1
|
Giovenali G, Di Romana ML, Capoccioni A, Riccardi V, Kuzmanović L, Ceoloni C. Exploring Thinopyrum spp. Group 7 Chromosome Introgressions to Improve Durum Wheat Performance under Intense Daytime and Night-Time Heat Stress at Anthesis. PLANTS (BASEL, SWITZERLAND) 2024; 13:2605. [PMID: 39339580 PMCID: PMC11434826 DOI: 10.3390/plants13182605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/06/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024]
Abstract
Durum wheat (DW) is one of the major crops grown in the Mediterranean area, a climate-vulnerable region where the increase in day/night (d/n) temperature is severely threatening DW yield stability. In order to improve DW heat tolerance, the introgression of chromosomal segments derived from the wild gene pool is a promising strategy. Here, four DW-Thinopyrum spp. near-isogenic recombinant lines (NIRLs) were assessed for their physiological response and productive performance after intense heat stress (IH, 37/27 °C d/n) had been applied for 3 days at anthesis. The NIRLs included two primary types (R5, R112), carriers (+) of a differently sized Th. ponticum 7el1L segment on the DW 7AL arm, and two corresponding secondary types (R69-9/R5, R69-9/R112), possessing a Th. elongatum 7EL segment distally inserted into the 7el1L ones. Their response to the IH stress was compared to that of corresponding non-carrier sib lines (-) and the heat-tolerant cv. Margherita. Overall, the R112+, R69-9/R5+ and R69-9/R112+ NIRLs exhibited a tolerant behaviour towards the applied stress, standing out for the maintenance of leaf relative water content but also for the accumulation of proline and soluble sugars in the flag leaf and the preservation of photosynthetic efficiency. As a result, all the above three NIRLs (R112+ > R69-9/R5+ > R69-9/R112+) displayed good yield stability under the IH, also in comparison with cv. Margherita. R112+ particularly relied on the strength of spike fertility/grain number traits, while R69-9/R5+ benefited from efficient compensation by the grain weight increase. This work largely confirmed and further substantiated the value of exploiting the wild germplasm of Thinopyrum species as a useful source for the improvement of DW tolerance to even extreme abiotic stress conditions, such as the severe heat treatment throughout day- and night-time applied here.
Collapse
Affiliation(s)
| | | | | | | | - Ljiljana Kuzmanović
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, 01100 Viterbo, Italy; (G.G.); (M.L.D.R.); (A.C.); (V.R.)
| | - Carla Ceoloni
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, 01100 Viterbo, Italy; (G.G.); (M.L.D.R.); (A.C.); (V.R.)
| |
Collapse
|
2
|
Sandhu J, Irvin L, Chandaran AK, Oguro S, Paul P, Dhatt B, Hussain W, Cunningham SS, Quinones CO, Lorence A, Adviento-Borbe MA, Staswick P, Morota G, Walia H. Natural variation in LONELY GUY-Like 1 regulates rice grain weight under warmer night conditions. PLANT PHYSIOLOGY 2024; 196:164-180. [PMID: 38820200 PMCID: PMC11376391 DOI: 10.1093/plphys/kiae313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/10/2024] [Accepted: 05/11/2024] [Indexed: 06/02/2024]
Abstract
Global nighttime temperatures are rising at twice the rate of daytime temperatures and pose a challenge for rice (Oryza sativa) production. High nighttime temperature (HNT) stress affects rice yield by reducing grain weight, size, and fertility. Although the genes associated with these yield parameters have been identified and characterized under normal temperatures, the genetic basis of grain weight regulation under HNT stress remains less explored. We examined the natural variation for rice single grain weight (SGW) under HNT stress imposed during grain development. A genome-wide association analysis identified several loci associated with grain weight under HNT stress. A locus, SGW1, specific to HNT conditions resolved to LONELY GUY-Like 1 (LOGL1), which encodes a putative cytokinin-activation enzyme. We demonstrated that LOGL1 contributes to allelic variation at SGW1. Accessions with lower LOGL1 transcript abundance had higher grain weight under HNT. This was supported by the higher grain weight of logl1-mutants relative to the wild type under HNT. Compared to logl1-mutants, LOGL1 over-expressers showed increased sensitivity to HNT. We showed that LOGL1 regulates the thiamin biosynthesis pathway, which is under circadian regulation, which in turn is likely perturbed by HNT stress. These findings provide a genetic source to enhance rice adaptation to warming night temperatures and improve our mechanistic understanding of HNT stress tolerance pathways.
Collapse
Affiliation(s)
- Jaspreet Sandhu
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Larissa Irvin
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Anil Kumar Chandaran
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Shohei Oguro
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Puneet Paul
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Balpreet Dhatt
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Waseem Hussain
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
- International Rice Research Institute (IRRI), Los Baños, Laguna 4031, Philippines
| | - Shannon S Cunningham
- Department of Chemistry and Physics, Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR 72467, USA
| | - Cherryl O Quinones
- Department of Chemistry and Physics, Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR 72467, USA
| | - Argelia Lorence
- Department of Chemistry and Physics, Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR 72467, USA
| | | | - Paul Staswick
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Gota Morota
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Harkamal Walia
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| |
Collapse
|
3
|
Singh S, Praveen A, Dudha N, Bhadrecha P. Integrating physiological and multi-omics methods to elucidate heat stress tolerance for sustainable rice production. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:1185-1208. [PMID: 39100874 PMCID: PMC11291831 DOI: 10.1007/s12298-024-01480-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 08/06/2024]
Abstract
Heat stress presents unique challenges compared to other environmental stressors, as predicting crop responses and understanding the mechanisms for heat tolerance are complex tasks. The escalating impact of devastating climate changes heightens the frequency and intensity of heat stresses, posing a noteworthy threat to global agricultural productivity, especially in rice-dependent regions of the developing world. Humidity has been demonstrated to negatively affect rice yields worldwide. Plants have evolved intricate biochemical adaptations, involving intricate interactions among genes, proteins, and metabolites, to counter diverse external signals and ensure their survival. Modern-omics technologies, encompassing transcriptomics, metabolomics, and proteomics, have revolutionized our comprehension of the intricate biochemical and cellular shifts that occur in stressed agricultural plants. Integrating these multi-omics approaches offers a comprehensive view of cellular responses to heat stress and other challenges, surpassing the insights gained from multi-omics analyses. This integration becomes vital in developing heat-tolerant crop varieties, which is crucial in the face of increasingly unpredictable weather patterns. To expedite the development of heat-resistant rice varieties, aiming at sustainability in terms of food production and food security globally, this review consolidates the latest peer-reviewed research highlighting the application of multi-omics strategies.
Collapse
Affiliation(s)
- Shilpy Singh
- Department of Biotechnology and Microbiology, School of Sciences, Noida International University, Gautam Budh Nagar, U.P. 203201 India
| | - Afsana Praveen
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Namrata Dudha
- Department of Biotechnology and Microbiology, School of Sciences, Noida International University, Gautam Budh Nagar, U.P. 203201 India
| | - Pooja Bhadrecha
- University Institute of Biotechnology, Chandigarh University, Mohali, Punjab India
| |
Collapse
|
4
|
Riaz A, Thomas J, Ali HH, Zaheer MS, Ahmad N, Pereira A. High night temperature stress on rice ( Oryza sativa) - insights from phenomics to physiology. A review. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP24057. [PMID: 38815128 DOI: 10.1071/fp24057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/12/2024] [Indexed: 06/01/2024]
Abstract
Rice (Oryza sativa ) faces challenges to yield and quality due to urbanisation, deforestation and climate change, which has exacerbated high night temperature (HNT). This review explores the impacts of HNT on the physiological, molecular and agronomic aspects of rice growth. Rise in minimum temperature threatens a potential 41% reduction in rice yield by 2100. HNT disrupts rice growth stages, causing reduced seed germination, biomass, spikelet sterility and poor grain development. Recent findings indicate a 4.4% yield decline for every 1°C increase beyond 27°C, with japonica ecotypes exhibiting higher sensitivity than indica. We examine the relationships between elevated CO2 , nitrogen regimes and HNT, showing that the complexity of balancing positive CO2 effects on biomass with HNT challenges. Nitrogen enrichment proves crucial during the vegetative stage but causes disruption to reproductive stages, affecting grain yield and starch synthesis. Additionally, we elucidate the impact of HNT on plant respiration, emphasising mitochondrial respiration, photorespiration and antioxidant responses. Genomic techniques, including CRISPR-Cas9, offer potential for manipulating genes for HNT tolerance. Plant hormones and carbohydrate enzymatic activities are explored, revealing their intricate roles in spikelet fertility, grain size and starch metabolism under HNT. Gaps in understanding genetic factors influencing heat tolerance and potential trade-offs associated with hormone applications remain. The importance of interdisciplinary collaboration is needed to provide a holistic approach. Research priorities include the study of regulatory mechanisms, post-anthesis effects, cumulative HNT exposure and the interaction between climate variability and HNT impact to provide a research direction to enhance rice resilience in a changing climate.
Collapse
Affiliation(s)
- Awais Riaz
- Department of Crop, Soil, and Environmental Sciences, Faculty of Agriculture Food and Life Sciences, University of Arkansas System Division of Agriculture, Fayetteville, AR 72701, USA
| | - Julie Thomas
- Department of Crop, Soil, and Environmental Sciences, Faculty of Agriculture Food and Life Sciences, University of Arkansas System Division of Agriculture, Fayetteville, AR 72701, USA
| | - Hafiz Haider Ali
- Department of Crop, Soil, and Environmental Sciences, Faculty of Agriculture Food and Life Sciences, University of Arkansas System Division of Agriculture, Fayetteville, AR 72701, USA; and Department of Agriculture, Government College University Lahore, Lahore 54000, Pakistan; and Department of Plant Sciences, Aberdeen Research & Extension Center, University of Idaho, Aberdeen, ID, USA
| | - Muhammad Saqlain Zaheer
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Naushad Ahmad
- Department of Chemistry, College of Science, King Saud University, Riyadh11451, Saudi Arabia
| | - Andy Pereira
- Department of Crop, Soil, and Environmental Sciences, Faculty of Agriculture Food and Life Sciences, University of Arkansas System Division of Agriculture, Fayetteville, AR 72701, USA
| |
Collapse
|
5
|
Fan J, Zhang H, Shi Y, Li Y, He Y, Wang Q, Liu S, Yao Y, Zhou X, Liao J, Huang Y, Wang Z. Systematic identification and characterization of microRNAs with target genes involved in high night temperature stress at the filling stage of rice. PHYSIOLOGIA PLANTARUM 2024; 176:e14305. [PMID: 38659134 DOI: 10.1111/ppl.14305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 04/26/2024]
Abstract
High night temperature stress is one of the main environmental factors affecting rice yield and quality. More and more evidence shows that microRNA (miRNA) plays an important role in various abiotic stresses. However, the molecular network of miRNA regulation on rice tolerance to high night temperatures remains unclear. Here, small RNA, transcriptome and degradome sequencing were integrated to identify differentially expressed miRNAs, genes, and key miRNA-target gene pairs in rice heat-sensitive and heat-tolerant lines at the filling stage suffering from high night temperature stress. It was discovered that there were notable differences in the relative expression of 102 miRNAs between the two rice lines under stress. Meanwhile, 5263 and 5405 mRNAs were differentially expressed in the heat-sensitive line and heat-tolerant line, and functional enrichment analysis revealed that these genes were involved in heat-related processes and pathways. The miRNAs-mRNAs target relationship was further verified by degradome sequencing. Eventually, 49 miRNAs-222 mRNAs target pairs with reverse expression patterns showed significant relative expression changes between the heat-tolerant and the heat-sensitive line, being suggested to be responsible for the heat tolerance difference of these two rice lines. Functional analysis of these 222 mRNA transcripts showed that high night temperature-responsive miRNAs targeted these mRNAs involved in many heat-related biological processes, such as transcription regulation, chloroplast regulation, mitochondrion regulation, protein folding, hormone regulation and redox process. This study identified possible miRNA-mRNA regulation relationships in response to high night temperature stress in rice and potentially contributed to heat resistance breeding of rice in the future.
