1
|
Dong J, Wang Z, Si W, Xu H, Zhang Z, Cao Q, Zhang X, Peng H, Mao R, Jiang H, Cheng B, Li X, Gu L. The C 2H 2-type zinc finger transcription factor ZmDi19-7 regulates plant height and organ size by promoting cell size in maize. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:2700-2722. [PMID: 39555599 DOI: 10.1111/tpj.17139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/06/2024] [Accepted: 10/24/2024] [Indexed: 11/19/2024]
Abstract
The drought-induced protein 19 (Di19) gene family encodes a Cys2/His2 zinc-finger protein implicated in responses to diverse plant stressors. To date, potential roles of these proteins as transcription factors remain largely elusive in maize. Here, we show that ZmDi19-7 gene exerts pivotal functions in regulation of plant height and organ growth by modulating the cell size in maize. ZmDi19-7 physically interacts with ubiquitin receptor protein ZmDAR1b, which is indispensable in ubiquitination of ZmDi19-7 and affects its protein stability. Further genetic analysis demonstrated that ZmDAR1b act in a common pathway with ZmDi19-7 to regulate cell size in maize. ZmDi19-7, severing as a transcriptional factor, is significantly enriched in conserved DiBS element in the promoter region of ZmHSP22, ZmHSP18c, ZmSAUR25, ZmSAUR55, ZmSAUR7 and ZmXTH23 and orchestrates the expression of these genes involving in auxin-mediated cell expansion and protein processing in the endoplasmic reticulum. Thus, our findings demonstrate that ZmDi19-7 is an important newfound component of the ubiquitin-proteasome pathway in regulation of plant height and organ size in maize. These discoveries highlight potential targets for the genetic improvement of maize in the future.
Collapse
Affiliation(s)
- Jinlei Dong
- National Engineering Laboratory of Crop Stress Resistance breeding, Anhui Agricultural University, Hefei, 230036, China
| | - Zimeng Wang
- National Engineering Laboratory of Crop Stress Resistance breeding, Anhui Agricultural University, Hefei, 230036, China
| | - Weina Si
- National Engineering Laboratory of Crop Stress Resistance breeding, Anhui Agricultural University, Hefei, 230036, China
- Schools of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Huan Xu
- National Engineering Laboratory of Crop Stress Resistance breeding, Anhui Agricultural University, Hefei, 230036, China
| | - Zhen Zhang
- National Engineering Laboratory of Crop Stress Resistance breeding, Anhui Agricultural University, Hefei, 230036, China
| | - Qiuyu Cao
- National Engineering Laboratory of Crop Stress Resistance breeding, Anhui Agricultural University, Hefei, 230036, China
| | - Xinyuan Zhang
- National Engineering Laboratory of Crop Stress Resistance breeding, Anhui Agricultural University, Hefei, 230036, China
| | - Hui Peng
- National Engineering Laboratory of Crop Stress Resistance breeding, Anhui Agricultural University, Hefei, 230036, China
| | - Rongwei Mao
- National Engineering Laboratory of Crop Stress Resistance breeding, Anhui Agricultural University, Hefei, 230036, China
| | - Haiyang Jiang
- National Engineering Laboratory of Crop Stress Resistance breeding, Anhui Agricultural University, Hefei, 230036, China
- Schools of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Beijiu Cheng
- National Engineering Laboratory of Crop Stress Resistance breeding, Anhui Agricultural University, Hefei, 230036, China
- Schools of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Xiaoyu Li
- National Engineering Laboratory of Crop Stress Resistance breeding, Anhui Agricultural University, Hefei, 230036, China
- Schools of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Longjiang Gu
- National Engineering Laboratory of Crop Stress Resistance breeding, Anhui Agricultural University, Hefei, 230036, China
- Schools of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| |
Collapse
|
2
|
Bi Z, Dekomah SD, Wang Y, Pu Z, Wang X, Dormatey R, Sun C, Liu Y, Liu Z, Bai J, Yao P. Overexpression of StCDPK13 in Potato Enhances Tolerance to Drought Stress. Int J Mol Sci 2024; 25:12620. [PMID: 39684333 DOI: 10.3390/ijms252312620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Calcium-dependent protein kinases (CDPKs), which are activated by transient changes in the Ca2+ concentration in plants, are important for various biological processes, such as growth, development, defense against biotic and abiotic stresses, and others. Mannitol is commonly used as an osmotic regulatory substance in culture medium or nutrient solutions to create water-deficit conditions. Here, we cloned the potato (Solanum tuberosum L.) StCDPK13 gene and generated stable transgenic StCDPK13-overexpression potato plants. To investigate the potential functions of StCDPK13 in response to drought stress, overexpression-transgenic (OE1, OE2, and OE7) and wild-type (WT) potato seedlings were cultured on MS solid media without or with mannitol, representing the control or drought stress, for 20 days; the elevated mannitol concentrations (150 and 200 mM) were the drought stress conditions. The StCDPK13 gene was consistently expressed in different tissues and was induced by drought stress in both OE and WT plants. The phenotypic traits and an analysis of physiological indicators revealed that the transgenic plants exhibited more tolerance to drought stress than the WT plants. The overexpression lines showed an increased plant height, number of leaves, dry shoot weight, root length, root number, root volume, number of root tips, fresh root weight, and dry root weight under drought stress. In addition, the activities of antioxidant enzymes (CAT, SOD, and POD) and the accumulation of proline and neutral sugars were significantly increased, whereas the levels of malondialdehyde (MDA) and reactive oxygen species (ROS), including hydrogen peroxide (H2O2) and O2•-, were significantly reduced in the OE lines compared to WT plants under drought stress. Moreover, the stomatal aperture of the leaves and the water loss rate in the leaves of the OE lines were significantly reduced under drought stress compared to the WT plants. In addition, the overexpression of StCDPK13 upregulated the expression levels of stress-related genes under drought stress. Collectively, these results indicate that the StCDPK13 gene plays a positive role in drought tolerance by reducing the stomatal aperture, promoting ROS scavenging, and alleviating oxidative damage under drought stress in potatoes.
Collapse
Affiliation(s)
- Zhenzhen Bi
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Simon Dontoro Dekomah
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Yihao Wang
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhuanfang Pu
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiangdong Wang
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Richard Dormatey
- CSIR-Crop Research Institute, P.O. Box 3785, Kumasi 00233, Ghana
| | - Chao Sun
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Yuhui Liu
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhen Liu
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Jiangping Bai
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Panfeng Yao
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
3
|
Huang J, Zhu M, Li Z, Jiang S, Xu S, Wang M, Chu Z, Zhu M, Zhang Z, Huang W. OsCactin positively regulates the drought stress response in rice. PLANT CELL REPORTS 2024; 43:281. [PMID: 39540946 DOI: 10.1007/s00299-024-03365-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
KEY MESSAGE OsCactinpositively regulates drought tolerance in rice. OsCactin is regulated by OsTRAB1 and interacts with OsDi19 proteins to defend against drought stress. Drought stress significantly limits plant growth and production. Cactin, a CactinC_cactus domain-containing protein encoded by a highly conserved single-copy gene prevalent across the eukaryotic kingdom, is known to play diverse roles in fundamental biological processes. However, its function in rice drought tolerance remains poorly understood. In this study, with its overexpression and knockout rice lines in both a pot drought experiment and a PEG drought-simulation test, OsCactin was found to positively regulate rice drought tolerance during the rice seedling stage. The OsCactin-overexpressing lines presented high tolerance to drought stress, whereas the OsCactin-knockout plants were sensitive to drought stress. OsCactin was localized in the nucleus, and was predominantly expressed in the leaves and panicles at the seedling and booting stages, respectively. Furthermore, OsTRAB1, a drought-responsive TF of the bZIP family, binds to the promoter of OsCactin as a drought-responsive regulator. OsDi19 proteins, the Cys2/His2 (C2H2)-type zinc finger TFs from the drought-induced 19 family, interact with OsCactin both in vitro and in vivo. Our results provide new insights into the intricate mechanisms by which OsCactin regulates the rice drought stress response, which may contribute to the design of molecular breeding methods for rice.
Collapse
Affiliation(s)
- Jinqiu Huang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Mingqiang Zhu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Zhihui Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Shan Jiang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Shuang Xu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Mingyue Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Zhaohui Chu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Menghao Zhu
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha, 410114, China
| | - Zhihong Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| | - Wenchao Huang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
4
|
Guo W, Li X, Yang T, Huang C, Zhao B, Wang P. Identification and expression of the Di19 gene family in response to abiotic stress in common bean ( Phaseolus vulgaris L.). Front Genet 2024; 15:1401011. [PMID: 38873116 PMCID: PMC11169598 DOI: 10.3389/fgene.2024.1401011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/08/2024] [Indexed: 06/15/2024] Open
Abstract
Drought-induced 19 (Di19) protein plays critical biological functions in response to adversity as well as in plant growth and development. Exploring the role and mechanism of Di19 in abiotic stress responses is of great significance for improving plant tolerance. In this study, six Di19 genes were identified in the common bean (Phaseolus vulgaris L.), which were mainly derived from segmental duplications. These genes share conserved exon/intron structures and were classified into three subfamilies based on their phylogenetic relationships. The composition and arrangement of conserved motifs were consistent with their phylogenetic relationships. Many hormone- and stress-responsive elements were distributed in the promoters region of PvDi19 genes. Variations in histidine residues in the Cys2/His2 (C2H2) zinc-finger domains resulted in an atypical tertiary structure of PvDi19-5. Gene expression analysis showed rapid induction of PvDi19-1 in roots by 10% PEG treatment, and PvDi19-2 in leaves by 20% PEG treatment, respectively. Most PvDi19s exhibited insensitivity to saline-alkali stress, except for PvDi19-6, which was notably induced during later stages of treatment. The most common bean Di19 genes were inhibited or not regulated by cadmium stress, but the expression of PvDi19-6 in roots was significantly upregulated when subjected to lower concentrations of cadmium (5 mmol). Moreover, Di19s exhibited greater sensitivity to severe cold stress (6°C). These findings enhance our understanding of the role of PvDi19s in common bean abiotic stress responses and provide a basis for future genetic enhancements in common bean stress tolerance.
