1
|
Pastore D, Lupia C, D'Amato M, Bruni A, Garofalo E, Longhini F, Gallelli L, Vatrella A, Pelaia G, Pelaia C. Emerging biological treatments for asthma. Expert Opin Emerg Drugs 2025. [PMID: 39873193 DOI: 10.1080/14728214.2025.2460529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 12/24/2024] [Accepted: 01/27/2025] [Indexed: 01/30/2025]
Abstract
INTRODUCTION Severe asthma is a chronic airway disease characterized by many pathomechanisms known as endotypes. Biological therapies targeting severe asthma endotypes have significantly improved the treatment of this disease, thus remarkably bettering patient quality of life. AREAS COVERED This review aims to describe current biological therapies for severe asthma, highlighting emerging ones. Several studies have confirmed the beneficial effects of currently available monoclonal antibodies targeting immunoglobulin E (IgE), interleukin-5 (IL-5) or its receptor, and interleukin-4 (IL-4)/interleukin-13 (IL-13) receptors (IL-4 R/IL-13 R). However, patients with T2-low asthma are not eligible for the above biological therapies. EXPERT OPINION New treatments are now moving toward targeting the upstream pathways of asthma pathogenesis, coordinated by innate cytokines such as alarmins. These key proinflammatory mediators orchestrate the activation of complex cellular networks including both innate and adaptive immune responses. Alarmins include thymic stromal lymphopoietin (TSLP), interleukin-25 (IL-25), and interleukin-33 (IL-33), which are released from injured airway epithelial cells. TSLP and the other alarmins are suitable targets of biological therapies which are effective for add-on treatment of type 2 asthma. Moreover, anti-alarmin monoclonal antibodies can be also beneficial for patients with T2-low, poorly controlled severe asthma.
Collapse
Affiliation(s)
- Daniela Pastore
- Department of Health Sciences, University "Magna Græcia" of Catanzaro - Catanzaro, Italy
| | - Chiara Lupia
- Department of Health Sciences, University "Magna Græcia" of Catanzaro - Catanzaro, Italy
| | - Maria D'Amato
- Department of Respiratory Medicine, "V. Monaldi University Hospital" - Naples, Italy
| | - Andrea Bruni
- Department of Medical and Surgical Sciences, University "Magna Græcia" of Catanzaro - Catanzaro, Italy
| | - Eugenio Garofalo
- Department of Medical and Surgical Sciences, University "Magna Græcia" of Catanzaro - Catanzaro, Italy
| | - Federico Longhini
- Department of Medical and Surgical Sciences, University "Magna Græcia" of Catanzaro - Catanzaro, Italy
| | - Luca Gallelli
- Department of Health Sciences, University "Magna Græcia" of Catanzaro - Catanzaro, Italy
| | - Alessandro Vatrella
- Department of Medicine, Surgery and Dentistry, University of Salerno - Salerno, Italy
| | - Girolamo Pelaia
- Department of Health Sciences, University "Magna Græcia" of Catanzaro - Catanzaro, Italy
| | - Corrado Pelaia
- Department of Medical and Surgical Sciences, University "Magna Græcia" of Catanzaro - Catanzaro, Italy
| |
Collapse
|
2
|
Zhang H, Zheng W, Peng R, Wu D, Hu Y, Sun T, Gao L, Liu Y, Guo L, Ding Y, Liu L. First-in-human study on tolerability, pharmacokinetics and pharmacodynamics of single and multiple escalating doses of XKH001, a recombinant humanized monoclonal antibody against IL-25 in healthy Chinese volunteers. Expert Opin Investig Drugs 2025:1-7. [PMID: 39815604 DOI: 10.1080/13543784.2025.2453162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/04/2024] [Accepted: 01/09/2025] [Indexed: 01/18/2025]
Abstract
BACKGROUND XKH001 is a recombinant humanized IgG1 monoclonal antibody against IL-25 for the treatment of type 2 inflammatory diseases. This study aimed to evaluate the tolerability, pharmacokinetics, and pharmacodynamics of XKH001 in humans for the first time. RESEARCH DESIGN AND METHODS This clinical investigation adopted a randomized, double-blind, and placebo-controlled single ascending dose (SAD) and multiple ascending dose (MAD) design. RESULTS XKH001 was well tolerated in healthy Chinese subjects. Following repeated administration, XKH001 showed a slow absorption with a median Tmax of 4-7 days and a mean half-life (t1/2) of 22-25 days. The accumulation ratio ranged from 1.34 to 1.99. The exposure was mostly dose proportional, with a mean slope of 0.85-1.06. All subjects tested negative for ADA (except three subjects tested positive). The subjects who received 600 mg XKH001 in the MAD study showed a 78.2 ng/mL decrease in the total immunoglobulin E (IgE) level 85 days after the first administration, while the subjects who received matched placebo exhibited only an 8.6 ng/mL decrease. CONCLUSIONS XKH001 showed favorable safety and pharmacokinetics profiles and a low immunogenicity in its first-in-human study. The data support its further clinical evaluation in patients with type 2 inflammatory diseases. TRIAL REGISTRATION The study was registered in ClinicalTrials.gov (NCT05991661).
Collapse
Affiliation(s)
- Hong Zhang
- Phase I Clinical Research Center, The First Hospital of Jilin University, Jilin, China
| | - Wenbo Zheng
- Phase I Clinical Research Center, The First Hospital of Jilin University, Jilin, China
| | - Ran Peng
- Beijing Kanova Biopharmaceutical Co. Ltd, Beijing, China
| | - Dandan Wu
- Phase I Clinical Research Center, The First Hospital of Jilin University, Jilin, China
| | - Yue Hu
- Phase I Clinical Research Center, The First Hospital of Jilin University, Jilin, China
| | - Tiantian Sun
- Beijing Kanova Biopharmaceutical Co. Ltd, Beijing, China
| | - Lei Gao
- Phase I Clinical Research Center, The First Hospital of Jilin University, Jilin, China
| | - Yusi Liu
- Phase I Clinical Research Center, The First Hospital of Jilin University, Jilin, China
| | - Li Guo
- Beijing Kanova Biopharmaceutical Co. Ltd, Beijing, China
| | - Yanhua Ding
- Phase I Clinical Research Center, The First Hospital of Jilin University, Jilin, China
| | - Li Liu
- Department of Pediatric Respiratory, Children's Medical Center, The First Hospital of Jilin University, Jilin, China
| |
Collapse
|
3
|
Kim JH, Kang CE, Lee NK, Paik HD. Heat-Killed Lactilactobacillus sakei WB2305 and Lactiplantibacillus plantarum WB2324 Inhibited LPS-Induced Inflammation in Human Airway Epithelial Cells. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10251-1. [PMID: 38592556 DOI: 10.1007/s12602-024-10251-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2024] [Indexed: 04/10/2024]
Abstract
Asthma is characterized by inflammation of the airways, including the inflammatory and airway structural cells. Probiotics, which have diverse effects, even within the same species, are being studied to prevent and mitigate the severity of asthma. Lactilactobacillus sakei WB2305 and Lactiplantibacillus plantarum WB2324 were isolated from kimchi. These strains have acceptable probiotic properties and are safe. In addition, the anti-inflammatory potential of the heat-killed isolates against lipopolysaccharide (LPS)-induced inflammation in the human pulmonary epithelial cell line (A549) was investigated. The heat-killed Lact. sakei WB2305 and Lact. plantarum WB2324 reduced the chemokine and cytokines mRNA expression levels, as shown by the results of using real-time polymerase chain reaction. Western blotting results showed that the nuclear factor-kappa B (NF-κB) activation and mitogen-activated protein kinases (MAPK) signaling pathways were suppressed by treatment with the heat-killed strains. The production amounts of eotaxin, tumor necrosis factor-ɑ (TNF-α), and interleukin-6 (IL-6) were lower than those in LPS-only treated cells. Additionally, 2',7'-dichlorofluorescein diacetate (DCFH-DA) staining confirmed decreased reactive oxygen species (ROS) production in A549 cells. Therefore, the results of present study demonstrate the anti-inflammatory and anti-asthmatic activities of heat-killed Lact. sakei WB2305 and Lact. plantarum WB2324 in human airway epithelial cells.
Collapse
Affiliation(s)
- Ji Hun Kim
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029, Republic of Korea
| | - Cho Eun Kang
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029, Republic of Korea
| | - Na-Kyoung Lee
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029, Republic of Korea
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
4
|
Xu M, Shao M, Chen Y, Liu C. Early life exposure to particulate matter and childhood asthma in Beijing, China: a case-control study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:526-534. [PMID: 36473101 DOI: 10.1080/09603123.2022.2154327] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
A case-control study was conducted to examine the association of particulate matter exposure during the pre-natal (the first, second, and third trimesters. and the whole pregnancy) and post-natal periods (the first year after birth) with childhood asthma in Beijing, China. Multivariable logistic regressions showed that childhood asthma was significantly associated with exposures to PM2.5 and PM10 during the entire pregnancy, with ORs of 1.28(95%CI:1.06-1.56) and 1.21(95%CI:1.02-1.42), respectively. The highest association with a 10 μg/m3 increase in PM2.5 and PM10 were both seen for the second trimester, with ORs of 1.17(95% CI: 1.05-1.30) and 1.14(95% CI: 1.04-1.24). Subgroup analyses suggested that significant and positive effects were subject to be observed in children with a family history of atopy. This study added evidence that exposures to PM2.5 and PM10 during pregnancy might increase the risk of childhood asthma in seriously polluted area, highlighting stronger associations in the second trimester.
Collapse
Affiliation(s)
- Meimei Xu
- Institute of Medical Information, Chinese Academy of Medical Sciences, Beijing, China
| | - Mingjun Shao
- Department of Allergy, Affiliated Children's Hospital of Capital Institute of Pediatrics, Beijing, China
| | - Yuzhi Chen
- Department of Allergy, Affiliated Children's Hospital of Capital Institute of Pediatrics, Beijing, China
| | - Chuanhe Liu
- Department of Allergy, Affiliated Children's Hospital of Capital Institute of Pediatrics, Beijing, China
| |
Collapse
|
5
|
Gonzalez-Uribe V, Romero-Tapia SJ, Castro-Rodriguez JA. Asthma Phenotypes in the Era of Personalized Medicine. J Clin Med 2023; 12:6207. [PMID: 37834850 PMCID: PMC10573947 DOI: 10.3390/jcm12196207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Asthma is a widespread disease affecting approximately 300-million people globally. This condition leads to significant morbidity, mortality, and economic strain worldwide. Recent clinical and laboratory research advancements have illuminated the immunological factors contributing to asthma. As of now, asthma is understood to be a heterogeneous disease. Personalized medicine involves categorizing asthma by its endotypes, linking observable characteristics to specific immunological mechanisms. Identifying these endotypic mechanisms is paramount in accurately profiling patients and tailoring therapeutic approaches using innovative biological agents targeting distinct immune pathways. This article presents a synopsis of the key immunological mechanisms implicated in the pathogenesis and manifestation of the disease's phenotypic traits and individualized treatments for severe asthma subtypes.
Collapse
Affiliation(s)
- Victor Gonzalez-Uribe
- Alergia e Inmunología Clínica, Hospital Infantil de México Federico Gómez, Ciudad de Mexico 06720, Mexico;
- Facultad Mexicana de Medicina, Universidad La Salle México, Ciudad de Mexico 14000, Mexico
| | - Sergio J. Romero-Tapia
- Health Sciences Academic Division (DACS), Universidad Juárez Autónoma de Tabasco, Villahermosa 86040, Mexico;
| | - Jose A. Castro-Rodriguez
- Department of Pediatric Pulmonology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| |
Collapse
|
6
|
Xu X, Dai H, Zhang J. The potential role of interleukin (IL)-25/IL-33/thymic stromal lymphopoietin (TSLP) on the pathogenesis of idiopathic pulmonary fibrosis. THE CLINICAL RESPIRATORY JOURNAL 2022; 16:696-707. [PMID: 36082495 PMCID: PMC9629992 DOI: 10.1111/crj.13541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVES Interleukin (IL)-25, IL-33, and thymic stromal lymphopoietin (TSLP) are the important drivers for excessive type-2 immunity. It has been well elucidated that IL-25/IL-33/TSLP plays an important role in allergic airway inflammation and remodeling, whereas their roles in idiopathic pulmonary fibrosis (IPF) still remained largely unclear. Herein, the aim of the review is to discuss the potential role and mechanism of IL-25/IL-33/TSLP on IPF by literature analysis and summary. DATA SOURCE We have done a literature search using the following terms: ("idiopathic pulmonary fibrosis" OR "IPF" OR "lung fibrosis") and (TSLP or "thymic stromal lymphopoietin" or IL-25 OR IL-17E OR IL-33) from the database of PubMed published in English up to July 2018. STUDY SELECTION We have totally found 58 articles by using the retrieval terms mentioned above. By careful title and abstract reading, 10 original research articles of high quality were enrolled for the full text reading and analysis. Two additional relevant studies were also included during the course of literature readings. RESULTS IL-25/IL-33/TSLP and their corresponding receptors, that is, IL-17BR/ST2L/TSLPR, are shown to be up-regulated both in IPF patients and bleomycin (BLM)-induced lung fibrosis mice model. IL-25 may promote lung fibrosis by activating IL-17BR+fibroblast and IL-17BR+ILC2 (type 2 innate lymphoid cell). Full length (fl)-IL-33, as a transcription factor mainly in the cell nucleus, mediated non-atopic lung inflammation and fibrosis by modulating expressions of several pro-fibrotic mediators, including transforming growth factor (TGF)-b1. By contrast, mature (m)-IL-33 potentiates lung fibrosis by recruiting ST2L+M2 macrophages and ST2L+ILC2 to enlarge type 2 immunity. TSLP was shown to directly promote CCL2 expression in primary human lung fibroblasts (pHLFs). CONCLUSION IL-25/IL-33/TSLP contributes to non-allergic lung fibrosis by mediating persistent abnormal epithelial-mesenchymal crosstalk. IL-25/IL-33/TSLP may serve the promising novel target for the treatment of IPF.
