1
|
Taka A, Härkönen T, Vähäsalo P, Vatanen T, Lempainen J, Veijola R, Turtinen M, Ilonen J, Knip M, the Finnish Pediatric Diabetes Register. Characteristics of Type 1 Diabetes Among Patients Carrying the Protective HLA-DQB1*06:02 Allele. HLA 2024; 104:e15720. [PMID: 39564779 PMCID: PMC11586155 DOI: 10.1111/tan.15720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/11/2024] [Accepted: 09/27/2024] [Indexed: 11/21/2024]
Abstract
We set out to examine in an observational study characteristics of type 1 diabetes at the time of diagnosis among paediatric patients carrying the protective HLA class II DQB1*06:02 allele. We compared characteristics of type 1 diabetes among 5530 Finnish children aged 0-14 years diagnosed between 2003 and 2018. Seventy-five children with type 1 diabetes carried the DQB1*06:02 allele. The carriers of DQB1*06:02 allele were compared to all children with type 1 diabetes without this allele and those with a high-risk genotype. We also analysed, how does the genotype of a high-risk haplotype paired with DQB1*06:02 affect the phenotype of patients with newly diagnosed type 1 diabetes. Carriers of the DQB1*06:02 allele were diagnosed at an older age than those with any other HLA class II genotype (p = 0.003) or the high-risk genotype (p < 0.001). After adjusting the results for age and sex, no significant differences in clinical markers were observed. Glutamic acid decarboxylase autoantibody (GADA) levels were higher among carriers of DQB1*06:02 when compared to those with other genotypes (p = 0.033). Having a high-risk haplotype paired with DQB1*06:02-positive haplotype was associated with higher levels of islet antigen 2 autoantibodies (IA-2A) (p < 0.001) and somewhat shorter duration of symptoms (p = 0.043). The association between the protective DQB1*06:02 allele and an older age at diagnosis as well as higher levels of GADA at diagnosis of type 1 diabetes was confirmed. The effects of the DQB1*06:02-positive haplotype seem to dominate when paired with a high-risk haplotype.
Collapse
Affiliation(s)
- Antti‐Mathias Taka
- Pediatric Research Center, New Children's HospitalHelsinki University HospitalHelsinkiFinland
- Research Program for Clinical and Molecular Metabolism, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
| | - Taina Härkönen
- Pediatric Research Center, New Children's HospitalHelsinki University HospitalHelsinkiFinland
| | - Paula Vähäsalo
- Research Unit of Clinical MedicineUniversity of OuluOuluFinland
- Medical Research CenterOulu University Hospital and University of OuluOuluFinland
| | - Tommi Vatanen
- Research Program for Clinical and Molecular Metabolism, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
- Broad Institute of MIT and HarvardCambridgeMassachusettsUSA
- Liggins InstituteUniversity of AucklandAucklandNew Zealand
| | - Johanna Lempainen
- Immunogenetics Laboratory, Institute of BiomedicineUniversity of TurkuTurkuFinland
- Department of PediatricsUniversity of Turku and Turku University HospitalTurkuFinland
- Clinical MicrobiologyTurku University HospitalTurkuFinland
| | - Riitta Veijola
- Research Unit of Clinical MedicineUniversity of OuluOuluFinland
- Medical Research CenterOulu University Hospital and University of OuluOuluFinland
| | - Maaret Turtinen
- Pediatric Research Center, New Children's HospitalHelsinki University HospitalHelsinkiFinland
- Research Program for Clinical and Molecular Metabolism, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
| | - Jorma Ilonen
- Immunogenetics Laboratory, Institute of BiomedicineUniversity of TurkuTurkuFinland
| | - Mikael Knip
- Research Program for Clinical and Molecular Metabolism, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
- Tampere Center for Child Health ResearchTampere University HospitalTampereFinland
| | | |
Collapse
|
2
|
Chatterjee S, Bhattacharya M, Saxena S, Lee SS, Chakraborty C. Autoantibodies in COVID-19 and Other Viral Diseases: Molecular, Cellular, and Clinical Perspectives. Rev Med Virol 2024; 34:e2583. [PMID: 39289528 DOI: 10.1002/rmv.2583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/19/2024]
Abstract
Autoantibodies are immune system-produced antibodies that wrongly target the body's cells and tissues for attack. The COVID-19 pandemic has made it possible to link autoantibodies to both the severity of pathogenic infection and the emergence of several autoimmune diseases after recovery from the infection. An overview of autoimmune disorders and the function of autoantibodies in COVID-19 and other infectious diseases are discussed in this review article. We also investigated the different categories of autoantibodies found in COVID-19 and other infectious diseases including the potential pathways by which they contribute to the severity of the illness. Additionally, it also highlights the probable connection between vaccine-induced autoantibodies and their adverse outcomes. The review also discusses the therapeutic perspectives of autoantibodies. This paper advances our knowledge about the intricate interaction between autoantibodies and COVID-19 by thoroughly assessing the most recent findings.
Collapse
Affiliation(s)
- Srijan Chatterjee
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, South Korea
| | | | - Sanskriti Saxena
- Division of Biology, Indian Institute of Science Education and Research-Tirupati, Tirupati, India
| | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, South Korea
| | - Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, India
| |
Collapse
|
3
|
Mănescu M, Mănescu IB, Grama A. A Review of Stage 0 Biomarkers in Type 1 Diabetes: The Holy Grail of Early Detection and Prevention? J Pers Med 2024; 14:878. [PMID: 39202069 PMCID: PMC11355657 DOI: 10.3390/jpm14080878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
Type 1 diabetes mellitus (T1D) is an incurable autoimmune disease characterized by the destruction of pancreatic islet cells, resulting in lifelong dependency on insulin treatment. There is an abundance of review articles addressing the prediction of T1D; however, most focus on the presymptomatic phases, specifically stages 1 and 2. These stages occur after seroconversion, where therapeutic interventions primarily aim to delay the onset of T1D rather than prevent it. This raises a critical question: what happens before stage 1 in individuals who will eventually develop T1D? Is there a "stage 0" of the disease, and if so, how can we detect it to increase our chances of truly preventing T1D? In pursuit of answers to these questions, this narrative review aimed to highlight recent research in the field of early detection and prediction of T1D, specifically focusing on biomarkers that can predict T1D before the onset of islet autoimmunity. Here, we have compiled influential research from the fields of epigenetics, omics, and microbiota. These studies have identified candidate biomarkers capable of predicting seroconversion from very early stages to several months prior, suggesting that the prophylactic window begins at birth. As the therapeutic landscape evolves from treatment to delay, and ideally from delay to prevention, it is crucial to both identify and validate such "stage 0" biomarkers predictive of islet autoimmunity. In the era of precision medicine, this knowledge will enable early intervention with the potential for delaying, modifying, or completely preventing autoimmunity and T1D in at-risk children.
Collapse
Affiliation(s)
- Măriuca Mănescu
- Department of Pediatrics, Emergency County Clinical Hospital of Targu Mures, 50 Gheorghe Marinescu, 540136 Targu Mures, Romania;
| | - Ion Bogdan Mănescu
- Department of Laboratory Medicine, Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 38 Gheorghe Marinescu, 540142 Targu Mures, Romania;
| | - Alina Grama
- Department of Pediatrics, Emergency County Clinical Hospital of Targu Mures, 50 Gheorghe Marinescu, 540136 Targu Mures, Romania;
- Department of Pediatrics, Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 38 Gheorghe Marinescu, 540142 Targu Mures, Romania
| |
Collapse
|
4
|
Penaforte-Saboia JG, Couri CEB, Albuquerque NV, Linard LLP, Araújo DAC, de Oliveira SKP, Gomes TFP, Pinheiro MM, Castelo MHCG, Fernandes VO, Montenegro Júnior RM. PRE1BRAZIL Protocol: A Randomized Controlled Trial to Evaluate the Effectiveness and Safety of the DPP-4 Inhibitor Alogliptin in Delaying the Progression of Stage 2 Type 1 Diabetes. Diabetes Metab Syndr Obes 2024; 17:857-864. [PMID: 38406268 PMCID: PMC10894513 DOI: 10.2147/dmso.s437635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/12/2023] [Indexed: 02/27/2024] Open
Abstract
Background The incidence of Type 1 Diabetes Mellitus (T1DM) is on the rise. Since there is no curative treatment, it is urgent to look for therapies that can delay disease progression and protect pancreatic β-cells. Dipeptidyl peptidase-4 inhibitors (DPP-4i) have shown potential in modulating inflammation and preventing β-cell destruction. This protocol describes an upcoming trial to evaluate the effectiveness of the DPP-4i alogliptin in delaying the progression of stage 2 (presymptomatic) to stage 3 (symptomatic) T1DM. Patients and Methods We propose a two-year, two-arm, multicenter, randomized, open-label clinical trial targeting Brazilian patients aged 18 to 35 with stage 2 T1DM. The study, facilitated by the custom-developed "PRE1BRAZIL" web application, aims to enroll 130 participants. They will be randomly assigned in a 1:1 ratio to either a treatment group (alogliptin 25 mg daily plus regular clinical and laboratory assessments) or a control group (regular assessments only). The primary outcome is the rate of progression to stage 3 T1DM. Secondary outcomes include changes in A1c levels, glucose levels during a 2-hour oral glucose tolerance test (OGTT), C-peptide levels, exogenous insulin requirements, Insulin-Dose Adjusted A1c (IDAA1c), and the incidence of diabetic ketoacidosis (DKA) in those advancing to stage 3. Discussion This protocol outlines the first randomized clinical trial (RCT) to investigate the impact of a DPP-4i in the presymptomatic stage of T1DM. The trial is designed to provide critical insights into the role of DPP-4i in the secondary prevention of T1DM. Utilizing the "PRE1BRAZIL" web application is expected to enhance participant enrollment and reduce operational costs. Registration Brazilian Registry of Clinical Trials.
Collapse
Affiliation(s)
- Jaquellyne Gurgel Penaforte-Saboia
- Department of Clinical Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
- Clinical Research Unit, Walter Cantídio University Hospital, Federal University of Ceará/ EBSERH Fortaleza, Fortaleza, CE, Brazil
| | - Carlos Eduardo Barra Couri
- Center for Cell-Based Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Natasha Vasconcelos Albuquerque
- Clinical Research Unit, Walter Cantídio University Hospital, Federal University of Ceará/ EBSERH Fortaleza, Fortaleza, CE, Brazil
- Department of Community Health, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Lana Livia Peixoto Linard
- Department of Clinical Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
- Clinical Research Unit, Walter Cantídio University Hospital, Federal University of Ceará/ EBSERH Fortaleza, Fortaleza, CE, Brazil
| | | | | | - Thisciane Ferreira Pinto Gomes
- Clinical Research Unit, Walter Cantídio University Hospital, Federal University of Ceará/ EBSERH Fortaleza, Fortaleza, CE, Brazil
| | | | | | - Virgínia Oliveira Fernandes
- Clinical Research Unit, Walter Cantídio University Hospital, Federal University of Ceará/ EBSERH Fortaleza, Fortaleza, CE, Brazil
- Department of Community Health, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Renan Magalhães Montenegro Júnior
- Department of Clinical Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
- Clinical Research Unit, Walter Cantídio University Hospital, Federal University of Ceará/ EBSERH Fortaleza, Fortaleza, CE, Brazil
- Department of Community Health, Federal University of Ceará, Fortaleza, CE, Brazil
| |
Collapse
|
5
|
Vaitaitis G, Webb T, Webb C, Sharkey C, Sharkey S, Waid D, Wagner DH. Canine diabetes mellitus demonstrates multiple markers of chronic inflammation including Th40 cell increases and elevated systemic-immune inflammation index, consistent with autoimmune dysregulation. Front Immunol 2024; 14:1319947. [PMID: 38318506 PMCID: PMC10839093 DOI: 10.3389/fimmu.2023.1319947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/27/2023] [Indexed: 02/07/2024] Open
Abstract
Introduction Canine diabetes mellitus (CDM) is a relatively common endocrine disease in dogs. Many CDM clinical features resemble human type 1 diabetes mellitus (T1DM), but lack of autoimmune biomarkers makes calling the disease autoimmune controversial. Autoimmune biomarkers linking CDM and T1DM would create an alternative model for drug development impacting both human and canine disease. Methods We examined peripheral blood of diagnosed CDM dog patients comparing it to healthy control (HC) dogs. Dogs were recruited to a study at the Colorado State University Veterinary Teaching Hospital and blood samples collected for blood chemistry panels, complete blood counts (CBC), and immunologic analysis. Markers of disease progression such as glycated albumin (fructosamine, the canine equivalent of human HbA1c) and c-peptide were addressed. Results Significant differences in adaptive immune lymphocytes, innate immune macrophages/monocytes and neutrophils and differences in platelets were detected between CDM and HC based on CBC. Significant differences in serum glucose, cholesterol and the liver function enzyme alkaline phosphatase were also detected. A systemic immune inflammation index (SII) and chronic inflammation index (CII) as measures of dynamic changes in adaptive and innate cells between inflammatory and non-inflammatory conditions were created with highly significant differences between CDM and HC. Th40 cells (CD4+CD40+ T cells) that are demonstrably pathogenic in mouse T1DM and able to differentiate diabetic from non-diabetic subjects in human T1DM were significantly expanded in peripheral blood mononuclear cells. Conclusions Based on each clinical finding, CDM can be categorized as an autoimmune condition. The association of significantly elevated Th40 cells in CDM when compared to HC or to osteoarthritis, a chronic but non-autoimmune disease, suggests peripheral blood Th40 cell numbers as a biomarker that reflects CDM chronic inflammation. The differences in SII and CII further underscore those findings.
