1
|
Zhao Y, Ma Y, Qiu H, Zhou L, He K, Ye Y. Wake up: the regulation of dormancy release and bud break in perennial plants. FRONTIERS IN PLANT SCIENCE 2025; 16:1553953. [PMID: 40115948 PMCID: PMC11924409 DOI: 10.3389/fpls.2025.1553953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 02/17/2025] [Indexed: 03/23/2025]
Abstract
In order to survive harsh winter conditions, perennial trees in the temperate and frigid regions enter a dormant state and cease growth in late summer after vigorous growth in spring and summer. After experiencing prolonged cold temperature and short days in winter, trees release their dormancy, and they resume growth to produce new buds in the following spring, a process known as bud break. The establishment/release of bud dormancy and bud break are crucial for the adaptations of woody plants and their survival in the natural environment. Photoperiod and temperature are key regulators in the bud dormancy and break cycle. In recent years, significant progress has been made in understanding the molecular mechanism for how photoperiod and temperature regulate seasonal growth and dormancy. Here, we summarized the regulatory network and mechanisms underlying the seasonal growth of perennial woody plants in the temperate and frigid regions, focusing on several molecular modules including the photoperiod, circadian clock, EARLY BUD BREAK 1 (EBB1) - SHORT VEGETATIVE PHASE Like (SVL) - EARLY BUD BREAK 3 (EBB3) module and hormone regulation. Through these modules, we will summarize how perennial trees release dormancy and bud break in order to better understand their differences and connections. By elucidating the interactions among these factors, we also point out the questions and challenges need to be addressed in understanding the bud dormancy and break cycle of perennial plants.
Collapse
Affiliation(s)
- Yue Zhao
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Key Laboratory for Poplar Germplasm Enhancement and Variety Improvement, Nanjing Forestry University, Nanjing, China
| | - Yahui Ma
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Key Laboratory for Poplar Germplasm Enhancement and Variety Improvement, Nanjing Forestry University, Nanjing, China
| | - Hanruo Qiu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Key Laboratory for Poplar Germplasm Enhancement and Variety Improvement, Nanjing Forestry University, Nanjing, China
| | - Lijuan Zhou
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Key Laboratory for Poplar Germplasm Enhancement and Variety Improvement, Nanjing Forestry University, Nanjing, China
| | - Kunrong He
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Key Laboratory for Poplar Germplasm Enhancement and Variety Improvement, Nanjing Forestry University, Nanjing, China
| | - Yajin Ye
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Key Laboratory for Poplar Germplasm Enhancement and Variety Improvement, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
2
|
Rachappanavar V. Utilizing CRISPR-based genetic modification for precise control of seed dormancy: progress, obstacles, and potential directions. Mol Biol Rep 2025; 52:204. [PMID: 39907946 DOI: 10.1007/s11033-025-10285-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 01/21/2025] [Indexed: 02/06/2025]
Abstract
Seed dormancy, a complex trait that is influenced by both nuclear and cytoplasmic factors, poses a significant challenge to agricultural productivity. Conventional dormancy-breaking techniques, including mechanical, physiological, and chemical methods, often yield inconsistent results, impair seed quality, and lack precision. This has necessitated exploration of more targeted and efficient approaches. CRISPR-based gene editing has emerged as a promising tool for the precise regulation of seed dormancy without compromising seed viability or sustainability. Although CRISPR has been successfully applied to modify genes that govern physiological traits in various crops, its use in dormancy regulation remains in the early stages. This review examines recent advancements in CRISPR-based approaches for modulating seed dormancy and discusses key gene targets, modification techniques, and the resulting effects. We also consider the future potential of CRISPR to enhance dormancy control across diverse crop species.
Collapse
Affiliation(s)
- Vinaykumar Rachappanavar
- MS Swaminathan School of Agriculture, Shoolini University, Solan, Himachal Pradesh, 173230, India.
| |
Collapse
|
3
|
Silva HG, Sobral R, Alhinho AT, Afonso HR, Ribeiro T, Silva PMA, Bousbaa H, Morais-Cecílio L, Costa MMR. Genetic and epigenetic control of dormancy transitions throughout the year in the monoecious cork oak. PHYSIOLOGIA PLANTARUM 2024; 176:e14620. [PMID: 39528435 DOI: 10.1111/ppl.14620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 10/20/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
Bud dormancy plays a vital role in flowering regulation and fruit production, being highly regulated by endogenous and environmental cues. Deployment of epigenetic modifications and differential gene expression control bud dormancy/break cycles. Information on how these genetic and epigenetic mechanisms are regulated throughout the year is still scarce for temperate trees such as Quercus suber. Here, the expression levels of CENTRORADIALIS-LIKE (CENL) and DORMANCY-ASSOCIATED PROTEIN 1 (QsDYL1) during seasonal cycles of bud development, suggesting that QsCENL may be implicated in growth cessation in Q. suber and that QsDYL1 is a good dormancy marker. As gene expression can be regulated by the activity of chromatin modifiers, we have analysed the expression of these genes and the deposition of epigenetic marks in dormant versus non-dormant bud meristems. The DNA methyl transferases CHROMOMEHTYLASE 3 (QsCMT3) and METHYLTRANSFERASE 1 (QsMET1) were more expressed in the transition between dormancy to bud swelling. QsCMT3 was also highly expressed during the late stages of active bud formation. Conversely, the HISTONE ACETYLTRANSFERASE 1 (QsHAC1) was up-regulated during growth cessation and dormancy when compared to bud swelling. These results indicate that epigenetic regulation is implicated in how bud development progresses in Q. suber, which can be observed in the different profile deposition of the repressive and active marks, 5mC and H3K18Ac/H3K4me, respectively. The identification of bud-specific genetic and epigenetic profiling opens new possibilities to predict the relative rate of dormancy/growth of the bud stages, providing tools to understand how trees respond to the current challenges posed by climate change.
Collapse
Affiliation(s)
- Helena Gomes Silva
- Centre of Molecular and Environmental Biology (CBMA), University of Minho, Braga, Portugal
| | - Rómulo Sobral
- Centre of Molecular and Environmental Biology (CBMA), University of Minho, Braga, Portugal
- new address: Faculty of Biosciences, Norwegian University of Life Sciences, Aas, Norway
| | - Ana Teresa Alhinho
- Centre of Molecular and Environmental Biology (CBMA), University of Minho, Braga, Portugal
| | - Hugo Ricardo Afonso
- Centre of Molecular and Environmental Biology (CBMA), University of Minho, Braga, Portugal
| | - Teresa Ribeiro
- LEAF-Linking Landscape, Environment, Agriculture and Food Research Center, Associate Laboratory TERRA, School of Agriculture, University of Lisbon, Lisboa, Portugal
| | - Patrícia M A Silva
- UNIPRO - Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS-CESPU), Gandra, Portugal
- 1H-TOXRUN - One Health Toxicology Research Unit, University Institute of Health Sciences, Gandra, Portugal
| | - Hassan Bousbaa
- UNIPRO - Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS-CESPU), Gandra, Portugal
| | - Leonor Morais-Cecílio
- LEAF-Linking Landscape, Environment, Agriculture and Food Research Center, Associate Laboratory TERRA, School of Agriculture, University of Lisbon, Lisboa, Portugal
| | | |
Collapse
|
4
|
Sato H, Yamane H. Histone modifications affecting plant dormancy and dormancy release: common regulatory effects on hormone metabolism. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6142-6158. [PMID: 38721634 DOI: 10.1093/jxb/erae205] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/08/2024] [Indexed: 10/17/2024]
Abstract
As sessile organisms, plants enter periods of dormancy in response to environmental stresses to ensure continued growth and reproduction in the future. During dormancy, plant growth is suppressed, adaptive/survival mechanisms are exerted, and stress tolerance increases over a prolonged period until the plants resume their development or reproduction under favorable conditions. In this review, we focus on seed dormancy and bud dormancy, which are critical for adaptation to fluctuating environmental conditions. We provide an overview of the physiological characteristics of both types of dormancy as well as the importance of the phytohormones abscisic acid and gibberellin for establishing and releasing dormancy, respectively. Additionally, recent epigenetic analyses have revealed that dormancy establishment and release are associated with the removal and deposition of histone modifications at the loci of key regulatory genes influencing phytohormone metabolism and signaling, including DELAY OF GERMINATION 1 and DORMANCY-ASSOCIATED MADS-box genes. We discuss our current understanding of the physiological and molecular mechanisms required to establish and release seed dormancy and bud dormancy, while also describing how environmental conditions control dormancy depth, with a focus on the effects of histone modifications.
Collapse
Affiliation(s)
- Hikaru Sato
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8562, Japan
| | - Hisayo Yamane
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
5
|
Saito T, Wang S, Ohkawa K, Ohara H, Kondo S. Deep learning with a small dataset predicts chromatin remodelling contribution to winter dormancy of apple axillary buds. TREE PHYSIOLOGY 2024; 44:tpae072. [PMID: 38905284 DOI: 10.1093/treephys/tpae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/31/2024] [Accepted: 06/20/2024] [Indexed: 06/23/2024]
Abstract
Epigenetic changes serve as a cellular memory for cumulative cold recognition in both herbaceous and tree species, including bud dormancy. However, most studies have discussed predicted chromatin structure with respect to histone marks. In the present study, we investigated the structural dynamics of bona fide chromatin to determine how plants recognize prolonged chilling during the initial stage of bud dormancy. The vegetative axillary buds of the 'Fuji' apple, which shows typical low temperature-dependent, but not photoperiod, dormancy induction, were used for the chromatin structure and transcriptional change analyses. The results were integrated using a deep-learning model and interpreted using statistical models, including Bayesian estimation. Although our model was constructed using a small dataset of two time points, chromatin remodelling due to random changes was excluded. The involvement of most nucleosome structural changes in transcriptional changes and the pivotal contribution of cold-driven circadian rhythm-dependent pathways regulated by the mobility of cis-regulatory elements were predicted. These findings may help to develop potential genetic targets for breeding species with less bud dormancy to overcome the effects of short winters during global warming. Our artificial intelligence concept can improve epigenetic analysis using a small dataset, especially in non-model plants with immature genome databases.
Collapse
Affiliation(s)
- Takanori Saito
- Graduate School of Horticulture, Chiba University, Matsudo 271-8510, Japan
| | - Shanshan Wang
- Graduate School of Horticulture, Chiba University, Matsudo 271-8510, Japan
| | - Katsuya Ohkawa
- Graduate School of Horticulture, Chiba University, Matsudo 271-8510, Japan
| | - Hitoshi Ohara
- Graduate School of Horticulture, Chiba University, Matsudo 271-8510, Japan
- Center for Environment, Health and Field Sciences, Chiba University, Kashiwa-no-ha 277-0882, Japan
| | - Satoru Kondo
- Graduate School of Horticulture, Chiba University, Matsudo 271-8510, Japan
| |
Collapse
|
6
|
Watson AE, Guitton B, Soriano A, Rivallan R, Vignes H, Farrera I, Huettel B, Arnaiz C, Falavigna VDS, Coupel-Ledru A, Segura V, Sarah G, Dufayard JF, Sidibe-Bocs S, Costes E, Andrés F. Target enrichment sequencing coupled with GWAS identifies MdPRX10 as a candidate gene in the control of budbreak in apple. FRONTIERS IN PLANT SCIENCE 2024; 15:1352757. [PMID: 38455730 PMCID: PMC10918860 DOI: 10.3389/fpls.2024.1352757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/02/2024] [Indexed: 03/09/2024]
Abstract
The timing of floral budbreak in apple has a significant effect on fruit production and quality. Budbreak occurs as a result of a complex molecular mechanism that relies on accurate integration of external environmental cues, principally temperature. In the pursuit of understanding this mechanism, especially with respect to aiding adaptation to climate change, a QTL at the top of linkage group (LG) 9 has been identified by many studies on budbreak, but the genes underlying it remain elusive. Here, together with a dessert apple core collection of 239 cultivars, we used a targeted capture sequencing approach to increase SNP resolution in apple orthologues of known or suspected A. thaliana flowering time-related genes, as well as approximately 200 genes within the LG9 QTL interval. This increased the 275 223 SNP Axiom® Apple 480 K array dataset by an additional 40 857 markers. Robust GWAS analyses identified MdPRX10, a peroxidase superfamily gene, as a strong candidate that demonstrated a dormancy-related expression pattern and down-regulation in response to chilling. In-silico analyses also predicted the residue change resulting from the SNP allele associated with late budbreak could alter protein conformation and likely function. Late budbreak cultivars homozygous for this SNP allele also showed significantly up-regulated expression of C-REPEAT BINDING FACTOR (CBF) genes, which are involved in cold tolerance and perception, compared to reference cultivars, such as Gala. Taken together, these results indicate a role for MdPRX10 in budbreak, potentially via redox-mediated signaling and CBF gene regulation. Moving forward, this provides a focus for developing our understanding of the effects of temperature on flowering time and how redox processes may influence integration of external cues in dormancy pathways.
Collapse
Affiliation(s)
- Amy E. Watson
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Baptiste Guitton
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Alexandre Soriano
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
- CIRAD, UMR AGAP Institut, Montpellier, France
- French Institute of Bioinformatics (IFB) - South Green Bioinformatics Platform, Bioversity, CIRAD, INRAE, IRD, Montpellier, France
| | - Ronan Rivallan
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
- CIRAD, UMR AGAP Institut, Montpellier, France
| | - Hélène Vignes
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
- CIRAD, UMR AGAP Institut, Montpellier, France
| | - Isabelle Farrera
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Bruno Huettel
- Genome Centre, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Catalina Arnaiz
- Centro de Biotecnología y Genómica de Plantas, Instituto de Investigación y Tecnología Agraria y Alimentaria, Universidad Politécnica de Madrid, Madrid, Spain
| | | | - Aude Coupel-Ledru
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Vincent Segura
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Gautier Sarah
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Jean-François Dufayard
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
- CIRAD, UMR AGAP Institut, Montpellier, France
- French Institute of Bioinformatics (IFB) - South Green Bioinformatics Platform, Bioversity, CIRAD, INRAE, IRD, Montpellier, France
| | - Stéphanie Sidibe-Bocs
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
- CIRAD, UMR AGAP Institut, Montpellier, France
- French Institute of Bioinformatics (IFB) - South Green Bioinformatics Platform, Bioversity, CIRAD, INRAE, IRD, Montpellier, France
| | - Evelyne Costes
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Fernando Andrés
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| |
Collapse
|
7
|
Chu X, Wang M, Fan Z, Li J, Yin H. Molecular Mechanisms of Seasonal Gene Expression in Trees. Int J Mol Sci 2024; 25:1666. [PMID: 38338945 PMCID: PMC10855862 DOI: 10.3390/ijms25031666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/22/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
In trees, the annual cycling of active and dormant states in buds is closely regulated by environmental factors, which are of primary significance to their productivity and survival. It has been found that the parallel or convergent evolution of molecular pathways that respond to day length or temperature can lead to the establishment of conserved periodic gene expression patterns. In recent years, it has been shown in many woody plants that change in annual rhythmic patterns of gene expression may underpin the adaptive evolution in forest trees. In this review, we summarize the progress on the molecular mechanisms of seasonal regulation on the processes of shoot growth, bud dormancy, and bud break in response to day length and temperature factors. We focus on seasonal expression patterns of genes involved in dormancy and their associated epigenetic modifications; the seasonal changes in the extent of modifications, such as DNA methylation, histone acetylation, and histone methylation, at dormancy-associated loci have been revealed for their actions on gene regulation. In addition, we provide an outlook on the direction of research on the annual cycle of tree growth under climate change.
Collapse
Affiliation(s)
- Xian Chu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (X.C.); (M.W.); (Z.F.); (J.L.)
