:829765. [PMID: 35185994 PMCID: PMC8854171 DOI: 10.3389/fpls.2022.829765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/12/2022] [Indexed: 06/02/2023]
Abstract
The effects of whole-genome duplication span multiple levels. Previous study reported that the autotetraploid sour jujube exhibited superior drought tolerance than diploid. However, the difference in water transport system between diploids and autotetraploids and its mechanism remain unclear. Here, we found the number of xylem vessels and parenchyma cells in autotetraploid sour jujube increased to nearly twice that of diploid sour jujube, which may be closely related to the differences in xylem vessel differentiation-related ZjVND7 targets between the two ploidy types. Although the five enriched binding motifs are different, the most reliable motif in both diploid and autotetraploid sour jujube was CTTNAAG. Additionally, ZjVND7 targeted 236 and 321 genes in diploids and autotetraploids, respectively. More identified targeted genes of ZjVND7 were annotated to xylem development, secondary wall synthesis, cell death, cell division, and DNA endoreplication in autotetraploids than in diploids. SMR1 plays distinct roles in both proliferating and differentiated cells. Under drought stress, the binding signal of ZjVND7 to ZjSMR1 was stronger in autotetraploids than in diploids, and the fold-changes in the expression of ZjVND7 and ZjSMR1 were larger in the autotetraploids than in the diploids. These results suggested that the targeted regulation of ZjVND7 on ZjSMR1 may play valuable roles in autotetraploids in the response to drought stress. We hypothesized that the binding of ZjVND7 to ZjSMR1 might play a role in cell division and transdifferentiation from parenchyma cells to vessels in the xylem. This regulation could prolong the cell cycle and regulate endoreplication in response to drought stress and abscisic acid, which may be stronger in polyploids.
Collapse
Affiliation(s)
- Meng Li
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Lu Hou
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Chenxing Zhang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Weicong Yang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Xinru Liu
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Hanqing Zhao
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Xiaoming Pang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Yingyue Li
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| |
Collapse
|
31
|
Fu H, Zhao J, Ren Z, Yang K, Wang C, Zhang X, Elesawi IE, Zhang X, Xia J, Chen C, Lu P, Chen Y, Liu H, Yu G, Liu B. Interfered chromosome pairing at high temperature promotes meiotic instability in autotetraploid Arabidopsis. PLANT PHYSIOLOGY 2022; 188:1210-1228. [PMID: 34927688 PMCID: PMC8825311 DOI: 10.1093/plphys/kiab563] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/04/2021] [Indexed: 05/03/2023]
Abstract
Changes in environmental temperature affect multiple meiotic processes in flowering plants. Polyploid plants derived from whole-genome duplication (WGD) have enhanced genetic plasticity and tolerance to environmental stress but face challenges in organizing and segregating doubled chromosome sets. In this study, we investigated the impact of increased environmental temperature on male meiosis in autotetraploid Arabidopsis (Arabidopsis thaliana). Under low to mildly increased temperatures (5°C-28°C), irregular chromosome segregation universally occurred in synthetic autotetraploid Columbia-0 (Col-0). Similar meiotic lesions occurred in autotetraploid rice (Oryza sativa L.) and allotetraploid canola (Brassica napus cv Westar), but not in evolutionarily derived hexaploid wheat (Triticum aestivum). At extremely high temperatures, chromosome separation and tetrad formation became severely disordered due to univalent formation caused by the suppression of crossing-over. We found a strong correlation between tetravalent formation and successful chromosome pairing, both of which were negatively correlated with temperature elevation, suggesting that increased temperature interferes with crossing-over predominantly by impacting homolog pairing. We also showed that loading irregularities of axis proteins ASY1 and ASY4 co-localize on the chromosomes of the syn1 mutant and the heat-stressed diploid and autotetraploid Col-0, revealing that heat stress affects the lateral region of synaptonemal complex (SC) by impacting the stability of the chromosome axis. Moreover, we showed that chromosome axis and SC in autotetraploid Col-0 are more sensitive to increased temperature than those in diploid Arabidopsis. Taken together, our data provide evidence suggesting that WGD negatively affects the stability and thermal tolerance of meiotic recombination in newly synthetic autotetraploid Arabidopsis.
Collapse
Affiliation(s)
- Huiqi Fu
- College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Jiayi Zhao
- College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Ziming Ren
- College of Agriculture and Biotechnology, Zhejiang University, Zhejiang 310058, China
| | - Ke Yang
- College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Chong Wang
- College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Xiaohong Zhang
- College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Ibrahim Eid Elesawi
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Agricultural Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Xianhua Zhang
- School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Jing Xia
- College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Chunli Chen
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region, College of Life Science, Guizhou University, Guiyang 550025, China
| | - Ping Lu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yongxing Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hong Liu
- College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Guanghui Yu
- College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Bing Liu
- College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
- Author for communication:
| |
Collapse
|
32
|
Abdolinejad R, Shekafandeh A. Tetraploidy Confers Superior in vitro Water-Stress Tolerance to the Fig Tree ( Ficus carica) by Reinforcing Hormonal, Physiological, and Biochemical Defensive Systems. FRONTIERS IN PLANT SCIENCE 2022; 12:796215. [PMID: 35154187 PMCID: PMC8834540 DOI: 10.3389/fpls.2021.796215] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 12/27/2021] [Indexed: 05/13/2023]
Abstract
The fig tree is a well-adapted and promising fruit tree for sustainable production in arid and semi-arid areas worldwide. Recently, Iran's dryland fig orchards have been severely damaged due to prolonged severe and consecutive drought periods. As emphasized in many studies, ploidy manipulated plants have a significantly enhanced drought tolerance. In the current study, we compared the induced autotetraploid explants of two fig cultivars ('Sabz' and 'Torsh') with their diploid control plants for their water stress tolerance under in vitro conditions using different polyethylene glycol (PEG) concentrations (0, 5, 10, 15, 20, and 25%). After 14 days of implementing water stress treatments, the results revealed that both tetraploid genotypes survived at 20% PEG treatments. Only 'Sabz' tetraploid explants survived at 25% PEG treatment, while both diploid control genotypes could tolerate water stress intensity only until 15% PEG treatment. The results also demonstrated that the tetraploid explants significantly had a higher growth rate, more leaf numbers, and greater fresh and dry weights than their diploid control plants. Under 15% PEG treatment, both tetraploid genotypes could maintain their relative water content (RWC) at a low-risk level (80-85%), while the RWC of both diploid genotypes drastically declined to 55-62%. The ion leakage percentage also was significantly lower in tetraploid explants at 15% PEG treatment. According to the results, these superiorities could be attributed to higher levels of stress response hormones including abscisic acid, salicylic acid, and jasmonic acid at different PEG treatments, the robust osmotic adjustment by significantly increased total soluble sugar (TSS), proline, and glycine betaine contents, and augmented enzymatic defense system including significantly increased superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and glutathione peroxidase (GPX) activities in tetraploid genotypes, compared to their diploid control genotypes. Consequently, the current study results demonstrated that the 'Sabz' tetraploid genotype had a significantly higher water stress tolerance than other tested genotypes.
Collapse
Affiliation(s)
| | - Akhtar Shekafandeh
- Department of Horticultural Science, College of Agriculture, Shiraz University, Shiraz, Iran
| |
Collapse
|
33
|
Tossi VE, Martínez Tosar LJ, Laino LE, Iannicelli J, Regalado JJ, Escandón AS, Baroli I, Causin HF, Pitta-Álvarez SI. Impact of polyploidy on plant tolerance to abiotic and biotic stresses. FRONTIERS IN PLANT SCIENCE 2022; 13:869423. [PMID: 36072313 PMCID: PMC9441891 DOI: 10.3389/fpls.2022.869423] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 07/25/2022] [Indexed: 05/04/2023]
Abstract
Polyploidy, defined as the coexistence of three or more complete sets of chromosomes in an organism's cells, is considered as a pivotal moving force in the evolutionary history of vascular plants and has played a major role in the domestication of several crops. In the last decades, improved cultivars of economically important species have been developed artificially by inducing autopolyploidy with chemical agents. Studies on diverse species have shown that the anatomical and physiological changes generated by either natural or artificial polyploidization can increase tolerance to abiotic and biotic stresses as well as disease resistance, which may positively impact on plant growth and net production. The aim of this work is to review the current literature regarding the link between plant ploidy level and tolerance to abiotic and biotic stressors, with an emphasis on the physiological and molecular mechanisms responsible for these effects, as well as their impact on the growth and development of both natural and artificially generated polyploids, during exposure to adverse environmental conditions. We focused on the analysis of those types of stressors in which more progress has been made in the knowledge of the putative morpho-physiological and/or molecular mechanisms involved, revealing both the factors in common, as well as those that need to be addressed in future research.