Collapse
Affiliation(s)
- Gisela Vaitaitis
- Department of Medicine, The University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Tracy Webb
- Department of Clinical Sciences, The Colorado State University Veterinary Teaching Hospital, Fort Collins, CO, United States
| | - Craig Webb
- Department of Clinical Sciences, The Colorado State University Veterinary Teaching Hospital, Fort Collins, CO, United States
| | - Christina Sharkey
- Department of Clinical Sciences, Montclaire Animal Clinic, Denver, CO, United States
| | - Steve Sharkey
- Department of Clinical Sciences, Montclaire Animal Clinic, Denver, CO, United States
| | - Dan Waid
- Op-T, LLC, Fitzsimmons Innovation Bioscience, Aurora, CO, United States
| | - David H. Wagner
- Department of Medicine, The University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Op-T, LLC, Fitzsimmons Innovation Bioscience, Aurora, CO, United States
| |
Collapse
|
6
|
Zakarneh S, Khial Y, Tayyem R. Dietary Factors Associated with Glycemic Control in Children and Adolescents with Type 1 Diabetes. Curr Pediatr Rev 2024; 21:29-39. [PMID: 37608667 DOI: 10.2174/1573396320666230822095948] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/26/2023] [Accepted: 06/21/2023] [Indexed: 08/24/2023]
Abstract
Type 1 diabetes mellitus (T1DM) is a chronic metabolic disease that results from the autoimmune destruction of pancreatic β-cells, leading to insulin deficiency and hyperglycemia. It is a common chronic disease in childhood, with a prevalence of 1 in 300 children in the United States and an increasing incidence of 2-5% annually, worldwide. Managing T1DM requires regular insulin administration, adjustment of food intake and exercise, and a comprehensive understanding of nutrition. This review aims to explore the relationship between dietary factors, physical activity, obesity, genetics, and glycemic control in children and adolescents with T1DM. To conduct this review, we conducted a thorough search of publications from December 2004 through April 2022 using PubMed, ScienceDirect, and Embase databases. Key topics included obesity, children, adolescents, nutrients, carbohydrates, proteins, fat, water-soluble vitamins, fat-soluble vitamins, dietary patterns, fruits and vegetables, physical activity, genetics, food habits, carbohydrate count and environmental factors.
Collapse
Affiliation(s)
- Sara Zakarneh
- Department of Nutrition & Food Technology, Faculty of Agriculture, The University of Jordan, Amman, 11942, Jordan
| | - Yasmin Khial
- Department of Human Nutrition, College of Health Science, Qatar University, Doha, Qatar
| | - Reema Tayyem
- Department of Human Nutrition, College of Health Science, Qatar University, Doha, Qatar
| |
Collapse
|
7
|
Szczerbinski L, Florez JC. Precision medicine in diabetes - current trends and future directions. Is the future now? COMPREHENSIVE PRECISION MEDICINE 2024:458-483. [DOI: 10.1016/b978-0-12-824010-6.00021-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
8
|
Pineros-Rodriguez M, Richez L, Khadra A. Theoretical quantification of the polyvalent binding of nanoparticles coated with peptide-major histocompatibility complex to T cell receptor-nanoclusters. Math Biosci 2023; 358:108995. [PMID: 36924879 DOI: 10.1016/j.mbs.2023.108995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/17/2023]
Abstract
Nanoparticles (NPs) coated with peptide-major histocompatibility complexes (pMHCs) can be used as a therapy to treat autoimmune diseases. They do so by inducing the differentiation and expansion of disease-suppressing T regulatory type 1 (Tr1) cells by binding to their T cell receptors (TCRs) expressed as TCR-nanoclusters (TCRnc). Their efficacy can be controlled by adjusting NP size and number of pMHCs coated on them (referred to as valence). The binding of these NPs to TCRnc on T cells is thus polyvalent and occurs at three levels: the TCR-pMHC, NP-TCRnc and T cell levels. In this study, we explore how this polyvalent interaction is manifested and examine if it can facilitate T cell activation downstream. This is done by developing a multiscale biophysical model that takes into account the three levels of interactions and the geometrical complexity of the binding. Using the model, we quantify several key parameters associated with this interaction analytically and numerically, including the insertion probability that specifies the number of remaining pMHC binding sites in the contact area between T cells and NPs, the dwell time of interaction between NPs and TCRnc, carrying capacity of TCRnc, the distribution of covered and bound TCRs, and cooperativity in the binding of pMHCs within the contact area. The model was fit to previously published dose-response curves of interferon-γ obtained experimentally by stimulating a population of T cells with increasing concentrations of NPs at various valences and NP sizes. Exploring the parameter space of the model revealed that for an appropriate choice of the contact area angle, the model can produce moderate jumps between dose-response curves at low valences. This suggests that the geometry and kinetics of NP binding to TCRnc can act in synergy to facilitate T cell activation.
Collapse
Affiliation(s)
| | - Louis Richez
- Quantitative Life Sciences Program, McGill University, Montreal, Canada
| | - Anmar Khadra
- Department of Physiology, McGill University, Montreal, Canada.
| |
Collapse
|
9
|
Pilśniak A, Otto-Buczkowska E. Type 1 diabetes - What's new in prevention and therapeutic strategies? Pediatr Endocrinol Diabetes Metab 2023; 29:196-201. [PMID: 38031834 PMCID: PMC10679919 DOI: 10.5114/pedm.2023.132028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 04/10/2023] [Indexed: 12/01/2023]
Abstract
Type 1 diabetes (T1D) is an autoimmune disorder, and insulin deficiency is the result of b-cell dysfunction. Treatment of type 1 diabetes requires constant parenteral insulin administration, which can be very burdensome for the patient. Meticulous use of insulin therapy does not protect the patient against complications. Hence, the search for other methods of treatment as well as ways of preventing the onset of diabetes has been ongoing for a long time. The main obstacle in the implementation of the prevention task is the need to identify people at risk of developing diabetes before the start of autoimmunity. It seems that primary prevention is still unrealistic at the moment, because we do not know all the factors leading to the activation of autoimmunity processes. Research on the use of late secondary prevention in people who develop glucose tolerance disorders or in the early period after the onset of type 1 diabetes are at the most advanced stage. Gene therapy is another attempt at an alternative treatment and prevention of type 1 diabetes and still requires further research. Recent years have brought a lot of information about the nature of type 1 diabetes and the mechanisms leading to its development. However, it has not yet been established what factors decide about the initiation of autoimmunity and what determines the dynamics of these processes.
Collapse
Affiliation(s)
- Aleksandra Pilśniak
- Department of Internal Medicine, Autoimmune and Metabolic Diseases, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | | |
Collapse
|
10
|
Mendis T, Filipova B, Wang JJ, Pietropaolo M, Jackson MW. Affinity purification of serum-derived anti-IA-2 autoantibodies in type 1 diabetes using a novel MBP-IA-2 fusion protein. Biochem Biophys Rep 2022; 33:101413. [PMID: 36578528 PMCID: PMC9791830 DOI: 10.1016/j.bbrep.2022.101413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/05/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Autoantibodies targeting epitopes contained within the intracellular domain (IC) of the protein phosphatase-like islet antigen 2 (IA-2) are a common marker of autoimmune type 1 diabetes (T1D), however the isolation of genuine, serum derived anti-IA-2 autoantibodies has proven challenging due to a lack of suitable bioassays. In the current study, an ELISA format was developed for affinity purification of human anti-IA-2ic autoantibodies utilizing a fusion protein (FP) incorporating maltose binding protein and the full-length IA-2IC domain. Using a T1D patient cohort validated for anti-IA-2ic autoantibodies by commercial ELISA, we demonstrate the MBP-IA-2ic FP ELISA detects serum anti-IA-2IC autoantibodies from 3 of 9 IA-2 positive patients. Further to this, a multi-plate MBP-IA-2ic FP ELISA protocol specifically affinity purifies IgG enriched for anti-IA-2ic autoantibodies. Interestingly, serum derived autoantibodies immobilised on the MBP-IA-2ic FP ELISA demonstrate increased Kappa light chain usage when compared to the respective total IgG derived from donor patients, suggesting a clonally restricted repertoire of anti-IA-2ic autoantigen specific B plasma cells is responsible for autoantibodies detect by the MBP-IA-2ic FP ELISA. This study is the first to demonstrate the generation of specific, genuine human derived anti-IA-2ic autoantibodies, thereby facilitating further investigation into the origin and functional significance of IA-2 autoantibodies in T1D.
Collapse
Affiliation(s)
- Thilini Mendis
- Department of Immunology, Allergy & Arthritis, Flinders Medical Centre and Flinders University, Bedford Park, 5042, South Australia, Australia
| | - Barbora Filipova
- Department of Immunology, Allergy & Arthritis, Flinders Medical Centre and Flinders University, Bedford Park, 5042, South Australia, Australia
| | - Jing Jing Wang
- Department of Immunology, Allergy & Arthritis, Flinders Medical Centre and Flinders University, Bedford Park, 5042, South Australia, Australia
| | - Massimo Pietropaolo
- Dept of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Michael W. Jackson
- Department of Immunology, Allergy & Arthritis, Flinders Medical Centre and Flinders University, Bedford Park, 5042, South Australia, Australia,Corresponding author. Department of Immunology, Allergy and Arthritis, Flinders University, GPO Box 2100, Adelaide, South Australia, 5001, Australia.
| |
Collapse
|
11
|
Topi S, Bottalico L, Charitos IA, Colella M, Di Domenico M, Palmirotta R, Santacroce L. Biomolecular Mechanisms of Autoimmune Diseases and Their Relationship with the Resident Microbiota: Friend or Foe? PATHOPHYSIOLOGY 2022; 29:507-536. [PMID: 36136068 PMCID: PMC9505211 DOI: 10.3390/pathophysiology29030041] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 12/02/2022] Open
Abstract
The use of innovative approaches to elucidate the pathophysiological mechanisms of autoimmune diseases, as well as to further study of the factors which can have either a positive or negative effect on the course of the disease, is essential. In this line, the development of new molecular techniques and the creation of the Human Genome Program have allowed access to many more solutions to the difficulties that exist in the identification and characterization of the microbiome, as well as changes due to various factors. Such innovative technologies can rekindle older hypotheses, such as molecular mimicry, allowing us to move from hypothesis to theory and from correlation to causality, particularly regarding autoimmune diseases and dysbiosis of the microbiota. For example, Prevotella copri appears to have a strong association with rheumatoid arthritis; it is expected that this will be confirmed by several scientists, which, in turn, will make it possible to identify other mechanisms that may contribute to the pathophysiology of the disease. This article seeks to identify new clues regarding similar correlations between autoimmune activity and the human microbiota, particularly in relation to qualitative and quantitative microbial variations therein.
Collapse
Affiliation(s)
- Skender Topi
- Department of Clinical Disciplines, University of Elbasan, 3001 Elbasan, Albania
| | - Lucrezia Bottalico
- Department of Clinical Disciplines, University of Elbasan, 3001 Elbasan, Albania
| | | | - Marica Colella
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology , School of Medicine, University of Bari, 70124 Bari, Italy
| | - Marina Di Domenico
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Raffaele Palmirotta
- Interdisciplinary Department of Medicine, Section of Sciences and Technologies of Laboratory Medicine, School of Medicine, University of Bari, 70124 Bari, Italy
| | - Luigi Santacroce
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology , School of Medicine, University of Bari, 70124 Bari, Italy
| |
Collapse
|
12
|
Taka AM, Härkönen T, Vähäsalo P, Lempainen J, Veijola R, Ilonen J, Knip M. Heterogeneity in the presentation of clinical type 1 diabetes defined by the level of risk conferred by human leukocyte antigen class II genotypes. Pediatr Diabetes 2022; 23:219-227. [PMID: 34894365 DOI: 10.1111/pedi.13300] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/20/2021] [Accepted: 11/30/2021] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVES The association between human leukocyte antigen (HLA) class II genotypes and susceptibility to type 1 diabetes (T1D) is well established. This study aimed at examining whether there are differences in the presentation of T1D depending on the HLA genotype. RESEARCH DESIGN AND METHODS We divided the study participants (N = 5798) in the Finnish Pediatric Diabetes Register into two groups based on the T1D risk conferred by their HLA genotype (high and moderate-risk genotypes, Group 1 vs. other genotypes, Group 2). We then examined differences in clinical, metabolic, and immunological characteristics. Children included in the study were 0-14-year-old and diagnosed between January 2003 and December 2019. RESULTS Participants in Group 1 were younger at the time of diagnosis (P < 0.001) and had more frequently family members affected by T1D (P < 0.001). Diabetic ketoacidosis (DKA) was more frequent among participants in Group 2 (P = 0.014) who also had a longer duration of symptoms before diagnosis (P < 0.001) and higher hemoglobin A1c (P = 0.001) at diagnosis. The HLA genotype was not, however, directly related to the DKA frequency. The frequency of islet cell antibodies (P < 0.003), insulin autoantibodies (P < 0.001), and islet antigen 2 autoantibodies (P < 0.001) was higher in Group 1 whereas glutamic acid decarboxylase autoantibodies were more frequent (P < 0.001) in Group 2. Group 1 had more participants with multiple autoantibodies (P = 0.027) whereas antibody negativity was more frequent in Group 2 (P = 0.003). CONCLUSIONS These findings indicate disease heterogeneity in relation to both clinical disease presentation and humoral autoimmunity, in particular. This heterogeneity is, at least partly, defined by HLA Class II genotypes.
Collapse
Affiliation(s)
- Antti-Mathias Taka
- Pediatric Research Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Taina Härkönen
- Pediatric Research Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Paula Vähäsalo
- Department of Pediatrics, PEDEGO Research Unit, Medical Research Center, University of Oulu, Oulu, Finland.,Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Johanna Lempainen
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland.,Department of Pediatrics, University of Turku and Turku University Hospital, Turku, Finland.,Clinical Microbiology, Turku University Hospital, Turku, Finland
| | - Riitta Veijola
- Department of Pediatrics, PEDEGO Research Unit, Medical Research Center, University of Oulu, Oulu, Finland.,Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Jorma Ilonen
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Mikael Knip
- Pediatric Research Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Tampere Center for Child Health Research, Tampere University Hospital, Tampere, Finland
| | | |
Collapse
|
13
|
Saare L, Peet A, Tillmann V. Growth in Children with HLA-Conferred Susceptibility to Type 1 Diabetes. Endocrinol Metab (Seoul) 2022; 37:175-179. [PMID: 35255609 PMCID: PMC8901960 DOI: 10.3803/enm.2021.1262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/16/2021] [Indexed: 11/20/2022] Open
Abstract
The incidence of type 1 diabetes (T1D) is increasing throughout the world. This trend may be explained by the accelerator hypothesis. Our study investigated growth, its biochemical markers, and their associations with the development of diabetes-associated autoantibodies (DAAB) in 219 children with genetic risk for T1D. Subjects were divided into risk groups based on their human leukocyte antigen genotype. Children in the moderate- to high-risk group were significantly taller when corrected to mid-parental height and had a lower insulin-like growth factor 1 (IGF-1)/IGF-1 binding protein (IGFBP-3) molar ratio than those in the low-risk group (corrected height standard deviation score 0.22±0.93 vs. -0.04±0.84, P<0.05; molar ratio 0.199±0.035 vs. 0.211+0.039, P<0.05). Children with DAAB tended to be taller and to have a higher body mass index than those with no DAAB. Our results suggest that the accelerator hypothesis explaining the increasing incidence of T1D may not solely be dependent on environmental factors, but could be partially genetically determined.