- College of Information Science and Technology, Nanjing Forestry University, Nanjing 210037, China
| | - Minyan Wang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (X.C.); (M.W.); (Z.F.); (J.L.)
| | - Zhengqi Fan
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (X.C.); (M.W.); (Z.F.); (J.L.)
| | - Jiyuan Li
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (X.C.); (M.W.); (Z.F.); (J.L.)
| | - Hengfu Yin
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (X.C.); (M.W.); (Z.F.); (J.L.)
| |
Collapse
|
8
|
Zhao YL, Li Y, Cao K, Yao JL, Bie HL, Khan IA, Fang WC, Chen CW, Wang XW, Wu JL, Guo WW, Wang LR. MADS-box protein PpDAM6 regulates chilling requirement-mediated dormancy and bud break in peach. PLANT PHYSIOLOGY 2023; 193:448-465. [PMID: 37217835 PMCID: PMC10469376 DOI: 10.1093/plphys/kiad291] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 04/11/2023] [Accepted: 04/18/2023] [Indexed: 05/24/2023]
Abstract
Bud dormancy is crucial for winter survival and is characterized by the inability of the bud meristem to respond to growth-promotive signals before the chilling requirement (CR) is met. However, our understanding of the genetic mechanism regulating CR and bud dormancy remains limited. This study identified PpDAM6 (DORMANCY-ASSOCIATED MADS-box) as a key gene for CR using a genome-wide association study analysis based on structural variations in 345 peach (Prunus persica (L.) Batsch) accessions. The function of PpDAM6 in CR regulation was demonstrated by transiently silencing the gene in peach buds and stably overexpressing the gene in transgenic apple (Malus × domestica) plants. The results showed an evolutionarily conserved function of PpDAM6 in regulating bud dormancy release, followed by vegetative growth and flowering, in peach and apple. The 30-bp deletion in the PpDAM6 promoter was substantially associated with reducing PpDAM6 expression in low-CR accessions. A PCR marker based on the 30-bp indel was developed to distinguish peach plants with non-low and low CR. Modification of the H3K27me3 marker at the PpDAM6 locus showed no apparent change across the dormancy process in low- and non-low- CR cultivars. Additionally, H3K27me3 modification occurred earlier in low-CR cultivars on a genome-wide scale. PpDAM6 could mediate cell-cell communication by inducing the expression of the downstream genes PpNCED1 (9-cis-epoxycarotenoid dioxygenase 1), encoding a key enzyme for ABA biosynthesis, and CALS (CALLOSE SYNTHASE), encoding callose synthase. We shed light on a gene regulatory network formed by PpDAM6-containing complexes that mediate CR underlying dormancy and bud break in peach. A better understanding of the genetic basis for natural variations of CR can help breeders develop cultivars with different CR for growing in different geographical regions.
Collapse
Affiliation(s)
- Ya-Lin Zhao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Yong Li
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
- National Horticultural Germplasm Resources Center, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
| | - Ke Cao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
- National Horticultural Germplasm Resources Center, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
| | - Jia-Long Yao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland 1142, New Zealand
| | - Hang-Ling Bie
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Irshad Ahmad Khan
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
| | - Wei-Chao Fang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
- National Horticultural Germplasm Resources Center, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
| | - Chang-Wen Chen
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
- National Horticultural Germplasm Resources Center, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
| | - Xin-Wei Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
- National Horticultural Germplasm Resources Center, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
| | - Jin-Long Wu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
- National Horticultural Germplasm Resources Center, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
| | - Wen-Wu Guo
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Li-Rong Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
- National Horticultural Germplasm Resources Center, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
| |
Collapse
|
9
|
Puertes A, Polat H, Ramón-Núñez LA, González M, Ancillo G, Zuriaga E, Ríos G. Single-Bud Expression Analysis of Bud Dormancy Factors in Peach. PLANTS (BASEL, SWITZERLAND) 2023; 12:2601. [PMID: 37514216 PMCID: PMC10385799 DOI: 10.3390/plants12142601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023]
Abstract
Transcriptomic and gene expression analysis have greatly facilitated the identification and characterization of transcriptional regulatory factors and effectors involved in dormancy progression and other physiological processes orchestrated during bud development in peach and other temperate fruit species. Gene expression measurements are most usually based on average values from several or many individual buds. We have performed single-bud gene analysis in flower buds of peach across dormancy release using amplicons from the master regulatory DORMANCY-ASSOCIATED MADS-BOX (DAM) factors, several jasmonic acid biosynthetic genes, other genes related to flowering development, cell growth resumption, and abiotic stress tolerance. This analysis provides a close view on gene-specific, single-bud variability throughout the developmental shift from dormant to dormancy-released stages, contributing to the characterization of putative co-expression modules and other regulatory aspects in this particular tissue.
Collapse
Affiliation(s)
- Ana Puertes
- Valencian Institute for Agricultural Research (IVIA), 46113 Valencia, Spain
| | - Helin Polat
- Valencian Institute for Agricultural Research (IVIA), 46113 Valencia, Spain
| | | | - Matilde González
- Valencian Institute for Agricultural Research (IVIA), 46113 Valencia, Spain
| | - Gema Ancillo
- Valencian Institute for Agricultural Research (IVIA), 46113 Valencia, Spain
| | - Elena Zuriaga
- Valencian Institute for Agricultural Research (IVIA), 46113 Valencia, Spain
| | - Gabino Ríos
- Valencian Institute for Agricultural Research (IVIA), 46113 Valencia, Spain
| |
Collapse
|
10
|
Wang J, Ding J. Molecular mechanisms of flowering phenology in trees. FORESTRY RESEARCH 2023; 3:2. [PMID: 39526261 PMCID: PMC11524233 DOI: 10.48130/fr-2023-0002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/26/2022] [Indexed: 11/16/2024]
Abstract
Flower initiation is a phenological developmental process strictly regulated in all flowering plants. Studies in Arabidopsis thaliana, a model plant organism in plant biology and genetics, and major cereal crops have provided fundamental knowledge and understanding of the underlying molecular mechanisms and regulation in annuals. However, this flowering process and underly molecular mechanisms in perennials are much more complicated than those in annuals and remain poorly understood and documented. In recent years, the increasing availability of perennial plant genomes and advances in biotechnology have allowed the identification and characterization of flowering-associated gene orthologs in perennials. In this review, we compared and summarized the recent progress in regulation of flowering time in perennial trees, with an emphasis on the perennial-specific regulatory mechanisms. Pleiotropic effects on tree growth habits such as juvenility, seasonal activity-dormancy growth, and the applications of tree flowering phenology are discussed.
Collapse
Affiliation(s)
- Jun Wang
- College of Horticulture and Forestry, Hubei Hongshan Laboratory, Hubei Engineering Technology Research Center for Forestry Information, Huazhong Agricultural University, Wuhan 430070, China
| | - Jihua Ding
- College of Horticulture and Forestry, Hubei Hongshan Laboratory, Hubei Engineering Technology Research Center for Forestry Information, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
11
|
Quesada-Traver C, Lloret A, Carretero-Paulet L, Badenes ML, Ríos G. Evolutionary origin and functional specialization of Dormancy-Associated MADS box (DAM) proteins in perennial crops. BMC PLANT BIOLOGY 2022; 22:473. [PMID: 36199018 PMCID: PMC9533583 DOI: 10.1186/s12870-022-03856-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Bud dormancy is a phenological adaptation of temperate perennials that ensures survival under winter temperature conditions by ceasing growth and increasing cold hardiness. SHORT VEGETATIVE PHASE (SVP)-like factors, and particularly a subset of them named DORMANCY-ASSOCIATED MADS-BOX (DAM), are master regulators of bud dormancy in perennials, prominently Rosaceae crops widely adapted to varying environmental conditions. RESULTS SVP-like proteins from recently sequenced Rosaceae genomes were identified and characterized using sequence, phylogenetic and synteny analysis tools. SVP-like proteins clustered in three clades (SVP1-3), with known DAM proteins located within SVP2 clade, which also included Arabidopsis AGAMOUS-LIKE 24 (AthAGL24). A more detailed study on these protein sequences led to the identification of a 15-amino acid long motif specific to DAM proteins, which affected protein heteromerization properties by yeast two-hybrid system in peach PpeDAM6, and the unexpected finding of predicted DAM-like genes in loquat, an evergreen species lacking winter dormancy. DAM gene expression in loquat trees was studied by quantitative PCR, associating with inflorescence development and growth in varieties with contrasting flowering behaviour. CONCLUSIONS Phylogenetic, synteny analyses and heterologous overexpression in the model plant Arabidopsis thaliana supported three major conclusions: 1) DAM proteins might have emerged from the SVP2 clade in the Amygdaloideae subfamily of Rosaceae; 2) a short DAM-specific motif affects protein heteromerization, with a likely effect on DAM transcriptional targets and other functional features, providing a sequence signature for the DAM group of dormancy factors; 3) in agreement with other recent studies, DAM associates with inflorescence development and growth, independently of the dormancy habit.
Collapse
Affiliation(s)
- Carles Quesada-Traver
- Departamento de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias (IVIA), Carretera CV-315, Km 10.7, 46113 Moncada, Valencia Spain
| | - Alba Lloret
- Departamento de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias (IVIA), Carretera CV-315, Km 10.7, 46113 Moncada, Valencia Spain
| | - Lorenzo Carretero-Paulet
- Department of Biology and Geology, University of Almería, Ctra. Sacramento s/n, 04120 Almería, Spain
- Centro de Investigación de Colecciones Científicas de la Universidad de Almería (CECOUAL), University of Almería, Ctra. Sacramento s/n, 04120 Almería, Spain
| | - María Luisa Badenes
- Departamento de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias (IVIA), Carretera CV-315, Km 10.7, 46113 Moncada, Valencia Spain
| | - Gabino Ríos
- Departamento de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias (IVIA), Carretera CV-315, Km 10.7, 46113 Moncada, Valencia Spain
| |
Collapse
|
12
|
Identification of Key Genes Related to Dormancy Control in Prunus Species by Meta-Analysis of RNAseq Data. PLANTS 2022; 11:plants11192469. [PMID: 36235335 PMCID: PMC9573011 DOI: 10.3390/plants11192469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/18/2022]
Abstract
Bud dormancy is a genotype-dependent mechanism observed in Prunus species in which bud growth is inhibited, and the accumulation of a specific amount of chilling (endodormancy) and heat (ecodormancy) is necessary to resume growth and reach flowering. We analyzed publicly available transcriptome data from fifteen cultivars of four Prunus species (almond, apricot, peach, and sweet cherry) sampled at endo- and ecodormancy points to identify conserved genes and pathways associated with dormancy control in the genus. A total of 13,018 genes were differentially expressed during dormancy transitions, of which 139 and 223 were of interest because their expression profiles correlated with endo- and ecodormancy, respectively, in at least one cultivar of each species. The endodormancy-related genes comprised transcripts mainly overexpressed during chilling accumulation and were associated with abiotic stresses, cell wall modifications, and hormone regulation. The ecodormancy-related genes, upregulated after chilling fulfillment, were primarily involved in the genetic control of carbohydrate regulation, hormone biosynthesis, and pollen development. Additionally, the integrated co-expression network of differentially expressed genes in the four species showed clusters of co-expressed genes correlated to dormancy stages and genes of breeding interest overlapping with quantitative trait loci for bloom time and chilling and heat requirements.
Collapse
|
13
|
Sun L, Nie T, Chen Y, Yin Z. From Floral Induction to Blooming: The Molecular Mysteries of Flowering in Woody Plants. Int J Mol Sci 2022; 23:ijms231810959. [PMID: 36142871 PMCID: PMC9500781 DOI: 10.3390/ijms231810959] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/12/2022] [Accepted: 09/16/2022] [Indexed: 12/04/2022] Open
Abstract
Flowering is a pivotal developmental process in response to the environment and determines the start of a new life cycle in plants. Woody plants usually possess a long juvenile nonflowering phase followed by an adult phase with repeated flowering cycles. The molecular mechanism underlying flowering regulation in woody plants is believed to be much more complex than that in annual herbs. In this review, we briefly describe the successive but distinct flowering processes in perennial trees, namely the vegetative phase change, the floral transition, floral organogenesis, and final blooming, and summarize in detail the most recent advances in understanding how woody plants regulate flowering through dynamic gene expression. Notably, the florigen gene FLOWERING LOCUS T(FT) and its antagonistic gene TERMINAL FLOWER 1 (TFL1) seem to play a central role in various flowering transition events. Flower development in different taxa requires interactions between floral homeotic genes together with AGL6 conferring floral organ identity. Finally, we illustrate the issues and corresponding measures of flowering regulation investigation. It is of great benefit to the future study of flowering in perennial trees.
Collapse
Affiliation(s)
- Liyong Sun
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
- Department of Biology, The Pennsylvania State University, University Park, State College, PA 16802, USA
| | - Tangjie Nie
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Yao Chen
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Zengfang Yin
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
- Correspondence: ; Tel.: +86-025-85427316
| |
Collapse
|
14
|
Chen W, Tamada Y, Yamane H, Matsushita M, Osako Y, Gao-Takai M, Luo Z, Tao R. H3K4me3 plays a key role in establishing permissive chromatin states during bud dormancy and bud break in apple. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:1015-1031. [PMID: 35699670 DOI: 10.1111/tpj.15868] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Bud dormancy helps woody perennials survive winter and activate robust plant development in the spring. For apple (Malus × domestica), short-term chilling induces bud dormancy in autumn, then prolonged chilling leads to dormancy release and a shift to a quiescent state in winter, with subsequent warm periods promoting bud break in spring. Epigenetic regulation contributes to seasonal responses such as vernalization. However, how histone modifications integrate seasonal cues and internal signals during bud dormancy in woody perennials remains largely unknown. Here, we show that H3K4me3 plays a key role in establishing permissive chromatin states during bud dormancy and bud break in apple. The global changes in gene expression strongly correlated with changes in H3K4me3, but not H3K27me3. High expression of DORMANCY-ASSOCIATED MADS-box (DAM) genes, key regulators of dormancy, in autumn was associated with high H3K4me3 levels. In addition, known DAM/SHORT VEGETATIVE PHASE (SVP) target genes significantly overlapped with H3K4me3-modified genes as bud dormancy progressed. These data suggest that H3K4me3 contributes to the central dormancy circuit, consisting of DAM/SVP and abscisic acid (ABA), in autumn. In winter, the lower expression and H3K4me3 levels at DAMs and gibberellin metabolism genes control chilling-induced release of dormancy. Warming conditions in spring facilitate the expression of genes related to phytohormones, the cell cycle, and cell wall modification by increasing H3K4me3 toward bud break. Our study also revealed that activation of auxin and repression of ABA sensitivity in spring are conditioned at least partly through temperature-mediated epigenetic regulation in winter.
