1
|
Noctor G, Cohen M, Trémulot L, Châtel-Innocenti G, Van Breusegem F, Mhamdi A. Glutathione: a key modulator of plant defence and metabolism through multiple mechanisms. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4549-4572. [PMID: 38676714 DOI: 10.1093/jxb/erae194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/25/2024] [Indexed: 04/29/2024]
Abstract
Redox reactions are fundamental to energy conversion in living cells, and also determine and tune responses to the environment. Within this context, the tripeptide glutathione plays numerous roles. As an important antioxidant, glutathione confers redox stability on the cell and also acts as an interface between signalling pathways and metabolic reactions that fuel growth and development. It also contributes to the assembly of cell components, biosynthesis of sulfur-containing metabolites, inactivation of potentially deleterious compounds, and control of hormonal signalling intensity. The multiplicity of these roles probably explains why glutathione status has been implicated in influencing plant responses to many different conditions. In particular, there is now a considerable body of evidence showing that glutathione is a crucial player in governing the outcome of biotic stresses. This review provides an overview of glutathione synthesis, transport, degradation, and redox turnover in plants. It examines the expression of genes associated with these processes during pathogen challenge and related conditions, and considers the diversity of mechanisms by which glutathione can influence protein function and gene expression.
Collapse
Affiliation(s)
- Graham Noctor
- Institut des Sciences des Plantes de Paris-Saclay, Unité Mixte de Recherche 8618 Centre National de la Recherche Scientifique, Université de Paris-Sud, 91405 Orsay cedex, France
- Institut Universitaire de France (IUF), France
| | - Mathias Cohen
- Institut des Sciences des Plantes de Paris-Saclay, Unité Mixte de Recherche 8618 Centre National de la Recherche Scientifique, Université de Paris-Sud, 91405 Orsay cedex, France
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Lug Trémulot
- Institut des Sciences des Plantes de Paris-Saclay, Unité Mixte de Recherche 8618 Centre National de la Recherche Scientifique, Université de Paris-Sud, 91405 Orsay cedex, France
| | - Gilles Châtel-Innocenti
- Institut des Sciences des Plantes de Paris-Saclay, Unité Mixte de Recherche 8618 Centre National de la Recherche Scientifique, Université de Paris-Sud, 91405 Orsay cedex, France
| | - Frank Van Breusegem
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Amna Mhamdi
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| |
Collapse
|
2
|
Chang HF, Tseng SC, Tang MT, Hsiao SSY, Lee DC, Wang SL, Yeh KC. Physiology and molecular basis of thallium toxicity and accumulation in Arabidopsis thaliana. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 276:116290. [PMID: 38599154 DOI: 10.1016/j.ecoenv.2024.116290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/28/2024] [Accepted: 04/01/2024] [Indexed: 04/12/2024]
Abstract
Thallium (Tl) is a non-essential metal mobilized through industrial processes which can lead to it entering the environment and exerting toxic effects. Plants are fundamental components of all ecosystems. Therefore, understanding the impact of Tl on plant growth and development is of great importance for assessing the potential environmental risks of Tl. Here, the responses of Arabidopsis thaliana to Tl were elucidated using physiological, genetic, and transcriptome analyses. Thallium can be absorbed by plant roots and translocated to the aerial parts, accumulating at comparable concentrations throughout plant parts. Genetic evidence supported the regulation of Tl uptake and movement by different molecular compartments within plants. Thallium primarily caused growth inhibition, oxidative stress, leaf chlorosis, and the impairment of K homeostasis. The disturbance of redox balance toward oxidative stress was supported by significant differences in the expression of genes involved in oxidative stress and antioxidant defense under Tl exposure. Reduced GSH levels in cad2-1 mutant rendered plants highly sensitive to Tl, suggesting that GSH has a prominent role in alleviating Tl-triggered oxidative responses. Thallium down-regulation of the expression of LCHII-related genes is believed to be responsible for leaf chlorosis. These findings illuminate some of the mechanisms underlying Tl toxicity at the physiological and molecular levels in plants with an eye toward the future environment management of this heavy metal.
Collapse
Affiliation(s)
- Hsin-Fang Chang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan, Republic of China
| | - Shao-Chin Tseng
- Experimental Facility Division, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan, Republic of China
| | - Mau-Tsu Tang
- Experimental Facility Division, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan, Republic of China
| | - Silver Sung-Yun Hsiao
- Institute of Earth Sciences, Academia Sinica, Taipei 11529, Taiwan, Republic of China
| | - Der-Chuen Lee
- Institute of Earth Sciences, Academia Sinica, Taipei 11529, Taiwan, Republic of China; Institute of Astronomy and Astrophysics, Academia Sinica, Taipei 11529, Taiwan, Republic of China
| | - Shan-Li Wang
- Department of Agricultural Chemistry, National Taiwan University, Taipei 10617, Taiwan, Republic of China
| | - Kuo-Chen Yeh
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan, Republic of China.
| |
Collapse
|
3
|
Sun Q, Zhao D, Gao M, Wu Y, Zhai L, Sun S, Wu T, Zhang X, Xu X, Han Z, Wang Y. MxMPK6-2-mediated phosphorylation enhances the response of apple rootstocks to Fe deficiency by activating PM H + -ATPase MxHA2. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:69-86. [PMID: 37340905 DOI: 10.1111/tpj.16360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 06/12/2023] [Accepted: 06/16/2023] [Indexed: 06/22/2023]
Abstract
Iron (Fe) deficiency significantly affects the growth and development, fruit yield and quality of apples. Apple roots respond to Fe deficiency stress by promoting H+ secretion, which acidifies the soil. In this study, the plasma membrane (PM) H+ -ATPase MxHA2 promoted H+ secretion and root acidification of apple rootstocks under Fe deficiency stress. H+ -ATPase MxHA2 is upregulated in Fe-efficient apple rootstock of Malus xiaojinensis at the transcription level. Fe deficiency also induced kinase MxMPK6-2, a positive regulator in Fe absorption that can interact with MxHA2. However, the mechanism involving these two factors under Fe deficiency stress is unclear. MxMPK6-2 overexpression in apple roots positively regulated PM H+ -ATPase activity, thus enhancing root acidification under Fe deficiency stress. Moreover, co-expression of MxMPK6-2 and MxHA2 in apple rootstocks further enhanced PM H+ -ATPase activity under Fe deficiency. MxMPK6-2 phosphorylated MxHA2 at the Ser909 site of C terminus, Thr320 and Thr412 sites of the Central loop region. Phosphorylation at the Ser909 and Thr320 promoted PM H+ -ATPase activity, while phosphorylation at Thr412 inhibited PM H+ -ATPase activity. MxMPK6-2 also phosphorylated the Fe deficiency-induced transcription factor MxbHLH104 at the Ser169 site, which then could bind to the promoter of MxHA2, thus enhancing MxHA2 upregulation. In conclusion, the MAP kinase MxMPK6-2-mediated phosphorylation directly and indirectly regulates PM H+ -ATPase MxHA2 activity at the protein post-translation and transcription levels, thus synergistically enhancing root acidification under Fe deficiency stress.