Collapse
Affiliation(s)
- Wei Guo
- Department of Basic Sciences, Shanxi Agricultural University, Taigu, China
| | - Xinhui Li
- Shanxi Houji Laboratory, College of Agriculture, Shanxi Agricultural University, Taigu, China
| | - Tao Yang
- Shanxi Houji Laboratory, College of Agriculture, Shanxi Agricultural University, Taigu, China
| | - Chunguo Huang
- Shanxi Houji Laboratory, College of Agriculture, Shanxi Agricultural University, Taigu, China
| | - Bo Zhao
- Shanxi Houji Laboratory, College of Agriculture, Shanxi Agricultural University, Taigu, China
| | - Peng Wang
- Shanxi Houji Laboratory, College of Agriculture, Shanxi Agricultural University, Taigu, China
| |
Collapse
|
5
|
Wang B, Xue P, Zhang Y, Zhan X, Wu W, Yu P, Chen D, Fu J, Hong Y, Shen X, Sun L, Cheng S, Liu Q, Cao L. OsCPK12 phosphorylates OsCATA and OsCATC to regulate H 2O 2 homeostasis and improve oxidative stress tolerance in rice. PLANT COMMUNICATIONS 2024; 5:100780. [PMID: 38130060 PMCID: PMC10943579 DOI: 10.1016/j.xplc.2023.100780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
Calcium-dependent protein kinases (CPKs), the best-characterized calcium sensors in plants, regulate many aspects of plant growth and development as well as plant adaptation to biotic and abiotic stresses. However, how CPKs regulate the antioxidant defense system remains largely unknown. We previously found that impaired function of OsCPK12 leads to oxidative stress in rice, with more H2O2, lower catalase (CAT) activity, and lower yield. Here, we explored the roles of OsCPK12 in oxidative stress tolerance in rice. Our results show that OsCPK12 interacts with and phosphorylates OsCATA and OsCATC at Ser11. Knockout of either OsCATA or OsCATC leads to an oxidative stress phenotype accompanied by higher accumulation of H2O2. Overexpression of the phosphomimetic proteins OsCATAS11D and OsCATCS11D in oscpk12-cr reduced the level of H2O2 accumulation. Moreover, OsCATAS11D and OsCATCS11D showed enhanced catalase activity in vivo and in vitro. OsCPK12-overexpressing plants exhibited higher CAT activity as well as higher tolerance to oxidative stress. Our findings demonstrate that OsCPK12 affects CAT enzyme activity by phosphorylating OsCATA and OsCATC at Ser11 to regulate H2O2 homeostasis, thereby mediating oxidative stress tolerance in rice.
Collapse
Affiliation(s)
- Beifang Wang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China; Northern Rice Research Center of Bao Qing, Shuangyashan 155600, China; Zhejiang Key Laboratory of Super Rice Research, China National Rice Research Institute, Hangzhou 311400, China
| | - Pao Xue
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Yingxin Zhang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Xiaodeng Zhan
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Weixun Wu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Ping Yu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Daibo Chen
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Junlin Fu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Yongbo Hong
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Xihong Shen
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Lianping Sun
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Shihua Cheng
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China.
| | - Qunen Liu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China.
| | - Liyong Cao
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China; Northern Rice Research Center of Bao Qing, Shuangyashan 155600, China; Zhejiang Key Laboratory of Super Rice Research, China National Rice Research Institute, Hangzhou 311400, China.
| |
Collapse
|
6
|
Geng A, Lian W, Wang Y, Liu M, Zhang Y, Wang X, Chen G. Molecular Mechanisms and Regulatory Pathways Underlying Drought Stress Response in Rice. Int J Mol Sci 2024; 25:1185. [PMID: 38256261 PMCID: PMC10817035 DOI: 10.3390/ijms25021185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/10/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Rice is a staple food for 350 million people globally. Its yield thus affects global food security. Drought is a serious environmental factor affecting rice growth. Alleviating the inhibition of drought stress is thus an urgent challenge that should be solved to enhance rice growth and yield. This review details the effects of drought on rice morphology, physiology, biochemistry, and the genes associated with drought stress response, their biological functions, and molecular regulatory pathways. The review further highlights the main future research directions to collectively provide theoretical support and reference for improving drought stress adaptation mechanisms and breeding new drought-resistant rice varieties.
Collapse
Affiliation(s)
- Anjing Geng
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Wenli Lian
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Yihan Wang
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Minghao Liu
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Yue Zhang
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Xu Wang
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Guang Chen
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| |
Collapse
|
7
|
Daryani P, Amirbakhtiar N, Soorni J, Loni F, Darzi Ramandi H, Shobbar ZS. Uncovering the Genomic Regions Associated with Yield Maintenance in Rice Under Drought Stress Using an Integrated Meta-Analysis Approach. RICE (NEW YORK, N.Y.) 2024; 17:7. [PMID: 38227151 DOI: 10.1186/s12284-024-00684-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 01/03/2024] [Indexed: 01/17/2024]
Abstract
The complex trait of yield is controlled by several quantitative trait loci (QTLs). Given the global water deficit issue, the development of rice varieties suitable for non-flooded cultivation holds significant importance in breeding programs. The powerful approach of Meta-QTL (MQTL) analysis can be used for the genetic dissection of complicated quantitative traits. In the current study, a comprehensive MQTL analysis was conducted to identify consistent QTL regions associated with drought tolerance and yield-related traits under water deficit conditions in rice. In total, 1087 QTLs from 134 rice populations, published between 2000 to 2021, were utilized in the analysis. Distinct MQTL analysis of the relevant traits resulted in the identification of 213 stable MQTLs. The confidence interval (CI) for the detected MQTLs was between 0.12 and 19.7 cM. The average CI of the identified MQTLs (4.68 cM) was 2.74 times narrower compared to the average CI of the initial QTLs. Interestingly, 63 MQTLs coincided with SNP peak positions detected by genome-wide association studies for yield and drought tolerance-associated traits under water deficit conditions in rice. Considering the genes located both in the QTL-overview peaks and the SNP peak positions, 19 novel candidate genes were introduced, which are associated with drought response index, plant height, panicle number, biomass, and grain yield. Moreover, an inclusive MQTL analysis was performed on all the traits to obtain "Breeding MQTLs". This analysis resulted in the identification of 96 MQTLs with a CI ranging from 0.01 to 9.0 cM. The mean CI of the obtained MQTLs (2.33 cM) was 4.66 times less than the mean CI of the original QTLs. Thirteen MQTLs fulfilling the criteria of having more than 10 initial QTLs, CI < 1 cM, and an average phenotypic variance explained greater than 10%, were designated as "Breeding MQTLs". These findings hold promise for assisting breeders in enhancing rice yield under drought stress conditions.
Collapse
Affiliation(s)
- Parisa Daryani
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Nazanin Amirbakhtiar
- National Plant Gene Bank of Iran, Seed and Plant Improvement Institute (SPII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Jahad Soorni
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Fatemeh Loni
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Hadi Darzi Ramandi
- Department of Plant Production and Genetics, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran.
| | - Zahra-Sadat Shobbar
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.
| |
Collapse
|
8
|
Wu X, Wang Z, Liu X, Gao Z, Li Z. Constitutive expression of nucleotide-binding and leucine-rich repeat gene AtRPS2 enhanced drought and salt tolerance in rice. JOURNAL OF PLANT PHYSIOLOGY 2023; 287:154048. [PMID: 37399697 DOI: 10.1016/j.jplph.2023.154048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 06/22/2023] [Accepted: 06/28/2023] [Indexed: 07/05/2023]
Abstract
Drought and salt are major abiotic stresses that severely restricts plant growth and development, leading to serious losses in agricultural production. Therefore, improving crop tolerance to drought and salt stresses is an urgent issue. A previous study showed that overexpression of Arabidopsis NLR gene AtRPS2 conferred broad-spectrum disease resistance in rice. In this study, we demonstrated that constitutive expression of AtRPS2 increased abscisic acid (ABA) sensitivity during seedling stage, the shoot length of transgenic plants were shorter than wild type plants. Exogenous application of ABA markedly induced the expression of stress-related genes and promoted stomatal close in transgenic plants. Overexpression of AtRPS2 also enhanced drought and salt tolerance in rice, transgenic plants exhibited higher survival rates under drought and salt conditions than wild type plants. The activities of catalase (CAT) and superoxide dismutase (SOD) were higher in AtRPS2 transgenic rice than wild type plants. In addition, the expression of stress-related genes and ABA-responsive genes were significantly upregulated in AtRPS2 transgenic plants than wild type plants under drought and salt treatments. Besides, exogenous application of ABA could facilitate drought and salt tolerance in AtRPS2 transgenic plants. Taken together, this study indicated that AtRPS2 could improve drought and salt tolerance in rice, and this phenomenon is likely to be regulated through ABA signaling pathways.
Collapse
Affiliation(s)
- Xiaoqiu Wu
- Basic Medical College, Shaoyang University, Shaoyang, 422000, China
| | - Zhangying Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Xiaoxiao Liu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Zhiyong Gao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| | - Zhaowu Li
- Basic Medical College, Shaoyang University, Shaoyang, 422000, China.
| |
Collapse
|
9
|
Zhu J, Du D, Li Y, Zhang Y, Hu WL, Chen L, He X, Xia L, Mo X, Xie F, Luo C. Isolation of three MiDi19-4 genes from mango, the ectopic expression of which confers early flowering and enhances stress tolerance in transgenic Arabidopsis. PLANTA 2023; 258:14. [PMID: 37310483 DOI: 10.1007/s00425-023-04172-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 06/01/2023] [Indexed: 06/14/2023]
Abstract
MAIN CONCLUSION Three Di19-4 genes were identified in mango. Overexpression of MiDi19-4B in A. thaliana promoted earlier flowering and enhanced drought, salt, and ABA resistance. Drought-induced protein 19 (Di19) is a drought-induced protein that is mainly involved in multiple stress responses. Here, three Di19-4 genes (MiDi19-4A/B/C) in mango (Mangifera indica L.) were identified, and the coding sequences (CDS) had lengths of 684, 666, and 672 bp and encoded proteins with 228, 222, and 224 amino acids, respectively. The promoters of the MiDi19-4 genes contained phytohormone-, light-, and abiotic stress-responsive elements. The MiDi19-4 genes were expressed in every tissue and highly expressed in leaves. Moreover, MiDi19-4 genes were highly correlated with the vegetative growth period and induced by polyethylene glycol (PEG) or salt stress. MiDi19-4B displayed the highest expression during the vegetative growth period and then showed decreased expression, and MiDi19-4B was highly expressed at both the late stage of the vegetative growth period and the initial stage of the flowering induction period. The 35S::GFP-MiDi19-4B fusion protein was located in the cell nucleus. The transgenic plants ectopically expressing MiDi19-4B exhibited earlier flowering and increased expression patterns of FRUITFULL (AtFUL), APETALA1 (AtAP1), and FLOWERING LOCUS T (AtFT). The drought and salt tolerance of MiDi19-4B transgenic plants was significantly increased, and these plants showed decreased sensitivity to abscisic acid (ABA) and considerably increased expression levels of drought- and salt-related genes and ABA signalling pathway genes. Additionally, bimolecular fluorescence complementation (BiFC) experiments revealed that the MiDi19-4B protein interacted with CAULIFLOWER (MiCAL1), MiCAL2, MiAP1-1, and MiAP1-2. Taken together, these results highlighted the important regulatory roles of MiDi19-4B in tolerance to multiple abiotic stresses and in flowering.