Collapse
Affiliation(s)
- Wenxing Chen
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
- Key Laboratory of Horticultural Plant Biology, Huazhong Agricultural University, Wuhan, China
| | - Yosuke Tamada
- School of Engineering, Utsunomiya University, Utsunomiya, Japan
- National Institute for Basic Biology, Okazaki, Japan
- The Graduate University for Advanced Studies, SOKENDAI, Miura-gun, Japan
| | - Hisayo Yamane
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | | | - Yutaro Osako
- Faculty of Agriculture, Shinshu University, Kamiina-gun, Japan
| | - Mei Gao-Takai
- Agricultural Experimental Station, Ishikawa Prefectural University, Nonoichi, Japan
| | - Zhengrong Luo
- Key Laboratory of Horticultural Plant Biology, Huazhong Agricultural University, Wuhan, China
| | - Ryutaro Tao
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
15
|
Hui Z, Xu J, Jian Y, Bian C, Duan S, Hu J, Li G, Jin L. Identification of Long-Distance Transport Signal Molecules Associated with Plant Maturity in Tetraploid Cultivated Potatoes (Solanum tuberosum L.). PLANTS 2022; 11:plants11131707. [PMID: 35807658 PMCID: PMC9268856 DOI: 10.3390/plants11131707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 06/24/2022] [Accepted: 06/25/2022] [Indexed: 11/16/2022]
Abstract
Maturity is a key trait for breeders to identify potato cultivars suitable to grow in different latitudes. However, the molecular mechanism regulating maturity remains unclear. In this study, we performed a grafting experiment using the early-maturing cultivar Zhongshu 5 (Z5) and the late-maturing cultivar Zhongshu 18 (Z18) and found that abscisic acid (ABA) and salicylic acid (SA) positively regulate the early maturity of potato, while indole-3-acetic acid (IAA) negatively regulated early maturity. A total of 43 long-distance transport mRNAs are observed to be involved in early maturity, and 292 long-distance transport mRNAs involved in late maturity were identified using RNA sequencing. Specifically, StMADS18, StSWEET10C, and StSWEET11 are detected to be candidate genes for their association with potato early maturity. Metabolomic data analysis shows a significant increase in phenolic acid and flavonoid contents increased in the scion of the early-maturing cultivar Z5, but a significant decrease in amino acid, phenolic acid, and alkaloid contents increased in the scion of the late-maturing cultivar Z18. This work reveals a significant association between the maturity of tetraploid cultivated potato and long-distance transport signal molecules and provides useful data for assessing the molecular mechanisms underlying the maturity of potato plants and for breeding early-maturing potato cultivars.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Guangcun Li
- Correspondence: (G.L.); (L.J.); Tel.: +86-010-82105955 (G.L.); +86-010-82109543 (L.J.)
| | - Liping Jin
- Correspondence: (G.L.); (L.J.); Tel.: +86-010-82105955 (G.L.); +86-010-82109543 (L.J.)
| |
Collapse
|
16
|
Harel-Beja R, Ophir R, Sherman A, Eshed R, Rozen A, Trainin T, Doron-Faigenboim A, Tal O, Bar-Yaakov I, Holland D. The Pomegranate Deciduous Trait Is Genetically Controlled by a PgPolyQ- MADS Gene. FRONTIERS IN PLANT SCIENCE 2022; 13:870207. [PMID: 35574086 PMCID: PMC9100744 DOI: 10.3389/fpls.2022.870207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/17/2022] [Indexed: 06/15/2023]
Abstract
The pomegranate (Punica granatum L.) is a deciduous fruit tree that grows worldwide. However, there are variants, which stay green in mild winter conditions and are determined evergreen. The evergreen trait is of commercial and scientific importance as it extends the period of fruit production and provides opportunity to identify genetic functions that are involved in sensing environmental cues. Several different evergreen pomegranate accessions from different genetic sources grow in the Israeli pomegranate collection. The leaves of deciduous pomegranates begin to lose chlorophyll during mid of September, while evergreen accessions continue to generate new buds. When winter temperature decreases 10°C, evergreen variants cease growing, but as soon as temperatures arise budding starts, weeks before the response of the deciduous varieties. In order to understand the genetic components that control the evergreen/deciduous phenotype, several segregating populations were constructed, and high-resolution genetic maps were assembled. Analysis of three segregating populations showed that the evergreen/deciduous trait in pomegranate is controlled by one major gene that mapped to linkage group 3. Fine mapping with advanced F3 and F4 populations and data from the pomegranate genome sequences revealed that a gene encoding for a putative and unique MADS transcription factor (PgPolyQ-MADS) is responsible for the evergreen trait. Ectopic expression of PgPolyQ-MADS in Arabidopsis generated small plants and early flowering. The deduced protein of PgPolyQ-MADS includes eight glutamines (polyQ) at the N-terminus. Three-dimensional protein model suggests that the polyQ domain structure might be involved in DNA binding of PgMADS. Interestingly, all the evergreen pomegranate varieties contain a mutation within the polyQ that cause a stop codon at the N terminal. The polyQ domain of PgPolyQ-MADS resembles that of the ELF3 prion-like domain recently reported to act as a thermo-sensor in Arabidopsis, suggesting that similar function could be attributed to PgPolyQ-MADS protein in control of dormancy. The study of the evergreen trait broadens our understanding of the molecular mechanism related to response to environmental cues. This enables the development of new cultivars that are better adapted to a wide range of climatic conditions.
Collapse
Affiliation(s)
- Rotem Harel-Beja
- Department of Fruit Tree Sciences, Institute of Plant Sciences, Agricultural Research Organization - The Volcani Center, Newe Ya’ar Research Center, Ramat Yishai, Israel
| | - Ron Ophir
- Department of Fruit Tree Sciences, Institute of Plant Sciences, Agricultural Research Organization - The Volcani Center, Rishon LeZion, Israel
| | - Amir Sherman
- Department of Fruit Tree Sciences, Institute of Plant Sciences, Agricultural Research Organization - The Volcani Center, Rishon LeZion, Israel
| | - Ravit Eshed
- Department of Fruit Tree Sciences, Institute of Plant Sciences, Agricultural Research Organization - The Volcani Center, Rishon LeZion, Israel
| | - Ada Rozen
- Department of Fruit Tree Sciences, Institute of Plant Sciences, Agricultural Research Organization - The Volcani Center, Rishon LeZion, Israel
| | - Taly Trainin
- Department of Fruit Tree Sciences, Institute of Plant Sciences, Agricultural Research Organization - The Volcani Center, Newe Ya’ar Research Center, Ramat Yishai, Israel
| | - Adi Doron-Faigenboim
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization - The Volcani Center, Rishon LeZion, Israel
| | - Ofir Tal
- Institute of Plant Sciences, Newe Ya’ar Research Center, The Agricultural Research Organization - The Volcani Center, Ramat Yishai, Israel
| | - Irit Bar-Yaakov
- Department of Fruit Tree Sciences, Institute of Plant Sciences, Agricultural Research Organization - The Volcani Center, Newe Ya’ar Research Center, Ramat Yishai, Israel
| | - Doron Holland
- Department of Fruit Tree Sciences, Institute of Plant Sciences, Agricultural Research Organization - The Volcani Center, Newe Ya’ar Research Center, Ramat Yishai, Israel
| |
Collapse
|
17
|
Li D, Shao L, Xu T, Wang X, Zhang R, Zhang K, Xia Y, Zhang J. Hybrid RNA Sequencing Strategy for the Dynamic Transcriptomes of Winter Dormancy in an Evergreen Herbaceous Perennial, Iris japonica. Front Genet 2022; 13:841957. [PMID: 35368689 PMCID: PMC8965894 DOI: 10.3389/fgene.2022.841957] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/11/2022] [Indexed: 11/30/2022] Open
Abstract
Japanese iris (Iris japonica) is a popular perennial ornamental that originated in China; it has a long display period and remains green outdoors throughout the year. winter dormancy characteristics contribute greatly to the evergreenness of herbaceous perennials. Thus, it is crucial to explore the mechanism of winter dormancy in this evergreen herbaceous perennial. Here, we used the hybrid RNA-seq strategy including single-molecule real-time (SMRT) and next-generation sequencing (NGS) technologies to generate large-scale Full-length transcripts to examine the shoot apical meristems of Japanese iris. A total of 10.57 Gb clean data for SMRT and over 142 Gb clean data for NGS were generated. Using hybrid error correction, 58,654 full-length transcripts were acquired and comprehensively analysed, and their expression levels were validated by real-time qPCR. This is the first full-length RNA-seq study in the Iris genus; our results provide a valuable resource and improve understanding of RNA processing in this genus, for which little genomic information is available as yet. In addition, our data will facilitate in-depth analyses of winter dormancy mechanisms in herbaceous perennials, especially evergreen monocotyledons.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yiping Xia
- *Correspondence: Jiaping Zhang, ; Yiping Xia,
| | | |
Collapse
|
18
|
Voogd C, Brian LA, Wu R, Wang T, Allan AC, Varkonyi-Gasic E. A MADS-box gene with similarity to FLC is induced by cold and correlated with epigenetic changes to control budbreak in kiwifruit. THE NEW PHYTOLOGIST 2022; 233:2111-2126. [PMID: 34907541 DOI: 10.1111/nph.17916] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/01/2021] [Indexed: 06/14/2023]
Abstract
Temperate perennials require exposure to chilling temperatures to resume growth in the following spring. Growth and dormancy cycles are controlled by complex genetic regulatory networks and are governed by epigenetic mechanisms, but the specific genes and mechanisms remain poorly understood. To understand how seasonal changes and chilling regulate dormancy and growth in the woody perennial vine kiwifruit (Ac, Actinidia chinensis), a transcriptome study of kiwifruit buds in the field and controlled conditions was performed. A MADS-box gene with homology to Arabidopsis FLOWERING LOCUS C (FLC) was identified and characterized. Elevated expression of AcFLC-like (AcFLCL) was detected during bud dormancy and chilling. A long noncoding (lnc) antisense transcript with an expression pattern opposite to AcFLCL and shorter sense noncoding RNAs were identified. Chilling induced an increase in trimethylation of lysine-4 of histone H3 (H3K4me3) in the 5' end of the gene, indicating multiple layers of epigenetic regulation in response to cold. Overexpression of AcFLCL in kiwifruit gave rise to plants with earlier budbreak, whilst gene editing using CRISPR-Cas9 resulted in transgenic lines with substantially delayed budbreak, suggesting a role in activation of growth. These results have implications for the future management and breeding of perennials for resilience to changing climate.
Collapse
Affiliation(s)
- Charlotte Voogd
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research) Mt Albert, Private Bag 92169, Auckland Mail Centre, Auckland, 1142, New Zealand
| | - Lara A Brian
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research) Mt Albert, Private Bag 92169, Auckland Mail Centre, Auckland, 1142, New Zealand
| | - Rongmei Wu
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research) Mt Albert, Private Bag 92169, Auckland Mail Centre, Auckland, 1142, New Zealand
| | - Tianchi Wang
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research) Mt Albert, Private Bag 92169, Auckland Mail Centre, Auckland, 1142, New Zealand
| | - Andrew C Allan
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research) Mt Albert, Private Bag 92169, Auckland Mail Centre, Auckland, 1142, New Zealand
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Erika Varkonyi-Gasic
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research) Mt Albert, Private Bag 92169, Auckland Mail Centre, Auckland, 1142, New Zealand
| |
Collapse
|
19
|
Comparative Transcriptomic Analysis Provides Insight into the Key Regulatory Pathways and Differentially Expressed Genes in Blueberry Flower Bud Endo- and Ecodormancy Release. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8020176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Endodormancy is the stage that perennial plants must go through to prepare for the next seasonal cycle, and it is also an adaptation that allows plants to survive harsh winters. Blueberries (Vaccinium spp.) are known to have high nutritional and commercial value. To better understand the molecular mechanisms of bud dormancy release, the transcriptomes of flower buds from the southern highbush blueberry variety “O’Neal” were analyzed at seven time points of the endo- and ecodormancy release processes. Pairwise comparisons were conducted between adjacent time points; five kinds of phytohormone were identified via these processes. A total of 12,350 differentially expressed genes (DEGs) were obtained from six comparisons. Gene Ontology analysis indicated that these DEGs were significantly involved in metabolic processes and catalytic activity. KEGG pathway analysis showed that these DEGs were predominantly mapped to metabolic pathways and the biosynthesis of secondary metabolites in endodormancy release, but these DEGs were significantly enriched in RNA transport, plant hormone signal transduction, and circadian rhythm pathways in the process of ecodormancy release. The contents of abscisic acid (ABA), salicylic acid (SA), and 1-aminocyclopropane-1-carboxylate (ACC) decreased in endo- and ecodormancy release, and the jasmonic acid (JA) level first decreased in endodormancy release and then increased in ecodormancy release. Weighted correlation network analysis (WGCNA) of transcriptomic data associated with hormone contents generated 25 modules, 9 of which were significantly related to the change in hormone content. The results of this study have important reference value for elucidating the molecular mechanism of flower bud dormancy release.
Collapse
|
20
|
Fang ZZ, Lin-Wang K, Dai H, Zhou DR, Jiang CC, Espley RV, Deng C, Lin YJ, Pan SL, Ye XF. The genome of low-chill Chinese plum 'Sanyueli' (Prunus salicina Lindl.) provides insights into the regulation of the chilling requirement of flower buds. Mol Ecol Resour 2022; 22:1919-1938. [PMID: 35032338 DOI: 10.1111/1755-0998.13585] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 12/17/2021] [Accepted: 01/05/2022] [Indexed: 10/19/2022]
Abstract
Chinese plum (Prunus salicina Lindl.) is a stone fruit that belongs to the Prunus genus and plays an important role in the global production of plum. In this study, we report the genome sequence of the Chinese plum 'Sanyueli', which is known to have a low-chill requirement for flower bud break. The assembled genome size was 282.38 Mb, with a contig N50 of 1.37 Mb. Over 99% of the assembly was anchored to eight pseudochromosomes, with a scaffold N50 of 34.46Mb. A total of 29,708 protein-coding genes were predicted from the genome and 46.85% (132.32 Mb) of the genome was annotated as repetitive sequence. Bud dormancy is influenced by chilling requirement in plum and partly controlled by DORMANCY ASSOCIATED MADS-box (DAM) genes. Six tandemly arrayed PsDAM genes were identified in the assembled genome. Sequence analysis of PsDAM6 in 'Sanyueli' revealed the presence of large insertions in the intron and exon regions. Transcriptome analysis indicated that the expression of PsDAM6 in the dormant flower buds of 'Sanyueli' was significantly lower than that in the dormant flower buds of the high chill requiring 'Furongli' plum. In addition, the expression of PsDAM6 was repressed by chilling treatment. The genome sequence of 'Sanyueli' plum provides a valuable resource for elucidating the molecular mechanisms responsible for the regulation of chilling requirements, and it is also useful for the identification of the genes involved in the control of other important agronomic traits and molecular breeding in plum.
Collapse
Affiliation(s)
- Zhi-Zhen Fang
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, 350013, China.,Fujian Engineering and Technology Research Center for Deciduous Fruit Trees, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, 350013, China
| | - Kui Lin-Wang
- The New Zealand Institute for Plant and Food Research Limited, Mt Albert Research Centre, Private Bag, Auckland, 92169, New Zealand
| | - He Dai
- Biomarker Technologies Corporation, Beijing, 101300, China
| | - Dan-Rong Zhou
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, 350013, China.,Fujian Engineering and Technology Research Center for Deciduous Fruit Trees, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, 350013, China
| | - Cui-Cui Jiang
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, 350013, China.,Fujian Engineering and Technology Research Center for Deciduous Fruit Trees, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, 350013, China
| | - Richard V Espley
- The New Zealand Institute for Plant and Food Research Limited, Mt Albert Research Centre, Private Bag, Auckland, 92169, New Zealand
| | - Cecilia Deng
- The New Zealand Institute for Plant and Food Research Limited, Mt Albert Research Centre, Private Bag, Auckland, 92169, New Zealand
| | - Yan-Juan Lin
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, 350013, China.,Fujian Engineering and Technology Research Center for Deciduous Fruit Trees, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, 350013, China
| | - Shao-Lin Pan
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, 350013, China.,Fujian Engineering and Technology Research Center for Deciduous Fruit Trees, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, 350013, China
| | - Xin-Fu Ye
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, 350013, China.,Fujian Engineering and Technology Research Center for Deciduous Fruit Trees, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, 350013, China
| |
Collapse
|
21
|
Lloret A, Quesada-Traver C, Conejero A, Arbona V, Gómez-Mena C, Petri C, Sánchez-Navarro JA, Zuriaga E, Leida C, Badenes ML, Ríos G. Regulatory circuits involving bud dormancy factor PpeDAM6. HORTICULTURE RESEARCH 2021; 8:261. [PMID: 34848702 PMCID: PMC8632999 DOI: 10.1038/s41438-021-00706-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/29/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
DORMANCY-ASSOCIATED MADS-BOX (DAM) genes have recently emerged as key potential regulators of the dormancy cycle and climate adaptation in perennial species. Particularly, PpeDAM6 has been proposed to act as a major repressor of bud dormancy release and bud break in peach (Prunus persica). PpeDAM6 expression is downregulated concomitantly with the perception of a given genotype-dependent accumulation of winter chilling time, and the coincident enrichment in H3K27me3 chromatin modification at a specific genomic region. We have identified three peach BASIC PENTACYSTEINE PROTEINs (PpeBPCs) interacting with two GA-repeat motifs present in this H3K27me3-enriched region. Moreover, PpeBPC1 represses PpeDAM6 promoter activity by transient expression experiments. On the other hand, the heterologous overexpression of PpeDAM6 in European plum (Prunus domestica) alters plant vegetative growth, resulting in dwarf plants tending toward shoot meristem collapse. These alterations in vegetative growth of transgenic lines associate with impaired hormone homeostasis due to the modulation of genes involved in jasmonic acid, cytokinin, abscisic acid, and gibberellin pathways, and the downregulation of shoot meristem factors, specifically in transgenic leaf and apical tissues. The expression of many of these genes is also modified in flower buds of peach concomitantly with PpeDAM6 downregulation, which suggests a role of hormone homeostasis mechanisms in PpeDAM6-dependent maintenance of floral bud dormancy and growth repression.
