1
|
Posnakidis G, Giannaki CD, Mougios V, Pantzaris M, Patrikios I, Calder PC, Sari DK, Bogdanis GC, Aphamis G. Effects of Supplementation with Omega-3 and Omega-6 Polyunsaturated Fatty Acids and Antioxidant Vitamins, Combined with High-Intensity Functional Training, on Exercise Performance and Body Composition: A Randomized, Double-Blind, Placebo-Controlled Trial. Nutrients 2024; 16:2914. [PMID: 39275230 PMCID: PMC11397372 DOI: 10.3390/nu16172914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/16/2024] Open
Abstract
The aim of this study was to investigate the effects of a supplement rich in ω-3 and ω-6 polyunsaturated fatty acids (PUFAs) and antioxidant vitamins on physical performance and body composition following a period of high-intensity functional training (HIFT). Nineteen healthy young adults (nine males, ten females) underwent an 8-week HIFT program (3 days·week-1) where they were randomized 1:1 into either the supplement group (SG)-n = 10, receiving a 20 mL daily dose of a dietary cocktail formula (Neuroaspis™ PLP10) containing a mixture of ω-3 and ω-6 PUFAs (12,150 mg), vitamin A (0.6 mg), vitamin E (22 mg), and γ-tocopherol (760 mg)-or the placebo group (PG)-n = 9, receiving a 20 mL daily dose of virgin olive oil. Body composition, cardiorespiratory fitness, muscle strength, and muscle endurance were assessed before and after the training period. Body mass did not change, but muscle mass increased by 1.7 ± 1.9% or 0.40 ± 0.53 kg in the SG (p = 0.021) and decreased by 1.2 ± 1.6% or 0.28 ± 0.43 kg (p = 0.097) in the PG, compared with baseline. VO2max, vertical jump, squat 1RM, bench press 1RM, and muscle endurance increased similarly in both groups. The effects of HIFT on physical performance parameters, muscle damage, and inflammation indices were not affected by the supplementation. In conclusion, HIFT combined with high doses of ω-3 and ω-6 PUFAs and antioxidant vitamins resulted in a small but significant increase in muscle mass and fat reduction compared with HIFT alone.
Collapse
Affiliation(s)
- Georgios Posnakidis
- Department of Life and Health Sciences, University of Nicosia, Nicosia 2417, Cyprus
| | - Christoforos D Giannaki
- Department of Life and Health Sciences, University of Nicosia, Nicosia 2417, Cyprus
- Research Centre for Exercise and Nutrition (RECEN), Nicosia 2417, Cyprus
- Department of Nutrition, Faculty of Medicine, Universitas Sumatera Utara, Medan 20155, Indonesia
| | - Vassilis Mougios
- Laboratory of Evaluation of Human Biological Performance, School of Physical Education and Sport Science at Thessaloniki, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Marios Pantzaris
- The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus
| | - Ioannis Patrikios
- School of Medicine, European University Cyprus, Nicosia 2404, Cyprus
| | - Philip C Calder
- Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton SO16 6YD, UK
| | - Dina K Sari
- Department of Nutrition, Faculty of Medicine, Universitas Sumatera Utara, Medan 20155, Indonesia
| | - Gregory C Bogdanis
- School of Physical Education and Sport Science, National and Kapodistrian University of Athens, 17237 Athens, Greece
| | - George Aphamis
- Department of Life and Health Sciences, University of Nicosia, Nicosia 2417, Cyprus
- Research Centre for Exercise and Nutrition (RECEN), Nicosia 2417, Cyprus
- Department of Nutrition, Faculty of Medicine, Universitas Sumatera Utara, Medan 20155, Indonesia
| |
Collapse
|
2
|
Christensen S, Gjelstad A, Björnsdottir I, Lauritzen F. Motivations for Using Dietary Supplements in Elite Ice Hockey-Controlling Weight and Enhancing Performance. Nutrients 2024; 16:2667. [PMID: 39203804 PMCID: PMC11357155 DOI: 10.3390/nu16162667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 09/03/2024] Open
Abstract
Background: Excessive or improper use of dietary supplements (DSs) by athletes may cause adverse effects, such as impaired performance or failing a doping test, making it important for athletes to mitigate risk and make well-informed choices when using supplements. Methods: This study used focus group interviews to examine the attitudes, motivations, and practices related to DSs among male elite ice hockey players. Results: The players used a wide range of products, ranging from vitamins to multi-ingredient pre-workout supplements. Consuming DSs was considered as a practical and convenient way to ingest sufficient calories to gain or maintain the body weight and muscle mass needed to meet the physical requirements of the sport. The athletes demonstrated a lenient and ignorant attitude when acquiring and using supplements, with a non-critical trust in the guidance provided to them by the coach or physician. Having completed basic anti-doping education in the form of an e-learning program did not appear to result in taking a more careful approach to using DSs. Conclusions: Through their DS practices, elite ice hockey players may put themselves at risk for anti-doping rule violations. A comprehensive approach is needed when aiming to prevent unintentional doping in this athlete cohort.
Collapse
Affiliation(s)
- Sofie Christensen
- Science and Medicine, Anti-Doping Norway, 0855 Oslo, Norway
- Section for Pharmaceutics and Social Pharmacy, Department of Pharmacy, University of Oslo, 0316 Oslo, Norway;
| | - Astrid Gjelstad
- Science and Medicine, Anti-Doping Norway, 0855 Oslo, Norway
- Section for Pharmaceutical Chemistry, Department of Pharmacy, University of Oslo, 0316 Oslo, Norway
| | - Ingunn Björnsdottir
- Section for Pharmaceutics and Social Pharmacy, Department of Pharmacy, University of Oslo, 0316 Oslo, Norway;
| | | |
Collapse
|
3
|
Park CY, Shin S. Low dietary vitamin C intake is associated with low muscle strength among elderly Korean women. Nutr Res 2024; 127:75-83. [PMID: 38889453 DOI: 10.1016/j.nutres.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/20/2024]
Abstract
Although vitamin C is one of the most important antioxidants, its effect on muscle quality is not fully understood. Therefore, we hypothesized that low dietary vitamin C intake is associated with low muscle strength. To test the hypothesis, a single 24-h dietary recall and handgrip strength test of 10,883 younger adults 19-64 y and 3,961 older adults ≥65 y from the seventh Korea National Health and Examination Survey (KNHANES VII 2016-2018) was analyzed by multivariable linear and logistic regression models, and low muscle strength was defined as handgrip strength <28 kg for men and <18 kg for women. Approximately 15.5% of Korean adults met the recommended intake of dietary vitamin C, and those with higher dietary vitamin C intake had higher total energy and protein intake. After adjusting for confounding variables, including age, body mass index, total energy intake, household income, alcohol consumption, smoking, resistance exercise, medical condition, and dietary intake of protein, vitamin E, and β-carotene, dietary vitamin C was correlated with maximal handgrip strength in younger women 19-64 y (β = 0.002; SE = 0.001; P-value = .026) and older women ≥65 y (β = 0.005; SE = 0.002; P-value = .013). Among older women ≥65 y, those in the lowest quartile of dietary vitamin C intake had a higher risk of low muscle strength compared to those in the highest quartile after adjustment of confounding factors (odds ratio, 2.16; 95% confidence interval, 1.49-3.15). These results imply that adequate dietary vitamin C intake may reduce the risk of sarcopenia in older Korean women.
Collapse
Affiliation(s)
- Chan Yoon Park
- Department of Food and Nutrition, The University of Suwon, Hwaseong 18323, South Korea
| | - Sunhye Shin
- Department of Food and Nutrition, Seoul Women's University, Seoul 01797, South Korea.
| |
Collapse
|
4
|
Shen Y, Zhang C, Dai C, Zhang Y, Wang K, Gao Z, Chen X, Yang X, Sun H, Yao X, Xu L, Liu H. Nutritional Strategies for Muscle Atrophy: Current Evidence and Underlying Mechanisms. Mol Nutr Food Res 2024; 68:e2300347. [PMID: 38712453 DOI: 10.1002/mnfr.202300347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 02/28/2024] [Indexed: 05/08/2024]
Abstract
Skeletal muscle can undergo detrimental changes in various diseases, leading to muscle dysfunction and atrophy, thus severely affecting people's lives. Along with exercise, there is a growing interest in the potential of nutritional support against muscle atrophy. This review provides a brief overview of the molecular mechanisms driving skeletal muscle atrophy and summarizes recent advances in nutritional interventions for preventing and treating muscle atrophy. The nutritional supplements include amino acids and their derivatives (such as leucine, β-hydroxy, β-methylbutyrate, and creatine), various antioxidant supplements (like Coenzyme Q10 and mitoquinone, resveratrol, curcumin, quercetin, Omega 3 fatty acids), minerals (such as magnesium and selenium), and vitamins (such as vitamin B, vitamin C, vitamin D, and vitamin E), as well as probiotics and prebiotics (like Lactobacillus, Bifidobacterium, and 1-kestose). Furthermore, the study discusses the impact of a combined approach involving nutritional support and physical therapy to prevent muscle atrophy, suggests appropriate multi-nutritional and multi-modal interventions based on individual conditions to optimize treatment outcomes, and enhances the recovery of muscle function for patients. By understanding the molecular mechanisms behind skeletal muscle atrophy and implementing appropriate interventions, it is possible to enhance the recovery of muscle function and improve patients' quality of life.
Collapse
Grants
- 81901933 National Natural Science Foundation of China
- 82072160 National Natural Science Foundation of China
- 20KJA310012 Major Natural Science Research Projects in Universities of Jiangsu Province
- BK20202013 Natural Science Foundation of Jiangsu Province, and the Scientific Research Project of The Health Commission of Jiangsu Province
- BK20201209 Natural Science Foundation of Jiangsu Province, and the Scientific Research Project of The Health Commission of Jiangsu Province
- ZDB2020003 Natural Science Foundation of Jiangsu Province, and the Scientific Research Project of The Health Commission of Jiangsu Province
- QingLan Project in Jiangsu Universities
- JC22022037 The Priority Academic Program Development of Jiangsu Higher Education Institutions, and Nantong Science and Technology Program, and Nantong Health Medical Research Center
- MS22022010 The Priority Academic Program Development of Jiangsu Higher Education Institutions, and Nantong Science and Technology Program, and Nantong Health Medical Research Center
- JC12022010 The Priority Academic Program Development of Jiangsu Higher Education Institutions, and Nantong Science and Technology Program, and Nantong Health Medical Research Center
- HS2022003 The Priority Academic Program Development of Jiangsu Higher Education Institutions, and Nantong Science and Technology Program, and Nantong Health Medical Research Center
Collapse
Affiliation(s)
- Yuntian Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Chen Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Chaolun Dai
- Department of Clinical Medicine, Medical College, Nantong University, Nantong, P. R. China, 226001
| | - Yijie Zhang
- Department of Clinical Medicine, Medical College, Nantong University, Nantong, P. R. China, 226001
| | - Kexin Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Zihui Gao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Xin Chen
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Xiaoming Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Xinlei Yao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Lingchi Xu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Hua Liu
- Department of Orthopedics, Haian Hospital of Traditional Chinese Medicine, Nantong, Jiangsu Province, 226600, P. R. China
| |
Collapse
|
5
|
O'Leary MF, Jackman SR, Bowtell JL. Shatavari supplementation in postmenopausal women alters the skeletal muscle proteome and pathways involved in training adaptation. Eur J Nutr 2024; 63:869-879. [PMID: 38214710 PMCID: PMC10948523 DOI: 10.1007/s00394-023-03310-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 12/10/2023] [Indexed: 01/13/2024]
Abstract
PURPOSE Shatavari is an understudied, widely available herbal supplement. It contains steroidal saponins and phytoestrogens. We previously showed that six weeks of shatavari supplementation improved handgrip strength and increased markers of myosin contractile function. Mechanistic insights into shatavari's actions are limited. Therefore, we performed proteomics on vastus lateralis (VL) samples that remained from our original study. METHODS In a randomised double-blind trial, women (68.5 ± 6 years) ingested either placebo or shatavari (equivalent to 26,500 mg/d fresh weight) for six weeks. Tandem mass tag global proteomic analysis of VL samples was conducted (N = 7 shatavari, N = 5 placebo). Data were normalized to total peptides and scaled using a reference sample. Data were filtered using a 5% FDR. For each protein, the pre to post supplementation difference was expressed as log2 fold change. Welch's t tests with Benjamini-Hochberg corrections were performed for each protein. Pathway enrichment (PADOG, CAMERA) was interrogated in Reactome (v85). RESULTS No individual protein was significantly different between supplementation conditions. Both PADOG and CAMERA indicated that pathways related to (1) Integrin/MAPK signalling, (2) metabolism/insulin secretion; (3) cell proliferation/senescence/DNA repair/cell death; (4) haemostasis/platelets/fibrin; (5) signal transduction; (6) neutrophil degranulation and (7) chemical synapse function were significantly upregulated. CAMERA indicated pathways related to translation/amino acid metabolism, viral infection, and muscle contraction were downregulated. CONCLUSION Our analyses indicate that shatavari may support muscle adaptation responses to exercise. These data provide useful signposts for future investigation of shatavari's utility in conserving and enhancing musculoskeletal function in older age. TRIAL REGISTRATION NCT05025917 30/08/21, retrospectively registered.
