1
|
Soleymani N, Sadr S, Santucciu C, Rahdar A, Masala G, Borji H. Evaluation of the In-Vitro Effects of Albendazole, Mebendazole, and Praziquantel Nanocapsules against Protoscolices of Hydatid Cyst. Pathogens 2024; 13:790. [PMID: 39338980 PMCID: PMC11435210 DOI: 10.3390/pathogens13090790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/03/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Cystic echinococcosis still remains a serious health and economic problem worldwide. The etiologic agent is Echinococcus granulosus sensu lato, giving origin to a fluid-filled cystic lesion. Therapy faces several challenges. Nanodrugs have shown promise as chemotherapeutics against hydatid cysts. The present study evaluated a highly safe lipid nano-polymeric capsule for its superior efficacy and ability to overcome drug resistance. Nanocapsule drugs were formulated into six groups: Albendazole, mebendazole, praziquantel, albendazole + mebendazole, albendazole + praziquantel, and praziquantel + mebendazole. The protoscolicidal effects of these six groups were assessed at 10, 60, and 120 min in three concentrations (1, 0.5, and 0.25 mg/mL). Drug formulations were evaluated via zeta potential, droplet size, solubility, particle size analyzer (PSA), and scanning electron microscopy. According to the PSA results, the mean size of the albendazole nanocapsules was 193.01 nm, mebendazole was 170.40 nm, and praziquantel was 180.44 nm. Albendazole + mebendazole showed the greatest protoscolicidal activity at a concentration of 1 mg/mL after 120 min. In contrast, each drug's 0.25 mg/mL single-dose times showed the least protoscolicidal activity after 120 min. With the right application of nanotechnology, it is possible to produce safe and effective drugs, such as the polymeric combination of albendazole and mebendazole, which has promising implications.
Collapse
Affiliation(s)
- Nooshinmehr Soleymani
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad P.O. Box 9177948974, Iran
| | - Soheil Sadr
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad P.O. Box 9177948974, Iran
| | - Cinzia Santucciu
- WOAH and NRL for Echinococcosis, Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol P.O. Box 538-98615, Iran
| | - Giovanna Masala
- WOAH and NRL for Echinococcosis, Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy
| | - Hassan Borji
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad P.O. Box 9177948974, Iran
| |
Collapse
|
2
|
Gao H, Bianba Z, Mo X, Hu W, Feng Z, Zhou F, Zhang T. Receptor Tyrosine Kinase Signaling Involves Echinococcus-Host Intercommunication: A Potential Therapeutic Target in Hepatic Echinococcosis. Trop Med Infect Dis 2024; 9:175. [PMID: 39195613 PMCID: PMC11360685 DOI: 10.3390/tropicalmed9080175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 08/29/2024] Open
Abstract
Echinococcosis, one of the most serious and life-threatening parasitic forms of zoonosis worldwide, is caused by the larvae of Echinococcus granulosus (E. granulosus) and Echinococcus multilocularis (E. multilocularis). Various drugs are being applied clinically to treat zoonosis; however, their therapeutic efficacy remains a great challenge, especially with albendazole as the preferred drug of choice. Receptor tyrosine kinase (RTK) signaling controls normal cellular proliferation, differentiation, and metabolism in humans and mammals, which are intermediate hosts of E. granulosus and E. multilocularis. Disruption of RTK signaling can cause various forms of carcinogenesis and exacerbate the progression of certain forms of parasitic disease. As a result, a significant number of studies on tyrosine kinase inhibitors (TKIs) have been conducted for the treatment of cancer and parasitic infection, with some TKIs already approved for clinical use for cancer. Notably, RTK signaling has been identified in the parasites E. granulosus and E. multilocularis; however, the mechanisms of RTK signaling response in Echinococcus-host intercommunication are not fully understood. Thus, understanding the RTK signaling response in Echinococcus-host intercommunication and the potential effect of RTK signaling is crucial for identifying new drug targets for echinococcosis. The present review illustrates that RTK signaling in the host is over-activated following infection by E. granulosus or E. multilocularis and can further facilitate the development of metacestodes in vitro. In addition, some TKIs exert strong parasitostatic effects on E. granulosus or E. multilocularis, both in vitro and/or in vivo, through downregulation of RTK signaling molecules. The summarized findings suggest that RTK signaling may be a promising drug target and that TKIs could be potential anti-Echinococcus drugs warranting further research.
Collapse
Affiliation(s)
- Haijun Gao
- Chengdu Fifth People’s Hospital (Affiliated Fifth People’s Hospital of Chengdu University of Traditional Chinese Medicine; The Second Clinical Medical College), Chengdu 611130, China;
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research); National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases; National Health Commission Key Laboratory of Parasite and Vector Biology; WHO Collaborating Center for Tropical Diseases; National Center for International Research on Tropical Diseases, Shanghai 200025, China; (X.M.); (W.H.); (Z.F.)
| | - Zhuoma Bianba
- National Health Commission Key Laboratory of Echinococcosis Prevention and Control, Xizang Center for Disease Control and Prevention, Lhasa 850000, China;
| | - Xiaojin Mo
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research); National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases; National Health Commission Key Laboratory of Parasite and Vector Biology; WHO Collaborating Center for Tropical Diseases; National Center for International Research on Tropical Diseases, Shanghai 200025, China; (X.M.); (W.H.); (Z.F.)
- National Health Commission Key Laboratory of Echinococcosis Prevention and Control, Xizang Center for Disease Control and Prevention, Lhasa 850000, China;
| | - Wei Hu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research); National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases; National Health Commission Key Laboratory of Parasite and Vector Biology; WHO Collaborating Center for Tropical Diseases; National Center for International Research on Tropical Diseases, Shanghai 200025, China; (X.M.); (W.H.); (Z.F.)
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Zheng Feng
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research); National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases; National Health Commission Key Laboratory of Parasite and Vector Biology; WHO Collaborating Center for Tropical Diseases; National Center for International Research on Tropical Diseases, Shanghai 200025, China; (X.M.); (W.H.); (Z.F.)
| | - Fangye Zhou
- Chengdu Fifth People’s Hospital (Affiliated Fifth People’s Hospital of Chengdu University of Traditional Chinese Medicine; The Second Clinical Medical College), Chengdu 611130, China;
| | - Ting Zhang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research); National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases; National Health Commission Key Laboratory of Parasite and Vector Biology; WHO Collaborating Center for Tropical Diseases; National Center for International Research on Tropical Diseases, Shanghai 200025, China; (X.M.); (W.H.); (Z.F.)
- National Health Commission Key Laboratory of Echinococcosis Prevention and Control, Xizang Center for Disease Control and Prevention, Lhasa 850000, China;
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| |
Collapse
|
3
|
Nenni M, Çelebier M, Maçin S, Örsten S, Yabanoğlu-Çiftçi S, Baysal İ. Untargeted metabolomics to discriminate liver and lung hydatid cysts: Importance of metabolites involved in the immune response. Vet Parasitol 2024; 328:110180. [PMID: 38626652 DOI: 10.1016/j.vetpar.2024.110180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/28/2024] [Accepted: 04/01/2024] [Indexed: 04/18/2024]
Abstract
The Echinococcus granulosus sensu lato species complex is responsible for the neglected zoonotic disease known as cystic echinococcosis (CE). Humans and livestock are infected via fecal-oral transmission. CE remains prevalent in Western China, Central Asia, South America, Eastern Africa, and the Mediterranean. Approximately one million individuals worldwide are affected, influencing veterinary and public health, as well as social and economic matters. The infection causes slow-growing cysts, predominantly in the liver and lungs, but can also develop in other organs. The exact progression of these cysts is uncertain. This study aimed to understand the survival mechanisms of liver and lung CE cysts from cattle by determining their metabolite profiles through metabolomics and multivariate statistical analyses. Non-targeted metabolomic approaches were conducted using quadrupole-time-of-flight liquid chromatography/mass spectrometry (LC-QTOF-MS) to distinguish between liver and lung CE cysts. Data processing to extract the peaks on complex chromatograms was performed using XCMS. PCA and OPLS-DA plots obtained through multiple statistical analyses showed interactions of metabolites within and between groups. Metabolites such as glutathione, prostaglandin, folic acid, and cortisol that cause different immunological reactions have been identified both in liver and lung hydatid cysts, but in different ratios. Considering the differences in the metabolomic profiles of the liver and lung cysts determined in the present study will contribute research to enlighten the nature of the cyst and develop specific therapeutic strategies.
Collapse
Affiliation(s)
- Merve Nenni
- Cukurova University, Faculty of Pharmacy, Department of Analytical Chemistry, Adana, Turkey; Hacettepe University, Graduate School of Health Sciences, Department of One Health, Ankara, Turkey
| | - Mustafa Çelebier
- Hacettepe University, Faculty of Pharmacy, Department of Analytical Chemistry, Ankara, Turkey
| | - Salih Maçin
- Selçuk University, Faculty of Medicine, Department of Medical Microbiology, Konya, Turkey
| | - Serra Örsten
- Hacettepe University, Graduate School of Health Sciences, Department of One Health, Ankara, Turkey; Hacettepe University, Vocational School of Health Services, Ankara, Turkey
| | | | - İpek Baysal
- Hacettepe University, Graduate School of Health Sciences, Department of One Health, Ankara, Turkey; Hacettepe University, Vocational School of Health Services, Ankara, Turkey.
| |
Collapse
|
4
|
Grezzi L, González C, Díaz Á, Casaravilla C. The Acute Inflammatory Potential of Particles From the Echinococcus granulosus Laminated Layer Is Moderated by Its Calcium Inositol Hexakisphosphate Component. Parasite Immunol 2024; 46:e13040. [PMID: 38801355 DOI: 10.1111/pim.13040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/11/2024] [Accepted: 05/09/2024] [Indexed: 05/29/2024]
Abstract
Cystic echinococcosis is caused by the tissue-dwelling larva (hydatid) of Echinococcus granulosus sensu lato. A salient feature is that this larva is protected by the acellular laminated layer (LL). As the parasite grows, the LL sheds abundant particles that can accumulate in the parasite's vicinity. The potential of LL particles to induce inflammation in vivo has not been specifically analysed. It is not known how each of its two major components, namely highly glycosylated mucins and calcium inositol hexakisphosphate (InsP6) deposits, impacts inflammation induced by the LL as a whole. In this work, we show that LL particles injected intraperitoneally cause infiltration of eosinophils, neutrophils and monocytes/macrophages as well as the disappearance of resident (large peritoneal) macrophages. Strikingly, the absence of calcium InsP6 enhanced the recruitment of all the inflammatory cell types analysed. In contrast, oxidation of the mucin carbohydrates caused decreased recruitment of neutrophils. The carbohydrate-oxidised particles caused cell influx nonetheless, which may be explained by possible receptor-independent effects of LL particles on innate immune cells, as suggested by previous works from our group. In summary, LL particles can induce acute inflammatory cell recruitment partly dependent on its mucin glycans, and this recruitment is attenuated by the calcium InsP6 component.