Collapse
Affiliation(s)
- Vanesa E. Tossi
- Laboratorio de Cultivo Experimental de Plantas y Microalgas, Departamento de Biodiversidad y Biología Experimental (DBBE), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Int. Güiraldes y Cantilo, Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Universidad de Buenos Aires, Instituto de Micología y Botánica (INMIBO), Ciudad Universitaria, Int. Güiraldes y Cantilo, Buenos Aires, Argentina
| | - Leandro J. Martínez Tosar
- Laboratorio de Cultivo Experimental de Plantas y Microalgas, Departamento de Biodiversidad y Biología Experimental (DBBE), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Int. Güiraldes y Cantilo, Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Universidad de Buenos Aires, Instituto de Micología y Botánica (INMIBO), Ciudad Universitaria, Int. Güiraldes y Cantilo, Buenos Aires, Argentina
- Departamento de Biotecnología, Alimentos, Agro y Ambiental (DEBAL), Facultad de Ingeniería y Ciencias Exactas, Universidad Argentina de la Empresa (UADE), Buenos Aires, Argentina
| | - Leandro E. Laino
- Laboratorio de Cultivo Experimental de Plantas y Microalgas, Departamento de Biodiversidad y Biología Experimental (DBBE), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Int. Güiraldes y Cantilo, Buenos Aires, Argentina
| | - Jesica Iannicelli
- Instituto Nacional de Tecnología, Agropecuaria (INTA), Instituto de Genética “Ewald A. Favret”, Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Universidad de Buenos Aires, Instituto de Biodiversidad y Biología Experimental (IBBEA), Ciudad Universitaria, Int. Güiraldes y Cantilo, Buenos Aires, Argentina
| | - José Javier Regalado
- Laboratorio de Cultivo Experimental de Plantas y Microalgas, Departamento de Biodiversidad y Biología Experimental (DBBE), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Int. Güiraldes y Cantilo, Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Universidad de Buenos Aires, Instituto de Micología y Botánica (INMIBO), Ciudad Universitaria, Int. Güiraldes y Cantilo, Buenos Aires, Argentina
| | - Alejandro Salvio Escandón
- Instituto Nacional de Tecnología, Agropecuaria (INTA), Instituto de Genética “Ewald A. Favret”, Buenos Aires, Argentina
| | - Irene Baroli
- Facultad de Ciencias Exactas y Naturales, Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Universidad de Buenos Aires, Instituto de Biodiversidad y Biología Experimental (IBBEA), Ciudad Universitaria, Int. Güiraldes y Cantilo, Buenos Aires, Argentina
- Departamento de Biodiversidad y Biología Experimental (DBBE), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Int. Güiraldes y Cantilo, Buenos Aires, Argentina
- Irene Baroli,
| | - Humberto Fabio Causin
- Departamento de Biodiversidad y Biología Experimental (DBBE), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Int. Güiraldes y Cantilo, Buenos Aires, Argentina
- Humberto Fabio Causin,
| | - Sandra Irene Pitta-Álvarez
- Laboratorio de Cultivo Experimental de Plantas y Microalgas, Departamento de Biodiversidad y Biología Experimental (DBBE), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Int. Güiraldes y Cantilo, Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Universidad de Buenos Aires, Instituto de Micología y Botánica (INMIBO), Ciudad Universitaria, Int. Güiraldes y Cantilo, Buenos Aires, Argentina
- *Correspondence: Sandra Irene Pitta-Álvarez, ;
| |
Collapse
|
34
|
Sivager G, Calvez L, Bruyere S, Boisne-Noc R, Hufnagel B, Cebrian-Torrejon G, Doménech-Carbó A, Gros O, Ollitrault P, Morillon R. Better tolerance to Huanglongbing is conferred by tetraploid Swingle citrumelo rootstock and is influenced by the ploidy of the scion. FRONTIERS IN PLANT SCIENCE 2022; 13:1030862. [PMID: 36407590 PMCID: PMC9669798 DOI: 10.3389/fpls.2022.1030862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/12/2022] [Indexed: 05/14/2023]
Abstract
Huanglongbing (HLB) is a disease that is responsible for the death of millions of trees worldwide. The bacterial causal agent belongs to Candidatus Liberibacter spp., which is transmitted by psyllids. The bacterium lead most of the time to a reaction of the tree associated with callose synthesis at the phloem sieve plate. Thus, the obstruction of pores providing connections between adjacent sieve elements will limit the symplastic transport of the sugars and starches synthesized through photosynthesis. In the present article, we investigated the impact of the use of tetraploid Swingle citrumelo (Citrus paradisi Macfrad × Poncirus trifoliata [L.] Raf) rootstock on HLB tolerance, compared to its respective diploid. HLB-infected diploid and tetraploid rootstocks were investigated when grafted with Mexican and Persian limes. Secondary roots were anatomically studied using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) to observe callose deposition at the phloem sieve plate and to evaluate the impact of the bacterium's presence at the cellular level. Voltammetry of immobilized microparticles (VIMP) in roots was applied to determine the oxidative stress status of root samples. In the field, Mexican and Persian lime leaves of trees grafted onto tetraploid rootstock presented less symptoms of HLB. Anatomical analysis showed much stronger secondary root degradation in diploid rootstock, compared to tetraploid rootstock. Analysis of the root sieve plate in control root samples showed that pores were approximately 1.8-fold larger in tetraploid Swingle citrumelo than in its respective diploid. SEM analyses of root samples did not reveal any callose deposition into pores of diploid and tetraploid genotypes. VIMP showed limited oxidative stress in tetraploid samples, compared to diploid ones. These results were even strongly enhanced when rootstocks were grafted with Persian limes, compared to Mexican limes, which was corroborated by stronger polyphenol contents. TEM analysis showed that the bacteria was present in both ploidy root samples with no major impacts detected on cell walls or cell structures. These results reveal that tetraploid Swingle citrumelo rootstock confers better tolerance to HLB than diploid. Additionally, an even stronger tolerance is achieved when the triploid Persian lime scion is associated.