Collapse
Affiliation(s)
- Mary F O'Leary
- Department of Public Health and Sport Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK.
| | - Sarah R Jackman
- Department of Public Health and Sport Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Joanna L Bowtell
- Department of Public Health and Sport Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| |
Collapse
|
6
|
Brauwers B, Machado FVC, Beijers RJHCG, Spruit MA, Franssen FME. Combined Exercise Training and Nutritional Interventions or Pharmacological Treatments to Improve Exercise Capacity and Body Composition in Chronic Obstructive Pulmonary Disease: A Narrative Review. Nutrients 2023; 15:5136. [PMID: 38140395 PMCID: PMC10747351 DOI: 10.3390/nu15245136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/13/2023] [Accepted: 12/17/2023] [Indexed: 12/24/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a chronic respiratory disease that is associated with significant morbidity, mortality, and healthcare costs. The burden of respiratory symptoms and airflow limitation can translate to reduced physical activity, in turn contributing to poor exercise capacity, muscle dysfunction, and body composition abnormalities. These extrapulmonary features of the disease are targeted during pulmonary rehabilitation, which provides patients with tailored therapies to improve the physical and emotional status. Patients with COPD can be divided into metabolic phenotypes, including cachectic, sarcopenic, normal weight, obese, and sarcopenic with hidden obesity. To date, there have been many studies performed investigating the individual effects of exercise training programs as well as nutritional and pharmacological treatments to improve exercise capacity and body composition in patients with COPD. However, little research is available investigating the combined effect of exercise training with nutritional or pharmacological treatments on these outcomes. Therefore, this review focuses on exploring the potential additional beneficial effects of combinations of exercise training and nutritional or pharmacological treatments to target exercise capacity and body composition in patients with COPD with different metabolic phenotypes.
Collapse
Affiliation(s)
- Bente Brauwers
- Department of Research and Development, Ciro, Centre of Expertise for Chronic Organ Failure, 6085 NM Horn, The Netherlands; (M.A.S.); (F.M.E.F.)
- NUTRIM School of Nutrition and Translational Research in Metabolism, Faculty of Health, Medicine, Life Sciences, Maastricht University, 6229 HX Maastricht, The Netherlands
| | - Felipe V. C. Machado
- BIOMED (Biomedical Research Institute), REVAL (Rehabilitation Research Centre), Hasselt University, 3590 Hasselt, Belgium;
| | - Rosanne J. H. C. G. Beijers
- Department of Respiratory Medicine, NUTRIM Research Institute of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, 6200 MD Maastricht, The Netherlands;
| | - Martijn A. Spruit
- Department of Research and Development, Ciro, Centre of Expertise for Chronic Organ Failure, 6085 NM Horn, The Netherlands; (M.A.S.); (F.M.E.F.)
- Department of Respiratory Medicine, NUTRIM Research Institute of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, 6200 MD Maastricht, The Netherlands;
| | - Frits M. E. Franssen
- Department of Research and Development, Ciro, Centre of Expertise for Chronic Organ Failure, 6085 NM Horn, The Netherlands; (M.A.S.); (F.M.E.F.)
- Department of Respiratory Medicine, NUTRIM Research Institute of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, 6200 MD Maastricht, The Netherlands;
| |
Collapse
|
7
|
Fosstveit SH, Lindberg K, Bjørnsen T, Sibayan EE, Fjeller JS, Løvold S, Kolnes T, Vårvik FT, Berntsen S, Lohne-Seiler H. Associations between Power Training-Induced Changes in Body Composition and Physical Function in Older Men: A Pre-Test-Post-Test Experimental Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:7070. [PMID: 37998301 PMCID: PMC10671734 DOI: 10.3390/ijerph20227070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/06/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND It is well-established that cross-sectional measurements of poor body composition are associated with impaired physical function and that power training effectively enhances total lean mass and physical function in older adults. However, it is unclear if power training-induced changes in body composition are associated with improved physical function in older adults. AIM The present study investigated associations between body composition and physical function cross-sectionally and with power training-induced changes in older men. METHODS Forty-nine older men (68 ± 5 yrs) completed a 10-week biweekly power training intervention. Body composition was measured using dual-energy X-ray absorptiometry. Physical function was assessed as a composite Z-score combining measures from Sit-to-stand power, Timed up-and-go time, and loaded and unloaded Stair-climbing time (15 steps). Linear and quadratic regression analyses were performed to assess associations between body composition and physical function. RESULTS At baseline, total (R2 = 0.11, p < 0.05) and percentage body fat (R2 = 0.15, p < 0.05) showed a non-linear relationship with physical function. The apex of the quadratic regression for body composition was 21.5% body fat. Furthermore, there was a non-linear relationship between changes in body fat percentage and physical function from pre- to post-intervention (R2 = 0.15, p < 0.05). CONCLUSION The present study's findings indicate that participants with a body composition of ~20% body fat displayed the highest level of physical function at baseline. Furthermore, despite small pre-post changes in body fat, the results indicate that those who either preserved their body fat percentage or experienced minor alterations observed the greatest improvements in physical function.
Collapse
Affiliation(s)
- Sindre H. Fosstveit
- Department of Sport Science and Physical Education, Faculty of Health and Sport Sciences, University of Agder, 4604 Kristiansand, Norway; (K.L.); (T.B.); (E.E.S.); (J.S.F.); (S.L.); (T.K.); (F.T.V.); (S.B.); (H.L.-S.)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Robinson S, Granic A, Cruz-Jentoft AJ, Sayer AA. The role of nutrition in the prevention of sarcopenia. Am J Clin Nutr 2023; 118:852-864. [PMID: 37657521 PMCID: PMC10636259 DOI: 10.1016/j.ajcnut.2023.08.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/06/2023] [Accepted: 08/22/2023] [Indexed: 09/03/2023] Open
Abstract
Sarcopenia is a common skeletal muscle disorder characterized by a loss of muscle mass and impaired muscle function that is associated with poor health outcomes. Although nutrition is considered an important factor in the etiology of sarcopenia, the preventive potential of diet, specifically the extent to which differences in habitual patterns of diet and/or nutrient intakes impact risk of its development, is poorly understood. This narrative review considered research evidence on dietary patterns and nutrient intakes in mid- (<60 y) and young-older (60-70 y) adulthood to evaluate how they relate to age-related changes in muscle mass and function. A key finding was that current evidence on adult diet and sarcopenia risk in older age is limited and fragmented, with different outcomes reported across studies (for example, lean mass, strength) and few reporting links to incident diagnosed sarcopenia. As these outcomes are not interchangeable, it challenges collation of the evidence, leaving many gaps in understanding. There is also limited information about adult (<70 y) diet and few longitudinal studies with repeated dietary assessments to enable definition of cumulative exposures across adulthood. However, despite these limitations, findings from studies of dietary patterns already provide reasonably consistent messages about the benefits of diets of higher quality in earlier adulthood for later physical performance, although whole-diet intervention trials are urgently needed to understand their potential. In comparison, there is little evidence of benefits of higher intakes of individual nutrients in earlier adulthood for later muscle mass and function. Although these gaps need to be addressed in future research, there may already be sufficient data to promote messages about diet quality more widely - that healthier diets of higher quality across adulthood, with known benefits for a range of health outcomes, are also linked to the effective preservation of muscle mass and function.
Collapse
Affiliation(s)
- Sian Robinson
- AGE Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, United Kingdom; NIHR Newcastle Biomedical Research Centre, Newcastle University and Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom.
| | - Antoneta Granic
- AGE Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, United Kingdom; NIHR Newcastle Biomedical Research Centre, Newcastle University and Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | | | - Avan A Sayer
- AGE Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, United Kingdom; NIHR Newcastle Biomedical Research Centre, Newcastle University and Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
9
|
Dong H, Tsai SY. Mitochondrial Properties in Skeletal Muscle Fiber. Cells 2023; 12:2183. [PMID: 37681915 PMCID: PMC10486962 DOI: 10.3390/cells12172183] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/16/2023] [Accepted: 08/24/2023] [Indexed: 09/09/2023] Open
Abstract
Mitochondria are the primary source of energy production and are implicated in a wide range of biological processes in most eukaryotic cells. Skeletal muscle heavily relies on mitochondria for energy supplements. In addition to being a powerhouse, mitochondria evoke many functions in skeletal muscle, including regulating calcium and reactive oxygen species levels. A healthy mitochondria population is necessary for the preservation of skeletal muscle homeostasis, while mitochondria dysregulation is linked to numerous myopathies. In this review, we summarize the recent studies on mitochondria function and quality control in skeletal muscle, focusing mainly on in vivo studies of rodents and human subjects. With an emphasis on the interplay between mitochondrial functions concerning the muscle fiber type-specific phenotypes, we also discuss the effect of aging and exercise on the remodeling of skeletal muscle and mitochondria properties.
Collapse
Affiliation(s)
- Han Dong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore;
| | - Shih-Yin Tsai
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore;
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
| |
Collapse
|
10
|
Rogers DR, Lawlor DJ, Moeller JL. Vitamin C Supplementation and Athletic Performance: A Review. Curr Sports Med Rep 2023; 22:255-259. [PMID: 37417662 DOI: 10.1249/jsr.0000000000001083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
ABSTRACT Many athletes utilize high-dose vitamin C supplementation to optimize athletic performance. A review of research over the past 10 years on the use of vitamin C and athletic performance show mixed results. Fourteen randomized control trials were reviewed. In most studies, vitamin C was used with at least one additional supplement, usually vitamin E. Three studies showed positive outcomes associated with decreased markers of muscle damage after intense exercise with some form of vitamin C supplementation. The remaining 11 articles showed either neutral or negative effects of high dose vitamin C supplementation on muscle damage, physical performance, perceived muscle soreness, and/or adaptations to training. Based on a lack of consistent data and potential for blunted physiologic adaptations to training, long-term high-dosage supplementation with vitamin C is not recommended. Athletes should obtain antioxidants through a nutrient-rich diet instead of through supplement use.
Collapse
|
11
|
Ispoglou T, Wilson O, McCullough D, Aldrich L, Ferentinos P, Lyall G, Stavropoulos-Kalinoglou A, Duckworth L, Brown MA, Sutton L, Potts AJ, Archbold V, Hargreaves J, McKenna J. A Narrative Review of Non-Pharmacological Strategies for Managing Sarcopenia in Older Adults with Cardiovascular and Metabolic Diseases. BIOLOGY 2023; 12:892. [PMID: 37508325 PMCID: PMC10376679 DOI: 10.3390/biology12070892] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 07/30/2023]
Abstract
This narrative review examines the mechanisms underlying the development of cardiovascular disease (CVD) and metabolic diseases (MDs), along with their association with sarcopenia. Furthermore, non-pharmacological interventions to address sarcopenia in patients with these conditions are suggested. The significance of combined training in managing metabolic disease and secondary sarcopenia in type II diabetes mellitus is emphasized. Additionally, the potential benefits of resistance and aerobic training are explored. This review emphasises the role of nutrition in addressing sarcopenia in patients with CVD or MDs, focusing on strategies such as optimising protein intake, promoting plant-based protein sources, incorporating antioxidant-rich foods and omega-3 fatty acids and ensuring sufficient vitamin D levels. Moreover, the potential benefits of targeting gut microbiota through probiotics and prebiotic fibres in sarcopenic individuals are considered. Multidisciplinary approaches that integrate behavioural science are explored to enhance the uptake and sustainability of behaviour-based sarcopenia interventions. Future research should prioritise high-quality randomized controlled trials to refine exercise and nutritional interventions and investigate the incorporation of behavioural science into routine practices. Ultimately, a comprehensive and multifaceted approach is essential to improve health outcomes, well-being and quality of life in older adults with sarcopenia and coexisting cardiovascular and metabolic diseases.
Collapse
Affiliation(s)
| | - Oliver Wilson
- Carnegie School of Sport, Leeds Beckett University, Leeds LS6 3QQ, UK
| | | | - Luke Aldrich
- Carnegie School of Sport, Leeds Beckett University, Leeds LS6 3QQ, UK
| | | | - Gemma Lyall
- Carnegie School of Sport, Leeds Beckett University, Leeds LS6 3QQ, UK
| | | | - Lauren Duckworth
- Carnegie School of Sport, Leeds Beckett University, Leeds LS6 3QQ, UK
| | - Meghan A Brown
- Carnegie School of Sport, Leeds Beckett University, Leeds LS6 3QQ, UK
| | - Louise Sutton
- Carnegie School of Sport, Leeds Beckett University, Leeds LS6 3QQ, UK
| | - Alexandra J Potts
- Carnegie School of Sport, Leeds Beckett University, Leeds LS6 3QQ, UK
| | - Victoria Archbold
- Carnegie School of Sport, Leeds Beckett University, Leeds LS6 3QQ, UK
| | - Jackie Hargreaves
- Carnegie School of Sport, Leeds Beckett University, Leeds LS6 3QQ, UK
| | - Jim McKenna
- Carnegie School of Sport, Leeds Beckett University, Leeds LS6 3QQ, UK
| |
Collapse
|
12
|
Kim J. Effect of high-dose vitamin C and E supplementation on muscle recovery and training adaptation: a mini review. Phys Act Nutr 2023; 27:8-12. [PMID: 37583066 PMCID: PMC10440181 DOI: 10.20463/pan.2023.0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 08/17/2023] Open
Abstract
PURPOSE This review aimed to investigate the effects of high-dose vitamins C and E supplementation combined with acute or chronic exercise on muscle recovery and training adaptation. METHODS We used PubMed, Web of Science, and Wiley Online Library databases to perform a literature search based on the keywords 'vitamin C, vitamin E, antioxidants, muscle recovery, training adaptation, and oxidative stress'. RESULTS Vitamin C or E supplementation has been reported to contribute to a reduction in oxidative stress and muscle damage; however, there is currently inadequate evidence of their positive effects on muscle recovery. Long-term vitamin C or E supplementation can have negative effects on physiological phenomena required for training adaptation, such as strength, muscle hypertrophy, and endurance. Numerous studies emphasized that an adequate diet consisting of fruits and vegetables is a more appropriate way of consuming antioxidants than supplementation. CONCLUSION The effects of high-dose vitamin C and E supplementation on post-exercise muscle recovery remain unclear and ambiguous, although there is evidence of potential negative effects on training adaptation.