Collapse
Affiliation(s)
- Jiangmin Fan
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education of the P.R. China, Nanchang, Jiangxi Province, China
- Key Laboratory of Agriculture Responding to Climate Change (Jiangxi Agricultural University), Nanchang, Jiangxi Province, China
| | - Hongyu Zhang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education of the P.R. China, Nanchang, Jiangxi Province, China
- Key Laboratory of Agriculture Responding to Climate Change (Jiangxi Agricultural University), Nanchang, Jiangxi Province, China
| | - Yan Shi
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education of the P.R. China, Nanchang, Jiangxi Province, China
- Key Laboratory of Agriculture Responding to Climate Change (Jiangxi Agricultural University), Nanchang, Jiangxi Province, China
| | - Yuewu Li
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education of the P.R. China, Nanchang, Jiangxi Province, China
- Key Laboratory of Agriculture Responding to Climate Change (Jiangxi Agricultural University), Nanchang, Jiangxi Province, China
| | - Yuxiang He
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education of the P.R. China, Nanchang, Jiangxi Province, China
- Key Laboratory of Agriculture Responding to Climate Change (Jiangxi Agricultural University), Nanchang, Jiangxi Province, China
| | - Qiang Wang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education of the P.R. China, Nanchang, Jiangxi Province, China
- Key Laboratory of Agriculture Responding to Climate Change (Jiangxi Agricultural University), Nanchang, Jiangxi Province, China
| | - Siyi Liu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education of the P.R. China, Nanchang, Jiangxi Province, China
- Key Laboratory of Agriculture Responding to Climate Change (Jiangxi Agricultural University), Nanchang, Jiangxi Province, China
| | - Youmin Yao
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education of the P.R. China, Nanchang, Jiangxi Province, China
- Key Laboratory of Agriculture Responding to Climate Change (Jiangxi Agricultural University), Nanchang, Jiangxi Province, China
| | - Xiaoya Zhou
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education of the P.R. China, Nanchang, Jiangxi Province, China
- Key Laboratory of Agriculture Responding to Climate Change (Jiangxi Agricultural University), Nanchang, Jiangxi Province, China
| | - Jianglin Liao
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education of the P.R. China, Nanchang, Jiangxi Province, China
- Key Laboratory of Agriculture Responding to Climate Change (Jiangxi Agricultural University), Nanchang, Jiangxi Province, China
| | - Yingjin Huang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education of the P.R. China, Nanchang, Jiangxi Province, China
- Key Laboratory of Agriculture Responding to Climate Change (Jiangxi Agricultural University), Nanchang, Jiangxi Province, China
| | - Zhaohai Wang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education of the P.R. China, Nanchang, Jiangxi Province, China
- Key Laboratory of Agriculture Responding to Climate Change (Jiangxi Agricultural University), Nanchang, Jiangxi Province, China
| |
Collapse
|
6
|
Liu M, Zhou Y, Sun J, Mao F, Yao Q, Li B, Wang Y, Gao Y, Dong X, Liao S, Wang P, Huang S. From the floret to the canopy: High temperature tolerance during flowering. PLANT COMMUNICATIONS 2023; 4:100629. [PMID: 37226443 PMCID: PMC10721465 DOI: 10.1016/j.xplc.2023.100629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/29/2023] [Accepted: 05/22/2023] [Indexed: 05/26/2023]
Abstract
Heat waves induced by climate warming have become common in food-producing regions worldwide, frequently coinciding with high temperature (HT)-sensitive stages of many crops and thus threatening global food security. Understanding the HT sensitivity of reproductive organs is currently of great interest for increasing seed set. The responses of seed set to HT involve multiple processes in both male and female reproductive organs, but we currently lack an integrated and systematic summary of these responses for the world's three leading food crops (rice, wheat, and maize). In the present work, we define the critical high temperature thresholds for seed set in rice (37.2°C ± 0.2°C), wheat (27.3°C ± 0.5°C), and maize (37.9°C ± 0.4°C) during flowering. We assess the HT sensitivity of these three cereals from the microspore stage to the lag period, including effects of HT on flowering dynamics, floret growth and development, pollination, and fertilization. Our review synthesizes existing knowledge about the effects of HT stress on spikelet opening, anther dehiscence, pollen shedding number, pollen viability, pistil and stigma function, pollen germination on the stigma, and pollen tube elongation. HT-induced spikelet closure and arrest of pollen tube elongation have a catastrophic effect on pollination and fertilization in maize. Rice benefits from pollination under HT stress owing to bottom anther dehiscence and cleistogamy. Cleistogamy and secondary spikelet opening increase the probability of pollination success in wheat under HT stress. However, cereal crops themselves also have protective measures under HT stress. Lower canopy/tissue temperatures compared with air temperatures indicate that cereal crops, especially rice, can partly protect themselves from heat damage. In maize, husk leaves reduce inner ear temperature by about 5°C compared with outer ear temperature, thereby protecting the later phases of pollen tube growth and fertilization processes. These findings have important implications for accurate modeling, optimized crop management, and breeding of new varieties to cope with HT stress in the most important staple crops.
Collapse
Affiliation(s)
- Mayang Liu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yuhan Zhou
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Jiaxin Sun
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Fen Mao
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Qian Yao
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Baole Li
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yuanyuan Wang
- College of Agronomy, South China Agricultural University, Guangdong, China
| | - Yingbo Gao
- Shandong Academy of Agricultural Sciences, Jinan, China
| | - Xin Dong
- Chongqing Academy of Agricultural Sciences, Chongqing, China
| | - Shuhua Liao
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Pu Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Shoubing Huang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China.
| |
Collapse
|
7
|
Su Q, Rohila JS, Ranganathan S, Karthikeyan R. Rice yield and quality in response to daytime and nighttime temperature increase - A meta-analysis perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165256. [PMID: 37423281 DOI: 10.1016/j.scitotenv.2023.165256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/27/2023] [Accepted: 06/30/2023] [Indexed: 07/11/2023]
Abstract
Increased heat stress during cropping season poses significant challenges to rice production, yet the complex stoichiometry between rice grain yield, quality and high daytime, nighttime temperature remains with gaps in current knowledge. We conducted a meta-analysis using a combined dataset of 1105 experiments for daytime temperature and 841 experiments for nighttime temperature from published literature to investigate the effects of high daytime temperature (HDT) and high nighttime temperatures (HNT) on rice yield and its various components (such as panicle number, spikelet number per panicle, seed set rate, grain weight) and grain quality traits (such as milling yield, chalkiness, amylose and protein contents). We established relationships between rice yield, its components, grain quality and the HDT/HNT, and studied phenotypic plasticity of the traits in response to HDT and HNT. Results showed that HNT had a more detrimental impact on rice yield and quality when compared with the HDT. The optimum daytime and nighttime temperatures for best rice yield were approximately 28 °C and 22 °C, respectively. Grain yield showed a decline by 7% and 6% for each 1 °C increase in HNT and HDT, respectively, when exceeded the optimum temperatures. Seed set rate (i.e., percent fertility) was the most sensitive trait to HDT and HNT and accounted for most of the yield losses. Both the HDT and HNT affected grain quality by increasing chalkiness and decreasing head rice percentage, which may affect marketability of the rice produced. Additionally, HNT was found to significantly impact nutritional quality (e.g., protein content) of rice grains. Our findings fill current knowledge gaps on estimations of rice yield losses and possible economic consequences under high temperatures and suggest that impacts on rice quality should also be considered for selection and breeding of high-temperature tolerant rice varieties in response to HDT and HNT.
Collapse
Affiliation(s)
- Qiong Su
- Department of Agricultural Sciences, Clemson University, SC 29634, USA.
| | - Jai S Rohila
- Dale Bumpers National Rice Research Center, United States Department of Agriculture, Agricultural Research Services, Stuttgart, AR 72160, USA
| | - Shyam Ranganathan
- School of Mathematical and Statistical Sciences, Clemson University, SC 29634, USA
| | - R Karthikeyan
- Department of Agricultural Sciences, Clemson University, SC 29634, USA.
| |
Collapse
|
8
|
Gann PJI, Dharwadker D, Cherati SR, Vinzant K, Khodakovskaya M, Srivastava V. Targeted mutagenesis of the vacuolar H + translocating pyrophosphatase gene reduces grain chalkiness in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:1261-1276. [PMID: 37256847 DOI: 10.1111/tpj.16317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/12/2023] [Accepted: 05/18/2023] [Indexed: 06/02/2023]
Abstract
Grain chalkiness is a major concern in rice production because it impacts milling yield and cooking quality, eventually reducing market value of the rice. A gene encoding vacuolar H+ translocating pyrophosphatase (V-PPase) is a major quantitative trait locus in indica rice, controlling grain chalkiness. Higher transcriptional activity of this gene is associated with increased chalk content. However, whether the suppression of V-PPase could reduce chalkiness is not clear. Furthermore, natural variation in the chalkiness of japonica rice has not been linked with V-PPase. Here, we describe promoter targeting of the japonica V-PPase allele that led to reduced grain chalkiness and the development of more translucent grains. Disruption of a putative GATA element by clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 suppressed V-PPase activity, reduced grain chalkiness and impacted post-germination growth that could be rescued by the exogenous supply of sucrose. The mature grains of the targeted lines showed a much lower percentage of large or medium chalk. Interestingly, the targeted lines developed a significantly lower chalk under heat stress, a major inducer of grain chalk. Metabolomic analysis showed that pathways related to starch and sugar metabolism were affected in the developing grains of the targeted lines that correlated with higher inorganic pyrophosphate and starch contents and upregulation of starch biosynthesis genes. In summary, we show a biotechnology approach of reducing grain chalkiness in rice by downregulating the transcriptional activity of V-PPase that presumably leads to altered metabolic rates, including starch biosynthesis, resulting in more compact packing of starch granules and formation of translucent rice grains.