Collapse
Affiliation(s)
- Leticia Grezzi
- Área Inmunología, Departamento de Biociencias (Facultad de Química), Instituto de Higiene, Universidad de la República, Montevideo, Uruguay
- Laboratorio de Inmunología, Instituto de Química Biológica (Facultad de Ciencias), Instituto de Higiene, Universidad de la República, Montevideo, Uruguay
| | | | - Álvaro Díaz
- Área Inmunología, Departamento de Biociencias (Facultad de Química), Instituto de Higiene, Universidad de la República, Montevideo, Uruguay
- Laboratorio de Inmunología, Instituto de Química Biológica (Facultad de Ciencias), Instituto de Higiene, Universidad de la República, Montevideo, Uruguay
| | - Cecilia Casaravilla
- Área Inmunología, Departamento de Biociencias (Facultad de Química), Instituto de Higiene, Universidad de la República, Montevideo, Uruguay
- Laboratorio de Inmunología, Instituto de Química Biológica (Facultad de Ciencias), Instituto de Higiene, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
5
|
Yang Y, Wuren T, Wu B, Cheng S, Fan H. The expression of CTLA-4 in hepatic alveolar echinococcosis patients and blocking CTLA-4 to reverse T cell exhaustion in Echinococcus multilocularis-infected mice. Front Immunol 2024; 15:1358361. [PMID: 38605966 PMCID: PMC11007148 DOI: 10.3389/fimmu.2024.1358361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/11/2024] [Indexed: 04/13/2024] Open
Abstract
Alveolar echinococcosis (AE) is a zoonotic parasitic disease caused by the infection of Echinococcus multilocularis (E. multilocularis) larvae. Cytotoxic T-lymphocyte antigen 4 (CTLA-4) produces inhibitory signals and induces T cell exhaustion, thereby inhibiting the parasiticidal efficacy of the liver immune system. Therefore, the purpose of this study is to explore how T-cell exhaustion contributes to AE and whether blocking CTLA-4 could reverse T cell exhaustion. Here we discovered that the expression of CTLA-4 was increased in the infiltrating margin around the lesion of the liver from AE patients by using western blot and immunohistochemistry assay. Multiple fluorescence immunohistochemistry identified that CTLA-4 and CD4/CD8 molecules were co-localized. For in vitro experiments, it was found that the sustained stimulation of E. multilocularis antigen could induce T cell exhaustion, blocking CTLA-4-reversed T cell exhaustion. For in vivo experiments, the expression of CTLA-4 was increased in the liver of E. multilocularis-infected mice, and the CTLA-4 and CD4/CD8 molecules were co-localized. Flow cytometry analysis demonstrated that the percentages of both CD4+ T cells and CD8+ T cells in the liver and peripheral blood were significantly increased and induced T exhaustion. When the mice were treated with anti-CTLA-4 antibodies, the number and weight of the lesions decreased significantly. Meanwhile, the flow cytometry results suggested that blocking CTLA-4 could effectively reverse T cell exhaustion and reactivate immune function. Our work reveals that blocking CTLA-4 could effectively reverse the T cell exhaustion caused by E. multilocularis and could be used as a novel target for the treatment of AE.
Collapse
Affiliation(s)
- Yuxuan Yang
- Research Center for High Altitude Medicine, Qinghai University, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Laboratory for High Altitude Medicine of Qinghai Province, Xining, Qinghai, China
- Qinghai Research Key Laboratory for Echinococcosis, Qinghai University, Xining, Qinghai, China
| | - Tana Wuren
- Research Center for High Altitude Medicine, Qinghai University, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Laboratory for High Altitude Medicine of Qinghai Province, Xining, Qinghai, China
| | - Binjie Wu
- Research Center for High Altitude Medicine, Qinghai University, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Laboratory for High Altitude Medicine of Qinghai Province, Xining, Qinghai, China
- Qinghai Research Key Laboratory for Echinococcosis, Qinghai University, Xining, Qinghai, China
| | - Shilei Cheng
- Research Center for High Altitude Medicine, Qinghai University, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Laboratory for High Altitude Medicine of Qinghai Province, Xining, Qinghai, China
- Qinghai Research Key Laboratory for Echinococcosis, Qinghai University, Xining, Qinghai, China
| | - Haining Fan
- Qinghai Research Key Laboratory for Echinococcosis, Qinghai University, Xining, Qinghai, China
- Department of Hepatopancreatobiliary Surgery, Affiliated Hospital of Qinghai University, Xining, Qinghai, China
| |
Collapse
|
6
|
Liu L, Chen F, Jiang S, Zhong B, Li W, Xu K, Wang Q, Wang Y, Cao J. Analysis of gene expression profile of peripheral blood in alveolar and cystic echinococcosis. Front Cell Infect Microbiol 2022; 12:913393. [PMID: 36034715 PMCID: PMC9405190 DOI: 10.3389/fcimb.2022.913393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
RNA-sequencing (RNA-seq) is a versatile, high-throughput technology that is being widely employed for screening differentially expressed genes (DEGs) in various diseases. Echinococcosis, a globally distributed zoonosis, has been reported to impose a heavy disease burden in pastoral areas of China. Herein we aimed to explore the molecular mechanisms underlying echinococcosis. In this study, peripheral blood samples were collected from six patients with alveolar echinococcosis (AE), six patients with cystic echinococcosis (CE), and six healthy controls. RNA-Seq (mRNA) was performed to detect gene transcript and expression levels, and DEGs were subjected to bioinformatic analyses. In comparison with healthy controls, 492 DEGs (270 upregulated, 222 downregulated) were found in the AE group and 424 DEGs (170 upregulated, 254 downregulated) were found in the CE group (|log2 (fold change)| > 1 and P < 0.05). Further, 60 genes were upregulated and 39 were downregulated in both the AE and CE groups. Gene ontology enrichment analysis indicated that DEGs were mainly involved in molecular functions, including extracellular space, extracellular region, organ and system development, and anatomical structure development. Protein–protein interaction (PPI) networks were constructed to depict the complex relationship between DEGs and interacting proteins.
Collapse
Affiliation(s)
- Lei Liu
- Department of Hospital Infection Management, Sichuan Provincial Orthopedic Hospital, Chengdu, China
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, (Chinese Center for Tropical Diseases Research); Key Laboratory of Parasite and Vector Biology, National Health Commission of People’s Republic of China; National Center for International Research on Tropical Diseases, China; World Health Organization Collaborating Center for Tropical Diseases, Shanghai, China
| | - Fan Chen
- Department of Microbiological Laboratory, Xindu County Center for Disease Control and Prevention, Chengdu, China
| | - Shan Jiang
- Department of Department of Environmental and School Health, Chengdu Center for Disease Control and Prevention, Chengdu, China
| | - Bo Zhong
- Institute of Parasitic Diseases, Sichuan Center for Disease Control and Prevention, Chengdu, China
| | - Wei Li
- Department of Parasitic Diseases, Garzê Center for Disease Control and Prevention, Kangding, China
| | - Kejun Xu
- Department of Parasitic Diseases, Garzê Center for Disease Control and Prevention, Kangding, China
| | - Qi Wang
- Institute of Parasitic Diseases, Sichuan Center for Disease Control and Prevention, Chengdu, China
| | - Ying Wang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, (Chinese Center for Tropical Diseases Research); Key Laboratory of Parasite and Vector Biology, National Health Commission of People’s Republic of China; National Center for International Research on Tropical Diseases, China; World Health Organization Collaborating Center for Tropical Diseases, Shanghai, China
- *Correspondence: Ying Wang, ; Jianping Cao,
| | - Jianping Cao
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, (Chinese Center for Tropical Diseases Research); Key Laboratory of Parasite and Vector Biology, National Health Commission of People’s Republic of China; National Center for International Research on Tropical Diseases, China; World Health Organization Collaborating Center for Tropical Diseases, Shanghai, China
- The School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Ying Wang, ; Jianping Cao,
| |
Collapse
|
7
|
Yasen A, Ran B, Wang M, Lv G, Lin R, Shao Y, Aji T, Wen H. Roles of immune cells in the concurrence of Echinococcus granulosus sensu lato infection and hepatocellular carcinoma. Exp Parasitol 2022; 240:108321. [PMID: 35787385 DOI: 10.1016/j.exppara.2022.108321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 06/28/2022] [Accepted: 06/28/2022] [Indexed: 11/26/2022]
Abstract
Immune cells are pivotal players in the immune responses against both parasitic infection and malignancies. Substantial evidence demonstrated that there may exist possible relationship between echinococcus granulus sensu lato (E. granulosus s.l.) infection and hepatocellular carcinoma (HCC) development. Thus, this study aimed to observe crucial roles of immune cells in the formation of subcutaneous lesions after transplanting HepG2 cell lines with or without E. granulosus s.l. protoscoleces (PSCs). HepG2 cell lines were subcutaneously injected into nude mice in the control group. In the co-transplantation group, HepG2 cells were subcutaneously co-injected with high dosage of E. granulosus s.l. PSCs. From the 25th day of transplantation, volume of subcutaneous lesions was measured every four days, which were removed at the 37th day for further studies. Basic pathological and functional changes were observed. Moreover, expression of Ki67, Bcl-2, Caspase3, α-smooth muscle actin (α-SMA), T cell markers (CD3, CD4, CD8), PD1/PD-L1, nature killer (NK) cell markers (CD16, CD56) were further detected by immunohistochemical staining and quantitative real-time polymerase chain reaction (qRT-PCR) analysis. Subcutaneous lesions were gradually increased in volume and there occurred pathologically heterogeneous tumor cells, which were more significant in the co-transplantation group. Compared to the control group, expression of proliferation markers Ki67 and Bcl-2 was at higher levels in the co-transplantation group. Reversely, apoptotic marker Caspase3 was highly detected in the control group, suggesting promoting effects of E. granulosus s.l. PSCs on HCC development. Interestingly, subcutaneous lesions of the co-transplantation group were more functional in synthesizing and storing glycogen. Collagen and α-SMA+ cells were also at higher levels in the co-transplantation group than those in the control group. Most importantly, co-transplantation of HepG2 cells with E. granulosus s.l. PSCs led to significant increase in the expression of T cell markers, PD1/PD-L1 and NK cells markers. E. granulosus s.l. may have promoting effects on HCC development, which was closely associated with the immune responses of T cells and NK cells.
Collapse
Affiliation(s)
- Aimaiti Yasen
- Department of Hepatobiliary and Echinococcosis Surgery, Digestive and Vascular Surgery Center, First Affiliated Hospital of Xinjiang Medical University, 830054, Urumqi, Xinjiang, China; State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, 830054, Urumqi, Xinjiang, China
| | - Bo Ran
- Department of Hepatobiliary and Echinococcosis Surgery, Digestive and Vascular Surgery Center, First Affiliated Hospital of Xinjiang Medical University, 830054, Urumqi, Xinjiang, China
| | - Maolin Wang
- Department of Hepatobiliary and Echinococcosis Surgery, Digestive and Vascular Surgery Center, First Affiliated Hospital of Xinjiang Medical University, 830054, Urumqi, Xinjiang, China
| | - Guodong Lv
- Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, 830054, Urumqi, Xinjiang, China
| | - Renyong Lin
- Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, 830054, Urumqi, Xinjiang, China
| | - Yingmei Shao
- Department of Hepatobiliary and Echinococcosis Surgery, Digestive and Vascular Surgery Center, First Affiliated Hospital of Xinjiang Medical University, 830054, Urumqi, Xinjiang, China.
| | - Tuerganaili Aji
- Department of Hepatobiliary and Echinococcosis Surgery, Digestive and Vascular Surgery Center, First Affiliated Hospital of Xinjiang Medical University, 830054, Urumqi, Xinjiang, China; State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, 830054, Urumqi, Xinjiang, China.
| | - Hao Wen
- Department of Hepatobiliary and Echinococcosis Surgery, Digestive and Vascular Surgery Center, First Affiliated Hospital of Xinjiang Medical University, 830054, Urumqi, Xinjiang, China; State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, 830054, Urumqi, Xinjiang, China.
| |
Collapse
|
8
|
Comparison and evaluation of analytic and diagnostic performances of four commercial kits for the detection of antibodies against Echinococcus granulosus and multilocularis in human sera. Comp Immunol Microbiol Infect Dis 2022; 86:101816. [PMID: 35472655 DOI: 10.1016/j.cimid.2022.101816] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/06/2022] [Accepted: 04/12/2022] [Indexed: 02/08/2023]
|
9
|
Du X, Zhu M, Zhang T, Wang C, Tao J, Yang S, Zhu Y, Zhao W. The Recombinant Eg.P29-Mediated miR-126a-5p Promotes the Differentiation of Mouse Naive CD4 + T Cells via DLK1-Mediated Notch1 Signal Pathway. Front Immunol 2022; 13:773276. [PMID: 35211114 PMCID: PMC8861942 DOI: 10.3389/fimmu.2022.773276] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 01/18/2022] [Indexed: 12/12/2022] Open
Abstract
Cystic echinococcosis (CE) is a zoonotic parasitic disease spread worldwide caused by Echinococcus granulosus (Eg), which sometimes causes serious damage; however, in many cases, people are not aware that they are infected. A number of recombinant vaccines based on Eg are used to evaluate their effectiveness against the infection. Our previous report showed that recombinant Eg.P29 (rEg.P29) has a marvelous immunoprotection and can induce Th1 immune response. Furthermore, data of miRNA microarray in mice spleen CD4+ T cells showed that miR-126a-5p was significantly elevated 1 week after immunization by using rEg.P29. Therefore, in this perspective, we discussed the role of miR-126a-5p in the differentiation of naive CD4+ T cells into Th1/Th2 under rEg.P29 immunization and determined the mechanisms associated with delta-like 1 homolog (DLK1) and Notch1 signaling pathway. One week after P29 immunization of mice, we found that miR-126a-5p was significantly increased and DLK1 expression was decreased, while Notch1 pathway activation was enhanced and Th1 response was significantly stronger. The identical conclusion was obtained by overexpression of mmu-miR-126a-5p in primary naive CD4+ T cells in mice. Intriguingly, mmu-miR-126a-5p was significantly raised in serum from mice infected with protoscolex in the early stages of infection and markedly declined in the late stages of infection, while has-miR-126-5p expression was dramatically reduced in serum from CE patients. Taken together, we show that miR-126a-5p functions as a positive regulator of Notch1-mediated differentiation of CD4+ T cells into Th1 through downregulating DLK1 in vivo and in vitro. Hsa-miR-126-5p is potentially a very promising diagnostic biomarker for CE.