Collapse
Affiliation(s)
- Liisa Saare
- Department of Pediatrics, Institute of Clinical Medicine, University of Tartu, Tartu,
Estonia
| | - Aleksandr Peet
- Department of Pediatrics, Institute of Clinical Medicine, University of Tartu, Tartu,
Estonia
- Children’s Clinic, Tartu University Hospital, Tartu,
Estonia
| | - Vallo Tillmann
- Department of Pediatrics, Institute of Clinical Medicine, University of Tartu, Tartu,
Estonia
- Children’s Clinic, Tartu University Hospital, Tartu,
Estonia
| |
Collapse
|
14
|
Liu QR, Aseer KR, Yao Q, Zhong X, Ghosh P, O’Connell JF, Egan JM. Anti-Inflammatory and Pro-Autophagy Effects of the Cannabinoid Receptor CB2R: Possibility of Modulation in Type 1 Diabetes. Front Pharmacol 2022; 12:809965. [PMID: 35115945 PMCID: PMC8804091 DOI: 10.3389/fphar.2021.809965] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/21/2021] [Indexed: 11/13/2022] Open
Abstract
Type 1 diabetes mellitus (T1DM) is an autoimmune disease resulting from loss of insulin-secreting β-cells in islets of Langerhans. The loss of β-cells is initiated when self-tolerance to β-cell-derived contents breaks down, which leads to T cell-mediated β-cell damage and, ultimately, β-cell apoptosis. Many investigations have demonstrated the positive effects of antagonizing cannabinoid receptor 1 (CB1R) in metabolic diseases such as fatty liver disease, obesity, and diabetes mellitus, but the role of cannabinoid receptor 2 (CB2R) in such diseases is relatively unknown. Activation of CB2R is known for its immunosuppressive roles in multiple sclerosis, rheumatoid arthritis, Crohn’s, celiac, and lupus diseases, and since autoimmune diseases can share common environmental and genetic factors, we propose CB2R specific agonists may also serve as disease modifiers in diabetes mellitus. The CNR2 gene, which encodes CB2R protein, is the result of a gene duplication of CNR1, which encodes CB1R protein. This ortholog evolved rapidly after transitioning from invertebrates to vertebrate hundreds of million years ago. Human specific CNR2 isoforms are induced by inflammation in pancreatic islets, and a CNR2 nonsynonymous SNP (Q63R) is associated with autoimmune diseases. We collected evidence from the literature and from our own studies demonstrating that CB2R is involved in regulating the inflammasome and especially release of the cytokine interleukin 1B (IL-1β). Furthermore, CB2R activation controls intracellular autophagy and may regulate secretion of extracellular vesicles from adipocytes that participate in recycling of lipid droplets, dysregulation of which induces chronic inflammation and obesity. CB2R activation may play a similar role in islets of Langerhans. Here, we will discuss future strategies to unravel what roles, if any, CB2R modifiers potentially play in T1DM.
Collapse
Affiliation(s)
- Qing-Rong Liu
- Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, MD, United States
- *Correspondence: Qing-Rong Liu, ; Josephine M. Egan,
| | - Kanikkai Raja Aseer
- Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, MD, United States
| | - Qin Yao
- Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, MD, United States
| | - Xiaoming Zhong
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL, United States
| | - Paritosh Ghosh
- Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, MD, United States
| | - Jennifer F. O’Connell
- Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, MD, United States
| | - Josephine M. Egan
- Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, MD, United States
- *Correspondence: Qing-Rong Liu, ; Josephine M. Egan,
| |
Collapse
|
15
|
Zhang M, Wang X, Wang R, Shu J, Zhi X, Gu C, Pu L, Cai C, Yang W, Lv L. Clinical study of autoantibodies in type 1 diabetes mellitus children with ketoacidosis or microalbuminuria. J Clin Lab Anal 2021; 36:e24164. [PMID: 34861060 PMCID: PMC8761425 DOI: 10.1002/jcla.24164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/20/2021] [Accepted: 11/23/2021] [Indexed: 11/27/2022] Open
Abstract
Aims The study aimed to investigate the value of autoantibodies in predicting the risk of ketoacidosis or microalbuminuria in children with type 1 diabetes mellitus. Methods Clinical data and laboratory indicators of 80 patients with type 1 diabetes admitted to the Department of Endocrinology in Tianjin Children's Hospital, from June 2017 to March 2019, were retrospectively analyzed. The patients were divided into two groups: diabetes without ketoacidosis group (n = 20) and diabetes with ketoacidosis group (n = 60). The differences in general data, laboratory test indexes, and autoantibodies between the two groups were analyzed. Finally, ROC curves and multivariate logistic regression analysis were used to explore the value of autoantibodies in patients with ketoacidosis or microalbuminuria. Results A total of 80 children with type 1 diabetes were assessed, including 35 boys and 45 girls, ranging in age from 10 months to 15 years. The concentration of GADA, IA2A, and ZnT8A was not statistically different between the two groups, but the positive rate of ZnT8A was statistically significant (p = 0.038) and had a diagnostic value for the occurrence of ketoacidosis (p = 0.025). ZnT8A‐positive patients had a higher titer of IA2A and a more frequent prevalence of GADA and IA2A than ZnT8A‐negative patients (p < 0.01). In multivariate logistic regression analyses, the presence of positive ZnT8A was associated with a higher risk of microalbuminuria independent of age, sex, and BMI (OR = 4.184 [95% CI 1.034~16.934], p = 0.045). Conclusions The positive ZnT8A had diagnostic value for ketoacidosis in children with type 1 diabetes and had the highest specificity among the three kinds of autoantibodies. Moreover, ZnT8A positivity was related to a higher titer of IA2A and more frequent occurrence of multiple diabetes‐related autoantibodies. Besides, the presence of positive ZnT8A was an independent risk factor of microalbuminuria in children with type 1 diabetes. Therefore, we can infer that positive ZnT8A may be related to ketoacidosis and microalbuminuria, accelerating the progression of T1DM.
Collapse
Affiliation(s)
- Mingying Zhang
- Department of Pediatric Endocrinology, Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, China
| | - Xinhui Wang
- Graduate College of Tianjin Medical University, Tianjin, China
| | - Rui Wang
- Graduate College of Tianjin Medical University, Tianjin, China
| | - Jianbo Shu
- Institute of Pediatric (Tianjin Key Laboratory of Birth Defects for Prevention and Treatment), Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, China
| | - Xiufang Zhi
- Graduate College of Tianjin Medical University, Tianjin, China
| | - Chunyu Gu
- Graduate College of Tianjin Medical University, Tianjin, China
| | - Linjie Pu
- Graduate College of Tianjin Medical University, Tianjin, China
| | - Chunquan Cai
- Institute of Pediatric (Tianjin Key Laboratory of Birth Defects for Prevention and Treatment), Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, China.,Department of Pediatric Neurosurgery, Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, China
| | - Wei Yang
- Tianjin Medical Device Evaluation and Inspection Center, Tianjin, China
| | - Ling Lv
- Department of Pediatric Endocrinology, Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, China
| |
Collapse
|
16
|
Renard E, Ikegami H, Daher Vianna AG, Pozzilli P, Brette S, Bosnyak Z, Lauand F, Peters A, Pilorget V, Jurišić‐Eržen D, Kesavadev J, Seufert J, Wilmot EG. The SAGE study: Global observational analysis of glycaemic control, hypoglycaemia and diabetes management in T1DM. Diabetes Metab Res Rev 2021; 37:e3430. [PMID: 33369842 PMCID: PMC8518876 DOI: 10.1002/dmrr.3430] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 10/20/2020] [Accepted: 12/10/2020] [Indexed: 12/18/2022]
Abstract
AIMS To describe glycaemic control and diabetes management in adults with type 1 diabetes (T1DM), in a real-life global setting. MATERIALS AND METHODS Study of Adults' GlycEmia (SAGE) was a multinational, multicentre, single visit, noninterventional, cross-sectional study in adult patients with T1DM. Data were collected at a single visit, analysed according to predefined age groups (26-44, 45-64 and ≥65 years) and reported across different regions. The primary endpoint was the proportion of participants achieving HbA1c less than 7.0 % in each age group. Secondary endpoints included incidence of hypoglycaemia, severe hypoglycaemia and severe hyperglycaemia leading to diabetic ketoacidosis (DKA) and therapeutic management of T1DM. RESULTS Of 3903 included participants, 3858 (98.8%) were eligible for the study. Overall, 24.3% (95% confidence interval [CI]: 22.9-25.6) of participants achieved the glycaemic target of HbA1c less than 7.0 %, with more participants achieving this target in the 26-44 years group (27.6% [95% CI: 25.5-29.8]). Target achievement was highest in Eastern and Western Europe, and lowest in the Middle East. The incidence of hypoglycaemia and of severe hyperglycaemia leading to DKA tended to decrease with age, and varied across regions. Age and regional differences were observed in therapeutic management, including types of device/insulin usage, frequency of insulin dose adjustment and technology usage. CONCLUSIONS Glycaemic control remains poor in adults with T1DM globally. Several areas of treatment may be optimised to improve outcomes, including supporting patient self-management of insulin therapy, increasing use of technologies such as CGM, and greater provision of healthcare support.
Collapse
Affiliation(s)
- Eric Renard
- Department of Endocrinology, Diabetes, NutritionMontpellier University HospitalINSERM Clinical Investigation Centre 1411Institute of Functional GenomicsCNRSINSERMUniversity of MontpellierMontpellierFrance
| | - Hiroshi Ikegami
- Department of Endocrinology, Metabolism and DiabetesKindai University Faculty of MedicineOsakaJapan
| | | | - Paolo Pozzilli
- Department of Diabetes and EndocrinologyUnit of Endocrinology and Diabetes, Campus Bio‐Medico University of RomeItaly
- Centre of Immunobiology, Barts and the London School of Medicine and Dentistry, Queen Mary University of LondonUK
| | | | | | | | - Anne Peters
- Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | | | - Dubravka Jurišić‐Eržen
- Department of Endocrinology and DiabetologyFaculty of MedicineUniversity Hospital CentreUniversity of RijekaRijekaCroatia
| | | | - Jochen Seufert
- Faculty of MedicineUniversity of FreiburgFreiburgGermany
| | - Emma G. Wilmot
- Diabetes DepartmentUniversity Hospitals of Derby and BurtonDerbyUK
| |
Collapse
|
17
|
Isaacs SR, Foskett DB, Maxwell AJ, Ward EJ, Faulkner CL, Luo JYX, Rawlinson WD, Craig ME, Kim KW. Viruses and Type 1 Diabetes: From Enteroviruses to the Virome. Microorganisms 2021; 9:microorganisms9071519. [PMID: 34361954 PMCID: PMC8306446 DOI: 10.3390/microorganisms9071519] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 12/15/2022] Open
Abstract
For over a century, viruses have left a long trail of evidence implicating them as frequent suspects in the development of type 1 diabetes. Through vigorous interrogation of viral infections in individuals with islet autoimmunity and type 1 diabetes using serological and molecular virus detection methods, as well as mechanistic studies of virus-infected human pancreatic β-cells, the prime suspects have been narrowed down to predominantly human enteroviruses. Here, we provide a comprehensive overview of evidence supporting the hypothesised role of enteroviruses in the development of islet autoimmunity and type 1 diabetes. We also discuss concerns over the historical focus and investigation bias toward enteroviruses and summarise current unbiased efforts aimed at characterising the complete population of viruses (the “virome”) contributing early in life to the development of islet autoimmunity and type 1 diabetes. Finally, we review the range of vaccine and antiviral drug candidates currently being evaluated in clinical trials for the prevention and potential treatment of type 1 diabetes.
Collapse
Affiliation(s)
- Sonia R. Isaacs
- Faculty of Medicine and Health, School of Women’s and Children’s Health, University of New South Wales, Sydney, NSW 2031, Australia; (S.R.I.); (D.B.F.); (A.J.M.); (E.J.W.); (C.L.F.); (J.Y.X.L.); (W.D.R.); (M.E.C.)
- Virology Research Laboratory, Serology and Virology Division, NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW 2031, Australia
| | - Dylan B. Foskett
- Faculty of Medicine and Health, School of Women’s and Children’s Health, University of New South Wales, Sydney, NSW 2031, Australia; (S.R.I.); (D.B.F.); (A.J.M.); (E.J.W.); (C.L.F.); (J.Y.X.L.); (W.D.R.); (M.E.C.)
- Virology Research Laboratory, Serology and Virology Division, NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW 2031, Australia
| | - Anna J. Maxwell
- Faculty of Medicine and Health, School of Women’s and Children’s Health, University of New South Wales, Sydney, NSW 2031, Australia; (S.R.I.); (D.B.F.); (A.J.M.); (E.J.W.); (C.L.F.); (J.Y.X.L.); (W.D.R.); (M.E.C.)
- Virology Research Laboratory, Serology and Virology Division, NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW 2031, Australia
| | - Emily J. Ward
- Faculty of Medicine and Health, School of Women’s and Children’s Health, University of New South Wales, Sydney, NSW 2031, Australia; (S.R.I.); (D.B.F.); (A.J.M.); (E.J.W.); (C.L.F.); (J.Y.X.L.); (W.D.R.); (M.E.C.)
- Faculty of Medicine and Health, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Clare L. Faulkner
- Faculty of Medicine and Health, School of Women’s and Children’s Health, University of New South Wales, Sydney, NSW 2031, Australia; (S.R.I.); (D.B.F.); (A.J.M.); (E.J.W.); (C.L.F.); (J.Y.X.L.); (W.D.R.); (M.E.C.)
- Virology Research Laboratory, Serology and Virology Division, NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW 2031, Australia
| | - Jessica Y. X. Luo
- Faculty of Medicine and Health, School of Women’s and Children’s Health, University of New South Wales, Sydney, NSW 2031, Australia; (S.R.I.); (D.B.F.); (A.J.M.); (E.J.W.); (C.L.F.); (J.Y.X.L.); (W.D.R.); (M.E.C.)
- Virology Research Laboratory, Serology and Virology Division, NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW 2031, Australia
| | - William D. Rawlinson
- Faculty of Medicine and Health, School of Women’s and Children’s Health, University of New South Wales, Sydney, NSW 2031, Australia; (S.R.I.); (D.B.F.); (A.J.M.); (E.J.W.); (C.L.F.); (J.Y.X.L.); (W.D.R.); (M.E.C.)