Collapse
Affiliation(s)
- Jiawei Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-BioresourcesGuangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, China
| | - Daiyan Du
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-BioresourcesGuangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, China
| | - Yuze Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-BioresourcesGuangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, China
| | - Yili Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-BioresourcesGuangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, China
| | - Wan Li Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-BioresourcesGuangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, China
| | - Linghe Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-BioresourcesGuangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, China
| | - Xinhua He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-BioresourcesGuangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, China.
| | - Liming Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-BioresourcesGuangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, China
| | - Xiao Mo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-BioresourcesGuangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, China
| | - Fangfang Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-BioresourcesGuangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, China
| | - Cong Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-BioresourcesGuangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, China.
| |
Collapse
|
10
|
Xiao S, Wan Y, Guo S, Fan J, Lin Q, Zheng C, Wu C. Transcription Factor SiDi19-3 Enhances Salt Tolerance of Foxtail Millet and Arabidopsis. Int J Mol Sci 2023; 24:2592. [PMID: 36768932 PMCID: PMC9917086 DOI: 10.3390/ijms24032592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/12/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Salt stress is an important limiting factor of crop production. Foxtail millet (Setaria italica L.) is an important model crop for studying tolerance to various abiotic stressors. Therefore, examining the response of foxtail millet to salt stress at the molecular level is critical. Herein, we discovered that SiDi19-3 interacts with SiPLATZ12 to control salt tolerance in transgenic Arabidopsis and foxtail millet seedlings. SiDi19-3 overexpression increased the transcript levels of most Na+/H+ antiporter (NHX), salt overly sensitive (SOS), and calcineurin B-like protein (CBL) genes and improved the salt tolerance of foxtail millet and Arabidopsis. Six SiDi19 genes were isolated from foxtail millet. Compared with roots, stems, and leaves, panicles and seeds had higher transcript levels of SiDi19 genes. All of them responded to salt, alkaline, polyethylene glycol, and/or abscisic acid treatments with enhanced expression levels. These findings indicate that SiDi19-3 and other SiDi19 members regulate salt tolerance and other abiotic stress response in foxtail millet.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Changai Wu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an 271018, China
| |
Collapse
|
11
|
Zhao L, Li Y, Li Y, Chen W, Yao J, Fang S, Lv Y, Zhang Y, Zhu S. Systematical Characterization of the Cotton Di19 Gene Family and the Role of GhDi19-3 and GhDi19-4 as Two Negative Regulators in Response to Salt Stress. Antioxidants (Basel) 2022; 11:2225. [PMID: 36421411 PMCID: PMC9686973 DOI: 10.3390/antiox11112225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 11/29/2023] Open
Abstract
Drought-induced 19 (Di19) protein is a Cys2/His2 (C2H2) type zinc-finger protein, which plays a crucial role in plant development and in response to abiotic stress. This study systematically investigated the characteristics of the GhDi19 gene family, including the member number, gene structure, chromosomal distribution, promoter cis-elements, and expression profiles. Transcriptomic analysis indicated that some GhDi19s were up-regulated under heat and salt stress. Particularly, two nuclear localized proteins, GhDi19-3 and GhDi19-4, were identified as being in potential salt stress responsive roles. GhDi19-3 and GhDi19-4 decreased sensitivity under salt stress through virus-induced gene silencing (VIGS), and showed significantly lower levels of H2O2, malondialdehyde (MDA), and peroxidase (POD) as well as significantly increased superoxide dismutase (SOD) activity. This suggested that their abilities were improved to effectively reduce the reactive oxygen species (ROS) damage. Furthermore, certain calcium signaling and abscisic acid (ABA)-responsive gene expression levels showed up- and down-regulation changes in target gene-silenced plants, suggesting that GhDi19-3 and GhDi19-4 were involved in calcium signaling and ABA signaling pathways in response to salt stress. In conclusion, GhDi19-3 and GhDi19-4, two negative transcription factors, were found to be responsive to salt stress through calcium signaling and ABA signaling pathways.
Collapse
Affiliation(s)
- Lanjie Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Youzhong Li
- Xinjiang Production & Construction Group Key Laboratory of Crop Germplasm Enhancement and Gene Resources Utilization, Biotechnology Research Institute, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi 832000, China
| | - Yan Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Wei Chen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Jinbo Yao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Shengtao Fang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Youjun Lv
- Anyang Institute of Technology, Anyang 455000, China
| | - Yongshan Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Shouhong Zhu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| |
Collapse
|
12
|
Dekomah SD, Bi Z, Dormatey R, Wang Y, Haider FU, Sun C, Yao P, Bai J. The role of CDPKs in plant development, nutrient and stress signaling. Front Genet 2022; 13:996203. [PMID: 36246614 PMCID: PMC9561101 DOI: 10.3389/fgene.2022.996203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 09/14/2022] [Indexed: 11/13/2022] Open
Abstract
The second messenger calcium (Ca2+) is a ubiquitous intracellular signaling molecule found in eukaryotic cells. In plants, the multigene family of calcium-dependent protein kinases (CDPKs) plays an important role in regulating plant growth, development, and stress tolerance. CDPKs sense changes in intracellular Ca2+ concentration and translate them into phosphorylation events that initiate downstream signaling processes. Several functional and expression studies on different CDPKs and their encoding genes have confirmed their multifunctional role in stress. Here, we provide an overview of the signal transduction mechanisms and functional roles of CDPKs. This review includes details on the regulation of secondary metabolites, nutrient uptake, regulation of flower development, hormonal regulation, and biotic and abiotic stress responses.
Collapse
Affiliation(s)
- Simon Dontoro Dekomah
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Zhenzhen Bi
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Richard Dormatey
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Yihao Wang
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Fasih Ullah Haider
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou, China
| | - Chao Sun
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Panfeng Yao
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou, China
| | - Jiangping Bai
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
- *Correspondence: Jiangping Bai,
| |
Collapse
|
13
|
Xu W, Dou Y, Geng H, Fu J, Dan Z, Liang T, Cheng M, Zhao W, Zeng Y, Hu Z, Huang W. OsGRP3 Enhances Drought Resistance by Altering Phenylpropanoid Biosynthesis Pathway in Rice ( Oryza sativa L.). Int J Mol Sci 2022; 23:ijms23137045. [PMID: 35806050 PMCID: PMC9266740 DOI: 10.3390/ijms23137045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/17/2022] [Accepted: 06/22/2022] [Indexed: 02/07/2023] Open
Abstract
As a sessile organism, rice often faces various kinds of abiotic stresses, such as drought stress. Drought stress seriously harms plant growth and damages crop yield every year. Therefore, it is urgent to elucidate the mechanisms of drought resistance in rice. In this study, we identified a glycine-rich RNA-binding protein, OsGRP3, in rice. Evolutionary analysis showed that it was closely related to OsGR-RBP4, which was involved in various abiotic stresses. The expression of OsGRP3 was shown to be induced by several abiotic stress treatments and phytohormone treatments. Then, the drought tolerance tests of transgenic plants confirmed that OsGRP3 enhanced drought resistance in rice. Meanwhile, the yeast two-hybrid assay, bimolecular luminescence complementation assay and bimolecular fluorescence complementation assay demonstrated that OsGRP3 bound with itself may affect the RNA chaperone function. Subsequently, the RNA-seq analysis, physiological experiments and histochemical staining showed that OsGRP3 influenced the phenylpropanoid biosynthesis pathway and further modulated lignin accumulation. Herein, our findings suggested that OsGRP3 enhanced drought resistance in rice by altering the phenylpropanoid biosynthesis pathway and further increasing lignin accumulation.
Collapse
Affiliation(s)
- Wuwu Xu
- State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan 430072, China; (W.X.); (Y.D.); (H.G.); (J.F.); (Z.D.); (T.L.); (M.C.); (W.Z.); (Y.Z.); (Z.H.)
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yangfan Dou
- State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan 430072, China; (W.X.); (Y.D.); (H.G.); (J.F.); (Z.D.); (T.L.); (M.C.); (W.Z.); (Y.Z.); (Z.H.)
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Han Geng
- State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan 430072, China; (W.X.); (Y.D.); (H.G.); (J.F.); (Z.D.); (T.L.); (M.C.); (W.Z.); (Y.Z.); (Z.H.)
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jinmei Fu
- State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan 430072, China; (W.X.); (Y.D.); (H.G.); (J.F.); (Z.D.); (T.L.); (M.C.); (W.Z.); (Y.Z.); (Z.H.)
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Zhiwu Dan
- State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan 430072, China; (W.X.); (Y.D.); (H.G.); (J.F.); (Z.D.); (T.L.); (M.C.); (W.Z.); (Y.Z.); (Z.H.)
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Ting Liang
- State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan 430072, China; (W.X.); (Y.D.); (H.G.); (J.F.); (Z.D.); (T.L.); (M.C.); (W.Z.); (Y.Z.); (Z.H.)
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Mingxing Cheng
- State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan 430072, China; (W.X.); (Y.D.); (H.G.); (J.F.); (Z.D.); (T.L.); (M.C.); (W.Z.); (Y.Z.); (Z.H.)
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Weibo Zhao
- State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan 430072, China; (W.X.); (Y.D.); (H.G.); (J.F.); (Z.D.); (T.L.); (M.C.); (W.Z.); (Y.Z.); (Z.H.)
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yafei Zeng
- State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan 430072, China; (W.X.); (Y.D.); (H.G.); (J.F.); (Z.D.); (T.L.); (M.C.); (W.Z.); (Y.Z.); (Z.H.)
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Zhongli Hu
- State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan 430072, China; (W.X.); (Y.D.); (H.G.); (J.F.); (Z.D.); (T.L.); (M.C.); (W.Z.); (Y.Z.); (Z.H.)
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Wenchao Huang
- State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan 430072, China; (W.X.); (Y.D.); (H.G.); (J.F.); (Z.D.); (T.L.); (M.C.); (W.Z.); (Y.Z.); (Z.H.)