Collapse
Affiliation(s)
- Xiancai Du
- School of Basic Medical Science of Ningxia Medical University, Yinchuan, China.,Ningxia Key Laboratory of Prevention and Control of Common Infectious Diseases, Yinchuan, China
| | - Mingxing Zhu
- Ningxia Key Laboratory of Prevention and Control of Common Infectious Diseases, Yinchuan, China.,Center of Scientific Technology of Ningxia Medical University, Yinchuan, China
| | - Tingrui Zhang
- School of Basic Medical Science of Ningxia Medical University, Yinchuan, China.,Ningxia Key Laboratory of Prevention and Control of Common Infectious Diseases, Yinchuan, China
| | - Chan Wang
- School of Basic Medical Science of Ningxia Medical University, Yinchuan, China.,Ningxia Key Laboratory of Prevention and Control of Common Infectious Diseases, Yinchuan, China
| | - Jia Tao
- School of Basic Medical Science of Ningxia Medical University, Yinchuan, China.,Ningxia Key Laboratory of Prevention and Control of Common Infectious Diseases, Yinchuan, China
| | - Songhao Yang
- School of Basic Medical Science of Ningxia Medical University, Yinchuan, China.,Ningxia Key Laboratory of Prevention and Control of Common Infectious Diseases, Yinchuan, China
| | - Yazhou Zhu
- School of Basic Medical Science of Ningxia Medical University, Yinchuan, China.,Ningxia Key Laboratory of Prevention and Control of Common Infectious Diseases, Yinchuan, China
| | - Wei Zhao
- Ningxia Key Laboratory of Prevention and Control of Common Infectious Diseases, Yinchuan, China.,Center of Scientific Technology of Ningxia Medical University, Yinchuan, China
| |
Collapse
|
10
|
Dos Santos GB, da Silva ED, Kitano ES, Battistella ME, Monteiro KM, de Lima JC, Ferreira HB, Serrano SMDT, Zaha A. Proteomic profiling of hydatid fluid from pulmonary cystic echinococcosis. Parasit Vectors 2022; 15:99. [PMID: 35313982 PMCID: PMC8935821 DOI: 10.1186/s13071-022-05232-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/03/2022] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Most cystic echinococcosis cases in Southern Brazil are caused by Echinococcus granulosus and Echinococcus ortleppi. Proteomic studies of helminths have increased our knowledge about the molecular survival strategies that are used by parasites. Here, we surveyed the protein content of the hydatid fluid compartment in E. granulosus and E. ortleppi pulmonary bovine cysts to better describe and compare their molecular arsenal at the host-parasite interface. METHODS Hydatid fluid samples from three isolates of each species were analyzed using mass spectrometry-based proteomics (LC-MS/MS). In silico functional analyses of the identified proteins were performed to examine parasite survival strategies. RESULTS The identified hydatid fluid protein profiles showed a predominance of parasite proteins compared to host proteins that infiltrate the cysts. We identified 280 parasitic proteins from E. granulosus and 251 from E. ortleppi, including 52 parasitic proteins that were common to all hydatid fluid samples. The in silico functional analysis revealed important molecular functions and processes that are active in pulmonary cystic echinococcosis, such as adhesion, extracellular structures organization, development regulation, signaling transduction, and enzyme activity. CONCLUSIONS The protein profiles described here provide evidence of important mechanisms related to basic cellular processes and functions that act at the host-parasite interface in cystic echinococcosis. The molecular tools used by E. granulosus and E. ortleppi for survival within the host are potential targets for new therapeutic approaches to treat cystic echinococcosis and other larval cestodiases.
Collapse
Affiliation(s)
- Guilherme Brzoskowski Dos Santos
- Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Edileuza Danieli da Silva
- Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Eduardo Shigueo Kitano
- Laboratório de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, Brazil
| | - Maria Eduarda Battistella
- Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Karina Mariante Monteiro
- Laboratório de Genômica Estrutural E Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Jeferson Camargo de Lima
- Laboratório de Genômica Estrutural E Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Henrique Bunselmeyer Ferreira
- Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Laboratório de Genômica Estrutural E Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Solange Maria de Toledo Serrano
- Laboratório de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, Brazil
| | - Arnaldo Zaha
- Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil. .,Laboratório de Genômica Estrutural E Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| |
Collapse
|
11
|
Biosa G, Bonelli P, Pisanu S, Ghisaura S, Santucciu C, Peruzzu A, Garippa G, Uzzau S, Masala G, Pagnozzi D. Proteomic characterization of Echinococcus granulosus sensu stricto, Taenia hydatigena and Taenia multiceps metacestode cyst fluids. Acta Trop 2022; 226:106253. [PMID: 34822852 DOI: 10.1016/j.actatropica.2021.106253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 10/25/2021] [Accepted: 11/17/2021] [Indexed: 12/28/2022]
Abstract
Cystic echinococcosis (CE) diagnosis by means of serological assays is hampered by the presence of parasites closely related to Echinococcus granulosus sensu lato (s.l.), responsible of the zoonotic disease and with which share cross-reacting antigens. Thus, improvements on the characterization of Echinococcus specific antigens expressed in the larval stage are required, in order to provide useful information for the development of immunological assays for the serodiagnosis of CE in sheep. Here, the proteome of the hydatid cyst fluids (HFs) of Echinococcus granulosus (hydatid fluid, EgHF) and other ovine parasites cyst fluids (CFs), Taenia hydatigena (ThCF) and Taenia multiceps (TmCF) were analyzed by a shotgun proteomic approach. Parasite and host protein profiles in the three types of cyst fluids were characterized and compared. Among the identified proteins, differential parasitic markers with serodiagnostic potential, due to their well-known immunoreactivity in human, included Ag5, AgB proteins, 8-kDa glycoproteins, hydatid disease diagnostic antigen P29 and major egg antigen P40. In particular, seven proteoforms of AgB and 8-kDa glycoprotein resulted to be the most promising diagnostic biomarkers, as they might predict CE in ovine and discriminate between different types of parasites.
Collapse
|
12
|
Soleymani N, Taran F, Nazemshirazi M, Naghibi A, Torabi M, Borji H, Haghparast A. Dysregulation of Ovine Toll-Like Receptors 2 and 4 Expression by Hydatid Cyst-Derived Antigens. IRANIAN JOURNAL OF PARASITOLOGY 2021; 16:219-228. [PMID: 34557236 PMCID: PMC8418664 DOI: 10.18502/ijpa.v16i2.6271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/12/2020] [Indexed: 11/24/2022]
Abstract
Background Cystic echinococcosis (CE) is a zoonotic disease caused by infection with Echinococcus granulosus. Toll-like receptors (TLRs) as the first line of defense against various parasites play a critical role in sensing and triggering anti-parasite responses. Methods The study was conducted at the Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Iran in 2019. Ovine peripheral blood mononuclear cells (PBMCs) were stimulated with hydatid cyst-derived antigens including hydatid cyst fluid (HCF), germinal layer antigens (GL), somatic and excretory/secretory (ES) products of protoscoleces (PSC). To investigate whether the expression of TLR2 and TLR4 was altered during exposure to these antigens, PBMCs were stimulated with two different concentrations at different time points. Results After exposure of PBMCs to ES and somatic antigens of protoscoleces (PSC) the expression of TLR2 and TLR4 was down-regulated in comparison with control group. Similarly, HCF markedly down-regulated TLR2 and TLR4 transcripts independent of dose and time. GL antigens significantly down-regulated TLR2, while TLR4 expression was up-regulated as compared with control group. Conclusion Hydatid cyst-derived antigens could dysregulate the expression of TLR2 and TLR4 in ovine PBMCs, suggesting a possible mechanism to suppress host immunity to establish chronic infection.
Collapse
Affiliation(s)
- Nooshinmehr Soleymani
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Fateme Taran
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Abolghasem Naghibi
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Maryam Torabi
- Central Laboratories of Khorasan Razavi Veterinary Organization, Mashhad, Iran
| | - Hassan Borji
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Alireza Haghparast
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
13
|
Arbildi P, La-Rocca S, Kun A, Lorenzatto KR, Monteiro KM, Zaha A, Mourglia-Ettlin G, Ferreira HB, Fernández V. Expression and distribution of glutathione transferases in protoscoleces of Echinococcus granulosus sensu lato. Acta Trop 2021; 221:105991. [PMID: 34089697 DOI: 10.1016/j.actatropica.2021.105991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 05/21/2021] [Accepted: 05/26/2021] [Indexed: 10/21/2022]
Abstract
Glutathione transferases (GSTs) belong to a diverse superfamily of multifunctional proteins involved in metabolic detoxification. In helminth parasite, GSTs are particularly relevant since they are also involved in host immunomodulation. Echinococcus granulosus sensu lato (s.l.) is a cestode parasite known to express at least three phylogenetically distant cytosolic GSTs: EgGST1 and EgGST2 previously grouped within Mu and Sigma classes, respectively; and EgGST3 related to both Omega and Sigma classes. To better characterize E. granulosus s.l. GSTs, herein their expression and distribution were assessed in the pre-adult protoscolex (PSC) parasite stage. Potential transcriptional regulatory mechanisms of the corresponding EgGST genes were also explored. Firstly, the transcription of the three EgGSTs was significantly induced during the early stages of the murine model of infection, suggesting a potential role during parasite establishment. EgGST1 was detected in the parenchyma of PSCs and its expression increased after H2O2 exposure, supporting its role in detoxification. EgGST2 was mainly detected on the PSCs tegument, strategically localized for potential immunoregulation functions due to its Sigma-class characteristics. In addition, its expression increased after anthelmintic treatment, suggesting a role in chemotherapy resistance. Finally, the Omega-related EgGST3 was localized throughout the entire PSC body, including suckers and tegument, and since its expression also increased after H2O2 treatment, a potential role in oxidative stress response could also be ascribed. On the other hand, known cis-acting regulatory motifs were detected in EgGST genes, suggesting similar transcription processes to other eukaryotes. The results herein reported provide additional data regarding the roles of EgGSTs in E. granulosus s.l. biology, contributing to a better understanding of its host-parasite interaction.