Collapse
Affiliation(s)
- Alba Lloret
- Instituto Valenciano de Investigaciones Agrarias, 46113, Moncada, Valencia, Spain
| | | | - Ana Conejero
- Instituto Valenciano de Investigaciones Agrarias, 46113, Moncada, Valencia, Spain
| | - Vicent Arbona
- Departament de Ciències Agràries i del Medi Natural, Universitat Jaume I, Castello de la Plana, Spain
| | - Concepción Gómez-Mena
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, 46022, Valencia, Spain
| | - César Petri
- Departamento de Fruticultura Subtropical y Mediterránea, IHSM-UMA-CSIC, Avenida Dr. Wienberg, s/n 29750, Algarrobo-Costa, Málaga, Spain
| | - Jesús A Sánchez-Navarro
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, 46022, Valencia, Spain
| | - Elena Zuriaga
- Instituto Valenciano de Investigaciones Agrarias, 46113, Moncada, Valencia, Spain
| | - Carmen Leida
- Instituto Valenciano de Investigaciones Agrarias, 46113, Moncada, Valencia, Spain
| | - María Luisa Badenes
- Instituto Valenciano de Investigaciones Agrarias, 46113, Moncada, Valencia, Spain
| | - Gabino Ríos
- Instituto Valenciano de Investigaciones Agrarias, 46113, Moncada, Valencia, Spain.
| |
Collapse
|
22
|
Wu K, Duan X, Zhu Z, Sang Z, Zhang Y, Li H, Jia Z, Ma L. Transcriptomic Analysis Reveals the Positive Role of Abscisic Acid in Endodormancy Maintenance of Leaf Buds of Magnolia wufengensis. FRONTIERS IN PLANT SCIENCE 2021; 12:742504. [PMID: 34858449 PMCID: PMC8632151 DOI: 10.3389/fpls.2021.742504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/15/2021] [Indexed: 06/01/2023]
Abstract
Magnolia wufengensis (Magnoliaceae) is a deciduous landscape species, known for its ornamental value with uniquely shaped and coloured tepals. The species has been introduced to many cities in south China, but low temperatures limit the expansion of this species in cold regions. Bud dormancy is critical for plants to survive in cold environments during the winter. In this study, we performed transcriptomic analysis of leaf buds using RNA sequencing and compared their gene expression during endodormancy, endodormancy release, and ecodormancy. A total of 187,406 unigenes were generated with an average length of 621.82 bp (N50 = 895 bp). In the transcriptomic analysis, differentially expressed genes involved in metabolism and signal transduction of hormones especially abscisic acid (ABA) were substantially annotated during dormancy transition. Our results showed that ABA at a concentration of 100 μM promoted dormancy maintenance in buds of M. wufengensis. Furthermore, the expression of genes related to ABA biosynthesis, catabolism, and signalling pathway was analysed by qPCR. We found that the expression of MwCYP707A-1-2 was consistent with ABA content and the dormancy transition phase, indicating that MwCYP707A-1-2 played a role in endodormancy release. In addition, the upregulation of MwCBF1 during dormancy release highlighted the enhancement of cold resistance. This study provides new insights into the cold tolerance of M. wufengensis in the winter from bud dormancy based on RNA-sequencing and offers fundamental data for further research on breeding improvement of M. wufengensis.
Collapse
Affiliation(s)
- Kunjing Wu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Xiaojing Duan
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, China
| | - Zhonglong Zhu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- National Energy R&D Center for Non-food Biomass, Beijing Forestry University, Beijing, China
- Magnolia wufengensis Research Center, Beijing Forestry University, Beijing, China
| | - Ziyang Sang
- Forestry Science Research Institute of Wufeng County, Yichang, China
| | - Yutong Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- National Energy R&D Center for Non-food Biomass, Beijing Forestry University, Beijing, China
- Magnolia wufengensis Research Center, Beijing Forestry University, Beijing, China
| | - Haiying Li
- National Energy R&D Center for Non-food Biomass, Beijing Forestry University, Beijing, China
- Magnolia wufengensis Research Center, Beijing Forestry University, Beijing, China
| | - Zhongkui Jia
- Magnolia wufengensis Research Center, Beijing Forestry University, Beijing, China
- College of Forestry, Engineering Technology Research Center of Pinus tabuliformis of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Luyi Ma
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- National Energy R&D Center for Non-food Biomass, Beijing Forestry University, Beijing, China
- Magnolia wufengensis Research Center, Beijing Forestry University, Beijing, China
| |
Collapse
|
23
|
Gao Y, Yang Q, Yan X, Wu X, Yang F, Li J, Wei J, Ni J, Ahmad M, Bai S, Teng Y. High-quality genome assembly of 'Cuiguan' pear (Pyrus pyrifolia) as a reference genome for identifying regulatory genes and epigenetic modifications responsible for bud dormancy. HORTICULTURE RESEARCH 2021; 8:197. [PMID: 34465760 PMCID: PMC8408243 DOI: 10.1038/s41438-021-00632-w] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 06/09/2021] [Accepted: 06/13/2021] [Indexed: 05/26/2023]
Abstract
Dormancy-associated MADS-box (DAM) genes serve as crucial regulators of the endodormancy cycle in rosaceous plants. Although pear DAM genes have been identified previously, the lack of a high-quality reference genome and techniques to study gene function have prevented accurate genome-wide analysis and functional verification of such genes. Additionally, the contribution of other genes to the regulation of endodormancy release remains poorly understood. In this study, a high-quality genome assembly for 'Cuiguan' pear (Pyrus pyrifolia), which is a leading cultivar with a low chilling requirement cultivated in China, was constructed using PacBio and Hi-C technologies. Using this genome sequence, we revealed that pear DAM genes were tandemly clustered on Chr8 and Chr15 and were differentially expressed in the buds between 'Cuiguan' and the high-chilling-requirement cultivar 'Suli' during the dormancy cycle. Using a virus-induced gene silencing system, we determined the repressive effects of DAM genes on bud break. Several novel genes potentially involved in the regulation of endodormancy release were identified by RNA sequencing and H3K4me3 chromatin immunoprecipitation sequencing analyses of 'Suli' buds during artificial chilling using the new reference genome. Our findings enrich the knowledge of the regulatory mechanism underlying endodormancy release and chilling requirements and provide a foundation for the practical regulation of dormancy release in fruit trees as an adaptation to climate change.
Collapse
Affiliation(s)
- Yuhao Gao
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Qinsong Yang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, Haidian District, Beijing, 100083, China
| | - Xinhui Yan
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Xinyue Wu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Feng Yang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Jianzhao Li
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- College of Agriculture, Ludong University, Yantai, Shandong, 264025, China
| | - Jia Wei
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Junbei Ni
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Mudassar Ahmad
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Songling Bai
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Yuanwen Teng
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Hainan Institute of Zhejiang University, Sanya, Hainan, 572000, China
| |
Collapse
|
24
|
Calle A, Grimplet J, Le Dantec L, Wünsch A. Identification and Characterization of DAMs Mutations Associated With Early Blooming in Sweet Cherry, and Validation of DNA-Based Markers for Selection. FRONTIERS IN PLANT SCIENCE 2021; 12:621491. [PMID: 34305957 PMCID: PMC8295754 DOI: 10.3389/fpls.2021.621491] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 05/06/2021] [Indexed: 06/13/2023]
Abstract
Dormancy release and bloom time of sweet cherry cultivars depend on the environment and the genotype. The knowledge of these traits is essential for cultivar adaptation to different growing areas, and to ensure fruit set in the current climate change scenario. In this work, the major sweet cherry bloom time QTL qP-BT1.1 m (327 Kbs; Chromosome 1) was scanned for candidate genes in the Regina cv genome. Six MADS-box genes (PavDAMs), orthologs to peach and Japanese apricot DAMs, were identified as candidate genes for bloom time regulation. The complete curated genomic structure annotation of these genes is reported. To characterize PavDAMs intra-specific variation, genome sequences of cultivars with contrasting chilling requirements and bloom times (N = 13), were then mapped to the 'Regina' genome. A high protein sequence conservation (98.8-100%) was observed. A higher amino acid variability and several structural mutations were identified in the low-chilling and extra-early blooming cv Cristobalina. Specifically, a large deletion (694 bp) upstream of PavDAM1, and various INDELs and SNPs in contiguous PavDAM4 and -5 UTRs were identified. PavDAM1 upstream deletion in 'Cristobalina' revealed the absence of several cis-acting motifs, potentially involved in PavDAMs expression. Also, due to this deletion, a non-coding gene expressed in late-blooming 'Regina' seems truncated in 'Cristobalina'. Additionally, PavDAM4 and -5 UTRs mutations revealed different splicing variants between 'Regina' and 'Cristobalina' PavDAM5. The results indicate that the regulation of PavDAMs expression and post-transcriptional regulation in 'Cristobalina' may be altered due to structural mutations in regulatory regions. Previous transcriptomic studies show differential expression of PavDAM genes during dormancy in this cultivar. The results indicate that 'Cristobalina' show significant amino acid differences, and structural mutations in PavDAMs, that correlate with low-chilling and early blooming, but the direct implication of these mutations remains to be determined. To complete the work, PCR markers designed for the detection of 'Cristobalina' structural mutations in PavDAMs, were validated in an F2 population and a set of cultivars. These PCR markers are useful for marker-assisted selection of early blooming seedlings, and probably low-chilling, from 'Cristobalina', which is a unique breeding source for these traits.
Collapse
Affiliation(s)
- Alejandro Calle
- Unidad de Hortofruticultura, Centro de Investigación y Tecnología Agroalimentaria de Aragón, Zaragoza, Spain
- Instituto Agroalimentario de Aragón-IA2, CITA-Universidad de Zaragoza, Zaragoza, Spain
| | - Jérôme Grimplet
- Unidad de Hortofruticultura, Centro de Investigación y Tecnología Agroalimentaria de Aragón, Zaragoza, Spain
- Instituto Agroalimentario de Aragón-IA2, CITA-Universidad de Zaragoza, Zaragoza, Spain
| | - Loïck Le Dantec
- Univ. Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, Villenave d'Ornon, France
| | - Ana Wünsch
- Unidad de Hortofruticultura, Centro de Investigación y Tecnología Agroalimentaria de Aragón, Zaragoza, Spain
- Instituto Agroalimentario de Aragón-IA2, CITA-Universidad de Zaragoza, Zaragoza, Spain
| |
Collapse
|
25
|
Yu J, Bennett D, Dardick C, Zhebentyayeva T, Abbott AG, Liu Z, Staton ME. Genome-Wide Changes of Regulatory Non-Coding RNAs Reveal Pollen Development Initiated at Ecodormancy in Peach. Front Mol Biosci 2021; 8:612881. [PMID: 33968979 PMCID: PMC8098804 DOI: 10.3389/fmolb.2021.612881] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 02/15/2021] [Indexed: 11/15/2022] Open
Abstract
Bud dormancy is under the regulation of complex mechanisms including genetic and epigenetic factors. To study the function of regulatory non-coding RNAs in winter dormancy release, we analyzed the small RNA and long non-coding RNA (lncRNA) expression from peach (Prunus persica) floral buds in endodormancy, ecodormancy and bud break stages. Small RNAs underwent a major shift in expression primarily between dormancy and flowering with specific pairs of microRNAs and their mRNA target genes undergoing coordinated differential expression. From endodormancy to ecodormancy, ppe-miR6285 was significantly upregulated while its target gene, an ASPARAGINE-RICH PROTEIN involved in the regulation of abscisic acid signaling, was downregulated. At ecodormancy, ppe-miR2275, a homolog of meiosis-specific miR2275 across angiosperms, was significantly upregulated, supporting microsporogenesis in anthers at a late stage of dormancy. The expression of 785 lncRNAs, unlike the overall expression pattern in the small RNAs, demonstrated distinctive expression signatures across all dormancy and flowering stages. We predicted that a subset of lncRNAs were targets of microRNAs and found 18 lncRNA/microRNA target pairs with both differentially expressed across time points. The genome-wide differential expression and network analysis of non-coding RNAs and mRNAs from the same tissues provide new candidate loci for dormancy regulation and suggest complex noncoding RNA interactions control transcriptional regulation across these key developmental time points.
Collapse
Affiliation(s)
- Jiali Yu
- Genome Science and Technology Program, University of Tennessee, Knoxville, TN, United States
| | - Dennis Bennett
- Appalachian Fruit Research Station, United States Department of Agriculture-Agriculture Research Service, Kearneysville, WV, United States
| | - Christopher Dardick
- Appalachian Fruit Research Station, United States Department of Agriculture-Agriculture Research Service, Kearneysville, WV, United States
| | - Tetyana Zhebentyayeva
- Department of Ecosystem Science and Management, Schatz Center for Tree Molecular Genetics, The Pennsylvania State University, University Park, PA, United States
| | - Albert G Abbott
- Forest Health Research and Education Center, University of Kentucky, Lexington, KY, United States
| | - Zongrang Liu
- Appalachian Fruit Research Station, United States Department of Agriculture-Agriculture Research Service, Kearneysville, WV, United States
| | - Margaret E Staton
- Genome Science and Technology Program, University of Tennessee, Knoxville, TN, United States.,Department of Entomology and Plant Pathology, Institute of Agriculture, University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
26
|
Singh RK, Bhalerao RP, Eriksson ME. Growing in time: exploring the molecular mechanisms of tree growth. TREE PHYSIOLOGY 2021; 41:657-678. [PMID: 32470114 PMCID: PMC8033248 DOI: 10.1093/treephys/tpaa065] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 03/31/2020] [Accepted: 05/27/2020] [Indexed: 05/31/2023]
Abstract
Trees cover vast areas of the Earth's landmasses. They mitigate erosion, capture carbon dioxide, produce oxygen and support biodiversity, and also are a source of food, raw materials and energy for human populations. Understanding the growth cycles of trees is fundamental for many areas of research. Trees, like most other organisms, have evolved a circadian clock to synchronize their growth and development with the daily and seasonal cycles of the environment. These regular changes in light, daylength and temperature are perceived via a range of dedicated receptors and cause resetting of the circadian clock to local time. This allows anticipation of daily and seasonal fluctuations and enables trees to co-ordinate their metabolism and physiology to ensure vital processes occur at the optimal times. In this review, we explore the current state of knowledge concerning the regulation of growth and seasonal dormancy in trees, using information drawn from model systems such as Populus spp.
Collapse
Affiliation(s)
- Rajesh Kumar Singh
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå SE-901 87, Sweden
| | - Rishikesh P Bhalerao
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå SE-901 82, Sweden
| | - Maria E Eriksson
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå SE-901 87, Sweden
| |
Collapse
|
27
|
Boldizsár Á, Soltész A, Tanino K, Kalapos B, Marozsán-Tóth Z, Monostori I, Dobrev P, Vankova R, Galiba G. Elucidation of molecular and hormonal background of early growth cessation and endodormancy induction in two contrasting Populus hybrid cultivars. BMC PLANT BIOLOGY 2021; 21:111. [PMID: 33627081 PMCID: PMC7905644 DOI: 10.1186/s12870-021-02828-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 01/06/2021] [Indexed: 06/02/2023]
Abstract
BACKGROUND Over the life cycle of perennial trees, the dormant state enables the avoidance of abiotic stress conditions. The growth cycle can be partitioned into induction, maintenance and release and is controlled by complex interactions between many endogenous and environmental factors. While phytohormones have long been linked with dormancy, there is increasing evidence of regulation by DAM and CBF genes. To reveal whether the expression kinetics of CBFs and their target PtDAM1 is related to growth cessation and endodormancy induction in Populus, two hybrid poplar cultivars were studied which had known differential responses to dormancy inducing conditions. RESULTS Growth cessation, dormancy status and expression of six PtCBFs and PtDAM1 were analyzed. The 'Okanese' hybrid cultivar ceased growth rapidly, was able to reach endodormancy, and exhibited a significant increase of several PtCBF transcripts in the buds on the 10th day. The 'Walker' cultivar had delayed growth cessation, was unable to enter endodormancy, and showed much lower CBF expression in buds. Expression of PtDAM1 peaked on the 10th day only in the buds of 'Okanese'. In addition, PtDAM1 was not expressed in the leaves of either cultivar while leaf CBFs expression pattern was several fold higher in 'Walker', peaking at day 1. Leaf phytohormones in both cultivars followed similar profiles during growth cessation but differentiated based on cytokinins which were largely reduced, while the Ox-IAA and iP7G increased in 'Okanese' compared to 'Walker'. Surprisingly, ABA concentration was reduced in leaves of both cultivars. However, the metabolic deactivation product of ABA, phaseic acid, exhibited an early peak on the first day in 'Okanese'. CONCLUSIONS Our results indicate that PtCBFs and PtDAM1 have differential kinetics and spatial localization which may be related to early growth cessation and endodormancy induction under the regime of low night temperature and short photoperiod in poplar. Unlike buds, PtCBFs and PtDAM1 expression levels in leaves were not associated with early growth cessation and dormancy induction under these conditions. Our study provides new evidence that the degradation of auxin and cytokinins in leaves may be an important regulatory point in a CBF-DAM induced endodormancy. Further investigation of other PtDAMs in bud tissue and a study of both growth-inhibiting and the degradation of growth-promoting phytohormones is warranted.