Collapse
Affiliation(s)
- Gary Sivager
- Centre de coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Unité Mixte de Recherche Amélioration Génétique et Adaptation des Plantes méditerranéennes et tropicales (UMR AGAP) Institut, Equipe Structure Evolutive des Agrumes, Polyploïdie et Amélioration Génétique (SEAPAG), F-97170 Petit-Bourg, Guadeloupe, French West Indies—Unité Mixte de Recherche Amélioration Génétique et Adaptation des Plantes méditerranéennes et tropicales (UMR AGAP) Institut, Univ. Montpellier, Centre de coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Institut Agro, Montpellier, France
| | - Leny Calvez
- Centre de coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Unité Mixte de Recherche Amélioration Génétique et Adaptation des Plantes méditerranéennes et tropicales (UMR AGAP) Institut, Equipe Structure Evolutive des Agrumes, Polyploïdie et Amélioration Génétique (SEAPAG), F-97170 Petit-Bourg, Guadeloupe, French West Indies—Unité Mixte de Recherche Amélioration Génétique et Adaptation des Plantes méditerranéennes et tropicales (UMR AGAP) Institut, Univ. Montpellier, Centre de coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Institut Agro, Montpellier, France
| | - Saturnin Bruyere
- Centre de coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Unité Mixte de Recherche Amélioration Génétique et Adaptation des Plantes méditerranéennes et tropicales (UMR AGAP) Institut, Equipe Structure Evolutive des Agrumes, Polyploïdie et Amélioration Génétique (SEAPAG), F-97170 Petit-Bourg, Guadeloupe, French West Indies—Unité Mixte de Recherche Amélioration Génétique et Adaptation des Plantes méditerranéennes et tropicales (UMR AGAP) Institut, Univ. Montpellier, Centre de coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Institut Agro, Montpellier, France
| | - Rosiane Boisne-Noc
- Centre de coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Unité Mixte de Recherche Amélioration Génétique et Adaptation des Plantes méditerranéennes et tropicales (UMR AGAP) Institut, Equipe Structure Evolutive des Agrumes, Polyploïdie et Amélioration Génétique (SEAPAG), F-97170 Petit-Bourg, Guadeloupe, French West Indies—Unité Mixte de Recherche Amélioration Génétique et Adaptation des Plantes méditerranéennes et tropicales (UMR AGAP) Institut, Univ. Montpellier, Centre de coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Institut Agro, Montpellier, France
| | - Barbara Hufnagel
- Centre de coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Unité Mixte de Recherche Amélioration Génétique et Adaptation des Plantes méditerranéennes et tropicales (UMR AGAP) Institut, Equipe Structure Evolutive des Agrumes, Polyploïdie et Amélioration Génétique (SEAPAG), F-97170 Petit-Bourg, Guadeloupe, French West Indies—Unité Mixte de Recherche Amélioration Génétique et Adaptation des Plantes méditerranéennes et tropicales (UMR AGAP) Institut, Univ. Montpellier, Centre de coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Institut Agro, Montpellier, France
| | - Gerardo Cebrian-Torrejon
- Connaissance et Valorisation: Chimie des Matériaux, Environnement, Energie (COVACHIM-M2E) Laboratory Equipe Associée (EA) 3592, Unité de Formations et de Recherche (UFR) des Sciences Exactes et Naturelles, Université des Antilles, Pointe-à-Pitre, Guadeloupe
| | - Antonio Doménech-Carbó
- Departament de Química Ananlítica, Facultat de Química, Universitat de València, Valencia, Spain
| | - Olivier Gros
- Centre commun de caractérisation des matériaux des Antilles et de la Guyane (C3MAG), Unité de Formations et de Recherche (UFR) des Sciences Exactes et Naturelles, Université des Antilles, Pointe-à-Pitre, Guadeloupe
- Institut de Systématique, Evolution, Biodiversité, Muséum National d’Histoire Naturelle, Centre National de la Recherche Scientifique (CNRS), Sorbonne Université, École Pratique des Hautes Etudes (EPHE), Université des Antilles, Campus de Fouillole, Pointe-à-Pitre, France
| | - Patrick Ollitrault
- Centre de coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Unité Mixte de Recherche Amélioration Génétique et Adaptation des Plantes méditerranéennes et tropicales (UMR AGAP) Institut, Equipe Structure Evolutive des Agrumes, Polyploïdie et Amélioration Génétique (SEAPAG), F-97170 Petit-Bourg, Guadeloupe, French West Indies—Unité Mixte de Recherche Amélioration Génétique et Adaptation des Plantes méditerranéennes et tropicales (UMR AGAP) Institut, Univ. Montpellier, Centre de coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Institut Agro, Montpellier, France
| | - Raphaël Morillon
- Centre de coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Unité Mixte de Recherche Amélioration Génétique et Adaptation des Plantes méditerranéennes et tropicales (UMR AGAP) Institut, Equipe Structure Evolutive des Agrumes, Polyploïdie et Amélioration Génétique (SEAPAG), F-97170 Petit-Bourg, Guadeloupe, French West Indies—Unité Mixte de Recherche Amélioration Génétique et Adaptation des Plantes méditerranéennes et tropicales (UMR AGAP) Institut, Univ. Montpellier, Centre de coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Institut Agro, Montpellier, France
- *Correspondence: Raphaël Morillon,
| |
Collapse
|
35
|
Liu Z, Xiong T, Zhao Y, Qiu B, Chen H, Kang X, Yang J. Genome-wide characterization and analysis of Golden 2-Like transcription factors related to leaf chlorophyll synthesis in diploid and triploid Eucalyptus urophylla. FRONTIERS IN PLANT SCIENCE 2022; 13:952877. [PMID: 35968152 PMCID: PMC9366356 DOI: 10.3389/fpls.2022.952877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 06/30/2022] [Indexed: 05/02/2023]
Abstract
Golden 2-Like (GLK) transcription factors play a crucial role in chloroplast development and chlorophyll synthesis in many plant taxa. To date, no systematic analysis of GLK transcription factors in tree species has been conducted. In this study, 40 EgrGLK genes in the Eucalyptus grandis genome were identified and divided into seven groups based on the gene structure and motif composition. The EgrGLK genes were mapped to 11 chromosomes and the distribution of genes on chromosome was uneven. Phylogenetic analysis of GLK proteins between E. grandis and other species provided information for the high evolutionary conservation of GLK genes among different species. Prediction of cis-regulatory elements indicated that the EgrGLK genes were involved in development, light response, and hormone response. Based on the finding that the content of chlorophyll in mature leaves was the highest, and leaf chlorophyll content of triploid Eucalyptus urophylla was higher than that of the diploid control, EgrGLK expression pattern in leaves of triploid and diploid E. urophylla was examined by means of transcriptome analysis. Differential expression of EgrGLK genes in leaves of E. urophylla of different ploidies was consistent with the trend in chlorophyll content. To further explore the relationship between EgrGLK expression and chlorophyll synthesis, co-expression networks were generated, which indicated that EgrGLK genes may have a positive regulatory relationship with chlorophyll synthesis. In addition, three EgrGLK genes that may play an important role in chlorophyll synthesis were identified in the co-expression networks. And the prediction of miRNAs targeting EgrGLK genes showed that miRNAs might play an important role in the regulation of EgrGLK gene expression. This research provides valuable information for further functional characterization of GLK genes in Eucalyptus.
Collapse
Affiliation(s)
- Zhao Liu
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing Forestry University, Beijing, China
| | - Tao Xiong
- Guangxi Dongmen Forest Farm, Chongzuo, China
| | | | - Bingfa Qiu
- Guangxi Dongmen Forest Farm, Chongzuo, China
| | - Hao Chen
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing Forestry University, Beijing, China
| | - Xiangyang Kang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing Forestry University, Beijing, China
| | - Jun Yang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing Forestry University, Beijing, China
- *Correspondence: Jun Yang,
| |
Collapse
|
36
|
Khalid MF, Vincent C, Morillon R, Anjum MA, Ahmad S, Hussain S. Different strategies lead to a common outcome: different water-deficit scenarios highlight physiological and biochemical strategies of water-deficit tolerance in diploid versus tetraploid Volkamer lemon. TREE PHYSIOLOGY 2021; 41:2359-2374. [PMID: 34077547 DOI: 10.1093/treephys/tpab074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 05/13/2021] [Indexed: 05/21/2023]
Abstract
Water scarcity restricts citrus growth and productivity worldwide. In pot conditions, tetraploid plants tolerate water deficit more than their corresponding diploids. However, their tolerance mechanisms remain elusive. In this study, we focused on which mechanisms (i.e., hydraulic, osmotic or antioxidative) confer water-deficit tolerance to tetraploids. We exposed diploid and tetraploid Volkamer lemon rootstock (Citrus volkameriana Tan. and Pasq.) to quickly (fast) and slowly (slow) developing water-deficit conditions. We evaluated their physiological, antioxidative defense and osmotic adjustment responses, and mineral distribution to leaves and roots. Water-deficit conditions decreased the photosynthetic variables of both diploid and tetraploid plants. Moreover, the corresponding decrease was greater in diploids than tetraploids. Higher concentrations of antioxidant enzymes, osmoprotectants and antioxidant capacity were found in the leaves and roots of tetraploids than diploids under water deficit. Diploid plants showed fast response in slow water-deficit condition, but that response did not persist as the deficit intensified. Meanwhile, tetraploids had lower water loss, which slowed the onset of slow water deficit relative to diploids. This response allowed stronger photosynthesis, while antioxidant and osmoprotectant production allowed for further tolerance once desiccation began. Overall, our results concluded that Volkamer lemon tetraploid plants tolerate rapid and slow water deficit by maintaining their photosynthesis due to low conductance (stem or roots), which helps to avoid desiccation, and stronger biochemical defense machinery than their corresponding diploids.