Collapse
|
14
|
Sellau J, Puengel T, Hoenow S, Groneberg M, Tacke F, Lotter H. Monocyte dysregulation: consequences for hepatic infections. Semin Immunopathol 2021; 43:493-506. [PMID: 33829283 PMCID: PMC8025899 DOI: 10.1007/s00281-021-00852-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/04/2021] [Indexed: 02/07/2023]
Abstract
Liver disorders due to infections are a substantial health concern in underdeveloped and industrialized countries. This includes not only hepatotropic viruses (e.g., hepatitis B, hepatitis C) but also bacterial and parasitic infections such as amebiasis, leishmaniasis, schistosomiasis, or echinococcosis. Recent studies of the immune mechanisms underlying liver disease show that monocytes play an essential role in determining patient outcomes. Monocytes are derived from the mononuclear phagocyte lineage in the bone marrow and are present in nearly all tissues of the body; these cells function as part of the early innate immune response that reacts to challenge by external pathogens. Due to their special ability to develop into tissue macrophages and dendritic cells and to change from an inflammatory to an anti-inflammatory phenotype, monocytes play a pivotal role in infectious and non-infectious liver diseases: they can maintain inflammation and support resolution of inflammation. Therefore, tight regulation of monocyte recruitment and termination of monocyte-driven immune responses in the liver is prerequisite to appropriate healing of organ damage. In this review, we discuss monocyte-dependent immune mechanisms underlying hepatic infectious disorders. Better understanding of these immune mechanisms may lead to development of new interventions to treat acute liver disease and prevent progression to organ failure.
Collapse
Affiliation(s)
- Julie Sellau
- Department of Molecular Biology and Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Tobias Puengel
- Department of Hepatology and Gastroenterology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany
| | - Stefan Hoenow
- Department of Molecular Biology and Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Marie Groneberg
- Department of Molecular Biology and Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany
| | - Hannelore Lotter
- Department of Molecular Biology and Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.
| |
Collapse
|
15
|
Inhibition of inflammatory cytokine production and proliferation in macrophages by Kunitz-type inhibitors from Echinococcus granulosus. Mol Biochem Parasitol 2021; 242:111351. [PMID: 33428949 DOI: 10.1016/j.molbiopara.2021.111351] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/21/2020] [Accepted: 01/04/2021] [Indexed: 10/22/2022]
Abstract
The genus Echinococcus of cestode parasites includes important pathogens of humans and livestock animals. Transcriptomic and genomic studies on E. granulosus and E. multilocularis uncovered striking expansion of monodomain Kunitz proteins. This expansion is accompanied by the specialization of some family members away from the ancestral protease inhibition function to fulfill cation channel blockade functions. Since cation channels are involved in immune processes, we tested the effects on macrophage physiology of two E. granulosus Kunitz-type inhibitors of voltage-activated cation channels (Kv) that are close paralogs. Both inhibitors, EgKU-1 and EgKU-4, inhibited production of the Th1/Th17 cytokine subunit IL-12/23p40 by macrophages stimulated with the TLR4 agonist LPS. In addition, EgKU-4 but not EgKU-1 inhibited production of the inflammatory cytokine IL-6. These activities were not displayed by EgKU-3, a family member that is a protease inhibitor without known activity on cation channels. EgKU-4 potently inhibited macrophage proliferation in response to M-CSF, whereas EgKU-1 displayed similar activity but with much lower potency, similar to EgKU-3. We discuss structural differences, including a heavily cationic C-terminal extension present in EgKU-4 but not in EgKU-1, that may explain the differential activities of the two close paralogs.
Collapse
|
16
|
Chen C, Gao Q, Luo Y, Zhang G, Xu X, Li Z, Wang J, He Q, Sheng L, Ma X. The immunotherapy with hMASP-2 DNA nanolipoplexes against echinococcosis in experimentally protoscolex-infected mice. Acta Trop 2020; 210:105579. [PMID: 32535067 DOI: 10.1016/j.actatropica.2020.105579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/19/2020] [Accepted: 06/08/2020] [Indexed: 01/05/2023]
Abstract
Cystic echinococcosis (CE), a complex and neglected zoonotic infectious disease, is mainly caused by larval tapeworm Echinococcus granulosus with a worldwide distribution. For CE, an effective drug treatment is not yet available. The present study was conducted to evaluate the efficacy of hMASP-2-based immunotherapy against hydatid cysts by using murine model. Eighteen weeks after infection with 2000 viable protoscoleces intraperitoneally, the infected mice were treated with hMASP-2 DNA nanolipoplexes (pcDNA3.1-hMASP-2) and albendazole respectively. After six weeks treatment, a significant reduction in the weight of cysts was observed both in the pcDNA3.1-hMASP-2 group and albendazole group compared with the untreated group (P < 0.05). The hMASP-2 DNA nanolipoplexes not only inhibited the development of germinal layer, but also induced the extensive degeneration and damage of the germinal layer cells. Furthermore, compared with the untreated group, the number of CD4+T cells and CD8+T cells and the level of serum IFN-γ were significantly increased (P < 0.05). The frequency of PD-1+T-cell subpopulations including CD4+PD-1+T cells and CD8+PD-1+T cells and the level of serum IL-4 were notably decreased (P < 0.05) in the pcDNA3.1-hMASP-2 treatment group. Therefore, the hMASP-2 DNA nanolipoplexes displayed an effective treatment for echinococcosis through inhibiting the development of cysts and up-regulatory T-cell immunity. This new hMASP-2-based immunotherapeutic strategy could be a potential alternative for the treatment of CE, but further studies are recommended to evaluate the full potential of these hMASP-2 DNA nanolipoplexes in the treatment of human CE.
Collapse
Affiliation(s)
- Chong Chen
- Department of Immunology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Qi Gao
- Department of Immunology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yanping Luo
- Department of Immunology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Guochao Zhang
- Department of Immunology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xiaoying Xu
- Department of Immunology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Zhi Li
- Department of Immunology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Jianghua Wang
- Department of Immunology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Qi He
- Department of Immunology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Li Sheng
- Department of Immunology, Medical College, Northwest Minzu University, Lanzhou, 730030, China
| | - Xingming Ma
- Department of Immunology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China; Key Lab of Preclinical Study for New Drugs of Gansu Province, Lanzhou, 730000, China.
| |
Collapse
|
17
|
MiR-374b-5p Regulates T Cell Differentiation and Is Associated with rEg.P29 Immunity. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8024763. [PMID: 32908913 PMCID: PMC7463394 DOI: 10.1155/2020/8024763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 07/23/2020] [Indexed: 11/18/2022]
Abstract
Cystic echinococcosis (CE) is a zoonotic disease caused by Echinococcus granulosus (Eg) infection. Our previous study confirmed that recombinant Eg.P29 (rEg.P29) could protect against echinococcus granulosus secondary infection in sheep and mice. The aim of the study was to investigate the association between immunoprotection of rEg.P29 vaccine and mmu-miR-374b-5p (miR-374b-5p) and study the immunity influence of miR-374b-5p on CD4+ T cells in mice spleen. MiR-374b-5p level was significantly increased after the second-week and the fourth week of vaccination with rEg.P29. Overexpression of miR-374b-5p increased IFN-γ, IL-2, IL-17A mRNA levels and decreased IL-10 mRNA levels in CD4+ T cells. Moreover, the inhibition of miR-374b-5p decreased IFN-γ and IL-17A and increased IL-10 mRNA levels in CD4+ T cells; this was further confirmed by the flow cytometry. The vaccination of rEg.P29 enhanced miR-374b-5p expression that was associated with a higher Th1 and Th17 immune response, a lower IL-10 mRNA production with miR-374b-5p overexpression, a lower Th1 immune response, and a higher IL-10 mRNA levels with miR-374b-5p inhibitions. To sum up, these data suggest that miR-374b-5p may participate in rEg.P29 immunity by regulating Th1 and Th17 differentiation.
Collapse
|
18
|
Toaleb NI, Helmy MS, Shanawany EEE, Abdel-Rahman EH. A simple and efficient purification method of native immunoreactive antigen for diagnosis of camel hydatidosis. Vet World 2020; 13:141-146. [PMID: 32158164 PMCID: PMC7020131 DOI: 10.14202/vetworld.2020.141-146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 12/09/2019] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Cystic echinococcosis (CE), a zoonotic disease that affects animal and human health, is of increasing economic importance due to high morbidity rates and high economic losses in the livestock industry. AIM The present study was conducted to purify the antigen from hydatid cyst fluid (HCF) with high diagnostic efficacy of camel hydatidosis using indirect enzyme-linked immunosorbent assay (ELISA). MATERIALS AND METHODS The HCF antigen was purified using Sephacryl S-300 column chromatography. Characterization of fractions was performed using reducing and non-reducing sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and Western blot analysis. Further, antibodies against Echinococcus granulosus cysts in camel serum were detected using indirect ELISA. RESULTS The purification process resulted in three fractions of antigens: FI, FII, and FIII. Indirect ELISA showed that higher diagnostic efficacy was observed in FI than in FII and FIII. Indirect ELISA, in which FI was utilized, showed 88% sensitivity and 91.7% specificity. Non-reducing SDS-PAGE showed that FI had two bands of molecular weights 120 and 60 kDa. Western blot analysis of FI demonstrated that 60, 38, and 22 kDa were antigenic bands when reacted with naturally infected camel sera with E. granulosus cysts. Using indirect ELISA, F1 recorded an infection percentage of 81.7% in randomly collected camel serum samples. CONCLUSION FI is a promising antigen for accurate diagnosis of camel CE using indirect ELISA.
Collapse
Affiliation(s)
- Nagwa I. Toaleb
- Department of Parasitology and Animal Diseases, National Research Centre, El Buhouth St., Dokki, Cairo, Egypt
| | - Mohamed S. Helmy
- Department of Molecular Biology, National Research Centre, El Buhouth St., Dokki, Cairo, Egypt
| | - Eman E. El Shanawany
- Department of Parasitology and Animal Diseases, National Research Centre, El Buhouth St., Dokki, Cairo, Egypt
| | - Eman H. Abdel-Rahman
- Department of Parasitology and Animal Diseases, National Research Centre, El Buhouth St., Dokki, Cairo, Egypt
| |
Collapse
|
19
|
Abo-Aziza FA, Zaki AKA, Abo El-Maaty AM. Bone marrow-derived mesenchymal stem cell (BM-MSC): A tool of cell therapy in hydatid experimentally infected rats. CELL REGENERATION (LONDON, ENGLAND) 2019; 8:58-71. [PMID: 31844519 PMCID: PMC6895685 DOI: 10.1016/j.cr.2019.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/30/2019] [Accepted: 11/01/2019] [Indexed: 12/21/2022]
Abstract
This study aimed to clarify the potentiality of bone marrow mesenchymal stem cells (BM-MSC) transplantation with albendazole (ABZ) on the modulation of immune responses against hydatid cyst antigens and the regeneration of injured livers in experimentally infected rats. Three different antigens of hydatid cyst fluid (HCF), hydatid cyst protoscolex (HCP) and hydatid cyst germinal layer (HCG) were isolated and their antigenic potencies were determined. The ultrasound, immunological and pathological criteria were investigated. Counting of 80% confluence BM-MSC was 4.68 × 104 cells/cm2 with 92.24% viability. Final population doublings score was 65.31 that indicated proliferation and self-renewability. Phenotyping of BM-MSC showed expression of CD73 and CD29 without exhibition of CD34 and CD14. Ultrasound examination showed multiple hydatid cysts in liver with low blood flow and spleenomegaly 8 weeks' post infection. No significant differences were noted in cystic diameter in uni-cyst liver at 2nd and 4th weeks following ABZ treatment while it was significantly decreased (P < 0.05) following transplantation of BM-MSC + ABZ treatment comparing to experimentally infected untreated group. Igs and IgG responses to the three antigens were significantly elevated while elevation in IgM response was only to HCG (P < 0.05). ABZ treatment accompanied with significant decrease in Igs and IgG titers against HCF and HCG only at 4th week post treatment (P < 0.05). However, Igs titer against HCF, HCP and HCG was significantly decreased at the 4th week following transplantation of BM-MSC + ABZ. Interestingly, the combination of BM-MSC + ABZ treatment resulted in reduction of Igs response to HCP to normal level as that of healthy control. Experimental infection resulted in elevation of TNF-α and IL-6 (P < 0.05) while, IL-4 and IL-10 decreased (P < 0.01). After transplantation of BM-MSC + ABZ treatment, serum TNF-α and IL-6 concentrations were reduced (P < 0.05) at both the 2nd and 4th weeks. However, IL-4 and IL-10 concentrations were significantly elevated (P < 0.05) only at 4th week following transplantation of BM-MSC + ABZ treatment. In conclusion, BM-MSC transplantation following ABZ administration can regenerate injured liver tissue without complete disappearance of hydatid cyst. In addition, it can modulate host protective humeral and cell mediated immune responses against hydatid cyst antigens. Therefore, the current study encourages to move to the step of performing clinical trials in humans.