Collapse
Affiliation(s)
- Peter James Icalia Gann
- Cell and Molecular Biology Program, University of Arkansas, 115 Plant Science Building, Fayetteville, AR, 72701, USA
- Department of Crop, Soil and Environmental Sciences, University of Arkansas Division of Agriculture, 115 Plant Science Building, Fayetteville, AR, 72701, USA
| | - Dominic Dharwadker
- Department of Chemistry and Biochemistry, University of Arkansas, 119 Chemistry Building, Fayetteville, West Maple Street, AR, 72701, USA
| | - Sajedeh Rezaei Cherati
- Department of Biology, University of Arkansas Little Rock, 2801 S University Avenue, Little Rock, AR, 727704, USA
| | - Kari Vinzant
- Department of Biology, University of Arkansas Little Rock, 2801 S University Avenue, Little Rock, AR, 727704, USA
| | - Mariya Khodakovskaya
- Department of Biology, University of Arkansas Little Rock, 2801 S University Avenue, Little Rock, AR, 727704, USA
| | - Vibha Srivastava
- Cell and Molecular Biology Program, University of Arkansas, 115 Plant Science Building, Fayetteville, AR, 72701, USA
- Department of Crop, Soil and Environmental Sciences, University of Arkansas Division of Agriculture, 115 Plant Science Building, Fayetteville, AR, 72701, USA
- Department of Horticulture, University of Arkansas Division of Agriculture, 315 Plant Science Building, Fayetteville, AR, 72701, USA
| |
Collapse
|
9
|
He W, Li W, Luo X, Tang Y, Wang L, Yu F, Lin Q. Rice FERONIA-LIKE RECEPTOR 3 and 14 affect grain quality by regulating redox homeostasis during endosperm development. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:3003-3018. [PMID: 36881783 DOI: 10.1093/jxb/erad077] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/06/2023] [Indexed: 05/21/2023]
Abstract
Chalky endosperm negatively affects the appearance, milling, and eating qualities of rice (Oryza sativa L.) grains. Here, we report the role of two receptor-like kinases, FERONIA-LIKE RECEPTOR 3 (FLR3) and FERONIA-LIKE RECEPTOR 14 (FLR14), in grain chalkiness and quality. Knockouts of FLR3 and/or FLR14 increased the number of white-core grains caused by aberrant accumulation of storage substances, resulting in poor grain quality. Conversely, the overexpression of FLR3 or FLR14 reduced grain chalkiness and improved grain quality. Transcriptome and metabolome analyses showed that genes and metabolites involved in the oxidative stress response were significantly up-regulated in flr3 and flr14 grains. The content of reactive oxygen species was significantly increased in flr3 and flr14 mutant endosperm but decreased in overexpression lines. This strong oxidative stress response induced the expression of programmed cell death (PCD)-related genes and caspase activity in endosperm, which further accelerated PCD, resulting in grain chalkiness. We also demonstrated that FLR3 and FLR14 reduced grain chalkiness by alleviating heat-induced oxidative stress in rice endosperm. Therefore, we report two positive regulators of grain quality that maintain redox homeostasis in the endosperm, with potential applications in breeding rice for optimal grain quality.
Collapse
Affiliation(s)
- Wei He
- National Engineering Laboratory for Rice and By-product Deep Processing, Central South University of Forestry and Technology, Changsha 410004, P. R. China
- Hunan Province, Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, P. R. China
| | - Wanjing Li
- National Engineering Laboratory for Rice and By-product Deep Processing, Central South University of Forestry and Technology, Changsha 410004, P. R. China
| | - Xiao Luo
- Hunan Province, Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, P. R. China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha, 410125, P. R. China
| | - Yuqin Tang
- National Engineering Laboratory for Rice and By-product Deep Processing, Central South University of Forestry and Technology, Changsha 410004, P. R. China
| | - Long Wang
- Hunan Province, Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, P. R. China
| | - Feng Yu
- Hunan Province, Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, P. R. China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha, 410125, P. R. China
| | - Qinlu Lin
- National Engineering Laboratory for Rice and By-product Deep Processing, Central South University of Forestry and Technology, Changsha 410004, P. R. China
| |
Collapse
|
10
|
Fei L, Guo J, Liu W, Ma A, Wang M, Ling N, Guo S. Determining optimal nitrogen management to improve rice yield, quality and nitrogen use efficiency based on multi-index decision analysis method. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:2357-2366. [PMID: 36710495 DOI: 10.1002/jsfa.12452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Reasonable nitrogen (N) supply is critical for increasing rice yield while improving grain quality and nitrogen use efficiency (NUE). However, the trade-off relationship between yield, quality and NUE of rice under N management has not been well understood enough. In the present study, a 2-year field experiment was conducted to identify optimal N fertilizer management practices that resulted in high-yield, high-quality and high-NUE by using the technique for order preference by similarity to an ideal solution (TOPSIS) with entropy weight (EW) method. RESULTS All the parameters of rice yield, quality and efficiency were remarkably affected by fertilization treatments. Compared with farmer's fertilization practice (FFP), optimizing N fertilizer treatment (OPT) and substituting 20% of N fertilizer with pig manure based on OPT treatment (OPTM) increased grain yield (2.87-6.62%) by maintaining higher 1000-grain weight and filled grains rate. The agronomic NUE (AE) and N partial factor productivity (PFP) under OPT and OPTM treatment were also remarkably increased by 32.81-43.01% and 28.59-33.28% with respect to the value under FFP treatment, respectively. Meanwhile, OPT and OPTM significantly improved the milling quality of rice by increasing brown rice rate (0.71-1.17%) and head rice rate (1.34-2.31%). OPT and OPTM significantly improved appearance quality by decreasing chalkiness and eating quality by reducing amylose content in 2020. The TOPSIS with EW showed that rice comprehensive evaluation could be maintained at a high level under OPT and OPTM. CONCLUSION OPT and OPTM were nutrient management modes of high-yield, high-quality and high-efficiency, and promising practice to improve rice comprehensive productivity. This strategy is also highly-consistent with the United Nations Sustainable Development Goals. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Liwei Fei
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Junjie Guo
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Wenbo Liu
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Anlingyang Ma
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Min Wang
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Ning Ling
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Shiwei Guo
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
11
|
Ren H, Bao J, Gao Z, Sun D, Zheng S, Bai J. How rice adapts to high temperatures. FRONTIERS IN PLANT SCIENCE 2023; 14:1137923. [PMID: 37008476 PMCID: PMC10063981 DOI: 10.3389/fpls.2023.1137923] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/01/2023] [Indexed: 06/19/2023]
Abstract
High-temperature stress affects crop yields worldwide. Identifying thermotolerant crop varieties and understanding the basis for this thermotolerance would have important implications for agriculture, especially in the face of climate change. Rice (Oryza sativa) varieties have evolved protective strategies to acclimate to high temperature, with different thermotolerance levels. In this review, we examine the morphological and molecular effects of heat on rice in different growth stages and plant organs, including roots, stems, leaves and flowers. We also explore the molecular and morphological differences among thermotolerant rice lines. In addition, some strategies are proposed to screen new rice varieties for thermotolerance, which will contribute to the improvement of rice for agricultural production in the future.
Collapse
Affiliation(s)
- Huimin Ren
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Jingpei Bao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Zhenxian Gao
- Shijiazhuang Academy of Agriculture and Forestry Sciences, Wheat Research Center, Shijiazhuang, China
| | - Daye Sun
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Shuzhi Zheng
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Jiaoteng Bai
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| |
Collapse
|
12
|
Haider HI, Zafar I, Ain QU, Noreen A, Nazir A, Javed R, Sehgal SA, Khan AA, Rahman MM, Rashid S, Garai S, Sharma R. Synthesis and characterization of copper oxide nanoparticles: its influence on corn (Z. mays) and wheat (Triticum aestivum) plants by inoculation of Bacillus subtilis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:37370-37385. [PMID: 36571685 DOI: 10.1007/s11356-022-24877-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Nanotechnology is now playing an emerging role in green synthesis in agriculture as nanoparticles (NPs) are used for various applications in plant growth and development. Copper is a plant micronutrient; the amount of copper oxide nanoparticles (CuONPs) in the soil determines whether it has positive or adverse effects. CuONPs can be used to grow corn and wheat plants by combining Bacillus subtilis. In this research, CuONPs were synthesized by precipitation method using different precursors such as sodium hydroxide (0.1 M) and copper nitrate (Cu(NO3)2) having 0.1 M concentration with a post-annealing method. The NPs were characterized through X-ray diffraction (XRD), scanning electron microscope (SEM), and ultraviolet (UV) visible spectroscopy. Bacillus subtilis is used as a potential growth promoter for microbial inoculation due to its prototrophic nature. The JAR experiment was conducted, and the growth parameter of corn (Z. mays) and wheat (Triticum aestivum) was recorded after 5 days. The lab assay evaluated the germination in JARs with and without microbial inoculation under CuONP stress at different concentrations (25 and 50 mg). The present study aimed to synthesize CuONPs and systematically investigate the particle size effects of copper (II) oxide (CuONPs) (< 50 nm) on Triticum aestivum and Z. mays. In our results, the XRD pattern of CuONPs at 500 °C calcination temperature with monoclinic phase is observed, with XRD peak intensity slightly increasing. The XRD patterns showed that the prepared CuONPs were extremely natural, crystal-like, and nano-shaped. We used Scherrer's formula to calculate the average size of the particle, indicated as 23 nm. The X-ray diffraction spectrum of synthesized materials and SEM analysis show that the particles of CuONPs were spherical in nature. The results revealed that the synthesized CuONPs combined with Bacillus subtilis used in a field study provided an excellent result, where growth parameters of Z. Mays and Triticum aestivum such as root length, shoot length, and plant biomass was improved as compared to the control group.