Collapse
Affiliation(s)
- Muhammad Fasih Khalid
- Department of Horticulture, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan 60800, Pakistan
- Horticultural Sciences Department, Citrus Research and Education Centre, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL 33850, USA
| | - Christopher Vincent
- Horticultural Sciences Department, Citrus Research and Education Centre, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL 33850, USA
| | - Raphael Morillon
- Equipe SEAPAG, UMR AGAP Institut, CIRAD, F-97170 Petit-Bourg, Guadeloupe, French West Indies
- UMR AGAP Institut, University of Montpellier, CIRAD, INRAE, Institut Agro, F-34398 Montpellier, France
| | - Muhammad Akbar Anjum
- Department of Horticulture, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Shakeel Ahmad
- Department of Agronomy, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Sajjad Hussain
- Department of Horticulture, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan 60800, Pakistan
| |
Collapse
|
37
|
Martínez-Andújar C, Martínez-Pérez A, Albacete A, Martínez-Melgarejo PA, Dodd IC, Thompson AJ, Mohareb F, Estelles-Lopez L, Kevei Z, Ferrández-Ayela A, Pérez-Pérez JM, Gifford ML, Pérez-Alfocea F. Overproduction of ABA in rootstocks alleviates salinity stress in tomato shoots. PLANT, CELL & ENVIRONMENT 2021; 44:2966-2986. [PMID: 34053093 DOI: 10.1111/pce.14121] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/17/2021] [Accepted: 05/21/2021] [Indexed: 05/20/2023]
Abstract
To determine whether root-supplied ABA alleviates saline stress, tomato (Solanum lycopersicum L. cv. Sugar Drop) was grafted onto two independent lines (NCED OE) overexpressing the SlNCED1 gene (9-cis-epoxycarotenoid dioxygenase) and wild type rootstocks. After 200 days of saline irrigation (EC = 3.5 dS m-1 ), plants with NCED OE rootstocks had 30% higher fruit yield, but decreased root biomass and lateral root development. Although NCED OE rootstocks upregulated ABA-signalling (AREB, ATHB12), ethylene-related (ACCs, ERFs), aquaporin (PIPs) and stress-related (TAS14, KIN, LEA) genes, downregulation of PYL ABA receptors and signalling components (WRKYs), ethylene synthesis (ACOs) and auxin-responsive factors occurred. Elevated SlNCED1 expression enhanced ABA levels in reproductive tissue while ABA catabolites accumulated in leaf and xylem sap suggesting homeostatic mechanisms. NCED OE also reduced xylem cytokinin transport to the shoot and stimulated foliar 2-isopentenyl adenine (iP) accumulation and phloem transport. Moreover, increased xylem GA3 levels in growing fruit trusses were associated with enhanced reproductive growth. Improved photosynthesis without changes in stomatal conductance was consistent with reduced stress sensitivity and hormone-mediated alteration of leaf growth and mesophyll structure. Combined with increases in leaf nutrients and flavonoids, systemic changes in hormone balance could explain enhanced vigour, reproductive growth and yield under saline stress.
Collapse
Affiliation(s)
| | | | | | | | - Ian C Dodd
- The Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Andrew J Thompson
- Cranfield Soil and AgriFood Institute, Cranfield University, Bedfordshire, UK
| | - Fady Mohareb
- Cranfield Soil and AgriFood Institute, Cranfield University, Bedfordshire, UK
| | | | - Zoltan Kevei
- Cranfield Soil and AgriFood Institute, Cranfield University, Bedfordshire, UK
| | | | | | - Miriam L Gifford
- School of Life Sciences and Warwick Integrative Synthetic Biology Centre, University of Warwick, Coventry, UK
| | | |
Collapse
|
38
|
Abdolinejad R, Shekafandeh A, Jowkar A. In vitro tetraploidy induction creates enhancements in morphological, physiological and phytochemical characteristics in the fig tree (Ficus Carica L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 166:191-202. [PMID: 34118682 DOI: 10.1016/j.plaphy.2021.05.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/27/2021] [Indexed: 05/05/2023]
Abstract
Fig tree (Ficus carica L.) is a precious fruit tree in semi-arid and arid areas worldwide which has difficulties in its conventional breeding programs. This study was carried out to make new genotypes with superior features based on the ploidy induction method. Thus, in vitro tetraploidization in two fig cultivars, namely 'Sabz' and 'Torsh', was successfully established using shoot tip explants and colchicine as the antimitotic agent in MS medium. The flow cytometry and chromosome counting techniques were used to verify tetraploid plants. The results revealed that, in comparison to the original diploid plants of both cultivars, tetraploid plants significantly had taller stems, larger leaves, a greater number of chloroplasts in guard cells, and higher chlorophyll content and photosynthesis rate. UPLC-MS analysis revealed that the level of growth stimulator phytohormones, including ZR, IAA, GA3, SA, and JA in the tetraploid plants of both cultivars were significantly higher than their diploid controls. In contrast, they had less accumulated growth inhibitor phytohormone (ABA) than their diploid explant source. Moreover, tetraploid plants had significantly accumulated a higher content of phenolic compounds, total soluble sugars, and total soluble proteins, but showed a significantly less total antioxidant activity. Consequently, it is concluded that the growth advantages of tetraploid figs created in this study are substantial in terms of phytohormonal, physiological, and phytochemical superiorities, as compared to their corresponding diploid plants. Polyploidization proves as a promising breeding tool for future breeding programs of the fig tree.
Collapse
Affiliation(s)
- Ruhollah Abdolinejad
- Department of Horticultural Science, College of Agriculture, Shiraz University, Shiraz, P.O. Box 65186-71441, Iran.
| | - Akhtar Shekafandeh
- Department of Horticultural Science, College of Agriculture, Shiraz University, Shiraz, P.O. Box 65186-71441, Iran.
| | - Abolfazl Jowkar
- Department of Horticultural Science, College of Agriculture, Shiraz University, Shiraz, P.O. Box 65186-71441, Iran.
| |
Collapse
|
39
|
Harms NE, Cronin JT, Gaskin JF. Increased ploidy of Butomus umbellatus in introduced populations is not associated with higher phenotypic plasticity to N and P. AOB PLANTS 2021; 13:plab045. [PMID: 34394906 PMCID: PMC8356175 DOI: 10.1093/aobpla/plab045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
Separate introductions or post-introduction evolution may lead to multiple invader genotypes or cytotypes that differ in growth rates, biomass or chemical profile responses (phenotype) to a range of environments. If the invader has high trait plasticity to a range of resource levels, then sediment N or P enrichment may enhance invasiveness. However, the ways in which ploidy, plasticity, and available N or P interact are unknown for most species despite the potential to explain spread and impacts by invaders with multiple introduced lineages. We conducted a common garden experiment with four triploid and six diploid populations of Butomus umbellatus, collected from across its invasive range in the USA. Plants were grown under different N or P nutrient levels (4, 40, 200, 400 mg L-1 N; 0.4, 4, 40 mg L-1 P) and we measured reaction norms for biomass, clonal reproduction and tissue chemistry. Contrary to our expectation, triploid B. umbellatus plants were less plastic to variation in N or P than diploid B. umbellatus in most measured traits. Diploid plants produced 172 % more reproductive biomass and 57 % more total biomass across levels of N, and 158 % more reproductive biomass and 33 % more total biomass across P than triploid plants. Triploid plants had lower shoot:root ratios and produced 30 % and 150 % more root biomass than diploid plants in response to increases in N and P, respectively. Tissue chemistry differed between cytotypes but plasticity was similar; N was 8 % higher and C:N ratio was 30 % lower in triploid than diploid plants across levels of N and plant parts, and N was 22 % higher and C:N ratio 27 % lower across levels of P and plant parts. Our results highlight differences in nutrient response between cytotypes of a widespread invader, and we call for additional field studies to better understand the interaction of nutrients and ploidy during invasion.