Collapse
Affiliation(s)
- Faten A.M. Abo-Aziza
- Department of Parasitology and Animal Diseases, Veterinary Research Division, National Research Centre, Cairo, Egypt
| | - Abdel Kader A. Zaki
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Amal M. Abo El-Maaty
- Department of Animal Reproduction and AI, Veterinary Research Division, National Research Centre, Cairo, Egypt
| |
Collapse
|
20
|
Particles from the Echinococcus granulosus Laminated Layer Inhibit CD40 Upregulation in Dendritic Cells by Interfering with Akt Activation. Infect Immun 2019; 87:IAI.00641-19. [PMID: 31570562 PMCID: PMC6867849 DOI: 10.1128/iai.00641-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 09/20/2019] [Indexed: 12/22/2022] Open
Abstract
The larval stage of the cestode Echinococcus granulosus causes cystic echinococcosis in humans and livestock. This larva is protected by the millimeter-thick, mucin-based laminated layer (LL), from which materials have to be shed to allow parasite growth. We previously reported that dendritic cells (DCs) respond to microscopic pieces of the mucin gel of the LL (pLL) with unconventional maturation phenotypes, in the absence or presence of Toll-like receptor (TLR) agonists, including lipopolysaccharide (LPS). The larval stage of the cestode Echinococcus granulosus causes cystic echinococcosis in humans and livestock. This larva is protected by the millimeter-thick, mucin-based laminated layer (LL), from which materials have to be shed to allow parasite growth. We previously reported that dendritic cells (DCs) respond to microscopic pieces of the mucin gel of the LL (pLL) with unconventional maturation phenotypes, in the absence or presence of Toll-like receptor (TLR) agonists, including lipopolysaccharide (LPS). We also reported that the presence of pLL inhibited the activating phosphorylation of the phosphatidylinositol 3-kinase (PI3K) effector Akt induced by granulocyte-macrophage colony-stimulating factor or interleukin-4. We now show that the inhibitory effect of pLL extends to LPS as a PI3K activator, and results in diminished phosphorylation of GSK3 downstream from Akt. Functionally, the inhibition of Akt and GSK3 phosphorylation are linked to the blunted upregulation of CD40, a major feature of the unconventional maturation phenotype. Paradoxically, all aspects of unconventional maturation induced by pLL depend on PI3K class I. Additional components of the phagocytic machinery are needed, but phagocytosis of pLL particles is not required. These observations hint at a DC response mechanism related to receptor-independent mechanisms proposed for certain crystalline and synthetic polymer-based particles; this would fit the previously reported lack of detection of molecular-level motifs necessary of the effects of pLL on DCs. Finally, we report that DCs exposed to pLL are able to condition DCs not exposed to the material so that these cannot upregulate CD40 in full in response to LPS.
Collapse
|
21
|
Wang H, Zhang CS, Fang BB, Li ZD, Li L, Bi XJ, Li WD, Zhang N, Lin RY, Wen H. Thioredoxin peroxidase secreted by Echinococcus granulosus (sensu stricto) promotes the alternative activation of macrophages via PI3K/AKT/mTOR pathway. Parasit Vectors 2019; 12:542. [PMID: 31727141 PMCID: PMC6857240 DOI: 10.1186/s13071-019-3786-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 11/04/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Larvae of Echinococcus granulosus (sensu lato) dwell in host organs for a long time but elicit only a mild inflammatory response, which indicates that the resolution of host inflammation is necessary for parasite survival. The recruitment of alternatively activated macrophages (AAMs) has been observed in a variety of helminth infections, and emerging evidence indicates that AAMs are critical for the resolution of inflammation. However, whether AAMs can be induced by E. granulosus (s.l.) infection or thioredoxin peroxidase (TPx), one of the important molecules secreted by the parasite, remains unclear. METHODS The activation status of peritoneal macrophages (PMs) derived from mice infected with E. granulosus (sensu stricto) was analyzed by evaluating the expression of phenotypic markers. PMs were then treated in vivo and in vitro with recombinant EgTPx (rEgTPx) and its variant (rvEgTPx) in combination with parasite excretory-secretory (ES) products, and the resulting activation of the PMs was evaluated by flow cytometry and real-time PCR. The phosphorylation levels of various molecules in the PI3K/AKT/mTOR pathway after parasite infection and antigen stimulation were also detected. RESULTS The expression of AAM-related genes in PMs was preferentially induced after E. granulosus (s.s.) infection, and phenotypic differences in cell morphology were detected between PMs isolated from E. granulosus (s.s.)-infected mice and control mice. The administration of parasite ES products or rEgTPx induced the recruitment of AAMs to the peritoneum and a notable skewing of the ratio of PM subsets, and these effects are consistent with those obtained after E. granulosus (s.s.) infection. ES products or rEgTPx also induced PMs toward an AAM phenotype in vitro. Interestingly, this immunomodulatory property of rEgTPx was dependent on its antioxidant activity. In addition, the PI3K/AKT/mTOR pathway was activated after parasite infection and antigen stimulation, and the activation of this pathway was suppressed by pre-treatment with an AKT/mTOR inhibitor. CONCLUSIONS This study demonstrates that E. granulosus (s.s.) infection and ES products, including EgTPx, can induce PM recruitment and alternative activation, at least in part, via the PI3K/AKT/mTOR pathway. These results suggest that EgTPx-induced AAMs might play a key role in the resolution of inflammation and thereby favour the establishment of hydatid cysts in the host.
Collapse
Affiliation(s)
- Hui Wang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, 830054, Xinjiang, People's Republic of China.,Branch of The First Affiliated Hospital of Xinjiang Medical University, Changji, 831100, Xinjiang, People's Republic of China.,Basic Medical College, Xinjiang Medical University, Ürümqi, 830054, Xinjiang, China
| | - Chuan-Shan Zhang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, 830054, Xinjiang, People's Republic of China.,Xinjiang Key Laboratory of Echinococcosis, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, 830054, Xinjiang, China
| | - Bin-Bin Fang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, 830054, Xinjiang, People's Republic of China
| | - Zhi-De Li
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, 830054, Xinjiang, People's Republic of China
| | - Liang Li
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, 830054, Xinjiang, People's Republic of China
| | - Xiao-Juan Bi
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, 830054, Xinjiang, People's Republic of China
| | - Wen-Ding Li
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, 830054, Xinjiang, People's Republic of China
| | - Ning Zhang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, 830054, Xinjiang, People's Republic of China
| | - Ren-Yong Lin
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, 830054, Xinjiang, People's Republic of China. .,Xinjiang Key Laboratory of Echinococcosis, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, 830054, Xinjiang, China.
| | - Hao Wen
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, 830054, Xinjiang, People's Republic of China. .,Xinjiang Key Laboratory of Echinococcosis, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, 830054, Xinjiang, China.
| |
Collapse
|
22
|
Cancela M, Paes JA, Moura H, Barr JR, Zaha A, Ferreira HB. Unraveling oxidative stress response in the cestode parasite Echinococcus granulosus. Sci Rep 2019; 9:15876. [PMID: 31685918 PMCID: PMC6828748 DOI: 10.1038/s41598-019-52456-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 10/18/2019] [Indexed: 01/19/2023] Open
Abstract
Cystic hydatid disease (CHD) is a worldwide neglected zoonotic disease caused by Echinococcus granulosus. The parasite is well adapted to its host by producing protective molecules that modulate host immune response. An unexplored issue associated with the parasite's persistence in its host is how the organism can survive the oxidative stress resulting from parasite endogenous metabolism and host defenses. Here, we used hydrogen peroxide (H2O2) to induce oxidative stress in E. granulosus protoescoleces (PSCs) to identify molecular pathways and antioxidant responses during H2O2 exposure. Using proteomics, we identified 550 unique proteins; including 474 in H2O2-exposed PSCs (H-PSCs) samples and 515 in non-exposed PSCs (C-PSCs) samples. Larger amounts of antioxidant proteins, including GSTs and novel carbonyl detoxifying enzymes, such as aldo-keto reductase and carbonyl reductase, were detected after H2O2 exposure. Increased concentrations of caspase-3 and cathepsin-D proteases and components of the 26S proteasome were also detected in H-PSCs. Reduction of lamin-B and other caspase-substrate, such as filamin, in H-PSCs suggested that molecular events related to early apoptosis were also induced. We present data that describe proteins expressed in response to oxidative stress in a metazoan parasite, including novel antioxidant enzymes and targets with potential application to treatment and prevention of CHD.
Collapse
Affiliation(s)
- Martín Cancela
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil. .,Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil. .,Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS, Porto Alegre, Brazil.
| | - Jéssica A Paes
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS, Porto Alegre, Brazil
| | - Hercules Moura
- Biological Mass Spectrometry Laboratory, Clinical Chemistry Branch, Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - John R Barr
- Biological Mass Spectrometry Laboratory, Clinical Chemistry Branch, Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Arnaldo Zaha
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil.,Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS, Porto Alegre, Brazil.,Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, UFRGS, Porto Alegre, Brazil
| | - Henrique B Ferreira
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil. .,Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil. .,Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS, Porto Alegre, Brazil. .,Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, UFRGS, Porto Alegre, Brazil.
| |
Collapse
|
23
|
Pagnozzi D, Tamarozzi F, Roggio AM, Tedde V, Addis MF, Pisanu S, Masu G, Santucciu C, Vola A, Casulli A, Masala G, Brunetti E, Uzzau S. Structural and Immunodiagnostic Characterization of Synthetic Antigen B Subunits From Echinococcus granulosus and Their Evaluation as Target Antigens for Cyst Viability Assessment. Clin Infect Dis 2019; 66:1342-1351. [PMID: 29149256 PMCID: PMC5905600 DOI: 10.1093/cid/cix1006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 11/13/2017] [Indexed: 12/28/2022] Open
Abstract
Background Several tools have been proposed for serodiagnosis of cystic echinococcosis (CE), but none seems promising for cyst viability assessment. Antigens with stage-specific diagnostic value have been described, but few studies with well-characterized antigens and human serum samples have been performed. Antigen B (AgB) proteoforms hold promise as markers of viability, due to their differential stage-related expression and immunoreactivity. Methods Four AgB subunits (AgB1, AgB2, AgB3, AgB4) were synthesized and structurally characterized. Based on the preliminary evaluation of the subunits by western immunoblotting and enzyme-linked immunosorbent assay (ELISA), AgB1 and AgB2 were further tested in two ELISA setups and extensively validated on 422 human serum samples. Results All subunits showed a high degree of spontaneous oligomerization. Interacting residues within oligomers were identified, showing that both the N-terminal and C-terminal of each subunit are involved in homo-oligomer contact interfaces. No hetero-oligomer was identified. AgB1 and AgB2 ELISAs revealed different sensitivities relative to cyst stage. Of note, besides high specificity (97.2%), AgB1 revealed a higher sensitivity for active-transitional cysts (100% for CE1, 77.8% for CE2, 81.5% for CE3a, and 86.3% for CE3b) than for inactive cysts (41.7% for CE4 and 11.1% for CE5) and postsurgical patients (44%). Interestingly, 19 of 20 patients with spontaneously inactive cysts and 6 of 9 treated with albendazole >5 years earlier were negative on the AgB1 assay. Conclusions The structural characterization of subunits provides insights into the synthetic antigen conformation. The stage-related sensitivity of synthetic AgB1 holds promise as part of a multiantigen setting and deserves further longitudinal evaluation as marker of cyst viability.