Collapse
Affiliation(s)
| | - Imran Zafar
- Department of Bioinformatics and Computational Biology, Virtual University of Pakistan, Lahore, Pakistan
| | - Qurat Ul Ain
- Department of Chemistry, Government College Women University, Faisalabad, Pakistan
| | - Asifa Noreen
- Department of Chemistry, Riphah International University, Faisalabad Campus, , Faisalabad, Pakistan
| | - Aamna Nazir
- Department of Chemistry, University of Lahore, Sargodha Campus, Sargodha, Pakistan
| | - Rida Javed
- Department of Chemistry, University of Sargodha, Sargodha, Pakistan
| | - Sheikh Arslan Sehgal
- Department of Bioinformatics, University of Okara, Okara, Pakistan
- Department of Bioinformatics, Institute of Biochemistry, Biotechnology and Bioinformatics, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Azmat Ali Khan
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Md Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj, 11942, Saudi Arabia
| | - Somenath Garai
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
13
|
Impacts of Climate Change on Rice Grain: A Literature Review on What Is Happening, and How Should We Proceed? Foods 2023; 12:foods12030536. [PMID: 36766065 PMCID: PMC9914188 DOI: 10.3390/foods12030536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 01/27/2023] Open
Abstract
More than half of the people on Earth get their calories, proteins, and minerals from rice grains. Staple increases in the quantity and quality of rice grains are key to ending hunger and malnutrition. Rice production, however, is vulnerable to climate change, and the climate on Earth is becoming more fluctuating with the atmospheric change induced by human activities. As a result, the impacts of climate change on rice grain (ICCRG) have sparked widespread concern. In order to reveal the development and the trend in the study on the ICCRG, a bibliometric analysis was conducted. The results showed that both the model simulations and the field experiment-based observations, as reflected by APSIM (the Agricultural Production Systems sIMulator) and free-air carbon dioxide (CO2) enrichment, are of concern to researchers worldwide, especially in China, India, the United States, and Japan. Different types of warming include short-term, nighttime, soil and water, and canopy, and their interactions with other climate factors, such as CO2, or agronomic factors, such as nitrogen level, are also of concern to researchers. Spatiotemporal variations in changing weather and regional adaptations from developed and developing countries are challenging the evaluation of ICCRG from an economic perspective. In order to improve the efficacy of breeding adaptable cultivars and developing agronomic management, interdisciplinary studies integrating molecular biology, plant physiology, agronomy, food chemistry, ecology, and socioeconomics are needed.
Collapse
|
14
|
Eckardt NA, Ainsworth EA, Bahuguna RN, Broadley MR, Busch W, Carpita NC, Castrillo G, Chory J, DeHaan LR, Duarte CM, Henry A, Jagadish SVK, Langdale JA, Leakey ADB, Liao JC, Lu KJ, McCann MC, McKay JK, Odeny DA, Jorge de Oliveira E, Platten JD, Rabbi I, Rim EY, Ronald PC, Salt DE, Shigenaga AM, Wang E, Wolfe M, Zhang X. Climate change challenges, plant science solutions. THE PLANT CELL 2023; 35:24-66. [PMID: 36222573 PMCID: PMC9806663 DOI: 10.1093/plcell/koac303] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Climate change is a defining challenge of the 21st century, and this decade is a critical time for action to mitigate the worst effects on human populations and ecosystems. Plant science can play an important role in developing crops with enhanced resilience to harsh conditions (e.g. heat, drought, salt stress, flooding, disease outbreaks) and engineering efficient carbon-capturing and carbon-sequestering plants. Here, we present examples of research being conducted in these areas and discuss challenges and open questions as a call to action for the plant science community.
Collapse
Affiliation(s)
- Nancy A Eckardt
- Senior Features Editor, The Plant Cell, American Society of Plant Biologists, USA
| | - Elizabeth A Ainsworth
- USDA ARS Global Change and Photosynthesis Research Unit, Urbana, Illinois 61801, USA
| | - Rajeev N Bahuguna
- Centre for Advanced Studies on Climate Change, Dr Rajendra Prasad Central Agricultural University, Samastipur 848125, Bihar, India
| | - Martin R Broadley
- School of Biosciences, University of Nottingham, Nottingham, NG7 2RD, UK
- Rothamsted Research, West Common, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Wolfgang Busch
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Nicholas C Carpita
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, USA
| | - Gabriel Castrillo
- School of Biosciences, University of Nottingham, Nottingham, NG7 2RD, UK
- Future Food Beacon of Excellence, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Joanne Chory
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037, USA
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | | | - Carlos M Duarte
- Red Sea Research Center (RSRC) and Computational Bioscience Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Amelia Henry
- International Rice Research Institute, Rice Breeding Innovations Platform, Los Baños, Laguna 4031, Philippines
| | - S V Krishna Jagadish
- Department of Plant and Soil Science, Texas Tech University, Lubbock, Texas 79410, USA
| | - Jane A Langdale
- Department of Biology, University of Oxford, Oxford, OX1 3RB, UK
| | - Andrew D B Leakey
- Department of Plant Biology, Department of Crop Sciences, and Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Illinois 61801, USA
| | - James C Liao
- Institute of Biological Chemistry, Academia Sinica, Taipei 11528, Taiwan
| | - Kuan-Jen Lu
- Institute of Biological Chemistry, Academia Sinica, Taipei 11528, Taiwan
| | - Maureen C McCann
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, USA
| | - John K McKay
- Department of Agricultural Biology, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Damaris A Odeny
- The International Crops Research Institute for the Semi-Arid Tropics–Eastern and Southern Africa, Gigiri 39063-00623, Nairobi, Kenya
| | | | - J Damien Platten
- International Rice Research Institute, Rice Breeding Innovations Platform, Los Baños, Laguna 4031, Philippines
| | - Ismail Rabbi
- International Institute of Tropical Agriculture (IITA), PMB 5320 Ibadan, Oyo, Nigeria
| | - Ellen Youngsoo Rim
- Department of Plant Pathology and the Genome Center, University of California, Davis, California 95616, USA
| | - Pamela C Ronald
- Department of Plant Pathology and the Genome Center, University of California, Davis, California 95616, USA
- Innovative Genomics Institute, Berkeley, California 94704, USA
| | - David E Salt
- School of Biosciences, University of Nottingham, Nottingham, NG7 2RD, UK
- Future Food Beacon of Excellence, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Alexandra M Shigenaga
- Department of Plant Pathology and the Genome Center, University of California, Davis, California 95616, USA
| | - Ertao Wang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Marnin Wolfe
- Auburn University, Dept. of Crop Soil and Environmental Sciences, College of Agriculture, Auburn, Alabama 36849, USA
| | - Xiaowei Zhang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
15
|
Chen T, Ma J, Xu C, Jiang N, Li G, Fu W, Feng B, Wang D, Wu Z, Tao L, Fu G. Increased ATPase activity promotes heat-resistance, high-yield, and high-quality traits in rice by improving energy status. FRONTIERS IN PLANT SCIENCE 2022; 13:1035027. [PMID: 36600923 PMCID: PMC9806274 DOI: 10.3389/fpls.2022.1035027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 09/26/2022] [Indexed: 06/17/2023]
Abstract
Heat stress during the reproductive stage results in major losses in yield and quality, which might be mainly caused by an energy imbalance. However, how energy status affected heat response, yield and quality remains unclear. No relationships were observed among the heat resistance, yield, and quality of the forty-nine early rice cultivars under normal temperature conditions. However, two cultivars, Zhuliangyou30 (ZLY30) and Luliangyou35 (LLY35), differing in heat resistance, yield, and quality were detected. The yield was higher and the chalkiness degree was lower in ZLY30 than in LLY35. Decreases in yields and increases in the chalkiness degree with temperatures were more pronounced in LLY35 than in ZLY30. The accumulation and allocation (ratio of the panicle to the whole plant) of dry matter weight and non-structural carbohydrates were higher in ZLY30 than in LLY35 across all sowing times and temperatures. The accumulation and allocation of dry matter weight and non-structural carbohydrates in panicles were higher in ZLY30 than in LLY35. Similar patterns were observed in the relative expression levels of sucrose unloading related genes SUT1 and SUT2 in grains. The ATP content was higher in the grains of LLY35 than in ZLY30, whereas the ATPase activity, which determined the energy status, was significantly lower in the former than in the latter. Thus, increased ATPase activity, which improved the energy status of rice, was the factor mediating the balance among heat-resistance, high-yield, and high-quality traits in rice.
Collapse
Affiliation(s)
- Tingting Chen
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
- Agronomy College, Jilin Agricultural University, Changchun, China
| | - Jiaying Ma
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Chunmei Xu
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Ning Jiang
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Guangyan Li
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College, Yangzhou University, Yangzhou, China
| | - Weimeng Fu
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Baohua Feng
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Danying Wang
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Zhihai Wu
- Agronomy College, Jilin Agricultural University, Changchun, China
| | - Longxing Tao
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Guanfu Fu
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
- Agronomy College, Jilin Agricultural University, Changchun, China
| |
Collapse
|
16
|
Lal MK, Sharma N, Adavi SB, Sharma E, Altaf MA, Tiwari RK, Kumar R, Kumar A, Dey A, Paul V, Singh B, Singh MP. From source to sink: mechanistic insight of photoassimilates synthesis and partitioning under high temperature and elevated [CO 2]. PLANT MOLECULAR BIOLOGY 2022; 110:305-324. [PMID: 35610527 DOI: 10.1007/s11103-022-01274-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 04/10/2022] [Indexed: 05/27/2023]
Abstract
Photosynthesis is the vital metabolism of the plant affected by abiotic stress such as high temperature and elevated [CO2] levels, which ultimately affect the source-sink relationship. Triose phosphate, the primary precursor of carbohydrate (starch and sucrose) synthesis in the plant, depends on environmental cues. The synthesis of starch in the chloroplasts of leaves (during the day), the transport of photoassimilates (sucrose) from source to sink, the loading and unloading of photoassimilates, and the accumulation of starch in the sink tissue all require a highly regulated network and communication system within the plant. These processes might be affected by high-temperature stress and elevated [CO2] conditions. Generally, elevated [CO2] levels enhance plant growth, photosynthetic rate, starch synthesis, and accumulation, ultimately diluting the nutrient of sink tissues. On the contrary, high-temperature stress is detrimental to plant development affecting photosynthesis, starch synthesis, sucrose synthesis and transport, and photoassimilate accumulation in sink tissues. Moreover, these environmental conditions also negatively impact the quality attributes such as grain/tuber quality, cooking quality, nutritional status in the edible parts and organoleptic traits. In this review, we have attempted to provide an insight into the source-sink relationship and the sugar metabolites synthesized and utilized by the plant under elevated [CO2] and high-temperature stress. This review will help future researchers comprehend the source-sink process for crop growth under changing climate scenarios.