Collapse
Affiliation(s)
- Jooyoung Kim
- Department of Health Care Exercise, Seowon University, Cheongju, Republic of Korea
| |
Collapse
|
13
|
Antioxidants Supplementation During Exercise: Friends or Enemies for Cardiovascular Homeostasis? J Cardiovasc Transl Res 2023; 16:51-62. [PMID: 35921051 DOI: 10.1007/s12265-022-10297-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/23/2022] [Indexed: 10/16/2022]
Abstract
Exercise is a preferred strategy for improving cardiac function, especially for patients with cardiovascular diseases. Increasing evidence indicates that oxidative stress is involved in exercise-induced cardioprotection, while the underlying mechanism remains unclear. Furthermore, the effect of antioxidant supplementation during or post-exercise still exists despite divergences. To explore the effect of oxidative stress and antioxidant supplementation on cardiovascular homeostasis during or post-exercise, we take insights into the progress of exercise-induced oxidative stress, antioxidant supplementation, and cardiovascular homeostasis. In particular, antioxidants such as vitamin C or E, gamma-oryzanol, and other natural antioxidants are discussed concerning regulating exercise-associated oxidative stress. Additionally, our present study reviewed and discussed a meta-analysis of antioxidant supplementation during exercise. Overall, we take an insight into the essential biological adaptations in response to exercise and the effects of antioxidant supplementation on cardiac function, which aid us in giving recommendations on antioxidant supplementation for exercisers and exercised people. A better understanding of these issues will broaden our knowledge of exercise physiology.
Collapse
|
14
|
Martínez-Ferrán M, Berlanga LA, Barcelo-Guido O, Matos-Duarte M, Vicente-Campos D, Sánchez-Jorge S, Romero-Morales C, Munguía-Izquierdo D, Pareja-Galeano H. Antioxidant vitamin supplementation on muscle adaptations to resistance training: A double-blind, randomized controlled trial. Nutrition 2023; 105:111848. [PMID: 36283241 DOI: 10.1016/j.nut.2022.111848] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/05/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022]
Abstract
OBJECTIVES The aim of this study was to examine whether antioxidant vitamin supplementation with vitamin C (VitC) and vitamin E (VitE) affects the hypertrophic and functional adaptations to resistance training in trained men. METHODS This was a double-blind, randomized controlled trial in which participants were supplemented daily with VitC and VitE ( n = 12) or placebo ( n = 11) while completing a 10-wk resistance training program accompanied by a dietary intervention (300 kcal surplus and adequate protein intake) designed to optimize hypertrophy. Body composition (dual-energy x-ray absorptiometry), handgrip strength, and one-repetition maximum (1-RM), maximal force (F0), velocity (V0), and power (Pmax) were measured in bench press (BP) and squat (SQ) tests conducted before and after the intervention. To detect between-group differences, multiple-mixed analysis of variance, standardized differences, and qualitative differences were estimated. Relative changes within each group were assessed using a paired Student's t test. RESULTS In both groups, similar improvements were produced in BP 1-RM , SQ 1-RM SQ, and BP F0 (P < 0.05) after the resistance training program. A small effect size was observed for BP 1-RM (d = 0.53), BP F0 (d = 0.48), and SQ 1-RM (d = -0.39), but not for SQ F0 (d = 0.03). Dominant handgrip strength was significantly increased only in the placebo group (P < 0.05). According to body composition data, a significant increase was produced in upper body fat-free mass soft tissue (FFMST; P < 0.05) in the placebo group, whereas neither total nor segmental FFMST was increased in the vitamin group. Small intervention effect sizes were observed for upper body FFSMT (d = 0.32), non-dominant and dominant leg FFMST (d = -0.39; d = -0.42). Although a significant increase in total body fat was observed in both groups (P < 0.05) only the placebo group showed an increase in visceral adipose tissue (P < 0.05), showing a substantial intervention effect (d = 0.85). CONCLUSIONS The data indicated that, although VitC/VitE supplementation seemed to blunt upper body strength and hypertrophy adaptations to resistance training, it could also mitigate gains in visceral adipose tissue elicited by an energy surplus.
Collapse
Affiliation(s)
- María Martínez-Ferrán
- Faculty of Sports Sciences, Universidad Europea de Madrid, Madrid, Spain; Faculty of Health Sciences, Universidad Isabel I, Burgos, Spain.
| | - Luis A Berlanga
- Faculty of Health Sciences, Universidad Francisco de Vitoria, Madrid, Spain
| | - Olga Barcelo-Guido
- Faculty of Sports Sciences, Universidad Europea de Madrid, Madrid, Spain
| | | | | | | | | | - Diego Munguía-Izquierdo
- Physical Performance and Sports Research Center, Department of Sports and Computer Science, Section of Physical Education and Sports, Faculty of Sport Sciences, Universidad Pablo de Olavide, Sevilla, Spain
| | - Helios Pareja-Galeano
- Department of Physical Education, Sport and Human Movement, Universidad Autónoma de Madrid, Spain
| |
Collapse
|
15
|
Żychowska M, Sadowska-Krępa E, Damiani E, Tiano L, Ziemann E, Nowak-Zaleska A, Lipińska P, Piotrowska A, Czerwińska-Ledwig O, Pilch W, Antosiewicz J. Differences in the Pro/Antioxidative Status and Cellular Stress Response in Elderly Women after 6 Weeks of Exercise Training Supported by 1000 mg of Vitamin C Supplementation. Biomedicines 2022; 10:biomedicines10102641. [PMID: 36289902 PMCID: PMC9599586 DOI: 10.3390/biomedicines10102641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/16/2022] [Accepted: 10/19/2022] [Indexed: 11/17/2022] Open
Abstract
Vitamin C supplementation and exercise influence pro/antioxidative status and the cellular stress response. We tested the effects of exercise training for 6 weeks, supported by 1000 mg of vitamin C supplementation in elderly women. Thirty-six women were divided into two groups: a control group (CON) (n = 18, age 69.4 ± 6.4 years, 70.4 ±10.4 kg body mass) and a supplemented group (SUPP) (n = 18, aged 67.7 ± 5.6 years, body mass 71.46 ± 5.39 kg). Blood samples were taken twice (at baseline and 24 h after the whole period of training), in order to determine vitamin C concentration, the total oxidative status/capacity (TOS/TOC), total antioxidant status/capacity (TAS/TAC), and gene expression associated with cellular stress response: encoding heat shock factor (HSF1), heat shock protein 70 (HSPA1A), heat shock protein 27 (HSPB1), and tumor necrosis factor alpha (TNF-α). We observed a significant increase in TOS/TOC, TAS/TAC, and prooxidant/antioxidant balance in the SUPP group. There was a significant decrease in HSPA1A in the CON group and a different tendency in the expression of HSF1 and TNF-α between groups. In conclusion, vitamin C supplementation enhanced the pro-oxidation in elderly women with a normal plasma vitamin C concentration and influenced minor changes in training adaptation gene expression.
Collapse
Affiliation(s)
- Małgorzata Żychowska
- Department of Biological Foundations of Physical Culture, Kazimierz Wielki University, 85-091 Bydgoszcz, Poland
- Department of Nature Sciences, Gdansk University of Physical Education and Sport, 80-336 Gdansk, Poland
- Correspondence: (M.Ż.); (J.A.); Tel.: +48-88-155-5337 (M.Ż.)
| | - Ewa Sadowska-Krępa
- Institute of Sport Sciences, Jerzy Kukuczka Academy of Physical Education, 40-065 Katowice, Poland
| | - Elisabetta Damiani
- Department of Life and Environmental Sciences, Marche Polytechnic University, 60121 Ancona, Italy
| | - Luca Tiano
- Department of Life and Environmental Sciences, Marche Polytechnic University, 60121 Ancona, Italy
| | - Ewa Ziemann
- Department of Athletics, Strength and Conditioning, Poznan University of Physical Education, 61-871 Poznan, Poland
| | - Alicja Nowak-Zaleska
- Department of Biological Foundations of Physical Culture, Kazimierz Wielki University, 85-091 Bydgoszcz, Poland
| | - Patrycja Lipińska
- Department of Biological Foundations of Physical Culture, Kazimierz Wielki University, 85-091 Bydgoszcz, Poland
| | - Anna Piotrowska
- Institute of Basics Sciences, Faculty of Physiotherapy, University of Physical Education, 31-571 Kraków, Poland
| | - Olga Czerwińska-Ledwig
- Institute of Basics Sciences, Faculty of Physiotherapy, University of Physical Education, 31-571 Kraków, Poland
| | - Wanda Pilch
- Institute of Basics Sciences, Faculty of Physiotherapy, University of Physical Education, 31-571 Kraków, Poland
| | - Jędrzej Antosiewicz
- Department of Bioenergetics and Exercise Physiology, Medical University of Gdansk, 80-210 Gdansk, Poland
- Correspondence: (M.Ż.); (J.A.); Tel.: +48-88-155-5337 (M.Ż.)
| |
Collapse
|
16
|
Li S, Fasipe B, Laher I. Potential harms of supplementation with high doses of antioxidants in athletes. J Exerc Sci Fit 2022; 20:269-275. [PMID: 35812825 PMCID: PMC9241084 DOI: 10.1016/j.jesf.2022.06.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 05/31/2022] [Accepted: 06/05/2022] [Indexed: 12/14/2022] Open
Affiliation(s)
| | | | - Ismail Laher
- University of British Columbia, Canada
- Corresponding author.
| |
Collapse
|
17
|
Besora-Moreno M, E L, R-M V, L T, A P, R S. Antioxidant-rich foods, antioxidant supplements, and sarcopenia in old-young adults ≥55 years old: A systematic review and meta-analysis of observational studies and randomized controlled trials. Clin Nutr 2022; 41:2308-2324. [DOI: 10.1016/j.clnu.2022.07.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 07/18/2022] [Accepted: 07/26/2022] [Indexed: 11/30/2022]
|
18
|
Nutritional and Nutrition-Related Biomarkers as Prognostic Factors of Sarcopenia, and Their Role in Disease Progression. Diseases 2022; 10:diseases10030042. [PMID: 35892736 PMCID: PMC9326750 DOI: 10.3390/diseases10030042] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 12/25/2022] Open
Abstract
Due to the multifactorial pathogenesis of sarcopenia, it is crucial to identify biomarkers that are risk factors for sarcopenia, and which therefore have a prognostic function. Aim: This narrative review aims to define a set of biomarkers associated with nutrition and sarcopenia. These biomarkers could contribute to individualized monitoring and enable preventive and therapeutic methods. Methods: Two electronic databases, PubMed and Google Scholar, were used. The search strategy was based on a controlled vocabulary (MeSH) and includes studies published up to February 2022. Discussion: Higher levels of serum uric acid are associated with higher handgrip strength and better muscle function in elderly people and, thus, may slow the progression of sarcopenia. Leptin, an adipokine secreted by adipose tissue, promotes the production of pro-inflammatory cytokines, which in turn lead to sarcopenia. This makes leptin a significant indirect biomarker for physical disability and sarcopenic obesity. Additionally, creatinine is a reliable biomarker for muscle mass status because of its easy accessibility and cost-effectiveness. Vitamin D status acts as a useful biomarker for predicting total mortality, hip fractures, early death, and the development of sarcopenia. Therefore, there is an increasing interest in dietary antioxidants and their effects on age-related losses of muscle mass and function. On the other hand, 3-Methylhistidine is a valuable biomarker for detecting increased muscle catabolism, as it is excreted through urine during muscle degradation. In addition, IGF-1, whose concentration in plasma is stimulated by food intake, is associated with the loss of skeletal muscle mass, which probably plays a crucial role in the progression of sarcopenia. Conclusions: Many nutritional biomarkers were found to be associated with sarcopenia, and can therefore be used as prognostic indexes and risk factors. Nutrition plays an important role in the prevention and management of sarcopenia, affecting muscle mass, strength, and function in elderly people.