Collapse
Affiliation(s)
- Daniela Pagnozzi
- Porto Conte Ricerche, Science and Technology Park of Sardinia, Tramariglio, Alghero (Sassari), Italy
| | - Francesca Tamarozzi
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Italy.,WHO Collaborating Centre for the Clinical Management of Cystic Echinococcosis, Pavia, Italy
| | - Anna Maria Roggio
- Porto Conte Ricerche, Science and Technology Park of Sardinia, Tramariglio, Alghero (Sassari), Italy
| | - Vittorio Tedde
- Porto Conte Ricerche, Science and Technology Park of Sardinia, Tramariglio, Alghero (Sassari), Italy
| | - Maria Filippa Addis
- Porto Conte Ricerche, Science and Technology Park of Sardinia, Tramariglio, Alghero (Sassari), Italy
| | - Salvatore Pisanu
- Porto Conte Ricerche, Science and Technology Park of Sardinia, Tramariglio, Alghero (Sassari), Italy
| | - Gabriella Masu
- National Reference Laboratory of Cystic Echinococcosis, Istituto zooprofilattico sperimentale della Sardegna "G. Pegreffi", Sassari, Italy
| | - Cinzia Santucciu
- National Reference Laboratory of Cystic Echinococcosis, Istituto zooprofilattico sperimentale della Sardegna "G. Pegreffi", Sassari, Italy
| | - Ambra Vola
- WHO Collaborating Centre for the Clinical Management of Cystic Echinococcosis, Pavia, Italy.,Division of Infectious and Tropical Diseases, IRCCS San Matteo Hospital Foundation, Pavia, Italy
| | - Adriano Casulli
- WHO Collaborating Centre for the Epidemiology, Detection and Control of Cystic and Alveolar Echinococcosis, Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy.,European Union Reference Laboratory for Parasites (EURLP), Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Giovanna Masala
- National Reference Laboratory of Cystic Echinococcosis, Istituto zooprofilattico sperimentale della Sardegna "G. Pegreffi", Sassari, Italy
| | - Enrico Brunetti
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Italy.,WHO Collaborating Centre for the Clinical Management of Cystic Echinococcosis, Pavia, Italy.,Division of Infectious and Tropical Diseases, IRCCS San Matteo Hospital Foundation, Pavia, Italy
| | - Sergio Uzzau
- Porto Conte Ricerche, Science and Technology Park of Sardinia, Tramariglio, Alghero (Sassari), Italy.,Department of Biomedical Sciences, University of Sassari, Italy
| |
Collapse
|
24
|
Barrios AA, Grezzi L, Miles S, Mariconti M, Mourglia-Ettlin G, Seoane PI, Díaz A. Inefficient and abortive classical complement pathway activation by the calcium inositol hexakisphosphate component of the Echinococcus granulosus laminated layer. Immunobiology 2019; 224:710-719. [PMID: 31178241 DOI: 10.1016/j.imbio.2019.05.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/20/2019] [Accepted: 05/28/2019] [Indexed: 01/15/2023]
Abstract
Persistent extracellular tissue-dwelling pathogens face the challenge of antibody-dependent activation of the classical complement pathway (CCP). A prime example of this situation is the larva of the cestode Echinococcus granulosus sensu lato, causing cystic echinococcosis. This tissue-dwelling, bladder-like larva is bounded by a cellular layer protected by the outermost acellular "laminated layer" (LL), to which host antibodies bind. The LL is made up of a mucin meshwork and interspersed nano-deposits of calcium inositol hexakisphosphate (calcium InsP6). We previously reported that calcium InsP6 bound C1q, apparently initiating CCP activation. The present work dissects CCP activation on the LL. Most of the C1 binding activity in the LL corresponded to calcium InsP6, and this binding was enhanced by partial proteolysis of the mucin meshwork. The remaining C1 binding activity was attributable to host antibodies, which included CCP-activating IgG isotypes. Calcium InsP6 made only a weak contribution to early CCP activation on the LL, suggesting inefficient C1 complex activation as reported for other polyanions. CCP activation on calcium InsP6 gave rise to a dominant population of C3b deposited onto calcium InsP6 itself that appeared to be quickly inactivated. Apparently as a result of inefficient initiation plus C3b inactivation, calcium InsP6 made no net contribution to C5 activation. We propose that the LL protects the underlying parasite cells from CCP activation through the combined effects of inefficient permeation of C1 through the mucins and C1 retention on calcium InsP6. This mechanism does not result in C5 activation, which is known to drive parasite-damaging inflammation.
Collapse
Affiliation(s)
- Anabella A Barrios
- Área/Cátedra de Inmunología, Departamento de Biociencias (Facultad de Química) and Instituto de Química Biológica (Facultad de Ciencias), Universidad de la República, Montevideo, Uruguay
| | - Leticia Grezzi
- Área/Cátedra de Inmunología, Departamento de Biociencias (Facultad de Química) and Instituto de Química Biológica (Facultad de Ciencias), Universidad de la República, Montevideo, Uruguay
| | - Sebastián Miles
- Área/Cátedra de Inmunología, Departamento de Biociencias (Facultad de Química) and Instituto de Química Biológica (Facultad de Ciencias), Universidad de la República, Montevideo, Uruguay
| | - Mara Mariconti
- Unit of Infectious and Tropical Diseases, San Matteo Hospital Foundation, Pavia, Italy
| | - Gustavo Mourglia-Ettlin
- Área/Cátedra de Inmunología, Departamento de Biociencias (Facultad de Química) and Instituto de Química Biológica (Facultad de Ciencias), Universidad de la República, Montevideo, Uruguay
| | - Paula I Seoane
- Área/Cátedra de Inmunología, Departamento de Biociencias (Facultad de Química) and Instituto de Química Biológica (Facultad de Ciencias), Universidad de la República, Montevideo, Uruguay
| | - Alvaro Díaz
- Área/Cátedra de Inmunología, Departamento de Biociencias (Facultad de Química) and Instituto de Química Biológica (Facultad de Ciencias), Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
25
|
In vitro efficacies of solubility-improved mebendazole derivatives against Echinococcus multilocularis. Parasitology 2019; 146:1256-1262. [DOI: 10.1017/s0031182019000386] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
AbstractRecently, we introduced an epoxy group to mebendazole by a reaction with epichlorohydrin and obtained two isoforms, mebendazole C1 (M-C1) and mebendazole C2 (M-C2). The in vitro effects of mebendazole derivatives at different concentrations on Echinococcus multilocularis protoscoleces and metacestodes as well as cytotoxicity in rat hepatoma (RH) cells were examined. The results demonstrated that the solubility of the two derivatives was greatly improved compared to mebendazole. The mortality of protoscoleces in vitro reached to 70–80% after 7 days of exposure to mebendazole or M-C2, and M-C2 showed higher parasiticidal effects than mebendazole (P > 0.05). The parasiticidal effect of M-C1 was low, even at a concentration of 30 µm. The percentage of damaged metacestodes that were treated with mebendazole and M-C2 in vitro at different concentrations were similar, and M-C1 exhibited insignificant effects on metacestodes. Significant morphological changes on protoscoleces and metacestodes were observed after treatment with mebendazole and M-C2. In addition, the introduction of an epoxy group to mebendazole also reduced its cytotoxicity in RH cells. Our results demonstrate that the introduction of an epoxy group not only improved the solubility of mebendazole, but also increased its parasiticidal effects on E. multilocularis and reduced its cytotoxicity in RH cells.
Collapse
|
26
|
Abstract
Parasitic nematodes (roundworms) and platyhelminths (flatworms) cause debilitating chronic infections of humans and animals, decimate crop production and are a major impediment to socioeconomic development. Here we report a broad comparative study of 81 genomes of parasitic and non-parasitic worms. We have identified gene family births and hundreds of expanded gene families at key nodes in the phylogeny that are relevant to parasitism. Examples include gene families that modulate host immune responses, enable parasite migration though host tissues or allow the parasite to feed. We reveal extensive lineage-specific differences in core metabolism and protein families historically targeted for drug development. From an in silico screen, we have identified and prioritized new potential drug targets and compounds for testing. This comparative genomics resource provides a much-needed boost for the research community to understand and combat parasitic worms.
Collapse
|
27
|
Mechanisms underlying immune tolerance caused by recombinant Echinococcus granulosus antigens Eg mMDH and Eg10 in dendritic cells. PLoS One 2018; 13:e0204868. [PMID: 30261049 PMCID: PMC6160197 DOI: 10.1371/journal.pone.0204868] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 09/14/2018] [Indexed: 11/19/2022] Open
Abstract
Mice immunized with recombinant Echinococcus granulosus antigens Eg10 and Eg mMDH do not show elevated resistance to E. granulosus infection but show aggravated infection instead. To gain a deeper insight in the immune tolerance mechanisms in mice immunized with Eg10 and Eg mMDH, this study simulated the immune tolerance process in vitro by culturing bone marrow-derived dendritic cells (BMDCs) in the presence of Eg10 or Eg mMDH. Scanning electron microscopy revealed that Eg10- and Eg mMDH-treated DCs exhibited immature cell morphology, while addition of LPS to the cells induced changes in cell morphology and an increase in the number of cell-surface protrusions. This observation was consistent with the increased expression of the cell-surface molecules MHCII and CD80 in Eg10- and Eg mMDH-treated DCs pretreated with LPS. DCs exposed to the two antigens had a very weak ability to induce T-cell proliferation, but could promote the formation of Treg cells. Introduction of the indoleamine 2,3-dioxygenase (IDO) inhibitor, 1-methyl tryptopha (1-MT) enhanced the ability of the antigens to induce T cells and inhibited the induction of Treg cells. Eg mMDH-treated DCs showed a strong response to 1-MT: the DCs had high mRNA levels of IDO, IL-6, and IL-10, while 1-MT decreased the expression. In contrast, DCs treated with Eg10 did not show significant changes after 1-MT treatment. Eg mMDH inhibited DC maturation and promoted IDO expression, which, on the one hand, decreased the ability of DCs to induce T-cell proliferation, resulting in T-cell anergy, and on the other hand, induced the formation of Tregs, resulting in an immunosuppressive effect. In contrast, the escape mechanisms induced by Eg10 did not primarily depend on the IDO pathway and might involve other mechanisms that need to be further explored.
Collapse
|
28
|
Silva-Álvarez V, Ramos AL, Folle AM, Lagos S, Dee VM, Ferreira AM. Antigen B from Echinococcus granulosus is a novel ligand for C-reactive protein. Parasite Immunol 2018; 40:e12575. [PMID: 30030926 DOI: 10.1111/pim.12575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 06/25/2018] [Accepted: 07/18/2018] [Indexed: 11/30/2022]
Abstract
Antigen B (EgAgB) is a phosphatidylcholine (PC)-rich lipoprotein of Echinococcus granulosus s.l. larva, potentially capable of modulating the activation of various myeloid cells, including macrophages. As C-reactive protein (CRP) can act as an innate receptor with ability to bind the phosphocholine moiety of PC in lipoproteins, we investigated whether EgAgB and CRP could interact during cystic echinococcosis infection (CE), and how CRP binding could affect the modulation activities exerted by EgAgB on macrophages. To that end, we firstly investigated the occurrence of CRP induction during human CE. We found that 61% of CE patients, but none of healthy donors, exhibited serum CRP levels higher than 10 mg/mL, suggesting that CRP can be induced during the chronic phase of CE. Furthermore, human CRP was capable of binding specifically to EgAgB with high affinity (0.6 ± 0.1 nM); this binding was Ca2+ -dependent and involved the phosphocholine moiety of PC, but not EgAgB8/1, EgAgB8/2 or EgAgB8/3 apolipoproteins. Finally, CRP presence altered the modulation exerted by EgAgB on the cytokine response of LPS-activated macrophages. Overall, our results suggest that CRP presence during CE may contribute to a complex scenario of interactions between EgAgB and myeloid cells, influencing the cytokine response induced during macrophage activation.