- College of Life Sciences, Wuhan University, Wuhan 430072, China
- Correspondence:
| |
Collapse
|
14
|
Wu C, Lin M, Chen F, Chen J, Liu S, Yan H, Xiang Y. Homologous Drought-Induced 19 Proteins, PtDi19-2 and PtDi19-7, Enhance Drought Tolerance in Transgenic Plants. Int J Mol Sci 2022; 23:ijms23063371. [PMID: 35328791 PMCID: PMC8954995 DOI: 10.3390/ijms23063371] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/18/2022] [Accepted: 03/18/2022] [Indexed: 12/25/2022] Open
Abstract
Drought-induced 19 (Di19) proteins play important roles in abiotic stress responses. Thus far, there are no reports about Di19 family in woody plants. Here, eight Di19 genes were identified in poplar. We analyzed phylogenetic tree, conserved protein domain, and gene structure of Di19 gene members in seven species. The results showed the Di19 gene family was very conservative in both dicotyledonous and monocotyledonous forms. On the basis of transcriptome data, the expression patterns of Di19s in poplar under abiotic stress and ABA treatment were further studied. Subsequently, homologous genes PtDi19-2 and PtDi19-7 with strong response to drought stress were identified. PtDi19-2 functions as a nuclear transcriptional activator with a transactivation domain at the C-terminus. PtDi19-7 is a nuclear and membrane localization protein. Additionally, PtDi19-2 and PtDi19-7 were able to interact with each other in yeast two-hybrid system. Overexpression of PtDi19-2 and PtDi19-7 in Arabidopsis was found. Phenotype identification and physiological parameter analysis showed that transgenic Arabidopsis increased ABA sensitivity and drought tolerance. PtDi19-7 was overexpressed in hybrid poplar 84K (Populus alba × Populus glandulosa). Under drought treatment, the phenotype and physiological parameters of transgenic poplar were consistent with those of transgenic Arabidopsis. In addition, exogenous ABA treatment induced lateral bud dormancy of transgenic poplar and stomatal closure of transgenic Arabidopsis. The expression of ABA/drought-related marker genes was upregulated under drought treatment. These results indicated that PtDi19-2 and PtDi19-7 might play a similar role in improving the drought tolerance of transgenic plants through ABA-dependent signaling pathways.
Collapse
Affiliation(s)
- Caijuan Wu
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230061, China; (C.W.); (M.L.); (F.C.); (J.C.); (S.L.); (H.Y.)
| | - Miao Lin
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230061, China; (C.W.); (M.L.); (F.C.); (J.C.); (S.L.); (H.Y.)
| | - Feng Chen
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230061, China; (C.W.); (M.L.); (F.C.); (J.C.); (S.L.); (H.Y.)
| | - Jun Chen
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230061, China; (C.W.); (M.L.); (F.C.); (J.C.); (S.L.); (H.Y.)
| | - Shifan Liu
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230061, China; (C.W.); (M.L.); (F.C.); (J.C.); (S.L.); (H.Y.)
| | - Hanwei Yan
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230061, China; (C.W.); (M.L.); (F.C.); (J.C.); (S.L.); (H.Y.)
| | - Yan Xiang
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230061, China; (C.W.); (M.L.); (F.C.); (J.C.); (S.L.); (H.Y.)
- National Engineering Laboratory of Crop Stress Resistance Breeding, College of Life Sciences, Anhui Agricultural University, Hefei 230061, China
- Correspondence:
| |
Collapse
|
15
|
Li X, Zhao L, Zhang H, Liu Q, Zhai H, Zhao N, Gao S, He S. Genome-Wide Identification and Characterization of CDPK Family Reveal Their Involvements in Growth and Development and Abiotic Stress in Sweet Potato and Its Two Diploid Relatives. Int J Mol Sci 2022; 23:ijms23063088. [PMID: 35328509 PMCID: PMC8952862 DOI: 10.3390/ijms23063088] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/03/2022] [Accepted: 03/09/2022] [Indexed: 11/16/2022] Open
Abstract
Calcium-dependent protein kinase (CDPKs) is one of the calcium-sensing proteins in plants. They are likely to play important roles in growth and development and abiotic stress responses. However, these functions have not been explored in sweet potato. In this study, we identified 39 CDPKs in cultivated hexaploid sweet potato (Ipomoea batatas, 2n = 6x = 90), 35 CDPKs in diploid relative Ipomoea trifida (2n = 2x = 30), and 35 CDPKs in Ipomoea triloba (2n = 2x = 30) via genome structure analysis and phylogenetic characterization, respectively. The protein physiological property, chromosome localization, phylogenetic relationship, gene structure, promoter cis-acting regulatory elements, and protein interaction network were systematically investigated to explore the possible roles of homologous CDPKs in the growth and development and abiotic stress responses of sweet potato. The expression profiles of the identified CDPKs in different tissues and treatments revealed tissue specificity and various expression patterns in sweet potato and its two diploid relatives, supporting the difference in the evolutionary trajectories of hexaploid sweet potato. These results are a critical first step in understanding the functions of sweet potato CDPK genes and provide more candidate genes for improving yield and abiotic stress tolerance in cultivated sweet potato.
Collapse
Affiliation(s)
- Xu Li
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China; (X.L.); (L.Z.); (H.Z.); (Q.L.); (H.Z.); (N.Z.); (S.G.)
- Sanya Institute of China Agricultural University, Hainan 572025, China
| | - Limeng Zhao
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China; (X.L.); (L.Z.); (H.Z.); (Q.L.); (H.Z.); (N.Z.); (S.G.)
| | - Huan Zhang
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China; (X.L.); (L.Z.); (H.Z.); (Q.L.); (H.Z.); (N.Z.); (S.G.)
- Sanya Institute of China Agricultural University, Hainan 572025, China
| | - Qingchang Liu
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China; (X.L.); (L.Z.); (H.Z.); (Q.L.); (H.Z.); (N.Z.); (S.G.)
| | - Hong Zhai
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China; (X.L.); (L.Z.); (H.Z.); (Q.L.); (H.Z.); (N.Z.); (S.G.)
| | - Ning Zhao
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China; (X.L.); (L.Z.); (H.Z.); (Q.L.); (H.Z.); (N.Z.); (S.G.)
| | - Shaopei Gao
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China; (X.L.); (L.Z.); (H.Z.); (Q.L.); (H.Z.); (N.Z.); (S.G.)
| | - Shaozhen He
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China; (X.L.); (L.Z.); (H.Z.); (Q.L.); (H.Z.); (N.Z.); (S.G.)
- Sanya Institute of China Agricultural University, Hainan 572025, China
- Correspondence: ; Tel./Fax: +86-010-6273-2559
| |
Collapse
|
16
|
Zhu M, He Y, Zhu M, Ahmad A, Xu S, He Z, Jiang S, Huang J, Li Z, Liu S, Hou X, Zhang Z. ipa1 improves rice drought tolerance at seedling stage mainly through activating abscisic acid pathway. PLANT CELL REPORTS 2022; 41:221-232. [PMID: 34694441 DOI: 10.1007/s00299-021-02804-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
KEY MESSAGE: ipa1 enhances rice drought tolerance mainly through activating the ABA pathway. It endows rice seedlings with a more developed root system, smaller leaf stomata aperture, and enhanced carbon metabolism. Drought is a major abiotic stress to crop production. IPA1 (IDEAL PLANT ARCHITECTURE 1)/OsSPL14 encodes a transcription factor and has been reported to function in both rice ideal plant architecture and biotic resistance. Here, with a pair of IPA1 and ipa1-NILs (Near Iso-genic Lines), we found that ipa1 could significantly improve rice drought tolerance at seedling stage. The ipa1 plants had a better-developed root system and smaller leaf stomatal aperture. Analysis of carbon-nitrogen metabolism-associated enzyme activity, gene expression, and metabolic profile indicated that ipa1 could tip the carbon-nitrogen metabolism balance towards an increased carbon metabolism pattern. In both the control and PEG-treated conditions, ABA content in the ipa1 seedlings was significantly higher than that in the IPA1 seedlings. Expression of the ABA biosynthesis genes was detected to be up-regulated, whereas the expression of ABA catabolism genes was down-regulated in the ipa1 seedlings. In addition, based on yeast one-hybrid assay and dual-luciferase assay, IPA1 was found to directly activate the promoter activity of OsHOX12, a transcription factor promoting ABA biosynthesis, and OsNAC52, a positive regulator of the ABA pathway. The expression of OsHOX12 and OsNAC52 was significantly up-regulated in the ipa1 plants. Combined with the previous studies, our results suggested that ipa1 could improve rice seedling drought tolerance mainly through activating the ABA pathway and that regulation of the ipa1-mediated ABA pathway will be an important strategy for improving drought resistance of rice.
Collapse
Affiliation(s)
- Menghao Zhu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- Ezhou Seed Technology Research Institute of Hubei Province, Ezhou, 436043, China
| | - Yonggang He
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- Ezhou Seed Technology Research Institute of Hubei Province, Ezhou, 436043, China
| | - Mingqiang Zhu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Ayaz Ahmad
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Shuang Xu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Zijun He
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Shan Jiang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Jinqiu Huang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Zhihui Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Shaojia Liu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- Ezhou Seed Technology Research Institute of Hubei Province, Ezhou, 436043, China
| | - Xin Hou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Zhihong Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
- Ezhou Seed Technology Research Institute of Hubei Province, Ezhou, 436043, China.
| |
Collapse
|
17
|
Zhang Q, Song T, Guan C, Gao Y, Ma J, Gu X, Qi Z, Wang X, Zhu Z. OsANN4 modulates ROS production and mediates Ca 2+ influx in response to ABA. BMC PLANT BIOLOGY 2021; 21:474. [PMID: 34663209 PMCID: PMC8522085 DOI: 10.1186/s12870-021-03248-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 09/23/2021] [Indexed: 05/29/2023]
Abstract
BACKGROUND Plant annexins are calcium- and lipid-binding proteins that have multiple functions, and a significant amount of research on plant annexins has been reported in recent years. However, the functions of annexins in diverse biological processes in rice are largely unclear. RESULTS Herein, we report that OsANN4, a calcium-binding rice annexin protein, was induced by abscisic acid (ABA). Under ABA treatment, the plants in which OsANN4 was knocked down by RNA interference showed some visible phenotypic changes compared to the wild type, such as a lower rooting rate and shorter shoot and root lengths. Moreover, the superoxide dismutase (SOD) and catalase (CAT) activities of the RNAi lines were significantly lower and further resulted in higher accumulation of O2.- and H2O2 than those of the wild-type. A Non-invasive Micro-test Technology (NMT) assay showed that ABA-induced net Ca2+ influx was inhibited in OsANN4 knockdown plants. Interestingly, the phenotypic differences caused by ABA were eliminated in the presence of LaCl3 (Ca2+ channel inhibitor). Apart from this, we demonstrated that OsCDPK24 interacted with and phosphorylated OsANN4. When the phosphorylated serine residue of OsANN4 was substituted by alanine, the interaction between OsANN4 and OsCDPK24 was still observed, however, both the conformation of OsANN4 and its binding activity with Ca2+ might be changed. CONCLUSIONS OsANN4 plays a crucial role in the ABA response, partially by modulating ROS production, mediating Ca2+ influx or interacting with OsCDPK24.