Collapse
Affiliation(s)
- Xuefeng Xu
- Department of Surgical Intensive Care Unit, Beijing An Zhen HospitalCapital Medical UniversityBeijingChina
| | - Huaping Dai
- Department of Pulmonary and Critical Care Medicine, Center for Respiratory Diseases, China‐Japan Friendship HospitalNational Clinical Research Center for Respiratory DiseasesBeijingChina
| | - Jinglan Zhang
- Department of Surgical Intensive Care Unit, Beijing An Zhen HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
7
|
Eosinophilic inflammation: An Appealing Target for Pharmacologic Treatments in Severe Asthma. Biomedicines 2022; 10:biomedicines10092181. [PMID: 36140282 PMCID: PMC9496162 DOI: 10.3390/biomedicines10092181] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/31/2022] [Accepted: 08/31/2022] [Indexed: 11/19/2022] Open
Abstract
Severe asthma is characterized by different endotypes driven by complex pathologic mechanisms. In most patients with both allergic and non-allergic asthma, predominant eosinophilic airway inflammation is present. Given the central role of eosinophilic inflammation in the pathophysiology of most cases of severe asthma and considering that severe eosinophilic asthmatic patients respond partially or poorly to corticosteroids, in recent years, research has focused on the development of targeted anti-eosinophil biological therapies; this review will focus on the unique and particular biology of the eosinophil, as well as on the current knowledge about the pathobiology of eosinophilic inflammation in asthmatic airways. Finally, current and prospective anti-eosinophil therapeutic strategies will be discussed, examining the reason why eosinophilic inflammation represents an appealing target for the pharmacological treatment of patients with severe asthma.
Collapse
|
8
|
Rossi GA, Ballarini S, Salvati P, Sacco O, Colin AA. Alarmins and innate lymphoid cells 2 activation: A common pathogenetic link connecting respiratory syncytial virus bronchiolitis and later wheezing/asthma? Pediatr Allergy Immunol 2022; 33:e13803. [PMID: 35754131 DOI: 10.1111/pai.13803] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 12/21/2022]
Abstract
Severe respiratory syncytial virus (RSV) infection in infancy is associated with increased risk of recurrent wheezing in childhood. Both acute and long-term alterations in airway functions are thought to be related to inefficient antiviral immune response. The airway epithelium, the first target of RSV, normally acts as an immunological barrier able to elicit an effective immune reaction but may also be programmed to directly promote a Th2 response, independently from Th2 lymphocyte involvement. Recognition of RSV transcripts and viral replication intermediates by bronchial epithelial cells brings about release of TSLP, IL-33, HMGB1, and IL-25, dubbed "alarmins." These epithelial cell-derived proteins are particularly effective in stimulating innate lymphoid cells 2 (ILC2) to release IL-4, IL-5, and IL-13. ILC2, reflect the innate counterparts of Th2 cells and, when activate, are potent promoters of airway inflammation and hyperresponsiveness in RSV bronchiolitis and childhood wheezing/asthma. Long-term epithelial progenitors or persistent epigenetic modifications of the airway epithelium following RSV infection may play a pathogenetic role in the short- and long-term increased susceptibility to obstructive lung diseases in response to RSV in the young. Additionally, ILC2 function may be further regulated by RSV-induced changes in gut microbiota community composition that can be associated with disease severity in infants. A better understanding of the alarmin-ILC interactions in childhood might provide insights into the mechanisms characterizing these immune-mediated diseases and indicate new targets for prevention and therapeutic interventions.
Collapse
Affiliation(s)
- Giovanni A Rossi
- Department of Pediatrics, Pediatric Pulmonology and Respiratory Endoscopy Unit, G. Gaslini institute and University Hospital, Genoa, Italy
| | - Stefania Ballarini
- Department of Medicine and Surgery, Section of Immunometabolism, Immunogenetics and Translational Immunology, University of Perugia, Perugia, Italy
| | - Pietro Salvati
- Department of Pediatrics, Pediatric Pulmonology and Respiratory Endoscopy Unit, G. Gaslini institute and University Hospital, Genoa, Italy
| | - Oliviero Sacco
- Department of Pediatrics, Pediatric Pulmonology and Respiratory Endoscopy Unit, G. Gaslini institute and University Hospital, Genoa, Italy
| | - Andrew A Colin
- Division of Pediatric Pulmonology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| |
Collapse
|
9
|
Huang ZX, Qiu ZE, Chen L, Hou XC, Zhu YX, Zhou WL, Zhang YL. Cellular mechanism underlying the facilitation of contractile response induced by IL-25 in mouse tracheal smooth muscle. Am J Physiol Lung Cell Mol Physiol 2022; 323:L27-L36. [PMID: 35537103 DOI: 10.1152/ajplung.00468.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Asthma is a common heterogeneous respiratory disease characterized by airway inflammation and airway hyperresponsiveness (AHR) which is associated with abnormality in smooth muscle contractility. The epithelial cell-derived cytokine IL-25 is implicated in type 2 immune pathology including asthma, whereas the underlying mechanisms have not been fully elucidated. This study aims to investigate the effects of IL-25 on mouse tracheal smooth muscle contractility and elucidate the cellular mechanisms. Incubation with IL-25 augmented the contraction of mouse tracheal smooth muscles, which could be suppressed by the L-type voltage-dependent Ca2+ channel (L-VDCC) blocker nifedipine. Furthermore, IL-25 enhanced the cytosolic Ca2+ signals and triggered up-regulation of α1C L-VDCC (CaV1.2) in primary cultured mouse tracheal smooth muscle cells. Knocking down IL-17RA/IL-17RB receptors or inhibiting the transforming growth factor-β-activated kinase 1 (TAK1)-tumor progression locus 2 (TPL2)-MAPK kinase 1/2 (MEK1/2)-ERK1/2-activating protein-1 (AP-1) signaling pathways suppressed the IL-25-elicited up-regulation of CaV1.2 and hyperreactivity in tracheal smooth muscles. Moreover, inhibition of TPL2, ERK1/2 or L-VDCC alleviated the AHR symptom induced by IL-25 in a murine model. This study revealed that IL-25 potentiated the contraction of tracheal smooth muscle and evoked AHR via activation of TPL2-ERK1/2-CaV1.2 signaling, providing novel targets for the treatment of asthma with a high-IL-25 phenotype.
Collapse
Affiliation(s)
- Ze-Xin Huang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhuo-Er Qiu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Lei Chen
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiao-Chun Hou
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yun-Xin Zhu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wen-Liang Zhou
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yi-Lin Zhang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
10
|
Ko H, Kim CJ, Im SH. T Helper 2-Associated Immunity in the Pathogenesis of Systemic Lupus Erythematosus. Front Immunol 2022; 13:866549. [PMID: 35444658 PMCID: PMC9014558 DOI: 10.3389/fimmu.2022.866549] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/09/2022] [Indexed: 11/13/2022] Open
Abstract
Systemic Lupus Erythematosus (SLE) is a chronic autoimmune disease that mainly affects women in their reproductive years. A complex interaction of environmental and genetic factors leads to the disruption of immune tolerance towards self, causing overt immune activation and production of autoantibodies that attack multiple organs. Kidney damage, termed lupus nephritis, is the leading cause of SLE-related morbidity and mortality. Autoantibodies are central to propagating lupus nephritis through forming immune complexes and triggering complements. Immunoglobulin G (IgG) potently activates complement; therefore, autoantibodies were mainly considered to be of the IgG isotype. However, studies revealed that over 50% of patients produce autoantibodies of the IgE isotype. IgE autoantibodies actively participate in disease pathogenesis as omalizumab treatment, a humanized anti-IgE monoclonal antibody, improved disease severity in an SLE clinical trial. IgE is a hallmark of T helper 2-associated immunity. Thus, T helper 2-associated immunity seems to play a pathogenic role in a subset of SLE patients. This review summarizes human and animal studies that illustrate type 2 immune responses involved during the pathology of SLE.
Collapse
Affiliation(s)
- Haeun Ko
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South Korea
| | - Chan Johng Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South Korea.,Pohang University of Science and Technology (POSTECH) Biotech Center, Pohang University of Science and Technology, Pohang, South Korea
| | - Sin-Hyeog Im
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South Korea.,Institute for Convergence Research and Education, Yonsei University, Seoul, South Korea.,ImmunoBiome Inc., Bio Open Innovation Center, Pohang, South Korea
| |
Collapse
|
11
|
Hasegawa T, Oka T, Demehri S. Alarmin Cytokines as Central Regulators of Cutaneous Immunity. Front Immunol 2022; 13:876515. [PMID: 35432341 PMCID: PMC9005840 DOI: 10.3389/fimmu.2022.876515] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/08/2022] [Indexed: 12/13/2022] Open
Abstract
Skin acts as the primary interface between the body and the environment. The skin immune system is composed of a complex network of immune cells and factors that provide the first line of defense against microbial pathogens and environmental insults. Alarmin cytokines mediate an intricate intercellular communication between keratinocytes and immune cells to regulate cutaneous immune responses. Proper functions of the type 2 alarmin cytokines, thymic stromal lymphopoietin (TSLP), interleukin (IL)-25, and IL-33, are paramount to the maintenance of skin homeostasis, and their dysregulation is commonly associated with allergic inflammation. In this review, we discuss recent findings on the complex regulatory network of type 2 alarmin cytokines that control skin immunity and highlight the mechanisms by which these cytokines regulate skin immune responses in host defense, chronic inflammation, and cancer.
Collapse
Affiliation(s)
| | - Tomonori Oka
- Center for Cancer Immunology and Cutaneous Biology Research Center, Department of Dermatology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Shadmehr Demehri
- Center for Cancer Immunology and Cutaneous Biology Research Center, Department of Dermatology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
12
|
Li S, Ding X, Zhang H, Ding Y, Tan Q. IL-25 improves diabetic wound healing through stimulating M2 macrophage polarization and fibroblast activation. Int Immunopharmacol 2022; 106:108605. [PMID: 35149293 DOI: 10.1016/j.intimp.2022.108605] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/22/2022] [Accepted: 01/31/2022] [Indexed: 12/28/2022]
Abstract
BACKGROUND Persistent chronic inflammation is one of the main pathogenic characteristics of diabetic wounds. The resolution of inflammation is important for wound healing and extracellular matrix (ECM) formation. Interleukin (IL)-25 can modulate the function of macrophage and fibroblast, but its role and mechanism of action in the treatment of diabetic wounds remain largely unclear. METHODS The mice were categorized into diabetic, diabetic + IL-25 and control groups. Human monocytic THP-1 cell line and human dermal fibroblast (HDF) were stimulated under different IL-25 conditions. Then, flow cytometry, real-time quantitative PCR (RT-qPCR), Western blot (WB), and immunofluorescence (IF) assays were carried out. RESULTS The mice in diabetes group (DG) had a slower wound healing rate, more severe inflammation, less blood vessels and more disordered collagen than those in control group (CG). Intradermal injection of IL-25 could improve these conditions. IL-25 promoted M2 macrophage polarization and fibroblast activation in DG and high-glucose environment. The phenomenon, which was dependent on PI3K/AKT/mTOR and TGF-β/SMAD signaling, could be blocked by LY294002 and LY2109761. CONCLUSION IL-25 may serve as a therapeutic target to improve wound healing in diabetic mice.
Collapse
Affiliation(s)
- Shiyan Li
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, NO. 321, Zhongshan Road, Nanjing, Jiangsu, China.
| | - Xiaofeng Ding
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, NO. 321, Zhongshan Road, Nanjing, Jiangsu, China.
| | - Hao Zhang
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, NO. 321, Zhongshan Road, Nanjing, Jiangsu, China.
| | - Youjun Ding
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, NO. 321, Zhongshan Road, Nanjing, Jiangsu, China.
| | - Qian Tan
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, NO. 321, Zhongshan Road, Nanjing, Jiangsu, China; Department of Burns and Plastic Surgery, Anqing Shihua Hospital, Nanjing Drum Tower Hospital Group, Anqing 246002, China.
| |
Collapse
|
13
|
IL-25 Induced ROS-Mediated M2 Macrophage Polarization via AMPK-Associated Mitophagy. Int J Mol Sci 2021; 23:ijms23010003. [PMID: 35008429 PMCID: PMC8744791 DOI: 10.3390/ijms23010003] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/17/2021] [Accepted: 12/18/2021] [Indexed: 12/29/2022] Open
Abstract
Interleukin (IL)-25 is a cytokine released by airway epithelial cells responding to pathogens. Excessive production of reactive oxygen species (ROS) leads to airway inflammation and remodeling in asthma. Mitochondria are the major source of ROS. After stress, defective mitochondria often undergo selective degradation, known as mitophagy. In this study, we examined the effects of IL-25 on ROS production and mitophagy and investigated the underlying mechanisms. The human monocyte cell line was pretreated with IL-25 at different time points. ROS production was measured by flow cytometry. The involvement of mitochondrial activity in the effects of IL-25 on ROS production and subsequent mitophagy was evaluated by enzyme-linked immunosorbent assay, Western blotting, and confocal microscopy. IL-25 stimulation alone induced ROS production and was suppressed by N-acetylcysteine, vitamin C, antimycin A, and MitoTEMPO. The activity of mitochondrial complex I and complex II/III and the levels of p-AMPK and the mitophagy-related proteins were increased by IL-25 stimulation. The CCL-22 secretion was increased by IL-25 stimulation and suppressed by mitophagy inhibitor treatment and PINK1 knockdown. The Th2-like cytokine IL-25 can induce ROS production, increase mitochondrial respiratory chain complex activity, subsequently activate AMPK, and induce mitophagy to stimulate M2 macrophage polarization in monocytes.