Collapse
|
19
|
Fovet T, Guilhot C, Delobel P, Chopard A, Py G, Brioche T. Ergothioneine Improves Aerobic Performance Without Any Negative Effect on Early Muscle Recovery Signaling in Response to Acute Exercise. Front Physiol 2022; 13:834597. [PMID: 35222093 PMCID: PMC8864143 DOI: 10.3389/fphys.2022.834597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/19/2022] [Indexed: 11/14/2022] Open
Abstract
Physical activity is now recognized as an essential element of healthy lifestyles. However, intensive and repeated exercise practice produces a high level of stress that must be managed, particularly oxidative damage and inflammation. Many studies investigated the effect of antioxidants, but reported only few positive effects, or even muscle recovery impairment. Secondary antioxidants are frequently highlighted as a way to optimize these interactions. Ergothioneine is a potential nutritional supplement and a secondary antioxidant that activates the cellular NRF2 pathway, leading to antioxidant response gene activation. Here, we hypothesized that ergothioneine could improve performance during aerobic exercise up to exhaustion and reduce exercise-related stress without impairing early muscle recovery signaling. To test this hypothesis, 5-month-old C56B6J female mice were divided in two groups matched for maximal aerobic speed (MAS): control group (Ctrl; n = 9) and group supplemented with 70 mg ergothioneine/kg/day (ET; n = 9). After 1 week of supplementation (or not), mice performed a maximum time-to-exhaustion test by running on a treadmill at 70% of their MAS, and gastrocnemius and soleus muscles were collected 2 h after exercise. Time to exhaustion was longer in the ET than Ctrl group (+41.22%, p < 0.01). Two hours after exercise, the ET group showed higher activation of protein synthesis and satellite cells, despite their longer effort. Conversely, expression in muscles of metabolic stress and inflammation markers was decreased, as well as oxidative damage markers in the ET group. Moreover, ergothioneine did not seem to impair mitochondrial recovery. These results suggest an important effect of ergothioneine on time-to-exhaustion performance and improved muscle recovery after exercise.
Collapse
Affiliation(s)
- Théo Fovet
- DMEM, INRAE, Montpellier University, Montpellier, France
| | | | - Pierre Delobel
- DMEM, INRAE, Montpellier University, Montpellier, France
| | - Angèle Chopard
- DMEM, INRAE, Montpellier University, Montpellier, France
| | - Guillaume Py
- DMEM, INRAE, Montpellier University, Montpellier, France
| | - Thomas Brioche
- DMEM, INRAE, Montpellier University, Montpellier, France
| |
Collapse
|
20
|
Wang X, Shelton SD, Bordieanu B, Frank AR, Yi Y, Venigalla SSK, Gu Z, Lenser NP, Glogauer M, Chandel NS, Zhao H, Zhao Z, McFadden DG, Mishra P. Scinderin promotes fusion of electron transport chain dysfunctional muscle stem cells with myofibers. NATURE AGING 2022; 2:155-169. [PMID: 35342888 PMCID: PMC8954567 DOI: 10.1038/s43587-021-00164-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
Muscle stem cells (MuSCs) experience age-associated declines in number and function, accompanied by mitochondrial electron transport chain (ETC) dysfunction and increased reactive oxygen species (ROS). The source of these changes, and how MuSCs respond to mitochondrial dysfunction, is unknown. We report here that in response to mitochondrial ROS, murine MuSCs directly fuse with neighboring myofibers; this phenomenon removes ETC-dysfunctional MuSCs from the stem cell compartment. MuSC-myofiber fusion is dependent on the induction of Scinderin, which promotes formation of actin-dependent protrusions required for membrane fusion. During aging, we find that the declining MuSC population accumulates mutations in the mitochondrial genome, but selects against dysfunctional variants. In the absence of clearance by Scinderin, the decline in MuSC numbers during aging is repressed; however, ETC-dysfunctional MuSCs are retained and can regenerate dysfunctional myofibers. We propose a model in which ETC-dysfunctional MuSCs are removed from the stem cell compartment by fusing with differentiated tissue.
Collapse
Affiliation(s)
- Xun Wang
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Spencer D Shelton
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Bogdan Bordieanu
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Present Address: Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425 USA
| | - Anderson R Frank
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Internal Medicine, Division of Endocrinology, Program in Molecular Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Yating Yi
- Department of Comprehensive Dentistry, College of Dentistry, Texas A&M University, Dallas, TX 75246, USA
- Present address: State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041 China
| | - Siva Sai Krishna Venigalla
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zhimin Gu
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Nicholas P Lenser
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Present address: Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael Glogauer
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Navdeep S Chandel
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Biochemistry & Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Hu Zhao
- Department of Comprehensive Dentistry, College of Dentistry, Texas A&M University, Dallas, TX 75246, USA
- Present address: The Chinese Institute for Brain Research, Beijing, China
| | - Zhiyu Zhao
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - David G McFadden
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Internal Medicine, Division of Endocrinology, Program in Molecular Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Prashant Mishra
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
21
|
Green CL, Lamming DW, Fontana L. Molecular mechanisms of dietary restriction promoting health and longevity. Nat Rev Mol Cell Biol 2022; 23:56-73. [PMID: 34518687 PMCID: PMC8692439 DOI: 10.1038/s41580-021-00411-4] [Citation(s) in RCA: 243] [Impact Index Per Article: 121.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2021] [Indexed: 02/08/2023]
Abstract
Dietary restriction with adequate nutrition is the gold standard for delaying ageing and extending healthspan and lifespan in diverse species, including rodents and non-human primates. In this Review, we discuss the effects of dietary restriction in these mammalian model organisms and discuss accumulating data that suggest that dietary restriction results in many of the same physiological, metabolic and molecular changes responsible for the prevention of multiple ageing-associated diseases in humans. We further discuss how different forms of fasting, protein restriction and specific reductions in the levels of essential amino acids such as methionine and the branched-chain amino acids selectively impact the activity of AKT, FOXO, mTOR, nicotinamide adenine dinucleotide (NAD+), AMP-activated protein kinase (AMPK) and fibroblast growth factor 21 (FGF21), which are key components of some of the most important nutrient-sensing geroprotective signalling pathways that promote healthy longevity.
Collapse
Affiliation(s)
- Cara L Green
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Dudley W Lamming
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Luigi Fontana
- Charles Perkins Center, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.
- Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, NSW, Australia.
- Department of Clinical and Experimental Sciences, Brescia University School of Medicine, Brescia, Italy.
| |
Collapse
|
22
|
Choi M, Kim H, Bae J. Does the combination of resistance training and a nutritional intervention have a synergic effect on muscle mass, strength, and physical function in older adults? A systematic review and meta-analysis. BMC Geriatr 2021; 21:639. [PMID: 34772342 PMCID: PMC8588667 DOI: 10.1186/s12877-021-02491-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 09/17/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Health-promoting interventions are important for preventing frailty and sarcopenia in older adults. However, there is limited evidence that nutritional interventions yield additional effects when combined with resistance training. This systematic review and meta-analysis aimed to compare the effectiveness of nutritional interventions with resistance training and that of resistance training alone. METHODS Randomized controlled trials published in peer-reviewed journals prior to July 2020 were retrieved from databases and other sources. The articles were screened according to the inclusion and exclusion criteria. The methodological quality of the included studies was assessed using Cochrane's risk of bias tool 2. A meta-analysis was performed using the RevMan 5.4 program and STATA 16 program. RESULTS A total of 22 studies were included in the meta-analysis. The results of the meta-analysis showed no significant differences between groups in muscle mass, muscle strength, or physical functional performance. In the subgroup analysis regarding the types of nutritional interventions, creatine showed significant effects on lean body mass (n = 4, MD 2.61, 95% CI 0.51 to 4.72). Regarding the other subgroup analyses, there were no significant differences in appendicular skeletal muscle mass (p = .43), hand grip strength (p = .73), knee extension strength (p = .09), chair stand test results (p = .31), or timed up-and-go test results (p = .31). In the meta-regression, moderators such as the mean age of subjects and duration of interventions were not associated with outcome variables. CONCLUSIONS This meta-analysis showed that nutritional interventions with resistance training have no additional effect on body composition, muscle strength, or physical function. Only creatine showed synergistic effects with resistance training on muscle mass. TRIAL REGISTRATION CRD42021224843 .
Collapse
Affiliation(s)
- MoonKi Choi
- College of Nursing, Kangwon National University, Chuncheon-si, Gangwon-do, Republic of Korea, 24341
| | - Hayeon Kim
- Seoul Women's College of Nursing, Ganhodae-ro 38, Seodaemun-gu, Seoul, Republic of Korea, 03617
| | - Juyeon Bae
- Department of Nursing, Yeoju Institute of Technology, Sejong-ro 338, Yeoju-si, Gyeonggi-do, Republic of Korea, 12652.
| |
Collapse
|
23
|
Jayawardena TU, Kim SY, Jeon YJ. Sarcopenia; functional concerns, molecular mechanisms involved, and seafood as a nutritional intervention - review article. Crit Rev Food Sci Nutr 2021; 63:1983-2003. [PMID: 34459311 DOI: 10.1080/10408398.2021.1969889] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The fundamental basis for the human function is provided by skeletal muscle. Advancing age causes selective fiber atrophy, motor unit loss, and hybrid fiber formation resulting in hampered mass and strength, thus referred to as sarcopenia. Influence on the loss of independence of aged adults, contribute toward inclined healthcare costs conveys the injurious impact. The current understating of age-related skeletal muscle changes are addressed in this review, and further discusses mechanisms regulating protein turnover, although they do not completely define the process yet. Moreover, the reduced capacity of muscle regeneration due to impairment of satellite cell activation and proliferation with neuronal, immunological, hormonal factors were brought into the light of attention. Nevertheless, complete understating of sarcopenia requires disentangling it from disuse and disease. Nutritional intervention is considered a potentially preventable factor contributing to sarcopenia. Seafood is a crucial player in the fight against hunger and malnutrition, where it consists of macro and micronutrients. Hence, the review shed light on seafood as a nutritional intrusion in the treatment and prevention of sarcopenia. Understanding multiple factors will provide therapeutic targets in the prevention, treatment, and overcoming adverse effects of sarcopenia.
Collapse
Affiliation(s)
- Thilina U Jayawardena
- Department of Marine Life Sciences, Jeju National University, Jeju, Republic of Korea
| | - Seo-Young Kim
- Division of Practical Application, Honam National Institute of Biological Resources, Mokpo-si, Korea
| | - You-Jin Jeon
- Department of Marine Life Sciences, Jeju National University, Jeju, Republic of Korea.,Marine Science Institute, Jeju National University, Jeju, Jeju Self-Governing Province, Republic of Korea
| |
Collapse
|
24
|
Abstract
Sarcopenia, a skeletal muscle disorder that is characterised by loss of muscle strength and mass, is common in older populations and associated with poorer health outcomes. Although the individual and economic costs of sarcopenia are widely recognised, current understanding of its pathophysiology is incomplete, limiting efforts to translate research evidence into effective preventive and treatment strategies. While nutrition is a key field of sarcopenia research, the role of differences in habitual diets, and the effectiveness of dietary change as a prevention or treatment strategy, is uncertain. There is a growing evidence base that links low micronutrient intakes to sarcopenia risk and/or its components (low muscle strength and mass, impaired physical performance), although there remain many gaps in understanding. There is some consistency in findings across studies highlighting potential roles for antioxidant nutrients, B vitamins and magnesium; however, the evidence is largely observational and from cross-sectional studies, often describing associations with different muscle outcomes. As low intakes of some micronutrients are common in older populations, there is a need for new research, particularly from well-characterised prospective cohorts, to improve the understanding of their role and importance in the aetiology of sarcopenia and to generate the evidence needed to inform dietary guidelines to promote muscle health.
Collapse
|
25
|
Wangdi JT, Sabou V, O’Leary MF, Kelly VG, Bowtell JL. Use, Practices and Attitudes of Elite and Sub-Elite Athletes towards Tart Cherry Supplementation. Sports (Basel) 2021; 9:sports9040049. [PMID: 33807198 PMCID: PMC8066185 DOI: 10.3390/sports9040049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/18/2021] [Accepted: 03/29/2021] [Indexed: 11/16/2022] Open
Abstract
Tart cherry (TC) supplementation can improve exercise recovery and performance; and may also improve sleep duration and quality. This study investigated the use and knowledge of TC supplementation by athletes of all competitive levels. Eighty participants (52.5% elite (international, national, professional), 47.5% sub-elite (semi-professional, state/regional, county level, club level, recreational)) completed an online questionnaire investigating their attitudes towards and use of TC supplementation. Overall, 22.6% of participants were using or had previously used TC supplements, and 12.5% of participants planned to used TC supplements. Improved recovery (71.4%), sleep (32.1%) and immunity and general health (32.1%) were the most frequently indicated goals by respondents using TC supplements. In total, 32.1% of respondents were supplemented with TC chronically, 39.3% acutely and 28.6% used a combination of chronic and acute supplementation. The majority of those employing TC supplementation chronically used TC either over 2-3 days (37.0%) or continuously (37.0%). The most popular TC pre- and post-loading period was one day (34.3% and 41.5%, respectively). There were no significant differences between elite and sub-elite athletes in any parameters assessed (p > 0.05). TC supplementation is not widely used by the athletes surveyed, and athletes using TC supplements showed poor awareness of an evidence-led dosing strategy, regardless of competitive level.
Collapse
Affiliation(s)
- Jimmy T. Wangdi
- School of Human Movement and Nutrition Sciences, University of Queensland, Brisbane, QLD 4072, Australia; (J.T.W.); (V.G.K.)