Collapse
Affiliation(s)
- Qian Zhang
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Science, Hebei Normal University, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, 050024, China
| | - Tao Song
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Science, Hebei Normal University, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, 050024, China
| | - Can Guan
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Science, Hebei Normal University, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, 050024, China
| | - Yingjie Gao
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Science, Hebei Normal University, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, 050024, China
| | - Jianchao Ma
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Science, Hebei Normal University, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, 050024, China
| | - Xiangyang Gu
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Science, Hebei Normal University, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, 050024, China
| | - Zhiguang Qi
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Science, Hebei Normal University, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, 050024, China
| | - Xiaoji Wang
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Science, Hebei Normal University, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, 050024, China
| | - Zhengge Zhu
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Science, Hebei Normal University, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, 050024, China.
| |
Collapse
|
18
|
Zhu H, He M, Jahan MS, Wu J, Gu Q, Shu S, Sun J, Guo S. CsCDPK6, a CsSAMS1-Interacting Protein, Affects Polyamine/Ethylene Biosynthesis in Cucumber and Enhances Salt Tolerance by Overexpression in Tobacco. Int J Mol Sci 2021; 22:11133. [PMID: 34681792 PMCID: PMC8538082 DOI: 10.3390/ijms222011133] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/29/2021] [Accepted: 10/05/2021] [Indexed: 01/04/2023] Open
Abstract
S-adenosylmethionine synthetase (SAMS) plays a crucial role in regulating stress responses. In a recent study, we found that overexpression of the cucumber gene CsSAMS1 in tobacco can affect the production of polyamines and ethylene, as well as enhancing the salt stress tolerance of tobacco, but the exact underlying mechanisms are elusive. The calcium-dependent protein kinase (CDPK) family is ubiquitous in plants and performs different biological functions in plant development and response to abiotic stress. We used a yeast two-hybrid system to detect whether the protein CDPK6 could interact with SAMS1 and verified their interaction by bimolecular fluorescence complementation (BiFC) and co-immunoprecipitation (Co-IP) assays. To further explore the function of cucumber CDPK6, we isolated and characterized CsCDPK6 in cucumber. CsCDPK6 is a membrane protein that is highly expressed under various abiotic stresses, including salt stress. It was also observed that ectopic overexpression of CsCDPK6 in tobacco enhanced salt tolerance. Under salt stress, CsCDPK6-overexpressing lines enhanced the survival rate and reduced stomatal apertures in comparison to wild-type (WT) lines, as well as lowering malondialdehyde (MDA) and hydrogen peroxide (H2O2) contents and causing less relative electrolyte leakage. Moreover, repression of CsCDPK6 expression by virus-induced gene silencing (VIGS) in cucumber seedling cotyledons under salt stress increased ethylene production and promoted the transformation from putrescine (Put) to spermidine (Spd) and spermine (Spm). These findings shed light on the interaction of CsSAMS1 and CsCDPK6, which functions positively to regulate salt stress in plants.
Collapse
Affiliation(s)
- Heyuan Zhu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (H.Z.); (M.S.J.); (J.W.); (S.S.); (J.S.)
| | - Meiwen He
- Institute of China Agricultural University Press, China Agricultural University, Beijing 100094, China;
| | - Mohammad Shah Jahan
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (H.Z.); (M.S.J.); (J.W.); (S.S.); (J.S.)
| | - Jianqiang Wu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (H.Z.); (M.S.J.); (J.W.); (S.S.); (J.S.)
| | - Qinsheng Gu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China;
| | - Sheng Shu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (H.Z.); (M.S.J.); (J.W.); (S.S.); (J.S.)
| | - Jin Sun
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (H.Z.); (M.S.J.); (J.W.); (S.S.); (J.S.)
| | - Shirong Guo
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (H.Z.); (M.S.J.); (J.W.); (S.S.); (J.S.)
| |
Collapse
|
19
|
Understanding the Integrated Pathways and Mechanisms of Transporters, Protein Kinases, and Transcription Factors in Plants under Salt Stress. Int J Genomics 2021; 2021:5578727. [PMID: 33954166 PMCID: PMC8057909 DOI: 10.1155/2021/5578727] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/06/2021] [Indexed: 12/31/2022] Open
Abstract
Abiotic stress is the major threat confronted by modern-day agriculture. Salinity is one of the major abiotic stresses that influence geographical distribution, survival, and productivity of various crops across the globe. Plants perceive salt stress cues and communicate specific signals, which lead to the initiation of defence response against it. Stress signalling involves the transporters, which are critical for water transport and ion homeostasis. Various cytoplasmic components like calcium and kinases are critical for any type of signalling within the cell which elicits molecular responses. Stress signalling instils regulatory proteins and transcription factors (TFs), which induce stress-responsive genes. In this review, we discuss the role of ion transporters, protein kinases, and TFs in plants to overcome the salt stress. Understanding stress responses by components collectively will enhance our ability in understanding the underlying mechanism, which could be utilized for crop improvement strategies for achieving food security.
Collapse
|
20
|
Mathan J, Singh A, Ranjan A. Sucrose transport in response to drought and salt stress involves ABA-mediated induction of OsSWEET13 and OsSWEET15 in rice. PHYSIOLOGIA PLANTARUM 2021; 171:620-637. [PMID: 32940908 DOI: 10.1111/ppl.13210] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/14/2020] [Accepted: 09/07/2020] [Indexed: 05/27/2023]
Abstract
Abiotic stresses, including drought and salinity, negatively affect plant development and physiology at molecular and metabolic levels. Sucrose transport, mediating distribution of photosynthates in plant, is a key physiological process impacted by drought and salinity stresses, as sucrose is a prime energy and signaling molecule as well as an osmolyte. Therefore, understanding the effects of abiotic stresses on sucrose transport and transporters, and underlying genetic and molecular mechanisms, is imperative to maintain sugar homeostasis in plants under stress. Here, we investigated the effects of drought and salinity stresses on sucrose transport and distribution, and on expression levels of genes encoding Sugars Will Eventually be Exported Transporters (SWEETs), along with a potential transcription factor regulating SWEET expression in rice. We observed that drought and salinity stresses increased the sucrose content in leaf and root tissues and in phloem sap of rice indica varieties. Expression analyses of SWEET genes and histochemical analysis of β-glucuronidase-reporter transgenic plants suggested that OsSWEET13 and OsSWEET15 are major SWEET transporters regulating the sucrose transport and levels in response to the abiotic stresses. Transactivation analyses showed that an abscisic acid (ABA)-responsive transcription factor OsbZIP72 directly binds to the promoters of OsSWEET13 and OsSWEET15 and activates their expression. Taken together, the results showed that the higher expressions of OsSWEET13 and OsSWEET15 genes, induced by binding of an ABA-responsive transcription factor OsbZIP72 to the promoters, potentially modulate sucrose transport and distribution in response to the abiotic stresses. The mechanism could possibly be targeted for maintaining sugar homeostasis in rice under drought and salinity stresses.
Collapse
Affiliation(s)
| | - Anuradha Singh
- National Institute of Plant Genome Research, New Delhi, India
| | - Aashish Ranjan
- National Institute of Plant Genome Research, New Delhi, India
| |
Collapse
|
21
|
Wytynck P, Lambin J, Chen S, Demirel Asci S, Verbeke I, De Zaeytijd J, Subramanyam K, Van Damme EJ. Effect of RIP Overexpression on Abiotic Stress Tolerance and Development of Rice. Int J Mol Sci 2021; 22:1434. [PMID: 33535383 PMCID: PMC7867109 DOI: 10.3390/ijms22031434] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 12/31/2022] Open
Abstract
Ribosome-inactivating proteins (RIPs) are a class of cytotoxic enzymes that can inhibit protein translation by depurinating rRNA. Most plant RIPs are synthesized with a leader sequence that sequesters the proteins to a cell compartment away from the host ribosomes. However, several rice RIPs lack these signal peptides suggesting they reside in the cytosol in close proximity to the plant ribosomes. This paper aims to elucidate the physiological function of two nucleocytoplasmic RIPs from rice, in particular, the type 1 RIP referred to as OsRIP1 and a presumed type 3 RIP called nuRIP. Transgenic rice lines overexpressing these RIPs were constructed and studied for developmental effects resulting from this overexpression under greenhouse conditions. In addition, the performance of transgenic seedlings in response to drought, salt, abscisic acid and methyl jasmonate treatment was investigated. Results suggest that both RIPs can affect methyl jasmonate mediated stress responses.
Collapse
Affiliation(s)
- Pieter Wytynck
- Laboratory of Biochemistry and Glycobiology, Department of Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (P.W.); (J.L.); (S.C.); (S.D.A.); (I.V.); (J.D.Z.); (K.S.)
| | - Jeroen Lambin
- Laboratory of Biochemistry and Glycobiology, Department of Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (P.W.); (J.L.); (S.C.); (S.D.A.); (I.V.); (J.D.Z.); (K.S.)
| | - Simin Chen
- Laboratory of Biochemistry and Glycobiology, Department of Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (P.W.); (J.L.); (S.C.); (S.D.A.); (I.V.); (J.D.Z.); (K.S.)
| | - Sinem Demirel Asci
- Laboratory of Biochemistry and Glycobiology, Department of Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (P.W.); (J.L.); (S.C.); (S.D.A.); (I.V.); (J.D.Z.); (K.S.)
| | - Isabel Verbeke
- Laboratory of Biochemistry and Glycobiology, Department of Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (P.W.); (J.L.); (S.C.); (S.D.A.); (I.V.); (J.D.Z.); (K.S.)
| | - Jeroen De Zaeytijd
- Laboratory of Biochemistry and Glycobiology, Department of Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (P.W.); (J.L.); (S.C.); (S.D.A.); (I.V.); (J.D.Z.); (K.S.)
| | - Kondeti Subramanyam
- Laboratory of Biochemistry and Glycobiology, Department of Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (P.W.); (J.L.); (S.C.); (S.D.A.); (I.V.); (J.D.Z.); (K.S.)
| | - Els J.M. Van Damme
- Laboratory of Biochemistry and Glycobiology, Department of Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (P.W.); (J.L.); (S.C.); (S.D.A.); (I.V.); (J.D.Z.); (K.S.)