Collapse
|
14
|
Ji KY, Jung DH, Pyun BJ, Kim YJ, Lee JY, Choi S, Jung MA, Song KH, Kim T. Angelica gigas extract ameliorates allergic rhinitis in an ovalbumin-induced mouse model by inhibiting Th2 cell activation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 93:153789. [PMID: 34634747 DOI: 10.1016/j.phymed.2021.153789] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 09/13/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Allergic rhinitis (AR) is a well-documented type 2 helper T (Th2) cell-mediated allergic disease that is accompanied by symptoms such as nasal rubbing, sneezing, itching, and rhinorrhea. Angelica gigas (AG) is traditional oriental medicine, and its dried root is widely used for the treatment of anemia, as a sedative, and as a blood tonic. PURPOSE The effects of AG on allergic diseases including AR are currently unclear; therefore, we aimed to investigate the effects of AG extract (AG-Ex) in ameliorating AR. STUDY DESIGN/METHODS The cytotoxicity of AG-Ex was analyzed by EZ-Cytox or MTS assay in splenocytes, differentiated Th2 cells, and human nasal epithelial cells (HNEpC). The changes of Th2 cells activation were determined by the secretion levels of cytokines and chemokines using cytometric bead array in splenocytes and differentiated Th2 cells. The expression levels of eotaxin-3 and periostin were analyzed using an ELISA. AR was induced by ovalbumin in BALB/c mice and the ameliorating effects of AG-Ex were assessed by their clinical symptoms. RESULTS The secretion of Th2 cytokines such as IL-4, IL-5, and IL-13 was inhibited by the AG-Ex treatment in the splenocytes and differentiated Th2 cells. The treatment also suppressed allergic responses including the secretion of eotaxin-3 and periostin in human nasal epithelial cells (HNEpC). Moreover, the administration of AG-Ex to the OVA-induced AR mice improved their clinical symptoms, including behavioral tests, immune cell counts, histopathological analysis, and changes in serum parameters. CONCLUSION The results of this study suggest that AG-Ex ameliorates AR by inhibiting Th2 cell activation and could thus be utilized as a treatment for Th2-mediated allergic diseases in the future.
Collapse
Affiliation(s)
- Kon-Young Ji
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, 1672 Yuseongdae-ro, Yuseong-gu, Daejeon 34054, Republic of Korea
| | - Dong Ho Jung
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, 1672 Yuseongdae-ro, Yuseong-gu, Daejeon 34054, Republic of Korea
| | - Bo-Jeong Pyun
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, 1672 Yuseongdae-ro, Yuseong-gu, Daejeon 34054, Republic of Korea
| | - Yu Jin Kim
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, 1672 Yuseongdae-ro, Yuseong-gu, Daejeon 34054, Republic of Korea
| | - Joo Young Lee
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, 1672 Yuseongdae-ro, Yuseong-gu, Daejeon 34054, Republic of Korea
| | - Susanna Choi
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, 1672 Yuseongdae-ro, Yuseong-gu, Daejeon 34054, Republic of Korea
| | - Myung-A Jung
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, 1672 Yuseongdae-ro, Yuseong-gu, Daejeon 34054, Republic of Korea
| | - Kwang Hoon Song
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, 1672 Yuseongdae-ro, Yuseong-gu, Daejeon 34054, Republic of Korea.
| | - Taesoo Kim
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, 1672 Yuseongdae-ro, Yuseong-gu, Daejeon 34054, Republic of Korea.
| |
Collapse
|
15
|
Thymic stromal lymphopoietin and alarmins as possible therapeutical targets for asthma. Curr Opin Allergy Clin Immunol 2021; 21:590-596. [PMID: 34608100 PMCID: PMC9722372 DOI: 10.1097/aci.0000000000000793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
PURPOSE OF REVIEW Overview of epithelial cytokines, particularly thymic stromal lymphopoietin (TSLP), released by the airway epithelium and the effects of their inhibition on the outcomes of patients with asthma. RECENT FINDINGS The epithelial cytokines are early mediators at the top of the inflammatory cascade and are attractive therapeutic targets to prevent exacerbations and improve lung function in patients with type 2 and nontype 2 asthma. SUMMARY Clinical trials demonstrated that tezepelumab, an anti-TSLP monoclonal antibody, is a promising alternative treatment for asthma that is effective also in nontype 2 asthma. The PATHWAY and NAVIGATOR trials have assessed its effects in improving outcomes on broad clinically diverse populations. The identification of biomarkers will help to predict potential responders and help in asthma treatment personalization.
Collapse
|
16
|
Olguín-Martínez E, Ruiz-Medina BE, Licona-Limón P. Tissue-Specific Molecular Markers and Heterogeneity in Type 2 Innate Lymphoid Cells. Front Immunol 2021; 12:757967. [PMID: 34759931 PMCID: PMC8573327 DOI: 10.3389/fimmu.2021.757967] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 09/21/2021] [Indexed: 12/25/2022] Open
Abstract
Innate lymphoid cells (ILCs) are the most recently described group of lymphoid subpopulations. These tissue-resident cells display a heterogeneity resembling that observed on different groups of T cells, hence their categorization as cytotoxic NK cells and helper ILCs type 1, 2 and 3. Each one of these groups is highly diverse and expresses different markers in a context-dependent manner. Type 2 innate lymphoid cells (ILC2s) are activated in response to helminth parasites and regulate the immune response. They are involved in the etiology of diseases associated with allergic responses as well as in the maintenance of tissue homeostasis. Markers associated with their identification differ depending on the tissue and model used, making the study and understanding of these cells a cumbersome task. This review compiles evidence for the heterogeneity of ILC2s as well as discussion and analyses of molecular markers associated with their identity, function, tissue-dependent expression, and how these markers contribute to the interaction of ILC2s with specific microenvironments to maintain homeostasis or respond to pathogenic challenges.
Collapse
Affiliation(s)
- Enrique Olguín-Martínez
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City, Mexico
| | - Blanca E Ruiz-Medina
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City, Mexico
| | - Paula Licona-Limón
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City, Mexico
| |
Collapse
|
17
|
Yao X, Liu X, Wang X, Zhang L. IL-25R + circulating fibrocytes are increased in asthma and correlate with fixed airflow limitation. CLINICAL RESPIRATORY JOURNAL 2021; 15:1248-1256. [PMID: 34328707 DOI: 10.1111/crj.13433] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 01/26/2023]
Abstract
INTRODUCTION Interleukin (IL)-25 is a T helper (Th) type-2 cytokine implicated in the pathogenesis of asthma. Fibrocytes are progenitor cells that can migrate into circulation and inflamed bronchial epithelium. OBJECTIVES We aim to test the hypothesis that circulating fibrocytes may be the novel cellular targets of IL-25 and the recruitment of IL-25R+ circulating fibrocytes may correlate with asthmatic airway obstruction. METHODS By using flow cytometry analysis, IL-25R+ fibrocytes (i.e., IL-17RB+ fibrocytes) in the freshly isolated peripheral blood mononuclear cells (PBMCs) from 15 control subjects and 35 patients with asthma were enumerated and compared. Enzyme-linked immunosorbent assay (ELISA) was used to detect the plasma levels of IL-25. RESULTS We found the percentage of total and IL-25R+ (IL-17RB+ ) fibrocytes in PBMCs was significantly increased in patients with asthma when compared with control subjects. Subgroup analysis further showed that the percentage of circulating total and IL-25R+ fibrocytes in PBMCs was markedly increased in asthma patients with severe-to-very severe fixed airflow limitation. Furthermore, IL-25R+ circulating fibrocytes in asthma patients were shown to significantly correlate with forced expiratory volume in 1 s/forced vital capacity (FEV1 /FVC), FEV1 % predicted, blood eosinophils, serum IgE and plasma IL-25 levels. CONCLUSION We concluded that circulating fibrocytes are the novel potential cellular targets of IL-25. IL-25R+ fibrocytes are increased in asthma patients. Increased proportions of IL-25R+ fibrocytes predict a distinct asthma phenotype with fixed airflow limitation. Biological therapy-targeting IL-25-fibrocytes axis may offer great promise for the control of asthma patients with severe airway remodelling and obstruction.
Collapse
Affiliation(s)
- Xiujuan Yao
- Department of Respiratory Medicine, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Xiaofang Liu
- Department of Respiratory Medicine, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Xiangdong Wang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China.,Key Laboratory of Otolaryngology Head and Neck Surgery of Ministry of Education of China, Beijing Institute of Otolaryngology, Beijing, China
| | - Luo Zhang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China.,Key Laboratory of Otolaryngology Head and Neck Surgery of Ministry of Education of China, Beijing Institute of Otolaryngology, Beijing, China
| |
Collapse
|
18
|
Liu S, Sun Y, Tang Y, Hu R, Zhou Q, Li X. IL-25 promotes trophoblast proliferation and invasion via binding with IL-17RB and associated with PE. Hypertens Pregnancy 2021; 40:209-217. [PMID: 34264790 DOI: 10.1080/10641955.2021.1950177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Interleukin-25 is a Th2 interleukin and has been shown to influence cell behavior. This study aims to illustrate its affection on extravillous trophoblasts function and association with PE. Methods qPCR and immunohistochemistry demonstrate IL-25 and IL-17RB expression. CCK-8 test and transwell were to access the behavior of HTR8 in the presence or absence of IL-25, IL-25 neutralization antibody. Results EVTs and HTR8 express IL-25 and IL-17RB. IL-25 promotes proliferation and invasion (p< 0.05),which was abolished in the presence of IL-25Ab (p< 0.05). Conclusion: IL-25 may contribute to promote trophoblast invasion and proliferation and abnormal decline of IL-25 might be associated with PE. METHODS qPCR and immunohistochemistry (IHC) were used to demonstrate IL-25 and its receptor IL-17RB expression in primary human trophoblasts of normal first- and third- trimester, as well as third-trimester of PE. CCK-8 test and transwell invasion system in vitro were applied separately to access the behavior of trophoblast cell line (HTR8) in the presence or absence of IL-25, IL-25 neutralization antibody (IL-25 Ab). RESULTS EVTs and HTR8 express IL-25 and IL-17RB. The expressions increase in third-trimester during normal pregnancy. In PE, both of IL-25 and IL-17RB expressions decrease (p< 0.05). IL-25 for 24 h promoted HTR8 proliferation and invasion (p< 0.05). The effect was abolished in the presence of IL-25Ab (p< 0.05). CONCLUSION This study demonstrates that IL-25 may contribute to promote trophoblast invasion and proliferation and abnormal decline of IL-25 might be associated with PE.
Collapse
Affiliation(s)
- Siyu Liu
- Department of obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Yi Sun
- Department of obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Yao Tang
- Women's Health and Perinatology Research Group, Department of Clinical Medicine, UiT the Arctic University of Norway, Tromsø, Norway
| | - Rong Hu
- Women's Health and Perinatology Research Group, Department of Clinical Medicine, UiT the Arctic University of Norway, Tromsø, Norway
| | - Qiongjie Zhou
- Women's Health and Perinatology Research Group, Department of Clinical Medicine, UiT the Arctic University of Norway, Tromsø, Norway
| | - Xiaotian Li
- Department of obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China.,Institute of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
19
|
Deng C, Peng N, Tang Y, Yu N, Wang C, Cai X, Zhang L, Hu D, Ciccia F, Lu L. Roles of IL-25 in Type 2 Inflammation and Autoimmune Pathogenesis. Front Immunol 2021; 12:691559. [PMID: 34122457 PMCID: PMC8194343 DOI: 10.3389/fimmu.2021.691559] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/13/2021] [Indexed: 12/19/2022] Open
Abstract
Interleukin-17E (IL-25) is a member of the IL-17 cytokine family that includes IL-17A to IL-17F. IL-17 family cytokines play a key role in host defense responses and inflammatory diseases. Compared with other IL-17 cytokine family members, IL-25 has relatively low sequence similarity to IL-17A and exhibits a distinct function from other IL-17 cytokines. IL-25 binds to its receptor composed of IL-17 receptor A (IL-17RA) and IL-17 receptor B (IL-17RB) for signal transduction. IL-25 has been implicated as a type 2 cytokine and can induce the production of IL-4, IL-5 and IL-13, which in turn inhibits the differentiation of T helper (Th) 17. In addition to its anti-inflammatory properties, IL-25 also exhibits a pro-inflammatory effect in the pathogenesis of Th17-dominated diseases. Here, we review recent advances in the roles of IL-25 in the pathogenesis of inflammation and autoimmune diseases.