- Sport and Health Sciences, St Luke’s Campus, University of Exeter, Heavitree Road, Exeter EX1 2LU, UK; (V.S.); (M.F.O.)
| | - Vlad Sabou
- Sport and Health Sciences, St Luke’s Campus, University of Exeter, Heavitree Road, Exeter EX1 2LU, UK; (V.S.); (M.F.O.)
| | - Mary F. O’Leary
- Sport and Health Sciences, St Luke’s Campus, University of Exeter, Heavitree Road, Exeter EX1 2LU, UK; (V.S.); (M.F.O.)
| | - Vincent G. Kelly
- School of Human Movement and Nutrition Sciences, University of Queensland, Brisbane, QLD 4072, Australia; (J.T.W.); (V.G.K.)
- School of Exercise and Nutrition Sciences, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Joanna L. Bowtell
- Sport and Health Sciences, St Luke’s Campus, University of Exeter, Heavitree Road, Exeter EX1 2LU, UK; (V.S.); (M.F.O.)
- Correspondence:
| |
Collapse
|
26
|
Bouviere J, Fortunato RS, Dupuy C, Werneck-de-Castro JP, Carvalho DP, Louzada RA. Exercise-Stimulated ROS Sensitive Signaling Pathways in Skeletal Muscle. Antioxidants (Basel) 2021; 10:antiox10040537. [PMID: 33808211 PMCID: PMC8066165 DOI: 10.3390/antiox10040537] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/16/2021] [Accepted: 03/26/2021] [Indexed: 12/11/2022] Open
Abstract
Physical exercise represents a major challenge to whole-body homeostasis, provoking acute and adaptative responses at the cellular and systemic levels. Different sources of reactive oxygen species (ROS) have been described in skeletal muscle (e.g., NADPH oxidases, xanthine oxidase, and mitochondria) and are closely related to the physiological changes induced by physical exercise through the modulation of several signaling pathways. Many signaling pathways that are regulated by exercise-induced ROS generation, such as adenosine monophosphate-activated protein kinase (AMPK), mitogen activated protein kinase (MAPK), nuclear respiratory factor2 (NRF2), and PGC-1α are involved in skeletal muscle responses to physical exercise, such as increased glucose uptake, mitochondriogenesis, and hypertrophy, among others. Most of these adaptations are blunted by antioxidants, revealing the crucial role played by ROS during and after physical exercise. When ROS generation is either insufficient or exacerbated, ROS-mediated signaling is disrupted, as well as physical exercise adaptations. Thus, an understanding the limit between "ROS that can promote beneficial effects" and "ROS that can promote harmful effects" is a challenging question in exercise biology. The identification of new mediators that cause reductive stress and thereby disrupt exercise-stimulated ROS signaling is a trending on this topic and are covered in this current review.
Collapse
Affiliation(s)
- Jessica Bouviere
- Institut of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (J.B.); (R.S.F.); (D.P.C.)
| | - Rodrigo S. Fortunato
- Institut of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (J.B.); (R.S.F.); (D.P.C.)
| | - Corinne Dupuy
- Université Paris-Saclay, UMR 9019CNRS, Gustave Roussy, 94800 Villejuif, France;
| | - Joao Pedro Werneck-de-Castro
- Division of Endocrinology, Diabetes and Metabolism, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
| | - Denise P. Carvalho
- Institut of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (J.B.); (R.S.F.); (D.P.C.)
| | - Ruy A. Louzada
- Institut of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (J.B.); (R.S.F.); (D.P.C.)
- Université Paris-Saclay, UMR 9019CNRS, Gustave Roussy, 94800 Villejuif, France;
- Division of Endocrinology, Diabetes and Metabolism, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
- Correspondence:
| |
Collapse
|
27
|
Flavonoid Containing Polyphenol Consumption and Recovery from Exercise-Induced Muscle Damage: A Systematic Review and Meta-Analysis. Sports Med 2021; 51:1293-1316. [PMID: 33687663 DOI: 10.1007/s40279-021-01440-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Flavonoid polyphenols are bioactive phytochemicals found in fruits and teas among other sources. It has been postulated that foods and supplements containing flavonoid polyphenols may enhance recovery from exercise-induced muscle damage (EIMD) through upregulation of cell signalling stress response pathways, particularly the nuclear factor erythroid 2-related factor 2 (NRF2) pathway. OBJECTIVES This study aims to investigate the ability of polyphenol treatments containing flavonoids to enhance recovery of skeletal muscle strength, soreness and creatine kinase post EIMD. METHODS Medline (Pubmed), Embase and SPORTdiscus were searched from inception to August 2020 for randomised placebo-controlled trials which assessed the impact of 6 or more days of flavonoid containing polyphenol ingestion on skeletal muscle recovery in the 96-h period following a single bout of EIMD. A total of 2983 studies were screened in duplicate resulting in 26 studies included for analysis. All meta-analyses were undertaken using a random-effects model. RESULTS The pooled results of these meta-analyses show flavonoid polyphenol treatments can enhance recovery of muscle strength by 7.14% (95% CI [5.50-8.78], P < 0.00001) and reduce muscle soreness by 4.12% (95% CI [- 5.82 to - 2.41] P = 0.00001), no change in the recovery of creatine kinase concentrations was observed. CONCLUSION These results indicate that ingestion of polyphenol treatments which contain flavonoids has significant potential to improve recovery of muscular strength and reduce muscle soreness in the 4-day period post EIMD. However, the characterisation of polyphenol dosage and composition of study treatments should be prioritised in future research to facilitate the development of specific guidelines for the inclusion of flavonoid-rich foods in the diet of athletes and active individuals.
Collapse
|
28
|
de Barcellos LAM, Gonçalves WA, Esteves de Oliveira MP, Guimarães JB, Queiroz-Junior CM, de Resende CB, Russo RC, Coimbra CC, Silva AN, Teixeira MM, Rezende BM, Pinho V. Effect of Physical Training on Exercise-Induced Inflammation and Performance in Mice. Front Cell Dev Biol 2021; 9:625680. [PMID: 33614655 PMCID: PMC7891665 DOI: 10.3389/fcell.2021.625680] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/18/2021] [Indexed: 12/20/2022] Open
Abstract
Acute exercise increases the amount of circulating inflammatory cells and cytokines to maintain physiological homeostasis. However, it remains unclear how physical training regulates exercise-induced inflammation and performance. Here, we demonstrate that acute high intensity exercise promotes an inflammatory profile characterized by increased blood IL-6 levels, neutrophil migratory capacity, and leukocyte recruitment to skeletal muscle vessels. Moreover, we found that physical training amplified leukocyte-endothelial cell interaction induced by acute exercise in skeletal muscle vessels and diminished exercise-induced inflammation in skeletal muscle tissue. Furthermore, we verified that disruption of the gp-91 subunit of NADPH-oxidase inhibited exercise-induced leukocyte recruitment on skeletal muscle after training with enhanced exercise time until fatigue. In conclusion, the training was related to physical improvement and immune adaptations. Moreover, reactive oxygen species (ROS) could be related to mechanisms to limit aerobic performance and its absence decreases the inflammatory response elicited by exercise after training.
Collapse
Affiliation(s)
| | - William Antonio Gonçalves
- Departamento de Morfologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Marcos Paulo Esteves de Oliveira
- Departamento de Morfologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Juliana Bohnen Guimarães
- Departamento de Ciências do Movimento Humano, Universidade do Estado de Minas Gerais (UEMG) - Unidade Ibirité, Ibirité, Brazil
| | - Celso Martins Queiroz-Junior
- Departamento de Morfologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | | | - Remo Castro Russo
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Cândido Celso Coimbra
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Albená Nunes Silva
- Laboratório de Inflamação e Imunologia do Exercício, Departamento de Educação Física, Escola de Educação Física da Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Mauro Martins Teixeira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Barbara Maximino Rezende
- Departamento de Enfermagem Básica, Escola de Enfermagem, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Vanessa Pinho
- Departamento de Morfologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| |
Collapse
|
29
|
The Role of Vitamin C in Two Distinct Physiological States: Physical Activity and Sleep. Nutrients 2020; 12:nu12123908. [PMID: 33371359 PMCID: PMC7767325 DOI: 10.3390/nu12123908] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/11/2020] [Accepted: 12/16/2020] [Indexed: 12/26/2022] Open
Abstract
This paper is a literature overview of the complex relationship between vitamin C and two opposing physiological states, physical activity and sleep. The evidence suggests a clinically important bidirectional association between these two phenomena mediated by different physiological mechanisms. With this in mind, and knowing that both states share a connection with oxidative stress, we discuss the existing body of evidence to answer the question of whether vitamin C supplementation can be beneficial in the context of sleep health and key aspects of physical activity, such as performance, metabolic changes, and antioxidant function. We analyze the effect of ascorbic acid on the main sleep components, sleep duration and quality, focusing on the most common disorders: insomnia, obstructive sleep apnea, and restless legs syndrome. Deeper understanding of those interactions has implications for both public health and clinical practice.
Collapse
|
30
|
Papanikolaou K, Veskoukis AS, Draganidis D, Baloyiannis I, Deli CK, Poulios A, Jamurtas AZ, Fatouros IG. Redox-dependent regulation of satellite cells following aseptic muscle trauma: Implications for sports performance and nutrition. Free Radic Biol Med 2020; 161:125-138. [PMID: 33039652 DOI: 10.1016/j.freeradbiomed.2020.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/26/2020] [Accepted: 10/01/2020] [Indexed: 12/21/2022]
Abstract
Skeletal muscle satellite cells (SCs) are indispensable for tissue regeneration, remodeling and growth. Following myotrauma, SCs are activated, and assist in tissue repair. Exercise-induced muscle damage (EIMD) is characterized by a pronounced inflammatory response and the production of reactive oxygen species (ROS). Experimental evidence suggests that SCs kinetics (the propagation from a quiescent to an activated/proliferative state) following EIMD is redox-dependent and interconnected with changes in the SCs microenvironment (niche). Animal studies have shown that following aseptic myotrauma, antioxidant and/or anti-inflammatory supplementation leads to an improved recovery and skeletal muscle regeneration through enhanced SCs kinetics, suggesting a redox-dependent molecular mechanism. Although evidence suggests that antioxidant/anti-inflammatory compounds may prevent performance deterioration and enhance recovery, there is lack of information regarding the redox-dependent regulation of SCs responses following EIMD in humans. In this review, SCs kinetics following aseptic myotrauma, as well as the intrinsic redox-sensitive molecular mechanisms responsible for SCs responses are discussed. The role of redox status on SCs function should be further investigated in the future with human clinical trials in an attempt to elucidate the molecular pathways responsible for muscle recovery and provide information for potential nutritional strategies aiming at performance recovery.
Collapse
Affiliation(s)
- Konstantinos Papanikolaou
- Department of Physical Education and Sport Science, University of Thessaly, Karies, Trikala, 42132, Greece
| | - Aristidis S Veskoukis
- Department of Nutrition and Dietetics, University of Thessaly, Argonafton 1, 42132, Trikala, Greece; Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500, Larissa, Greece
| | - Dimitrios Draganidis
- Department of Physical Education and Sport Science, University of Thessaly, Karies, Trikala, 42132, Greece
| | - Ioannis Baloyiannis
- Department of Surgery, University Hospital of Larissa, Mezourlo, 41110, Larissa, Greece
| | - Chariklia K Deli
- Department of Physical Education and Sport Science, University of Thessaly, Karies, Trikala, 42132, Greece
| | - Athanasios Poulios
- Department of Physical Education and Sport Science, University of Thessaly, Karies, Trikala, 42132, Greece
| | - Athanasios Z Jamurtas
- Department of Physical Education and Sport Science, University of Thessaly, Karies, Trikala, 42132, Greece
| | - Ioannis G Fatouros
- Department of Physical Education and Sport Science, University of Thessaly, Karies, Trikala, 42132, Greece.
| |
Collapse
|
31
|
Higgins MR, Izadi A, Kaviani M. Antioxidants and Exercise Performance: With a Focus on Vitamin E and C Supplementation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E8452. [PMID: 33203106 PMCID: PMC7697466 DOI: 10.3390/ijerph17228452] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 02/08/2023]
Abstract
Antioxidant supplementation, including vitamin E and C supplementation, has recently received recognition among athletes as a possible method for enhancing athletic performance. Increased oxidative stress during exercise results in the production of free radicals, which leads to muscle damage, fatigue, and impaired performance. Despite their negative effects on performance, free radicals may act as signaling molecules enhancing protection against greater physical stress. Current evidence suggests that antioxidant supplementation may impair these adaptations. Apart from athletes training at altitude and those looking for an immediate, short-term performance enhancement, supplementation with vitamin E does not appear to be beneficial. Moreover, the effectiveness of vitamin E and C alone and/or combined on muscle mass and strength have been inconsistent. Given that antioxidant supplements (e.g., vitamin E and C) tend to block anabolic signaling pathways, and thus, impair adaptations to resistance training, special caution should be taken with these supplements. It is recommended that athletes consume a diet rich in fruits and vegetables, which provides vitamins, minerals phytochemicals, and other bioactive compounds to meet the recommended intakes of vitamin E and C.