Collapse
Affiliation(s)
- Milan Kumar Lal
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India
| | - Nitin Sharma
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
- Dr Yashwant, Singh Parmar University of Horticulture & Forestry, Nauni, Solan, Himachal Pradesh, 173230, India
| | - Sandeep B Adavi
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Eshita Sharma
- Dietetics & Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, India
| | | | - Rahul Kumar Tiwari
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India.
| | - Ravinder Kumar
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India.
| | - Awadhesh Kumar
- ICAR-National Rice Research Institute, Cuttack, Odisha, 753006, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, West Bengal, 700073, India
| | - Vijay Paul
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Brajesh Singh
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India
| | - Madan Pal Singh
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| |
Collapse
|
17
|
Wu C, Cui K, Fahad S. Heat Stress Decreases Rice Grain Weight: Evidence and Physiological Mechanisms of Heat Effects Prior to Flowering. Int J Mol Sci 2022; 23:10922. [PMID: 36142833 PMCID: PMC9504709 DOI: 10.3390/ijms231810922] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/02/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Heat stress during the preflowering panicle initiation stage seriously decreases rice grain weight in an invisible way and has not been given enough attention. The current review aims to (i) specify the heat effects on rice grain weight during the panicle initiation stage compared with the most important grain-filling stage; and (ii) discuss the physiological mechanisms of the decreased rice grain weight induced by heat during panicle initiation in terms of assimilate supply and phytohormone regulation, which are key physiological processes directly regulating rice grain weight. We emphasize that the effect of heat during the panicle initiation stage on rice grain weight is more serious than that during the grain-filling stage. Heat stress during the panicle initiation stage induces alterations in endogenous phytohormones, leading to the inhibition of the photosynthesis of functional leaves (source) and the formation of vascular bundles (flow), thus reducing the accumulation and transport of nonstructural carbohydrates and the growth of lemmata and paleae. The disruptions in the "flow" and restrictions in the preanthesis "source" tissue reduce grain size directly and decrease grain plumpness indirectly, resulting in a reduction in the final grain weight, which could be the direct physiological causes of the lower rice grain weight induced by heat during the panicle initiation stage. We highlight the seriousness of preflowering heat stress on rice grain weight, which can be regarded as an invisible disaster. The physiological mechanisms underlying the lower grain weight induced by heat during panicle initiation show a certain novelty because they distinguish this stage from the grain-filling stage. Additionally, a number of genes that control grain size through phytohormones have been summarized, but their functions have not yet been fully tested under heat conditions, except for the Grain Size and Abiotic stress tolerance 1 (GSA1) and BRASSINOSTEROID INSENSITIVE1 (OsBRI1) genes, which are reported to respond rapidly to heat stress. The mechanisms of reduced rice grain weight induced by heat during the panicle initiation stage should be studied in more depth in terms of molecular pathways.
Collapse
Affiliation(s)
- Chao Wu
- Guangxi Key Laboratory of Plant Functional Phytochemicals and Sustainable Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China
| | - Kehui Cui
- National Key Laboratory of Crop Genetic Improvement, MOA Key Laboratory of Crop Ecophysiology and Farming Systems in the Middle Reaches of the Yangtze River, Huazhong Agricultural University, Wuhan 430070, China
| | - Shah Fahad
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou 570228, China
| |
Collapse
|
18
|
Zenda T, Wang N, Dong A, Zhou Y, Duan H. Reproductive-Stage Heat Stress in Cereals: Impact, Plant Responses and Strategies for Tolerance Improvement. Int J Mol Sci 2022; 23:6929. [PMID: 35805930 PMCID: PMC9266455 DOI: 10.3390/ijms23136929] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/18/2022] [Accepted: 06/20/2022] [Indexed: 02/04/2023] Open
Abstract
Reproductive-stage heat stress (RSHS) poses a major constraint to cereal crop production by damaging main plant reproductive structures and hampering reproductive processes, including pollen and stigma viability, pollination, fertilization, grain setting and grain filling. Despite this well-recognized fact, research on crop heat stress (HS) is relatively recent compared to other abiotic stresses, such as drought and salinity, and in particular, RSHS studies in cereals are considerably few in comparison with seedling-stage and vegetative-stage-centered studies. Meanwhile, climate change-exacerbated HS, independently or synergistically with drought, will have huge implications on crop performance and future global food security. Fortunately, due to their sedentary nature, crop plants have evolved complex and diverse transient and long-term mechanisms to perceive, transduce, respond and adapt to HS at the molecular, cell, physiological and whole plant levels. Therefore, uncovering the molecular and physiological mechanisms governing plant response and tolerance to RSHS facilitates the designing of effective strategies to improve HS tolerance in cereal crops. In this review, we update our understanding of several aspects of RSHS in cereals, particularly impacts on physiological processes and yield; HS signal perception and transduction; and transcriptional regulation by heat shock factors and heat stress-responsive genes. We also discuss the epigenetic, post-translational modification and HS memory mechanisms modulating plant HS tolerance. Moreover, we offer a critical set of strategies (encompassing genomics and plant breeding, transgenesis, omics and agronomy) that could accelerate the development of RSHS-resilient cereal crop cultivars. We underline that a judicious combination of all of these strategies offers the best foot forward in RSHS tolerance improvement in cereals. Further, we highlight critical shortcomings to RSHS tolerance investigations in cereals and propositions for their circumvention, as well as some knowledge gaps, which should guide future research priorities. Overall, our review furthers our understanding of HS tolerance in plants and supports the rational designing of RSHS-tolerant cereal crop cultivars for the warming climate.
Collapse
Affiliation(s)
- Tinashe Zenda
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071001, China; (T.Z.); (N.W.); (A.D.)
- Department of Crop Genetics and Breeding, College o Agronomy, Hebei Agricultural University, Baoding 071001, China
| | - Nan Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071001, China; (T.Z.); (N.W.); (A.D.)
- Department of Crop Genetics and Breeding, College o Agronomy, Hebei Agricultural University, Baoding 071001, China
| | - Anyi Dong
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071001, China; (T.Z.); (N.W.); (A.D.)
- Department of Crop Genetics and Breeding, College o Agronomy, Hebei Agricultural University, Baoding 071001, China
| | - Yuzhi Zhou
- Library Department, Hebei Agricultural University, Baoding 071001, China;
| | - Huijun Duan
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071001, China; (T.Z.); (N.W.); (A.D.)
- Department of Crop Genetics and Breeding, College o Agronomy, Hebei Agricultural University, Baoding 071001, China
| |
Collapse
|
19
|
Helman D, Bonfil DJ. Six decades of warming and drought in the world's top wheat-producing countries offset the benefits of rising CO 2 to yield. Sci Rep 2022; 12:7921. [PMID: 35562577 PMCID: PMC9106749 DOI: 10.1038/s41598-022-11423-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 04/14/2022] [Indexed: 11/09/2022] Open
Abstract
Future atmospheric carbon-dioxide concentration ([CO2]) rise is expected to increase the grain yield of C3 crops like wheat even higher under drought. This expectation is based on small-scale experiments and model simulations based on such observations. However, this combined effect has never been confirmed through actual observations at the nationwide or regional scale. We present the first evidence that warming and drought in the world's leading wheat-producing countries offset the benefits of increasing [CO2] to wheat yield in the last six decades. Using country-level wheat yield census observations, [CO2] records, and gridded climate data in a statistical model based on a well-established methodology, we show that a [CO2] rise of ~ 98 μmol mol-1 increased the yield by 7% in the area of the top-twelve wheat-producing countries, while warming of 1.2 °C and water depletion of ~ 29 mm m-2 reduced the wheat grain yield by ~ 3% and ~ 1%, respectively, in the last six decades (1961-2019). Our statistical model corroborated the beneficial effect of [CO2] but contrasted the expected increase of grain yield under drought. Moreover, the increase in [CO2] barely offsets the adverse impacts of warming and drought in countries like Germany and France, with a net yield loss of 3.1% and no gain, respectively, at the end of the sampling period relative to the 1961-1965 baseline. In China and the wheat-growing areas of the former Soviet Union-two of the three largest wheat-producing regions-yields were ~ 5.5% less than expected from current [CO2] levels. Our results suggest shifting our efforts towards more experimental studies set in currently warm and dry areas and combining these with statistical and numerical modeling to improve our understanding of future impacts of a warmer and drier world with higher [CO2].
Collapse
Affiliation(s)
- David Helman
- Institute of Environmental Sciences (Soil and Water Sciences), The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University, 7610001, Rehovot, Israel.
- Advanced School for Environmental Sciences, The Hebrew University, Jerusalem, Israel.
| | - David J Bonfil
- Department of Vegetable and Field Crop Research, Agricultural Research Organization, Gilat Research Center, 8531100, Beit Dagan, Israel
| |
Collapse
|
20
|
Yadav MR, Choudhary M, Singh J, Lal MK, Jha PK, Udawat P, Gupta NK, Rajput VD, Garg NK, Maheshwari C, Hasan M, Gupta S, Jatwa TK, Kumar R, Yadav AK, Prasad PVV. Impacts, Tolerance, Adaptation, and Mitigation of Heat Stress on Wheat under Changing Climates. Int J Mol Sci 2022; 23:2838. [PMID: 35269980 PMCID: PMC8911405 DOI: 10.3390/ijms23052838] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/21/2022] [Accepted: 02/25/2022] [Indexed: 12/14/2022] Open
Abstract
Heat stress (HS) is one of the major abiotic stresses affecting the production and quality of wheat. Rising temperatures are particularly threatening to wheat production. A detailed overview of morpho-physio-biochemical responses of wheat to HS is critical to identify various tolerance mechanisms and their use in identifying strategies to safeguard wheat production under changing climates. The development of thermotolerant wheat cultivars using conventional or molecular breeding and transgenic approaches is promising. Over the last decade, different omics approaches have revolutionized the way plant breeders and biotechnologists investigate underlying stress tolerance mechanisms and cellular homeostasis. Therefore, developing genomics, transcriptomics, proteomics, and metabolomics data sets and a deeper understanding of HS tolerance mechanisms of different wheat cultivars are needed. The most reliable method to improve plant resilience to HS must include agronomic management strategies, such as the adoption of climate-smart cultivation practices and use of osmoprotectants and cultured soil microbes. However, looking at the complex nature of HS, the adoption of a holistic approach integrating outcomes of breeding, physiological, agronomical, and biotechnological options is required. Our review aims to provide insights concerning morpho-physiological and molecular impacts, tolerance mechanisms, and adaptation strategies of HS in wheat. This review will help scientific communities in the identification, development, and promotion of thermotolerant wheat cultivars and management strategies to minimize negative impacts of HS.