Collapse
Affiliation(s)
- Chong Deng
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China
| | - Na Peng
- Department of Rheumatology and Nephrology, The Second People's Hospital, China Three Gorges University, Yichang, China
| | - Yuan Tang
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China
| | - Na Yu
- Department of Rheumatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Cuicui Wang
- Department of Rheumatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Xiaoyan Cai
- Department of Rheumatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Lijun Zhang
- Department of Rheumatology, Shenzhen Hospital, The University of Hong Kong, Shenzhen, China
| | - Dajun Hu
- Department of Rheumatology and Nephrology, The Second People's Hospital, China Three Gorges University, Yichang, China
| | - Francesco Ciccia
- Dipartimento di Medicina di Precisione, Section of Rheumatology, Università degli Studi della Campania L. Vanvitelli, Naples, Italy
| | - Liwei Lu
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
20
|
Naderi N, Farshidi N, Farshidi H, Montazerghaem H, Rahimzadeh M. Lack of association between serum IL-25 levels and acute coronary syndrome: a preliminary study. ACTA ACUST UNITED AC 2021; 61:60-65. [PMID: 33998410 DOI: 10.18087/cardio.2021.4.n1497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/24/2021] [Accepted: 03/06/2021] [Indexed: 11/18/2022]
Abstract
Purpose Here, for the first time, the possible association between IL-25 and the risk of acute coronary syndrome (ACS) in Iranian patients was investigated.Material and methods In this study, serum IL-25 concentrations were measured with an enzyme-linked immunosorbent assay in 88 ACS patients, 40 stable angina pectoris (SAP) patients, and 50 healthy control subjects.Results No significant differences in IL-25 concentrations were observed between SAP (340±168 ng / l), ACS (330±151 ng / l), and control (302±135 ng / l) groups (p=0.5), nor was there a difference among patients with 1, 2, or 3 vessel disease in the SAP and ACS groups. Linear regression analyses revealed that IL-25 was not correlated with coronary artery disease risk factors. Biochemical and demographic variables did not differ significantly among IL-25 quartiles.Conclusion Despite previous murine and human studies showing a protective role of IL-25 in atherosclerosis, our results revealed that IL-25 does not have potential implications for atherosclerosis development and management in humans.
Collapse
Affiliation(s)
- Nadereh Naderi
- Department of Immunology, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Narges Farshidi
- Department of Immunology, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Hossein Farshidi
- Cardiovascular Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Hossein Montazerghaem
- Cardiovascular Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mahsa Rahimzadeh
- Department of Biochemistry, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| |
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW The alarmins, thymic stromal lymphopoietin (TSLP), interleukin (IL)-25 and IL-33, are upstream regulators of T2 (type 2) inflammation and found to be expressed at high levels in airway epithelium of patients with T2 asthma. This review will summarize how alarmins regulate the inflamed asthmatic airways through previously described and newly identified mechanisms. RECENT FINDINGS Alarmins drive allergic and nonallergic asthma through activation of innate lymphoid cell 2 (ILC2), which are a rich source of cytokines such as IL-5 and IL-13, with resulting effects on eosinophilopoeisis and remodelling, respectively. Findings from bronchial allergen challenges have illustrated widespread expression of alarmins and their receptors across many effector cells in airways, and recent studies have emphasized alarmin regulation of CD4 T lymphocytes, eosinophils and basophils, and their progenitors. Furthermore, a link between alarmins and lipid mediators is being uncovered. SUMMARY Alarmins can drive well defined inflammatory pathways through activation of dendritic cells and polarizing T cells to produce type 2 cytokines, as well as they can directly activate many other effector cells that play a central role in allergic and nonallergic asthma. Clinical trials support a central role for TSLP in driving airway inflammation and asthma exacerbations, while ongoing trials blocking IL-33 and IL-25 will help to define their respective role in asthma.
Collapse
|
22
|
Moermans C, Damas K, Guiot J, Njock MS, Corhay JL, Henket M, Schleich F, Louis R. Sputum IL-25, IL-33 and TSLP, IL-23 and IL-36 in airway obstructive diseases. Reduced levels of IL-36 in eosinophilic phenotype. Cytokine 2021; 140:155421. [PMID: 33486314 DOI: 10.1016/j.cyto.2021.155421] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/15/2020] [Accepted: 12/15/2020] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Alarmins ((IL-25, IL-33 and thymic stromal lymphopoietin (TSLP)) are known to promote Th2 inflammation and could be associated with eosinophilic airway infiltration. They may also play a role in airway remodeling in chronic airway obstructive diseases such as asthma and chronic obstructive pulmonary disease (COPD). IL-23 and IL-36 were shown to mediate the neutrophilic airway inflammation as seen in chronic airway obstructive diseases. OBJECTIVES The purpose of this project was to determine the expression and the production of these cytokines from induced sputum (IS) in patients with chronic airway obstructive diseases including asthmatics and COPD. The relationship of the mediators with sputum inflammatory cellular profile and the severity of airway obstruction was assessed. METHODS The alarmins (IL-25, IL-33 and TSLP) as well as IL-23 and IL-36 concentrations were measured in IS from 24 asthmatics and 20 COPD patients compared to 25 healthy volunteers. The cytokines were assessed by ELISA in the IS supernatant and by RT-qPCR in the IS cells. RESULTS At protein level, no difference was observed between controls and patients suffering from airway obstructive diseases regarding the different mediators. IL-36 protein level was negatively correlated with sputum eosinophil and appeared significantly decreased in patients with an eosinophilic airway inflammation compared to those with a neutrophilic profile and controls. At gene level, only IL-36, IL-23 and TSLP were measurable but none differed between controls and patients with airway obstructive diseases. IL-36 and IL-23 were significantly increased in patients with an neutrophilic inflammatory profile compared to those with an eosinophilic inflammation and were correlated with sputum neutrophil proportions. None of the mediators were linked to airway obstruction. CONCLUSIONS The main finding of our study is that patients with eosinophilic airway inflammation exhibited a reduced IL-36 level which could make them more susceptible to airway infections as IL-36 is implicated in antimicrobial defense. This study showed also an implication of IL-36 and IL-23 in airway neutrophilic inflammation in chronic airway obstructive diseases.
Collapse
Affiliation(s)
- C Moermans
- Dept. of Pneumology-Allergology, CHU of Liege, 4000 Liege, Belgium; I(3) group, GIGA research center, University of Liege, Belgium.
| | - K Damas
- Haute école de la Province de Liège (HEPL), Belgium
| | - J Guiot
- Dept. of Pneumology-Allergology, CHU of Liege, 4000 Liege, Belgium
| | - M S Njock
- Dept. of Pneumology-Allergology, CHU of Liege, 4000 Liege, Belgium; Dept. of Rheumatology, CHU of Liege, 4000 Liege, Belgium; Dept. of Gastroenterology, CHU of Liege, 4000 Liege, Belgium; I(3) group, GIGA research center, University of Liege, Belgium
| | - J L Corhay
- Dept. of Pneumology-Allergology, CHU of Liege, 4000 Liege, Belgium
| | - M Henket
- Dept. of Pneumology-Allergology, CHU of Liege, 4000 Liege, Belgium
| | - F Schleich
- Dept. of Pneumology-Allergology, CHU of Liege, 4000 Liege, Belgium
| | - R Louis
- Dept. of Pneumology-Allergology, CHU of Liege, 4000 Liege, Belgium
| |
Collapse
|
23
|
Borowczyk J, Shutova M, Brembilla NC, Boehncke WH. IL-25 (IL-17E) in epithelial immunology and pathophysiology. J Allergy Clin Immunol 2021; 148:40-52. [PMID: 33485651 DOI: 10.1016/j.jaci.2020.12.628] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 12/08/2020] [Accepted: 12/16/2020] [Indexed: 02/07/2023]
Abstract
IL-25, also known as IL-17E, is a unique cytokine of the IL-17 family. Indeed, IL-25 exclusively was shown to strongly induce expression of the cytokines associated with type 2 immunity. Although produced by several types of immune cells, such as T cells, dendritic cells, or group 2 innate lymphoid cells, a vast amount of IL-25 derives from epithelial cells. The functions of IL-25 have been actively studied in the context of physiology and pathology of various organs including skin, airways and lungs, gastrointestinal tract, and thymus. Accumulating evidence suggests that IL-25 is a "barrier surface" cytokine whose expression depends on extrinsic environmental factors and when upregulated may lead to inflammatory disorders such as atopic dermatitis, psoriasis, or asthma. This review summarizes the progress of the recent years regarding the effects of IL-25 on the regulation of immune response and the balance between its homeostatic and pathogenic role in various epithelia. We revisit IL-25's general and tissue-specific mechanisms of action, mediated signaling pathways, and transcription factors activated in immune and resident cells. Finally, we discuss perspectives of the IL-25-based therapies for inflammatory disorders and compare them with the mainstream ones that target IL-17A.
Collapse
Affiliation(s)
- Julia Borowczyk
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Maria Shutova
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | | | - Wolf-Henning Boehncke
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland; Division of Dermatology and Venereology, University Hospitals of Geneva, Geneva, Switzerland.
| |
Collapse
|
24
|
The expression of interleukin-25 increases in human coronary artery disease and is associated with the severity of coronary stenosis. Anatol J Cardiol 2020; 23:151-159. [PMID: 32120360 PMCID: PMC7222637 DOI: 10.14744/anatoljcardiol.2019.24265] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Objective: Interleukin (IL) 25, also known as IL-17E, is an inflammatory cytokine and has been demonstrated to be closely related to cardiovascular diseases by regulating immunity and inflammation, including atherosclerosis. This study was aimed to evaluate the expression of IL-25 in patients with coronary artery disease (CAD). Methods: In this study, the expression of IL-25 in normal (n=6) and atherosclerotic (n=10) human coronary arteries was detected by immunofluorescent staining. In addition, the serum IL-25, IL-6, and tumor necrosis factor (TNF) α concentrations in stable angina pectoris (SAP, n=44), unstable angina pectoris (UAP, n=46), acute myocardial infarction (AMI, n=34), and non-CAD (control, n=36) were measured using enzyme-linked immunosorbent assay (ELISA) kits. Results: IL-25 was significantly increased in coronary arteries of CAD patients when compared with normal coronary arteries, with macrophages and T lymphocytes being the sources of IL-25, especially macrophages. Moreover, the serum concentrations of IL-25 were markedly elevated in CAD patients and gradually increased in SAP, UAP, and AMI groups. In addition, IL-25 levels were positively correlated with the IL-6 and TNF-α levels, and Gensini score in CAD patients. Logistic regression analysis showed that IL-25 was independently positively correlated with the occurrence of acute coronary syndrome (ACS). A receiver operator characteristic curve suggested that IL-25 presented a significant diagnosis value in ACS. Conclusion: IL-25 is increased in the coronary arteries and serum of CAD patients and is associated with the severity of coronary stenosis and the occurrence of ACS, suggesting that IL-25 may be one of the biomarkers of ACS. (Anatol J Cardiol 2020; 23: 151-9)
Collapse
|
25
|
Schulz-Kuhnt A, Wirtz S, Neurath MF, Atreya I. Regulation of Human Innate Lymphoid Cells in the Context of Mucosal Inflammation. Front Immunol 2020; 11:1062. [PMID: 32655549 PMCID: PMC7324478 DOI: 10.3389/fimmu.2020.01062] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/04/2020] [Indexed: 12/13/2022] Open
Abstract
Since their identification as a unique cell population, innate lymphoid cells (ILCs) have revolutionized our understanding of immune responses, leaving their impact on multiple inflammatory and fibrotic pathologies without doubt. Thus, a tightly controlled regulation of local ILC numbers and their activity is of crucial importance. Even though this has been extensively studied in murine ILCs in the last few years, our knowledge of human ILCs is still lagging behind. Our review article will therefore summarize recent insights into the function of human ILCs and will particularly focus on their regulation under inflammatory conditions. The quality and intensity of ILC involvement into local immune responses at mucosal sites of the human body can potentially be modulated via three different axes: (1) activation of tissue-resident mature ILCs, (2) plasticity and local transdifferentiation of specific ILC subsets, and (3) tissue migration and accumulation of peripheral ILCs. Despite a still ongoing scientific effort in this field, already existing data on the fate of human ILCs under different pathologic conditions clearly indicate that all three of these mechanisms are of relevance for the clinical course of chronic inflammatory and autoimmune diseases and might likewise provide new target structures for future therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | - Imke Atreya
- Department of Medicine 1, University Hospital of Erlangen, Erlangen, Germany
| |
Collapse
|
26
|
Norlander AE, Peebles RS. Innate Type 2 Responses to Respiratory Syncytial Virus Infection. Viruses 2020; 12:E521. [PMID: 32397226 PMCID: PMC7290766 DOI: 10.3390/v12050521] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/07/2020] [Accepted: 05/07/2020] [Indexed: 12/15/2022] Open
Abstract
Respiratory syncytial virus (RSV) is a common and contagious virus that results in acute respiratory tract infections in infants. In many cases, the symptoms of RSV remain mild, however, a subset of individuals develop severe RSV-associated bronchiolitis. As such, RSV is the chief cause of infant hospitalization within the United States. Typically, the immune response to RSV is a type 1 response that involves both the innate and adaptive immune systems. However, type 2 cytokines may also be produced as a result of infection of RSV and there is increasing evidence that children who develop severe RSV-associated bronchiolitis are at a greater risk of developing asthma later in life. This review summarizes the contribution of a newly described cell type, group 2 innate lymphoid cells (ILC2), and epithelial-derived alarmin proteins that activate ILC2, including IL-33, IL-25, thymic stromal lymphopoietin (TSLP), and high mobility group box 1 (HMGB1). ILC2 activation leads to the production of type 2 cytokines and the induction of a type 2 response during RSV infection. Intervening in this innate type 2 inflammatory pathway may have therapeutic implications for severe RSV-induced disease.