Collapse
Affiliation(s)
- Qiran Sun
- College of Horticulture, China Agricultural University, Beijing, 100193, People's Republic of China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing, 100193, People's Republic of China
| | - Danrui Zhao
- College of Horticulture, China Agricultural University, Beijing, 100193, People's Republic of China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing, 100193, People's Republic of China
| | - Min Gao
- College of Horticulture, China Agricultural University, Beijing, 100193, People's Republic of China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing, 100193, People's Republic of China
| | - Yue Wu
- College of Horticulture, China Agricultural University, Beijing, 100193, People's Republic of China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing, 100193, People's Republic of China
| | - Longmei Zhai
- College of Horticulture, China Agricultural University, Beijing, 100193, People's Republic of China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing, 100193, People's Republic of China
| | - Shan Sun
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Ting Wu
- College of Horticulture, China Agricultural University, Beijing, 100193, People's Republic of China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing, 100193, People's Republic of China
| | - Xinzhong Zhang
- College of Horticulture, China Agricultural University, Beijing, 100193, People's Republic of China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing, 100193, People's Republic of China
| | - Xuefeng Xu
- College of Horticulture, China Agricultural University, Beijing, 100193, People's Republic of China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing, 100193, People's Republic of China
| | - Zhenhai Han
- College of Horticulture, China Agricultural University, Beijing, 100193, People's Republic of China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing, 100193, People's Republic of China
| | - Yi Wang
- College of Horticulture, China Agricultural University, Beijing, 100193, People's Republic of China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing, 100193, People's Republic of China
| |
Collapse
|
4
|
Stanton C, Rodríguez-Celma J, Krämer U, Sanders D, Balk J. BRUTUS-LIKE (BTSL) E3 ligase-mediated fine-tuning of Fe regulation negatively affects Zn tolerance of Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5767-5782. [PMID: 37393944 PMCID: PMC10540732 DOI: 10.1093/jxb/erad243] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 07/01/2023] [Indexed: 07/04/2023]
Abstract
The mineral micronutrients zinc (Zn) and iron (Fe) are essential for plant growth and human nutrition, but interactions between the homeostatic networks of these two elements are not fully understood. Here we show that loss of function of BTSL1 and BTSL2, which encode partially redundant E3 ubiquitin ligases that negatively regulate Fe uptake, confers tolerance to Zn excess in Arabidopsis thaliana. Double btsl1 btsl2 mutant seedlings grown on high Zn medium accumulated similar amounts of Zn in roots and shoots to the wild type, but suppressed the accumulation of excess Fe in roots. RNA-sequencing analysis showed that roots of mutant seedlings had relatively higher expression of genes involved in Fe uptake (IRT1, FRO2, and NAS) and in Zn storage (MTP3 and ZIF1). Surprisingly, mutant shoots did not show the transcriptional Fe deficiency response which is normally induced by Zn excess. Split-root experiments suggested that within roots the BTSL proteins act locally and downstream of systemic Fe deficiency signals. Together, our data show that constitutive low-level induction of the Fe deficiency response protects btsl1 btsl2 mutants from Zn toxicity. We propose that BTSL protein function is disadvantageous in situations of external Zn and Fe imbalances, and formulate a general model for Zn-Fe interactions in plants.
Collapse
Affiliation(s)
- Camilla Stanton
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich NR4 7UH, UK
| | | | - Ute Krämer
- Faculty of Biology and Biotechnology, Ruhr University Bochum, D-44801 Bochum, Germany
| | - Dale Sanders
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich NR4 7UH, UK
| | - Janneke Balk
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich NR4 7UH, UK
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| |
Collapse
|
5
|
Romera FJ, García MJ, Lucena C, Angulo M, Pérez-Vicente R. NO Is Not the Same as GSNO in the Regulation of Fe Deficiency Responses by Dicot Plants. Int J Mol Sci 2023; 24:12617. [PMID: 37628796 PMCID: PMC10454737 DOI: 10.3390/ijms241612617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/27/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Iron (Fe) is abundant in soils but with a poor availability for plants, especially in calcareous soils. To favor its acquisition, plants develop morphological and physiological responses, mainly in their roots, known as Fe deficiency responses. In dicot plants, the regulation of these responses is not totally known, but some hormones and signaling molecules, such as auxin, ethylene, glutathione (GSH), nitric oxide (NO) and S-nitrosoglutathione (GSNO), have been involved in their activation. Most of these substances, including auxin, ethylene, GSH and NO, increase their production in Fe-deficient roots while GSNO, derived from GSH and NO, decreases its content. This paradoxical result could be explained with the increased expression and activity in Fe-deficient roots of the GSNO reductase (GSNOR) enzyme, which decomposes GSNO to oxidized glutathione (GSSG) and NH3. The fact that NO content increases while GSNO decreases in Fe-deficient roots suggests that NO and GSNO do not play the same role in the regulation of Fe deficiency responses. This review is an update of the results supporting a role for NO, GSNO and GSNOR in the regulation of Fe deficiency responses. The possible roles of NO and GSNO are discussed by taking into account their mode of action through post-translational modifications, such as S-nitrosylation, and through their interactions with the hormones auxin and ethylene, directly related to the activation of morphological and physiological responses to Fe deficiency in dicot plants.
Collapse
Affiliation(s)
- Francisco Javier Romera
- Department of Agronomy (DAUCO María de Maeztu Unit of Excellence 2021–2023), Campus de Excelencia Internacional Agroalimentario, Universidad de Córdoba, 14071 Córdoba, Spain; (F.J.R.); (M.A.)
| | - María José García
- Department of Agronomy (DAUCO María de Maeztu Unit of Excellence 2021–2023), Campus de Excelencia Internacional Agroalimentario, Universidad de Córdoba, 14071 Córdoba, Spain; (F.J.R.); (M.A.)
| | - Carlos Lucena
- Department of Botany, Ecology and Plant Physiology, Campus de Excelencia Internacional Agroalimentario, Universidad de Córdoba, 14071 Córdoba, Spain; (C.L.); (R.P.-V.)
| | - Macarena Angulo
- Department of Agronomy (DAUCO María de Maeztu Unit of Excellence 2021–2023), Campus de Excelencia Internacional Agroalimentario, Universidad de Córdoba, 14071 Córdoba, Spain; (F.J.R.); (M.A.)
| | - Rafael Pérez-Vicente
- Department of Botany, Ecology and Plant Physiology, Campus de Excelencia Internacional Agroalimentario, Universidad de Córdoba, 14071 Córdoba, Spain; (C.L.); (R.P.-V.)
| |
Collapse
|
6
|
García MJ, Romera FJ, Zhang W, Pérez-Vicente R. Editorial: Role of shoot-derived signals in root responses to environmental changes. FRONTIERS IN PLANT SCIENCE 2023; 14:1220592. [PMID: 37384356 PMCID: PMC10299730 DOI: 10.3389/fpls.2023.1220592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 06/01/2023] [Indexed: 06/30/2023]
Affiliation(s)
- María José García
- Department of Agronomy (DAUCO-María de Maeztu Unit of Excellence), Edificio Celestino Mutis (C-4), Universidad de Córdoba, Córdoba, Spain
| | - Francisco Javier Romera
- Department of Agronomy (DAUCO-María de Maeztu Unit of Excellence), Edificio Celestino Mutis (C-4), Universidad de Córdoba, Córdoba, Spain
| | - Wenna Zhang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, China
| | - Rafael Pérez-Vicente
- Department of Botany, Ecology and Plant Physiology, Edificio Celestino Mutis (C-4), Universidad de Córdoba, Córdoba, Spain
| |
Collapse
|
7
|
Tabata R. Regulation of the iron-deficiency response by IMA/FEP peptide. FRONTIERS IN PLANT SCIENCE 2023; 14:1107405. [PMID: 37180394 PMCID: PMC10167411 DOI: 10.3389/fpls.2023.1107405] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/24/2023] [Indexed: 05/16/2023]
Abstract
Iron (Fe) is an essential micronutrient for plant growth and development, participating in many significant biological processes including photosynthesis, respiration, and nitrogen fixation. Although abundant in the earth's crust, most Fe is oxidized and difficult for plants to absorb under aerobic and alkaline pH conditions. Plants, therefore, have evolved complex means to optimize their Fe-acquisition efficiency. In the past two decades, regulatory networks of transcription factors and ubiquitin ligases have proven to be essential for plant Fe uptake and translocation. Recent studies in Arabidopsis thaliana (Arabidopsis) suggest that in addition to the transcriptional network, IRON MAN/FE-UPTAKE-INDUCING PEPTIDE (IMA/FEP) peptide interacts with a ubiquitin ligase, BRUTUS (BTS)/BTS-LIKE (BTSL). Under Fe-deficient conditions, IMA/FEP peptides compete with IVc subgroup bHLH transcription factors (TFs) to interact with BTS/BTSL. The resulting complex inhibits the degradation of these TFs by BTS/BTSL, which is important for maintaining the Fe-deficiency response in roots. Furthermore, IMA/FEP peptides control systemic Fe signaling. By organ-to-organ communication in Arabidopsis, Fe deficiency in one part of a root drives the upregulation of a high-affinity Fe-uptake system in other root regions surrounded by sufficient levels of Fe. IMA/FEP peptides regulate this compensatory response through Fe-deficiency-triggered organ-to-organ communication. This mini-review summarizes recent advances in understanding how IMA/FEP peptides function in the intracellular signaling of the Fe-deficiency response and systemic Fe signaling to regulate Fe acquisition.