Collapse
Affiliation(s)
- Malu Ram Yadav
- Division of Agronomy, Rajasthan Agricultural Research Institute, Sri Karan Narendra Agriculture University, Jobner, Jaipur 303329, India; (M.R.Y.); (J.S.); (N.K.G.); (N.K.G.); (S.G.); (T.K.J.); (A.K.Y.)
| | - Mukesh Choudhary
- School of Agriculture and Environment, The University of Western Australia, Perth 6009, Australia;
| | - Jogendra Singh
- Division of Agronomy, Rajasthan Agricultural Research Institute, Sri Karan Narendra Agriculture University, Jobner, Jaipur 303329, India; (M.R.Y.); (J.S.); (N.K.G.); (N.K.G.); (S.G.); (T.K.J.); (A.K.Y.)
| | - Milan Kumar Lal
- Division of Crop Physiology, Biochemistry and Post-Harvest Technology, Indian Council of Agricultural Research (ICAR)-Central Potato Research Institute, Shimla 171001, India;
| | - Prakash Kumar Jha
- Feed the Future Innovation Lab for Collaborative Research on Sustainable Intensification, Kansas State University, Manhattan, KS 66506, USA;
| | - Pushpika Udawat
- Janardan Rai Nagar Rajasthan Vidyapeeth, Udaipur 313001, India;
| | - Narendra Kumar Gupta
- Division of Agronomy, Rajasthan Agricultural Research Institute, Sri Karan Narendra Agriculture University, Jobner, Jaipur 303329, India; (M.R.Y.); (J.S.); (N.K.G.); (N.K.G.); (S.G.); (T.K.J.); (A.K.Y.)
| | - Vishnu D. Rajput
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia;
| | - Nitin Kumar Garg
- Division of Agronomy, Rajasthan Agricultural Research Institute, Sri Karan Narendra Agriculture University, Jobner, Jaipur 303329, India; (M.R.Y.); (J.S.); (N.K.G.); (N.K.G.); (S.G.); (T.K.J.); (A.K.Y.)
| | - Chirag Maheshwari
- Division of Biochemistry, Indian Council of Agricultural Research, Indian Agricultural Research Institute, New Delhi 110012, India;
| | - Muzaffar Hasan
- Division of Agro Produce Processing, Central Institute of Agricultural Engineering, Bhopal 462038, India;
| | - Sunita Gupta
- Division of Agronomy, Rajasthan Agricultural Research Institute, Sri Karan Narendra Agriculture University, Jobner, Jaipur 303329, India; (M.R.Y.); (J.S.); (N.K.G.); (N.K.G.); (S.G.); (T.K.J.); (A.K.Y.)
| | - Tarun Kumar Jatwa
- Division of Agronomy, Rajasthan Agricultural Research Institute, Sri Karan Narendra Agriculture University, Jobner, Jaipur 303329, India; (M.R.Y.); (J.S.); (N.K.G.); (N.K.G.); (S.G.); (T.K.J.); (A.K.Y.)
| | - Rakesh Kumar
- Division of Agronomy, Indian Council of Agricultural Research, National Dairy Research Institute, Karnal 132001, India;
| | - Arvind Kumar Yadav
- Division of Agronomy, Rajasthan Agricultural Research Institute, Sri Karan Narendra Agriculture University, Jobner, Jaipur 303329, India; (M.R.Y.); (J.S.); (N.K.G.); (N.K.G.); (S.G.); (T.K.J.); (A.K.Y.)
| | - P. V. Vara Prasad
- Feed the Future Innovation Lab for Collaborative Research on Sustainable Intensification, Kansas State University, Manhattan, KS 66506, USA;
- Department of Agronomy, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
21
|
Han S, Jiang S, Xiong R, Shafique K, Zahid KR, Wang Y. Response and tolerance mechanism of food crops under high temperature stress: a review. BRAZ J BIOL 2022; 82:e253898. [PMID: 35107484 DOI: 10.1590/1519-6984.253898] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 11/23/2021] [Indexed: 01/15/2023] Open
Abstract
High temperature stress events are critical factors inhibiting crop yield. Meanwhile, world population is growing very rapidly and will be reached up to 9 billion by 2050. To feed increasing world population, it is challenging task to increase about 70% global food productions. Food crops have significant contribution toward global food demand and food security. However, consequences from increasing heat stress events are demolishing their abilities to survive and sustain yield when subjected to extreme high temperature stress. Therefore, there is dire need to better understand response and tolerance mechanism of food crops following exposure to heat stress. Here, we aimed to provide recent update on impact of high temperature stress on crop yield of food crops, pollination, pollinators, and novel strategies for improving tolerance of food crop under high temperature stress. Importantly, development of heat-resistant transgenic food crops can grant food security through transformation of superior genes into current germplasm, which are associated with various signaling pathways as well as epigenetic regulation in response to extreme high temperature stress.
Collapse
Affiliation(s)
- S Han
- Liupanshui Normal University, School of Biological Sciences and Technology, Liupanshui, China
| | - S Jiang
- Zhengzhou Normal University, Bioengineering Research Center, Zhengzhou, Henan, P.R. China
| | - R Xiong
- Liupanshui Normal University, School of Biological Sciences and Technology, Liupanshui, China
| | - K Shafique
- Government Sadiq College Women University, Department of Botany, Bahawalpur, Pakistan
| | - K R Zahid
- Shenzhen University, Carson International Cancer Center, College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen, Guangdong, China
| | - Y Wang
- Liupanshui Normal University, School of Biological Sciences and Technology, Liupanshui, China
| |
Collapse
|
22
|
Lopes MS. Will temperature and rainfall changes prevent yield progress in Europe? Food Energy Secur 2022. [DOI: 10.1002/fes3.372] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
- Marta S. Lopes
- Sustainable Field Crops Programme IRTA (Institute for Food and Agricultural Research and Technology) Lleida Spain
| |
Collapse
|
23
|
Hein NT, Impa SM, Wagner D, Bheemanahalli R, Kumar R, Tiwari M, Prasad PVV, Tilley M, Wu X, Neilsen M, Jagadish SVK. Grain micronutrient composition and yield components in field‐grown wheat are negatively impacted by high night‐time temperature. Cereal Chem 2022. [DOI: 10.1002/cche.10523] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Nathan T. Hein
- Department of Agronomy Kansas State University Manhattan Kansas USA
| | | | - Dan Wagner
- Department of Computer Science Kansas State University Manhattan Kansas USA
| | | | - Ritesh Kumar
- Department of Agronomy Kansas State University Manhattan Kansas USA
| | - Manish Tiwari
- Department of Agronomy Kansas State University Manhattan Kansas USA
| | | | - Michael Tilley
- Grain Quality and Structure Research Unit CGAHR USDA‐ARS Manhattan Kansas USA
| | - Xiaorong Wu
- Grain Quality and Structure Research Unit CGAHR USDA‐ARS Manhattan Kansas USA
| | - Mitchell Neilsen
- Department of Computer Science Kansas State University Manhattan Kansas USA
| | | |
Collapse
|
24
|
Seydel C, Kitashova A, Fürtauer L, Nägele T. Temperature-induced dynamics of plant carbohydrate metabolism. PHYSIOLOGIA PLANTARUM 2022; 174:e13602. [PMID: 34802152 DOI: 10.1111/ppl.13602] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 11/16/2021] [Indexed: 06/13/2023]
Abstract
Carbohydrates are direct products of photosynthetic CO2 assimilation. Within a changing temperature regime, both photosynthesis and carbohydrate metabolism need tight regulation to prevent irreversible damage of plant tissue and to sustain energy metabolism, growth and development. Due to climate change, plants are and will be exposed to both long-term and short-term temperature changes with increasing amplitude. Particularly sudden fluctuations, which might comprise a large temperature amplitude from low to high temperature, pose a challenge for plants from the cellular to the ecosystem level. A detailed understanding of fundamental regulatory processes, which link photosynthesis and carbohydrate metabolism under such fluctuating environmental conditions, is essential for an estimate of climate change consequences. Further, understanding these processes is important for biotechnological application, breeding and engineering. Environmental light and temperature regimes are sensed by a molecular network that comprises photoreceptors and molecular components of the circadian clock. Photosynthetic efficiency and plant productivity then critically depend on enzymatic regulation and regulatory circuits connecting plant cells with their environment and re-stabilising photosynthetic efficiency and carbohydrate metabolism after temperature-induced deflection. This review summarises and integrates current knowledge about re-stabilisation of photosynthesis and carbohydrate metabolism after perturbation by changing temperature (heat and cold).
Collapse
Affiliation(s)
- Charlotte Seydel
- Faculty of Biology, Plant Development, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
- Faculty of Biology, Plant Evolutionary Cell Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Anastasia Kitashova
- Faculty of Biology, Plant Evolutionary Cell Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Lisa Fürtauer
- Institute for Biology III, Unit of Plant Molecular Systems Biology, RWTH Aachen University, Aachen, Germany
| | - Thomas Nägele
- Faculty of Biology, Plant Evolutionary Cell Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| |
Collapse
|
25
|
Qi B, Wu C. Potential roles of stigma exsertion on spikelet fertility in rice ( Oryza sativa L.) under heat stress. FRONTIERS IN PLANT SCIENCE 2022; 13:983070. [PMID: 36212346 PMCID: PMC9532568 DOI: 10.3389/fpls.2022.983070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/18/2022] [Indexed: 05/10/2023]
Abstract
Heat stress during the flowering stage induces declining spikelet fertility in rice plants, which is primarily attributed to poor pollination manifesting as insufficient pollen deposited on the stigma. Plant pollination is associated with anther dehiscence, pollen dispersal characteristics, and stigma morphology. The mechanisms underlying the responses of spikelet fertility to heat stress have been clarified in depth in terms of the morphological and behavioral characteristics of the male reproductive organs in rice. However, the roles of female reproductive organs, especially the stigma, on spikelet fertility under heat conditions are unclear. The present study reviews the superiority of stigma exsertion on pollen receptivity under heat during the flowering stage and discusses the variations in the effects of exserted stigma on alleviating injury under asymmetric heat (high daytime and high nighttime temperatures). The pollination advantages of exserted stigmas seem to be realized more under high nighttime temperatures than under high daytime temperatures. It is speculated that high stigma exsertion is beneficial to spikelet fertility under high nighttime temperatures but detrimental under high daytime temperatures. To cope with global warming, more attention should be given to rice stigma exsertion, which can be manipulated through QTL pyramiding and exogenous hormone application and has application potential to develop heat-tolerant rice varieties or innovate rice heat-resistant cultivation techniques, especially under high nighttime temperatures.
Collapse
Affiliation(s)
- Beibei Qi
- College of Agriculture, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Functional Phytochemicals Research and Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, China
| | - Chao Wu
- Guangxi Key Laboratory of Functional Phytochemicals Research and Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, China
- *Correspondence: Chao Wu,
| |
Collapse
|
26
|
Khan A, Ahmad M, Ahmed M, Gill KS, Akram Z. Association analysis for agronomic traits in wheat under terminal heat stress. Saudi J Biol Sci 2021; 28:7404-7415. [PMID: 34867044 PMCID: PMC8626334 DOI: 10.1016/j.sjbs.2021.08.050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/14/2021] [Accepted: 08/15/2021] [Indexed: 12/01/2022] Open
Abstract
Terminal heat stress leads to irreversible damage in wheat. Marker assisted selection and gene pyramiding for portrayal of heat tolerance. Allelic frequency and polymorphic information showed significant variability. Markers xcfa2147 and xwmc671 could be potentail for heat stress tolerance.