Collapse
Affiliation(s)
- Nathan E Harms
- U.S. Army Engineer Research and Development Center, Aquatic Ecology and Invasive Species Branch, 3909 Halls Ferry Road, Vicksburg, MS 39180, USA
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA 70803, USA
| | - James T Cronin
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA 70803, USA
| | - John F Gaskin
- U.S. Department of Agriculture, Agricultural Research Service, 1500 N. Central Avenue, Sidney, MT 59270, USA
| |
Collapse
|
40
|
Li M, Zhang C, Hou L, Yang W, Liu S, Pang X, Li Y. Multiple responses contribute to the enhanced drought tolerance of the autotetraploid Ziziphus jujuba Mill. var. spinosa. Cell Biosci 2021; 11:119. [PMID: 34193297 PMCID: PMC8243571 DOI: 10.1186/s13578-021-00633-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/21/2021] [Indexed: 12/13/2022] Open
Abstract
Background Polyploid plants often exhibit enhanced stress tolerance. The underlying physiological and molecular bases of such mechanisms remain elusive. Here, we characterized the drought tolerance of autotetraploid sour jujube at phenotypic, physiological and molecular levels. Results The study findings showed that the autotetraploid sour jujube exhibited a superior drought tolerance and enhanced regrowth potential after dehydration in comparison with the diploid counterpart. Under drought stress, more differentially expressed genes (DEGs) were detected in autotetraploid sour jujube and the physiological responses gradually triggered important functions. Through GO enrichment analysis, many DEGs between the diploid and autotetraploid sour jujube after drought-stress exposure were annotated to the oxidation–reduction process, photosystem, DNA binding transcription factor activity and oxidoreductase activity. Six reactive oxygen species scavenging-related genes were specifically differentially expressed and the larger positive fold-changes of the DEGs involved in glutathione metabolism were detected in autotetraploid. Consistently, the lower O2− level and malonaldehyde (MDA) content and higher antioxidant enzymes activity were detected in the autotetraploid under drought-stress conditions. In addition, DEGs in the autotetraploid after stress exposure were significantly enriched in anthocyanin biosynthesis, DNA replication, photosynthesis and plant hormone, including auxin, abscisic acid and gibberellin signal-transduction pathways. Under osmotic stress conditions, genes associated with the synthesis and transport of osmotic regulators including anthocyanin biosynthesis genes were differentially expressed, and the soluble sugar, soluble protein and proline contents were significantly higher in the autotetraploid. The higher chlorophyll content and DEGs enriched in photosynthesis suggest that the photosynthetic system in the autotetraploid was enhanced compared with diploid during drought stress. Moreover, several genes encoding transcription factors (TFs) including GRAS, Bhlh, MYB, WRKY and NAC were induced specifically or to higher levels in the autotetraploid under drought-stress conditions, and hub genes, LOC107403632, LOC107422279, LOC107434947, LOC107412673 and LOC107432609, related to 18 up-regulated transcription factors in the autotetraploid compared with the diploid were identified. Conclusion Taken together, multiple responses contribute to the enhanced drought tolerance of autotetraploid sour jujube. This study could provide an important basis for elucidating the mechanism of tolerance variation after the polyploidization of trees. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-021-00633-1.
Collapse
Affiliation(s)
- Meng Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China.,National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083, China.,College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Chenxing Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China.,National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083, China.,College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Lu Hou
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China.,National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083, China.,College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Weicong Yang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China.,National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083, China.,College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Songshan Liu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China.,National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083, China.,College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Xiaoming Pang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China.,National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083, China.,College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Yingyue Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China. .,National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083, China. .,College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
41
|
Reinvigoration/Rejuvenation Induced through Micrografting of Tree Species: Signaling through Graft Union. PLANTS 2021; 10:plants10061197. [PMID: 34208406 PMCID: PMC8231136 DOI: 10.3390/plants10061197] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/01/2021] [Accepted: 06/09/2021] [Indexed: 02/05/2023]
Abstract
Trees have a distinctive and generally long juvenile period during which vegetative growth rate is rapid and floral organs do not differentiate. Among trees, the juvenile period can range from 1 year to 15–20 years, although with some forest tree species, it can be longer. Vegetative propagation of trees is usually much easier during the juvenile phase than with mature phase materials. Therefore, reversal of maturity is often necessary in order to obtain materials in which rooting ability has been restored. Micrografting has been developed for trees to address reinvigoration/rejuvenation of elite selections to facilitate vegetative propagation. Generally, shoots obtained after serial grafting have increased rooting competence and develop juvenile traits; in some cases, graft-derived shoots show enhanced in vitro proliferation. Recent advances in graft signaling have shown that several factors, e.g., plant hormones, proteins, and different types of RNA, could be responsible for changes in the scion. The focus of this review includes (1) a discussion of the differences between the juvenile and mature growth phases in trees, (2) successful restoration of juvenile traits through micrografting, and (3) the nature of the different signals passing through the graft union.
Collapse
|
42
|
Lourkisti R, Oustric J, Quilichini Y, Froelicher Y, Herbette S, Morillon R, Berti L, Santini J. Improved response of triploid citrus varieties to water deficit is related to anatomical and cytological properties. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 162:762-775. [PMID: 33812345 DOI: 10.1016/j.plaphy.2021.03.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
Polyploidy plays a major role in citrus plant breeding to improve the adaptation of polyploid rootstocks as well as scions to adverse conditions and to enhance agronomic characteristics. In Citrus breeding programs, triploidy could be a useful tool to react to environmental issues and consumer demands because the produced fruits are seedless. In this study, we compared the physiological, biochemical, morphological, and ultrastructural responses to water deficit of triploid and diploid citrus varieties obtained from 'Fortune' mandarin and 'Ellendale' tangor hybridization. One diploid clementine tree was included and used as a reference. All studied scions were grafted on C-35 citrange rootstock. Triploidy decreased stomatal density and increased stomata size. The number of chloroplasts increased in 3x varieties. These cytological properties may explain the greater photosynthetic capacity (Pnet, gs, Fv/Fm) and enhanced water-holding capacity (RWC, proline). In addition, reduced degradation of ultrastructural organelles (chloroplasts and mitochondria) and thylakoids accompanied by less photosynthetic activity and low oxidative damages were found in 3x varieties. Triploid varieties, especially T40-3x, had a better ability to limit water loss and dissipate excess energy (NPQ) to protect photosystems. Higher starch reserves in 3x varieties suggest a better carbon and energy supply and increases in plastoglobuli size suggest less oxidative damage (H2O2, MDA), especially in T40-3x, and preservation of photosynthetic apparatus. Taken together, our results suggest that desirable cytological and ultrastructural traits induced by triploidy improve water stress response and could be a useful stress marker during environmental constraints.