Collapse
Affiliation(s)
- Ryo Tabata
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
8
|
Basit F, Tao J, An J, Song X, Sheteiwy MS, Holford P, Hu J, Jośko I, Guan Y. Nitric oxide and brassinosteroids enhance chromium stress tolerance in Glycine max L. (Merr.) by modulating antioxidative defense and glyoxalase systems. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:51638-51653. [PMID: 36811783 DOI: 10.1007/s11356-023-25901-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Chromium (Cr) contamination of agricultural soils is a major threat to human and plant health worldwide and causes reductions in plant growth and crop yields. 24-epibrassinolide (EBL) and nitric oxide (NO) have been shown to ameliorate the reductions in growth caused by the stresses induced by heavy metals; however, the interactions between EBL and NO on the alleviation of Cr-induced phytotoxicity have been poorly studied. Hence, this study was undertaken to examine any beneficial effects of EBL (0.01 µM) and NO (100 µM), applied alone or in combination, on the mitigation of stress induced by Cr (100 µM) in soybean seedlings. Although EBL and NO applied alone reduced the toxic effects of Cr, the combined treatment had the greatest effect. Mitigation of Cr intoxication occurred via reduced Cr uptake and translocation and by ameliorating reductions in water contents, light-harvesting pigments, and other photosynthetic parameters. In addition, the two hormones increased the activity of enzymatic and non-enzymatic defense mechanisms increasing the scavenging of reactive oxygen species, thereby reducing membrane damage and electrolyte leakage. Furthermore, the hormones reduced the accumulation of the toxic compound, methylglyoxal, by amplifying activities of glyoxalase I and glyoxalase II. Thus, applications of NO and EBL can significantly mitigate Cr-phytotoxicity when cultivating soybean plants in Cr-contaminated soils. However, further more-in depth studies including field investigations parallel with calculations of cost to profit ratios and yield losses are requested to validate the effectiveness of NO and/or EBL for remediation agents in Cr-contaminated soils with using key biomarkers (i.e., oxidative stress, antioxidant defense, and osmoprotectants) involved in the uptake, accumulation, and attenuation of Cr toxicity tested in our study.
Collapse
Affiliation(s)
- Farwa Basit
- Hainan Research Institute, Zhejiang University, Sanya, 572025, China
- Seed Science Center, The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Ji Tao
- Seed Science Center, The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jianyu An
- Seed Science Center, The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Xiaoyu Song
- Seed Science Center, The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Mohamed Salah Sheteiwy
- Department of Agronomy, Faculty of Agriculture, Mansoura University, Mansoura, 35516, Egypt
| | - Paul Holford
- School of Science, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Jin Hu
- Hainan Research Institute, Zhejiang University, Sanya, 572025, China
- Seed Science Center, The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Izabela Jośko
- Institute of Plant Genetics, Breeding and Biotechnology, University of Life Sciences in Lublin, Lublin, Poland
| | - Yajing Guan
- Hainan Research Institute, Zhejiang University, Sanya, 572025, China.
- Seed Science Center, The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
9
|
Dopamine Inhibits Arabidopsis Growth through Increased Oxidative Stress and Auxin Activity. STRESSES 2023. [DOI: 10.3390/stresses3010026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Like some bacterial species and all animals, plants synthesize dopamine and react to its exogenous applications. Despite dopamine’s widespread presence and activity in plants, its role in plant physiology is still poorly understood. Using targeted experimentation informed by the transcriptomic response to dopamine exposure, we identify three major effects of dopamine. First, we show that dopamine causes hypersensitivity to auxin indole-3-acetic acid by enhancing auxin activity. Second, we show that dopamine increases oxidative stress, which can be mitigated with glutathione. Third, we find that dopamine downregulates iron uptake mechanisms, leading to a decreased iron content—a response possibly aimed at reducing DA-induced oxidative stress. Finally, we show that dopamine-induced auxin sensitivity is downstream of glutathione biosynthesis, indicating that the auxin response is likely a consequence of DA-induced oxidative stress. Collectively, our results show that exogenous dopamine increases oxidative stress, which inhibits growth both directly and indirectly by promoting glutathione-biosynthesis-dependent auxin hypersensitivity.
Collapse
|
10
|
García MJ, Angulo M, Romera FJ, Lucena C, Pérez-Vicente R. A shoot derived long distance iron signal may act upstream of the IMA peptides in the regulation of Fe deficiency responses in Arabidopsis thaliana roots. FRONTIERS IN PLANT SCIENCE 2022; 13:971773. [PMID: 36105702 PMCID: PMC9465050 DOI: 10.3389/fpls.2022.971773] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/10/2022] [Indexed: 05/28/2023]
Abstract
When plants suffer from Fe deficiency, they develop morphological and physiological responses, mainly in their roots, aimed to facilitate Fe mobilization and uptake. Once Fe has been acquired in sufficient quantity, the responses need to be switched off to avoid Fe toxicity and to conserve energy. Several hormones and signaling molecules, such as ethylene, auxin and nitric oxide, have been involved in the activation of Fe deficiency responses in Strategy I plants. These hormones and signaling molecules have almost no effect when applied to plants grown under Fe-sufficient conditions, which suggests the existence of a repressive signal related to the internal Fe content. The nature of this repressive signal is not known yet many experimental results suggest that is not related to the whole root Fe content but to some kind of Fe compound moving from leaves to roots through the phloem. After that, this signal has been named LOng-Distance Iron Signal (LODIS). Very recently, a novel family of small peptides, "IRON MAN" (IMA), has been identified as key components of the induction of Fe deficiency responses. However, the relationship between LODIS and IMA peptides is not known. The main objective of this work has been to clarify the relationship between both signals. For this, we have used Arabidopsis wild type (WT) Columbia and two of its mutants, opt3 and frd3, affected, either directly or indirectly, in the transport of Fe (LODIS) through the phloem. Both mutants present constitutive activation of Fe acquisition genes when grown in a Fe-sufficient medium despite the high accumulation of Fe in their roots. Arabidopsis WT Columbia plants and both mutants were treated with foliar application of Fe, and later on the expression of IMA and Fe acquisition genes was analyzed. The results obtained suggest that LODIS may act upstream of IMA peptides in the regulation of Fe deficiency responses in roots. The possible regulation of IMA peptides by ethylene has also been studied. Results obtained with ethylene precursors and inhibitors, and occurrence of ethylene-responsive cis-acting elements in the promoters of IMA genes, suggest that IMA peptides could also be regulated by ethylene.