- Virology Research Laboratory, Serology and Virology Division, NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW 2031, Australia
- Faculty of Medicine and Health, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
- Faculty of Science, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Maria E. Craig
- Faculty of Medicine and Health, School of Women’s and Children’s Health, University of New South Wales, Sydney, NSW 2031, Australia; (S.R.I.); (D.B.F.); (A.J.M.); (E.J.W.); (C.L.F.); (J.Y.X.L.); (W.D.R.); (M.E.C.)
- Virology Research Laboratory, Serology and Virology Division, NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW 2031, Australia
- Institute of Endocrinology and Diabetes, Children’s Hospital at Westmead, Sydney, NSW 2145, Australia
- Faculty of Medicine and Health, Discipline of Child and Adolescent Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Ki Wook Kim
- Faculty of Medicine and Health, School of Women’s and Children’s Health, University of New South Wales, Sydney, NSW 2031, Australia; (S.R.I.); (D.B.F.); (A.J.M.); (E.J.W.); (C.L.F.); (J.Y.X.L.); (W.D.R.); (M.E.C.)
- Virology Research Laboratory, Serology and Virology Division, NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW 2031, Australia
- Correspondence: ; Tel.: +61-2-9382-9096
| |
Collapse
|
18
|
Odularu AT, Ajibade PA. Challenge of diabetes mellitus and researchers’ contributions to its control. OPEN CHEM 2021. [DOI: 10.1515/chem-2020-0153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
The aim of this review study was to assess the past significant events on diabetes mellitus, transformations that took place over the years in the medical records of treatment, countries involved, and the researchers who brought about the revolutions. This study used the content analysis to report the existence of diabetes mellitus and the treatments provided by researchers to control it. The focus was mainly on three main types of diabetes (type 1, type 2, and type 3 diabetes). Ethical consideration has also helped to boost diabetic studies globally. The research has a history path from pharmaceuticals of organic-based drugs to metal-based drugs with their nanoparticles in addition to the impacts of nanomedicine, biosensors, and telemedicine. Ongoing and future studies in alternative medicine such as vanadium nanoparticles (metal nanoparticles) are promising.
Collapse
Affiliation(s)
- Ayodele T. Odularu
- Department of Chemistry, University of Fort Hare , Private Bag X1314 , Alice 5700 , Eastern Cape , South Africa
| | - Peter A. Ajibade
- Department of Chemistry, University of KwaZulu-Natal , Pietermaritzburg Campus , Scottsville 3209 , South Africa
| |
Collapse
|
19
|
Erendor F, Sahin EO, Sanlioglu AD, Balci MK, Griffith TS, Sanlioglu S. Lentiviral gene therapy vectors encoding VIP suppressed diabetes-related inflammation and augmented pancreatic beta-cell proliferation. Gene Ther 2021; 28:130-141. [PMID: 32733091 DOI: 10.1038/s41434-020-0183-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/16/2020] [Accepted: 07/22/2020] [Indexed: 02/06/2023]
Abstract
Type 1 diabetes (T1DM) is an autoimmune condition in which the immune system attacks and destroys insulin-producing beta cells in the pancreas leading to hyperglycemia. Vasoactive intestinal peptide (VIP) manifests insulinotropic and anti-inflammatory properties, which are useful for the treatment of diabetes. Because of its limited half-life due to DPP-4-mediated degradation, constant infusions or multiple injections are needed to observe any therapeutic benefit. Since gene therapy has the potential to treat genetic diseases, an HIV-based lentiviral vector carrying VIP gene (LentiVIP) was generated to provide a stable VIP gene expression in vivo. The therapeutic efficacy of LentiVIP was tested in a multiple low-dose STZ-induced animal model of T1DM. LentiVIP delivery into diabetic animals reduced hyperglycemia, improved glucose tolerance, and prevented weight loss. Also, a decrease in serum CRP levels, and serum oxidant capacity, but an increase in antioxidant capacity were observed in LentiVIP-treated animals. Restoration of islet cell mass was correlated with an increase in pancreatic beta-cell proliferation. These beneficial results suggest the therapeutic effect of LentiVIP is due to the repression of diabetes-induced inflammation, its insulinotropic properties, and VIP-induced beta-cell proliferation.
Collapse
Affiliation(s)
- Fulya Erendor
- Department of Gene and Cell Therapy, Akdeniz University, Faculty of Medicine, 07058, Antalya, Turkey
| | - Elif Ozgecan Sahin
- Department of Gene and Cell Therapy, Akdeniz University, Faculty of Medicine, 07058, Antalya, Turkey
| | - Ahter D Sanlioglu
- Department of Gene and Cell Therapy, Akdeniz University, Faculty of Medicine, 07058, Antalya, Turkey
| | - Mustafa Kemal Balci
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Akdeniz University Faculty of Medicine, 07058, Antalya, Turkey
| | - Thomas S Griffith
- Department of Urology, University of Minnesota, School of Medicine, Minneapolis, MN, 55455, USA
| | - Salih Sanlioglu
- Department of Gene and Cell Therapy, Akdeniz University, Faculty of Medicine, 07058, Antalya, Turkey.
| |
Collapse
|
20
|
Li Y, Liu B, Anand V, Dunne JL, Lundgren M, Ng K, Rewers M, Veijola R, Ghalwash M. Predicting Type 1 Diabetes Onset using Novel Survival Analysis with Biomarker Ontology. AMIA ... ANNUAL SYMPOSIUM PROCEEDINGS. AMIA SYMPOSIUM 2021; 2020:727-736. [PMID: 33936447 PMCID: PMC8075541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disease that affects about 1 in 300 children and up to 1 in 100 adults during their life-time1. Improvements in early prediction of T1D onset may help prevent diagnosis for diabetic ketoacidosis, a serious complication often associated with a missed or delayed T1D diagnosis. In addition to genetic factors, progression to T1D is strongly associated with immunologic factors that can be measured during clinical visits. We developed a T1D-specific ontology that captures the dynamic patterns of these biomarkers and used it together with a survival model, RankSvx, proposed in our prior work2. We applied this approach to a T1D dataset harmonized from three birth cohort studies from the United States, Finland, and Sweden. Results show that the dynamic biomarker patterns captured in the proposed ontology are able to improve prediction performance (in concordance index) by 5.3%, 3.3%, 2.8%, and 1.0% over baseline for 3, 6, 9, and 12 month duration windows, respectively.
Collapse
Affiliation(s)
| | | | - Vibha Anand
- IBM Research, MA, USA
- University of Oulu, Oulu, Finland
| | | | - Markus Lundgren
- Department of Clinical Sciences, Lund University, Malmo, Sweden
| | | | - Marian Rewers
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, CO, USA
| | | | | |
Collapse
|
21
|
Pang H, Luo S, Xiao Y, Xia Y, Li X, Huang G, Xie Z, Zhou Z. Emerging Roles of Exosomes in T1DM. Front Immunol 2020; 11:593348. [PMID: 33324409 PMCID: PMC7725901 DOI: 10.3389/fimmu.2020.593348] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/02/2020] [Indexed: 12/17/2022] Open
Abstract
Type 1 diabetes mellitus (T1DM) is a complex autoimmune disorder that mainly affects children and adolescents. The elevated blood glucose level of patients with T1DM results from absolute insulin deficiency and leads to hyperglycemia and the development of life-threatening diabetic complications. Although great efforts have been made to elucidate the pathogenesis of this disease, the precise underlying mechanisms are still obscure. Emerging evidence indicates that small extracellular vesicles, namely, exosomes, take part in intercellular communication and regulate interorgan crosstalk. More importantly, many findings suggest that exosomes and their cargo are associated with the development of T1DM. Therefore, a deeper understanding of exosomes is beneficial for further elucidating the pathogenic process of T1DM. Exosomes are promising biomarkers for evaluating the risk of developingty T1DM, monitoring the disease state and predicting related complications because their number and composition can reflect the status of their parent cells. Additionally, since exosomes are natural carriers of functional proteins, RNA and DNA, they can be used as therapeutic tools to deliver these molecules and drugs. In this review, we briefly introduce the current understanding of exosomes. Next, we focus on the relationship between exosomes and T1DM from three perspectives, i.e., the pathogenic role of exosomes in T1DM, exosomes as novel biomarkers of T1DM and exosomes as therapeutic tools for T1DM.
Collapse
Affiliation(s)
- Haipeng Pang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Shuoming Luo
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yang Xiao
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ying Xia
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xia Li
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Gan Huang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhiguo Xie
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
22
|
Redondo MJ, Hagopian WA, Oram R, Steck AK, Vehik K, Weedon M, Balasubramanyam A, Dabelea D. The clinical consequences of heterogeneity within and between different diabetes types. Diabetologia 2020; 63:2040-2048. [PMID: 32894314 PMCID: PMC8498993 DOI: 10.1007/s00125-020-05211-7] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 05/26/2020] [Indexed: 12/26/2022]
Abstract
Advances in molecular methods and the ability to share large population-based datasets are uncovering heterogeneity within diabetes types, and some commonalities between types. Within type 1 diabetes, endotypes have been discovered based on demographic (e.g. age at diagnosis, race/ethnicity), genetic, immunological, histopathological, metabolic and/or clinical course characteristics, with implications for disease prediction, prevention, diagnosis and treatment. In type 2 diabetes, the relative contributions of insulin resistance and beta cell dysfunction are heterogeneous and relate to demographics, genetics and clinical characteristics, with substantial interaction from environmental exposures. Investigators have proposed approaches that vary from simple to complex in combining these data to identify type 2 diabetes clusters relevant to prognosis and treatment. Advances in pharmacogenetics and pharmacodynamics are also improving treatment. Monogenic diabetes is a prime example of how understanding heterogeneity within diabetes types can lead to precision medicine, since phenotype and treatment are affected by which gene is mutated. Heterogeneity also blurs the classic distinctions between diabetes types, and has led to the definition of additional categories, such as latent autoimmune diabetes in adults, type 1.5 diabetes and ketosis-prone diabetes. Furthermore, monogenic diabetes shares many features with type 1 and type 2 diabetes, which make diagnosis difficult. These challenges to the current classification framework in adult and paediatric diabetes require new approaches. The 'palette model' and the 'threshold hypothesis' can be combined to help explain the heterogeneity within and between diabetes types. Leveraging such approaches for therapeutic benefit will be an important next step for precision medicine in diabetes. Graphical abstract.
Collapse
MESH Headings
- Age of Onset
- Autoimmunity/genetics
- Autoimmunity/immunology
- Diabetes Mellitus/genetics
- Diabetes Mellitus/immunology
- Diabetes Mellitus/metabolism
- Diabetes Mellitus/therapy
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/therapy
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/immunology
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/therapy
- Gene-Environment Interaction
- Genetic Predisposition to Disease
- Health Services Accessibility
- Humans
- Infant, Newborn
- Infant, Newborn, Diseases/genetics
- Infant, Newborn, Diseases/immunology
- Infant, Newborn, Diseases/metabolism
- Infant, Newborn, Diseases/therapy
- Inflammation/genetics
- Inflammation/immunology
- Insulin Resistance
- Latent Autoimmune Diabetes in Adults/genetics
- Latent Autoimmune Diabetes in Adults/immunology
- Latent Autoimmune Diabetes in Adults/metabolism
- Latent Autoimmune Diabetes in Adults/therapy
Collapse
Affiliation(s)
- Maria J Redondo
- Section of Diabetes and Endocrinology, Texas Children's Hospital, Baylor College of Medicine, 6701 Fannin Street, MWT 10th floor, Houston, TX, 77030, USA.
| | | | - Richard Oram
- University of Exeter Medical School, Exeter, UK
- Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Andrea K Steck
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kendra Vehik
- Health Informatics Institute, University of South Florida, Tampa, FL, USA
| | | | | | - Dana Dabelea
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
23
|
Abstract
INTRODUCTION 'Prediabetes' is a condition of elevated glucose not attaining the established criteria for a diagnosis of diabetes. The United States Diabetes Prevention Program (DPP) began in 1996 and was the iconic study of prediabetes. In that study, after 3 years, the risk of reaching the numerical criteria of diabetes was reduced by 58% by intensive emphasis on diet and exercise whereas treatment with metformin achieved a lesser reduction of 31%. The DPP was widely heralded as suggesting that lifestyle change was superior to pharmacologic therapy in the prediabetes population. This conclusion may be overreaching in terms of the long-term results of that study. AREAS COVERED The author reviews the subsequent pharmacologic efforts to prevent diabetes in this population. He reviews the existing literature for pharmacologic treatment of prediabetes using Pubmed.gov using the keywords of prediabetes, impaired fasting glucose and impaired glucose tolerance. EXPERT OPINION Prediabetes is primarily related to being overweight. Obesity has health consequences going beyond glucose elevation. The approach to prediabetes should be primarily by pursuing weight loss with therapeutic agents such as GLP-1 receptor agonists and SGLT2 inhibitors.
Collapse
Affiliation(s)
- Marc Rendell
- The Rose Salter Medical Research Foundation , Newport Coast, CA, USA.,The Association of Diabetes Investigators , Newport Coast, CA, USA
| |
Collapse
|
24
|
LncRNA MALAT1 induces the dysfunction of β cells via reducing the histone acetylation of the PDX-1 promoter in type 1 diabetes. Exp Mol Pathol 2020; 114:104432. [DOI: 10.1016/j.yexmp.2020.104432] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 02/27/2020] [Accepted: 03/28/2020] [Indexed: 12/14/2022]
|
25
|
Wang X, Wang F, Wu H, Chen X, Xie R, Chen T, Sun H, Zhang D, Chen L. Detection and analysis of glucose metabolism-related genes in childhood diabetes using targeted next-generation sequencing: In pediatric population-a hospital-based study. Exp Ther Med 2020; 19:3398-3404. [PMID: 32266039 DOI: 10.3892/etm.2020.8579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 02/04/2020] [Indexed: 02/07/2023] Open
Abstract
The aim of the present study was to explore the genetic causes of antibody-negative diabetes and investigate its characteristics. A total of 64 patients with new-onset diabetes (>6 m, <16 y) were identified and their initial clinical characteristics were analyzed. Of which, 32 cases with autoantibody-negative diabetes (male, 16 cases; female, 16 cases) were screened for auto-antibodies, including islet cell antibody, glutamic acid decarboxylase antibody and islet antigen-2, which were negative, and fasting C-peptide was ≥0.3 ng/ml. Peripheral blood DNA was extracted from the subjects and their parents for high-throughput sequencing of glucose metabolism-related genes. The group with the pathogenic variation was used as the experimental group. The control group comprised 32 cases of type 1 diabetes (T1D). Their baseline clinical characteristics were determined and statistically analyzed. Out of the 32 antibody-negative diabetes cases, 21 had possible related mutations. There were 2 HNF1B missense mutations, 1 GCK missense mutation and 1 de novo KCNJ11 missense mutation. GCGR c.118G>A p.G40S was present in patients with type 2 DM (T2DM); the locus is associated with T2DM susceptibility in China. An LIPC frameshift mutation was identified, which had not been previously reported; the gene was found to markedly affect protein function and be associated with glucose and lipid metabolism. It was concluded that children with antibody-negative T1D have monogenic diabetes. The present findings shed light on the etiology and mechanism of antibody-negative diabetes, which will enable the comprehensive analysis of antibody-negative diabetes genotypes and phenotypes and further help improved precision treatment.