Collapse
Affiliation(s)
| | - R. Stokes Peebles
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN 37232-2650, USA;
| |
Collapse
|
27
|
Xu X, Zhang J, Dai H. IL-25/IL-33/TSLP contributes to idiopathic pulmonary fibrosis: Do alveolar epithelial cells and (myo)fibroblasts matter? Exp Biol Med (Maywood) 2020; 245:897-901. [PMID: 32249602 DOI: 10.1177/1535370220915428] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
IMPACT STATEMENT We suggest a novel modality in terms of IL-25/IL-33/TSLP's pro-fibrotic role in IPF. First, IL-25/IL-33/TSLP fully activates (myo)fibroblasts in fibroblastic foci (FF) in a paracrine-dependent manner. (IL-25/IL-33/TSLP)+alveolar epithelial cells-(IL-25R/IL-33R/TSLPR)+ (myo)fibroblasts axis may contribute greatly to the abnormal epithelial-mesenchymal crosstalk and lung fibrosis. Second, IL-25/IL-33/TSLP causes significant injury and phenotypic changes of alveolar epithelial cells in an autocrine-dependent manner. By acting directly on the two most important cells in the fibrotic process, i.e. alveolar epithelial cells and (myo)fibroblasts, we support the notion that biological therapies targeting IL-25/IL-33/TSLP will shed new light on the cure of IPF patients.
Collapse
Affiliation(s)
- Xuefeng Xu
- Department of Surgical Intensive Care Unit, Beijing An Zhen Hospital, Capital Medical University, Beijing 100029, China
| | - Jinglan Zhang
- Department of Surgical Intensive Care Unit, Beijing An Zhen Hospital, Capital Medical University, Beijing 100029, China
| | - Huaping Dai
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing 100029, China.,National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing 100029, China
| |
Collapse
|
28
|
Kim JH, Jang YS, Kim HI, Park JY, Park SH, Hwang YI, Jang SH, Jung KS, Park HS, Park CS. Activation of Transient Receptor Potential Melastatin Family Member 8 (TRPM8) Receptors Induces Proinflammatory Cytokine Expressions in Bronchial Epithelial Cells. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2020; 12:684-700. [PMID: 32400133 PMCID: PMC7224991 DOI: 10.4168/aair.2020.12.4.684] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/25/2020] [Accepted: 03/02/2020] [Indexed: 12/13/2022]
Abstract
Purpose Cold air is a major environmental factor that exacerbates asthma. Transient receptor potential melastatin family member 8 (TRPM8) is a cold-sensing channel expressed in the airway epithelium. However, its role in airway inflammation remains unknown. We investigated the role of TRPM8 in innate immune responses in bronchial epithelial cells and asthmatic subjects. Methods The TRPM8 mRNA and protein expression on BEAS2B human bronchial epithelial cells was examined by real-time polymerase chain reaction (PCR), immunofluorescence staining and western blotting. Additionally, interleukin (IL)-4, IL-6, IL-8, IL-13, IL-25 and thymic stromal lymphopoietin (TSLP) levels before and after menthol, dexamethasone and N-(4-tert-butylphenyl)-4-(3-chloropyridin-2-yl) piperazine-1-carboxamide (BCTC) treatments were measured via real-time PCR. TRPM8 protein levels in the supernatants of induced sputum from asthmatic subjects and normal control subjects were measured using enzyme-linked immunosorbent assay, and mRNA levels in sputum cell lysates were measured using real-time PCR. Results Treatment with up to 2 mM menthol dose-dependently increased TRPM8 mRNA and protein in BEAS2B cells compared to untreated cells (P < 0.001) and concomitantly increased IL-25 and TSLP mRNA (P < 0.05), but not IL-33 mRNA. BCTC (10 μM) significantly abolished menthol-induced up-regulation of TRPM8 mRNA and protein and IL-25 and TSLP mRNA (P < 0.01). TRPM8 protein levels were higher in the supernatants of induced sputum from asthmatic subjects (n = 107) than in those from healthy controls (n = 19) (P < 0.001), and IL-25, TSLP and IL-33 mRNA levels were concomitantly increased (P < 0.001). Additionally, TRPM8 mRNA levels correlated strongly with those of IL-25 and TSLP (P < 0.001), and TRPM8 protein levels were significantly higher in bronchodilator-responsive asthmatic subjects than in nonresponders. Conclusions TRPM8 may be involved in the airway epithelial cell innate immune response and a molecular target for the treatment of asthma.
Collapse
Affiliation(s)
- Joo Hee Kim
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Lung Research Institute of Hallym University College of Medicine, Anyang, Korea.
| | - Young Sook Jang
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Lung Research Institute of Hallym University College of Medicine, Anyang, Korea
| | - Hwan Il Kim
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Lung Research Institute of Hallym University College of Medicine, Anyang, Korea
| | - Ji Young Park
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Lung Research Institute of Hallym University College of Medicine, Anyang, Korea
| | - Sung Hoon Park
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Lung Research Institute of Hallym University College of Medicine, Anyang, Korea
| | - Yong Il Hwang
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Lung Research Institute of Hallym University College of Medicine, Anyang, Korea
| | - Seung Hun Jang
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Lung Research Institute of Hallym University College of Medicine, Anyang, Korea
| | - Ki Suck Jung
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Lung Research Institute of Hallym University College of Medicine, Anyang, Korea
| | - Hae Sim Park
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Choon Sik Park
- Division of Allergy and Respiratory Disease, Department of Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| |
Collapse
|
29
|
Liao S, Tan KS, Bi M, Liao W, Chen Y, Hong H. IL-25: Regulator of Type 2 Inflammation in Allergic Nasal Mucosa. CURRENT TREATMENT OPTIONS IN ALLERGY 2019. [DOI: 10.1007/s40521-019-00237-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
30
|
Moustafa HS, Qotb M, Hussein MA, Eid A, Ayad EE, Fawzy T. Topical Corticosteroids Decrease IL-25 Expression by Immunohistochemistry. ORL J Otorhinolaryngol Relat Spec 2019; 81:274-280. [PMID: 31401629 DOI: 10.1159/000500990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 05/15/2019] [Indexed: 11/19/2022]
Abstract
BACKGROUND Interleukin-25 (IL-25) is an important contributing factor in the pathogenesis of allergic rhinitis. It leads to increasing peripheral and infiltrating eosinophilia as well as serum IgE, IgG, and Th2 cytokines (IL-4, IL-5, IL-13), which are responsible for the allergic symptoms. Intranasal steroids (INS) are effective in treating allergic rhinitis, but their effect on IL-25 release has not been studied. We aimed to study the link between IL-25 and the pathophysiology of allergic rhinitis as well as the effect of INS on its release. METHODOLOGY This was a cohort, prospective, nonrandomized study that included 60 patients, 35 allergic rhinitis patients and 25 controls. We studied the effect of INS on IL-25 release. RESULTS Of allergic rhinitis patients 68.6% had strong cytoplasmic stain of IL-25 in the epithelial layer, while 25.7% had intermediate stain. INS caused significantly reduced IL-25 stain as only 14.3% of patients had intermediate stain and 85.7% had weak stain. Moreover, a correlation was found between nasal smear eosinophilia and the degree of IL-25 staining in the epithelial layer. CONCLUSION Intranasal corticosteroids appear to be effective in the downregulation of IL-25, which may explain some of the utility of intranasal corticosteroid treatment in improving allergic rhinitis symptoms.
Collapse
Affiliation(s)
| | - Mohamed Qotb
- Faculty of Medicine Hospital, University of Fayoum, Faiyum, Egypt
| | | | - Ahmed Eid
- Sahel Teaching Hospital Cairo, Cairo, Egypt
| | - Essam Ezzat Ayad
- Pathology Department, Kasr el eini Hospital, Cairo University, Cairo, Egypt
| | - Tamer Fawzy
- Faculty of Medicine Hospital, University of Fayoum, Faiyum, Egypt,
| |
Collapse
|
31
|
Asthma from immune pathogenesis to precision medicine. Semin Immunol 2019; 46:101294. [PMID: 31387788 DOI: 10.1016/j.smim.2019.101294] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/28/2019] [Accepted: 07/31/2019] [Indexed: 12/20/2022]
Abstract
Asthma is characterized by multiple immunological mechanisms (endotypes) determining variable clinical presentations (phenotypes). The identification of endotypic mechanisms is crucial to better characterize patients and to identify tailored therapeutic approaches with novel biological agents targeting specific immunological pathways. This review focused on summarizing the major immunological mechanisms involved in the pathogenesis of asthma, as well as on discussing the emergence of phenotypic features of the disease. Novel biological agents and other drugs targeting specific endotypes are discussed, as their use represent a precision medicine approach to the disease that is nowadays mandatory particularly for treating more severe patients.
Collapse
|
32
|
Mendes JA, Ribeiro MC, Reis Filho GJMV, Rocha T, Muscará MN, Costa SKP, Ferreira HHA. Hydrogen sulfide inhibits apoptosis and protects the bronchial epithelium in an allergic inflammation mice model. Int Immunopharmacol 2019; 73:435-441. [PMID: 31154288 DOI: 10.1016/j.intimp.2019.05.041] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 04/30/2019] [Accepted: 05/22/2019] [Indexed: 01/24/2023]
Abstract
Studies suggest that hydrogen sulfide (H2S) plays a relevant and beneficial role in the pathophysiology of pulmonary allergic diseases, such as asthma. These diseases may be triggered by changes in airway epithelium caused by repeated exposure to environmental allergens. This study aimed to investigate whether H2S protects against bronchial epithelium apoptosis in allergic inflammation in mice. The effects of H2S on the production of Th2 cytokines and on the infiltration of pulmonary inflammatory cells were also studied. Female BALB/c mice previously sensitized with ovalbumin (OVA) were treated with H2S donor (sodium hydrosulfide [NaHS]) 30 min prior to OVA challenge. After euthanasia (48 h post challenge), the right lung was homogenized to study apoptosis protein expression and to analyze cytokine levels in lung tissue. The left lobe was fixed in formalin for morphological analysis of lung tissue and verification of apoptosis in situ by the TUNEL assay. Histological results showed that NaHS reduced the airway inflammatory infiltrate and prevented an increase in the IL-4, IL-5 and IL-25 levels caused by OVA challenge. Activation of caspase 3 and FasL in response to the allergen was also fully prevented by NaHS treatment. TUNEL staining showed that the challenge from OVA significantly increased the rate of apoptosis in the bronchiolar epithelium, and that this incremental apoptosis was abolished by NaHS treatment. In conclusion, our results showed that H2S donor has a protective effect against airway epithelium damage caused by an allergic reaction, and represents a potential agent in treating allergic lung disorders, such as asthma.
Collapse
Affiliation(s)
- Jackeline A Mendes
- Laboratory of Inflammation Research, São Leopoldo Mandic Institute and Research Center, Campinas, Sao Paulo, Brazil
| | - Matheus C Ribeiro
- Laboratory of Inflammation Research, São Leopoldo Mandic Institute and Research Center, Campinas, Sao Paulo, Brazil
| | - Gustavo J M V Reis Filho
- Laboratory of Inflammation Research, São Leopoldo Mandic Institute and Research Center, Campinas, Sao Paulo, Brazil
| | - Thalita Rocha
- Multidisciplinary Res Lab, San Francisco University, Braganca Paulista, SP, Brazil
| | - Marcelo N Muscará
- Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, SP, Brazil
| | - Soraia K P Costa
- Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, SP, Brazil
| | - Heloisa H A Ferreira
- Laboratory of Inflammation Research, São Leopoldo Mandic Institute and Research Center, Campinas, Sao Paulo, Brazil..
| |
Collapse
|
33
|
Klein M, Dijoux E, Dilasser F, Hassoun D, Moui A, Loirand G, Colas L, Magnan A, Sauzeau V, Bouchaud G. [New protagonists in asthma pathophysiology]. Presse Med 2019; 48:255-261. [PMID: 30857807 DOI: 10.1016/j.lpm.2019.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/14/2018] [Accepted: 01/31/2019] [Indexed: 12/21/2022] Open
Abstract
Asthma is often associated with a Th2-type immune response with well-known cellular and molecular actors such as eosinophils, Th2 lymphocytes and associated cytokines such as interleukin-5 or IL-4. Nevertheless, some of the asthmatic patients show clinical manifestations and characteristics that do not correspond to the current pattern of the pathophysiology of asthma. Thus, recently new cellular and molecular actors in the development of asthma have been demonstrated in animal models and in humans. Among these are components of the innate immune system such as type 2 innate lymphoid cells or adaptive immune system such as Th9 lymphocytes. At the cellular level, the role of small G proteins in asthma is also highlighted as well as the role of major cytokines like IL-17 or those derived from the epithelium. A better knowledge of the physiopathology of asthma and the taking into account of these new actors allows the identification of new therapeutic targets for different endotypes of patients.