- Center for Advanced Light Microscopy, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
22
|
Jing P, Kong D, Ji L, Kong L, Wang Y, Peng L, Xie G. OsClo5 functions as a transcriptional co-repressor by interacting with OsDi19-5 to negatively affect salt stress tolerance in rice seedlings. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:800-815. [PMID: 33179343 DOI: 10.1111/tpj.15074] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 09/28/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
Caleosins constitute a small protein family with one calcium-binding EF-hand motif. They are involved in the regulation of development and response to abiotic stress in plants. Nevertheless, how they impact salt stress tolerance in rice is largely unknown. Thereby, biochemical and molecular genetic experiments were carried out, and the results revealed that OsClo5 was able to bind calcium and phospholipids in vitro and localized in the nucleus and endoplasmic reticulum in rice protoplasts. At the germination and early seedlings stages, overexpression transgenic lines and T-DNA mutant lines exhibited reduced and increased tolerance to salt stress, respectively, compared with the wild-type. Yeast two-hybrid, bimolecular fluorescence complementation and in vitro pull-down assays demonstrated that the EF-hand motif of OsClo5 was essential for the interactions with itself and OsDi19-5. Yeast one-hybrid, electrophoretic migration shift and dual-luciferase reporter assays identified OsDi19-5 as a transcriptional repressor via the TACART cis-element in the promoters of two salt stress-related target genes, OsUSP and OsMST. In addition, OsClo5 enhanced the inhibitory effect of OsDi19-5 in the tobacco transient system, which was confirmed by qRT-PCR analysis in rice seedlings under salt stress. The collective results deepen the understanding of the molecular mechanism underlying the roles of caleosin in the salt stress response. These findings will also inform efforts to improve salt tolerance of rice.
Collapse
Affiliation(s)
- Pei Jing
- MOA Key Laboratory of Crop Ecophysiology & Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Biomass & Bioenergy Research Centre, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dongyan Kong
- MOA Key Laboratory of Crop Ecophysiology & Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lingxiao Ji
- MOA Key Laboratory of Crop Ecophysiology & Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lin Kong
- MOA Key Laboratory of Crop Ecophysiology & Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yanting Wang
- Biomass & Bioenergy Research Centre, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Liangcai Peng
- Biomass & Bioenergy Research Centre, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guosheng Xie
- MOA Key Laboratory of Crop Ecophysiology & Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
23
|
Su L, Yang J, Li D, Peng Z, Xia A, Yang M, Luo L, Huang C, Wang J, Wang H, Chen Z, Guo T. Dynamic genome-wide association analysis and identification of candidate genes involved in anaerobic germination tolerance in rice. RICE (NEW YORK, N.Y.) 2021; 14:1. [PMID: 33409869 PMCID: PMC7788155 DOI: 10.1186/s12284-020-00444-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 12/06/2020] [Indexed: 05/10/2023]
Abstract
BACKGROUND In Asian rice production, an increasing number of countries now choose the direct seeding mode because of rising costs, labour shortages and water shortages. The ability of rice seeds to undergo anaerobic germination (AG) plays an important role in the success of direct seeding. RESULTS In this study, we used 2,123,725 single nucleotide polymorphism (SNP) markers based on resequencing to conduct a dynamic genome-wide association study (GWAS) of coleoptile length (CL) and coleoptile diameter (CD) in 209 natural rice populations. A total of 26 SNP loci were detected in these two phenotypes, of which 5 overlapped with previously reported loci (S1_ 39674301, S6_ 20797781, S7_ 18722403, S8_ 9946213, S11_ 19165397), and two sites were detected repeatedly at different time points (S3_ 24689629 and S5_ 27918754). We suggest that these 7 loci (-log10 (P) value > 7.3271) are the key sites that affect AG tolerance. To screen the candidate genes more effectively, we sequenced the transcriptome of the flooding-tolerant variety R151 in six key stages, including anaerobic (AN) and the oxygen conversion point (AN-A), and obtained high-quality differential expression profiles. Four reliable candidate genes were identified: Os01g0911700 (OsVP1), Os05g0560900 (OsGA2ox8), Os05g0562200 (OsDi19-1) and Os06g0548200. Then qRT-PCR and LC-MS/ MS targeting metabolite detection technology were used to further verify that the up-regulated expression of these four candidate genes was closely related to AG. CONCLUSION The four novel candidate genes were associated with gibberellin (GA) and abscisic acid (ABA) regulation and cell wall metabolism under oxygen-deficiency conditions and promoted coleoptile elongation while avoiding adverse effects, allowing the coleoptile to obtain oxygen, escape the low-oxygen environment and germinate rapidly. The results of this study improve our understanding of the genetic basis of AG in rice seeds, which is conducive to the selection of flooding-tolerant varieties suitable for direct seeding.
Collapse
Affiliation(s)
- Ling Su
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642 China
| | - Jing Yang
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642 China
| | - Dandan Li
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642 China
| | - Ziai Peng
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642 China
| | - Aoyun Xia
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642 China
| | - Meng Yang
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642 China
| | - Lixin Luo
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642 China
| | - Cuihong Huang
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642 China
| | - Jiafeng Wang
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642 China
| | - Hui Wang
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642 China
| | - Zhiqiang Chen
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642 China
| | - Tao Guo
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642 China
| |
Collapse
|
24
|
Wu M, Liu H, Gao Y, Shi Y, Pan F, Xiang Y. The moso bamboo drought-induced 19 protein PheDi19-8 functions oppositely to its interacting partner, PheCDPK22, to modulate drought stress tolerance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 299:110605. [PMID: 32900443 DOI: 10.1016/j.plantsci.2020.110605] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 06/11/2023]
Abstract
Drought-induced 19 (Di19) proteins play crucial roles in regulating stress responses, but the exact mechanisms underlying their involvement in moso bamboo are not fully understood. In this study, PheDi19-8 of moso bamboo (Phyllostachys edulis) was isolated and characterized. PheDi19-8 was a nuclear protein and has a high expression under various abiotic stresses, including drought and salt. As revealed by phenotypic and physiological analyses, ectopic overexpression of PheDi19-8 in Arabidopsis and rice enhanced drought tolerance. Under drought stress, the PheDi19-8-overexpressing lines showed smaller stomatal apertures and higher survival rate in comparison to the wild-type plants, as well as the PheDi19-8-overexpressing lines had higher biomass and souble sugar, but lower relative electrolyte leakage and malondialdehyde. Further investigation revealed that PheDi19-8 interacted with PheCDPK22, and their interaction decreased the DNA-binding activity of PheDi19-8. However, overexpression of PheCDPK22 enhanced Arabidopsis sensitivity to drought stress. Moreover, the expression of marker genes, including LEA, RD22, DREB2A and RD29A, was up-regulated in the PheDi19-8-overexpressing lines but down-regulated in the PheCDPK22-overexpressing. Further yeast one-hybrid and EMSA assays indicated that PheDi19-8 directly binds to the promoter of DREB2A. These results provided new insight into the interaction of PheCDPK22 and PheDi19-8 that functions oppositely to regulate drought stress in plants.
Collapse
Affiliation(s)
- Min Wu
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Huanlong Liu
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China
| | - Yameng Gao
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China
| | - Yanan Shi
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Feng Pan
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Yan Xiang
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China; National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
25
|
Maitra Majee S, Sharma E, Singh B, Khurana JP. Drought-induced protein (Di19-3) plays a role in auxin signaling by interacting with IAA14 in Arabidopsis. PLANT DIRECT 2020; 4:e00234. [PMID: 32582877 PMCID: PMC7306619 DOI: 10.1002/pld3.234] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 05/27/2020] [Indexed: 05/08/2023]
Abstract
The members of early auxin response gene family, Aux/IAA, encode negative regulators of auxin signaling but play a central role in auxin-mediated plant development. Here we report the interaction of an Aux/IAA protein, AtIAA14, with Drought-induced-19 (Di19-3) protein and its possible role in auxin signaling. The Atdi19-3 mutant seedlings develop short hypocotyl, both in light and dark, and are compromised in temperature-induced hypocotyl elongation. The mutant plants accumulate more IAA and also show altered expression of NIT2, ILL5, and YUCCA genes involved in auxin biosynthesis and homeostasis, along with many auxin responsive genes like AUX1 and MYB77. Atdi19-3 seedlings show enhanced root growth inhibition when grown in the medium supplemented with auxin. Nevertheless, number of lateral roots is low in Atdi19-3 seedlings grown on the basal medium. We have shown that AtIAA14 physically interacts with AtDi19-3 in yeast two-hybrid (Y2H), bimolecular fluorescence complementation, and in vitro pull-down assays. However, the auxin-induced degradation of AtIAA14 in the Atdi19-3 seedlings was delayed. By expressing pIAA14::mIAA14-GFP in Atdi19-3 mutant background, it became apparent that both Di19-3 and AtIAA14 work in the same pathway and influence lateral root development in Arabidopsis. Gain-of-function slr-1/iaa14 (slr) mutant, like Atdi19-3, showed tolerance to abiotic stress in seed germination and cotyledon greening assays. The Atdi19-3 seedlings showed enhanced sensitivity to ethylene in triple response assay and AgNO3, an ethylene inhibitor, caused profuse lateral root formation in the mutant seedlings. These observations suggest that AtDi19-3 interacting with AtIAA14, in all probability, serves as a positive regulator of auxin signaling and also plays a role in some ethylene-mediated responses in Arabidopsis. SIGNIFICANCE STATEMENT This study has demonstrated interaction of auxin responsive Aux/IAA with Drought-induced 19 (Di19) protein and its possible implication in abiotic stress response.