Collapse
Affiliation(s)
- Ákos Boldizsár
- Department of Plant Molecular Biology, Agricultural Institute, Centre for Agricultural Research, ELKH, Martonvásár, H-2462 Hungary
| | - Alexandra Soltész
- Department of Plant Molecular Biology, Agricultural Institute, Centre for Agricultural Research, ELKH, Martonvásár, H-2462 Hungary
| | - Karen Tanino
- Department of Plant Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK S7N 5A8 Canada
| | - Balázs Kalapos
- Department of Plant Molecular Biology, Agricultural Institute, Centre for Agricultural Research, ELKH, Martonvásár, H-2462 Hungary
| | - Zsuzsa Marozsán-Tóth
- Department of Plant Molecular Biology, Agricultural Institute, Centre for Agricultural Research, ELKH, Martonvásár, H-2462 Hungary
| | - István Monostori
- Department of Plant Molecular Biology, Agricultural Institute, Centre for Agricultural Research, ELKH, Martonvásár, H-2462 Hungary
| | - Petre Dobrev
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, 165 02 Czech Republic
| | - Radomira Vankova
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, 165 02 Czech Republic
| | - Gábor Galiba
- Department of Plant Molecular Biology, Agricultural Institute, Centre for Agricultural Research, ELKH, Martonvásár, H-2462 Hungary
- Festetics Doctoral School, Georgikon Campus, Szent István University, Keszthely, H-8360 Hungary
| |
Collapse
|
28
|
Azeez A, Zhao YC, Singh RK, Yordanov YS, Dash M, Miskolczi P, Stojkovič K, Strauss SH, Bhalerao RP, Busov VB. EARLY BUD-BREAK 1 and EARLY BUD-BREAK 3 control resumption of poplar growth after winter dormancy. Nat Commun 2021; 12:1123. [PMID: 33602938 PMCID: PMC7893051 DOI: 10.1038/s41467-021-21449-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 01/22/2021] [Indexed: 01/31/2023] Open
Abstract
Bud-break is an economically and environmentally important process in trees and shrubs from boreal and temperate latitudes, but its molecular mechanisms are poorly understood. Here, we show that two previously reported transcription factors, EARLY BUD BREAK 1 (EBB1) and SHORT VEGETATIVE PHASE-Like (SVL) directly interact to control bud-break. EBB1 is a positive regulator of bud-break, whereas SVL is a negative regulator of bud-break. EBB1 directly and negatively regulates SVL expression. We further report the identification and characterization of the EBB3 gene. EBB3 is a temperature-responsive, epigenetically-regulated, positive regulator of bud-break that provides a direct link to activation of the cell cycle during bud-break. EBB3 is an AP2/ERF transcription factor that positively and directly regulates CYCLIND3.1 gene. Our results reveal the architecture of a putative regulatory module that links temperature-mediated control of bud-break with activation of cell cycle.
Collapse
Affiliation(s)
- Abdul Azeez
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, USA
| | - Yiru Chen Zhao
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, USA
| | - Rajesh Kumar Singh
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Yordan S Yordanov
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, USA
- Department of Biological Sciences, Eastern Illinois University, Charleston, IL, USA
| | - Madhumita Dash
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, USA
| | - Pal Miskolczi
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Katja Stojkovič
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Steve H Strauss
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR, USA
| | - Rishikesh P Bhalerao
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden.
| | - Victor B Busov
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, USA.
| |
Collapse
|
29
|
Vergara R, Noriega X, Pérez FJ. VvDAM-SVPs genes are regulated by FLOWERING LOCUS T (VvFT) and not by ABA/low temperature-induced VvCBFs transcription factors in grapevine buds. PLANTA 2021; 253:31. [PMID: 33438039 DOI: 10.1007/s00425-020-03561-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 12/30/2020] [Indexed: 06/12/2023]
Abstract
In deciduous fruit trees in which dormancy is induced by low temperatures, the expression of DORMACY-ASSOCIATED MADS-BOX genes (DAM) is regulated by CBF/DREB1 transcription factors. In Vitis vinifera, in which dormancy is induced by the photoperiod, VvDAM-SVPs gene expression is regulated by FLOWERING LOCUS T (VvFT). Using the sequences of the six peach (Prunus persica) DORMACY-ASSOCIATED MADS-box genes (DAM) as query, eight putative DAM genes belonging to the family of MADS-box transcription factors and related to the Arabidopsis floral regulators SHORT VEGETATIVE PHASE (SVP) and AGAMOUS LIKE 24 (AGL24) were identified in the V. vinifera genome. Among these, five belong to the subfamily SVP-like genes which have been associated with the regulation of flowering and dormancy in annual and perennial plants, respectively. It has been proposed that they play a direct role in the induction and maintenance of endodormancy (ED) through the regulation of the FLOWERING LOCUS T (FT) gene. In the present study, it is demonstrated that in V. vinifera: (1) VvDAM-SVPs genes are not regulated by ABA/low temperature-induced VvCBFs transcription factors as described for other species of deciduous fruit trees. (2) A contrasting expression pattern between VvDAM3-SVP and VvFT was found under different experimental conditions related to the entry and exit of grapevine buds from ED. (3) Overexpression of VvFT in somatic grapevine embryos (SGE) repressed the expression of VvDAM3-SVP and VvDAM4-SVP. Taken together, the results suggest that VvDAM3-SVP could be associated with ED in grapevine buds, and that its expression could be regulated by VvFT.
Collapse
Affiliation(s)
- Ricardo Vergara
- Fac. Ciencias, Lab. de Bioquímica Vegetal, Universidad de Chile, Casilla 653, Santiago, Chile
- Instituto de Investigaciones Agropecuarias, La Platina, Santiago, Chile
| | - Ximena Noriega
- Fac. Ciencias, Lab. de Bioquímica Vegetal, Universidad de Chile, Casilla 653, Santiago, Chile
| | - Francisco J Pérez
- Fac. Ciencias, Lab. de Bioquímica Vegetal, Universidad de Chile, Casilla 653, Santiago, Chile.
| |
Collapse
|
30
|
Soppe WJJ, Viñegra de la Torre N, Albani MC. The Diverse Roles of FLOWERING LOCUS C in Annual and Perennial Brassicaceae Species. FRONTIERS IN PLANT SCIENCE 2021; 12:627258. [PMID: 33679840 PMCID: PMC7927791 DOI: 10.3389/fpls.2021.627258] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 01/25/2021] [Indexed: 05/07/2023]
Abstract
Most temperate species require prolonged exposure to winter chilling temperatures to flower in the spring. In the Brassicaceae, the MADS box transcription factor FLOWERING LOCUS C (FLC) is a major regulator of flowering in response to prolonged cold exposure, a process called vernalization. Winter annual Arabidopsis thaliana accessions initiate flowering in the spring due to the stable silencing of FLC by vernalization. The role of FLC has also been explored in perennials within the Brassicaceae family, such as Arabis alpina. The flowering pattern in A. alpina differs from the one in A. thaliana. A. alpina plants initiate flower buds during vernalization but only flower after subsequent exposure to growth-promoting conditions. Here we discuss the role of FLC in annual and perennial Brassicaceae species. We show that, besides its conserved role in flowering, FLC has acquired additional functions that contribute to vegetative and seed traits. PERPETUAL FLOWERING 1 (PEP1), the A. alpina FLC ortholog, contributes to the perennial growth habit. We discuss that PEP1 directly and indirectly, regulates traits such as the duration of the flowering episode, polycarpic growth habit and shoot architecture. We suggest that these additional roles of PEP1 are facilitated by (1) the ability of A. alpina plants to form flower buds during long-term cold exposure, (2) age-related differences between meristems, which enable that not all meristems initiate flowering during cold exposure, and (3) differences between meristems in stable silencing of PEP1 after long-term cold, which ensure that PEP1 expression levels will remain low after vernalization only in meristems that commit to flowering during cold exposure. These features result in spatiotemporal seasonal changes of PEP1 expression during the A. alpina life cycle that contribute to the perennial growth habit. FLC and PEP1 have also been shown to influence the timing of another developmental transition in the plant, seed germination, by influencing seed dormancy and longevity. This suggests that during evolution, FLC and its orthologs adopted both similar and divergent roles to regulate life history traits. Spatiotemporal changes of FLC transcript accumulation drive developmental decisions and contribute to life history evolution.
Collapse
Affiliation(s)
| | - Natanael Viñegra de la Torre
- Institute for Plant Sciences, University of Cologne, Cologne, Germany
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Cluster of Excellence on Plant Sciences, “SMART Plants for Tomorrow’s Needs,” Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Maria C. Albani
- Institute for Plant Sciences, University of Cologne, Cologne, Germany
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Cluster of Excellence on Plant Sciences, “SMART Plants for Tomorrow’s Needs,” Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- *Correspondence: Maria C. Albani, ;
| |
Collapse
|
31
|
Li Z, Liu N, Zhang W, Wu C, Jiang Y, Ma J, Li M, Sui S. Integrated transcriptome and proteome analysis provides insight into chilling-induced dormancy breaking in Chimonanthus praecox. HORTICULTURE RESEARCH 2020; 7:198. [PMID: 33328461 PMCID: PMC7704649 DOI: 10.1038/s41438-020-00421-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 05/06/2023]
Abstract
Chilling has a critical role in the growth and development of perennial plants. The chilling requirement (CR) for dormancy breaking largely depends on the species. However, global warming is expected to negatively affect chilling accumulation and dormancy release in a wide range of perennial plants. Here, we used Chimonanthus praecox as a model to investigate the CR for dormancy breaking under natural and artificial conditions. We determined the minimum CR (570 chill units, CU) needed for chilling-induced dormancy breaking and analyzed the transcriptomes and proteomes of flowering and non-flowering flower buds (FBs, anther and ovary differentiation completed) with different CRs. The concentrations of ABA and GA3 in the FBs were also determined using HPLC. The results indicate that chilling induced an upregulation of ABA levels and significant downregulation of SHORT VEGETATIVE PHASE (SVP) and FLOWERING LOCUS T (FT) homologs at the transcript level in FBs when the accumulated CR reached 570 CU (IB570) compared to FBs in November (FB.Nov, CK) and nF16 (non-flowering FBs after treatment at 16 °C for -300 CU), which suggested that dormancy breaking of FBs could be regulated by the ABA-mediated SVP-FT module. Overexpression in Arabidopsis was used to confirm the function of candidate genes, and early flowering was induced in 35S::CpFT1 transgenic lines. Our data provide insight into the minimum CR (570 CU) needed for chilling-induced dormancy breaking and its underlying regulatory mechanism in C. praecox, which provides a new tool for the artificial regulation of flowering time and a rich gene resource for controlling chilling-induced blooming.
Collapse
Affiliation(s)
- Zhineng Li
- Key Laboratory of Horticulture Science for Southern Mountains Regions, Ministry of Education, Chongqing Engineering Research Center for Floriculture, College of Horticulture and Landscape Architecture, Southwest University, 400715, Chongqing, China
| | - Ning Liu
- Key Laboratory of Horticulture Science for Southern Mountains Regions, Ministry of Education, Chongqing Engineering Research Center for Floriculture, College of Horticulture and Landscape Architecture, Southwest University, 400715, Chongqing, China
| | - Wei Zhang
- Key Laboratory of Horticulture Science for Southern Mountains Regions, Ministry of Education, Chongqing Engineering Research Center for Floriculture, College of Horticulture and Landscape Architecture, Southwest University, 400715, Chongqing, China
| | - Chunyu Wu
- Key Laboratory of Horticulture Science for Southern Mountains Regions, Ministry of Education, Chongqing Engineering Research Center for Floriculture, College of Horticulture and Landscape Architecture, Southwest University, 400715, Chongqing, China
| | - Yingjie Jiang
- Key Laboratory of Horticulture Science for Southern Mountains Regions, Ministry of Education, Chongqing Engineering Research Center for Floriculture, College of Horticulture and Landscape Architecture, Southwest University, 400715, Chongqing, China
| | - Jing Ma
- Key Laboratory of Horticulture Science for Southern Mountains Regions, Ministry of Education, Chongqing Engineering Research Center for Floriculture, College of Horticulture and Landscape Architecture, Southwest University, 400715, Chongqing, China
| | - Mingyang Li
- Key Laboratory of Horticulture Science for Southern Mountains Regions, Ministry of Education, Chongqing Engineering Research Center for Floriculture, College of Horticulture and Landscape Architecture, Southwest University, 400715, Chongqing, China
| | - Shunzhao Sui
- Key Laboratory of Horticulture Science for Southern Mountains Regions, Ministry of Education, Chongqing Engineering Research Center for Floriculture, College of Horticulture and Landscape Architecture, Southwest University, 400715, Chongqing, China.
| |
Collapse
|
32
|
Liu J, Ren M, Chen H, Wu S, Yan H, Jalal A, Wang C. Evolution of SHORT VEGETATIVE PHASE (SVP) genes in Rosaceae: Implications of lineage-specific gene duplication events and function diversifications with respect to their roles in processes other than bud dormancy. THE PLANT GENOME 2020; 13:e20053. [PMID: 33217197 DOI: 10.1002/tpg2.20053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/15/2020] [Accepted: 07/19/2020] [Indexed: 06/11/2023]
Abstract
MADS-box genes that are homologous to Arabidopsis SHORT VEGETATIVE PHASE (SVP) have been shown to play key roles in the regulation of bud dormancy in perennial species, particularly in the deciduous fruit trees of Rosaceae. However, their evolutionary profiles in Rosaceae have not yet been analyzed systematically. Here, The SVP genes were found to be significantly expanded in Rosaceae when compared with annual species from Brassicaceae. Phylogenetic analysis showed that Rosaceae SVP genes could be classified into five clades, namely, SVP1, SVP2-R1, SVP2-R2, SVP2-R3 and SVP3. The SVP1 clade genes were retained in most of the species, whereas the SVP2-R2 and SVP2-R3 clades were found to be Maleae- and Amygdaleae-specific (Both of the lineages belong to Amygdaloideae), respectively, and SVP2-R1 was Rosoideae-specific in Rosaceae. Furthermore, 10 lineage-specific gene duplication (GD) events (GD1-10) were proposed for the expansion of SVP genes, suggesting that the expansion and divergence of Rosaceae SVP genes were mainly derived by lineage-specific manner during evolution. Moreover, tandem and segmental duplications were the major reasons for the expansion of SVP genes, and interestingly, tandem duplications, a well-known evolutionary feature of SVP genes, were found to be mainly Amygdaloideae-specific. Sequence alignment, selection pressure, and cis-acting element analysis suggested large functional innovations and diversification of SVP genes in different lineages of Rosaceae. Finally, the different growth cycle of Rosa multiflora and their novel expression patterns of RmSVP genes provided new insights into the functional diversification of SVP genes in terms of their roles in processes other than bud dormancy.