Collapse
Affiliation(s)
- María José García
- Department of Agronomy (DAUCO-María de Maeztu Unit of Excellence), Campus de Excelencia Internacional Agroalimentario, Universidad de Córdoba, Córdoba, Spain
| | - Macarena Angulo
- Department of Agronomy (DAUCO-María de Maeztu Unit of Excellence), Campus de Excelencia Internacional Agroalimentario, Universidad de Córdoba, Córdoba, Spain
| | - Francisco Javier Romera
- Department of Agronomy (DAUCO-María de Maeztu Unit of Excellence), Campus de Excelencia Internacional Agroalimentario, Universidad de Córdoba, Córdoba, Spain
| | - Carlos Lucena
- Department of Botany, Ecology and Plant Physiology, Campus de Excelencia Internacional Agroalimentario, Universidad de Córdoba, Córdoba, Spain
| | - Rafael Pérez-Vicente
- Department of Botany, Ecology and Plant Physiology, Campus de Excelencia Internacional Agroalimentario, Universidad de Córdoba, Córdoba, Spain
| |
Collapse
|
11
|
Hasan MS, Chopra D, Damm A, Koprivova A, Kopriva S, Meyer AJ, Müller‐Schüssele S, Grundler FMW, Siddique S. Glutathione contributes to plant defence against parasitic cyst nematodes. MOLECULAR PLANT PATHOLOGY 2022; 23:1048-1059. [PMID: 35352464 PMCID: PMC9190975 DOI: 10.1111/mpp.13210] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Cyst nematodes (CNs) are an important group of root-infecting sedentary endoparasites that severely damage many crop plants worldwide. An infective CN juvenile enters the host's roots and migrates towards the vascular cylinder, where it induces the formation of syncytial feeding cells, which nourish the CN throughout its parasitic stages. Here, we examined the role of glutathione (l-γ-glutamyl-l-cysteinyl-glycine) in Arabidopsis thaliana on infection with the CN Heterodera schachtii. Arabidopsis lines with mutations pad2, cad2, or zir1 in the glutamate-cysteine ligase (GSH1) gene, which encodes the first enzyme in the glutathione biosynthetic pathway, displayed enhanced CN susceptibility, but susceptibility was reduced for rax1, another GSH1 allele. Biochemical analysis revealed differentially altered thiol levels in these mutants that was independent of nematode infection. All glutathione-deficient mutants exhibited impaired activation of defence marker genes as well as genes for biosynthesis of the antimicrobial compound camalexin early in infection. Further analysis revealed a link between glutathione-mediated plant resistance to CN infection and the production of camalexin on nematode infection. These results suggest that glutathione levels affect plant resistance to CN by fine-tuning the balance between the cellular redox environment and the production of compounds related to defence against infection.
Collapse
Affiliation(s)
- M. Shamim Hasan
- Institute of Crop Science and Resource Conservation (INRES)Molecular PhytomedicineUniversity of BonnINRESBonnGermany
- Department of Plant PathologyFaculty of AgricultureHajee Mohammad Danesh Science and Technology UniversityDinajpurBangladesh
| | - Divykriti Chopra
- Institute of Crop Science and Resource Conservation (INRES)Molecular PhytomedicineUniversity of BonnINRESBonnGermany
| | - Anika Damm
- Institute of Crop Science and Resource Conservation (INRES)Molecular PhytomedicineUniversity of BonnINRESBonnGermany
| | - Anna Koprivova
- Institute for Plant SciencesCluster of Excellence on Plant SciencesUniversity of CologneCologneGermany
| | - Stanislav Kopriva
- Institute for Plant SciencesCluster of Excellence on Plant SciencesUniversity of CologneCologneGermany
| | - Andreas J. Meyer
- Institute of Crop Science and Resource Conservation (INRES)Chemical SignallingUniversity of BonnBonnGermany
| | - Stefanie Müller‐Schüssele
- Institute of Crop Science and Resource Conservation (INRES)Chemical SignallingUniversity of BonnBonnGermany
| | - Florian M. W. Grundler
- Institute of Crop Science and Resource Conservation (INRES)Molecular PhytomedicineUniversity of BonnINRESBonnGermany
| | - Shahid Siddique
- Institute of Crop Science and Resource Conservation (INRES)Molecular PhytomedicineUniversity of BonnINRESBonnGermany
- Department of Entomology and NematologyUniversity of CaliforniaDavisCaliforniaUSA
| |
Collapse
|
12
|
Shee R, Ghosh S, Khan P, Sahid S, Roy C, Shee D, Paul S, Datta R. Glutathione regulates transcriptional activation of iron transporters via S-nitrosylation of bHLH factors to modulate subcellular iron homoeostasis. PLANT, CELL & ENVIRONMENT 2022; 45:2176-2190. [PMID: 35394650 DOI: 10.1111/pce.14331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/17/2022] [Accepted: 03/20/2022] [Indexed: 06/14/2023]
Abstract
Glutathione (GSH) is known to regulate iron (Fe) deficiency response in plants but its involvement in modulating subcellular Fe homoeostasis remains elusive. In this study, we report that the GSH-deficient mutants, cad2-1 and pad2-1 displayed increased sensitivity to Fe deficiency with significant downregulation of the vacuolar Fe exporters, AtNRAMP3 and AtNRAMP4, and the chloroplast Fe importer, AtPIC1. Moreover, the pad2-1 mutant accumulated higher Fe levels in vacuoles but lower Fe levels in chloroplasts compared to wild type (Columbia ecotype [Col-0]) under Fe limited conditions. Exogenous GSH treatment enhanced chloroplast Fe contents in Col-0 but failed to do so in the nramp3nramp4 double mutants demonstrating that GSH plays a role in modulating subcellular Fe homoeostasis. Pharmacological experiments, mutant analysis, and promoter assays revealed that this regulation involves the transcriptional activation of Fe transporter genes by a GSH-S-nitrosoglutathione (GSNO) module. The Fe responsive bHLH transcription factors (TFs), AtbHLH29, AtbHLH38, and AtbHLH101 were found to interact with the promoters of these genes, which were, in turn, activated via S-nitrosylation (SNO). Taken together, the present study highlights the role of the GSH-GSNO module in regulating subcellular Fe homoeostasis by transcriptional activation of the Fe transporters AtNRAMP3, AtNRAMP4, and AtPIC1 via SNO of bHLH TFs during Fe deficiency.