Collapse
Affiliation(s)
- Martin Klein
- L'institut du thorax, Inserm, CNRS, université de Nantes, 44000 Nantes, France
| | - Eléonore Dijoux
- L'institut du thorax, Inserm, CNRS, université de Nantes, 44000 Nantes, France
| | - Florian Dilasser
- L'institut du thorax, Inserm, CNRS, université de Nantes, 44000 Nantes, France
| | - Dorian Hassoun
- L'institut du thorax, Inserm, CNRS, université de Nantes, 44000 Nantes, France; L'institut du thorax, CHU de Nantes, service de pneumologie, 44000 Nantes, France
| | - Antoine Moui
- L'institut du thorax, Inserm, CNRS, université de Nantes, 44000 Nantes, France; L'institut du thorax, CHU de Nantes, service de pneumologie, 44000 Nantes, France
| | - Gervaise Loirand
- L'institut du thorax, Inserm, CNRS, université de Nantes, 44000 Nantes, France
| | - Luc Colas
- L'institut du thorax, Inserm, CNRS, université de Nantes, 44000 Nantes, France; L'institut du thorax, CHU de Nantes, service de pneumologie, 44000 Nantes, France
| | - Antoine Magnan
- L'institut du thorax, Inserm, CNRS, université de Nantes, 44000 Nantes, France; L'institut du thorax, CHU de Nantes, service de pneumologie, 44000 Nantes, France
| | - Vincent Sauzeau
- L'institut du thorax, Inserm, CNRS, université de Nantes, 44000 Nantes, France
| | - Grégory Bouchaud
- INRA, UR1268 BIA, rue de la Géraudière, BP 71627, 44316 Nantes, France.
| |
Collapse
|
34
|
Yalcin AD, Uzun R. Anti-IgE Significantly Changes Circulating Interleukin-25, Vitamin-D and Interleukin-33 Levels in Patients with Allergic Asthma. Curr Pharm Des 2019; 25:3784-3795. [PMID: 31566129 DOI: 10.2174/1381612825666190930095725] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 09/24/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND Multi-center, randomized-controlled trials and observational studies have demonstrated that, in severe asthmatic patients receiving omalizumab treatment, the frequency of exacerbations, the number of urgent adverse events, and the need for oral steroids tend to decrease. MATERIALS AND METHODS This study included a total of 32 patients. The patients were divided into two groups as Group IA (pre-omalizumab) and Group IB (post-omalizumab). Serum IL-25 and IL-33 levels were measured and the number of emergency admissions, length of hospitalization (day), Asthma Control Test (ACT) scores, eosinophil cationic protein (ECP), and fractional exhaled nitric oxide (FeNO) value were analyzed. RESULTS ACT and FeNO values increased after omalizumab treatment, while IL-33, IL-25 levels decreased after the completion of omalizumab treatment. Furthermore, there was a weak, positive, and significant relationship between the changes in the ECP levels and IL-33 levels (r=0.38, p=0.03). CONCLUSION To the best of our knowledge, this is the first study to compare circulating IL-25 and IL-33 levels with specific IgE synthesis in the literature. Multivariate correlation analysis showed that the changes in serum IL-33 levels were significantly correlated with the changes in the mite sIgE levels and length of hospital stay (Fmodel=11.2, p=0.01, r2=0.45). On the other hand, there was no significant relationship between the other variables and changes in the IL-25 levels.
Collapse
Affiliation(s)
- Arzu D Yalcin
- Internal Medicine, Allergy and Clinical Immunology, Academia Sinica, Genomics Research Center, 11529, Taipei, Taiwan
| | - Rusen Uzun
- University of Medical Science, Antalya Hospital, Antalya 07070, Turkey
| |
Collapse
|
35
|
Yao XJ, Liu XF, Wang XD. Potential Role of Interleukin-25/Interleukin-33/Thymic Stromal Lymphopoietin-Fibrocyte Axis in the Pathogenesis of Allergic Airway Diseases. Chin Med J (Engl) 2018; 131:1983-1989. [PMID: 30082531 PMCID: PMC6085861 DOI: 10.4103/0366-6999.238150] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Objective: Allergic airway diseases (AADs) are a group of heterogeneous disease mediated by T-helper type 2 (Th2) immune response and characterized with airway inflammation and remodeling, including allergic asthma, allergic rhinitis, and chronic rhinosinusitis with allergic background. This review aimed to discuss the abnormal epithelial-mesenchymal crosstalk in the pathogenesis of AADs. Data Sources: Articles referred in this review were collected from the database of PubMed published in English up to January 2018. Study Selection: We had done a literature search using the following terms “allergic airway disease OR asthma OR allergic rhinitis OR chronic sinusitis AND IL-25 OR IL-33 OR thymic stromal lymphopoietin OR fibrocyte”. Related original or review articles were included and carefully analyzed. Results: It is now believed that abnormal epithelial-mesenchymal crosstalk underlies the pathogenesis of AADs. However, the key regulatory factors and molecular events involved in this process still remain unclear. Epithelium-derived triple cytokines, including interleukin (IL)-25, IL-33, and thymic stromal lymphopoietin (TSLP), are shown to act on various target cells and promote the Th2 immune response. Circulating fibrocyte is an important mesenchymal cell that can mediate tissue remodeling. We previously found that IL-25-circulating fibrocyte axis was significantly upregulated in patients with asthma, which may greatly contribute to asthmatic airway inflammation and remodeling. Conclusions: In view of the redundancy of cytokines and “united airway” theory, we propose a new concept that IL-25/IL-33/TSLP-fibrocyte axis may play a vital role in the abnormal epithelial-mesenchymal crosstalk in some endotypes of AADs. This novel idea will guide potential new intervention schema for the common treatment of AADs sharing common pathogenesis in the future.
Collapse
Affiliation(s)
- Xiu-Juan Yao
- Department of Respiratory Medicine, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Xiao-Fang Liu
- Department of Respiratory Medicine, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Xiang-Dong Wang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| |
Collapse
|
36
|
Manickam C, Shah SV, Lucar O, Ram DR, Reeves RK. Cytokine-Mediated Tissue Injury in Non-human Primate Models of Viral Infections. Front Immunol 2018; 9:2862. [PMID: 30568659 PMCID: PMC6290327 DOI: 10.3389/fimmu.2018.02862] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 11/20/2018] [Indexed: 12/12/2022] Open
Abstract
Viral infections trigger robust secretion of interferons and other antiviral cytokines by infected and bystander cells, which in turn can tune the immune response and may lead to viral clearance or immune suppression. However, aberrant or unrestricted cytokine responses can damage host tissues, leading to organ dysfunction, and even death. To understand the cytokine milieu and immune responses in infected host tissues, non-human primate (NHP) models have emerged as important tools. NHP have been used for decades to study human infections and have played significant roles in the development of vaccines, drug therapies and other immune treatment modalities, aided by an ability to control disease parameters, and unrestricted tissue access. In addition to the genetic and physiological similarities with humans, NHP have conserved immunologic properties with over 90% amino acid similarity for most cytokines. For example, human-like symptomology and acute respiratory syndrome is found in cynomolgus macaques infected with highly pathogenic avian influenza virus, antibody enhanced dengue disease is common in neotropical primates, and in NHP models of viral hepatitis cytokine-induced inflammation induces severe liver damage, fibrosis, and hepatocellular carcinoma recapitulates human disease. To regulate inflammation, anti-cytokine therapy studies in NHP are underway and will provide important insights for future human interventions. This review will provide a comprehensive outline of the cytokine-mediated exacerbation of disease and tissue damage in NHP models of viral infections and therapeutic strategies that can aid in prevention/treatment of the disease syndromes.
Collapse
Affiliation(s)
- Cordelia Manickam
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Spandan V. Shah
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Olivier Lucar
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Daniel R. Ram
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - R. Keith Reeves
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Ragon Institute of Massachusetts General Hospital, MIT and Harvard, Cambridge, MA, United States
| |
Collapse
|
37
|
Ito R, Maruoka S, Soda K, Katano I, Kawai K, Yagoto M, Hanazawa A, Takahashi T, Ogura T, Goto M, Takahashi R, Toyoshima S, Okayama Y, Izuhara K, Gon Y, Hashimoto S, Ito M, Nunomura S. A humanized mouse model to study asthmatic airway inflammation via the human IL-33/IL-13 axis. JCI Insight 2018; 3:121580. [PMID: 30385714 DOI: 10.1172/jci.insight.121580] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 09/26/2018] [Indexed: 01/02/2023] Open
Abstract
Asthma is one of the most common immunological diseases and is characterized by airway hyperresponsiveness (AHR), mucus overproduction, and airway eosinophilia. Although mouse models have provided insight into the mechanisms by which type-2 cytokines induce asthmatic airway inflammation, differences between the rodent and human immune systems hamper efforts to improve understanding of human allergic diseases. In this study, we aim to establish a preclinical animal model of asthmatic airway inflammation using humanized IL-3/GM-CSF or IL-3/GM-CSF/IL-5 Tg NOD/Shi-scid-IL2rγnull (NOG) mice and investigate the roles of human type-2 immune responses in the asthmatic mice. Several important characteristics of asthma - such as AHR, goblet cell hyperplasia, T cell infiltration, IL-13 production, and periostin secretion - were induced in IL-3/GM-CSF Tg mice by intratracheally administered human IL-33. In addition to these characteristics, human eosinophilic inflammation was observed in IL-3/GM-CSF/IL-5 Tg mice. The asthmatic mechanisms of the humanized mice were driven by activation of human Th2 and mast cells by IL-33 stimulation. Furthermore, treatment of the humanized mice with an anti-human IL-13 antibody significantly suppressed these characteristics. Therefore, the humanized mice may enhance our understanding of the pathophysiology of allergic disorders and facilitate the preclinical development of new therapeutics for IL-33-mediated type-2 inflammation in asthma.
Collapse
Affiliation(s)
- Ryoji Ito
- Central Institute for Experimental Animals (CIEA), Kanagawa, Japan
| | - Shuichiro Maruoka
- Division of Respiratory Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Kaori Soda
- Division of Respiratory Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Ikumi Katano
- Central Institute for Experimental Animals (CIEA), Kanagawa, Japan
| | - Kenji Kawai
- Central Institute for Experimental Animals (CIEA), Kanagawa, Japan
| | - Mika Yagoto
- Central Institute for Experimental Animals (CIEA), Kanagawa, Japan
| | - Asami Hanazawa
- Central Institute for Experimental Animals (CIEA), Kanagawa, Japan
| | | | - Tomoyuki Ogura
- Central Institute for Experimental Animals (CIEA), Kanagawa, Japan
| | - Motohito Goto
- Central Institute for Experimental Animals (CIEA), Kanagawa, Japan
| | - Riichi Takahashi
- Central Institute for Experimental Animals (CIEA), Kanagawa, Japan
| | - Shota Toyoshima
- Allergy and Immunology Research Project Team, Research Institute of Medical Science, Center for Institutional Research and Medical Education, Nihon University School of Medicine, Tokyo, Japan
| | - Yoshimichi Okayama
- Allergy and Immunology Research Project Team, Research Institute of Medical Science, Center for Institutional Research and Medical Education, Nihon University School of Medicine, Tokyo, Japan
| | - Kenji Izuhara
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, Saga, Japan
| | - Yasuhiro Gon
- Division of Respiratory Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Shu Hashimoto
- Division of Respiratory Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Mamoru Ito
- Central Institute for Experimental Animals (CIEA), Kanagawa, Japan
| | - Satoshi Nunomura
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, Saga, Japan
| |
Collapse
|
38
|
Michalik M, Wójcik-Pszczoła K, Paw M, Wnuk D, Koczurkiewicz P, Sanak M, Pękala E, Madeja Z. Fibroblast-to-myofibroblast transition in bronchial asthma. Cell Mol Life Sci 2018; 75:3943-3961. [PMID: 30101406 PMCID: PMC6182337 DOI: 10.1007/s00018-018-2899-4] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 07/26/2018] [Accepted: 08/06/2018] [Indexed: 12/11/2022]
Abstract
Bronchial asthma is a chronic inflammatory disease in which bronchial wall remodelling plays a significant role. This phenomenon is related to enhanced proliferation of airway smooth muscle cells, elevated extracellular matrix protein secretion and an increased number of myofibroblasts. Phenotypic fibroblast-to-myofibroblast transition represents one of the primary mechanisms by which myofibroblasts arise in fibrotic lung tissue. Fibroblast-to-myofibroblast transition requires a combination of several types of factors, the most important of which are divided into humoural and mechanical factors, as well as certain extracellular matrix proteins. Despite intensive research on the nature of this process, its underlying mechanisms during bronchial airway wall remodelling in asthma are not yet fully clarified. This review focuses on what is known about the nature of fibroblast-to-myofibroblast transition in asthma. We aim to consider possible mechanisms and conditions that may play an important role in fibroblast-to-myofibroblast transition but have not yet been discussed in this context. Recent studies have shown that some inherent and previously undescribed features of fibroblasts can also play a significant role in fibroblast-to-myofibroblast transition. Differences observed between asthmatic and non-asthmatic bronchial fibroblasts (e.g., response to transforming growth factor β, cell shape, elasticity, and protein expression profile) may have a crucial influence on this phenomenon. An accurate understanding and recognition of all factors affecting fibroblast-to-myofibroblast transition might provide an opportunity to discover efficient methods of counteracting this phenomenon.
Collapse
Affiliation(s)
- Marta Michalik
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland.
| | - Katarzyna Wójcik-Pszczoła
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland.
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland.
| | - Milena Paw
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Dawid Wnuk
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Paulina Koczurkiewicz
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Marek Sanak
- Division of Molecular Biology and Clinical Genetics, Department of Medicine, Jagiellonian University Medical College, Skawińska 8, 31-066, Kraków, Poland
| | - Elżbieta Pękala
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Zbigniew Madeja
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| |
Collapse
|
39
|
Zheng XL, Wu JP, Gong Y, Hong JB, Xiao HY, Zhong JW, Xie B, Li BM, Guo GH, Zhu X, Wang AJ. IL-25 protects against high-fat diet-induced hepatic steatosis in mice by inducing IL-25 and M2a macrophage production. Immunol Cell Biol 2018; 97:165-177. [PMID: 30242904 DOI: 10.1111/imcb.12207] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 03/31/2018] [Accepted: 09/17/2018] [Indexed: 12/28/2022]
Abstract
Interleukin (IL)-25 is a cytokine that has previously been shown to have a protective role against nonalcoholic fatty liver disease (NAFLD), which is associated with the induction of M2 macrophage differentiation. However, the direct relationships between IL-25 expression regulation, M2 induction and NAFLD remain unknown. In this study, we demonstrate that IL-25 promotes hepatic macrophage differentiation into M2a macrophages both in vivo and in vitro via the IL-13/STAT6 pathway. M2 macrophages that were differentiated in vitro were able to ameliorate high-fat diet HFD-induced hepatic steatosis. Furthermore, we found that IL-25 treatment, both in vitro and in vivo, promotes direct binding of STAT6 to the IL-25 gene promoter region. This binding of STAT6 in response to IL-25 treatment also resulted in the increase of IL-25 expression in hepatocytes. Together, these findings identify IL-25 as a protective factor against HFD-induced hepatic steatosis by inducing an increase of IL-25 expression in hepatocytes and through promotion of M2a macrophage production.