Collapse
Affiliation(s)
- Xiaoyan Wang
- Department of Endocrinology, Genetics and Metabolism, Children's Hospital of Soochow University, Suzhou, Jiangsu 215003, P.R. China
| | - Fengyun Wang
- Department of Endocrinology, Genetics and Metabolism, Children's Hospital of Soochow University, Suzhou, Jiangsu 215003, P.R. China
| | - Haiying Wu
- Department of Endocrinology, Genetics and Metabolism, Children's Hospital of Soochow University, Suzhou, Jiangsu 215003, P.R. China
| | - Xiuli Chen
- Department of Endocrinology, Genetics and Metabolism, Children's Hospital of Soochow University, Suzhou, Jiangsu 215003, P.R. China
| | - Rongrong Xie
- Department of Endocrinology, Genetics and Metabolism, Children's Hospital of Soochow University, Suzhou, Jiangsu 215003, P.R. China
| | - Ting Chen
- Department of Endocrinology, Genetics and Metabolism, Children's Hospital of Soochow University, Suzhou, Jiangsu 215003, P.R. China
| | - Hui Sun
- Department of Endocrinology, Genetics and Metabolism, Children's Hospital of Soochow University, Suzhou, Jiangsu 215003, P.R. China
| | - Dandan Zhang
- Department of Endocrinology, Genetics and Metabolism, Children's Hospital of Soochow University, Suzhou, Jiangsu 215003, P.R. China
| | - Linqi Chen
- Department of Endocrinology, Genetics and Metabolism, Children's Hospital of Soochow University, Suzhou, Jiangsu 215003, P.R. China
| |
Collapse
|
26
|
Bhatty A, Baig S, Fawwad A, Rubab ZE, Shahid MA, Waris N. Association of Zinc Transporter-8 Autoantibody (ZnT8A) with Type 1 Diabetes Mellitus. Cureus 2020; 12:e7263. [PMID: 32292675 PMCID: PMC7153815 DOI: 10.7759/cureus.7263] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Zinc transporter 8 autoantibody (ZnT8A), discovered through bioinformatics, is identified as another major biomarker for type 1 diabetes mellitus (T1DM), expanding the panel of diagnostic autoantibodies. The absence of standard autoantibodies in T1DM patients and the presence of ZnT8A in individuals before disease development has led the researchers to evaluate ZnT8A to gather information about the frequency and its association. Therefore, we aim to find out the concentration of ZnT8A and its association with T1DM. METHODS A case-control study with 25 type 1 diabetes mellitus patients and 25 first-degree relatives of cases as controls was conducted at Ziauddin University in collaboration with the Baqai Institute of Diabetology and Endocrinology (BIDE), Karachi. Demographic data were collected from patients on a standard questionnaire. Blood samples were collected, after approval from Ziauddin Ethics Review Committee, from subjects and serum was separated to estimate ZnT8A by using sandwich enzyme-linked immunosorbent assay (ELISA). RESULTS The mean age at diagnosis of T1DM patients was 13.40±5.05 years, and the duration of diabetes was 7.74±5.85 years. The frequency of ZnT8A was found higher in cases (19 (76%)) compared to controls (6 (24%)). ZnT8A concentrations were significantly higher in cases (13.82 ng/ml) compared to the controls (8.78 ng/ml; p= 0.024). The cut-off value of 9 ng/ml was selected for measuring sensitivity, specificity, and accuracy, which were determined as 76%, 76%, and 76%, respectively. CONCLUSIONS ZnT8A was found significantly associated with T1DM. Subjects with ZnT8A values ≥ 9 ng/ml are 10 times more at risk to develop T1DM (p = 0.000).
Collapse
Affiliation(s)
| | - Saeeda Baig
- Biochemistry, Ziauddin University, Karachi, PAK
| | - Asher Fawwad
- Medicine, Baqai Institute of Diabetology and Endocrinology, Baqai Medical University, Karachi, PAK
| | - Zil E Rubab
- Biochemistry, Ziauddin University, Karachi, PAK
| | | | - Nazish Waris
- Research, Baqai Institute of Diabetology and Endocrinology, Karachi, PAK
| |
Collapse
|
27
|
Primavera M, Giannini C, Chiarelli F. Prediction and Prevention of Type 1 Diabetes. Front Endocrinol (Lausanne) 2020; 11:248. [PMID: 32670194 PMCID: PMC7326081 DOI: 10.3389/fendo.2020.00248] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/03/2020] [Indexed: 12/19/2022] Open
Abstract
Type 1 Diabetes (T1D) is one of the most common chronic autoimmune diseases in children. The disease is characterized by the destruction of beta cells, leading to hyperglycemia, and to a lifelong insulin-dependent state. Although several studies in the last decades have added relevant insights, the complex pathogenesis of the disease is not yet completely understood. Recent studies have been focused on several factors, including family history and genetic predisposition (HLA and non-HLA genes) as well as environmental and metabolic biomarkers, with the aim of predicting the development and progression of T1D. Once a child becomes symptomatic, beta cell mass has already reached a critical threshold (usually a residual of 20-30% of normal amounts), thus representing only the very late phase of the disease. In particular, this final stage follows two preceding asymptomatic stages, which have been precisely identified. In view of the long natural history and complex pathogenesis of the disease, many strategies may be proposed for primary, secondary, and tertiary prevention. Strategies of primary prevention aim to prevent the onset of autoimmunity against beta cells in asymptomatic individuals at high risk for T1D. In addition, the availability of novel humoral and metabolic biomarkers that are able to characterize subjects at high risk of progression, have stimulated several studies on secondary and tertiary prevention, aimed to preserve residual beta cell destruction and/or to prolong the remission phase after the onset of T1D. This review focuses on the major current knowledge on prediction and prevention of T1D in children.
Collapse
|
28
|
Abstract
Diabetes mellitus (DM) is the most common endocrine and metabolic disease caused by absolute or insufficient insulin secretion. Under the context of an aging population worldwide, the number of diabetic patients is increasing year by year. Most patients with diabetes have multiple complications that severely threaten their survival and living quality. DM is mainly divided into type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM). T1DM is caused by absolute lack of insulin secretion, so the current treatment for T1DM patients is exogenous insulin replacement therapy. At present, exercise therapy has been widely recognized in the prevention and treatment of diabetes, and regular aerobic exercise has become an important part of T1DM treatment. At the same time, exercise therapy is also used in conjunction with other treatments in the prevention and treatment of diabetic complications. However, for patients with T1DM, exercise still has the risk of hypoglycemia or hyperglycemia. T1DM Patients and specialist physician need to fully understand the effects of exercise on metabolism and implement individualized exercise programs. This chapter reviews the related content of exercise and T1DM.
Collapse
Affiliation(s)
- Xiya Lu
- Division of Gastroenterology and Hepatology, Digestive Disease Institute, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Cuimei Zhao
- Department of Cardiology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
29
|
Karaoglan M. Tip 1 Diabetes Mellitus Tanılı Türk Çocuklarında Sınıf I ve Sınıf II HLA Allel Sıklığı. ACTA ACUST UNITED AC 2019. [DOI: 10.12956/tchd.592466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
30
|
Luan X, Tian X, Zhang H, Huang R, Li N, Chen P, Wang R. Exercise as a prescription for patients with various diseases. JOURNAL OF SPORT AND HEALTH SCIENCE 2019; 8:422-441. [PMID: 31534817 PMCID: PMC6742679 DOI: 10.1016/j.jshs.2019.04.002] [Citation(s) in RCA: 243] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/12/2019] [Accepted: 03/01/2019] [Indexed: 05/18/2023]
Abstract
A growing understanding of the benefits of exercise over the past few decades has prompted researchers to take an interest in the possibilities of exercise therapy. Because each sport has its own set of characteristics and physiological complications that tend to occur during exercise training, the effects and underlying mechanisms of exercise remain unclear. Thus, the first step in probing the effects of exercise on different diseases is the selection of an optimal exercise protocol. This review summarizes the latest exercise prescription treatments for 26 different diseases: musculoskeletal system diseases (low back pain, tendon injury, osteoporosis, osteoarthritis, and hip fracture), metabolic system diseases (obesity, type 2 diabetes, type 1 diabetes, and nonalcoholic fatty liver disease), cardio-cerebral vascular system diseases (coronary artery disease, stroke, and chronic heart failure), nervous system diseases (Parkinson's disease, Huntington's disease, Alzheimer's disease, depression, and anxiety disorders), respiratory system diseases (chronic obstructive pulmonary disease, interstitial lung disease, and after lung transplantation), urinary system diseases (chronic kidney disease and after kidney transplantation), and cancers (breast cancer, colon cancer, prostate cancer, and lung cancer). Each exercise prescription is displayed in a corresponding table. The recommended type, intensity, and frequency of exercise prescriptions are summarized, and the effects of exercise therapy on the prevention and rehabilitation of different diseases are discussed.
Collapse
Affiliation(s)
- Xin Luan
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Xiangyang Tian
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Haixin Zhang
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
- Department of Sport, Huainan Normal University, Huainan 232038, China
| | - Rui Huang
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Na Li
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Peijie Chen
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
- Corresponding authors.
| | - Ru Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
- Corresponding authors.
| |
Collapse
|
31
|
Abstract
Type 1 diabetes mellitus (T1DM) is characterized by autoimmune destruction of pancreatic beta-cells in genetically predisposed individuals, eventually resulting in severe insulin deficiency. It is the most common form of diabetes in children and adolescents. Genetic susceptibility plays a crucial role in development of T1DM. The human leukocyte antigen complex plays a key role in the pathogenesis of T1DM. Furthermore, genome-wide association studies and linkage analysis have recently made a significant contribution to current knowledge relative to the impact of genetics on T1DM development and progression. This review focuses on current knowledge of genetics as a pathogenesis for T1DM. It also discusses mechanisms by which genes influence the risk of developing T1DM as well as the clinical and research applications of genetic risk scores in T1DM.
Collapse
Affiliation(s)
- Hae Sang Lee
- Department of Pediatrics, Ajou University Hospital, Ajou University School of Medicine, Suwon, Korea,Address for correspondence: Hae Sang Lee, MD, PhD Department of Pediatrics, Ajou University Hospital, Ajou University School of Medicine, 164 World cupro, Yeongtong-gu, Suwon 16499, Korea Tel: +82-31-219-5166 Fax: +82-31-219-5169 E-mail:
| | - Jin Soon Hwang
- Department of Pediatrics, Ajou University Hospital, Ajou University School of Medicine, Suwon, Korea
| |
Collapse
|
32
|
Chiarelli F, Giannini C, Primavera M. Prediction and prevention of type 1 diabetes in children. Clin Pediatr Endocrinol 2019; 28:43-57. [PMID: 31384096 PMCID: PMC6646239 DOI: 10.1297/cpe.28.43] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 05/02/2019] [Indexed: 12/14/2022] Open
Abstract
Type 1 diabetes (T1D) is a chronic T-cell mediated autoimmune disease characterized by
destruction of beta cells. Although new data have better defined the complex etiology
underling the interrelation of genetic and environmental factors in the natural history of
T1D, relevant pieces of the puzzle still are missing. Genetic predisposition is mainly
associated to some histocompatibility leukocyte antigen (HLA) alleles; however, recent
data suggest that new as well as still unknown genes might better define the complex
multigenetic risk of the disease. In addition to the genetic effects, the concordance in
familial aggregation in T1D indicates a pivotal role of environmental factors in the
course of the disease, facilitating autoantibodies production. JDRF has recently proposed
a new early stage of T1D according to which the detection of two or more autoantibodies in
the blood, might describe those children at increased risk of developing T1D during the
following years. In contrast to the improvements reached by prediction models, to date
primary, secondary and tertiary prevention have still failed to achieve a safe and
efficacious intervention strategies. Anyway, the most recent progresses in this field pave
the way for future studies, with the aim of preventing T1D in children.
Collapse
Affiliation(s)
| | - Cosimo Giannini
- Department of Paediatrics, University of Chieti, Chieti, Italy
| | | |
Collapse
|
33
|
Jacobsen LM, Larsson HE, Tamura RN, Vehik K, Clasen J, Sosenko J, Hagopian WA, She JX, Steck AK, Rewers M, Simell O, Toppari J, Veijola R, Ziegler AG, Krischer JP, Akolkar B, Haller MJ, TEDDY Study Group. Predicting progression to type 1 diabetes from ages 3 to 6 in islet autoantibody positive TEDDY children. Pediatr Diabetes 2019; 20:263-270. [PMID: 30628751 PMCID: PMC6456374 DOI: 10.1111/pedi.12812] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 11/11/2018] [Accepted: 01/04/2019] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE The capacity to precisely predict progression to type 1 diabetes (T1D) in young children over a short time span is an unmet need. We sought to develop a risk algorithm to predict progression in children with high-risk human leukocyte antigen (HLA) genes followed in The Environmental Determinants of Diabetes in the Young (TEDDY) study. METHODS Logistic regression and 4-fold cross-validation examined 38 candidate predictors of risk from clinical, immunologic, metabolic, and genetic data. TEDDY subjects with at least one persistent, confirmed autoantibody at age 3 were analyzed with progression to T1D by age 6 serving as the primary endpoint. The logistic regression prediction model was compared to two non-statistical predictors, multiple autoantibody status, and presence of insulinoma-associated-2 autoantibodies (IA-2A). RESULTS A total of 363 subjects had at least one autoantibody at age 3. Twenty-one percent of subjects developed T1D by age 6. Logistic regression modeling identified 5 significant predictors - IA-2A status, hemoglobin A1c, body mass index Z-score, single-nucleotide polymorphism rs12708716_G, and a combination marker of autoantibody number plus fasting insulin level. The logistic model yielded a receiver operating characteristic area under the curve (AUC) of 0.80, higher than the two other predictors; however, the differences in AUC, sensitivity, and specificity were small across models. CONCLUSIONS This study highlights the application of precision medicine techniques to predict progression to diabetes over a 3-year window in TEDDY subjects. This multifaceted model provides preliminary improvement in prediction over simpler prediction tools. Additional tools are needed to maximize the predictive value of these approaches.