Collapse
Affiliation(s)
- Susmita Maitra Majee
- Interdisciplinary Centre for Plant Genomics & Department of Plant Molecular BiologyUniversity of Delhi South CampusNew DelhiIndia
| | - Eshan Sharma
- Interdisciplinary Centre for Plant Genomics & Department of Plant Molecular BiologyUniversity of Delhi South CampusNew DelhiIndia
| | - Brinderjit Singh
- Interdisciplinary Centre for Plant Genomics & Department of Plant Molecular BiologyUniversity of Delhi South CampusNew DelhiIndia
| | - Jitendra P. Khurana
- Interdisciplinary Centre for Plant Genomics & Department of Plant Molecular BiologyUniversity of Delhi South CampusNew DelhiIndia
| |
Collapse
|
26
|
Yang C, Huang Y, Lv W, Zhang Y, Bhat JA, Kong J, Xing H, Zhao J, Zhao T. GmNAC8 acts as a positive regulator in soybean drought stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 293:110442. [PMID: 32081255 DOI: 10.1016/j.plantsci.2020.110442] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 05/18/2023]
Abstract
NAC proteins represent one of the largest transcription factor (TF) families involved in the regulation of plant development and the response to abiotic stress. In the present study, we elucidated the detailed role of GmNAC8 in the regulation of drought stress tolerance in soybean. The GmNAC8 protein was localized in the nucleus, and expression of the GmNAC8 gene was significantly induced in response to drought, abscisic acid (ABA), ethylene (ETH) and salicylic acid (SA) treatments. Thus, we generated GmNAC8 overexpression (OE1 and OE2) and GmNAC8 knockout (KO1 and KO2) lines to determine the role of GmNAC8 in drought stress tolerance. Our results revealed that, compared with the wild type (WT) plant, GmNAC8 overexpression and GmNAC8 knockout lines exhibited significantly higher and lower drought tolerance, respectively. Furthermore, the SOD activity and proline content were significantly higher in the GmNAC8 overexpression lines and significantly lower in the GmNAC8 knockout lines than in the WT plants under drought stress. In addition, GmNAC8 protein was found to physically interact with the drought-induced protein GmDi19-3 in the nucleus. Moreover, the GmDi19-3 expression pattern showed the same trend as the GmNAC8 gene did under drought and hormone (ABA, ETH and SA) treatments, and GmDi19-3 overexpression lines (GmDi19-3-OE9, GmDi19-3-OE10 and GmDi19-3-OE31) showed enhanced drought tolerance compared to that of the WT plants. Hence, the above results indicated that GmNAC8 acts as a positive regulator of drought tolerance in soybean and inferred that GmNAC8 probably functions by interacting with another positive regulatory protein, GmDi19-3.
Collapse
Affiliation(s)
- Chengfeng Yang
- MOA Key Laboratory of Biology and Genetic Improvement of Soybean (General), National Center for Soybean Improvement, State Key Laboratory for Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanzhong Huang
- MOA Key Laboratory of Biology and Genetic Improvement of Soybean (General), National Center for Soybean Improvement, State Key Laboratory for Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenhuan Lv
- MOA Key Laboratory of Biology and Genetic Improvement of Soybean (General), National Center for Soybean Improvement, State Key Laboratory for Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yingying Zhang
- MOA Key Laboratory of Biology and Genetic Improvement of Soybean (General), National Center for Soybean Improvement, State Key Laboratory for Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Javaid Akhter Bhat
- MOA Key Laboratory of Biology and Genetic Improvement of Soybean (General), National Center for Soybean Improvement, State Key Laboratory for Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiejie Kong
- MOA Key Laboratory of Biology and Genetic Improvement of Soybean (General), National Center for Soybean Improvement, State Key Laboratory for Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Han Xing
- MOA Key Laboratory of Biology and Genetic Improvement of Soybean (General), National Center for Soybean Improvement, State Key Laboratory for Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jinming Zhao
- MOA Key Laboratory of Biology and Genetic Improvement of Soybean (General), National Center for Soybean Improvement, State Key Laboratory for Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Tuanjie Zhao
- MOA Key Laboratory of Biology and Genetic Improvement of Soybean (General), National Center for Soybean Improvement, State Key Laboratory for Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
27
|
Comprehensive Genomic Analysis and Expression Profiling of the C2H2 Zinc Finger Protein Family Under Abiotic Stresses in Cucumber ( Cucumis sativus L.). Genes (Basel) 2020; 11:genes11020171. [PMID: 32041281 PMCID: PMC7074296 DOI: 10.3390/genes11020171] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/01/2020] [Accepted: 02/04/2020] [Indexed: 11/17/2022] Open
Abstract
Cucumber is one of the most important vegetables in the world. The C2H2 zinc finger protein (C2H2-ZFP) family plays an important role in the growth development and abiotic stress responses of plants. However, there have been no systematic studies on cucumber. In this study, we performed a genome-wide study of C2H2-ZFP genes and analyzed their chromosomal location, gene structure, conservation motif, and transcriptional expression. In total, 101 putative cucumber C2H2-ZFP genes were identified and divided into six groups (I–VI). RNA-seq transcriptome data on different organs revealed temporal and spatial expression specificity of the C2H2-ZFP genes. Expression analysis of sixteen selected C2H2-ZFP genes in response to cold, drought, salt, and abscisic acid (ABA) treatments by real-time quantitative polymerase chain reaction showed that C2H2-ZFP genes may be involved in different signaling pathways. These results provide valuable information for studying the function of cucumber C2H2-ZFP genes in the future.
Collapse
|
28
|
Zhou Z, Wang J, Zhang S, Yu Q, Lan H. Investigation of the Nature of CgCDPK and CgbHLH001 Interaction and the Function of bHLH Transcription Factor in Stress Tolerance in Chenopodium glaucum. FRONTIERS IN PLANT SCIENCE 2020; 11:603298. [PMID: 33552098 PMCID: PMC7862342 DOI: 10.3389/fpls.2020.603298] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 12/11/2020] [Indexed: 05/22/2023]
Abstract
Calcium-dependent protein kinase (CDPK) and its substrates play important roles in plant response to stress. So far, the documentation on the characterization of the CDPK and downstream interaction components (especially transcription factors, TFs) is limited. In the present study, an interaction between CgCDPK (protein kinase) (accession no. MW26306) and CgbHLH001 (TF) (accession no. MT797813) from a halophyte Chenopodium glaucum was further dissected. Firstly, we revealed that the probable nature between the CgCDPK and CgbHLH001 interaction was the phosphorylation, and the N-terminus of CgbHLH001, especially the 96th serine (the potential phosphorylation site) within it, was essential for the interaction, whereas the mutation of 96Ser to alanine did not change its nuclear localization, which was determined by the N-terminus and bHLH domain together. Furthermore, we verified the function of CgbHLH001 gene in response to stress by ectopic overexpression in tobacco; the transgenic lines presented enhanced stress tolerance probably by improving physiological performance and stress-related gene expression. In conclusion, we characterized the biological significance of the interaction between CDPK and bHLH in C. glaucum and verified the positive function of CgbHLH001 in stress tolerance, which may supply more evidence in better understanding of the CDPK signaling pathway in response to adversity.
Collapse
Affiliation(s)
- Zixin Zhou
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Juan Wang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Shiyue Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Qinghui Yu
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
- *Correspondence: Qinghui Yu,
| | - Haiyan Lan
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
- Haiyan Lan,
| |
Collapse
|
29
|
Zhang H, Liu D, Yang B, Liu WZ, Mu B, Song H, Chen B, Li Y, Ren D, Deng H, Jiang YQ. Arabidopsis CPK6 positively regulates ABA signaling and drought tolerance through phosphorylating ABA-responsive element-binding factors. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:188-203. [PMID: 31563949 DOI: 10.1093/jxb/erz432] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 09/11/2019] [Indexed: 06/10/2023]
Abstract
Abscisic acid (ABA) regulates numerous developmental processes and drought tolerance in plants. Calcium-dependent protein kinases (CPKs) are important Ca2+ sensors playing crucial roles in plant growth and development as well as responses to stresses. However, the molecular mechanisms of many CPKs in ABA signaling and drought tolerance remain largely unknown. Here we combined protein interaction studies, and biochemical and genetic approaches to identify and characterize substrates that were phosphorylated by CPK6 and elucidated the mechanism that underlines the role of CPK6 in ABA signaling and drought tolerance. The expression of CPK6 is induced by ABA and dehydration. Two cpk6 T-DNA insertion mutants are insensitive to ABA during seed germination and root elongation of seedlings; in contrast, overexpression of CPK6 showed the opposite phenotype. Moreover, CPK6-overexpressing lines showed enhanced drought tolerance. CPK6 interacts with and phosphorylates a subset of core ABA signaling-related transcription factors, ABA-responsive element-binding factors (ABFs/AREBs), and enhances their transcriptional activities. The phosphorylation sites in ABF3 and ABI5 were also identified through MS and mutational analyses. Taken together, we present evidence that CPK6 mediates ABA signaling and drought tolerance through phosphorylating ABFs/AREBs. This work thus uncovers a rather conserved mechanism of calcium-dependent Ser/Thr kinases in ABA signaling.
Collapse
Affiliation(s)
- Hanfeng Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, China
| | - Daoyin Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, China
| | - Bo Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, China
| | - Wu-Zhen Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, China
| | - Bangbang Mu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, China
| | - Huaxin Song
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, China
| | - Bingyou Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, China
| | - Yuan Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Dongtao Ren
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Hanqing Deng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, China
| | - Yuan-Qing Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, China
| |
Collapse
|
30
|
Zhang X, Cai H, Lu M, Wei Q, Xu L, Bo C, Ma Q, Zhao Y, Cheng B. A maize stress-responsive Di19 transcription factor, ZmDi19-1, confers enhanced tolerance to salt in transgenic Arabidopsis. PLANT CELL REPORTS 2019; 38:1563-1578. [PMID: 31493059 DOI: 10.1007/s00299-019-02467-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 08/26/2019] [Indexed: 06/10/2023]
Abstract
ZmDi19-1 can be induced by various abiotic stresses and enhance the salt tolerance of transgenic Arabidopsis thaliana. Drought-induced protein 19 (Di19) is an essential zinc finger family member that plays vital roles in regulating multiple stress responses. Here, the Di19 family gene in maize (Zea mays) ZmDi19-1 was characterized. We determined that ZmDi19-1 is constitutively expressed in root, stem, leaf and other maize tissues under normal conditions. In addition, ZmDi19-1 expression was induced by PEG and NaCl stresses. The subcellular localization revealed that ZmDi19-1 is a nuclear membrane protein. In yeast cells, ZmDi19-1 displayed transcriptional activity and could bind to the TACA(A/G)T sequence, which was corroborated using the dual luciferase reporter assay system. The overexpression of ZmDi19-1 in Arabidopsis thaliana enhanced the plants' tolerance to salt stress. Compared with wild-type, the Arabidopsis ZmDi19-1-overexpressing lines had higher relative water and proline contents, and lower malondialdehyde contents, in leaves under salt-stress conditions. The transcriptome analysis revealed 1414 upregulated and 776 downregulated genes, and an RNA-seq analysis identified some differentially expressed genes, which may be downstream of ZmDi19-1, involved in salt-stress responses. The data demonstrated that ZmDi19-1 responds to salt stress and may impact the expression of stress-related genes in Arabidopsis.