Collapse
Affiliation(s)
- Xue-Lian Zheng
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China.,Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Jian-Ping Wu
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Yue Gong
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Jun-Bo Hong
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Hai-Ying Xiao
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Jia-Wei Zhong
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Bo Xie
- Zhongshan School of Medicine and Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Bi-Min Li
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Gui-Hai Guo
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Xuan Zhu
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - An-Jiang Wang
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| |
Collapse
|
40
|
Abstract
PURPOSE OF REVIEW Recent studies have highlighted the role of alarmins in asthma pathophysiology and tested the roles of these cytokines in asthmatic patients. This review will discuss the recent advances in the role of alarmins in asthma and the potential of future targeted therapies in asthma. RECENT FINDINGS Epithelial-derived cytokines can be released upon exposure to external stimuli, causing damage to the epithelial barrier and resulting in tissue inflammation. Of these cytokines, IL-25, IL-33 and thymic stromal lymphopoeitin (TSLP), have been associated with asthma. These alarmins are all not only overexpressed in asthmatic airways, particularly in airway epithelial cells, but also in other structural and immune cells. Furthermore, all three alarmins drive type-2 pro-inflammatory responses in several immune cells that have been identified as key players in the pathogenesis of asthma, including innate lymphoid type-2 cells. Clinical trials testing therapeutics that block pathways of the alarmins are in progress. SUMMARY To-date, only TSLP blockade has been reported in human clinical trials, and this approach has shown efficacy in asthmatic patients. Current body of evidence suggests that alarmins are useful upstream targets for treatment of asthma.
Collapse
|
41
|
Sputum interleukin-25 correlates with asthma severity: a preliminary study. Postepy Dermatol Alergol 2018; 35:462-469. [PMID: 30429702 PMCID: PMC6232538 DOI: 10.5114/ada.2017.71428] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 09/13/2017] [Indexed: 02/07/2023] Open
Abstract
Introduction Interleukin 25 is an epithelial-derived cytokine associated with allergic Th2 inflammation. However, little is known about the role of IL-25 in different asthma phenotypes and its relationship with disease severity. Aim To evaluate and compare the mRNA and protein expression of IL-25 in patients with mild-to moderate/severe asthma and cough variant asthma (CVA). Material and methods Thirty-eight patients with stable asthma (11 patients with mild-to-moderate asthma, 14 patients with severe asthma and 13 patients with CVA) and 14 control subjects were enrolled. IL-25 protein concentration was measured in induced sputum (IS) supernatants by ELISA and IL-25 mRNA expression was evaluated in IS cells by real time PCR. Results No differences in IS IL-25 mRNA and IL-25 concentration between controls and the whole asthma group were found. In the detailed analysis, a lower IL-25 mRNA expression in sputum cells was observed in severe asthma compared to CVA and controls. IL-25 protein concentration in sputum supernatants was elevated in patients with severe asthma compared to controls, CVA and mild-to-moderate asthma. A sputum IL-25 level was increased in atopic vs. non-atopic asthma patients. The elevated IL-25 mRNA expression and protein concentration was associated with a lower eosinophil and higher neutrophil percentage in asthmatic airways. Conclusions Our results suggest that IL-25 is particularly associated with severe asthma. The relationship between IL-25 and neutrophilic airway inflammation suggests the pleiotropic role of IL-25 in the immune response in this disease.
Collapse
|
42
|
Coleman SL, Shaw OM. Progress in the understanding of the pathology of allergic asthma and the potential of fruit proanthocyanidins as modulators of airway inflammation. Food Funct 2018; 8:4315-4324. [PMID: 29140397 DOI: 10.1039/c7fo00789b] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Allergic asthma is a chronic inflammatory lung disease characterized by sensitization of the airways, and the development of immunoglobulin E antibodies, to benign antigens. The established pathophysiology of asthma includes recurrent lung epithelial inflammation, excessive mucus production, bronchial smooth muscle hyperreactivity, and chronic lung tissue remodeling, resulting in reversible airflow restriction. Immune cells, including eosinophils and the recently characterized type 2 innate lymphoid cells, infiltrate into the lung tissue as part of the inflammatory response in allergic asthma. It is well established that a diet high in fruits and vegetables results in a reduction of the risk of developing inflammatory diseases. Secondary plant metabolites, such as proanthocyanidins which are found in apples, blackcurrants, boysenberries, cranberries, and grapes, have shown promising results in reducing or preventing allergic asthma airway inflammation. Recent evidence has also highlighted the importance of microbiome-mediated metabolism of plant polyphenols in modulating the immune system. In this review, we will discuss advances in our understanding of the pathophysiology of allergic asthma, including the role of the microbiome in lung immune function, and how proanthocyanidins modulate the airway inflammation. We will highlight the potential of dietary proanthocyanidins to impact on allergic asthma and the immune system.
Collapse
Affiliation(s)
- Sara L Coleman
- Food and Wellness Group, The New Zealand Institute for Plant & Food Research Ltd, Palmerston North 4442, New Zealand.
| | | |
Collapse
|
43
|
Lee A, Leon Hsu HH, Mathilda Chiu YH, Bose S, Rosa MJ, Kloog I, Wilson A, Schwartz J, Cohen S, Coull BA, Wright RO, Wright RJ. Prenatal fine particulate exposure and early childhood asthma: Effect of maternal stress and fetal sex. J Allergy Clin Immunol 2018; 141:1880-1886. [PMID: 28801196 PMCID: PMC5803480 DOI: 10.1016/j.jaci.2017.07.017] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 07/03/2017] [Accepted: 07/10/2017] [Indexed: 12/23/2022]
Abstract
BACKGROUND The impact of prenatal ambient air pollution on child asthma may be modified by maternal stress, child sex, and exposure dose and timing. OBJECTIVE We prospectively examined associations between coexposure to prenatal particulate matter with an aerodynamic diameter of less than 2.5 microns (PM2.5) and maternal stress and childhood asthma (n = 736). METHODS Daily PM2.5 exposure during pregnancy was estimated using a validated satellite-based spatiotemporally resolved prediction model. Prenatal maternal negative life events (NLEs) were dichotomized around the median (high: NLE ≥ 3; low: NLE < 3). We used Bayesian distributed lag interaction models to identify sensitive windows for prenatal PM2.5 exposure on children's asthma by age 6 years, and determine effect modification by maternal stress and child sex. RESULTS Bayesian distributed lag interaction models identified a critical window of exposure (19-23 weeks' gestation, cumulative odds ratio, 1.15; 95% CI, 1.03-1.26; per interquartile range [1.7 μg/m3] increase in prenatal PM2.5 level) during which children concomitantly exposed to prenatal PM2.5 and maternal stress had increased risk of asthma. No significant association was seen in children born to women reporting low prenatal stress. When examining modifying effects of prenatal stress and fetal sex, we found that boys born to mothers with higher prenatal stress were most vulnerable (19-21 weeks' gestation; cumulative odds ratio, 1.28; 95% CI, 1.15-1.41; per interquartile range increase in PM2.5). CONCLUSIONS Prenatal PM2.5 exposure during sensitive windows is associated with increased risk of child asthma, especially in boys concurrently exposed to elevated maternal stress.
Collapse
Affiliation(s)
- Alison Lee
- Division of Pulmonary, Critical Care and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Hsiao-Hsien Leon Hsu
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY; Department of Pediatrics, Kravis Children's Hospital, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Yueh-Hsiu Mathilda Chiu
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY; Department of Pediatrics, Kravis Children's Hospital, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Sonali Bose
- Division of Pulmonary, Critical Care and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Maria José Rosa
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Itai Kloog
- Faculty of Humanities and Social Sciences, Department of Geography and Environmental Development, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Ander Wilson
- Department of Statistics, Colorado State University, Fort Collins, Colo
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Mass
| | - Sheldon Cohen
- Department of Psychology, Carnegie Mellon University, Pittsburgh, Pa
| | - Brent A Coull
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Mass
| | - Robert O Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY; Department of Pediatrics, Kravis Children's Hospital, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Rosalind J Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY; Department of Pediatrics, Kravis Children's Hospital, Icahn School of Medicine at Mount Sinai, New York, NY.
| |
Collapse
|
44
|
Suto H, Nambu A, Morita H, Yamaguchi S, Numata T, Yoshizaki T, Shimura E, Arae K, Asada Y, Motomura K, Kaneko M, Abe T, Matsuda A, Iwakura Y, Okumura K, Saito H, Matsumoto K, Sudo K, Nakae S. IL-25 enhances T H17 cell-mediated contact dermatitis by promoting IL-1β production by dermal dendritic cells. J Allergy Clin Immunol 2018. [PMID: 29522843 DOI: 10.1016/j.jaci.2017.12.1007] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND In addition to thymic stromal lymphopoietin and IL-33, IL-25 is known to induce TH2 cytokine production by various cell types, including TH2 cells, TH9 cells, invariant natural killer T cells, and group 2 innate lymphoid cells, involved in TH2-type immune responses. Because both TH2-type and TH17-type cells/cytokines are crucial for contact hypersensitivity (CHS), IL-25 can contribute to this by enhancing TH2-type immune responses. However, the precise role of IL-25 in the pathogenesis of fluorescein isothiocyanate-induced CHS is poorly understood. OBJECTIVE We investigated the contribution of IL-25 to CHS using Il25-/- mice. METHODS CHS was evaluated by means of measurement of ear skin thickness in mice after fluorescein isothiocyanate painting. Skin dendritic cell (DC) migration, hapten-specific TH cell differentiation, and detection of IL-1β-producing cells were determined by using flow cytometry, ELISA, and immunohistochemistry, respectively. RESULTS In contrast to thymic stromal lymphopoietin, we found that IL-25 was not essential for skin DC migration or hapten-specific TH cell differentiation in the sensitization phase of CHS. Unexpectedly, mast cell- and non-immune cell-derived IL-25 was important for hapten-specific TH17 cell-mediated rather than TH2 cell-mediated inflammation in the elicitation phase of CHS by enhancing TH17-related, but not TH2-related, cytokines in the skin. In particular, IL-1β produced by dermal DCs in response to IL-25 was crucial for hapten-specific TH17 cell activation, contributing to induction of local inflammation in the elicitation phase of CHS. CONCLUSION Our results identify a novel IL-25 inflammatory pathway involved in induction of TH17 cell-mediated, but not TH2 cell-mediated, CHS. IL-25 neutralization can be a potential approach for treatment of CHS.
Collapse
Affiliation(s)
- Hajime Suto
- Atopy Research Center, Juntendo University, Tokyo, Japan
| | - Aya Nambu
- Laboratory of Systems Biology, Center for Experimental Medicine and Systems Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Hideaki Morita
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Sachiko Yamaguchi
- Laboratory of Systems Biology, Center for Experimental Medicine and Systems Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Takafumi Numata
- Laboratory of Systems Biology, Center for Experimental Medicine and Systems Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Takamichi Yoshizaki
- Laboratory of Systems Biology, Center for Experimental Medicine and Systems Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Eri Shimura
- Atopy Research Center, Juntendo University, Tokyo, Japan; Laboratory of Systems Biology, Center for Experimental Medicine and Systems Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Ken Arae
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan; Department of Immunology, Faculty of Health Science, Kyorin University, Tokyo, Japan
| | - Yousuke Asada
- Department of Ophthalmology, Juntendo University, Tokyo, Japan
| | - Kenichiro Motomura
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Mari Kaneko
- Animal Resource Development Unit, RIKEN Center for Life Science Technologies, Kobe, Japan; Genetic Engineering Team, RIKEN Center for Life Science Technologies, Kobe, Japan
| | - Takaya Abe
- Genetic Engineering Team, RIKEN Center for Life Science Technologies, Kobe, Japan
| | - Akira Matsuda
- Department of Ophthalmology, Juntendo University, Tokyo, Japan
| | - Yoichiro Iwakura
- Center for Experimental Animal Models, Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - Ko Okumura
- Atopy Research Center, Juntendo University, Tokyo, Japan
| | - Hirohisa Saito
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kenji Matsumoto
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Katsuko Sudo
- Animal Research Center, Tokyo Medical University, Tokyo, Japan
| | - Susumu Nakae
- Laboratory of Systems Biology, Center for Experimental Medicine and Systems Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan; Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Saitama, Japan.
| |
Collapse
|
45
|
Lawrence MG, Steinke JW, Borish L. Cytokine-targeting biologics for allergic diseases. Ann Allergy Asthma Immunol 2018; 120:376-381. [PMID: 29410215 DOI: 10.1016/j.anai.2018.01.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/03/2018] [Accepted: 01/12/2018] [Indexed: 01/06/2023]
Abstract
OBJECTIVE Asthma and allergic diseases continue to increase in prevalence, creating a financial burden on the health care system and affecting the quality of life for those who have these diseases. Many intrinsic and extrinsic factors are involved in the initiation and maintenance of the allergic response. Cytokines are proteins with growth, differentiation, and activation functions that regulate and direct the nature of immune responses. DATA SOURCES clinicaltrials.gov and PubMed. STUDY SELECTIONS Relevant clinical trials and recent basic science studies were chosen for discussion. RESULTS Many cytokines have been implicated in the development and perpetuation of the allergic response. Biologics have been and are continuing to be developed that target these molecules for use in patients with asthma and atopic dermatitis where standard treatment options fail. The current state of cytokine-targeting therapies is discussed. CONCLUSION This review focused on cytokines involved in the allergic response with an emphasis on those for which therapies are being or have been developed.