Collapse
Affiliation(s)
- Laura M. Jacobsen
- Department of Pediatrics, University of Florida, Gainesville, Florida, USA
| | - Helena Elding Larsson
- Department of Clinical Sciences Malmö, Lund University, Skåne University Hospital SUS, Malmö, Sweden
| | - Roy N. Tamura
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Kendra Vehik
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Joanna Clasen
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Jay Sosenko
- Division of Endocrinology, University of Miami, Miami, Florida, USA
| | | | - Jin-Xiong She
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Andrea K. Steck
- Barbara Davis Center for Childhood Diabetes, University of Colorado, Denver, Colorado, USA
| | - Marian Rewers
- Barbara Davis Center for Childhood Diabetes, University of Colorado, Denver, Colorado, USA
| | - Olli Simell
- Department of Pediatrics, Turku University Hospital, Turku, Finland
| | - Jorma Toppari
- Department of Pediatrics, Turku University Hospital, Turku, Finland
- Department of Physiology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Riitta Veijola
- Department of Pediatrics, Medical Research Center, PEDEGO Research Unit, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Anette G. Ziegler
- Institute of Diabetes Research, Helmholtz Zentrum München and Forschergruppe Diabetes e.V. Neuherberg, Germany
| | - Jeffrey P. Krischer
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | | | - Michael J. Haller
- Department of Pediatrics, University of Florida, Gainesville, Florida, USA
| | | |
Collapse
|
34
|
Xin GLL, Khee YP, Ying TY, Chellian J, Gupta G, Kunnath AP, Nammi S, Collet T, Hansbro PM, Dua K, Chellappan DK. Current Status on Immunological Therapies for Type 1 Diabetes Mellitus. Curr Diab Rep 2019; 19:22. [PMID: 30905013 DOI: 10.1007/s11892-019-1144-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Type 1 diabetes (T1D) occurs when there is destruction of beta cells within the islets of Langerhans in the pancreas due to autoimmunity. It is considered a complex disease, and different complications can surface and worsen the condition if T1D is not managed well. Since it is an incurable disease, numerous treatments and therapies have been postulated in order to control T1D by balancing hyperglycemia control while minimizing hypoglycemic episodes. The purpose of this review is to primarily look into the current state of the available immunological therapies and their advantages for the treatment of T1D. RECENT FINDINGS Over the years, immunological therapy has become the center of attraction to treat T1D. Immunomodulatory approaches on non-antigens involving agents such as cyclosporine A, mycophenolate mofetil, anti-CD20, cytotoxic T cells, anti-TNF, anti-CD3, and anti-thymocyte globulin as well as immunomodulative approaches on antigens such as insulin, glutamic acid decarboxylase, and heat shock protein 60 have been studied. Aside from these two approaches, studies and trials have also been conducted on regulatory T cells, dendritic cells, interleukin 2, interleukin 4, M2 macrophages, and rapamycin/interleukin 2 combination therapy to test their effects on patients with T1D. Many of these agents have successfully suppressed T1D in non-obese diabetic (NOD) mice and in human trials. However, some have shown negative results. To date, the insights into the management of the immune system have been increasing rapidly to search for potential therapies and treatments for T1D. Nevertheless, some of the challenges are still inevitable. A lot of work and effort need to be put into the investigation on T1D through immunological therapy, particularly to reduce complications to improve and enhance clinical outcomes.
Collapse
Affiliation(s)
- Griselda Lim Loo Xin
- School of Health Sciences, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Yap Pui Khee
- School of Health Sciences, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Tan Yoke Ying
- School of Health Sciences, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Jestin Chellian
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Gaurav Gupta
- School of Pharmaceutical Sciences, Jaipur National University, Jagatpura, Jaipur, 302017, India
| | - Anil Philip Kunnath
- Division of Applied Biomedical Science and Biotechnology, School of Health Sciences, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Srinivas Nammi
- School of Science and Health, Western Sydney University, Sydney, NSW, 2751, Australia
- NICM Health Research Institute, Western Sydney University, Sydney, NSW, 2751, Australia
| | - Trudi Collet
- Innovative Medicines Group, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Brisbane, Queensland, 4059, Australia
| | - Philip Michael Hansbro
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney (UTS), Ultimo, NSW, 2007, Australia
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI) & School of Biomedical Sciences and Pharmacy, The University of Newcastle (UoN), Callaghan, Newcastle, NSW, 2308, Australia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney (UTS), Ultimo, NSW, 2007, Australia
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI) & School of Biomedical Sciences and Pharmacy, The University of Newcastle (UoN), Callaghan, Newcastle, NSW, 2308, Australia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia.
| |
Collapse
|
35
|
Daems C, Welsch S, Boughaleb H, Vanderroost J, Robert A, Sokal E, Lysy PA. Early Treatment with Empagliflozin and GABA Improves β-Cell Mass and Glucose Tolerance in Streptozotocin-Treated Mice. J Diabetes Res 2019; 2019:2813489. [PMID: 31467926 PMCID: PMC6701376 DOI: 10.1155/2019/2813489] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/31/2019] [Accepted: 06/23/2019] [Indexed: 12/27/2022] Open
Abstract
While the autoimmune character of T1D (type 1 diabetes) is being challenged, it is currently recognized that inflammation plays a key role in its development. We hypothesized that glucotoxicity could contribute to β-cell mass destruction through participation in islet inflammation. We evaluated the potential of empagliflozin (EMPA) and GABA (gamma-aminobutyric acid) to protect β-cell mass against glucotoxicity and to increase β-cell mass after diagnosis of T1D. Empagliflozin is a SGLT2 (sodium-dependent glucose cotransporter) inhibitor which thereby blocks glucose recapture by the kidney and promotes glucose excretion in urine. GABA is an inhibitory neurotransmitter, which stimulates α-to-β cell transdifferentiation. In streptozotocin-treated mice, empagliflozin and/or GABA were delivered for a period of five days or three weeks. As compared to untreated T1D mice, EMPA-treated T1D mice had decreased FFA (free fatty acid) levels and improved glucose homeostasis. EMPA-treated T1D mice had higher islet density, with preserved architecture, compared to T1D mice, and EMPA-treated T1D mice also differed from T1D mice by the total absence of immune cell infiltration within islets. Islets from EMPA-treated mice were also less subjected to ER (endoplasmic reticulum) stress and inflammation, as shown by qPCR analysis. Glucose homeostasis parameters and islet area/pancreas area ratio improved, as compared to diabetic controls, when T1D mice were treated for three weeks with GABA and EMPA. T1D EMPA+GABA mice had higher glucagon levels than T1D mice, without modifications of glucagon area/islet area ratios. In conclusion, empagliflozin and GABA, used in monotherapy in streptozotocin-induced diabetic mice, have positive effects on β-cell mass preservation or proliferation through an indirect effect on islet cell inflammation and ER stress. Further research is mandatory to evaluate whether empagliflozin and GABA may be a potential therapeutic target for the protection of β-cell mass after new-onset T1D.
Collapse
Affiliation(s)
- Caroline Daems
- Pôle PEDI, Institut de Recherche Expérimentale et Clinique, UCLouvain, Av. Hippocrate 10, B-1200 Brussels, Belgium
| | - Sophie Welsch
- Pôle PEDI, Institut de Recherche Expérimentale et Clinique, UCLouvain, Av. Hippocrate 10, B-1200 Brussels, Belgium
| | - Hasnae Boughaleb
- Pôle PEDI, Institut de Recherche Expérimentale et Clinique, UCLouvain, Av. Hippocrate 10, B-1200 Brussels, Belgium
| | - Juliette Vanderroost
- Pôle PEDI, Institut de Recherche Expérimentale et Clinique, UCLouvain, Av. Hippocrate 10, B-1200 Brussels, Belgium
| | - Annie Robert
- Pôle d'Epidémiologie et Biostatistique, Institut de Recherche Expérimentale et Clinique, UCLouvain, Av. Hippocrate 10, B-1200 Brussels, Belgium
| | - Etienne Sokal
- Pôle PEDI, Institut de Recherche Expérimentale et Clinique, UCLouvain, Av. Hippocrate 10, B-1200 Brussels, Belgium
| | - Philippe A. Lysy
- Pôle PEDI, Institut de Recherche Expérimentale et Clinique, UCLouvain, Av. Hippocrate 10, B-1200 Brussels, Belgium
| |
Collapse
|
36
|
Vonberg AD, Acevedo-Calado M, Cox AR, Pietropaolo SL, Gianani R, Lundy SK, Pietropaolo M. CD19+IgM+ cells demonstrate enhanced therapeutic efficacy in type 1 diabetes mellitus. JCI Insight 2018; 3:99860. [PMID: 30518692 DOI: 10.1172/jci.insight.99860] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 10/31/2018] [Indexed: 12/14/2022] Open
Abstract
We describe a protective effect on autoimmune diabetes and reduced destructive insulitis in NOD.scid recipients following splenocyte injections from diabetic NOD donors and sorted CD19+ cells compared with NOD.scid recipients receiving splenocytes alone. This protective effect was age specific (only CD19+ cells from young NOD donors exerted this effect; P < 0.001). We found that the CD19+IgM+ cell is the primary subpopulation of B cells that delayed transfer of diabetes mediated by diabetogenic T cells from NOD mice (P = 0.002). Removal of IgM+ cells from the CD19+ pool did not result in protection. Notably, protection conferred by CD19+IgM+ cotransfers were not dependent on the presence of Tregs, as their depletion did not affect their ability to delay onset of diabetes. Blockade of IL-10 with neutralizing antibodies at the time of CD19+ cell cotransfers also abrogated the therapeutic effect, suggesting that IL-10 secretion was an important component of protection. These results were strengthened by ex vivo incubation of CD19+ cells with IL-5, resulting in enhanced proliferation and IL-10 production and equivalently delayed diabetes progression (P = 0.0005). The potential to expand CD19+IgM+ cells, especially in response to IL-5 stimulation or by pharmacologic agents, may be a new therapeutic option for type 1 diabetes.
Collapse
Affiliation(s)
- Andrew D Vonberg
- Diabetes Research Center, Division of Diabetes, Endocrinology and Metabolism Department of Medicine, and
| | - Maria Acevedo-Calado
- Diabetes Research Center, Division of Diabetes, Endocrinology and Metabolism Department of Medicine, and
| | - Aaron R Cox
- Diabetes Research Center, Division of Diabetes, Endocrinology and Metabolism Department of Medicine, and.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Susan L Pietropaolo
- Diabetes Research Center, Division of Diabetes, Endocrinology and Metabolism Department of Medicine, and
| | - Roberto Gianani
- Diabetes Research Center, Division of Diabetes, Endocrinology and Metabolism Department of Medicine, and
| | - Steven K Lundy
- Division of Rheumatology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Massimo Pietropaolo
- Diabetes Research Center, Division of Diabetes, Endocrinology and Metabolism Department of Medicine, and
| |
Collapse
|
37
|
Alshehri AM, Mendis T, Jackson MW. A cell-based assay for the detection of pathogenic anti-voltage-gated calcium channel autoantibodies in immunoglobulin G from patients with type 1 diabetes. J Immunol Methods 2018; 460:79-86. [PMID: 29940155 DOI: 10.1016/j.jim.2018.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/30/2018] [Accepted: 06/19/2018] [Indexed: 10/28/2022]
Abstract
Recent studies have postulated the presence of functional autoantibodies (Abs) against L-type voltage gated calcium channels (VGCCs) in the serum of patients with type 1 diabetes, with various proposed physiological consequences, both islet cell associated and extra-glandular. Arguably, the most potentially damaging effect reported for these Abs is induction of apoptosis in pancreatic beta (β) cells, yet a convincing pathogenic mechanism remains to be demonstrated. In the current study, we report an assay of reactive oxygen species (ROS) stress induction in the rat insulinoma cell line Rin A12, as determined by 2', 7'-Dichlorofluorescein diacetate (DCF-DA) fluorescence detection by flow cytometry. We demonstrate that incubation of Rin A12 cells with immunoglobulin G (IgG) containing anti-VGCC activity from patients with T1D mediates a significant increase in ROS, with subsequent induction of apoptosis, as determined by positivity for annexin V expression. Neither T1D patient-derived IgG lacking anti-VGCC activity or IgG from healthy donors altered ROS or annexin V expression, indicating the new assay is specific for the detection of functional anti-VGCC Abs. Subsequent screening of IgG samples derived from individual patients indicated a prevalence of approximately 75% in a cohort of 20 patients with T1D. The new cell-based assay provides, for the first time, experimental evidence supporting a plausible pathophysiological mechanism underlying anti-VGCC Ab-mediated apoptosis induction in β cells. Additionally, the assay is a considerable advance on previously published methods for detecting and characterising the functional activity of anti-VGCC Abs in patient-derived samples.