Collapse
Affiliation(s)
- Radia Lourkisti
- CNRS, Equipe « Biochimie et Biologie moléculaire du végétal », UMR 6134 SPE, Université de Corse, Corsica, France
| | - Julie Oustric
- CNRS, Equipe « Biochimie et Biologie moléculaire du végétal », UMR 6134 SPE, Université de Corse, Corsica, France
| | - Yann Quilichini
- CNRS, Equipe « Parasites et Ecosystèmes méditerranéens, UMR 6134 SPE, Université de Corse, Corsica, France
| | | | | | - Raphael Morillon
- Equipe « Amélioration des Plantes à Multiplication Végétative », UMR AGAP, Département BIOS, CIRAD, Petit-Bourg, Guadeloupe
| | - Liliane Berti
- CNRS, Equipe « Biochimie et Biologie moléculaire du végétal », UMR 6134 SPE, Université de Corse, Corsica, France
| | - Jérémie Santini
- CNRS, Equipe « Biochimie et Biologie moléculaire du végétal », UMR 6134 SPE, Université de Corse, Corsica, France.
| |
Collapse
|
43
|
Schiavinato M, Bodrug‐Schepers A, Dohm JC, Himmelbauer H. Subgenome evolution in allotetraploid plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:672-688. [PMID: 33547826 PMCID: PMC8251528 DOI: 10.1111/tpj.15190] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 01/25/2021] [Accepted: 01/29/2021] [Indexed: 05/02/2023]
Abstract
Polyploidization is a well-known speciation and adaptation mechanism. Traces of former polyploidization events were discovered within many genomes, and especially in plants. Allopolyploidization by interspecific hybridization between two species is common. Among hybrid plants, many are domesticated species of agricultural interest and many of their genomes and of their presumptive parents have been sequenced. Hybrid genomes remain challenging to analyse because of the presence of multiple subgenomes. The genomes of hybrids often undergo rearrangement and degradation over time. Based on 10 hybrid plant genomes from six different genera, with hybridization dating from 10,000 to 5 million years ago, we assessed subgenome degradation, subgenomic intermixing and biased subgenome fractionation. The restructuring of hybrid genomes does not proceed proportionally with the age of the hybrid. The oldest hybrids in our data set display completely different fates: whereas the subgenomes of the tobacco plant Nicotiana benthamiana are in an advanced stage of degradation, the subgenomes of quinoa (Chenopodium quinoa) are exceptionally well conserved by structure and sequence. We observed statistically significant biased subgenome fractionation in seven out of 10 hybrids, which had different ages and subgenomic intermixing levels. Hence, we conclude that no correlation exists between biased fractionation and subgenome intermixing. Lastly, domestication may encourage or hinder subgenome intermixing, depending on the evolutionary context. In summary, comparative analysis of hybrid genomes and their presumptive parents allowed us to determine commonalities and differences between their evolutionary fates. In order to facilitate the future analysis of further hybrid genomes, we automated the analysis steps within manticore, which is publicly available at https://github.com/MatteoSchiavinato/manticore.git.
Collapse
Affiliation(s)
- Matteo Schiavinato
- Department of BiotechnologyUniversity of Natural Resources and Life Sciences (BOKU)Institute of Computational BiologyMuthgasse 18Vienna1190Austria
| | - Alexandrina Bodrug‐Schepers
- Department of BiotechnologyUniversity of Natural Resources and Life Sciences (BOKU)Institute of Computational BiologyMuthgasse 18Vienna1190Austria
| | - Juliane C. Dohm
- Department of BiotechnologyUniversity of Natural Resources and Life Sciences (BOKU)Institute of Computational BiologyMuthgasse 18Vienna1190Austria
| | - Heinz Himmelbauer
- Department of BiotechnologyUniversity of Natural Resources and Life Sciences (BOKU)Institute of Computational BiologyMuthgasse 18Vienna1190Austria
| |
Collapse
|
44
|
Tetraploid Citrumelo 4475 rootstocks improve diploid common clementine tolerance to long-term nutrient deficiency. Sci Rep 2021; 11:8902. [PMID: 33903646 PMCID: PMC8076223 DOI: 10.1038/s41598-021-88383-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 04/09/2021] [Indexed: 02/02/2023] Open
Abstract
Nutrient deficiency alters growth and the production of high-quality nutritious food. In Citrus crops, rootstock technologies have become a key tool for enhancing tolerance to abiotic stress. The use of doubled diploid rootstocks can improve adaptation to lower nutrient inputs. This study investigated leaf structure and ultrastructure and physiological and biochemical parameters of diploid common clementine scions (C) grafted on diploid (2x) and doubled diploid (4x) Carrizo citrange (C/CC2x and C/CC4x) and Citrumelo 4475 (C/CM2x and C/CM4x) rootstocks under optimal fertigation and after 7 months of nutrient deficiency. Rootstock ploidy level had no impact on structure but induced changes in the number and/or size of cells and some cell components of 2x common clementine leaves under optimal nutrition. Rootstock ploidy level did not modify gas exchanges in Carrizo citrange but induced a reduction in the leaf net photosynthetic rate in Citrumelo 4475. By assessing foliar damage, changes in photosynthetic processes and malondialdehyde accumulation, we found that C/CM4x were less affected by nutrient deficiency than the other scion/rootstock combinations. Their greater tolerance to nutrient deficiency was probably due to the better performance of the enzyme-based antioxidant system. Nutrient deficiency had similar impacts on C/CC2x and C/CC4x. Tolerance to nutrient deficiency can therefore be improved by rootstock polyploidy but remains dependent on the rootstock genotype.
Collapse
|
45
|
Khalid MF, Hussain S, Anjum MA, Morillon R, Ahmad S, Ejaz S, Hussain M, Jaafar HZE, Alrashood ST, Ormenisan AN. Physiological and biochemical responses of Kinnow mandarin grafted on diploid and tetraploid Volkamer lemon rootstocks under different water-deficit regimes. PLoS One 2021; 16:e0247558. [PMID: 33831006 PMCID: PMC8031453 DOI: 10.1371/journal.pone.0247558] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/09/2021] [Indexed: 01/03/2023] Open
Abstract
Water shortage is among the major abiotic stresses that restrict growth and productivity of citrus. The existing literature indicates that tetraploid rootstocks had better water-deficit tolerance than corresponding diploids. However, the associated tolerance mechanisms such as antioxidant defence and nutrient uptake are less explored. Therefore, we evaluated physiological and biochemical responses (antioxidant defence, osmotic adjustments and nutrient uptake) of diploid (2x) and tetraploid (4x) volkamer lemon (VM) rootstocks grafted with kinnow mandarin (KM) under two water-deficit regimes. The KM/4xVM (VM4) and KM/2xVM (VM2) observed decrease in photosynthetic variables, i.e., photosynthetic rate (Pn), stomatal conductance (gs), transpiration rate (E), leaf greenness (SPAD), dark adopted chlorophyll fluorescence (Fv/Fm), dark adopted chlorophyll fluorescence (Fv´/Fm´), relative water contents (RWC) and leaf surface area (LSA), and increase in non-photochemical quenching (NPQ) under both water-deficit regimes. Moreover, oxidative stress indicators, i.e., malondialdehyde (MDA) and hydrogen peroxide, and activities of antioxidant enzymes, i.e., superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), ascorbate peroxidase (APx), glutathione reductase (GR) were increased under both water-deficit regimes. Nonetheless, increase was noted in osmoprotectants such as proline (PRO) and glycine betaine (GB) and other biochemical compounds, including antioxidant capacity (AC), total phenolic content (TPC) and total soluble protein (TSP) in VM2 and VM4 under both water-deficit regimes. Dry biomass (DB) of both rootstocks was decreased under each water-deficit condition. Interestingly, VM4 showed higher and significant increase in antioxidant enzymes, osmoprotectants and other biochemical compounds, while VM2 exhibited higher values for oxidative stress indicators. Overall, results indicated that VM4 better tolerated water-deficit stress by maintaining photosynthetic variables associated with strong antioxidant defence machinery as compared to VM2. However, nutrient uptake was not differed among tested water-deficit conditions and rootstocks. The results conclude that VM4 can better tolerate water-deficit than VM2. Therefore, VM4 can be used as rootstock in areas of high-water deficiency for better citrus productivity.