Collapse
Affiliation(s)
- Madalyn Riley Higgins
- Faculty of Pure and Applied Science, School of Nutrition and Dietetics, Acadia University, Wolfville, NS B4P 2R6, Canada;
| | - Azimeh Izadi
- Department of Biochemistry and Diet Therapy, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran;
| | - Mojtaba Kaviani
- Faculty of Pure and Applied Science, School of Nutrition and Dietetics, Acadia University, Wolfville, NS B4P 2R6, Canada;
| |
Collapse
|
32
|
Margaritelis NV, Paschalis V, Theodorou AA, Kyparos A, Nikolaidis MG. Redox basis of exercise physiology. Redox Biol 2020; 35:101499. [PMID: 32192916 PMCID: PMC7284946 DOI: 10.1016/j.redox.2020.101499] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/20/2020] [Accepted: 03/05/2020] [Indexed: 12/15/2022] Open
Abstract
Redox reactions control fundamental processes of human biology. Therefore, it is safe to assume that the responses and adaptations to exercise are, at least in part, mediated by redox reactions. In this review, we are trying to show that redox reactions are the basis of exercise physiology by outlining the redox signaling pathways that regulate four characteristic acute exercise-induced responses (muscle contractile function, glucose uptake, blood flow and bioenergetics) and four chronic exercise-induced adaptations (mitochondrial biogenesis, muscle hypertrophy, angiogenesis and redox homeostasis). Based on our analysis, we argue that redox regulation should be acknowledged as central to exercise physiology.
Collapse
Affiliation(s)
- N V Margaritelis
- Department of Physical Education and Sport Science at Serres, Aristotle University of Thessaloniki, Thessaloniki, Greece; Dialysis Unit, 424 General Military Hospital of Thessaloniki, Thessaloniki, Greece.
| | - V Paschalis
- School of Physical Education and Sport Science, National and Kapodistrian University of Athens, Athens, Greece
| | - A A Theodorou
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus
| | - A Kyparos
- Department of Physical Education and Sport Science at Serres, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - M G Nikolaidis
- Department of Physical Education and Sport Science at Serres, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| |
Collapse
|
33
|
Nutrition and Sarcopenia-What Do We Know? Nutrients 2020; 12:nu12061755. [PMID: 32545408 PMCID: PMC7353446 DOI: 10.3390/nu12061755] [Citation(s) in RCA: 153] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/04/2020] [Accepted: 06/08/2020] [Indexed: 02/06/2023] Open
Abstract
Muscle health is important for the functionality and independence of older adults, and certain nutrients as well as dietary patterns have been shown to offer protective effects against declines in strength and function associated with aging. In this paper, micronutrients, macronutrients, and food groups have been reviewed, along with their studied effects on the prevalence and incidence of sarcopenia, as well as their ability to preserve muscle mass and optimize physical performance. Randomized controlled trials appear to suggest a critical role for dietary intake of protein in preventing sarcopenia and muscle loss, although the optimal dose and type of protein is unknown. There are some promising data regarding the role of vitamin D and sarcopenia, but it is unclear whether the dose, frequency of dose, or length of treatment impacts the efficacy of vitamin D on improving muscle mass or function. Selenium, magnesium, and omega 3 fatty acids have been studied as supplements in clinical trials and in the diet, and they appear to demonstrate a potential association with physical activity and muscle performance in older individuals. Following the Mediterranean diet and higher consumption of fruits and vegetables have been associated with improved physical performance and protection against muscle wasting, sarcopenia, and frailty.
Collapse
|
34
|
de Lima FD, Battaglini CL, Chaves SN, Ugliara L, Sarandy J, Lima RM, Bottaro M. Effect of strength training and antioxidant supplementation on perceived and performance fatigability in breast cancer survivors: a randomized, double-blinded, placebo-controlled study. Appl Physiol Nutr Metab 2020; 45:1165-1173. [PMID: 32348688 DOI: 10.1139/apnm-2020-0166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This randomized, double-blinded, placebo-controlled study aimed to investigate the effect of strength training (ST) combined with vitamin C and E supplementation on perceived and performance fatigability in breast cancer survivors (BCS). Twenty-five BCS were randomly assigned to 1 of 2 groups: vitamins (VIT; n = 12; 51.0 ± 9.0 years) or placebo (PLA; n = 13; 48.2 ± 8.3 years). Both groups performed a 10-week ST protocol, twice a week. The VIT group was supplemented with vitamins C (500 mg/day) and E (180 mg/day) and the PLA group with polydextrose (1 g/day), once a day after breakfast. At the beginning and at the end of the training period, perceived fatigability was assessed using Multidimensional Fatigue Inventory (MFI)-20 (general fatigue and physical fatigue). Performance fatigability was assessed during 30 maximal isokinetic knee extensions at 120°/s. General fatigue decreased similarly in the VIT (p = 0.004) and PLA (p = 0.011) groups. Physical fatigue decreased similarly in the VIT (p = 0.011) and PLA (p = 0.001) groups. Performance fatigability also decreased similarly in the VIT (p = 0.026) and PLA (p < 0.001) groups. There was no difference between groups at any moment (p > 0.05). In summary, antioxidant supplementation does not add any positive synergistic effect to ST in terms of improving perceived or performance fatigability in BCS. This clinical trial is registered in the Brazilian Clinical Trials Registry, number RBR-843pth (UTN no.: U1111-1222-6511). Novelty ST with maximal repetitions reduces perceived and performance fatigability of BCS. Vitamins C and E supplementation does not add any positive synergistic effect to ST in terms of reducing fatigability in BCS.
Collapse
Affiliation(s)
- Filipe Dinato de Lima
- College of Health Sciences, University of Brasília, Brasília, DF 70910-900, Brazil.,College of Health and Education Sciences, University Center of Brasília, Brasília, DF 70790-075, Brazil
| | - Cláudio L Battaglini
- Department of Exercise and Sport Science and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-8700, USA
| | - Sandro Nobre Chaves
- College of Physical Education, University of Brasília, Brasília, DF 70910-900, Brazil
| | - Lucas Ugliara
- College of Physical Education, University of Brasília, Brasília, DF 70910-900, Brazil
| | - Jonathan Sarandy
- College of Physical Education, University of Brasília, Brasília, DF 70910-900, Brazil
| | - Ricardo Moreno Lima
- College of Physical Education, University of Brasília, Brasília, DF 70910-900, Brazil
| | - Martim Bottaro
- College of Physical Education, University of Brasília, Brasília, DF 70910-900, Brazil
| |
Collapse
|
35
|
Louzada RA, Bouviere J, Matta LP, Werneck-de-Castro JP, Dupuy C, Carvalho DP, Fortunato RS. Redox Signaling in Widespread Health Benefits of Exercise. Antioxid Redox Signal 2020; 33:745-760. [PMID: 32174127 DOI: 10.1089/ars.2019.7949] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Significance: Exercise-induced reactive oxygen species (ROS) production activates multiple intracellular signaling pathways through genomic and nongenomic mechanisms that are responsible for the beneficial effects of exercise in muscle. Beyond the positive effect of exercise on skeletal muscle cells, other tissues such as white and brown adipose, liver, central nervous system, endothelial, heart, and endocrine organ tissues are also responsive to exercise. Recent Advances: Crosstalk between different cells is essential to achieve homeostasis and to promote the benefits of exercise through paracrine or endocrine signaling. This crosstalk can be mediated by different effectors that include the secretion of metabolites of muscle contraction, myokines, and exosomes. During the past 20 years, it has been demonstrated that contracting muscle cells produce and secrete different classes of myokines, which functionally link muscle with nearly all other cell types. Critical Issues: The redox signaling behind this exercise-induced crosstalk is now being decoded. Many of these widespread beneficial effects of exercise require not only a complex ROS-dependent intramuscular signaling cascade but simultaneously, an integrated network with many remote tissues. Future Directions: Strong evidence suggests that the powerful beneficial effect of regular physical activity for preventing (or treating) a large range of disorders might also rely on ROS-mediated signaling. Within a contracting muscle, ROS signaling may control exosomes and myokines secretion. In remote tissues, exercise generates regular and synchronized ROS waves, creating a transient pro-oxidative environment in many cells. These new concepts integrate exercise, ROS-mediated signaling, and the widespread health benefits of exercise.
Collapse
Affiliation(s)
- Ruy A Louzada
- Institut of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Université Paris-Sud, Orsay, UMR 8200 CNRS and Institut Gustave Roussy, Villejuif, France
| | - Jessica Bouviere
- Institut of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leonardo P Matta
- Institut of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Joao Pedro Werneck-de-Castro
- Division of Endocrinology, Diabetes and Metabolism, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Corinne Dupuy
- Université Paris-Sud, Orsay, UMR 8200 CNRS and Institut Gustave Roussy, Villejuif, France
| | - Denise P Carvalho
- Institut of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rodrigo S Fortunato
- Institut of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
36
|
Shally A, McDonagh B. The redox environment and mitochondrial dysfunction in age-related skeletal muscle atrophy. Biogerontology 2020; 21:461-473. [PMID: 32323076 DOI: 10.1007/s10522-020-09879-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/09/2020] [Indexed: 12/12/2022]
Abstract
Medical advancements have extended human life expectancy, which is not always accompanied by an improved quality of life or healthspan. A decline in muscle mass and function is a consequence of ageing and can result in a loss of independence in elderly individuals while increasing their risk of falls. Multiple cellular pathways have been implicated in age-related muscle atrophy, including the contribution of reactive oxygen species (ROS) and disrupted redox signalling. Aberrant levels of ROS disrupts the redox environment in older muscle, potentially disrupting cellular signalling and in some cases blunting the adaptive response to exercise. Age-related muscle atrophy is associated with disrupted mitochondrial content and function, one of the hallmarks of age-related diseases. There is a critical link between abnormal ROS generation and dysfunctional mitochondrial dynamics including mitochondrial biogenesis, fusion and fission. In order to develop effective treatments or preventative strategies, it is important to gain a comprehensive understanding of the mechanistic pathways implicated in age associated loss of muscle.
Collapse
Affiliation(s)
- Alice Shally
- Discipline of Physiology, School of Medicine, National University of Ireland Galway, Galway, Ireland
| | - Brian McDonagh
- Discipline of Physiology, School of Medicine, National University of Ireland Galway, Galway, Ireland.
| |
Collapse
|
37
|
Aas SN, Seynnes O, Benestad HB, Raastad T. Strength training and protein supplementation improve muscle mass, strength, and function in mobility-limited older adults: a randomized controlled trial. Aging Clin Exp Res 2020; 32:605-616. [PMID: 31183750 DOI: 10.1007/s40520-019-01234-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 05/28/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND Adaptation to strength training in very old mobility-limited individuals is not fully characterized. Therefore, the aim of this study was to perform a thorough investigation of the adaptation to a lower body strength training regime in this population, with particular emphasis on the relationship between changes in selected variables. METHODS Twenty-two mobility-limited older men and women (85 ± 6 years) were randomized to either a group performing 30 min of heavy-load strength training three times a week, with daily protein supplementation, for 10 weeks (ST), or a control group. End points were leg lean mass assessed by DXA, muscle thickness assessed by ultrasound, isometric and dynamic strength, rate of torque development, and functional capacity. RESULTS Leg lean mass increased from baseline in ST (0.7 ± 0.3 kg), along with increased thickness of vastus lateralis (4.4 ± 3.2%), rectus femoris (6.7 ± 5.1%), and vastus intermedius (5.8 ± 5.9%). The hypertrophy was accompanied by improved knee extensor strength (20-23%) and functional performance (7-11%). In ST, neither the change in leg lean mass nor muscle thickness correlated with changes in muscle strength. However, a strong correlation was observed between the change in isometric strength and gait velocity (r = 0.70). CONCLUSIONS The mismatch between gains in muscle size and strength suggests that muscle quality-related adaptations contributed to the increases in strength. The correlations observed between improvements in strength and function suggests that interventions eliciting large improvements in strength may also be superior in terms of functional gains in this population.
Collapse
Affiliation(s)
- Sigve Nyvik Aas
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway.
| | - Olivier Seynnes
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Haakon B Benestad
- Section of Anatomy, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Truls Raastad
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| |
Collapse
|
38
|
Henriquez-Olguin C, Meneses-Valdes R, Jensen TE. Compartmentalized muscle redox signals controlling exercise metabolism - Current state, future challenges. Redox Biol 2020; 35:101473. [PMID: 32122793 PMCID: PMC7284909 DOI: 10.1016/j.redox.2020.101473] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/18/2020] [Accepted: 02/20/2020] [Indexed: 02/07/2023] Open
Abstract
Exercise imposes cellular stress on contracting skeletal muscle fibers, forcing them to complete molecular adaptations to maintain homeostasis. There is mounting evidence that redox signaling by reactive oxygen species (ROS) is vital for skeletal muscle exercise adaptations across many different exercise modalities. The study of redox signaling is moving towards a growing appreciation that these ROS do not signal in a global unspecific way, but rather elicit their effects in distinct subcellular compartments. This short review will first outline the sources of ROS in exercising skeletal muscle and then discuss some examples of exercise adaptations, which are evidenced to be regulated by compartmentalized redox signaling. We speculate that knowledge of these redox pathways might one day allow targeted manipulation to increase redox-signaling in specific compartments to augment the exercise-hormetic response in health and disease.