Collapse
Affiliation(s)
- Xingen Zhang
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Huilin Cai
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Meng Lu
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Qiye Wei
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Lijuan Xu
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Chen Bo
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Qing Ma
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Yang Zhao
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China.
| | - Beijiu Cheng
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
31
|
Wu M, Cai R, Liu H, Li F, Zhao Y, Xiang Y. A Moso Bamboo Drought-Induced 19 Protein, PeDi19-4, Enhanced Drought and Salt Tolerance in Plants via the ABA-Dependent Signaling Pathway. PLANT & CELL PHYSIOLOGY 2019; 60:e1-e14. [PMID: 30452736 DOI: 10.1093/pcp/pcy196] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Here, 10 drought-induced 19 (Di19) proteins from Phyllostachys edulis were analyzed and an important stress-related candidate gene (PeDi19-4) was isolated based on analysis of phylogenetic relationships and expression profiles. PeDi19-4 is a nuclear localization protein that can bind the conserved TACA(A/G)T sequence, as determined using enzyme-linked immunosorbent assay (EMSA). PeDi19-4 has no transcriptional activity in yeast but functions as a transcription activator in plants. Overexpression of PeDi19-4 in rice and Arabidopsis thaliana enhanced drought and salt tolerance as determined through phenotypic analysis and the use of stress-associated physiological indicators. PeDi19-4 transgenic plants showed increased sensitivity to ABA during seed germination and early seedling growth. Additionally, transgenic rice accumulated more ABA than wild-type plants under drought and salt stress conditions. Moreover, the stomata of PeDi19-4-overexpressing plants changed significantly with ABA treatment. RNA sequencing revealed that PeDi19-4 regulated the expression of a wide spectrum of stress-/ABA-responsive differentially expressed genes. The stress-responsive genes (OsZFP252 and OsNAC6) and ABA-responsive genes (OsBZ8 and OsbZIP23) were direct targets of PeDi19-4. Our research indicated that PeDi19-4 enhanced drought and salt tolerance in plants via the ABA-dependent signaling pathway.
Collapse
Affiliation(s)
- Min Wu
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China
| | - Ronghao Cai
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China
| | - Huanlong Liu
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China
| | - Fei Li
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Yang Zhao
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China
| | - Yan Xiang
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
32
|
Salicylic Acid Alleviated Salt Damage of Populus euphratica: A Physiological and Transcriptomic Analysis. FORESTS 2019. [DOI: 10.3390/f10050423] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Populus euphratica Oliv. is a model tree for studying abiotic stress, especially salt stress response. Salt stress is one of the most extensive abiotic stresses, which has an adverse effect on plant growth and development. Salicylic acid (SA) is an important signaling molecule that plays an important role in modulating the plant responses to abiotic stresses. To answer whether the endogenous SA can be induced by salt stress, and whether SA effectively alleviates the negative effects of salt on poplar growth is the main purpose of the study. To elucidate the effects of SA and salt stress on the growth of P. euphratica, we examined the morphological and physiological changes of P. euphratica under 300 mM NaCl after treatment with different concentrations of SA. A pretreatment of P. euphratica with 0.4 mM SA for 3 days effectively improved the growth status of plants under subsequent salt stress. These results indicate that appropriate concentrations of exogenous SA can effectively counteract the negative effect of salt stress on growth and development. Subsequently, transcripts involved in salt stress response via SA signaling were captured by RNA sequencing. The results indicated that numerous specific genes encoding mitogen-activated protein kinase, calcium-dependent protein kinase, and antioxidant enzymes were upregulated. Potassium transporters and Na+/H+ antiporters, which maintain K+/Na+ balance, were also upregulated after SA pretreatment. The transcriptome changes show that the ion transport and antioxidant enzymes were the early enhanced systems in response of P. euphratica to salt via SA, expanding our knowledge about SA function in salt stress defense in P. euphratica. This provides a solid foundation for future study of functional genes controlling effective components in metabolic pathways of trees.
Collapse
|
33
|
Ma Y, Cao J, Chen Q, He J, Liu Z, Wang J, Li X, Yang Y. The Kinase CIPK11 Functions as a Negative Regulator in Drought Stress Response in Arabidopsis. Int J Mol Sci 2019; 20:ijms20102422. [PMID: 31100788 PMCID: PMC6566343 DOI: 10.3390/ijms20102422] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 12/27/2022] Open
Abstract
Drought is a major limiting factor for plant growth and crop productivity. Many Calcineurin B-like interacting protein kinases (CIPKs) play crucial roles in plant adaptation to environmental stresses. It is particularly essential to find the phosphorylation targets of CIPKs and to study the underlying molecular mechanisms. In this study, we demonstrate that CIPK11 acts as a novel component to modulate drought stress in plants. The overexpression of CIPK11 (CIPK11OE) in Arabidopsis resulted in the decreased tolerance of plant to drought stress. When compared to wild type plants, CIPK11OE plants exhibited higher leaf water loss and higher content of reactive oxygen species (ROS) after drought treatment. Additionally, a yeast two hybrid screening assay by using CIPK11 as a bait captures Di19-3, a Cys2/His2-type zinc-finger transcription factor that is involved in drought stress, as a new interactor of CIPK11. Biochemical analysis revealed that CIPK11 interacted with Di19-3 in vivo and it was capable of phosphorylating Di19-3 in vitro. Genetic studies revealed that the function of CIPK11 in regulating drought stress was dependent on Di19-3. The transcripts of stress responsive genes, such as RAB18, RD29A, RD29B, and DREB2A were down-regulated in the CIPK11OE plants. Whereas overexpression of CIPK11 in di19-3 mutant background, expression levels of those marker genes were not significantly altered. Taken together, our results demonstrate that CIPK11 partly mediates the drought stress response by regulating the transcription factor Di19-3.
Collapse
Affiliation(s)
- Yanlin Ma
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China.
| | - Jing Cao
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China.
| | - Qiaoqiao Chen
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China.
| | - Jiahan He
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China.
| | - Zhibin Liu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China.
| | - Jianmei Wang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China.
| | - Xufeng Li
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China.
| | - Yi Yang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
34
|
Chen DH, Liu HP, Li CL. Calcium-dependent protein kinase CPK9 negatively functions in stomatal abscisic acid signaling by regulating ion channel activity in Arabidopsis. PLANT MOLECULAR BIOLOGY 2019; 99:113-122. [PMID: 30536042 DOI: 10.1007/s11103-018-0805-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 11/29/2018] [Indexed: 05/24/2023]
Abstract
In this manuscript, we demonstrated the negative role of CPK9 in stomatal ABA signaling, and both CPK9 and CPK33 for accurate guard cell function was explored via cpk9/cpk33 double mutants' phenotype. Abscisic acid (ABA) can inhibit stomatal opening and promote stomatal closure by regulating ion channel activity in guard cell membranes. As an important second messenger, calcium (Ca2+) is essentially needed in ABA regulation of stomatal movement. Calcium-dependent protein kinases (CDPKs) have been proposed to contribute to central Ca2+ signal transduction in plants. Here, we report the functional characterization of CPK9 in Arabidopsis stomatal ABA signaling. CPK9 had high expression in guard cells and the protein was subcellularly located in the cell membrane. A loss-of-function mutant cpk9 showed a much more sensitive phenotype to ABA regulation of stomatal movement and ion channel activity, while CPK9 overexpression lines had opposite phonotypes. These findings demonstrated the negative role of CPK9 in stomatal ABA signaling. As the closest homolog of CPK33, we also proved that stomatal movement of the cpk9/cpk33 double mutants was more sensitive to ABA than either single mutants. These results revealed the role of CPK9 in guard cells, and the need of both CPK9 and CPK33 for accurate guard cell function.
Collapse
Affiliation(s)
- Dong-Hua Chen
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education; School of Life Science, Shandong University, Qingdao, 266237, China
| | - Hui-Ping Liu
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education; School of Life Science, Shandong University, Qingdao, 266237, China
| | - Chun-Long Li
- College of Life Science, Jiangsu Normal University, Xuzhou, 221116, China.
| |
Collapse
|
35
|
Wang X, Hao L, Zhu B, Jiang Z. Plant Calcium Signaling in Response to Potassium Deficiency. Int J Mol Sci 2018; 19:E3456. [PMID: 30400321 PMCID: PMC6275041 DOI: 10.3390/ijms19113456] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 10/19/2018] [Accepted: 11/01/2018] [Indexed: 01/23/2023] Open
Abstract
Potassium (K⁺) is an essential macronutrient of living cells and is the most abundant cation in the cytosol. K⁺ plays a role in several physiological processes that support plant growth and development. However, soil K⁺ availability is very low and variable, which leads to severe reductions in plant growth and yield. Various K⁺ shortage-activated signaling cascades exist. Among these, calcium signaling is the most important signaling system within plant cells. This review is focused on the possible roles of calcium signaling in plant responses to low-K⁺ stress. In plants, intracellular calcium levels are first altered in response to K⁺ deficiency, resulting in calcium signatures that exhibit temporal and spatial features. In addition, calcium channels located within the root epidermis and root hair zone can then be activated by hyperpolarization of plasma membrane (PM) in response to low-K⁺ stress. Afterward, calcium sensors, including calmodulin (CaM), CaM-like protein (CML), calcium-dependent protein kinase (CDPK), and calcineurin B-like protein (CBL), can act in the sensing of K⁺ deprivation. In particular, the important components regarding CBL/CBL-interacting protein kinase (CBL/CIPK) complexes-involved in plant responses to K⁺ deficiency are also discussed.
Collapse
Affiliation(s)
- Xiaoping Wang
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Ling Hao
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Biping Zhu
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
| | - Zhonghao Jiang
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
36
|
Negative regulator of E2F transcription factors links cell cycle checkpoint and DNA damage repair. Proc Natl Acad Sci U S A 2018; 115:E3837-E3845. [PMID: 29610335 DOI: 10.1073/pnas.1720094115] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
DNA damage poses a serious threat to genome integrity and greatly affects growth and development. To maintain genome stability, all organisms have evolved elaborate DNA damage response mechanisms including activation of cell cycle checkpoints and DNA repair. Here, we show that the DNA repair protein SNI1, a subunit of the evolutionally conserved SMC5/6 complex, directly links these two processes in Arabidopsis SNI1 binds to the activation domains of E2F transcription factors, the key regulators of cell cycle progression, and represses their transcriptional activities. In turn, E2Fs activate the expression of SNI1, suggesting that E2Fs and SNI1 form a negative feedback loop. Genetically, overexpression of SNI1 suppresses the phenotypes of E2F-overexpressing plants, and loss of E2F function fully suppresses the sni1 mutant, indicating that SNI1 is necessary and sufficient to inhibit E2Fs. Altogether, our study revealed that SNI1 is a negative regulator of E2Fs and plays dual roles in DNA damage responses by linking cell cycle checkpoint and DNA repair.
Collapse
|
37
|
Chen Y, Zhou X, Chang S, Chu Z, Wang H, Han S, Wang Y. Calcium-dependent protein kinase 21 phosphorylates 14-3-3 proteins in response to ABA signaling and salt stress in rice. Biochem Biophys Res Commun 2017; 493:1450-1456. [DOI: 10.1016/j.bbrc.2017.09.166] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 09/29/2017] [Indexed: 10/18/2022]
|