Collapse
Affiliation(s)
- Muhammad Fasih Khalid
- Faculty of Agricultural Sciences and Technology, Department of Horticulture, Bahauddin Zakariya University, Multan, Pakistan
| | - Sajjad Hussain
- Faculty of Agricultural Sciences and Technology, Department of Horticulture, Bahauddin Zakariya University, Multan, Pakistan
| | - Muhammad Akbar Anjum
- Faculty of Agricultural Sciences and Technology, Department of Horticulture, Bahauddin Zakariya University, Multan, Pakistan
| | - Raphael Morillon
- Equipe “Structure Evolutive des Agrumes, Polyploidie et Amelioration Genetique, SEAPAG- CIRAD, UMR AGAP, Petit-Bourg, Guadeloupe, France
- AGAP, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Shakeel Ahmad
- Faculty of Agricultural Sciences and Technology, Department of Agronomy, Bahauddin Zakariya University, Multan, Pakistan
| | - Shaghef Ejaz
- Faculty of Agricultural Sciences and Technology, Department of Horticulture, Bahauddin Zakariya University, Multan, Pakistan
| | - Mubshar Hussain
- Faculty of Agricultural Sciences and Technology, Department of Agronomy, Bahauddin Zakariya University, Multan, Pakistan
| | - Hawa Z. E. Jaafar
- Faculty of Agriculture, Department of Crop Science, University Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Sara T. Alrashood
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Alexe Nicolae Ormenisan
- Department of Food and Tourism Engineering and Management, Transilvania University of Brasov, Brasov, Romania
| |
Collapse
|
46
|
Oustric J, Herbette S, Morillon R, Giannettini J, Berti L, Santini J. Influence of Rootstock Genotype and Ploidy Level on Common Clementine ( Citrus clementina Hort. ex Tan) Tolerance to Nutrient Deficiency. FRONTIERS IN PLANT SCIENCE 2021; 12:634237. [PMID: 33897725 PMCID: PMC8060649 DOI: 10.3389/fpls.2021.634237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/22/2021] [Indexed: 05/14/2023]
Abstract
Nutrient deficiency, in particular when this involves a major macronutrient (N, P, and K), is a limiting factor on the performance of plants in their natural habitat and agricultural environment. In the citrus industry, one of the eco-friendliest techniques for improving tolerance to biotic and abiotic stress is based on the grafting of a rootstock and a scion of economic interest. Scion tolerance may be improved by a tetraploid rootstock. The purpose of this study was to highlight if tolerance of a common clementine scion (C) (Citrus clementina Hort. ex Tan) to nutrient deficiency could be improved by several diploid (2×) and their tetraploid (4×) counterparts citrus genotypes commonly used as rootstocks: Trifoliate orange × Cleopatra mandarin (C/PMC2x and C/PMC4x), Carrizo citrange (C/CC2x and C/CC4x), Citrumelo 4475 (C/CM2x and C/CM4x). The allotetraploid FlhorAG1 (C/FL4x) was also included in the experimental design. The impact of nutrient deficiency on these seven scion/rootstock combinations was evaluated at root and leaf levels by investigating anatomical parameters, photosynthetic properties and oxidative and antioxidant metabolism. Nutrient deficiency affects foliar tissues, physiological parameters and oxidative metabolism in leaves and roots in different ways depending on the rootstock genotype and ploidy level. The best known nutrient deficiency-tolerant common clementine scions were grafted with the doubled diploid Citrumelo 4475 (C/CM4x) and the allotetraploid FlhorAG1 (C/FL4x). These combinations were found to have less foliar damage, fewer changes of photosynthetic processes [leaf net photosynthetic rate (P net ), stomatal conductance (g s ), transpiration (E), maximum quantum efficiency of PSII (F v /F m ), electron transport rate (ETR), ETR/P net ], and effective quantum yield of PSII [Y(II)], less malondialdehyde accumulation in leaves and better functional enzymatic and non-enzymatic antioxidant systems. Common clementine scions grafted on other 4× rootstocks did not show better tolerance than those grafted on their 2× counterparts. Chromosome doubling of rootstocks did not systematically improve the tolerance of the common clementine scion to nutrient deficiency.
Collapse
Affiliation(s)
- Julie Oustric
- CNRS, Équipe de Biochimie et Biologie Moléculaire du Végétal, UMR 6134 SPE, Université de Corse, Corsica, France
| | | | - Raphaël Morillon
- Equipe SEAPAG, CIRAD, UMR AGAP, Petit-Bourg, Guadeloupe, France
- AGAP, University of Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Jean Giannettini
- CNRS, Équipe de Biochimie et Biologie Moléculaire du Végétal, UMR 6134 SPE, Université de Corse, Corsica, France
| | - Liliane Berti
- CNRS, Équipe de Biochimie et Biologie Moléculaire du Végétal, UMR 6134 SPE, Université de Corse, Corsica, France
| | - Jérémie Santini
- CNRS, Équipe de Biochimie et Biologie Moléculaire du Végétal, UMR 6134 SPE, Université de Corse, Corsica, France
| |
Collapse
|
47
|
Liu M, Sun W, Li C, Yu G, Li J, Wang Y, Wang X. A multilayered cross-species analysis of GRAS transcription factors uncovered their functional networks in plant adaptation to the environment. J Adv Res 2021; 29:191-205. [PMID: 33842016 PMCID: PMC8020295 DOI: 10.1016/j.jare.2020.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/07/2020] [Accepted: 10/24/2020] [Indexed: 11/16/2022] Open
Abstract
Introduction Environmental stress is both a major force of natural selection and a prime factor affecting crop qualities and yields. The impact of the GRAS [gibberellic acid-insensitive (GAI), repressor of GA1-3 mutant (RGA), and scarecrow (SCR)] family on plant development and the potential to resist environmental stress needs much emphasis. Objectives This study aims to investigate the evolution, expansion, and adaptive mechanisms of GRASs of important representative plants during polyploidization. Methods We explored the evolutionary characteristics of GRASs in 15 representative plant species by systematic biological analysis of the genome, transcriptome, metabolite, protein complex map and phenotype. Results The GRAS family was systematically identified from 15 representative plant species of scientific and agricultural importance. The detection of gene duplication types of GRASs in all species showed that the widespread expansion of GRASs in these species was mainly contributed by polyploidization events. Evolutionary analysis reveals that most species experience independent genome-wide duplication (WGD) events and that interspecies GRAS functions may be broadly conserved. Polyploidy-related Chenopodium quinoa GRASs (CqGRASs) and Arabidopsis thaliana GRASs (AtGRASs) formed robust networks with flavonoid pathways by crosstalk with auxin and photosynthetic pathways. Furthermore, Arabidopsis thaliana population transcriptomes and the 1000 Plants (OneKP) project confirmed that GRASs are components of flavonoid biosynthesis, which enables plants to adapt to the environment by promoting flavonoid accumulation. More importantly, the GRASs of important species that may potentially improve important agronomic traits were mapped through TAIR and RARGE-II publicly available phenotypic data. Determining protein interactions and target genes contributes to determining GRAS functions. Conclusion The results of this study suggest that polyploidy-related GRASs in multiple species may be a target for improving plant growth, development, and environmental adaptation.
Collapse
Affiliation(s)
- Moyang Liu
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- College of Life Science, Sichuan Agricultural University, Ya’an 625014, China
| | - Wenjun Sun
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- College of Life Science, Sichuan Agricultural University, Ya’an 625014, China
| | - Chaorui Li
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Guolong Yu
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiahao Li
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yudong Wang
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xu Wang
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
48
|
Lourkisti R, Froelicher Y, Herbette S, Morillon R, Giannettini J, Berti L, Santini J. Triploidy in Citrus Genotypes Improves Leaf Gas Exchange and Antioxidant Recovery From Water Deficit. FRONTIERS IN PLANT SCIENCE 2021; 11:615335. [PMID: 33679818 PMCID: PMC7933528 DOI: 10.3389/fpls.2020.615335] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/29/2020] [Indexed: 05/27/2023]
Abstract
The triploidy has proved to be a powerful approach breeding programs, especially in Citrus since seedlessness is one of the main consumer expectations. Citrus plants face numerous abiotic stresses including water deficit, which negatively impact growth and crop yield. In this study, we evaluated the physiological and biochemical responses to water deficit and recovery capacity of new triploid hybrids, in comparison with diploid hybrids, their parents ("Fortune" mandarin and "Ellendale" tangor) and one clementine tree used as reference. The water deficit significantly decreased the relative water content (RWC) and leaf gas exchange (P net and g s ) and it increased the levels of oxidative markers (H2O2 and MDA) and antioxidants. Compared to diploid varieties, triploid hybrids limited water loss by osmotic adjustment as reflected by higher RWC, intrinsic water use efficiency (iWUE Pnet/gs ) iWUE and leaf proline levels. These had been associated with an effective thermal dissipation of excess energy (NPQ) and lower oxidative damage. Our results showed that triploidy in citrus enhances the recovery capacity after a water deficit in comparison with diploids due to better carboxylation efficiency, restored water-related parameters and efficient antioxidant system.