Collapse
Affiliation(s)
- Valeria Silva-Álvarez
- Cátedra de Inmunología, Facultad de Ciencias/Facultad de Química, Universidad de la República (UdelaR), Montevideo, Uruguay
| | - Ana Lía Ramos
- Cátedra de Inmunología, Facultad de Ciencias/Facultad de Química, Universidad de la República (UdelaR), Montevideo, Uruguay
| | - Ana Maite Folle
- Cátedra de Inmunología, Facultad de Ciencias/Facultad de Química, Universidad de la República (UdelaR), Montevideo, Uruguay
| | - Sofía Lagos
- Cátedra de Inmunología, Facultad de Ciencias/Facultad de Química, Universidad de la República (UdelaR), Montevideo, Uruguay
| | - Valerie M Dee
- Cátedra de Inmunología, Facultad de Ciencias/Facultad de Química, Universidad de la República (UdelaR), Montevideo, Uruguay
| | - Ana M Ferreira
- Cátedra de Inmunología, Facultad de Ciencias/Facultad de Química, Universidad de la República (UdelaR), Montevideo, Uruguay
| |
Collapse
|
29
|
Díaz Á, Sagasti C, Casaravilla C. Granulomatous responses in larval taeniid infections. Parasite Immunol 2018. [DOI: 10.1111/pim.12523] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Á. Díaz
- Área/Cátedra de Inmunología; Departamento de Biociencias (Facultad de Química) e Instituto de Química Biológica (Facultad de Ciencias); Universidad de la República; Montevideo Uruguay
| | - C. Sagasti
- Área/Cátedra de Inmunología; Departamento de Biociencias (Facultad de Química) e Instituto de Química Biológica (Facultad de Ciencias); Universidad de la República; Montevideo Uruguay
| | - C. Casaravilla
- Área/Cátedra de Inmunología; Departamento de Biociencias (Facultad de Química) e Instituto de Química Biológica (Facultad de Ciencias); Universidad de la República; Montevideo Uruguay
| |
Collapse
|
30
|
Zhang RQ, Chen XH, Wen H. Improved experimental model of hepatic cystic hydatid disease resembling natural infection route with stable growing dynamics and immune reaction. World J Gastroenterol 2017; 23:7989-7999. [PMID: 29259374 PMCID: PMC5725293 DOI: 10.3748/wjg.v23.i45.7989] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 10/06/2017] [Accepted: 10/17/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate a safer way to set up the disease model of cystic echinococcosis without contamination risk and develop a novel experimental murine model of hepatic cystic echinococcosis.
METHODS C57B/6 mice were injected with human protoscolices of three different concentrations via the portal vein. The mice were followed for 10 mo by ultrasound, gross anatomy, and pathological and immunological examinations. The protoscolex migration in the portal vein, hydatid cyst growth, host immune reaction, and hepatic histopathology were examined periodically.
RESULTS The infection rates in the mice in the high, medium, and low concentration groups were 90%, 100%, and 63.6%, respectively. The protoscolices migrated in the portal vein with blood flow, settled in the liver, and developed into orthotopic hepatic hydatid cysts, resembling the natural infection route and course.
CONCLUSION We have established an improved experimental model of hepatic cystic echinococcosis with low biohazard risk but stable growing dynamics and immune reaction. It is especially useful for new anti-parasite medication trials against hydatid disease.
Collapse
Affiliation(s)
- Rui-Qing Zhang
- Hepatobiliary and Hydatid Department, Digestive and Vascular Surgery Centre, Xinjiang Key Laboratory of Echinococcosis, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, Xinjiang Uygur Autonomous Region, China
| | - Xin-Hua Chen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University, Hangzhou 310000, Zhejiang Province, China
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, The First Affiliated Hospital, Zhejiang University, Hangzhou 310000, Zhejiang Province, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Hangzhou 310000, Zhejiang Province, China
| | - Hao Wen
- Hepatobiliary and Hydatid Department, Digestive and Vascular Surgery Centre, Xinjiang Key Laboratory of Echinococcosis, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, Xinjiang Uygur Autonomous Region, China
| |
Collapse
|
31
|
Díaz Á. Immunology of cystic echinococcosis (hydatid disease). Br Med Bull 2017; 124:121-133. [PMID: 29253150 DOI: 10.1093/bmb/ldx033] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 09/15/2017] [Indexed: 12/18/2022]
Abstract
BACKGROUND The neglected disease cystic echinococcosis is caused by larval Echinococcus granulosus flatworms, which form bladder-like hydatid cysts in liver, lungs, and other organs. SOURCES OF DATA Published literature. AREAS OF AGREEMENT Establishing larvae are susceptible to antibody-dependent killing, as attested by successful animal vaccination, whereas once established they are partially protected by the so-called laminated layer. Host responses are Th2 dominated, with a Th1 component. Diagnostic antigens from cyst fluid are known, but responses appear absent in one-fifth of patients. AREAS OF CONTROVERSY Is evasion mainly based on induction of Th2 or regulatory responses by the parasite? GROWING POINTS The parasite induces regulatory responses. The laminated layer has immune-regulatory properties. AREAS TIMELY FOR DEVELOPING RESEARCH Develop tools for functional genomics; characterize immunologically interesting proteins suggested by genomic information; analyse infection in broader context of granulomatous responses; identify molecules secreted/excreted by intact larvae/cysts towards their outside, including diffusible immune-regulators.
Collapse
Affiliation(s)
- Álvaro Díaz
- Cátedra de Inmunología, Departamento de Biociencias (Facultad de Química) e Instituto de Química Biológica (Facultad de Ciencias), Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
32
|
TIGGA MARYNISHA, RIALCH AJAYTA, ARUN A, SAMANTA S, KAUR NAVNEET, BAURI RK, GANAIE ZA, AFTAB ANDLEEB, RAINA OK. Expression of Echinococcus granulosus recombinant EgAg5-38 sub-unit and P-29 antigens and evaluation of their diagnostic potential for cystic echinococcosis in buffaloes. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2017. [DOI: 10.56093/ijans.v87i11.75839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
There are no routine, reliable diagnostic methods for detection of Echinococcus granulosus infection, the causative agent of cystic echinococcosis in human and domestic animals. Two recombinant proteins EgAg5-38 sub-unit and P-29 of E. granulosus were expressed in prokaryotic expression vectors. The diagnostic potential of these two recombinant proteins was evaluated in the detection of cystic echinococcosis in buffaloes in IgG-ELISA. TheEgAg5-38 sub-unit and P-29 recombinant protein reacted fairly with the hydatid infected buffaloes with EgAg5-38 sub-unit showing sensitivity and specificity of 67.9 and 78.8%, respectively. However, the recombinant P-29 protein showed a higher sensitivity of 82.1% but a low specificity of 43.9% in the detection of hydatid infection in buffaloes. Cross-reactivity of these recombinant antigens in buffaloes naturally infected with several gastrointestinal trematodes and Sarcocystis was studied. The results showed that both these antigens cross-reacted with most of these parasites of buffaloes. Present study is the first report on the evaluation of diagnostic potential of E. granulosus recombinant EgAg5-38 sub-unit and P-29 antigens in buffaloes.
Collapse
|
33
|
Grubor NM, Jovanova-Nesic KD, Shoenfeld Y. Liver cystic echinococcosis and human host immune and autoimmune follow-up: A review. World J Hepatol 2017; 9:1176-1189. [PMID: 29109850 PMCID: PMC5666304 DOI: 10.4254/wjh.v9.i30.1176] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 08/28/2017] [Accepted: 09/14/2017] [Indexed: 02/06/2023] Open
Abstract
Cystic echinococcosis (CE) is an infectious disease caused by the larvae of parasite Echinococcus granulosus (E. granulosus). To successfully establish an infection, parasite release some substances and molecules that can modulate host immune functions, stimulating a strong anti-inflammatory reaction to carry favor to host and to reserve self-survival in the host. The literature was reviewed using MEDLINE, and an open access search for immunology of hydatidosis was performed. Accumulating data from animal experiments and human studies provided us with exciting insights into the mechanisms involved that affect all parts of immunity. In this review we used the existing scientific data and discuss how these findings assisted with a better understanding of the immunology of E. granulosus infection in man. The aim of this study is to point the several facts that challenge immune and autoimmune responses to protect E. granulosus from elimination and to minimize host severe pathology. Understanding the immune mechanisms of E. granulosus infection in an intermediate human host will provide, we believe, a more useful treatment with immunomodulating molecules and possibly better protection from parasitic infections. Besides that, the diagnosis of CE has improved due to the application of a new molecular tool for parasite identification by using of new recombinant antigens and immunogenic peptides. More studies for the better understanding of the mechanisms of parasite immune evasion is necessary. It will enable a novel approach in protection, detection and improving of the host inflammatory responses. In contrast, according to the "hygiene hypothesis", clinical applications that decrease the incidence of infection in developed countries and recently in developing countries are at the origin of the increasing incidence of both allergic and autoimmune diseases. Thus, an understanding of the immune mechanisms of E. granulosus infection is extremely important.
Collapse
Affiliation(s)
- Nikica M Grubor
- Department of Hepatobiliary and Pancreatic Surgery, First Surgical University Hospital, Clinical Center of Serbia, School of Medicine University of Belgrade, 11000 Belgrade, Serbia
| | - Katica D Jovanova-Nesic
- Immunology Research Center, Institute of Virology, Vaccine and Sera-Torlak, 11221 Belgrade, Serbia
- European Center for Peace and Development, University for Peace in the United Nation established in Belgrade, 11000 Belgrade, Serbia.
| | - Yehuda Shoenfeld
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel Aviv University, 5265601 Tel-Hashomer, Tel Aviv, Israel
| |
Collapse
|
34
|
Abstract
During microbial infections, both innate and adaptive immunity are activated. Viruses and bacteria usually induce an acute inflammation in the first setting of infection, which helps the eliciting an effective immune response. In contrast, macroparasites such as helminths are a highly successful group of invaders known to be capable of maintaining a chronic infestation with the minimum instigation. Undoubtedly, generating such an immunoregulatory environment requires the exploitation of various immunosuppressive mechanisms to debilitate host immunity supporting their survival and replication. Several mechanisms have been recognized whereby helminths prolong their infections including an increase of immunoregulatory cells, inhibition of Th1 or Th2 responses, targeting pattern recognition receptors (PRRs) and lowering the immune cells quantity via induction of apoptosis. Apoptosis is a programmed intracellular process involving a series of consecutive downstream signalling event evolved to cell death. It plays a pivotal role in several immunological reactions in particular deletion of autoreactive immune cells. Helminth-triggered apoptosis in immune cells exhausts host immunity, which paves the way for generating a permissive environment and chronic infection. This review provides a compilation of recent investigations discussing the apoptotic mechanisms exploited by different worms and the immunological consequences of immune cell death. Finally, the anti-cancer effects of some worm-derived molecules due to their apoptotic effects are discussed, highlighting as potentially druggable candidates to combat cancer.