Collapse
Affiliation(s)
- Carlos Henriquez-Olguin
- Section of Molecular Physiology, Department of Nutrition, Exercise, and Sports (NEXS), Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Roberto Meneses-Valdes
- Section of Molecular Physiology, Department of Nutrition, Exercise, and Sports (NEXS), Faculty of Science, University of Copenhagen, Copenhagen, Denmark; Integrated Physiology Unit, Laboratory of Exercise Sciences, MEDS Clinic, Santiago, Chile
| | - Thomas E Jensen
- Section of Molecular Physiology, Department of Nutrition, Exercise, and Sports (NEXS), Faculty of Science, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
39
|
Arc-Chagnaud C, Py G, Fovet T, Roumanille R, Demangel R, Pagano AF, Delobel P, Blanc S, Jasmin BJ, Blottner D, Salanova M, Gomez-Cabrera MC, Viña J, Brioche T, Chopard A. Evaluation of an Antioxidant and Anti-inflammatory Cocktail Against Human Hypoactivity-Induced Skeletal Muscle Deconditioning. Front Physiol 2020; 11:71. [PMID: 32116779 PMCID: PMC7028694 DOI: 10.3389/fphys.2020.00071] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 01/22/2020] [Indexed: 01/16/2023] Open
Abstract
Understanding the molecular pathways involved in the loss of skeletal muscle mass and function induced by muscle disuse is a crucial issue in the context of spaceflight as well as in the clinical field, and development of efficient countermeasures is needed. Recent studies have reported the importance of redox balance dysregulation as a major mechanism leading to muscle wasting. Our study aimed to evaluate the effects of an antioxidant/anti-inflammatory cocktail (741 mg of polyphenols, 138 mg of vitamin E, 80 μg of selenium, and 2.1 g of omega-3) in the prevention of muscle deconditioning induced by long-term inactivity. The study consisted of 60 days of hypoactivity using the head-down bed rest (HDBR) model. Twenty healthy men were recruited; half of them received a daily antioxidant/anti-inflammatory supplementation, whereas the other half received a placebo. Muscle biopsies were collected from the vastus lateralis muscles before and after bedrest and 10 days after remobilization. After 2 months of HDBR, all subjects presented muscle deconditioning characterized by a loss of muscle strength and an atrophy of muscle fibers, which was not prevented by cocktail supplementation. Our results regarding muscle oxidative damage, mitochondrial content, and protein balance actors refuted the potential protection of the cocktail during long-term inactivity and showed a disturbance of essential signaling pathways (protein balance and mitochondriogenesis) during the remobilization period. This study demonstrated the ineffectiveness of our cocktail supplementation and underlines the complexity of redox balance mechanisms. It raises interrogations regarding the appropriate nutritional intervention to fight against muscle deconditioning.
Collapse
Affiliation(s)
- Coralie Arc-Chagnaud
- DMEM, Université Montpellier, INRAE, Montpellier, France.,Freshage Research Group, Department of Physiology, Faculty of Medicine, CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, University of Valencia, Valencia, Spain
| | - Guillaume Py
- DMEM, Université Montpellier, INRAE, Montpellier, France
| | - Théo Fovet
- DMEM, Université Montpellier, INRAE, Montpellier, France
| | | | - Rémi Demangel
- DMEM, Université Montpellier, INRAE, Montpellier, France
| | - Allan F Pagano
- Faculté des Sciences du Sport, Mitochondries, Stress Oxydant et Protection Musculaire, Université de Strasbourg, Strasbourg, France.,Department of Cellular and Molecular Medicine and Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Pierre Delobel
- DMEM, Université Montpellier, INRAE, Montpellier, France
| | - Stéphane Blanc
- IPHC, CNRS, Université de Strasbourg, Strasbourg, France
| | - Bernard J Jasmin
- Department of Cellular and Molecular Medicine and Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Dieter Blottner
- Berlin Center for Space Medicine, Integrative Neuroanatomy, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Michele Salanova
- Berlin Center for Space Medicine, Integrative Neuroanatomy, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Mari-Carmen Gomez-Cabrera
- Freshage Research Group, Department of Physiology, Faculty of Medicine, CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, University of Valencia, Valencia, Spain
| | - José Viña
- Freshage Research Group, Department of Physiology, Faculty of Medicine, CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, University of Valencia, Valencia, Spain
| | - Thomas Brioche
- DMEM, Université Montpellier, INRAE, Montpellier, France
| | - Angèle Chopard
- DMEM, Université Montpellier, INRAE, Montpellier, France
| |
Collapse
|
40
|
Dutra MT, Martins WR, Ribeiro ALA, Bottaro M. The Effects of Strength Training Combined with Vitamin C and E Supplementation on Skeletal Muscle Mass and Strength: A Systematic Review and Meta-Analysis. JOURNAL OF SPORTS MEDICINE (HINDAWI PUBLISHING CORPORATION) 2020; 2020:3505209. [PMID: 31970196 PMCID: PMC6973181 DOI: 10.1155/2020/3505209] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 11/22/2019] [Accepted: 12/18/2019] [Indexed: 01/06/2023]
Abstract
Intense muscle contractile activity can result in reactive oxygen species production in humans. Thus, supplementation of antioxidant vitamins has been used to prevent oxidative stress, enhance performance, and improve muscle mass. In this sense, randomized controlled studies on the effect of vitamin C and E supplementation combined with strength training (ST) on skeletal muscle mass and strength have been conducted. As these studies have come to ambiguous findings, a better understanding of this topic has yet to emerge. The purpose of the present review is to discuss the current knowledge about the effect of vitamin C and E supplementation on muscle mass and strength gains induced by ST. Search for articles was conducted in the following databases: PubMed/Medline, Web of Science, Scopus, Cochrane Central Register of Controlled Trials, and Google Scholar. This work is in line with the recommendations of the PRISMA statement. Eligible studies were placebo-controlled trials with a minimum of four weeks of ST combined with vitamin C and E supplementation. The quality of each included study was evaluated using the Physiotherapy Evidence Database Scale (PEDro). 134 studies were found to be potentially eligible, but only seven were selected to be included in the qualitative synthesis. A meta-analysis of muscle strength was conducted with 3 studies. Findings from these studies indicate that vitamins C and E has no effect on muscle force production after chronic ST. Most of the evidence suggests that this kind of supplementation does not potentiate muscle growth and could possibly attenuate hypertrophy over time.
Collapse
Affiliation(s)
- Maurilio T. Dutra
- College of Physical Education, University of Brasilia, 70910-900 Brasilia, DF, Brazil
- Federal Institute of Education, Science and Technology, IFB, Campus Recanto das Emas, 72620-100 Brasilia, DF, Brazil
| | | | | | - Martim Bottaro
- College of Physical Education, University of Brasilia, 70910-900 Brasilia, DF, Brazil
| |
Collapse
|
41
|
Clifford T, Jeffries O, Stevenson EJ, Davies KAB. The effects of vitamin C and E on exercise-induced physiological adaptations: a systematic review and Meta-analysis of randomized controlled trials. Crit Rev Food Sci Nutr 2019; 60:3669-3679. [PMID: 31851538 DOI: 10.1080/10408398.2019.1703642] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We conducted a systematic review and meta-analysis of randomized controlled trials examining the effect of vitamin C and/or E on exercise-induced training adaptations. Medline, Embase and SPORTDiscus databases were searched for articles from inception until June 2019. Inclusion criteria was studies in adult humans where vitamin C and/or E had to be consumed alongside a supervised exercise training program of ≥4 weeks. Nine trials were included in the analysis of aerobic exercise adaptations and nine for resistance training (RT) adaptations. Vitamin C and/or E did not attenuate aerobic exercise induced improvements in maximal aerobic capacity (V ̇ O2max) (SMD -0.14, 95% CI: -0.43 to 0.15, P = 0.35) or endurance performance (SMD -0.01, 95% CI: -0.38 to 0.36, P = 0.97). There were also no effects of these supplements on lean mass and muscle strength following RT (SMD -0.07, 95% CI: -0.36 to 0.23, P = 0.67) and (SMD -0.15, 95% CI: -0.16 to 0.46, P = 0.35), respectively. There was also no influence of age on any of these outcomes (P > 0.05). These findings suggest that vitamin C and/or E does not inhibit exercise-induced changes in physiological function. Studies with larger sample sizes and adequate power are still required.
Collapse
Affiliation(s)
- Tom Clifford
- Institute of Cellular Medicine, Newcastle University, Newcastle on Tyne, UK
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Owen Jeffries
- Institute of Cellular Medicine, Newcastle University, Newcastle on Tyne, UK
| | - Emma J Stevenson
- Institute of Cellular Medicine, Newcastle University, Newcastle on Tyne, UK
| | | |
Collapse
|
42
|
Robinson S, Granic A, Sayer AA. Nutrition and Muscle Strength, As the Key Component of Sarcopenia: An Overview of Current Evidence. Nutrients 2019; 11:nu11122942. [PMID: 31817048 PMCID: PMC6950468 DOI: 10.3390/nu11122942] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 11/27/2019] [Accepted: 11/29/2019] [Indexed: 02/07/2023] Open
Abstract
Much has been achieved by recent research to increase understanding of the links between nutrition and muscle health. Focusing on muscle strength as the key component of sarcopenia, the aim of this overview was to evaluate its links to nutrition, both to variation in habitual diets in older populations, as well as considering supplementation effects in trials. A main message from the reviewed studies is that while many provide suggestive evidence of benefits of higher nutrient intakes and diets of higher quality, findings are inconsistent, and data on muscle strength are often lacking. To assess the potential of optimising diets as a strategy to promote and maintain muscle strength, gaps in current evidence need to be addressed. These include the need for (i) better understanding of individual differences in responsiveness to dietary change, and the need for targeted nutritional support; (ii) clearer distinction between protective and therapeutic actions of diet; and (iii) definition of the role of dietary patterns and their influence on muscle strength, to allow effects of changes in food consumption to be evaluated—particularly when combined with physical activity. Development of this evidence is needed to enable translation into appropriate dietary recommendations for older populations.
Collapse
Affiliation(s)
- Sian Robinson
- AGE Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE4 5PL, UK; (A.G.); (A.A.S.)
- NIHR Newcastle Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust and Newcastle University, Newcastle upon Tyne NE4 5PL, UK
- Correspondence: ; Tel.: +44-0-191-208-6000
| | - Antoneta Granic
- AGE Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE4 5PL, UK; (A.G.); (A.A.S.)
- NIHR Newcastle Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust and Newcastle University, Newcastle upon Tyne NE4 5PL, UK
| | - Avan Aihie Sayer
- AGE Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE4 5PL, UK; (A.G.); (A.A.S.)
- NIHR Newcastle Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust and Newcastle University, Newcastle upon Tyne NE4 5PL, UK
- Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE7 7DN, UK
| |
Collapse
|
43
|
Cruz-Jentoft AJ, Dawson Hughes B, Scott D, Sanders KM, Rizzoli R. Nutritional strategies for maintaining muscle mass and strength from middle age to later life: A narrative review. Maturitas 2019; 132:57-64. [PMID: 31883664 DOI: 10.1016/j.maturitas.2019.11.007] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 10/25/2019] [Accepted: 11/26/2019] [Indexed: 12/12/2022]
Abstract
Progressive age-related reductions in muscle mass and strength (sarcopenia) can cause substantial morbidity. This narrative review summarizes evidence of nutritional interventions for maintaining muscle mass and strength from midlife through old age. PubMed and Cochrane databases were searched to identify studies of dietary intake and nutritional interventions for sustaining muscle mass and strength. The benefits of progressive resistance training with and without dietary interventions are well documented. Protein and amino acid (particularly leucine) intake should be considered, and supplementation may be warranted for those not meeting recommended intakes. Vitamin D receptors are expressed in muscle tissue; meta-analyses have shown that vitamin D benefits muscle strength. Data suggest that milk and other dairy products containing different bioactive compounds (i.e. protein, leucine) can enhance muscle protein synthesis, particularly when combined with resistance exercise. Omega-3 s can improve muscle mass and strength by mediating cell signaling and inflammation-related oxidative damage; no studies were specifically conducted in sarcopenia. Low-dose antioxidants (e.g. vitamins C and E) can protect muscle tissue from oxidative damage, but relevant studies are limited. Magnesium is involved with muscle contraction processes, and data have shown benefits to muscle strength. Acidogenic diets increase muscle protein breakdown, which is exacerbated by aging. Alkalizing compounds (e.g. bicarbonates) can promote muscle strength. Small studies of probiotics and plant extracts have generated interest, but few large studies have been conducted. Based on available data, dietary and supplemental interventions may add to the benefits of exercise on muscle mass and strength; effects independent of exercise have not been consistently shown.
Collapse
Affiliation(s)
- Alfonso J Cruz-Jentoft
- Servicio de Geriatría, Hospital Universitario Ramón y Cajal (IRYCIS), Ctra. Colmenar Viejo, km. 9,11 28034 Madrid, Spain.
| | - Bess Dawson Hughes
- Bone Metabolism Laboratory at the Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, 711 Washington Street, Boston, MA 02111 USA.
| | - David Scott
- School of Clinical Sciences at Monash Health, Monash University, Monash Medical Centre, 246 Clayton Road, Clayton, Victoria 3168, Australia.
| | - Kerrie M Sanders
- Melbourne Medical School, The University of Melbourne, Sunshine Hospital, 176 Furlong Road, St Albans, Victoria 3021, Australia.
| | - Rene Rizzoli
- University Hospital of Geneva, Rue Gabrielle-Perret-Gentil 4, 1205 Genève, Switzerland.
| |
Collapse
|
44
|
Resistance Training, Antioxidant Status, and Antioxidant Supplementation. Int J Sport Nutr Exerc Metab 2019; 29:539-547. [PMID: 30859847 DOI: 10.1123/ijsnem.2018-0339] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 02/08/2019] [Accepted: 02/21/2019] [Indexed: 11/18/2022]
Abstract
Resistance training is known to promote the generation of reactive oxygen species. Although this can likely upregulate the natural, endogenous antioxidant defense systems, high amounts of reactive oxygen species can cause skeletal muscle damage, fatigue, and impair recovery. To prevent these, antioxidant supplements are commonly consumed along with exercise. Recently, it has been shown that these reactive oxygen species are important for the cellular adaptation process, acting as redox signaling molecules. However, most of the research regarding antioxidant status and antioxidant supplementation with exercise has focused on endurance training. In this review, the authors discuss the evidence for resistance training modulating the antioxidant status. They also highlight the effects of combining antioxidant supplementation with resistance training on training-induced skeletal muscle adaptations.