Collapse
Affiliation(s)
- Jinyi Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Min Ren
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- Shanghai Forestry Station, Shanghai, 200072, China
| | - Hui Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Silin Wu
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Huijun Yan
- Yunnan Academy of Agricultural Sciences, Flower Research Institute, Kunming, Yunnan, 650200, China
| | - Abdul Jalal
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Changquan Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| |
Collapse
|
33
|
Comparative study of DAM, Dof, and WRKY gene families in fourteen species and their expression in Vitis vinifera. 3 Biotech 2020; 10:72. [PMID: 32030341 DOI: 10.1007/s13205-019-2039-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 12/26/2019] [Indexed: 12/13/2022] Open
Abstract
Bud dormancy is one of the most important defensive mechanisms through which plants resist cold stress during harsh winter weather. DAM, Dof, and WRKY have been reported to be involved in many biological processes, including bud dormancy. In the present study, grapevine (Vitis vinifera) and other thirteen plants (six woody plants and seven herbaceous plants) were analyzed for the quantity, sequence structure, and evolution patterns of their DAM, Dof, and WRKY gene family members. Moreover, the expression of VvDAM, VvDof, and VvWRKY genes was also investigated. Thus, 51 DAM, 1,205 WRKY, and 489 Dof genes were isolated from selected genomes, while 5 DAM, 114 WRKY, and 50 Dof duplicate gene pairs were identified in 10 genomes. Moreover, WGD and segmental duplication events were associated with the majority of the expansions of Dof and WRKY gene families. The VvDAM, VvDof, and VvWRKY genes significantly differentially expressed throughout bud dormancy outnumbered those significantly differentially expressed throughout fruit development or under abiotic stresses. Interestingly, multiple stress responsive genes were identified, such as VvDAM (VIT_00s0313g00070), two VvDof genes (VIT_18s0001g11310 and VIT_02s0025g02250), and two VvWRKY genes (VIT_07s0031g01710 and VIT_11s0052g00450). These data provide candidate genes for molecular biology research investigating bud dormancy and responses to abiotic stresses (namely salt, drought, copper, and waterlogging).
Collapse
|
34
|
Quesada-Traver C, Guerrero BI, Badenes ML, Rodrigo J, Ríos G, Lloret A. Structure and Expression of Bud Dormancy-Associated MADS-Box Genes ( DAM) in European Plum. FRONTIERS IN PLANT SCIENCE 2020; 11:1288. [PMID: 32973847 PMCID: PMC7466548 DOI: 10.3389/fpls.2020.01288] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/07/2020] [Indexed: 05/22/2023]
Abstract
Bud dormancy in temperate perennials ensures the survival of growing meristems under the harsh environmental conditions of autumn and winter, and facilitates an optimal growth and development resumption in the spring. Although the molecular pathways controlling the dormancy process are still unclear, DORMANCY-ASSOCIATED MADS-BOX genes (DAM) have emerged as key regulators of the dormancy cycle in different species. In the present study, we have characterized the orthologs of DAM genes in European plum (Prunus domestica L.). Their expression patterns together with sequence similarities are consistent with a role of PdoDAMs in dormancy maintenance mechanisms in European plum. Furthermore, other genes related to dormancy, flowering, and stress response have been identified in order to obtain a molecular framework of these three different processes taking place within the dormant flower bud in this species. This research provides a set of candidate genes to be genetically modified in future research, in order to better understand dormancy regulation in perennial species.
Collapse
Affiliation(s)
- Carles Quesada-Traver
- Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias (IVIA), Valencia, Spain
| | - Brenda Ivette Guerrero
- Unidad de Hortofruticultura, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Zaragoza, Spain
| | - María Luisa Badenes
- Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias (IVIA), Valencia, Spain
| | - Javier Rodrigo
- Unidad de Hortofruticultura, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Zaragoza, Spain
- Instituto Agroalimentario de Aragón-IA2, CITA-Universidad de Zaragoza, Zaragoza, Spain
| | - Gabino Ríos
- Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias (IVIA), Valencia, Spain
| | - Alba Lloret
- Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias (IVIA), Valencia, Spain
- *Correspondence: Alba Lloret,
| |
Collapse
|
35
|
Rothkegel K, Sandoval P, Soto E, Ulloa L, Riveros A, Lillo-Carmona V, Cáceres-Molina J, Almeida AM, Meneses C. Dormant but Active: Chilling Accumulation Modulates the Epigenome and Transcriptome of Prunus avium During Bud Dormancy. FRONTIERS IN PLANT SCIENCE 2020; 11:1115. [PMID: 32765576 PMCID: PMC7380246 DOI: 10.3389/fpls.2020.01115] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 07/06/2020] [Indexed: 05/22/2023]
Abstract
Temperate deciduous fruit tree species like sweet cherry (Prunus avium) require long periods of low temperatures to trigger dormancy release and flowering. In addition to sequence-based genetic diversity, epigenetic variation may contribute to different chilling requirements among varieties. For the low chill variety 'Royal Dawn' and high chill variety 'Kordia', we studied the methylome of floral buds during chilling accumulation using MethylC-seq to identify differentially methylated regions (DMRs) during chilling hours (CH) accumulation, followed by transcriptome analysis to correlate changes in gene expression with DNA methylation. We found that during chilling accumulation, DNA methylation increased from 173 CH in 'Royal Dawn' and 443 CH in 'Kordia' and was mostly associated with the CHH context. In addition, transcriptional changes were observed from 443 CH in 'Kordia' with 1,210 differentially expressed genes, increasing to 4,292 genes at 1,295 CH. While 'Royal Dawn' showed approximately 5,000 genes differentially expressed at 348 CH and 516 CH, showing a reprogramming that was specific for each genotype. From conserved upregulated genes that overlapped with hypomethylated regions and downregulated genes that overlapped with hypermethylated regions in both varieties, we identified genes related to cold-sensing, cold-signaling, oxidation-reduction process, metabolism of phenylpropanoids and lipids, and a MADS-box SVP-like gene. As a complementary analysis, we used conserved and non-conserved DEGs that presented a negative correlation between DNA methylations and mRNA levels across all chilling conditions, obtaining Gene Ontology (GO) categories related to abiotic stress, metabolism, and oxidative stress. Altogether, this data indicates that changes in DNA methylation precedes transcript changes and may occur as an early response to low temperatures to increase the cold tolerance in the endodormancy period, contributing with the first methylome information about the effect of environmental cues over two different genotypes of sweet cherry.
Collapse
Affiliation(s)
- Karin Rothkegel
- Centro de Biotecnología Vegetal, Facultad Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Paula Sandoval
- Centro de Biotecnología Vegetal, Facultad Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Esteban Soto
- Centro de Biotecnología Vegetal, Facultad Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Lissette Ulloa
- Centro de Biotecnología Vegetal, Facultad Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Anibal Riveros
- Centro de Biotecnología Vegetal, Facultad Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Victoria Lillo-Carmona
- Centro de Biotecnología Vegetal, Facultad Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Javier Cáceres-Molina
- Centro de Biotecnología Vegetal, Facultad Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Andrea Miyasaka Almeida
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
- ;*Correspondence: Andrea Miyasaka Almeida, ; Claudio Meneses,
| | - Claudio Meneses
- Centro de Biotecnología Vegetal, Facultad Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- FONDAP, Center for Genome Regulation, Universidad Andrés Bello, Santiago, Chile
- ;*Correspondence: Andrea Miyasaka Almeida, ; Claudio Meneses,
| |
Collapse
|
36
|
Moser M, Asquini E, Miolli GV, Weigl K, Hanke MV, Flachowsky H, Si-Ammour A. The MADS-Box Gene MdDAM1 Controls Growth Cessation and Bud Dormancy in Apple. FRONTIERS IN PLANT SCIENCE 2020; 11:1003. [PMID: 32733512 PMCID: PMC7358357 DOI: 10.3389/fpls.2020.01003] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/19/2020] [Indexed: 05/14/2023]
Abstract
Apple trees require a long exposure to chilling temperature during winter to acquire competency to flower and grow in the following spring. Climate change or adverse meteorological conditions can impair release of dormancy and delay bud break, hence jeopardizing fruit production and causing substantial economic losses. In order to characterize the molecular mechanisms controlling bud dormancy in apple we focused our work on the MADS-box transcription factor gene MdDAM1. We show that MdDAM1 silencing is required for the release of dormancy and bud break in spring. MdDAM1 transcript levels are drastically reduced in the low-chill varieties 'Anna' and 'Dorsett Golden' compared to 'Golden Delicious' corroborating its role as a key genetic factor controlling the release of bud dormancy in Malus species. The functional characterization of MdDAM1 using RNA silencing resulted in trees unable to cease growth in winter and that displayed an evergrowing, or evergreen, phenotype several years after transgenesis. These trees lost their capacity to enter in dormancy and produced leaves and shoots regardless of the season. A transcriptome study revealed that apple evergrowing lines are a genocopy of 'Golden Delicious' trees at the onset of the bud break with the significant gene repression of the related MADS-box gene MdDAM4 as a major feature. We provide the first functional evidence that MADS-box transcriptional factors are key regulators of bud dormancy in pome fruit trees and demonstrate that their silencing results in a defect of growth cessation in autumn. Our findings will help producing low-chill apple variants from the elite commercial cultivars that will withstand climate change.
Collapse
Affiliation(s)
- Mirko Moser
- Research and Innovation Centre, Fondazione Edmund Mach (FEM), San Michele all’Adige (TN), Italy
| | - Elisa Asquini
- Research and Innovation Centre, Fondazione Edmund Mach (FEM), San Michele all’Adige (TN), Italy
| | - Giulia Valentina Miolli
- Research and Innovation Centre, Fondazione Edmund Mach (FEM), San Michele all’Adige (TN), Italy
| | - Kathleen Weigl
- Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Fruit Crops, Dresden, Germany
| | - Magda-Viola Hanke
- Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Fruit Crops, Dresden, Germany
| | - Henryk Flachowsky
- Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Fruit Crops, Dresden, Germany
| | - Azeddine Si-Ammour
- Research and Innovation Centre, Fondazione Edmund Mach (FEM), San Michele all’Adige (TN), Italy
- *Correspondence: Azeddine Si-Ammour,
| |
Collapse
|
37
|
Yu J, Conrad AO, Decroocq V, Zhebentyayeva T, Williams DE, Bennett D, Roch G, Audergon JM, Dardick C, Liu Z, Abbott AG, Staton ME. Distinctive Gene Expression Patterns Define Endodormancy to Ecodormancy Transition in Apricot and Peach. FRONTIERS IN PLANT SCIENCE 2020; 11:180. [PMID: 32180783 PMCID: PMC7059448 DOI: 10.3389/fpls.2020.00180] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 02/06/2020] [Indexed: 05/07/2023]
Abstract
Dormancy is a physiological state that plants enter for winter hardiness. Environmental-induced dormancy onset and release in temperate perennials coordinate growth cessation and resumption, but how the entire process, especially chilling-dependent dormancy release and flowering, is regulated remains largely unclear. We utilized the transcriptome profiles of floral buds from fall to spring in apricot (Prunus armeniaca) genotypes with contrasting bloom dates and peach (Prunus persica) genotypes with contrasting chilling requirements (CR) to explore the genetic regulation of bud dormancy. We identified distinct gene expression programming patterns in endodormancy and ecodormancy that reproducibly occur between different genotypes and species. During the transition from endo- to eco-dormancy, 1,367 and 2,102 genes changed in expression in apricot and peach, respectively. Over 600 differentially expressed genes were shared in peach and apricot, including three DORMANCY ASSOCIATED MADS-box (DAM) genes (DAM4, DAM5, and DAM6). Of the shared genes, 99 are located within peach CR quantitative trait loci, suggesting these genes as candidates for dormancy regulation. Co-expression and functional analyses revealed that distinctive metabolic processes distinguish dormancy stages, with genes expressed during endodormancy involved in chromatin remodeling and reproduction, while the genes induced at ecodormancy were mainly related to pollen development and cell wall biosynthesis. Gene expression analyses between two Prunus species highlighted the conserved transcriptional control of physiological activities in endodormancy and ecodormancy and revealed genes that may be involved in the transition between the two stages.
Collapse
Affiliation(s)
- Jiali Yu
- Genome Science and Technology Program, University of Tennessee, Knoxville, TN, United States
| | - Anna O. Conrad
- Forest Health Research and Education Center, University of Kentucky, Lexington, KY, United States
- Department of Plant Pathology, The Ohio State University, Columbus, OH, United States
| | - Véronique Decroocq
- UMR 1332 Biologie du Fruit et Pathologie, Equipe de Virologie, INRA, Universite de Bordeaux, Villenave d'Ornon, France
| | - Tetyana Zhebentyayeva
- Department of Ecosystem Science and Management, Schatz Center for Tree Molecular Genetics, the Pennsylvania State University, University Park, PA, United States
| | - Daniel E. Williams
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN, United States
| | - Dennis Bennett
- Appalachian Fruit Research Station, United States Department of Agriculture—Agriculture Research Service, Kearneysville, WV, United States
| | - Guillaume Roch
- GAFL Fruit and Vegetable Genetics and Breeding, INRA Centre PACA, Montfavet, France
| | - Jean-Marc Audergon
- GAFL Fruit and Vegetable Genetics and Breeding, INRA Centre PACA, Montfavet, France
| | - Christopher Dardick
- Appalachian Fruit Research Station, United States Department of Agriculture—Agriculture Research Service, Kearneysville, WV, United States
| | - Zongrang Liu
- Appalachian Fruit Research Station, United States Department of Agriculture—Agriculture Research Service, Kearneysville, WV, United States
| | - Albert G. Abbott
- Forest Health Research and Education Center, University of Kentucky, Lexington, KY, United States
| | - Margaret E. Staton
- Genome Science and Technology Program, University of Tennessee, Knoxville, TN, United States
- Department of Entomology and Plant Pathology, Institute of Agriculture, University of Tennessee, Knoxville, TN, United States
- *Correspondence: Margaret E. Staton,
| |
Collapse
|
38
|
Vimont N, Fouché M, Campoy JA, Tong M, Arkoun M, Yvin JC, Wigge PA, Dirlewanger E, Cortijo S, Wenden B. From bud formation to flowering: transcriptomic state defines the cherry developmental phases of sweet cherry bud dormancy. BMC Genomics 2019; 20:974. [PMID: 31830909 PMCID: PMC6909552 DOI: 10.1186/s12864-019-6348-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 11/28/2019] [Indexed: 12/22/2022] Open
Abstract
Background Bud dormancy is a crucial stage in perennial trees and allows survival over winter to ensure optimal flowering and fruit production. Recent work highlighted physiological and molecular events occurring during bud dormancy in trees. However, they usually examined bud development or bud dormancy in isolation. In this work, we aimed to further explore the global transcriptional changes happening throughout bud development and dormancy onset, progression and release. Results Using next-generation sequencing and modelling, we conducted an in-depth transcriptomic analysis for all stages of flower buds in several sweet cherry (Prunus avium L.) cultivars that are characterized for their contrasted dates of dormancy release. We find that buds in organogenesis, paradormancy, endodormancy and ecodormancy stages are defined by the expression of genes involved in specific pathways, and these are conserved between different sweet cherry cultivars. In particular, we found that DORMANCY ASSOCIATED MADS-box (DAM), floral identity and organogenesis genes are up-regulated during the pre-dormancy stages while endodormancy is characterized by a complex array of signalling pathways, including cold response genes, ABA and oxidation-reduction processes. After dormancy release, genes associated with global cell activity, division and differentiation are activated during ecodormancy and growth resumption. We then went a step beyond the global transcriptomic analysis and we developed a model based on the transcriptional profiles of just seven genes to accurately predict the main bud dormancy stages. Conclusions Overall, this study has allowed us to better understand the transcriptional changes occurring throughout the different phases of flower bud development, from bud formation in the summer to flowering in the following spring. Our work sets the stage for the development of fast and cost effective diagnostic tools to molecularly define the dormancy stages. Such integrative approaches will therefore be extremely useful for a better comprehension of complex phenological processes in many species.