Collapse
Affiliation(s)
- Monica G Lawrence
- Asthma and Allergic Disease Center, University of Virginia Health System, Charlottesville, Virginia
| | - John W Steinke
- Asthma and Allergic Disease Center, University of Virginia Health System, Charlottesville, Virginia; Carter Center for Immunology Research, Charlottesville, Virginia
| | - Larry Borish
- Asthma and Allergic Disease Center, University of Virginia Health System, Charlottesville, Virginia; Carter Center for Immunology Research, Charlottesville, Virginia.
| |
Collapse
|
46
|
Merrouche Y, Fabre J, Cure H, Garbar C, Fuselier C, Bastid J, Antonicelli F, Al-Daccak R, Bensussan A, Giustiniani J. IL-17E synergizes with EGF and confers in vitro resistance to EGFR-targeted therapies in TNBC cells. Oncotarget 2018; 7:53350-53361. [PMID: 27462789 PMCID: PMC5288192 DOI: 10.18632/oncotarget.10804] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 07/13/2016] [Indexed: 12/22/2022] Open
Abstract
Estrogen receptor-, progesterone receptor- and HER2-negative breast cancers, also known as triple-negative breast cancers (TNBCs), have poor prognoses and are refractory to current therapeutic agents, including epidermal growth factor receptor (EGFR) inhibitors. Resistance to anti-EGFR therapeutic agents is often associated with sustained kinase phosphorylation, which promotes EGFR activation and translocation to the nucleus and prevents these agents from acting on their targets. The mechanisms underlying this resistance have not been fully elucidated. In addition, the IL-17E receptor is overexpressed in TNBC tumors and is associated with a poor prognosis. We have previously reported that IL-17E promotes TNBC resistance to anti-mitotic therapies. Here, we investigated whether IL-17E promotes TNBC resistance to anti-EGFR therapeutic agents by exploring the link between the IL-17E/IL-17E receptor axis and EGF signaling. We found that IL-17E, similarly to EGF, activates the EGFR in TNBC cells that are resistant to EGFR inhibitors. It also activates the PYK-2, Src and STAT3 kinases, which are essential for EGFR activation and nuclear translocation. IL-17E binds its specific receptor, IL-17RA/IL17RB, on these TNBC cells and synergizes with the EGF signaling pathway, thereby inducing Src-dependent EGFR transactivation and pSTAT3 and pEGFR translocation to the nucleus. Collectively, our data indicate that the IL-17E/IL-17E receptor axis may underlie TNBC resistance to EGFR inhibitors and suggest that inhibiting IL-17E or its receptor in combination with EGFR inhibitor administration may improve TNBC management.
Collapse
Affiliation(s)
- Yacine Merrouche
- Institut Jean Godinot, Unicancer, F-51726 Reims, France.,Université Reims-Champagne-Ardenne, DERM-I-C, EA7319, 51095 Reims, France
| | - Joseph Fabre
- Institut Jean Godinot, Unicancer, F-51726 Reims, France.,Université Reims-Champagne-Ardenne, DERM-I-C, EA7319, 51095 Reims, France
| | - Herve Cure
- CHU-Grenoble Alpes, CS 10217, 38043 La Tronche, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U823, Centre de Recherche (CRI), Institut Albert Bonniot, 38043 La Tronche, France
| | - Christian Garbar
- Institut Jean Godinot, Unicancer, F-51726 Reims, France.,Université Reims-Champagne-Ardenne, DERM-I-C, EA7319, 51095 Reims, France
| | - Camille Fuselier
- Institut Jean Godinot, Unicancer, F-51726 Reims, France.,Université Reims-Champagne-Ardenne, DERM-I-C, EA7319, 51095 Reims, France
| | | | - Frank Antonicelli
- Université Reims-Champagne-Ardenne, DERM-I-C, EA7319, 51095 Reims, France
| | - Reem Al-Daccak
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR-S 976, Hôpital Saint Louis, 75010 Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Laboratoire Immunologie Dermatologie and Oncologie, UMR-S 976, F-75475, Paris, France
| | - Armand Bensussan
- OREGA Biotech, F-69130 Ecully, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) UMR-S 976, Hôpital Saint Louis, 75010 Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Laboratoire Immunologie Dermatologie and Oncologie, UMR-S 976, F-75475, Paris, France
| | - Jerome Giustiniani
- Institut Jean Godinot, Unicancer, F-51726 Reims, France.,Université Reims-Champagne-Ardenne, DERM-I-C, EA7319, 51095 Reims, France
| |
Collapse
|
47
|
Li HT, Chen ZG, Liu H, Ye J, Zou XL, Wang YH, Yang HL, Meng P, Zhang TT. Treatment of allergic rhinitis with CpG oligodeoxynucleotides alleviates the lower airway outcomes of combined allergic rhinitis and asthma syndrome via a mechanism that possibly involves in TSLP. Exp Lung Res 2017; 42:322-33. [PMID: 27541375 DOI: 10.1080/01902148.2016.1215571] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
PURPOSE Thymic stromal lymphopoietin (TSLP) is a critical regulator of immune responses associated with Th2 cytokine-mediated inflammation. Intranasal administration of oligodeoxynucleotides with CpG motifs (CpG-ODNs) might improve lower airway outcomes of combined allergic rhinitis and asthma syndrome (CARAS), but the inherent mechanisms of CpG-ODNs are not well defined. This study investigated whether CpG-ODNs treated to upper airway could reduce lower airway TSLP expression as well as whether this reduction could contribute to the alleviation of lower allergic inflammation and airway hyper-reactivity (AHR) in CARAS mice. MATERIALS AND METHODS Ovalbumin (OVA)-sensitized BALB/c mice were intranasal OVA exposure three times a week for 3 weeks. CpG-ODNs or an anti-TSLP mAb was administered to a subset of these mice 1 hour after intranasal OVA challenge, followed by 5 days of OVA aerosol challenge. The resulting immunological variables, nasal symptoms, and nasal mucosa and lung tissues pathology were evaluated. TSLP production in the lung tissues and bronchoalveolar lavage fluid (BALF) were determined by RT-PCR, western blotting or enzyme-linked immunosorbent assay. RESULTS The CARAS mice exhibited overexpression of TSLP in the lung tissues and BALF, and also demonstrated significant increases in BALF and splenocyte Th2-associated cytokine production, serum OVA-specific IgE, nose and lung pathologies, and AHR. Intranasal administration of CpG-ODNs restored TSLP in the lower airway, and it significantly reduced the following parameters: Th2-type cytokine production levels; the percentage of eosinophils in the BALF; IL-4 and IL-5 concentrations in the supernatants of cultured splenic lymphocytes; serum OVA-specific IgE; peribronchial inflammation score in the lungs; and nose pathology and nasal symptoms. Similar results were obtained when the CARAS mice were treated with an anti-TSLP mAb to block intranasal TSLP activity. CONCLUSIONS Treatment with intranasal CpG-ODNs improves lower airway immunological variable outcomes in the CARAS model via a mechanism that possibly involves in suppressing pulmonary TSLP-triggered allergic inflammation.
Collapse
Affiliation(s)
- Hong-Tao Li
- a Department of Pulmonary Diseases , Institute of Respiratory Diseases of Sun Yat-sen University, The Third Affiliated Hospital of Sun Yat-sen University , Guangzhou , China
| | - Zhuang-Gui Chen
- b Department of Pediatrics , The Third Affiliated Hospital of Sun Yat-sen University , Guangzhou , China
| | - Hui Liu
- a Department of Pulmonary Diseases , Institute of Respiratory Diseases of Sun Yat-sen University, The Third Affiliated Hospital of Sun Yat-sen University , Guangzhou , China
| | - Jin Ye
- c Department of Otolaryngology, Head and Neck Surgery , The Third Affiliated Hospital of Sun Yat-sen University , Guangzhou , China
| | - Xiao-Ling Zou
- a Department of Pulmonary Diseases , Institute of Respiratory Diseases of Sun Yat-sen University, The Third Affiliated Hospital of Sun Yat-sen University , Guangzhou , China
| | - Yan-Hong Wang
- a Department of Pulmonary Diseases , Institute of Respiratory Diseases of Sun Yat-sen University, The Third Affiliated Hospital of Sun Yat-sen University , Guangzhou , China
| | - Hai-Ling Yang
- a Department of Pulmonary Diseases , Institute of Respiratory Diseases of Sun Yat-sen University, The Third Affiliated Hospital of Sun Yat-sen University , Guangzhou , China
| | - Ping Meng
- a Department of Pulmonary Diseases , Institute of Respiratory Diseases of Sun Yat-sen University, The Third Affiliated Hospital of Sun Yat-sen University , Guangzhou , China
| | - Tian-Tuo Zhang
- a Department of Pulmonary Diseases , Institute of Respiratory Diseases of Sun Yat-sen University, The Third Affiliated Hospital of Sun Yat-sen University , Guangzhou , China
| |
Collapse
|
48
|
Ito R, Takahashi T, Ito M. Humanized mouse models: Application to human diseases. J Cell Physiol 2017; 233:3723-3728. [PMID: 28598567 DOI: 10.1002/jcp.26045] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 06/07/2017] [Indexed: 12/24/2022]
Abstract
Humanized mice are superior to rodents for preclinical evaluation of the efficacy and safety of drug candidates using human cells or tissues. During the past decade, humanized mouse technology has been greatly advanced by the establishment of novel platforms of genetically modified immunodeficient mice. Several human diseases can be recapitulated using humanized mice due to the improved engraftment and differentiation capacity of human cells or tissues. In this review, we discuss current advanced humanized mouse models that recapitulate human diseases including cancer, allergy, and graft-versus-host disease.
Collapse
Affiliation(s)
- Ryoji Ito
- Central Institute for Experimental Animals, Kawasaki, Kanagawa, Japan
| | - Takeshi Takahashi
- Central Institute for Experimental Animals, Kawasaki, Kanagawa, Japan
| | - Mamoru Ito
- Central Institute for Experimental Animals, Kawasaki, Kanagawa, Japan
| |
Collapse
|
49
|
Lim TK, Ko FWS, Benton MJ, Berge MVD, Mak J. Year in review 2016: Chronic obstructive pulmonary disease and asthma. Respirology 2017; 22:820-828. [PMID: 28371172 DOI: 10.1111/resp.13037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 03/06/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Tow Keang Lim
- Department of Medicine, National University Hospital, Singapore
| | - Fanny W S Ko
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Melissa J Benton
- Helen and Arthur E. Johnson Beth-El College of Nursing and Health Sciences, University of Colorado, Colorado Springs, Colorado, USA
| | - Maarten Van den Berge
- Department of Pulmonology, University Medical Center Groningen, Groningen, The Netherlands
| | - Judith Mak
- Department of Medicine, Research Centre of Heart, Brain, Hormone and Healthy Aging, The University of Hong Kong, Hong Kong.,Department of Pharmacology and Pharmacy, Research Centre of Heart, Brain, Hormone and Healthy Aging, The University of Hong Kong, Hong Kong
| |
Collapse
|
50
|
Zhang FQ, Han XP, Zhang F, Ma X, Xiang D, Yang XM, Ou-Yang HF, Li Z. Therapeutic efficacy of a co-blockade of IL-13 and IL-25 on airway inflammation and remodeling in a mouse model of asthma. Int Immunopharmacol 2017; 46:133-140. [PMID: 28282577 DOI: 10.1016/j.intimp.2017.03.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 02/17/2017] [Accepted: 03/03/2017] [Indexed: 02/06/2023]
Abstract
Repeated airway inflammation and unremitting remodeling provoke irreversible pulmonary dysfunction and resistance to current drugs in patients with chronic bronchial asthma. Interleukin (IL)-13 and IL-25 play an important role in airway inflammation and remodeling in asthma. We aimed to investigate whether co-inhibiting IL-13 and IL-25 can effectively down-regulate allergen-induced airway inflammation and remodeling in mice. Mice with asthma induced by chronic exposure to ovalbumin (OVA) were given soluble IL-13 receptor α2 (sIL-13R) or soluble IL-25 receptor (sIL-25R) protein alone and in combination to neutralize the bioactivity of IL-13 and IL-25, and relevant airway inflammation and remodeling experiments were performed. We found that the co-blockade of IL-13 and IL-25 with sIL-13R and sIL-25R was more effective than either agent alone at decreasing inflammatory cell infiltration, airway hyperresponsiveness (AhR) and airway remodeling including mucus production, extracellular collagen deposition, smooth muscle cell hyperplasia and angiogenesis in mice exposed to OVA. These results suggest that the combined inhibition of IL-13 and IL-25 may provide a novel therapeutic strategy for asthma, especially for patients who are resistant to current treatments.
Collapse
Affiliation(s)
- Fang-Qi Zhang
- Department of Respiratory Medicine, Xijing Hospital of the Fourth Military Medical University, Xi'an, China
| | - Xin-Peng Han
- Department of Respiratory Medicine, Xijing Hospital of the Fourth Military Medical University, Xi'an, China
| | - Fang Zhang
- Department of Respiratory Medicine, Xijing Hospital of the Fourth Military Medical University, Xi'an, China
| | - Xuan Ma
- Department of Respiratory Medicine, Xijing Hospital of the Fourth Military Medical University, Xi'an, China
| | - Dong Xiang
- Department of Respiratory Medicine, Xijing Hospital of the Fourth Military Medical University, Xi'an, China
| | - Xue-Min Yang
- Department of Respiratory Medicine, Xijing Hospital of the Fourth Military Medical University, Xi'an, China
| | - Hai-Feng Ou-Yang
- Department of Respiratory Medicine, Xijing Hospital of the Fourth Military Medical University, Xi'an, China.
| | - Zhikui Li
- Department of Respiratory Medicine, Xijing Hospital of the Fourth Military Medical University, Xi'an, China.
| |
Collapse
|