Collapse
Affiliation(s)
- Radia Lourkisti
- CNRS, Equipe de Biochimie et Biologie Moléculaire du Végétal, UMR 6134 SPE, Université de Corse, Corsica, France
| | | | | | - Raphael Morillon
- Equipe SEAPAG, CIRAD, UMR AGAP, F-97170 Petit-Bourg, Guadeloupe, France – AGAP, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Jean Giannettini
- CNRS, Equipe de Biochimie et Biologie Moléculaire du Végétal, UMR 6134 SPE, Université de Corse, Corsica, France
| | - Liliane Berti
- CNRS, Equipe de Biochimie et Biologie Moléculaire du Végétal, UMR 6134 SPE, Université de Corse, Corsica, France
| | - Jérémie Santini
- CNRS, Equipe de Biochimie et Biologie Moléculaire du Végétal, UMR 6134 SPE, Université de Corse, Corsica, France
| |
Collapse
|
49
|
Bowman KD, McCollum G, Albrecht U. SuperSour: A New Strategy for Breeding Superior Citrus Rootstocks. FRONTIERS IN PLANT SCIENCE 2021; 12:741009. [PMID: 34804088 PMCID: PMC8600239 DOI: 10.3389/fpls.2021.741009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/14/2021] [Indexed: 05/02/2023]
Abstract
Citrus crops have a long history of cultivation as grafted trees on selected rootstock cultivars, but all current rootstocks have significant limitations and traditional methods of rootstock breeding take at least 2-3 decades to develop and field test new rootstocks. Citrus production in the United States, and other parts of the world, is impaired by a wide range of biotic and abiotic problems, with especially severe damage caused by the disease huanglongbing (HLB) associated with Candidatus Liberibacter asiaticus. All major commercial citrus scion cultivars are damaged by HLB, but tree tolerance is significantly improved by some rootstocks. To overcome these challenges, the USDA citrus breeding program has implemented a multi-pronged strategy for rootstock breeding that expands the diversity of germplasm utilized in rootstock breeding, significantly increases the number of new hybrids evaluated concurrently, and greatly reduces the time from cross to potential cultivar release. We describe the key components and methodologies of this new strategy, termed "SuperSour," along with reference to the historical favorite rootstock sour orange (Citrus aurantium), and previous methods employed in citrus rootstock breeding. Rootstock propagation by cuttings and tissue culture is one key to the new strategy, and by avoiding the need for nucellar seeds, eliminates the 6- to 15-year delay in testing while waiting for new hybrids to fruit. In addition, avoiding selection of parents and progeny based on nucellar polyembryony vastly expands the potential genepool for use in rootstock improvement. Fifteen new field trials with more than 350 new hybrid rootstocks have been established under the SuperSour strategy in the last 8 years. Detailed multi-year performance data from the trials will be used to identify superior rootstocks for commercial release, and to map important traits and develop molecular markers for the next generation of rootstock development. Results from two of these multi-year replicated field trials with sweet orange scion are presented to illustrate performance of 97 new hybrid rootstocks relative to four commercial rootstocks. Through the first 7 years in the field with endemic HLB, many of the new SuperSour hybrid rootstocks exhibit greatly superior fruit yield, yield efficiency, canopy health, and fruit quality, as compared with the standard rootstocks included in the trials.
Collapse
Affiliation(s)
- Kim D. Bowman
- U.S. Horticultural Research Laboratory, Agricultural Research Service, United States Department of Agriculture, Ft. Pierce, FL, United States
- *Correspondence: Kim D. Bowman,
| | - Greg McCollum
- U.S. Horticultural Research Laboratory, Agricultural Research Service, United States Department of Agriculture, Ft. Pierce, FL, United States
| | - Ute Albrecht
- Southwest Florida Research and Education Center, Horticultural Sciences Department, Institute of Food and Agricultural Sciences, University of Florida, Immokalee, FL, United States
| |
Collapse
|
50
|
Sivager G, Calvez L, Bruyere S, Boisne-Noc R, Brat P, Gros O, Ollitrault P, Morillon R. Specific Physiological and Anatomical Traits Associated With Polyploidy and Better Detoxification Processes Contribute to Improved Huanglongbing Tolerance of the Persian Lime Compared With the Mexican Lime. FRONTIERS IN PLANT SCIENCE 2021; 12:685679. [PMID: 34512684 PMCID: PMC8427660 DOI: 10.3389/fpls.2021.685679] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/09/2021] [Indexed: 05/13/2023]
Abstract
Huanglongbing (HLB) is presently a major threat to the citrus industry. Because of this disease, millions of trees are currently dying worldwide. The putative causal agent is a motile bacteria belonging to Candidatus Liberibacter spp., which is transmitted by psyllids. The bacteria is responsible for the synthesis of callose at the phloem sieve plate, leading to the obstruction of the pores that provide connections between adjacent sieve elements, thus limiting the symplastic transport of the sugars and starches synthesized in leaves to the other plant organs. The Persian triploid lime (Citrus latifolia) is one of the most HLB-tolerant citrus varieties, but the determinants associated with the tolerance are still unknown. HLB-infected diploid Mexican lime (Citrus aurantiifolia) and Persian lime were investigated. The leaf petiole was analyzed using scanning electron microscopy (SEM) to observe callose deposition at the phloem sieve plate. Leaf starch contents and detoxification enzyme activities were investigated. In the field, Persian lime leaves present more limited symptoms due to HLB than the Mexican lime leaves do. Photosynthesis, stomatal conductance, and transpiration decreased compared with control plants, but values remained greater in the Persian than in the Mexican lime. Analysis of the petiole sieve plate in control petiole samples showed that pores were approximately 1.8-fold larger in the Persian than in the Mexican lime. SEM analyses of petiole samples of symptomatic leaves showed the important deposition of callose into pores of Mexican and Persian limes, whereas biochemical analyses revealed better detoxification in Persian limes than in Mexican limes. Moreover, SEM analyses of infected petiole samples of asymptomatic leaves showed much larger callose depositions into the Mexican lime pores than in the Persian lime pores, whereas biochemical traits revealed much better behavior in Persian limes than in Mexican limes. Our results reveal that polyploids present specific behaviors associated with important physiological and biochemical determinants that may explain the better tolerance of the Persian lime against HLB compared with the Mexican lime.
Collapse
Affiliation(s)
- Gary Sivager
- CIRAD, UMR AGAP Institut, Equipe SEAPAG, Petit-Bourg, Guadeloupe, French West Indies—UMR AGAP Institut, Univ. Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Leny Calvez
- CIRAD, UMR AGAP Institut, Equipe SEAPAG, Petit-Bourg, Guadeloupe, French West Indies—UMR AGAP Institut, Univ. Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Saturnin Bruyere
- CIRAD, UMR AGAP Institut, Equipe SEAPAG, Petit-Bourg, Guadeloupe, French West Indies—UMR AGAP Institut, Univ. Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Rosiane Boisne-Noc
- CIRAD, UMR AGAP Institut, Equipe SEAPAG, Petit-Bourg, Guadeloupe, French West Indies—UMR AGAP Institut, Univ. Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Pierre Brat
- CIRAD UMR Qualisud Dpt PERSYST-Qualisud, Univ. Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
| | - Olivier Gros
- C3MAG, UFR des Sciences Exactes et Naturelles, Université des Antilles, Pointe-à-Pitre, Guadeloupe
| | - Patrick Ollitrault
- CIRAD, UMR AGAP Institut, Equipe SEAPAG, Petit-Bourg, Guadeloupe, French West Indies—UMR AGAP Institut, Univ. Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Raphaël Morillon
- CIRAD, UMR AGAP Institut, Equipe SEAPAG, Petit-Bourg, Guadeloupe, French West Indies—UMR AGAP Institut, Univ. Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
- *Correspondence: Raphaël Morillon,
| |
Collapse
|