Collapse
Affiliation(s)
- Ranjana Shee
- Department of Botany, Dr. A. P. J. Abdul Kalam Government College, New Town, West Bengal, India
| | - Soumi Ghosh
- Department of Botany, Dr. A. P. J. Abdul Kalam Government College, New Town, West Bengal, India
| | - Pinki Khan
- Department of Botany, Dr. A. P. J. Abdul Kalam Government College, New Town, West Bengal, India
| | - Salman Sahid
- Department of Botany, Dr. A. P. J. Abdul Kalam Government College, New Town, West Bengal, India
- Department of Botany, University of Calcutta, Kolkata, West Bengal, India
| | - Chandan Roy
- Department of Botany, University of Calcutta, Kolkata, West Bengal, India
| | - Dibyendu Shee
- Department of Botany, Dr. A. P. J. Abdul Kalam Government College, New Town, West Bengal, India
- Department of Botany, University of Calcutta, Kolkata, West Bengal, India
| | - Soumitra Paul
- Department of Botany, University of Calcutta, Kolkata, West Bengal, India
| | - Riddhi Datta
- Department of Botany, Dr. A. P. J. Abdul Kalam Government College, New Town, West Bengal, India
| |
Collapse
|
13
|
Tabata R, Kamiya T, Imoto S, Tamura H, Ikuta K, Tabata M, Hirayama T, Tsukagoshi H, Tanoi K, Suzuki T, Hachiya T, Sakakibara H. Systemic Regulation of Iron Acquisition by Arabidopsis in Environments with Heterogeneous Iron Distributions. PLANT & CELL PHYSIOLOGY 2022; 63:842-854. [PMID: 35445268 PMCID: PMC9199186 DOI: 10.1093/pcp/pcac049] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 04/10/2022] [Accepted: 04/20/2022] [Indexed: 05/26/2023]
Abstract
Nutrient distribution within the soil is generally heterogeneous. Plants, therefore, have evolved sophisticated systemic processes enabling them to optimize their nutrient acquisition efficiency. By organ-to-organ communication in Arabidopsis thaliana, for instance, iron (Fe) starvation in one part of a root drives the upregulation of a high-affinity Fe-uptake system in other root regions surrounded by sufficient levels of Fe. This compensatory response through Fe-starvation-triggered organ-to-organ communication includes the upregulation of Iron-regulated transporter 1 (IRT1) gene expression on the Fe-sufficient side of the root; however, the molecular basis underlying this long-distance signaling remains unclear. Here, we analyzed gene expression by RNA-seq analysis of Fe-starved split-root cultures. Genome-wide expression analysis showed that localized Fe depletion in roots upregulated several genes involved in Fe uptake and signaling, such as IRT1, in a distant part of the root exposed to Fe-sufficient conditions. This result indicates that long-distance signaling for Fe demand alters the expression of a subset of genes responsible for Fe uptake and coumarin biosynthesis to maintain a level of Fe acquisition sufficient for the entire plant. Loss of IRON MAN/FE-UPTAKE-INDUCING PEPTIDE (IMA/FEP) leads to the disruption of compensatory upregulation of IRT1 in the root surrounded by sufficient Fe. In addition, our split-root culture-based analysis provides evidence that the IMA3/FEP1-MYB10/72 pathway mediates long-distance signaling in Fe homeostasis through the regulation of coumarin biosynthesis. These data suggest that the signaling of IMA/FEP, a ubiquitous family of metal-binding peptides, is critical for organ-to-organ communication in response to Fe starvation under heterogeneous Fe conditions in the surrounding environment.
Collapse
Affiliation(s)
| | - Takehiro Kamiya
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Shunpei Imoto
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601 Japan
| | - Hana Tamura
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601 Japan
| | - Kumiko Ikuta
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601 Japan
| | - Michika Tabata
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601 Japan
| | - Tasuku Hirayama
- Laboratory of Pharmaceutical and Medicinal Chemistry, Gifu Pharmaceutical University, 1-25-4, Daigaku-nishi, Gifu, 501-1196 Japan
| | - Hironaka Tsukagoshi
- Faculty of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, 468-8502 Japan
| | - Keitaro Tanoi
- Isotope Facility for Agricultural Education and Research, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Takamasa Suzuki
- Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi, 478-8501 Japan
| | - Takushi Hachiya
- Department of Molecular and Function Genomics, Interdisciplinary Center for Science Research, Shimane University, 1060 Nishikawatsu-cho, Matsue, 690-8504 Japan
| | - Hitoshi Sakakibara
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601 Japan
- Center for Sustainable Resource Science, RIKEN, 1-7-22, Suehiro, Tsurumi, Yokohama, 230-0045 Japan
| |
Collapse
|
14
|
Khan MS, Lu Q, Cui M, Rajab H, Wu H, Chai T, Ling HQ. Crosstalk Between Iron and Sulfur Homeostasis Networks in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2022; 13:878418. [PMID: 35755678 PMCID: PMC9224419 DOI: 10.3389/fpls.2022.878418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
The widespread deficiency of iron (Fe) and sulfur (S) is becoming a global concern. The underlying mechanisms regulating Fe and S sensing and signaling have not been well understood. We investigated the crosstalk between Fe and S using mutants impaired in Fe homeostasis, sulfate assimilation, and glutathione (GSH) biosynthesis. We showed that chlorosis symptoms induced by Fe deficiency were not directly related to the endogenous GSH levels. We found dynamic crosstalk between Fe and S networks and more interestingly observed that the upregulated expression of IRT1 and FRO2 under S deficiency in Col-0 was missing in the cad2-1 mutant background, which suggests that under S deficiency, the expression of IRT1 and FRO2 was directly or indirectly dependent on GSH. Interestingly, the bottleneck in sulfite reduction led to a constitutively higher IRT1 expression in the sir1-1 mutant. While the high-affinity sulfate transporter (Sultr1;2) was upregulated under Fe deficiency in the roots, the low-affinity sulfate transporters (Sultr2;1, and Sultr2;2) were down-regulated in the shoots of Col-0 seedlings. Moreover, the expression analysis of some of the key players in the Fe-S cluster assembly revealed that the expression of the so-called Fe donor in mitochondria (AtFH) and S mobilizer of group II cysteine desulfurase in plastids (AtNFS2) were upregulated under Fe deficiency in Col-0. Our qPCR data and ChIP-qPCR experiments suggested that the expression of AtFH is likely under the transcriptional regulation of the central transcription factor FIT.
Collapse
Affiliation(s)
- Muhammad Sayyar Khan
- The State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture Peshawar, Peshawar, Pakistan
| | - Qiao Lu
- The State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Man Cui
- The State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Hala Rajab
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture Peshawar, Peshawar, Pakistan
| | - Huilan Wu
- The State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Tuanyao Chai
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Hong-Qing Ling
- The State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
15
|
Zehra A, Raytekar NA, Meena M, Swapnil P. Efficiency of microbial bio-agents as elicitors in plant defense mechanism under biotic stress: A review. CURRENT RESEARCH IN MICROBIAL SCIENCES 2021; 2:100054. [PMID: 34841345 PMCID: PMC8610294 DOI: 10.1016/j.crmicr.2021.100054] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/29/2021] [Accepted: 07/29/2021] [Indexed: 12/14/2022] Open
Abstract
MBCAs played beneficial role to protect plants from harmful pathogens to control plant diseases. MBCAs also support in plant growth promotion and stress tolerance. MBCAs act as elicitors to induce a signal to stimulate the plant defense mechanism against pathogens. Reticine A-induced hypersensitive reaction, systemic accumulation of H2O2 and salicylic acid.
Numerous harmful microorganisms and insect pests have the ability to cause plant infections or damage, which is mostly controlled by toxic chemical agents. These chemical compounds and their derivatives exhibit hazardous effects on habitats and human life too. Hence, there's a need to develop novel, more effective and safe bio-control agents. A variety of microbes such as viruses, bacteria, and fungi possess a great potential to fight against phytopathogens and thus can be used as bio-control agents instead of harmful chemical compounds. These naturally occurring microorganisms are applied to the plants in order to control phytopathogens. Moreover, practicing them appropriately for agriculture management can be a way towards a sustainable approach. The MBCAs follow various modes of action and act as elicitors where they induce a signal to activate plant defense mechanisms against a variety of pathogens. MBCAs control phytopathogens and help in disease suppression through the production of enzymes, antimicrobial compounds, antagonist activity involving hyper-parasitism, induced resistance, competitive inhibition, etc. Efficient recognition of pathogens and prompt defensive response are key factors of induced resistance in plants. This resistance phenomenon is pertaining to a complex cascade that involves an increased amount of defensive proteins, salicylic acid (SA), or induction of signaling pathways dependent on plant hormones. Although, there's a dearth of information about the exact mechanism of plant-induced resistance, the studies conducted at the physiological, biochemical and genetic levels. These studies tried to explain a series of plant defensive responses triggered by bio-control agents that may enhance the defensive capacity of plants. Several natural and recombinant microorganisms are commercially available as bio-control agents that mainly include strains of Bacillus, Pseudomonads and Trichoderma. However, the complete understanding of microbial bio-control agents and their interactions at cellular and molecular levels will facilitate the screening of effective and eco-friendly bio-agents, thereby increasing the scope of MBCAs. This article is a comprehensive review that highlights the importance of microbial agents as elicitors in the activation and regulation of plant defense mechanisms in response to a variety of pathogens.