Collapse
Affiliation(s)
- Noémie Vimont
- INRA, UMR1332 BFP, Univ. Bordeaux, 33882, Villenave d'Ornon, Cedex, France.,Agro Innovation International, Centre Mondial d'Innovation, Groupe Roullier, 35400, St Malo, France.,The Sainsbury Laboratory, University of Cambridge, Cambridge, CB2 1LR, UK
| | - Mathieu Fouché
- INRA, UMR1332 BFP, Univ. Bordeaux, 33882, Villenave d'Ornon, Cedex, France
| | - José Antonio Campoy
- Universidad Politécnica de Cartagena, Cartagena, Spain.,Universidad de Murcia, Murcia, Spain.,Present address: Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - Meixuezi Tong
- The Sainsbury Laboratory, University of Cambridge, Cambridge, CB2 1LR, UK
| | - Mustapha Arkoun
- Agro Innovation International, Centre Mondial d'Innovation, Groupe Roullier, 35400, St Malo, France
| | - Jean-Claude Yvin
- Agro Innovation International, Centre Mondial d'Innovation, Groupe Roullier, 35400, St Malo, France
| | - Philip A Wigge
- Leibniz-Institute für Gemüse- und Zierpflanzenbau (IGZ), Plant Adaptation, Grossbeeren, Germany
| | | | - Sandra Cortijo
- The Sainsbury Laboratory, University of Cambridge, Cambridge, CB2 1LR, UK.
| | - Bénédicte Wenden
- INRA, UMR1332 BFP, Univ. Bordeaux, 33882, Villenave d'Ornon, Cedex, France.
| |
Collapse
|
39
|
The Role of EjSVPs in Flower Initiation in Eriobotrya japonica. Int J Mol Sci 2019; 20:ijms20235933. [PMID: 31779080 PMCID: PMC6928820 DOI: 10.3390/ijms20235933] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/16/2019] [Accepted: 11/22/2019] [Indexed: 12/22/2022] Open
Abstract
Flowering plants have evolved different flowering habits to sustain long-term reproduction. Most woody trees experience dormancy and then bloom in the warm spring, but loquat blooms in the cold autumn and winter. To explore its mechanism of flowering regulation, we cloned two SHORT VEGETATIVE PHASE (SVP) homologous genes from 'Jiefanzhong' loquat (Eriobotrya japonica Lindl.), namely, EjSVP1 and EjSVP2. Sequence analysis revealed that the EjSVPs were typical MADS-box transcription factors and exhibited a close genetic relationship with other plant SVP/DORMANCY-ASSOCIATED MADS-BOX (DAM) proteins. The temporal and spatial expression patterns showed that EjSVP1 and EjSVP2 were mainly expressed in the shoot apical meristem (SAM) after the initiation of flowering; after reaching their highest level, they gradually decreased with the development of the flower until they could not be detected. EjSVP1 expression levels were relatively high in young tissues, and EjSVP2 expression levels were relatively high in young to mature transformed tissues. Interestingly, EjSVP2 showed relatively high expression levels in various flower tissues. We analyzed the EjSVP promoter regions and found that they did not contain the C-repeat/dehydration-responsive element. Finally, we overexpressed the EjSVPs in wild-type Arabidopsis thaliana Col-0 and found no significant changes in the number of rosette leaves of Arabidopsis thaliana; however, overexpression of EjSVP2 affected the formation of Arabidopsis thaliana flower organs. In conclusion, EjSVPs were found to play an active role in the development of loquat flowering. These findings may provide a reference for exploring the regulation mechanisms of loquat flowering and the dormancy mechanisms of other plants.
Collapse
|
40
|
Abstract
Vegetative bud dormancy is an important adaptive process allowing survival over winter in trees from temperate and boreal regions. A recent discovery implicates a MADS-box transcription factor from poplar in regulation of both entry and release from dormancy.
Collapse
Affiliation(s)
- Victor B Busov
- School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931, USA.
| |
Collapse
|
41
|
Li J, Yan X, Yang Q, Ma Y, Yang B, Tian J, Teng Y, Bai S. PpCBFs selectively regulate PpDAMs and contribute to the pear bud endodormancy process. PLANT MOLECULAR BIOLOGY 2019; 99:575-586. [PMID: 30747337 DOI: 10.1007/s11103-019-00837-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 02/04/2019] [Indexed: 05/03/2023]
Abstract
PpCBF2 directly binds to the promoters of PpCBF3 and PpCBF4 to activate their expressions and selectively regulates PpDAMs during the leaf bud endodormancy process of 'Wonhwang' pear (Pyrus pyrifolia). Endodormancy is critical for temperate plant survival under freezing winter conditions, and low temperature is a vital environmental factor in endodormancy regulation. A C-repeat binding factor (CBF) has been found to regulate important DAM transcription factors during endodormancy in pear (Pyrus pyrifolia). In this study, we analyzed the regulation of pear DAM genes by CBFs in further detail. Four CBF and three DAM genes were identified in the pear cultivar 'Wonhwang'. Under natural conditions, PpDAM1 expression decreased from the start of chilling accumulation, while the other two DAM and three CBF genes peaked during endodormancy release. Under chilling treatment, the expressions of PpDAM1, PpDAM2 and PpCBF1 genes were similar to those under natural conditions. Different biochemical methods revealed that PpCBF2/4 can bind to the promoter of PpDAM1 and activate its expression and that PpCBF1/4 can activate PpDAM3. Interestingly, we found that PpCBF2 can activate PpCBF3/4 transcription by directly binding to their promoters. The ICE-CBF regulon is conserved in some plants; three ICE genes were identified in pear, but their expressions did not obviously change under natural and artificial chilling conditions. On the contrary, the selective transcriptional induction of PpCBFs by PpICE1s was observed in a dual-luciferase assay. Considering all these results, we propose that the PpCBF1-PpDAM2 regulon mainly responds to low temperature during endodormancy regulation, with further post-translational regulation by PpICE3. Our results provide basic information on CBF genes functional redundancy and differentiation and demonstrate that the CBF-DAM signaling pathway is involved in the pear bud endodormancy process.
Collapse
Affiliation(s)
- Jianzhao Li
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, Zhejiang, People's Republic of China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, The Ministry of Agriculture of China, Hangzhou, 310058, Zhejiang, People's Republic of China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Hangzhou, 310058, Zhejiang, People's Republic of China
| | - Xinhui Yan
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, Zhejiang, People's Republic of China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, The Ministry of Agriculture of China, Hangzhou, 310058, Zhejiang, People's Republic of China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Hangzhou, 310058, Zhejiang, People's Republic of China
| | - Qinsong Yang
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, Zhejiang, People's Republic of China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, The Ministry of Agriculture of China, Hangzhou, 310058, Zhejiang, People's Republic of China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Hangzhou, 310058, Zhejiang, People's Republic of China
| | - Yunjing Ma
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, Zhejiang, People's Republic of China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, The Ministry of Agriculture of China, Hangzhou, 310058, Zhejiang, People's Republic of China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Hangzhou, 310058, Zhejiang, People's Republic of China
| | - Bo Yang
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, Zhejiang, People's Republic of China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, The Ministry of Agriculture of China, Hangzhou, 310058, Zhejiang, People's Republic of China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Hangzhou, 310058, Zhejiang, People's Republic of China
| | - Juan Tian
- Dangshan County Agriculture Committee, Suzhou, Anhui, 235300, People's Republic of China
| | - Yuanwen Teng
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, Zhejiang, People's Republic of China.
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, The Ministry of Agriculture of China, Hangzhou, 310058, Zhejiang, People's Republic of China.
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Hangzhou, 310058, Zhejiang, People's Republic of China.
| | - Songling Bai
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, Zhejiang, People's Republic of China.
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, The Ministry of Agriculture of China, Hangzhou, 310058, Zhejiang, People's Republic of China.
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Hangzhou, 310058, Zhejiang, People's Republic of China.
| |
Collapse
|
42
|
Wu R, Wang T, Richardson AC, Allan AC, Macknight RC, Varkonyi-Gasic E. Histone modification and activation by SOC1-like and drought stress-related transcription factors may regulate AcSVP2 expression during kiwifruit winter dormancy. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 281:242-250. [PMID: 30824057 DOI: 10.1016/j.plantsci.2018.12.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 11/28/2018] [Accepted: 12/04/2018] [Indexed: 05/03/2023]
Abstract
The SHORT VEGETATIVE PHASE (SVP)-like and DORMANCY ASSOCIATED MADS-BOX (DAM) genes have been shown to regulate winter dormancy in woody perennials. In kiwifruit, AcSVP2 affects the duration of dormancy in cultivars that require high chill for dormancy release. In this study, we used a low-chill kiwifruit Actinidia chinensis 'Hort16A' to further study the function and regulation of AcSVP2. Overexpression of AcSVP2 in transgenic A. chinensis delayed budbreak in spring. A reduction in the active trimethylation histone marks of the histone H3K4 and acetylation of histone H3 contributed to the reduction of AcSVP2 expression towards dormancy release, while the inactive histone marks of trimethylation of the histone H3K27 and H3K9 in AcSVP2 locus did not show significant enrichment at the end of winter dormancy. Analysis of expression in shoot buds showed that AcSVP2 transcript was elevated in dormant buds during winter months and declined prior to budbreak, which was coordinated with expression of some of kiwifruit SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1)-like genes. Screening of 101 transcription factors in an assay with a 2.3 kb promoter region of AcSVP2 found that kiwifruit SOC1-like genes are able to activate the AcSVP2 promoter. We further identified additional transcription factors associated with drought/osmotic stress and dormancy which may regulate AcSVP2 expression.
Collapse
Affiliation(s)
- Rongmei Wu
- The New Zealand Institute for Plant & Food Research Limited (PFR) Mt Albert, Private Bag 92169, Auckland Mail Centre, Auckland 1142, New Zealand
| | - Tianchi Wang
- The New Zealand Institute for Plant & Food Research Limited (PFR) Mt Albert, Private Bag 92169, Auckland Mail Centre, Auckland 1142, New Zealand
| | - Annette C Richardson
- The New Zealand Institute for Plant & Food Research Limited (PFR) Kerikeri, 121 Keri Downs Road, RD1, Kerikeri 0294, New Zealand
| | - Andrew C Allan
- The New Zealand Institute for Plant & Food Research Limited (PFR) Mt Albert, Private Bag 92169, Auckland Mail Centre, Auckland 1142, New Zealand; School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Richard C Macknight
- Department of Biochemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Erika Varkonyi-Gasic
- The New Zealand Institute for Plant & Food Research Limited (PFR) Mt Albert, Private Bag 92169, Auckland Mail Centre, Auckland 1142, New Zealand.
| |
Collapse
|
43
|
Miotto YE, Tessele C, Czermainski ABC, Porto DD, Falavigna VDS, Sartor T, Cattani AM, Delatorre CA, de Alencar SA, da Silva-Junior OB, Togawa RC, Costa MMDC, Pappas GJ, Grynberg P, de Oliveira PRD, Kvitschal MV, Denardi F, Buffon V, Revers LF. Spring Is Coming: Genetic Analyses of the Bud Break Date Locus Reveal Candidate Genes From the Cold Perception Pathway to Dormancy Release in Apple ( Malus × domestica Borkh.). FRONTIERS IN PLANT SCIENCE 2019; 10:33. [PMID: 30930909 PMCID: PMC6423911 DOI: 10.3389/fpls.2019.00033] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 01/10/2019] [Indexed: 05/26/2023]
Abstract
Chilling requirement (CR) for bud dormancy completion determines the time of bud break in apple (Malus × domestica Borkh.). The molecular control of bud dormancy is highly heritable, suggesting a strong genetic control of the trait. An available Infinium II SNP platform for genotyping containing 8,788 single nucleotide polymorphic markers was employed, and linkage maps were constructed in a F1 cross from the low CR M13/91 and the moderate CR cv. Fred Hough. These maps were used to identify quantitative trait loci (QTL) for bud break date as a trait related to dormancy release. A major QTL for bud break was detected at the beginning of linkage group 9 (LG9). This QTL remained stable during seven seasons in two different growing sites. To increase mapping efficiency in detecting contributing genes underlying this QTL, 182 additional SNP markers located at the locus for bud break were used. Combining linkage mapping and structural characterization of the region, the high proportion of the phenotypic variance in the trait explained by the QTL is related to the coincident positioning of Arabidopsis orthologs for ICE1, FLC, and PRE1 protein-coding genes. The proximity of these genes from the most explanatory markers of this QTL for bud break suggests potential genetic additive effects, reinforcing the hypothesis of inter-dependent mechanisms controlling dormancy induction and release in apple trees.
Collapse
Affiliation(s)
- Yohanna Evelyn Miotto
- Department of Crop Science, Agronomy School, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Carolina Tessele
- Department of Crop Science, Agronomy School, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | | | | | - Vítor da Silveira Falavigna
- Embrapa Uva e Vinho, Bento Gonçalves, Brazil
- Graduate Program in Cell and Molecular Biology, Centro de Biotecnologia, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Tiago Sartor
- Embrapa Uva e Vinho, Bento Gonçalves, Brazil
- Graduate Program in Cell and Molecular Biology, Centro de Biotecnologia, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Amanda Malvessi Cattani
- Embrapa Uva e Vinho, Bento Gonçalves, Brazil
- Graduate Program in Cell and Molecular Biology, Centro de Biotecnologia, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Carla Andrea Delatorre
- Department of Crop Science, Agronomy School, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Sérgio Amorim de Alencar
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| | | | | | | | | | | | | | - Marcus Vinícius Kvitschal
- Empresa de Pesquisa Agropecuária e Extensão Rural de Santa Catarina – Epagri – Estação Experimental de Caçador, Caçador, Brazil
| | - Frederico Denardi
- Empresa de Pesquisa Agropecuária e Extensão Rural de Santa Catarina – Epagri – Estação Experimental de Caçador, Caçador, Brazil
| | | | - Luís Fernando Revers
- Embrapa Uva e Vinho, Bento Gonçalves, Brazil
- Graduate Program in Cell and Molecular Biology, Centro de Biotecnologia, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
44
|
Gabay G, Faigenboim A, Dahan Y, Izhaki Y, Itkin M, Malitsky S, Elkind Y, Flaishman MA. Transcriptome analysis and metabolic profiling reveal the key role of α-linolenic acid in dormancy regulation of European pear. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:1017-1031. [PMID: 30590791 PMCID: PMC6363095 DOI: 10.1093/jxb/ery405] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 12/17/2018] [Indexed: 05/22/2023]
Abstract
Deciduous trees require sufficient chilling during winter dormancy to grow. To decipher the dormancy-regulating mechanism, we carried out RNA sequencing (RNA-Seq) analysis and metabolic profiling of European pear (Pyrus communis L.) vegetative buds during the dormancy phases. Samples were collected from two cultivars that differed greatly in their chilling requirements: 'Spadona' (SPD), a low chilling requirement cultivar; and Harrow Sweet (HS), a high chilling requirement cultivar. Comparative transcriptome analysis revealed >8500 differentially expressed transcripts; most were related to metabolic pathways. Out of 174 metabolites, 44 displayed differential levels in both cultivars, 38 were significantly changed only in SPD, and 15 only in HS. Phospholipids were mostly accumulated at the beginning of dormancy, sugars between before dormancy and mid-dormancy, and fatty acids, including α-linolenic acid, at dormancy break. Differentially expressed genes underlying previously identified major quantitative trait loci (QTLs) in linkage group 8 included genes related to the α-linolenic acid pathway, 12-oxophytodienoate reductase 2-like, and the DORMANCY-ASSOCIATED MADS-BOX (DAM) genes, PcDAM1 and PcDAM2, putative orthologs of PpDAM1 and PpDAM2, confirming their role for the first time in European pear. Additional new putative dormancy-related uncharacterized genes and genes related to metabolic pathways are suggested. These results suggest the crucial role of α-linolenic acid and DAM genes in pear bud dormancy phase transitions.
Collapse
Affiliation(s)
- Gilad Gabay
- Institute of Plant Sciences, Volcani Research Center, Derech Hamacabim, Rishon Lezion, Israel
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Food and Environment, the Hebrew University of Jerusalem, Rehovot, Israel
| | - Adi Faigenboim
- Institute of Plant Sciences, Volcani Research Center, Derech Hamacabim, Rishon Lezion, Israel
| | - Yardena Dahan
- Institute of Plant Sciences, Volcani Research Center, Derech Hamacabim, Rishon Lezion, Israel
| | - Yacov Izhaki
- Institute of Plant Sciences, Volcani Research Center, Derech Hamacabim, Rishon Lezion, Israel
| | - Maxim Itkin
- Life Science Core Facilities, Weitzman Institute of Science, Rehovot, Israel
| | - Sergey Malitsky
- Life Science Core Facilities, Weitzman Institute of Science, Rehovot, Israel
| | - Yonatan Elkind
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Food and Environment, the Hebrew University of Jerusalem, Rehovot, Israel
| | - Moshe A Flaishman
- Institute of Plant Sciences, Volcani Research Center, Derech Hamacabim, Rishon Lezion, Israel
| |
Collapse
|
45
|
Conde D, Perales M, Sreedasyam A, Tuskan GA, Lloret A, Badenes ML, González-Melendi P, Ríos G, Allona I. Engineering Tree Seasonal Cycles of Growth Through Chromatin Modification. FRONTIERS IN PLANT SCIENCE 2019; 10:412. [PMID: 31024588 PMCID: PMC6459980 DOI: 10.3389/fpls.2019.00412] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 03/19/2019] [Indexed: 05/21/2023]
Abstract
In temperate and boreal regions, perennial trees arrest cell division in their meristematic tissues during winter dormancy until environmental conditions become appropriate for their renewed growth. Release from the dormant state requires exposure to a period of chilling temperatures similar to the vernalization required for flowering in Arabidopsis. Over the past decade, genomic DNA (gDNA) methylation and transcriptome studies have revealed signatures of chromatin regulation during active growth and winter dormancy. To date, only a few chromatin modification genes, as candidate regulators of these developmental stages, have been functionally characterized in trees. In this work, we summarize the major findings of the chromatin-remodeling role during growth-dormancy cycles and we explore the transcriptional profiling of vegetative apical bud and stem tissues during dormancy. Finally, we discuss genetic strategies designed to improve the growth and quality of forest trees.