Terminal heat stress causes irreversible damage to wheat crop productivity. It reduces the vegetative growth and flowering period that consequently declines the efficiency to capture available stem reserves (carbohydrates) in grains. Markers associated with thermotolerant traits ease in marker assisted selection (MAS) for crop improvement. It identifies the genomic regions associated with thermotolerant traits in wheat, but the scarcity of markers is the major hindrance in crop improvement. Therefore, 158 wheat genotypes were subjected to genotyping with 165 simple sequence repeat markers dispersed on three genomes (A, B and D). Allelic frequency and polymorphic information content values were highest on genome A (5.34 (14% greater than the lowest value at genome D) and 0.715 (3% greater than the lowest value at genome D)), chromosome 4 (5.40 (16% greater than the lowest value at chromosome 2) and 0.725 (5% greater than the lowest value at chromosome 6)) and marker xgwm44 (13.0 (84% greater than the lowest value at marker xbarc148) and 0.916 (46% greater than the lowest value at marker xbarc148)). Bayesian based population structure discriminated the wheat genotypes into seven groups based on genetic similarity indicating their ancestral origin and geographical ecotype. Linkage disequilibrium pattern had highest significant (P < 0.001) linked loci pairs 732 on genome A at r2 > 0.1 whereas, 58 on genome B at r2 > 0.5. Linkage disequilibrium decay (P < 0.01 and r2 > 0.1) had larger LD block (5–10 cM) on genome A. Highly significant MTAs (P < 0.000061) under heat stress conditions were identified for flag leaf area (xwmc336), spikelet per spike (xwmc553), grains per spike (cxfa2147, xwmc418 and xwmc121), biomass (xbarc7) and grain yield (xcfa2147 and xwmc671). The identified markers in this study could facilitate in MAS and gene pyramiding against heat stress in wheat.
Collapse
Affiliation(s)
- Adeel Khan
- Department of Plant Breeding and Genetics, PMAS-Arid Agriculture University, Rawalpindi 46300, Pakistan
| | - Munir Ahmad
- Department of Plant Breeding and Genetics, PMAS-Arid Agriculture University, Rawalpindi 46300, Pakistan
| | - Mukhtar Ahmed
- Department of Agronomy, PMAS-Arid Agriculture University, Rawalpindi 46300, Pakistan.,Department of Agricultural Research for Northern Sweden, Swedish University of Agricultural Sciences, 90183 UMEÅ, Sweden
| | - Kulvinder Singh Gill
- Department of Crop and Soil Sciences, Washington State University, Pullman 646420, USA
| | - Zahid Akram
- Department of Plant Breeding and Genetics, PMAS-Arid Agriculture University, Rawalpindi 46300, Pakistan
| |
Collapse
|
27
|
He W, Wang L, Lin Q, Yu F. Rice seed storage proteins: Biosynthetic pathways and the effects of environmental factors. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:1999-2019. [PMID: 34581486 DOI: 10.1111/jipb.13176] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/27/2021] [Indexed: 05/02/2023]
Abstract
Rice (Oryza sativa L.) is the most important food crop for at least half of the world's population. Due to improved living standards, the cultivation of high-quality rice for different purposes and markets has become a major goal. Rice quality is determined by the presence of many nutritional components, including seed storage proteins (SSPs), which are the second most abundant nutrient components of rice grains after starch. Rice SSP biosynthesis requires the participation of multiple organelles and is influenced by the external environment, making it challenging to understand the molecular details of SSP biosynthesis and improve rice protein quality. In this review, we highlight the current knowledge of rice SSP biosynthesis, including a detailed description of the key molecules involved in rice SSP biosynthetic processes and the major environmental factors affecting SSP biosynthesis. The effects of these factors on SSP accumulation and their contribution to rice quality are also discussed based on recent findings. This recent knowledge suggests not only new research directions for exploring rice SSP biosynthesis but also innovative strategies for breeding high-quality rice varieties.
Collapse
Affiliation(s)
- Wei He
- National Engineering Laboratory for Rice and By-product Deep Processing, Central South University of Forestry and Technology, Changsha, 410004, China
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, and Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, 410082, China
| | - Long Wang
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, and Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, 410082, China
| | - Qinlu Lin
- National Engineering Laboratory for Rice and By-product Deep Processing, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Feng Yu
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, and Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, 410082, China
| |
Collapse
|
28
|
Rane J, Singh AK, Kumar M, Boraiah KM, Meena KK, Pradhan A, Prasad PVV. The Adaptation and Tolerance of Major Cereals and Legumes to Important Abiotic Stresses. Int J Mol Sci 2021; 22:12970. [PMID: 34884769 PMCID: PMC8657814 DOI: 10.3390/ijms222312970] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/15/2021] [Accepted: 11/23/2021] [Indexed: 01/02/2023] Open
Abstract
Abiotic stresses, including drought, extreme temperatures, salinity, and waterlogging, are the major constraints in crop production. These abiotic stresses are likely to be amplified by climate change with varying temporal and spatial dimensions across the globe. The knowledge about the effects of abiotic stressors on major cereal and legume crops is essential for effective management in unfavorable agro-ecologies. These crops are critical components of cropping systems and the daily diets of millions across the globe. Major cereals like rice, wheat, and maize are highly vulnerable to abiotic stresses, while many grain legumes are grown in abiotic stress-prone areas. Despite extensive investigations, abiotic stress tolerance in crop plants is not fully understood. Current insights into the abiotic stress responses of plants have shown the potential to improve crop tolerance to abiotic stresses. Studies aimed at stress tolerance mechanisms have resulted in the elucidation of traits associated with tolerance in plants, in addition to the molecular control of stress-responsive genes. Some of these studies have paved the way for new opportunities to address the molecular basis of stress responses in plants and identify novel traits and associated genes for the genetic improvement of crop plants. The present review examines the responses of crops under abiotic stresses in terms of changes in morphology, physiology, and biochemistry, focusing on major cereals and legume crops. It also explores emerging opportunities to accelerate our efforts to identify desired traits and genes associated with stress tolerance.
Collapse
Affiliation(s)
- Jagadish Rane
- National Institute of Abiotic Stress Management, Baramati 413115, India; (A.K.S.); (M.K.); (K.M.B.); (K.K.M.); (A.P.)
| | - Ajay Kumar Singh
- National Institute of Abiotic Stress Management, Baramati 413115, India; (A.K.S.); (M.K.); (K.M.B.); (K.K.M.); (A.P.)
| | - Mahesh Kumar
- National Institute of Abiotic Stress Management, Baramati 413115, India; (A.K.S.); (M.K.); (K.M.B.); (K.K.M.); (A.P.)
| | - Karnar M. Boraiah
- National Institute of Abiotic Stress Management, Baramati 413115, India; (A.K.S.); (M.K.); (K.M.B.); (K.K.M.); (A.P.)
| | - Kamlesh K. Meena
- National Institute of Abiotic Stress Management, Baramati 413115, India; (A.K.S.); (M.K.); (K.M.B.); (K.K.M.); (A.P.)
| | - Aliza Pradhan
- National Institute of Abiotic Stress Management, Baramati 413115, India; (A.K.S.); (M.K.); (K.M.B.); (K.K.M.); (A.P.)
| | - P. V. Vara Prasad
- Department of Agronomy, Kansas State University, Manhattan, KS 66506, USA;
| |
Collapse
|
29
|
Schaarschmidt S, Glaubitz U, Erban A, Kopka J, Zuther E. Differentiation of the High Night Temperature Response in Leaf Segments of Rice Cultivars with Contrasting Tolerance. Int J Mol Sci 2021; 22:ijms221910451. [PMID: 34638787 PMCID: PMC8508630 DOI: 10.3390/ijms221910451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/15/2021] [Accepted: 09/23/2021] [Indexed: 11/16/2022] Open
Abstract
High night temperatures (HNT) affect rice yield in the field and induce chlorosis symptoms in leaves in controlled chamber experiments. However, little is known about molecular changes in leaf segments under these conditions. Transcript and metabolite profiling were performed for leaf segments of six rice cultivars with different HNT sensitivity. The metabolite profile of the sheath revealed a lower metabolite abundance compared to segments of the leaf blade. Furthermore, pre-adaptation to stress under control conditions was detected in the sheath, whereas this segment was only slightly affected by HNT. No unique significant transcriptomic changes were observed in the leaf base, including the basal growth zone at HNT conditions. Instead, selected metabolites showed correlations with HNT sensitivity in the base. The middle part and the tip were most highly affected by HNT in sensitive cultivars on the transcriptomic level with higher expression of jasmonic acid signaling related genes, genes encoding enzymes involved in flavonoid metabolism and a gene encoding galactinol synthase. In addition, gene expression of expansins known to improve stress tolerance increased in tolerant and sensitive cultivars. The investigation of the different leaf segments indicated highly segment specific responses to HNT. Molecular key players for HNT sensitivity were identified.
Collapse
|
30
|
Schaarschmidt S, Lawas LMF, Kopka J, Jagadish SVK, Zuther E. Physiological and molecular attributes contribute to high night temperature tolerance in cereals. PLANT, CELL & ENVIRONMENT 2021; 44:2034-2048. [PMID: 33764557 DOI: 10.1111/pce.14055] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 05/24/2023]
Abstract
Asymmetric warming resulting in a faster increase in night compared to day temperatures affects crop yields negatively. Physiological characterization and agronomic findings have been complemented more recently by molecular biology approaches including transcriptomic, proteomic, metabolomic and lipidomic investigations in crops exposed to high night temperature (HNT) conditions. Nevertheless, the understanding of the underlying mechanisms causing yield decline under HNT is still limited. The discovery of significant differences between HNT-tolerant and HNT-sensitive cultivars is one of the main research directions to secure continuous food supply under the challenge of increasing climate change. With this review, we provide a summary of current knowledge on the physiological and molecular basis of contrasting HNT tolerance in rice and wheat cultivars. Requirements for HNT tolerance and the special adaptation strategies of the HNT-tolerant rice cultivar Nagina-22 (N22) are discussed. Putative metabolite markers for HNT tolerance useful for marker-assisted breeding are suggested, together with future research directions aimed at improving food security under HNT conditions.
Collapse
Affiliation(s)
| | | | - Joachim Kopka
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | | | - Ellen Zuther
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| |
Collapse
|
31
|
Jagadish SVK, Way DA, Sharkey TD. Scaling plant responses to high temperature from cell to ecosystem. PLANT, CELL & ENVIRONMENT 2021; 44:1987-1991. [PMID: 33987846 DOI: 10.1111/pce.14082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 05/10/2021] [Indexed: 06/12/2023]
Affiliation(s)
| | - Danielle A Way
- Department of Biology, University of Western Ontario, London, Ontario, Canada
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
- Terrestrial Ecosystem Science & Technology Group, Environmental & Climate Sciences Department, Brookhaven National Laboratory, Upton, New York, USA
| | - Thomas D Sharkey
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
32
|
Zhu T, De Lima CFF, De Smet I. The Heat is On: How Crop Growth, Development and Yield Respond to High Temperature. JOURNAL OF EXPERIMENTAL BOTANY 2021:erab308. [PMID: 34185832 DOI: 10.1093/jxb/erab308] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Indexed: 06/13/2023]
Abstract
Plants are exposed to a wide range of temperatures during their life cycle and need to continuously adapt. These adaptations need to deal with temperature changes on a daily and seasonal level and with temperatures affected by climate change. Increasing global temperatures negatively impact crop performance, and several physiological, biochemical, morphological and developmental responses to increased temperature have been described that allow plants to mitigate this. In this review, we assess various growth, development, and yield-related responses of crops to extreme and moderate high temperature, focusing on knowledge gained from both monocot (e.g. wheat, barley, maize, rice) and dicot crops (e.g. soybean and tomato) and incorporating information from model plants (e.g. Arabidopsis and Brachypodium). This revealed common and different responses between dicot and monocot crops, and defined different temperature thresholds depending on the species, growth stage and organ.