Collapse
Key Words
- ABA, Abscisic acid
- BABA, β-Aminobutyric acid
- BTH, Benzothiadiazole
- CKRI, Cross kingdom RNA interference
- DAMPs, Damage-associated molecular patterns
- Defense mechanism
- ET, Ethylene
- ETI, Effector-triggered immunity
- Elicitors
- Fe, Iron
- GSH, Glutathione
- HAMP, Herbivore-associated molecular patterns
- HG, Heptaglucan
- HIR, Herbivore induced resistance
- HRs, Hormonal receptors
- ISR, Induced systemic resistance
- ISS, Induced systemic susceptibility
- Induced resistance
- JA, Jasmonic acid
- LAR, Local acquired resistance
- LPS, Lipopolysaccharides
- MAMPs, Microbe-associated molecular patterns
- MBCAs, Microbial biological control agents
- Microbiological bio-control agent
- N, Nitrogen
- NO, Nitric oxide
- P, Phosphorous
- PAMPs, Pathogen-associated molecular patterns
- PGP, Plant growth promotion
- PGPB, Plant growth promoting bacteria
- PGPF, Plant growth promoting fungi
- PGPR, Plant growth promoting rhizobacteria
- PRPs, Pathogenesis-related proteins
- PRRs, Pattern recognition receptors
- PTI, Pattern triggered immunity
- Plant defense
- Plant disease
- RLKs, Receptor-like-kinases
- RLPs, Receptor-like-proteins
- ROS, Reactive oxygen species
- SA, Salicylic acid
- SAR, Systemic acquired resistance
- TFs, Transcription factors
- TMV, Tobacco mosaic virus
- VOCs, Volatile organic compounds
Collapse
Affiliation(s)
- Andleeb Zehra
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi - 221005, India
| | | | - Mukesh Meena
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur - 313001, Rajasthan, India
| | - Prashant Swapnil
- Department of Botany, University of Delhi, New Delhi - 110007, India
| |
Collapse
|
16
|
Kaur G, Shukla V, Meena V, Kumar A, Tyagi D, Singh J, Kandoth PK, Mantri S, Rouached H, Pandey AK. Physiological and molecular responses to combinatorial iron and phosphate deficiencies in hexaploid wheat seedlings. Genomics 2021; 113:3935-3950. [PMID: 34606916 DOI: 10.1016/j.ygeno.2021.09.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 09/23/2021] [Accepted: 09/25/2021] [Indexed: 01/16/2023]
Abstract
Iron (Fe) and phosphorus (P) are the essential mineral nutrients for plant growth and development. However, the molecular interaction of the Fe and P pathways in crops remained largely obscure. In this study, we provide a comprehensive physiological and molecular analysis of hexaploid wheat response to single (Fe, P) and its combinatorial deficiencies. Our data showed that inhibition of the primary root growth occurs in response to Fe deficiency; however, growth was rescued when combinatorial deficiencies occurred. Analysis of RNAseq revealed that distinct molecular rearrangements during combined deficiencies with predominance for genes related to metabolic pathways and secondary metabolite biosynthesis primarily include genes for UDP-glycosyltransferase, cytochrome-P450s, and glutathione metabolism. Interestingly, the Fe-responsive cis-regulatory elements in the roots in Fe stress conditions were enriched compared to the combined stress. Our metabolome data also revealed the accumulation of distinct metabolites such as amino-isobutyric acid, arabinonic acid, and aconitic acid in the combined stress environment. Overall, these results are essential in developing new strategies to improve the resilience of crops in limited nutrients.
Collapse
Affiliation(s)
- Gazaldeep Kaur
- National Agri-Food Biotechnology Institute, Department of Biotechnology, Sector 81, Knowledge City, Mohali 140306, Punjab, India; Department of Biotechnology, Panjab University, Punjab, India
| | - Vishnu Shukla
- National Agri-Food Biotechnology Institute, Department of Biotechnology, Sector 81, Knowledge City, Mohali 140306, Punjab, India
| | - Varsha Meena
- National Agri-Food Biotechnology Institute, Department of Biotechnology, Sector 81, Knowledge City, Mohali 140306, Punjab, India
| | - Anil Kumar
- National Agri-Food Biotechnology Institute, Department of Biotechnology, Sector 81, Knowledge City, Mohali 140306, Punjab, India; Department of Biotechnology, Panjab University, Punjab, India
| | - Deepshikha Tyagi
- National Agri-Food Biotechnology Institute, Department of Biotechnology, Sector 81, Knowledge City, Mohali 140306, Punjab, India
| | - Jagtar Singh
- Department of Biotechnology, Panjab University, Punjab, India
| | - Pramod Kaitheri Kandoth
- National Agri-Food Biotechnology Institute, Department of Biotechnology, Sector 81, Knowledge City, Mohali 140306, Punjab, India
| | - Shrikant Mantri
- National Agri-Food Biotechnology Institute, Department of Biotechnology, Sector 81, Knowledge City, Mohali 140306, Punjab, India
| | - Hatem Rouached
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824, United States of America; Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, United States of America
| | - Ajay Kumar Pandey
- National Agri-Food Biotechnology Institute, Department of Biotechnology, Sector 81, Knowledge City, Mohali 140306, Punjab, India.
| |
Collapse
|
17
|
García MJ, Lucena C, Romera FJ. Ethylene and Nitric Oxide Involvement in the Regulation of Fe and P Deficiency Responses in Dicotyledonous Plants. Int J Mol Sci 2021; 22:4904. [PMID: 34063156 PMCID: PMC8125717 DOI: 10.3390/ijms22094904] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 11/16/2022] Open
Abstract
Iron (Fe) and phosphorus (P) are two essential elements for plant growth. Both elements are abundant in soils but with poor availability for plants, which favor their acquisition by developing morphological and physiological responses in their roots. Although the regulation of the genes related to these responses is not totally known, ethylene (ET) and nitric oxide (NO) have been involved in the activation of both Fe-related and P-related genes. The common involvement of ET and NO suggests that they must act in conjunction with other specific signals, more closely related to each deficiency. Among the specific signals involved in the regulation of Fe- or P-related genes have been proposed Fe-peptides (or Fe ion itself) and microRNAs, like miR399 (P), moving through the phloem. These Fe- or P-related phloem signals could interact with ET/NO and confer specificity to the responses to each deficiency, avoiding the induction of the specific responses when ET/NO increase due to other nutrient deficiencies or stresses. Besides the specificity conferred by these signals, ET itself could confer specificity to the responses to Fe- or P-deficiency by acting through different signaling pathways in each case. Given the above considerations, there are preliminary results suggesting that ET could regulate different nutrient responses by acting both in conjunction with other signals and through different signaling pathways. Because of the close relationship among these two elements, a better knowledge of the physiological and molecular basis of their interaction is necessary to improve their nutrition and to avoid the problems associated with their misuse. As examples of this interaction, it is known that Fe chlorosis can be induced, under certain circumstances, by a P over- fertilization. On the other hand, Fe oxides can have a role in the immobilization of P in soils. Qualitative and quantitative assessment of the dynamic of known Fe- and P-related genes expression, selected ad hoc and involved in each of these deficiencies, would allow us to get a profound knowledge of the processes that regulate the responses to both deficiencies. The better knowledge of the regulation by ET of the responses to these deficiencies is necessary to properly understand the interactions between Fe and P. This will allow the obtention of more efficient varieties in the absorption of P and Fe, and the use of more rational management techniques for P and Fe fertilization. This will contribute to minimize the environmental impacts caused by the use of P and Fe fertilizers (Fe chelates) in agriculture and to adjust the costs for farmers, due to the high prices and/or scarcity of Fe and P fertilizers. This review aims to summarize the latest advances in the knowledge about Fe and P deficiency responses, analyzing the similarities and differences among them and considering the interactions among their main regulators, including some hormones (ethylene) and signaling substances (NO and GSNO) as well as other P- and Fe-related signals.