Collapse
Affiliation(s)
- Daniel Conde
- Centro de Biotecnología y Genómica de Plantas, Instituto de Investigación y Tecnología Agraria y Alimentaria, Universidad Politécnica de Madrid, Madrid, Spain
| | - Mariano Perales
- Centro de Biotecnología y Genómica de Plantas, Instituto de Investigación y Tecnología Agraria y Alimentaria, Universidad Politécnica de Madrid, Madrid, Spain
| | | | - Gerald A. Tuskan
- Oak Ridge National Laboratory, Center for Bioenergy Innovation, Oak Ridge, TN, United States
| | - Alba Lloret
- Instituto Valenciano de Investigaciones Agrarias, Moncada, Spain
| | - María L. Badenes
- Instituto Valenciano de Investigaciones Agrarias, Moncada, Spain
| | - Pablo González-Melendi
- Centro de Biotecnología y Genómica de Plantas, Instituto de Investigación y Tecnología Agraria y Alimentaria, Universidad Politécnica de Madrid, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Gabino Ríos
- Instituto Valenciano de Investigaciones Agrarias, Moncada, Spain
| | - Isabel Allona
- Centro de Biotecnología y Genómica de Plantas, Instituto de Investigación y Tecnología Agraria y Alimentaria, Universidad Politécnica de Madrid, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
- *Correspondence: Isabel Allona, orcid.org/0000-0002-7012-2850
| |
Collapse
|
46
|
Balogh E, Halász J, Soltész A, Erös-Honti Z, Gutermuth Á, Szalay L, Höhn M, Vágújfalvi A, Galiba G, Hegedüs A. Identification, Structural and Functional Characterization of Dormancy Regulator Genes in Apricot ( Prunus armeniaca L.). FRONTIERS IN PLANT SCIENCE 2019; 10:402. [PMID: 31024581 PMCID: PMC6460505 DOI: 10.3389/fpls.2019.00402] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 03/18/2019] [Indexed: 05/12/2023]
Abstract
In the present study, we identified and characterized the apricot (Prunus armeniaca L.) homologs of three dormancy-related genes, namely the ParCBF1 (C-repeat binding factor), ParDAM5 (dormancy-associated MADS-BOX) and ParDAM6 genes. All highly conserved structural motifs and the 3D model of the DNA-binding domain indicate an unimpaired DNA-binding ability of ParCBF1. A phylogenetic analysis showed that ParCBF1 was most likely homologous to Prunus mume and Prunus dulcis CBF1. ParDAM5 also contained all characteristic domains of the type II (MIKCC) subfamily of MADS-box transcription factors. The homology modeling of protein domains and a phylogenetic analysis of ParDAM5 suggest its functional integrity. The amino acid positions or small motifs that are diagnostic characteristics of DAM5 and DAM6 were determined. For ParDAM6, only a small part of the cDNA was sequenced, which was sufficient for the quantification of gene expression. The expression of ParCBF1 showed close association with decreasing ambient temperatures in autumn and winter. The expression levels of ParDAM5 and ParDAM6 changed according to CBF1 expression rates and the fulfillment of cultivar chilling requirements (CR). The concomitant decrease of gene expression with endodormancy release is consistent with a role of ParDAM5 and ParDAM6 genes in dormancy induction and maintenance. Cultivars with higher CR and delayed flowering time showed higher expression levels of ParDAM5 and ParDAM6 toward the end of endodormancy. Differences in the timing of anther developmental stages between early- and late-flowering cultivars and two dormant seasons confirmed the genetically and environmentally controlled mechanisms of dormancy release in apricot generative buds. These results support that the newly identified apricot gene homologs have a crucial role in dormancy-associated physiological mechanisms.
Collapse
Affiliation(s)
- Eszter Balogh
- Department of Genetics and Plant Breeding, Faculty of Horticultural Science, Szent István University, Budapest, Hungary
| | - Júlia Halász
- Department of Genetics and Plant Breeding, Faculty of Horticultural Science, Szent István University, Budapest, Hungary
| | - Alexandra Soltész
- Department of Plant Molecular Biology, Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
| | - Zsolt Erös-Honti
- Department of Botany and Soroksár Botanical Garden, Faculty of Horticultural Science, Szent István University, Budapest, Hungary
| | - Ádám Gutermuth
- Department of Genetics and Plant Breeding, Faculty of Horticultural Science, Szent István University, Budapest, Hungary
| | - László Szalay
- Department of Pomology, Faculty of Horticultural Science, Szent István University, Budapest, Hungary
| | - Mária Höhn
- Department of Botany and Soroksár Botanical Garden, Faculty of Horticultural Science, Szent István University, Budapest, Hungary
| | - Attila Vágújfalvi
- Department of Plant Molecular Biology, Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
| | - Gábor Galiba
- Department of Plant Molecular Biology, Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
- Festetics Doctoral School, Georgikon Faculty, University of Pannonia, Keszthely, Hungary
| | - Attila Hegedüs
- Department of Genetics and Plant Breeding, Faculty of Horticultural Science, Szent István University, Budapest, Hungary
- *Correspondence: Attila Hegedûs,
| |
Collapse
|
47
|
Liu J, Sherif SM. Hormonal Orchestration of Bud Dormancy Cycle in Deciduous Woody Perennials. FRONTIERS IN PLANT SCIENCE 2019; 10:1136. [PMID: 31620159 PMCID: PMC6759871 DOI: 10.3389/fpls.2019.01136] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 08/19/2019] [Indexed: 05/03/2023]
Abstract
Woody perennials enter seasonal dormancy to avoid unfavorable environmental conditions. Plant hormones are the critical mediators regulating this complex process, which is subject to the influence of many internal and external factors. Over the last two decades, our knowledge of hormone-mediated dormancy has increased considerably, primarily due to advancements in molecular biology, omics, and bioinformatics. These advancements have enabled the elucidation of several aspects of hormonal regulation associated with bud dormancy in various deciduous tree species. Plant hormones interact with each other extensively in a context-dependent manner. The dormancy-associated MADS (DAM) transcription factors appear to enable hormones and other internal signals associated with the transition between different phases of bud dormancy. These proteins likely hold a great potential in deciphering the underlying mechanisms of dormancy initiation, maintenance, and release. In this review, a recent understanding of the roles of plant hormones, their cross talks, and their potential interactions with DAM proteins during dormancy is discussed.
Collapse
|
48
|
A genetic network mediating the control of bud break in hybrid aspen. Nat Commun 2018; 9:4173. [PMID: 30301891 PMCID: PMC6177393 DOI: 10.1038/s41467-018-06696-y] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 09/20/2018] [Indexed: 02/04/2023] Open
Abstract
In boreal and temperate ecosystems, temperature signal regulates the reactivation of growth (bud break) in perennials in the spring. Molecular basis of temperature-mediated control of bud break is poorly understood. Here we identify a genetic network mediating the control of bud break in hybrid aspen. The key components of this network are transcription factor SHORT VEGETATIVE PHASE-LIKE (SVL), closely related to Arabidopsis floral repressor SHORT VEGETATIVE PHASE, and its downstream target TCP18, a tree homolog of a branching regulator in Arabidopsis. SVL and TCP18 are downregulated by low temperature. Genetic evidence demonstrates their role as negative regulators of bud break. SVL mediates bud break by antagonistically acting on gibberellic acid (GA) and abscisic acid (ABA) pathways, which function as positive and negative regulators of bud break, respectively. Thus, our results reveal the mechanistic basis for temperature-cued seasonal control of a key phenological event in perennial plants.
Collapse
|
49
|
Gabay G, Dahan Y, Izhaki Y, Faigenboim A, Ben-Ari G, Elkind Y, Flaishman MA. High-resolution genetic linkage map of European pear (Pyrus communis) and QTL fine-mapping of vegetative budbreak time. BMC PLANT BIOLOGY 2018; 18:175. [PMID: 30165824 PMCID: PMC6117884 DOI: 10.1186/s12870-018-1386-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 08/07/2018] [Indexed: 05/20/2023]
Abstract
BACKGROUND Genomic analysis technologies can promote efficient fruit tree breeding. Genotyping by sequencing (GBS) enables generating efficient data for high-quality genetic map construction and QTL analysis in a relatively accessible way. Furthermore, High-resolution genetic map construction and accurate QTL detection can significantly narrow down the putative candidate genes associated with important plant traits. RESULTS We genotyped 162 offspring in the F1 'Spadona' x 'Harrow Sweet' pear population using GBS. An additional 21 pear accessions, including the F1 population's parents, from our germplasm collection were subjected to GBS to examine diverse genetic backgrounds that are associated to agriculturally relevant traits and to enhance the power of SNP calling. A standard SNP calling pipeline identified 206,971 SNPs with Asian pear ('Suli') as the reference genome and 148,622 SNPs with the European genome ('Bartlett'). These results enabled constructing a genetic map, after further stringent SNP filtering, consisting of 2036 markers on 17 linkage groups with a length of 1433 cM and an average marker interval of 0.7 cM. We aligned 1030 scaffolds covering a total size of 165.5 Mbp (29%) of the European pear genome to the 17 linkage groups. For high-resolution QTL analysis covering the whole genome, we used phenotyping for vegetative budbreak time in the F1 population. New QTLs associated to vegetative budbreak time were detected on linkage groups 5, 13 and 15. A major QTL on linkage group 8 and an additional QTL on linkage group 9 were confirmed. Due to the significant genotype-by-environment (GxE) effect, we were able to identify novel interaction QTLs on linkage groups 5, 8, 9 and 17. Phenotype-genotype association analysis in the pear accessions for main genotype effect was conducted to support the QTLs detected in the F1 population. Significant markers were detected on every linkage group to which main genotype effect QTLs were mapped. CONCLUSIONS This is the first vegetative budbreak study of European pear that makes use of high-resolution genetic mapping. These results provide tools for marker-assisted selection and accurate QTL analysis in pear, and specifically at vegetative budbreak, considering the significant GxE and phenotype-plasticity effects.
Collapse
Affiliation(s)
- Gilad Gabay
- Institute of Plant Sciences, Volcani Research Center, Derech Hamacabim 68, P.O. Box 15159, Rishon Lezion, Israel
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Food and Environment, the Hebrew University of Jerusalem, P.O. Box 12, 76100, Rehovot, Israel
| | - Yardena Dahan
- Institute of Plant Sciences, Volcani Research Center, Derech Hamacabim 68, P.O. Box 15159, Rishon Lezion, Israel
| | - Yacov Izhaki
- Institute of Plant Sciences, Volcani Research Center, Derech Hamacabim 68, P.O. Box 15159, Rishon Lezion, Israel
| | - Adi Faigenboim
- Institute of Plant Sciences, Volcani Research Center, Derech Hamacabim 68, P.O. Box 15159, Rishon Lezion, Israel
| | - Giora Ben-Ari
- Institute of Plant Sciences, Volcani Research Center, Derech Hamacabim 68, P.O. Box 15159, Rishon Lezion, Israel
| | - Yonatan Elkind
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Food and Environment, the Hebrew University of Jerusalem, P.O. Box 12, 76100, Rehovot, Israel
| | - Moshe A Flaishman
- Institute of Plant Sciences, Volcani Research Center, Derech Hamacabim 68, P.O. Box 15159, Rishon Lezion, Israel.
| |
Collapse
|
50
|
Ito A, Sakaue T, Fujimaru O, Iwatani A, Ikeda T, Sakamoto D, Sugiura T, Moriguchi T. Comparative phenology of dormant Japanese pear (Pyrus pyrifolia) flower buds: a possible cause of 'flowering disorder'. TREE PHYSIOLOGY 2018; 38:825-839. [PMID: 29370432 DOI: 10.1093/treephys/tpx169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 12/04/2017] [Indexed: 05/03/2023]
Abstract
Mild winters influenced by global warming have increased the incidence of erratic flowering ('flowering disorder') in Japanese pear (Pyrus pyrifolia Nakai) trees in Japan. To discover how, when and what kind of disorder/damage occur in pear flower buds, we observed axillary flower buds of two cultivars, 'Kosui' (a mid-chill cultivar) and 'Niitaka' (a high-chill cultivar), grown at five locations. We focused on the phenology from autumn 2015 to spring 2016, when temperatures were higher than for average years, especially from September to January, and large fluctuations occurred due to El Niño. During the blooming season in the spring of 2016, both the percentage of blooming flower buds and the number of florets per flower bud decreased in trees located at lower latitudes (with lower chilling accumulation) with a more severe problem in 'Niitaka' than in 'Kosui'. As shown by forcing excised shoots, the onset and release of endodormancy occurred earlier in 'Kosui' than 'Niitaka' and occurred earlier in trees growing at higher latitudes than at lower latitudes (warmer regions). The freezing tolerance of flower buds, measured as the lethal temperature for 50% survival (LT50), was similar for the cultivars beginning in autumn and reached maximum levels, LT50 values of less than -12 °C, between late-December and mid-January in both cultivars, except for those in Kagoshima (the lowest latitude), where the maximum LT50 was only -5 °C throughout the season. We propose that warmer autumn-winter temperatures may prevent the acquisition of freezing tolerance, disturb endodormancy progression and disrupt floral organ development, thereby causing flowering disorder in pear trees. The risk of occurrence of flowering disorder in pear may be higher in high-chill cultivars than in low- or mid-chill cultivars and at lower latitudes compared with higher latitudes.
Collapse
Affiliation(s)
- A Ito
- Division of Fruit Production and Postharvest Science, Institute of Fruit Tree and Tea Science, NARO, 2-1 Fujimoto, Tsukuba, Ibaraki 305-8605, Japan
| | - T Sakaue
- Fruit Tree Division, Kagoshima Prefectural Institute of Agricultural Development, 2200 Oono, Kinpo, Minamisatsuma, Kagoshima 899-3401, Japan
| | - O Fujimaru
- Department of Deciduous Fruit Tree, Fruit Tree Research Institute, Kumamoto Prefectural Agricultural Research Center, 2566 Toyofuku, Matsubase, Uki, Kumamoto 869-0524, Japan
- Northern Kumamoto Administrative Headquarters, Kumamoto Prefectural Government, Tamana, Kumamoto 865-0016, Japan
| | - A Iwatani
- Department of Deciduous Fruit Tree, Fruit Tree Research Institute, Kumamoto Prefectural Agricultural Research Center, 2566 Toyofuku, Matsubase, Uki, Kumamoto 869-0524, Japan
| | - T Ikeda
- Laboratory of Fruit Growing and Breeding, Tottori Prefectural Horticultural Research Center, 2048 Yurashuku Hokuei, Tottori 689-2221, Japan
| | - D Sakamoto
- Division of Fruit Production and Postharvest Science, Institute of Fruit Tree and Tea Science, NARO, 2-1 Fujimoto, Tsukuba, Ibaraki 305-8605, Japan
| | - T Sugiura
- Division of Fruit Production and Postharvest Science, Institute of Fruit Tree and Tea Science, NARO, 2-1 Fujimoto, Tsukuba, Ibaraki 305-8605, Japan
| | - T Moriguchi
- Division of Fruit Production and Postharvest Science, Institute of Fruit Tree and Tea Science, NARO, 2-1 Fujimoto, Tsukuba, Ibaraki 305-8605, Japan
| |
Collapse
|