Collapse
Affiliation(s)
- Tingting Zhu
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Cassio Flavio Fonseca De Lima
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Ive De Smet
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
33
|
Huang L, Wang F, Liu Y, Zhang Y. Night Temperature Determines the Interannual Yield Variation in Hybrid and Inbred Rice Widely Used in Central China Through Different Effects on Reproductive Growth. FRONTIERS IN PLANT SCIENCE 2021; 12:646168. [PMID: 34149750 PMCID: PMC8212977 DOI: 10.3389/fpls.2021.646168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
Interannual variation in grain yield of rice has been observed at both farm and regional scales, which is related to the climate variability. Previous studies focus on predicting the trend of climate change in the future and its potential effects on rice production using climate models; however, field studies are lacking to examine the climatic causes underlying the interannual yield variability for different rice cultivars. Here a 6-year field experiment from 2012 to 2017 was conducted using one hybrid (Yangliangyou6, YLY6) cultivar and one inbred (Huanghuazhan, HHZ) cultivar to determine the climate factors responsible for the interannual yield variation. A significant variation in grain yield was observed for both the inbred and hybrid cultivars across six planting years, and the coefficient of variation for grain yield was 7.3-10.5%. The night temperature (average daily minimum temperature, Tmin) contributed to the yield variability in both cultivars. However, the two cultivars showed different responses to the change in Tmin. The yield variation in HHZ was mainly explained by the effects of Tmin on grain filling percentage and grain weight, while the change in spikelets m-2 in response to Tmin accounted for the yield variability in YLY6. Further analysis found that spikelets m-2 of YLY6 significantly and negatively correlated with Tmin from transplanting to heading. For HHZ, the grain filling percentage and grain weight were significantly affected by Tmin of the week prior to heading and from heading to maturity, respectively. Overall, there were differences in the response mechanism between hybrid and inbred cultivars to high night temperature. These will facilitate the development of climate-resilient cultivars and appropriate management practices to achieve a stable grain yield.
Collapse
Affiliation(s)
- Liying Huang
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, China
- College of Agriculture, Yangtze University, Jingzhou, China
| | - Fei Wang
- Minister of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Collaborative Innovation Center for Grain Industry, Yangtze University, Jingzhou, China
| | - Yi Liu
- College of Agriculture, Yangtze University, Jingzhou, China
| | - Yunbo Zhang
- College of Agriculture, Yangtze University, Jingzhou, China
- Hubei Collaborative Innovation Center for Grain Industry, Yangtze University, Jingzhou, China
| |
Collapse
|
34
|
Li X, Huang L, Peng S, Wang F. Inter‐annual climate variability constrains rice genetic improvement in China. Food Energy Secur 2021. [DOI: 10.1002/fes3.299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
- Xiaoxiao Li
- National Key Laboratory of Crop Genetic Improvement MARA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River College of Plant Science and Technology Huazhong Agricultural University Wuhan China
| | - Liying Huang
- College of Agriculture Yangtze University Jingzhou China
| | - Shaobing Peng
- National Key Laboratory of Crop Genetic Improvement MARA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River College of Plant Science and Technology Huazhong Agricultural University Wuhan China
| | - Fei Wang
- National Key Laboratory of Crop Genetic Improvement MARA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River College of Plant Science and Technology Huazhong Agricultural University Wuhan China
| |
Collapse
|
35
|
Mahmood A, Wang W, Ali I, Zhen F, Osman R, Liu B, Liu L, Zhu Y, Cao W, Tang L. Individual and Combined Effects of Booting and Flowering High-Temperature Stress on Rice Biomass Accumulation. PLANTS (BASEL, SWITZERLAND) 2021; 10:1021. [PMID: 34065233 PMCID: PMC8160744 DOI: 10.3390/plants10051021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/09/2021] [Accepted: 05/14/2021] [Indexed: 12/02/2022]
Abstract
Extreme temperature events as a consequence of global climate change result in a significant decline in rice production. A two-year phytotron experiment was conducted using three temperature levels and two heating durations to compare the effects of heat stress at booting, flowering, and combined (booting + flowering) stages on the production of photosynthates and yield formation. The results showed that high temperature had a significant negative effect on mean net assimilation rate (MNAR), harvest index (HI), and grain yield per plant (YPP), and a significant positive effect under treatment T3 on mean leaf area index (MLAI) and duration of photosynthesis (DOP), and no significant effect on biomass per plant at maturity (BPPM), except at the flowering stage. Negative linear relationships between heat degree days (HDD) and MNAR, HI, and YPP were observed. Conversely, HDD showed positive linear relationships with MLAI and DOP. In addition, BPPM also showed a positive relationship with HDD, except at flowering, for both cultivars and Wuyunjing-24 at combined stages. The variation of YPP in both cultivars was mainly attributed to HI compared to BPPM. However, for biomass, from the first day of high-temperature treatment to maturity (BPPT-M), the main change was caused by MNAR followed by DOP and then MLAI. The projected alleviation effects of multiple heat stress at combined stages compared to single-stage heat stress would help to understand and evaluate rice yield formation and screening of heat-tolerant rice cultivars under current scenarios of high temperature during the rice-growing season.
Collapse
Affiliation(s)
- Aqib Mahmood
- National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing 210095, China; (A.M.); (W.W.); (I.A.); (F.Z.); (R.O.); (B.L.); (L.L.); (Y.Z.); (W.C.)
- Key Laboratory for Crop System Analysis and Decision Making, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Research Center for Smart Agriculture, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Key Laboratory for Information Agriculture, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Wang
- National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing 210095, China; (A.M.); (W.W.); (I.A.); (F.Z.); (R.O.); (B.L.); (L.L.); (Y.Z.); (W.C.)
- Key Laboratory for Crop System Analysis and Decision Making, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Research Center for Smart Agriculture, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Key Laboratory for Information Agriculture, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Iftikhar Ali
- National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing 210095, China; (A.M.); (W.W.); (I.A.); (F.Z.); (R.O.); (B.L.); (L.L.); (Y.Z.); (W.C.)
- Key Laboratory for Crop System Analysis and Decision Making, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Research Center for Smart Agriculture, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Key Laboratory for Information Agriculture, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Fengxian Zhen
- National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing 210095, China; (A.M.); (W.W.); (I.A.); (F.Z.); (R.O.); (B.L.); (L.L.); (Y.Z.); (W.C.)
- Key Laboratory for Crop System Analysis and Decision Making, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Research Center for Smart Agriculture, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Key Laboratory for Information Agriculture, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Raheel Osman
- National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing 210095, China; (A.M.); (W.W.); (I.A.); (F.Z.); (R.O.); (B.L.); (L.L.); (Y.Z.); (W.C.)
- Key Laboratory for Crop System Analysis and Decision Making, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Research Center for Smart Agriculture, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Key Laboratory for Information Agriculture, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Bing Liu
- National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing 210095, China; (A.M.); (W.W.); (I.A.); (F.Z.); (R.O.); (B.L.); (L.L.); (Y.Z.); (W.C.)
- Key Laboratory for Crop System Analysis and Decision Making, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Research Center for Smart Agriculture, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Key Laboratory for Information Agriculture, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Leilei Liu
- National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing 210095, China; (A.M.); (W.W.); (I.A.); (F.Z.); (R.O.); (B.L.); (L.L.); (Y.Z.); (W.C.)
- Key Laboratory for Crop System Analysis and Decision Making, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Research Center for Smart Agriculture, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Key Laboratory for Information Agriculture, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Yan Zhu
- National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing 210095, China; (A.M.); (W.W.); (I.A.); (F.Z.); (R.O.); (B.L.); (L.L.); (Y.Z.); (W.C.)
- Key Laboratory for Crop System Analysis and Decision Making, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Research Center for Smart Agriculture, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Key Laboratory for Information Agriculture, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Weixing Cao
- National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing 210095, China; (A.M.); (W.W.); (I.A.); (F.Z.); (R.O.); (B.L.); (L.L.); (Y.Z.); (W.C.)
- Key Laboratory for Crop System Analysis and Decision Making, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Research Center for Smart Agriculture, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Key Laboratory for Information Agriculture, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Liang Tang
- National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing 210095, China; (A.M.); (W.W.); (I.A.); (F.Z.); (R.O.); (B.L.); (L.L.); (Y.Z.); (W.C.)
- Key Laboratory for Crop System Analysis and Decision Making, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Research Center for Smart Agriculture, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Key Laboratory for Information Agriculture, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
36
|
Li G, Chen T, Feng B, Peng S, Tao L, Fu G. Respiration, Rather Than Photosynthesis, Determines Rice Yield Loss Under Moderate High-Temperature Conditions. FRONTIERS IN PLANT SCIENCE 2021; 12:678653. [PMID: 34249047 PMCID: PMC8264589 DOI: 10.3389/fpls.2021.678653] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/03/2021] [Indexed: 05/11/2023]
Abstract
Photosynthesis is an important biophysical and biochemical reaction that provides food and oxygen to maintain aerobic life on earth. Recently, increasing photosynthesis has been revisited as an approach for reducing rice yield losses caused by high temperatures. We found that moderate high temperature causes less damage to photosynthesis but significantly increases respiration. In this case, the energy production efficiency is enhanced, but most of this energy is allocated to maintenance respiration, resulting in an overall decrease in the energy utilization efficiency. In this perspective, respiration, rather than photosynthesis, may be the primary contributor to yield losses in a high-temperature climate. Indeed, the dry matter weight and yield could be enhanced if the energy was mainly allocated to the growth respiration. Therefore, we proposed that engineering smart rice cultivars with a highly efficient system of energy production, allocation, and utilization could effectively solve the world food crisis under high-temperature conditions.
Collapse
Affiliation(s)
- Guangyan Li
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
- Crop Production and Physiology Center (CPPC), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Tingting Chen
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Baohua Feng
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Shaobing Peng
- Crop Production and Physiology Center (CPPC), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Longxing Tao
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
- *Correspondence: Longxing Tao,
| | - Guanfu Fu
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
- Guanfu Fu,
| |
Collapse
|