Collapse
Affiliation(s)
- María José García
- Department of Botany, Ecology and Plant Physiology, Campus de Excelencia Internacional Agroalimentario, Universidad de Córdoba, 14071 Córdoba, Spain
| | - Carlos Lucena
- Department of Biochemistry and Molecular Biology, Campus de Excelencia Internacional Agroalimentario, Universidad de Córdoba, 14071 Córdoba, Spain;
| | - Francisco Javier Romera
- Department of Agronomy, (DAUCO-María de Maeztu Unit of Excellence) Campus de Excelencia Internacional Agroalimentario, Universidad de Córdoba, 14071 Córdoba, Spain;
| |
Collapse
|
18
|
Singh S, Kailasam S, Lo JC, Yeh KC. Histone H3 lysine4 trimethylation-regulated GRF11 expression is essential for the iron-deficiency response in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2021; 230:244-258. [PMID: 33274450 DOI: 10.1111/nph.17130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/26/2020] [Indexed: 05/21/2023]
Abstract
Iron (Fe) homeostasis in plants is controlled by both transcription factors (TFs) and chromatin remodeling through histone modification. To date, few studies have reported the existence of histone modification in maintaining the Fe-deficiency response. However, the reports that do exist shed light on various histone modifications, but knowledge of the activation mark in Fe-deficiency response is lacking. By using a forward genetics approach, we identified a crucial allele for Fe-deficiency response, NON-RESPONSE TO Fe-DEFICIENCY2 (NRF2), previously described as EARLY FLOWERING8 (ELF8) associated with an activation mark on histone modification, histone H3 lysine4 trimethylation. In the nrf2-1 mutant, a point mutation at ELF8T404I , exhibits impaired expression of GENERAL REGULATORY FACTOR11 (GRF11) and downstream genes in the Fe-uptake pathway. In vivo chromatin immunoprecipitation revealed that in roots, NRF2/ELF8 is essential for the expression of GRF11 for Fe-deficiency response, whereas in shoots, NRF2/ELF8 regulates FLOWERING LOCUS C (FLC) expression for flowering time control. In summary, a key factor, NRF2/ELF8, involved in epigenetic regulation essential for both flowering time control and Fe-deficiency response is uncovered.
Collapse
Affiliation(s)
- Surjit Singh
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica and National Chung Hsing University, Taipei, 11529, Taiwan
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Sakthivel Kailasam
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Jing-Chi Lo
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Kuo-Chen Yeh
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica and National Chung Hsing University, Taipei, 11529, Taiwan
- Biotechnology Center, National Chung Hsing University, Taichung, 40227, Taiwan
| |
Collapse
|
19
|
Bashir K, Ahmad Z, Kobayashi T, Seki M, Nishizawa NK. Roles of subcellular metal homeostasis in crop improvement. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2083-2098. [PMID: 33502492 DOI: 10.1093/jxb/erab018] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
Improvement of crop production in response to rapidly changing environmental conditions is a serious challenge facing plant breeders and biotechnologists. Iron (Fe), zinc (Zn), manganese (Mn), and copper (Cu) are essential micronutrients for plant growth and reproduction. These minerals are critical to several cellular processes including metabolism, photosynthesis, and cellular respiration. Regulating the uptake and distribution of these minerals could significantly improve plant growth and development, ultimately leading to increased crop production. Plant growth is limited by mineral deficiency, but on the other hand, excess Fe, Mn, Cu, and Zn can be toxic to plants; therefore, their uptake and distribution must be strictly regulated. Moreover, the distribution of these metals among subcellular organelles is extremely important for maintaining optimal cellular metabolism. Understanding the mechanisms controlling subcellular metal distribution and availability would enable development of crop plants that are better adapted to challenging and rapidly changing environmental conditions. Here, we describe advances in understanding of subcellular metal homeostasis, with a particular emphasis on cellular Fe homeostasis in Arabidopsis and rice, and discuss strategies for regulating cellular metabolism to improve plant production.
Collapse
Affiliation(s)
- Khurram Bashir
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore, Pakistan
- Plant Genomics Network Research Team, Center for Sustainable Resource Science, Suehiro, Tsurumi Ku, Yokohama, Kanagawa, Japan
| | - Zarnab Ahmad
- Plant Genomics Network Research Team, Center for Sustainable Resource Science, Suehiro, Tsurumi Ku, Yokohama, Kanagawa, Japan
| | - Takanori Kobayashi
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Nonoichi, Ishikawa, Japan
| | - Motoaki Seki
- Plant Genomics Network Research Team, Center for Sustainable Resource Science, Suehiro, Tsurumi Ku, Yokohama, Kanagawa, Japan
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan
| | - Naoko K Nishizawa
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Nonoichi, Ishikawa, Japan
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
20
|
Distéfano AM, López GA, Setzes N, Marchetti F, Cainzos M, Cascallares M, Zabaleta E, Pagnussat GC. Ferroptosis in plants: triggers, proposed mechanisms, and the role of iron in modulating cell death. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2125-2135. [PMID: 32918080 DOI: 10.1093/jxb/eraa425] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 09/09/2020] [Indexed: 05/20/2023]
Abstract
Regulated cell death plays key roles during essential processes throughout the plant life cycle. It takes part in specific developmental programs and maintains homeostasis of the organism in response to unfavorable environments. Ferroptosis is a recently discovered iron-dependent cell death pathway characterized by the accumulation of lipid reactive oxygen species. In plants, ferroptosis shares all the main hallmarks described in other systems. Those specific features include biochemical and morphological signatures that seem to be conserved among species. However, plant cells have specific metabolic pathways and a high degree of metabolic compartmentalization. Together with their particular morphology, these features add more complexity to the plant ferroptosis pathway. In this review, we summarize the most recent advances in elucidating the roles of ferroptosis in plants, focusing on specific triggers, the main players, and underlying pathways.