Collapse
Affiliation(s)
- Ahmed M Alshehri
- Department of Immunology, Allergy & Arthritis, Flinders Medical Centre, Flinders University, Bedford Park, 5042, South Australia, Australia
| | - Thilini Mendis
- Department of Immunology, Allergy & Arthritis, Flinders Medical Centre, Flinders University, Bedford Park, 5042, South Australia, Australia
| | - Michael W Jackson
- Department of Immunology, Allergy & Arthritis, Flinders Medical Centre, Flinders University, Bedford Park, 5042, South Australia, Australia.
| |
Collapse
|
38
|
Frohnert BI, Laimighofer M, Krumsiek J, Theis FJ, Winkler C, Norris JM, Ziegler AG, Rewers MJ, Steck AK. Prediction of type 1 diabetes using a genetic risk model in the Diabetes Autoimmunity Study in the Young. Pediatr Diabetes 2018; 19:277-283. [PMID: 28695611 PMCID: PMC5764829 DOI: 10.1111/pedi.12543] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 04/24/2017] [Accepted: 04/25/2017] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Genetic predisposition for type 1 diabetes (T1D) is largely determined by human leukocyte antigen (HLA) genes; however, over 50 other genetic regions confer susceptibility. We evaluated a previously reported 10-factor weighted model derived from the Type 1 Diabetes Genetics Consortium to predict the development of diabetes in the Diabetes Autoimmunity Study in the Young (DAISY) prospective cohort. Performance of the model, derived from individuals with first-degree relatives (FDR) with T1D, was evaluated in DAISY general population (GP) participants as well as FDR subjects. METHODS The 10-factor weighted risk model (HLA, PTPN22 , INS , IL2RA , ERBB3 , ORMDL3 , BACH2 , IL27 , GLIS3 , RNLS ), 3-factor model (HLA, PTPN22, INS ), and HLA alone were compared for the prediction of diabetes in children with complete SNP data (n = 1941). RESULTS Stratification by risk score significantly predicted progression to diabetes by Kaplan-Meier analysis (GP: P = .00006; FDR: P = .0022). The 10-factor model performed better in discriminating diabetes outcome than HLA alone (GP, P = .03; FDR, P = .01). In GP, the restricted 3-factor model was superior to HLA (P = .03), but not different from the 10-factor model (P = .22). In contrast, for FDR the 3-factor model did not show improvement over HLA (P = .12) and performed worse than the 10-factor model (P = .02) CONCLUSIONS: We have shown a 10-factor risk model predicts development of diabetes in both GP and FDR children. While this model was superior to a minimal model in FDR, it did not confer improvement in GP. Differences in model performance in FDR vs GP children may lead to important insights into screening strategies specific to these groups.
Collapse
Affiliation(s)
- Brigitte I. Frohnert
- Barbara Davis Center for Childhood Diabetes, School of Medicine, University of Colorado, Aurora, CO 80045 USA
| | - Michael Laimighofer
- Institute of Computational Biology, Helmholtz Zentrum München, München-Neuherberg 85764 Germany
| | - Jan Krumsiek
- Institute of Computational Biology, Helmholtz Zentrum München, München-Neuherberg 85764 Germany,German Center for Diabetes Research (DZD), München-Neuherberg 85764 Germany
| | - Fabian J. Theis
- Institute of Computational Biology, Helmholtz Zentrum München, München-Neuherberg 85764 Germany
| | - Christiane Winkler
- Institute of Diabetes Research, Helmholtz Zentrum München and Forschergruppe Diabetes, Klinikum rechts der Isar, Technische Universität München, Neuherberg 85764 Germany
| | - Jill M. Norris
- Department of Epidemiology, Colorado School of Public Health, University of Colorado, Aurora, CO, 80045 USA
| | - Anette-Gabriele Ziegler
- Institute of Diabetes Research, Helmholtz Zentrum München and Forschergruppe Diabetes, Klinikum rechts der Isar, Technische Universität München, Neuherberg 85764 Germany
| | - Marian J. Rewers
- Barbara Davis Center for Childhood Diabetes, School of Medicine, University of Colorado, Aurora, CO 80045 USA
| | - Andrea K. Steck
- Barbara Davis Center for Childhood Diabetes, School of Medicine, University of Colorado, Aurora, CO 80045 USA
| |
Collapse
|
39
|
Ilonen J, Lempainen J, Hammais A, Laine AP, Härkönen T, Toppari J, Veijola R, Knip M. Primary islet autoantibody at initial seroconversion and autoantibodies at diagnosis of type 1 diabetes as markers of disease heterogeneity. Pediatr Diabetes 2018; 19:284-292. [PMID: 28597949 DOI: 10.1111/pedi.12545] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/11/2017] [Accepted: 05/04/2017] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE The relationship between patterns of islet autoantibodies at diagnosis and specificity of the first islet autoantibody at the initiation of autoimmunity was analyzed with the aim of identifying patterns informative of the primary autoantibodies. METHODS Information about a single first autoantibody at seroconversion and autoantibody data at diagnosis were available for 128 children participating in the follow-up cohort of the Finnish Type 1 Diabetes Prediction and Prevention (DIPP) study. Autoantibody data at diagnosis and genotyping results were also obtained from children in the Finnish Pediatric Diabetes Register (FPDR). RESULTS Insulin autoantibodies (IAA) were the most common primary antibodies (N = 68), followed by those for glutamic acid decarboxylase (GADA; N = 38), IA-2 antigen (IA-2A; N = 13), and zinc transporter 8 (ZnT8A; N = 9), whereas at diagnosis, IA-2A were most frequent (N = 103), followed by IAA (N = 78), ZnT8A (N = 73), and GADA (N = 71). Accordingly, the presence of many specific autoantibodies at diagnosis was due to the secondary antibodies appearing after primary antibodies, and in some cases, the primary autoantibody, most often IAA, had already disappeared at the time of diagnosis. Many of the autoantibody combinations present at diagnosis could be assembled into groups associated with either IAA or GADA as first autoantibodies. These combinations, in children diagnosed below the age of 10 years in the FPDR, were found to be strongly associated with risk genotypes in either INS (IAA first) or IKZF4-ERBB3 (GADA first) genes. CONCLUSIONS Autoantibody patterns at diagnosis may be informative on primary autoantibodies initiating autoimmunity in young children developing type 1 diabetes.
Collapse
Affiliation(s)
- Jorma Ilonen
- Immunogenetics Laboratory, University of Turku and Turku University Hospital, Turku, Finland
| | - Johanna Lempainen
- Immunogenetics Laboratory, University of Turku and Turku University Hospital, Turku, Finland.,Department of Pediatrics, University of Turku and Turku University Hospital, Turku, Finland
| | - Anna Hammais
- Immunogenetics Laboratory, University of Turku and Turku University Hospital, Turku, Finland
| | - Antti-Pekka Laine
- Immunogenetics Laboratory, University of Turku and Turku University Hospital, Turku, Finland
| | - Taina Härkönen
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland
| | - Jorma Toppari
- Department of Pediatrics, University of Turku and Turku University Hospital, Turku, Finland.,Department of Physiology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Riitta Veijola
- Department of Pediatrics, Research Unit for Pediatrics, Dermatology, Clinical Genetics, Obstetrics and Gynecology, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Mikael Knip
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland.,Folkhälsan Research Institute, Helsinki, Finland.,Department of Pediatrics, Tampere University Hospital, Tampere, Finland
| | | |
Collapse
|
40
|
Abstract
The majority of rare diseases affect children, most of whom have an underlying genetic cause for their condition. However, making a molecular diagnosis with current technologies and knowledge is often still a challenge. Paediatric genomics is an immature but rapidly evolving field that tackles this issue by incorporating next-generation sequencing technologies, especially whole-exome sequencing and whole-genome sequencing, into research and clinical workflows. This complex multidisciplinary approach, coupled with the increasing availability of population genetic variation data, has already resulted in an increased discovery rate of causative genes and in improved diagnosis of rare paediatric disease. Importantly, for affected families, a better understanding of the genetic basis of rare disease translates to more accurate prognosis, management, surveillance and genetic advice; stimulates research into new therapies; and enables provision of better support.
Collapse
|
41
|
Jayaraman S, Jayaraman A. Long-Term Provision of Acidified Drinking Water Fails to Influence Autoimmune Diabetes and Encephalomyelitis. J Diabetes Res 2018; 2018:3424691. [PMID: 30035128 PMCID: PMC6032981 DOI: 10.1155/2018/3424691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 05/09/2018] [Indexed: 02/06/2023] Open
Abstract
Induction of autoimmune diseases is predisposed by background genetics and influenced by environmental factors including diet and infections. Since consumption of acidified drinking water leads to eradication of gastrointestinal pathogens in animals, we tested whether it may also influence the development of autoimmune diseases. The frequency of spontaneously occurring type 1 diabetes in female NOD mice that were maintained on acidified drinking water by the vendor did not alter after switching to neutral water in our facility. In addition, experimentally induced autoimmune encephalomyelitis was also unaffected by the pH of the drinking water. Interestingly, administration of complete Freund's adjuvant alone or emulsified with a neuronal peptide to induce neurodegenerative disease during the prediabetic stage completely prevented the onset of diabetes regardless of the pH of the drinking water. However, exposure to microbial products later in life had only a partial blocking effect on diabetes induction, which was also not influenced by the ionic content of the drinking water. Taken together, these data indicate that the onset of autoimmune diseases is not influenced by the gastrointestinal pathogen-depleting treatment, acidified drinking water. Thus, administration of acidic drinking water does not appear to be an option for treating autoimmune diseases.
Collapse
Affiliation(s)
- Sundararajan Jayaraman
- Department of Microbiology and Immunology, University of Illinois at Chicago, 909 South Wolcott Avenue, Chicago, IL 60612, USA
- Department of Surgery, University of Illinois College of Medicine at Peoria, 624 NE Glen Oak Ave, Suite 2675, Peoria, IL 61603, USA
| | - Arathi Jayaraman
- Department of Microbiology and Immunology, University of Illinois at Chicago, 909 South Wolcott Avenue, Chicago, IL 60612, USA
| |
Collapse
|
42
|
Abstract
Type 1 diabetes is a challenging illness and needs lifelong diabetes self-care. At the same time, there is a significant stigma associated with it, especially with relation to marriage. There are concerns related to premarriage disclosure, marital relationship, ability to procreate, risk during pregnancy in women, and the risk of disease in children. In this document, we discuss the issue of disease-related stigma which may become a significant challenge for a prospective spouse and the impact of type 1 diabetes on marital relationships and procreation. We also highlight the need for premarriage counseling to ensure long-term success in achieving both individual and interpersonal well-being.
Collapse
Affiliation(s)
- Gagan Priya
- Department of Endocrinology, Fortis Hospital, Karnal, Haryana, India
| | - Bharti Kalra
- Department of Gynaecology, Bharti Hospital, Karnal, Haryana, India
| | - Emmy Grewal
- Department of Endocrinology, Ivy Hospital, Mohali, India
| | | |
Collapse
|
43
|
Park Y, Wintergerst KA, Zhou Z. Clinical heterogeneity of type 1 diabetes (T1D) found in Asia. Diabetes Metab Res Rev 2017; 33. [PMID: 28544229 DOI: 10.1002/dmrr.2907] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 04/26/2017] [Accepted: 05/02/2017] [Indexed: 12/17/2022]
Abstract
Diabetes mellitus among young patients in Asia is caused by a complex set of factors. Although type 1 diabetes (T1D) remains the most common form of diabetes in children, the recent unabated increase in obesity has resulted in the emergence of type 2 diabetes (T2D) as a new type of diabetes among adolescents and young adults. In addition to the typical autoimmune type 1 diabetes (T1aD) and T2D patients, there is a variable incidence of cases of non-autoimmune types of T1D associated with insulin deficiency (T1bD). Additional forms have been described, including fulminant T1D (FT1D). Although most diagnoses of T1D are classified as T1aD, fulminant T1D exists as a hyper-acute subtype of T1D that affects older children, without associated autoimmunity. Patient with this rare aetiology of diabetes showed a complete loss of β-cell secretory capacity without evidence of recovery, necessitating long-term treatment with insulin. In addition, latent autoimmune diabetes in adults is a form of autoimmune-mediated diabetes, usually diagnosed during the insulin-dependent stage that follows a non-insulin requiring phase, which can be diagnosed earlier based on anti-islet autoantibody positivity. Some reports discuss T1bD. Others are elaborating on the presence of "atypical T1b diabetes," such as Flatbush diabetes. The prevalence of diabetes mellitus in young adults continues to rise in Asian populations as T2D increases. With improved characterization of patients with diabetes, the range of diabetic subgroups will become even more diverse in the future. Distinguishing T1D, T2D, and other forms of diabetes in young patients is challenging in Asian populations, as the correct diagnosis is clinically important and has implications for prognosis and management. Despite aetiological heterogeneity in the usual clinical setting, early diagnosis and classification of patients with diabetes relying on clinical grounds as well as measuring islet autoantibodies and fasting plasma C-peptide could provide a possible viable method to minimize complications.
Collapse
Affiliation(s)
- Yongsoo Park
- Department of Pediatrics, Pediatric Research Institute, University of Louisville, Louisville, KY, USA
- College of Medicine and Engineering, Hanyang University, Seoul, South Korea
| | - Kupper A Wintergerst
- Department of Pediatrics, Pediatric Research Institute, University of Louisville, Louisville, KY, USA
- Department of Pediatrics, Division of Endocrinology, University of Louisville, Louisville, KY, USA
- Wendy Novak Diabetes Care Center, Kosair Children's Hospital, University of Louisville, Louisville, KY, USA
| | - Zhiguang Zhou
- Institute of Metabolism and Endocrinology, Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
44
|
Phillips JE, Couper JJ, Penno MAS, Harrison LC. Type 1 diabetes: a disease of developmental origins. Pediatr Diabetes 2017; 18:417-421. [PMID: 27526948 DOI: 10.1111/pedi.12425] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 07/10/2016] [Accepted: 07/11/2016] [Indexed: 12/15/2022] Open
Abstract
The incidence of type 1 diabetes globally has increased dramatically over the last 50 years. Proposed environmental reasons for this increase mirror the modern lifestyle. Type 1 diabetes can be viewed as part of the non- communicable disease epidemic in our modern society. Meanwhile rapidly evolving new technologies are advancing our understanding of how human microbial communities interface with the immune system and metabolism, and how the modern pro-inflammatory environment is changing these communities and contributing to the rapid rise of non-communicable disease. The majority of children who present with clinical type 1 diabetes are of school age; however 80% of children who develop type 1 diabetes by 18 years of age will have detectable islet autoantibodies by 3 years of age. The evolving concept that type 1 diabetes in many children has developmental origins has directed research questions in search of prevention back to pregnancy and early life. To this end the world's first pregnancy to early childhood cohort study in at-risk children has commenced.