Collapse
|
45
|
Response to exercise in older adults who take supplements of antioxidants and/or omega-3 polyunsaturated fatty acids: A systematic review. Biochem Pharmacol 2019; 173:113649. [PMID: 31586588 DOI: 10.1016/j.bcp.2019.113649] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 09/30/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Nutrition is a key factor in determining exercise response. The aim of this review is to assess the response to exercise in older adults who take supplements of antioxidants and/or omega-3 polyunsaturated fatty acids. METHODS A systematic literature search was performed (June 2009- September 2019) in MEDLINE via Pubmed. The following search strategy was used with Boolean markers: ("omega-3 fatty acids" [Major] OR "antioxidants" [Major]) AND "exercise" AND "aged" [MesH]. Fourteen articles were finally included. RESULTS Exercise-induced free radical and inflammatory marker blood levels, but not changed the plasma total antioxidant capacity (TAC), after administration of antioxidant supplement. The oral administration of antioxidants produced null or negative effect on endothelial function, but the infusion into the brachial artery during rhythmic handgrip exercise produced a significant improvement in muscle blood flow, due to an on increase in the availability of nitric acid derived from the nitric oxide synthase. Aerobic exercise and antioxidant supplementation improved submaximal and maximal aerobic parameters, as well as mitochondrial density and mitochondria-regulated apoptotic signaling. Antioxidant supplementation, but not omega-3 PUFA, decreased pro-inflammatory marker levels and fat oxidation induced by exercise. Strength training decreased serum B12 concentration but combined with omega-3 PUFA or antioxidant supplementation, B12 levels were maintained. Antioxidant supplementation has protective effect after fatigue in isometric exercise but improved appendicular fat-free mass just combined with resistance exercise. Omega-3 fatty acid supplement combined with exercise increased lean mass in women, but not in men. Muscle damage induced by exercise is protected by antioxidant supplementation. CONCLUSIONS Older people who take antioxidant and/or omega-3 PUFA supplements showed improved exercise response, as well as lower muscle damage.
Collapse
|
46
|
Damanti S, Azzolino D, Roncaglione C, Arosio B, Rossi P, Cesari M. Efficacy of Nutritional Interventions as Stand-Alone or Synergistic Treatments with Exercise for the Management of Sarcopenia. Nutrients 2019; 11:E1991. [PMID: 31443594 PMCID: PMC6770476 DOI: 10.3390/nu11091991] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/20/2019] [Accepted: 08/20/2019] [Indexed: 12/13/2022] Open
Abstract
Sarcopenia is an age-related and accelerated process characterized by a progressive loss of muscle mass and strength/function. It is a multifactorial process associated with several adverse outcomes including falls, frailty, functional decline, hospitalization, and mortality. Hence, sarcopenia represents a major public health problem and has become the focus of intense research. Unfortunately, no pharmacological treatments are yet available to prevent or treat this age-related condition. At present, the only strategies for the management of sarcopenia are mainly based on nutritional and physical exercise interventions. The purpose of this review is, thus, to provide an overview on the role of proteins and other key nutrients, alone or in combination with physical exercise, on muscle parameters.
Collapse
Affiliation(s)
- Sarah Damanti
- Geriatric Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Phd Course in Nutritional Sciences, University of Milan, 20122 Milan, Italy
| | - Domenico Azzolino
- Geriatric Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy.
- Phd Course in Nutritional Sciences, University of Milan, 20122 Milan, Italy.
| | - Carlotta Roncaglione
- Geriatric Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Beatrice Arosio
- Geriatric Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Paolo Rossi
- Geriatric Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Matteo Cesari
- Geriatric Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| |
Collapse
|
47
|
de Oliveira DC, Rosa FT, Simões-Ambrósio L, Jordao AA, Deminice R. Antioxidant vitamin supplementation prevents oxidative stress but does not enhance performance in young football athletes. Nutrition 2019; 63-64:29-35. [DOI: 10.1016/j.nut.2019.01.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 01/02/2019] [Accepted: 01/17/2019] [Indexed: 11/26/2022]
|
48
|
Henríquez-Olguín C, Renani LB, Arab-Ceschia L, Raun SH, Bhatia A, Li Z, Knudsen JR, Holmdahl R, Jensen TE. Adaptations to high-intensity interval training in skeletal muscle require NADPH oxidase 2. Redox Biol 2019; 24:101188. [PMID: 30959461 PMCID: PMC6454063 DOI: 10.1016/j.redox.2019.101188] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/11/2019] [Accepted: 03/30/2019] [Indexed: 01/12/2023] Open
Abstract
OBJECTIVE Reactive oxygen species (ROS) have been proposed as signaling molecules mediating exercise training adaptation, but the ROS source has remained unclear. This study aimed to investigate if increased NADPH oxidase (NOX)2-dependent activity during exercise is required for long-term high-intensity interval training (HIIT) in skeletal muscle using a mouse model lacking functional NOX2 complex due to absent p47phox (Ncf1) subunit expression (ncf1* mutation). METHODS HIIT was investigated after an acute bout of exercise and after a chronic intervention (3x/week for 6 weeks) in wild-type (WT) vs. NOX2 activity-deficient (ncf1*) mice. NOX2 activation during HIIT was measured using an electroporated genetically-encoded biosensor. Immunoblotting and single-fiber microscopy was performed to measure classical exercise-training responsive endpoints in skeletal muscle. RESULTS A single bout of HIIT increased NOX2 activity measured as p47-roGFP oxidation immediately after exercise but not 1 h or 4 h after exercise. After a 6-week HIIT regimen, improvements in maximal running capacity and some muscle training-markers responded less to HIIT in the ncf1* mice compared to WT, including superoxide dismutase 2, catalase, hexokinase II, pyruvate dehydrogenase and protein markers of mitochondrial oxidative phosphorylation complexes. Strikingly, HIIT-training increased mitochondrial network area and decreased fragmentation in WT mice only. CONCLUSION This study suggests that HIIT exercise increases NOX2 activity in skeletal muscle and shows that NOX2 activity is required for specific skeletal muscle adaptations to HIIT relating to antioxidant defense, glucose metabolism, and mitochondria.
Collapse
Affiliation(s)
- Carlos Henríquez-Olguín
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark
| | - Leila Baghersad Renani
- Faculty of Physical Education and Sports Sciences, University of Tehran, Tehran, Islamic Republic of Iran
| | - Lyne Arab-Ceschia
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark
| | - Steffen H Raun
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark
| | - Aakash Bhatia
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark
| | - Zhencheng Li
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark
| | - Jonas R Knudsen
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark
| | - Rikard Holmdahl
- Section for Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Thomas E Jensen
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark.
| |
Collapse
|
49
|
Bjørnsen T, Wernbom M, Kirketeig A, Paulsen G, Samnøy L, Bækken L, Cameron-Smith D, Berntsen S, Raastad T. Type 1 Muscle Fiber Hypertrophy after Blood Flow-restricted Training in Powerlifters. Med Sci Sports Exerc 2019; 51:288-298. [PMID: 30188363 DOI: 10.1249/mss.0000000000001775] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE To investigate the effects of blood flow-restricted resistance exercise (BFRRE) on myofiber areas (MFA), number of myonuclei and satellite cells (SC), muscle size and strength in powerlifters. METHODS Seventeen national level powerlifters (25 ± 6 yr [mean ± SD], 15 men) were randomly assigned to either a BFRRE group (n = 9) performing two blocks (weeks 1 and 3) of five BFRRE front squat sessions within a 6.5-wk training period, or a conventional training group (Con; n = 8) performing front squats at 60%-85% of one-repetition maximum (1RM). The BFRRE consisted of four sets (first and last set to voluntary failure) at ~30% of 1RM. Muscle biopsies were obtained from m. vastus lateralis (VL) and analyzed for MFA, myonuclei, SC and capillaries. Cross-sectional areas (CSA) of VL and m. rectus femoris were measured by ultrasonography. Strength was evaluated by maximal voluntary isokinetic torque (MVIT) in knee extension and 1RM in front squat. RESULTS BFRRE induced selective increases in type I MFA (BFRRE: 12% vs Con: 0%, P < 0.01) and myonuclear number (BFRRE: 18% vs Con: 0%, P = 0.02). Type II MFA was unaltered in both groups. BFRRE induced greater changes in VL CSA (7.7% vs 0.5%, P = 0.04), which correlated with the increases in MFA of type I fibers (r = 0.81, P = 0.02). No group differences were observed in SC and strength changes, although MVIT increased with BFRRE (P = 0.04), whereas 1RM increased in Con (P = 0.02). CONCLUSIONS Two blocks of low-load BFRRE in the front squat exercise resulted in increased quadriceps CSA associated with preferential hypertrophy and myonuclear addition in type 1 fibers of national level powerlifters.
Collapse
Affiliation(s)
- Thomas Bjørnsen
- Department of Public Health, Sport and Nutrition, Faculty of Health and Sport Sciences, University of Agder, Kristiansand, NORWAY
| | - Mathias Wernbom
- Center for Health and Performance, Department of Food and Nutrition, and Sport Science, University of Gothenburg, Gothenburg, SWEDEN
| | | | | | - Lars Samnøy
- Norwegian Powerlifting Federation, Oslo, NORWAY
| | - Lasse Bækken
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, NORWAY
| | - David Cameron-Smith
- Liggins Institute, University of Auckland, Auckland, NEW ZEALAND.,Food and Bio-based Products Group, AgResearch, Palmerston North, NEW ZEALAND.,Riddet Institute, Palmerston North, NEW ZEALAND
| | - Sveinung Berntsen
- Department of Public Health, Sport and Nutrition, Faculty of Health and Sport Sciences, University of Agder, Kristiansand, NORWAY
| | - Truls Raastad
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, NORWAY
| |
Collapse
|
50
|
Veronese N, Stubbs B, Punzi L, Soysal P, Incalzi RA, Saller A, Maggi S. Effect of nutritional supplementations on physical performance and muscle strength parameters in older people: A systematic review and meta-analysis. Ageing Res Rev 2019; 51:48-54. [PMID: 30826500 DOI: 10.1016/j.arr.2019.02.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 02/18/2019] [Accepted: 02/26/2019] [Indexed: 01/06/2023]
Abstract
Malnutrition plays a role in the development of poor physical performance, frailty and sarcopenia. The use of nutritional supplementations for improving physical performance and muscle strength parameters in older people is unclear. We therefore aimed to summarize the effect of nutritional supplementations compared to placebo on physical performance (i.e. tests more investigating physical function, utilising aerobic capacity & muscle power) and muscle strength (i.e. tests depending on muscle power) outcomes in older people in randomized controlled trials (RCTs). A literature search in major databases was undertaken until the 01st September 2018. Eligible studies were RCTs investigating the effect of nutritional supplementations vs. placebo in older people (people having an age >60 years). Standardized mean differences (SMD) and 95% confidence intervals (CIs) were used through a random effect model. Over 4007 potentially eligible articles, 32 RCTs for a total of 4137 older participants (2097 treated and 2040 placebo) (mean age: 76.3 years; 65% females) were included. Compared to placebo, multi-nutrient supplementations significantly improved chair rise time (n = 3; SMD=-0.90; 95%CI: -1.46 to -0.33; I2 = 87%). Multi-nutrients significantly improved handgrip strength when compared to placebo (n = 6; 780 participants; SMD = 0.41; 95%CI: 0.06 to 0.76; I2 = 79%), as did nutritional supplementations including protein (n = 7; 535 participants; SMD = 0.24; 95%CI: 0.07 to 0.41; I2 = 16%).Nutritional supplementations also led to a significant improvement in chair rise time and in handgrip strength in participants affected by frailty/sarcopenia and in those affected by medical conditions. In conclusion, nutritional supplementation can improve a number of physical performance outcomes in older people, particularly when they include multi-nutrients and in people already affected by specific medical conditions, or by frailty/sarcopenia.
Collapse
Affiliation(s)
- Nicola Veronese
- National Research Council, Neuroscience Institute, Aging Branch, Padova, Italy.
| | - Brendon Stubbs
- Physiotherapy Department, South London and Maudsley NHS Foundation Trust, London, United Kingdom; Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; Faculty of Health, Social Care and Education, Anglia Ruskin University, Chelmsford, United Kingdom
| | - Leonardo Punzi
- Rheumatology Center, SS Giovanni e Paolo Hospital, Venice, Italy
| | - Pinar Soysal
- Department of Geriatric Medicine, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | | | - Alois Saller
- Internal Medicine, Department of Medicine DIMED, University-Hospital of Padova, Padova, Italy
| | - Stefania Maggi
- National Research Council, Neuroscience Institute, Aging Branch, Padova, Italy
| |
Collapse
|