Collapse
|
35
|
Monteiro KM, Lorenzatto KR, de Lima JC, Dos Santos GB, Förster S, Paludo GP, Carvalho PC, Brehm K, Ferreira HB. Comparative proteomics of hydatid fluids from two Echinococcus multilocularis isolates. J Proteomics 2017; 162:40-51. [PMID: 28442449 DOI: 10.1016/j.jprot.2017.04.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 03/21/2017] [Accepted: 04/10/2017] [Indexed: 02/06/2023]
Abstract
The hydatid fluid (HF) that fills Echinococcus multilocularis metacestode vesicles is a complex mixture of proteins from both parasite and host origin. Here, a LC-MS/MS approach was used to compare the HF composition of E. multilocularis H95 and G8065 isolates (EmH95 and EmG8065, respectively), which present differences in terms of growth and fertility. Overall, 446 unique proteins were identified, 392 of which (88%) were from parasite origin and 54 from culture medium. At least 256 of parasite proteins were sample exclusive, and 82 of the 136 shared proteins presented differential abundance between E. multilocularis isolates. The parasite's protein repertoires in EmH95 and EmG8065 HF samples presented qualitative and quantitative differences involving antigens, signaling proteins, proteolytic enzymes, protease inhibitors and chaperones, highlighting intraspecific singularities that could be correlated to biological features of each isolate. The repertoire of medium proteins found in the HF was also differential between isolates, and the relevance of the HF exogenous protein content for the parasite's biology is discussed. The repertoires of identified proteins also provided potential molecular markers for important biological features, such as parasite growth rate and fertility, as well potential protein targets for the development of novel diagnostic and treatment strategies for alveolar echinococcosis. BIOLOGICAL SIGNIFICANCE E. multilocularis metacestode infection of mammal hosts involve complex interactions mediated by excretory/secretory (ES) products. The hydatid fluid (HF) that fills the E. multilocularis metacestode vesicles contains complex repertoires of parasite ES products and host proteins that mediate important molecular interactions determinant for parasite survival and development, and, consequently, to the infection outcome. HF has been also extensively reported as the main source of proteins for the immunodiagnosis of echinococcosis. The performed proteomic analysis provided a comprehensive profiling of the HF protein composition of two E. multilocularis isolates. This allowed us to identify proteins of both parasite and exogenous (medium) origin, many of which present significant differential abundances between parasite isolates and may correlate to their differential biological features, including fertility and growth rate.
Collapse
Affiliation(s)
- Karina M Monteiro
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Departamento de Biologia Molecular e Celular, Instituto de Biociências, Centro de Biotecnologia, UFRGS, Porto Alegre, RS, Brazil
| | - Karina R Lorenzatto
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS, Porto Alegre, RS, Brazil
| | - Jeferson C de Lima
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS, Porto Alegre, RS, Brazil
| | - Guilherme B Dos Santos
- Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, UFRGS, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS, Porto Alegre, RS, Brazil
| | - Sabine Förster
- University of Würzburg, Institute of Hygiene and Microbiology, Würzburg, Germany
| | - Gabriela P Paludo
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS, Porto Alegre, RS, Brazil
| | - Paulo C Carvalho
- Laboratório de Proteômica e Engenharia de Proteínas, Instituto Carlos Chagas, FIOCRUZ, Curitiba, PR, Brazil
| | - Klaus Brehm
- University of Würzburg, Institute of Hygiene and Microbiology, Würzburg, Germany
| | - Henrique B Ferreira
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Departamento de Biologia Molecular e Celular, Instituto de Biociências, Centro de Biotecnologia, UFRGS, Porto Alegre, RS, Brazil.
| |
Collapse
|
36
|
Wang H, Li M, Zhang X, He F, Zhang S, Zhao J. Impairment of peripheral Vdelta2 T cells in human cystic echinococcosis. Exp Parasitol 2017; 174:17-24. [PMID: 28153802 DOI: 10.1016/j.exppara.2017.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 01/09/2017] [Accepted: 01/22/2017] [Indexed: 10/25/2022]
Abstract
Cystic echinococcosis (CE) induced by metacestodes (larval stages) of Echinococcus granulosus (E.granulosus) represents a severe endemic disease worldwide. Gamma delta (γδ) T cells, one of innate immune cells, play pivotal role in pathogenic infections. However, whether γδ T cells are involved in CE remains unclear. This study firstly investigated the role of peripheral γδ T cells in CE. The results showed that the percentage of peripheral γδ T cells from CE patients was decreased, compared with healthy controls (HC) (p < 0.01). This decrease was primarily due to a reduction in Vδ2 subset. Furthermore, Vδ2 T cells in CE expressed lower Natural Killer Group 2D (NKG2D) (p < 0.01). The abundance of Vδ2 T cells correlated negatively with cyst burden. To further identify the function of decreased Vδ2 T cells in CE, proliferation rate, cytokine secretion and cytotoxin were detected subsequently in vitro. As a result, the proliferation rate of Vδ2 cells in CE patients was lower than that in HC (p < 0.01). Meanwhile, Vδ2 T cells from CE patients released significantly decreased interferon (IFN)-γ, compared with HC (p < 0.05). Moreover, the levels of perforin and granzyme B of Vδ2 T cells from the patients were decreased significantly (p < 0.05), suggesting impaired cytotoxin generation of Vδ2 cells in CE. Collectively, our findings indicated that circulating Vδ2 T cells in CE was impaired, and these aberrations may contribute to disease pathogenesis.
Collapse
Affiliation(s)
- Hao Wang
- Department of Pathogenic Biology and Medical Immunology, Ningxia Medical University, Yinchuan, Ningxia, China; Key Lab of Hydatid Disease, Ningxia Medical University, Yinchuan, Ningxia, China.
| | - Ming Li
- Department of Hepatobiliary Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Xiaoxia Zhang
- Department of Pathogenic Biology and Medical Immunology, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Fang He
- Department of Gastroenterology, General Hospital of Ningxia Medical University, China
| | - Shengbin Zhang
- Department of General Surgery, Baogang Hospital, Baotou, Inner Mongolia, China
| | - Jiaqing Zhao
- Department of Pathogenic Biology and Medical Immunology, Ningxia Medical University, Yinchuan, Ningxia, China; Key Lab of Hydatid Disease, Ningxia Medical University, Yinchuan, Ningxia, China.
| |
Collapse
|
37
|
Díaz A, Casaravilla C, Barrios AA, Ferreira AM. Parasite molecules and host responses in cystic echinococcosis. Parasite Immunol 2016; 38:193-205. [PMID: 26425838 DOI: 10.1111/pim.12282] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 09/22/2015] [Indexed: 01/03/2023]
Abstract
Cystic echinococcosis is the infection by the larvae of cestode parasites belonging to the Echinococcus granulosus sensu lato species complex. Local host responses are strikingly subdued in relation to the size and persistence of these larvae, which develop within mammalian organs as 'hydatid cysts' measuring up to tens of cm in diameter. In a context in which helminth-derived immune-suppressive, as well as Th2-inducing, molecules garner much interest, knowledge on the interactions between E. granulosus molecules and the immune system lags behind. Here, we discuss what is known and what are the open questions on E. granulosus molecules and structures interacting with the innate and adaptive immune systems, potentially or in demonstrated form. We attempt a global biological approach on molecules that have been given consideration primarily as protective (Eg95) or diagnostic antigens (antigen B, antigen 5). We integrate glycobiological information, which traverses the discussions on antigen 5, the mucin-based protective laminated layer and immunologically active preparations from protoscoleces. We also highlight some less well-known molecules that appear as promising candidates to possess immune-regulatory activities. Finally, we point out gaps in the molecular-level knowledge of this infectious agent that hinder our understanding of its immunology.
Collapse
Affiliation(s)
- A Díaz
- Cátedra de Inmunología, Departamento de Biociencias (Facultad de Química) and Instituto de Química Biológica (Facultad de Ciencias), Universidad de la República, Montevideo, Uruguay
| | - C Casaravilla
- Cátedra de Inmunología, Departamento de Biociencias (Facultad de Química) and Instituto de Química Biológica (Facultad de Ciencias), Universidad de la República, Montevideo, Uruguay
| | - A A Barrios
- Cátedra de Inmunología, Departamento de Biociencias (Facultad de Química) and Instituto de Química Biológica (Facultad de Ciencias), Universidad de la República, Montevideo, Uruguay
| | - A M Ferreira
- Cátedra de Inmunología, Departamento de Biociencias (Facultad de Química) and Instituto de Química Biológica (Facultad de Ciencias), Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
38
|
Mahanty S. Host-parasite interactions and the immunobiology of cestodes. Parasite Immunol 2016; 38:121-3. [PMID: 26864711 DOI: 10.1111/pim.12309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 02/08/2016] [Indexed: 12/27/2022]
Affiliation(s)
- S Mahanty
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
39
|
Silva-Álvarez V, Folle AM, Ramos AL, Kitano ES, Iwai LK, Corraliza I, Córsico B, Ferreira AM. Echinococcus granulosus Antigen B binds to monocytes and macrophages modulating cell response to inflammation. Parasit Vectors 2016; 9:69. [PMID: 26846700 PMCID: PMC4743400 DOI: 10.1186/s13071-016-1350-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 01/28/2016] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Antigen B (EgAgB) is an abundant lipoprotein released by the larva of the cestode Echinococcus granulosus into the host tissues. Its protein moiety belongs to the cestode-specific family known as hydrophobic ligand binding protein (HLBP), and is encoded by five gene subfamilies (EgAgB8/1-EgAgB8/5). The functions of EgAgB in parasite biology remain unclear. It may play a role in the parasite's lipid metabolism since it carries host lipids that E. granulosus is unable to synthesise. On the other hand, there is evidence supporting immuno-modulating activities in EgAgB, particularly on innate immune cells. Both hypothetical functions might involve EgAgB interactions with monocytes and macrophages, which have not been formally analysed yet. METHODS EgAgB binding to monocytes and macrophages was studied by flow cytometry using inflammation-recruited peritoneal cells and the THP-1 cell line. Involvement of the protein and phospholipid moieties in EgAgB binding to cells was analysed employing lipid-free recombinant EgAgB subunits and phospholipase D treated-EgAgB (lacking the polar head of phospholipids). Competition binding assays with plasma lipoproteins and ligands for lipoprotein receptors were performed to gain information about the putative EgAgB receptor(s) in these cells. Arginase-I induction and PMA/LPS-triggered IL-1β, TNF-α and IL-10 secretion were examined to investigate the outcome of EgAgB binding on macrophage response. RESULTS Monocytes and macrophages bound native EgAgB specifically; this binding was also found with lipid-free rEgAgB8/1 and rEgAgB8/3, but not rEgAgB8/2 subunits. EgAgB phospholipase D-treatment, but not the competition with phospholipid vesicles, caused a strong inhibition of EgAgB binding activity, suggesting an indirect contribution of phospholipids to EgAgB-cell interaction. Furthermore, competition binding assays indicated that this interaction may involve receptors with affinity for plasma lipoproteins. At functional level, the exposure of macrophages to EgAgB induced a very modest arginase-I response and inhibited PMA/LPS-mediated IL-1β and TNF-α secretion in an IL-10-independent manner. CONCLUSION EgAgB and, particularly its predominant EgAgB8/1 apolipoprotein, are potential ligands for monocyte and macrophage receptors. These receptors may also be involved in plasma lipoprotein recognition and induce an anti-inflammatory phenotype in macrophages upon recognition of EgAgB.
Collapse
Affiliation(s)
- Valeria Silva-Álvarez
- Cátedra de Inmunología, Facultad de Ciencias/Facultad de Química, Universidad de la República (UdelaR), Montevideo, Uruguay. .,Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Facultad de Ciencias Médicas, Universidad Nacional de La Plata (UNLP), La Plata, Argentina. .,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina.
| | - Ana Maite Folle
- Cátedra de Inmunología, Facultad de Ciencias/Facultad de Química, Universidad de la República (UdelaR), Montevideo, Uruguay.
| | - Ana Lía Ramos
- Cátedra de Inmunología, Facultad de Ciencias/Facultad de Química, Universidad de la República (UdelaR), Montevideo, Uruguay.
| | - Eduardo S Kitano
- Laboratório Especial de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signalling (CeTICS), Instituto Butantan, São Paulo, Brazil.
| | - Leo K Iwai
- Laboratório Especial de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signalling (CeTICS), Instituto Butantan, São Paulo, Brazil.
| | - Inés Corraliza
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Veterinaria, Universidad de Extremadura (UNEX), Cáceres, España.
| | - Betina Córsico
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Facultad de Ciencias Médicas, Universidad Nacional de La Plata (UNLP), La Plata, Argentina. .,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina.
| | - Ana María Ferreira
- Cátedra de Inmunología, Facultad de Ciencias/Facultad de Química, Universidad de la República (UdelaR), Montevideo, Uruguay.
| |
Collapse
|