Collapse
Affiliation(s)
- Jessica E Phillips
- Discipline of Paediatrics, School of Medicine, University of Adelaide, Adelaide, Australia.,Endocrinology and Diabetes Department, Women's and Children's Hospital, North Adelaide, Australia
| | - Jennifer J Couper
- Discipline of Paediatrics, School of Medicine, University of Adelaide, Adelaide, Australia.,Endocrinology and Diabetes Department, Women's and Children's Hospital, North Adelaide, Australia
| | - Megan A S Penno
- Discipline of Paediatrics, School of Medicine, University of Adelaide, Adelaide, Australia
| | - Leonard C Harrison
- Royal Melbourne Hospital, Parkville, Australia.,Walter and Eliza Hall Institute of Medical Research and Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | | |
Collapse
|
45
|
Moosavi M, Séguin J, Polychronakos C. Effect of autoimmunity risk loci on the honeymoon phase in type 1 diabetes. Pediatr Diabetes 2017; 18:459-462. [PMID: 27503178 DOI: 10.1111/pedi.12421] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 06/25/2016] [Accepted: 06/29/2016] [Indexed: 01/11/2023] Open
Abstract
OBJECTIVE To analyze the correlation between duration and depth of honeymoon phase in patients with type 1 diabetes (T1DM) and autoimmunity risk loci. METHODS From a database of 567 individuals with clinical data, we selected 210 patients for whom we had dense genotyping results of single-nucleotide polymorphisms (SNPs) from our previous genome-wide association studies (GWAS) or targeted genotyping data. Using PLINK software, we analyzed the association between time spent in honeymoon phase as our quantitative trait, and 24 known autoimmunity predisposing SNPs. RESULTS We found one allele on chromosome 5, rs4613763 mapping to a Prostaglandin Receptor EP4 (PTGER4) to reach statistical significance (P = .0067), in determining a larger proportion of T1DM patients with a detectable honeymoon phase. This polymorphism determines risk for inflammatory bowel disease (IBD) but not T1DM. CONCLUSION By showing the role of PTGER4 in autoimmune diseases and its effect on inflammatory responses via its interaction with NF-kB, we hypothesize that PTGER4 modulates honeymoon phase in patients with T1DM without influencing the risk of developing T1DM. We hypothesize that this quantitative trait locus promotes inflammatory suppression of beta cells without directly promoting beta-cell destruction. Understanding SNPs that effect function can provide insight in to pathogenesis of T1DM and the mechanism of the honeymoon phase. Because this is a hypothesis-generating study, it needs to be replicated in an additional larger cohort.
Collapse
Affiliation(s)
- Mandana Moosavi
- Department of Endocrinology, University of British Columbia, Vancouver, Canada
| | - Jade Séguin
- Department of Pediatrics, McGill University, Montreal, Canada
| | | |
Collapse
|
46
|
Fan Y. Bait and Trap: Enriching Autoreactive T Cells With β-Cell Antigen-Loading Biomaterial Scaffolds for Early Detection of Type 1 Diabetes. Diabetes 2017; 66:2066-2068. [PMID: 28733307 PMCID: PMC5521872 DOI: 10.2337/dbi17-0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Yong Fan
- Institute of Cellular Therapeutics, Allegheny Health Network, Pittsburgh, PA
| |
Collapse
|
47
|
Sebastiani G, Nigi L, Grieco GE, Mancarella F, Ventriglia G, Dotta F. Circulating microRNAs and diabetes mellitus: a novel tool for disease prediction, diagnosis, and staging? J Endocrinol Invest 2017; 40:591-610. [PMID: 28213644 DOI: 10.1007/s40618-017-0611-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 01/03/2017] [Indexed: 12/19/2022]
Abstract
Diabetes is a complex, multifactorial group of metabolic diseases characterized by chronic hyperglycaemia due to pancreatic beta-cell dysfunction and/or loss. It is characterized by an asymptomatic and highly variable prodromic phase, which renders diabetes mellitus difficult to be predicted with sufficient accuracy. Despite several efforts in the identification and standardization of newly trustable. Biomarkers able to predict and follow-up diabetes and to specifically subtype its different forms, few of them have proven of clinical utility. Recently, a new class of endogenous non-coding small RNAs, namely microRNAs, have been indicated as putative biomarkers, being released by cells and tissues and found in a cell-free circulating form in many biological fluids, including serum and/or plasma. MicroRNAs have been initially identified as promising biomarkers in cancer, and nowadays their application has been extended to other diseases, including diabetes. Although an increasing number of studies focused on the evaluation of circulating microRNAs in diabetes, few reproducibly identified microRNAs as biomarkers for disease prediction or follow-up. Technological problems as well as the need to obtain highly standardized operating procedures and methods are still an issue in such research field. In this review, we comprehensively resume the main and most recent findings on circulating microRNAs, and their possible use as biomarkers to predict and follow-up diabetes and its complications, as well as the methodological challenges to standardize accurate operating procedures for their analysis.
Collapse
Affiliation(s)
- G Sebastiani
- Diabetes Unit, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
- Fondazione Umberto di Mario ONLUS, Toscana Life Sciences, Siena, Italy
| | - L Nigi
- Diabetes Unit, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
- Fondazione Umberto di Mario ONLUS, Toscana Life Sciences, Siena, Italy
| | - G E Grieco
- Diabetes Unit, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
- Fondazione Umberto di Mario ONLUS, Toscana Life Sciences, Siena, Italy
| | - F Mancarella
- Diabetes Unit, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
- Fondazione Umberto di Mario ONLUS, Toscana Life Sciences, Siena, Italy
| | - G Ventriglia
- Diabetes Unit, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
- Fondazione Umberto di Mario ONLUS, Toscana Life Sciences, Siena, Italy
| | - F Dotta
- Diabetes Unit, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy.
- Fondazione Umberto di Mario ONLUS, Toscana Life Sciences, Siena, Italy.
| |
Collapse
|
48
|
Itoh A, Ridgway WM. Targeting innate immunity to downmodulate adaptive immunity and reverse type 1 diabetes. Immunotargets Ther 2017; 6:31-38. [PMID: 28580341 PMCID: PMC5448691 DOI: 10.2147/itt.s117264] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Type 1 diabetes (T1D) is characterized by specific destruction of pancreatic insulin-producing beta cells accompanied by evidence of beta-cell-directed autoimmunity such as autoreactive T cells and islet autoantibodies (IAAs). Currently, T1D cannot be prevented or reversed in humans. T1D is easy to prevent in the nonobese diabetic (NOD) spontaneous mouse model but reversing new-onset T1D in mice is more difficult. Since the discovery of the T-cell receptor in the 1980s and the subsequent identification of autoreactive T cells directed toward beta-cell antigens (eg, insulin, glutamic acid decarboxylase), the dream of antigen-specific immunotherapy has dominated the field with its promise of specificity and limited side effects. While such approaches have worked in the NOD mouse, however, dozens of human trials have failed. Broader immunosuppressive approaches (originally cyclosporine, subsequently anti-CD3 antibody) have shown partial successes (e.g., prolonged C peptide preservation) but no major therapeutic efficacy or disease reversal. Human prevention trials have failed, despite the ease of such approaches in the NOD mouse. In the past 50 years, the incidence of T1D has increased dramatically, and one explanation is the “hygiene hypothesis”, which suggests that decreased exposure of the innate immune system to environmental immune stimulants (e.g., bacterial products such as Toll-like receptor (TLR) 4-stimulating lipopolysaccharide [LPS]) dramatically affects the adaptive immune system and increases subsequent autoimmunity. We have tested the role of innate immunity in autoimmune T1D by treating acute-onset T1D in NOD mice with anti-TLR4/MD-2 agonistic antibodies and have shown a high rate of disease reversal. The TLR4 antibodies do not directly stimulate T cells but induce tolerogenic antigen-presenting cells (APCs) that mediate decreased adaptive T-cell responses. Here, we review our current knowledge and suggest future prospects for targeting innate immunity in T1D immunotherapy.
Collapse
Affiliation(s)
- Arata Itoh
- Division of Immunology, Allergy and Rheumatology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - William M Ridgway
- Division of Immunology, Allergy and Rheumatology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
49
|
Sunni M, Noble JA, Yu L, Mahamed Z, Lane JA, Dhunkal AM, Bellin MD, Nathan B, Kyllo J, Abuzzahab MJ, Gottlieb PA, Babu S, Armstrong T, Moran A. Predominance of DR3 in Somali children with type 1 diabetes in the twin cities, Minnesota. Pediatr Diabetes 2017; 18:136-142. [PMID: 26854192 DOI: 10.1111/pedi.12369] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 01/08/2016] [Accepted: 01/08/2016] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Minnesota is home to the largest Somali population in USA, and pediatric diabetes teams are seeing increasing numbers of Somali children with diabetes. OBJECTIVE To assess the immune basis of diabetes in Somali children in the Twin Cities, Minnesota. METHODS A total of 31 Somali children ≤19 yr were treated for type 1 diabetes (T1D) at the University of Minnesota Masonic Children's Hospital and Children's Hospitals and Clinics of Minnesota underwent analysis of human leukocyte antigen (HLA) alleles (n = 30) and diabetes autoantibodies [glutamic acid decarboxylase (GAD65), islet antigen 2 (IA-2), zinc transporter 8 (ZnT8); n = 31]. HLA alleles were analyzed in 49 Somalis without diabetes (controls). Anti-transglutaminase autoantibodies (TGA) for celiac disease were also measured. RESULTS In Somali children with T1D aged 13.5 ± 5 yr (35% female, disease duration 6.5 ± 3.6 yr), the most common HLA allele was DRB1*03:01 (93%, compared with 45% of Somali controls), followed by DRB1*13:02 (27%). There was a relatively low frequency of DR4 (13%). Controls showed a similar pattern. All 31 participants were positive for at least one diabetes autoantibody. Insulin antibodies were positive in 84% (all were on insulin). Excluding insulin antibodies, 23 (74%) subjects tested positive for at least one other diabetes autoantibody; 32% had 1 autoantibody, 32% had 2 autoantibodies, and 10% had 3 autoantibodies. GAD65 autoantibodies were found in 56% of subjects, IA-2 in 29%, and ZnT8 in 26%. Four (13%) were TGA positive. CONCLUSION The autoantibody and HLA profiles of Somali children with diabetes are consistent with autoimmune diabetes. Their HLA profile is unique with an exceptionally high prevalence of DRB1*03:01 allele and relative paucity of DR4 alleles compared with African Americans with T1D.
Collapse
Affiliation(s)
- Muna Sunni
- Department of Pediatric Endocrinology, University of Minnesota Masonic Children's Hospital, Minneapolis, MN, USA
| | - Janelle A Noble
- Children's Hospital Oakland Research Institute, Oakland, CA, USA
| | - Liping Yu
- The Barbara Davis Center for Childhood Diabetes, University of Colorado, Denver, CO, USA
| | - Zahra Mahamed
- Department of Pediatric Endocrinology, University of Minnesota Masonic Children's Hospital, Minneapolis, MN, USA
| | - Julie A Lane
- Children's Hospital Oakland Research Institute, Oakland, CA, USA
| | - Abdirahman M Dhunkal
- Department of Pediatric Endocrinology, University of Minnesota Masonic Children's Hospital, Minneapolis, MN, USA
| | - Melena D Bellin
- Department of Pediatric Endocrinology, University of Minnesota Masonic Children's Hospital, Minneapolis, MN, USA
| | - Brandon Nathan
- Department of Pediatric Endocrinology, University of Minnesota Masonic Children's Hospital, Minneapolis, MN, USA
| | - Jennifer Kyllo
- Pediatric Endocrinology and McNeely Diabetes Center, Children's Hospitals and Clinics of Minnesota, St. Paul, MN, USA
| | - M Jennifer Abuzzahab
- Pediatric Endocrinology and McNeely Diabetes Center, Children's Hospitals and Clinics of Minnesota, St. Paul, MN, USA
| | - Peter A Gottlieb
- The Barbara Davis Center for Childhood Diabetes, University of Colorado, Denver, CO, USA
| | - Sunanda Babu
- The Barbara Davis Center for Childhood Diabetes, University of Colorado, Denver, CO, USA
| | - Taylor Armstrong
- The Barbara Davis Center for Childhood Diabetes, University of Colorado, Denver, CO, USA
| | - Antoinette Moran
- Department of Pediatric Endocrinology, University of Minnesota Masonic Children's Hospital, Minneapolis, MN, USA
| |
Collapse
|
50
|
Yassouridis C, Leisch F, Winkler C, Ziegler AG, Beyerlein A. Associations of growth patterns and islet autoimmunity in children with increased risk for type 1 diabetes: a functional analysis approach. Pediatr Diabetes 2017; 18:103-110. [PMID: 26890567 DOI: 10.1111/pedi.12368] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 01/08/2016] [Accepted: 01/08/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Several studies indicate associations between early growth and type 1 diabetes (T1D). However, it remains an open question whether these findings can be translated to typical growth patterns associated with increased risk for T1D-associated islet autoimmunity. METHODS We analyzed pooled data from 2236 children followed up in two large prospective German birth cohorts with a genetically increased risk for T1D including 18 564 measurements of height and weight, which were transformed to sex- and age-specific standard deviation scores (SDS). A total of 191 children developed any islet autoantibodies, 101 multiple islet autoantibodies. We applied a model-based clustering technique to derive typical height and body mass index (BMI) growth patterns, stratified for maternal T1D status. These patterns were used to predict islet autoimmunity in logistic regression models, adjusted for potential confounders. RESULTS Growth patterns were not associated with islet autoimmunity in the whole dataset and in children of diabetic mothers, respectively. In children of non-diabetic mothers ,however, islet autoimmunity was associated with rapidly increasing BMI SDS values until the age of 3 yr [adjusted odds ratio (95% confidence interval): 2.02 (1.03, 3.73) for development of any islet autoantibodies) and with consistently above average height SDS values [odds ratio: 2.21 (1.15, 4.17)]. In contrast, a pattern of high height SDS values at birth followed by a decrease to average values after 3 yr was associated with a reduced rate of islet autoimmunity [odds ratio: 0.16 (0.01, 0.62)]. CONCLUSION Early growth patterns may be associated with T1D-related islet autoimmunity risk in children of non-diabetic mothers.
Collapse
Affiliation(s)
- Christina Yassouridis
- Institute for Applied Statistics and Computing, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Friedrich Leisch
- Institute for Applied Statistics and Computing, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Christiane Winkler
- Institute for Diabetes Research, Helmholtz Zentrum München, Neuherberg, Germany.,Forschergruppe Diabetes, Klinikum rechts der Isar, Technische Universität München, Neuherberg, Germany
| | - Anette-Gabriele Ziegler
- Institute for Diabetes Research, Helmholtz Zentrum München, Neuherberg, Germany.,Forschergruppe Diabetes, Klinikum rechts der Isar, Technische Universität München, Neuherberg, Germany
| | - Andreas Beyerlein
- Institute for Diabetes Research, Helmholtz Zentrum München, Neuherberg, Germany.,Forschergruppe Diabetes, Klinikum rechts der Isar, Technische Universität München, Neuherberg, Germany
| |
Collapse
|