Collapse
Affiliation(s)
- Ayelén Mariana Distéfano
- Instuto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Gabriel Alejandro López
- Instuto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Nicolás Setzes
- Instuto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Fernanda Marchetti
- Instuto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Maximiliano Cainzos
- Instuto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Milagros Cascallares
- Instuto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Eduardo Zabaleta
- Instuto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Gabriela Carolina Pagnussat
- Instuto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| |
Collapse
|
21
|
Cui M, Gu M, Lu Y, Zhang Y, Chen C, Ling HQ, Wu H. Glutamate synthase 1 is involved in iron-deficiency response and long-distance transportation in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:1925-1941. [PMID: 32584503 DOI: 10.1111/jipb.12985] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
Iron is an essential microelement for plant growth. After uptake from the soil, iron is chelated by ligands and translocated from roots to shoots for subsequent utilization. However, the number of ligands involved in iron chelation is unclear. In this study, we identified and demonstrated that GLU1, which encodes a ferredoxin-dependent glutamate synthase, was involved in iron homeostasis. First, the expression of GLU1 was strongly induced by iron deficiency condition. Second, lesion of GLU1 results in reduced transcription of many iron-deficiency-responsive genes in roots and shoots. The mutant plants revealed a decreased iron concentration in the shoots, and displayed severe leaf chlorosis under the condition of Fe limitation, compared to wild-type. Third, the product of GLU1, glutamate, could chelate iron in vivo and promote iron transportation. Last, we also found that supplementation of glutamate in the medium can alleviate cadmium toxicity in plants. Overall, our results provide evidence that GLU1 is involved in iron homeostasis through affecting glutamate synthesis under iron deficiency conditions in Arabidopsis.
Collapse
Affiliation(s)
- Man Cui
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mengjun Gu
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yaru Lu
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yue Zhang
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chunlin Chen
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hong-Qing Ling
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huilan Wu
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
22
|
Goodarzi A, Namdjoyan S, Soorki AA. Effects of exogenous melatonin and glutathione on zinc toxicity in safflower (Carthamus tinctorius L.) seedlings. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 201:110853. [PMID: 32563160 DOI: 10.1016/j.ecoenv.2020.110853] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/30/2020] [Accepted: 06/01/2020] [Indexed: 05/03/2023]
Abstract
The phytotoxicity caused by 500 μM ZnSO4.7H2O and its detoxifying by co-application of 100 μM of MT melatonin (MT) and glutathione (GSH) in 6-week-old safflower plants have been investigated. Reduced biomass production and total chlorophyll content on the one hand and increased content of hydrogen peroxide (H2O2), malondialdehyde (MDA) with increase in lipoxygenase activity, on the other hand, showed Zn- induced oxidative damage in safflower seedlings. When MT, GSH and especially MT + GSH exogenously were applied to Zn-stressed seedlings, the content of H2O2, MDA and the activity of lipoxygenase considerably decreased. In Zn- treated seedlings, the application of these signaling molecules led to a considerable increment in ascorbate (ASC), GSH and phytochelatin (PC) contents along with the induction of activity of antioxidant enzymes including ascorbate-glutathione cycle enzymes when compared with the plants stressed with Zn only. In Zn-stressed safflower seedlings treated with MT, GSH and MT + GSH, decreased activity of enzymes involved in glyoxalase system may be associated with the role of MT and GSH in reducing Zn uptake and reducing Zn-induced toxicity and subsequently, lower plant's defense responses. The data showed that the effects of MT and GSH, in particular, the combination of these two molecules in reducing Zn uptake and diminishing its accumulation in the shoots of safflower seedlings, and also the participation of MT and GSH on increasing plant ability to tolerate high amount of Zn through stimulation of various antioxidant defense systems suggest them as suitable candidates to better the survival of safflower in soils contaminated with Zn excess.
Collapse
Affiliation(s)
- Asiyeh Goodarzi
- Department of Biology and Biochemistry, Science Faculty, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
| | - Shahram Namdjoyan
- Department of Biology and Biochemistry, Science Faculty, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran.
| | - Ali Abolhasani Soorki
- ACECR-Research Institute of Applied Sciences, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
23
|
Chen J, Zhang NN, Pan Q, Lin XY, Shangguan Z, Zhang JH, Wei GH. Hydrogen sulphide alleviates iron deficiency by promoting iron availability and plant hormone levels in Glycine max seedlings. BMC PLANT BIOLOGY 2020; 20:383. [PMID: 32819279 PMCID: PMC7441670 DOI: 10.1186/s12870-020-02601-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 08/16/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Hydrogen sulphide (H2S) is involved in regulating physiological processes in plants. We investigated how H2S ameliorates iron (Fe) deficiency in soybean (Glycine max L.) seedlings. Multidisciplinary approaches including physiological, biochemical and molecular, and transcriptome methods were used to investigate the H2S role in regulating Fe availability in soybean seedlings. RESULTS Our results showed that H2S completely prevented leaf interveinal chlorosis and caused an increase in soybean seedling biomass under Fe deficiency conditions. Moreover, H2S decreased the amount of root-bound apoplastic Fe and increased the Fe content in leaves and roots by regulating the ferric-chelate reductase (FCR) activities and Fe homeostasis- and sulphur metabolism-related gene expression levels, thereby promoting photosynthesis in soybean seedlings. In addition, H2S changed the plant hormone concentrations by modulating plant hormone-related gene expression abundances in soybean seedlings grown in Fe-deficient solution. Furthermore, organic acid biosynthesis and related genes expression also played a vital role in modulating the H2S-mediated alleviation of Fe deficiency in soybean seedlings. CONCLUSION Our results indicated that Fe deficiency was alleviated by H2S through enhancement of Fe acquisition and assimilation, thereby regulating plant hormones and organic acid synthesis in plants.
Collapse
Affiliation(s)
- Juan Chen
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China.
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, the Chinese University of Hong Kong, Shatin, Hong Kong.
| | - Ni-Na Zhang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
| | - Qing Pan
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
| | - Xue-Yuan Lin
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
| | - Zhouping Shangguan
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
| | - Jian-Hua Zhang
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, the Chinese University of Hong Kong, Shatin, Hong Kong
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Ge-Hong Wei
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China.
| |
Collapse
|
24
|
Rajab H, Khan MS, Wirtz M, Malagoli M, Qahar F, Hell R. Sulfur metabolic engineering enhances cadmium stress tolerance and root to shoot iron translocation in Brassica napus L. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 152:32-43. [PMID: 32387912 DOI: 10.1016/j.plaphy.2020.04.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/12/2020] [Accepted: 04/12/2020] [Indexed: 05/20/2023]
Abstract
Serine acetyltransferase (SAT) (EC 2.3.1.30) is the rate-limiting enzyme of cysteine (Cys) biosynthesis, providing the decisive precursor for the ubiquitous defense thiol glutathione (GSH). Together with O-acetylserine (thiol) lyase (OAS-TL; EC 2.5.1.47) SAT generates Cys in the cytosol, plastids, and mitochondria of vascular plants. The current study aimed to overproduce Cys and GSH for enhanced stress tolerance via overexpression of the feedback-insensitive isoform of serine acetyltransferase from tobacco, i.e., NtSAT4. Constitutive overexpression of NtSAT4 in Brassica napus resulted in the 2.6-fold-4-fold higher SAT activity in different subcellular compartment-specific lines. This higher SAT activity led to a 2.5-fold-3.5-fold higher steady-state level of free Cys and 2.2-fold-5.3-fold elevated level of GSH in leaves compared with nontransformed plants. Among the compartment-specific lines, the mitochondrial targeted NtSAT4 overexpressor line M-182 showed the highest levels of Cys (3.5-fold) and GSH (5.3-fold) compared with wild-type plants. Overexpression of NtSAT4 conferred a physiological advantage in terms of enhanced tolerance against oxidative stress with hydrogen peroxide and the heavy metal cadmium (Cd). The NtSAT4 overexpressor lines showed a significantly higher amount of iron (Fe) translocation from roots to shoots compared with nontransformed plants. Overall, these results suggest that overexpression of NtSAT4 is a promising approach to creating plants with tolerance to heavy metals and oxidative stress and, in addition, may potentially improve plant nutrition in terms of enhanced Fe translocation from roots to shoots.
Collapse
Affiliation(s)
- Hala Rajab
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture Peshawar, 25130, Peshawar, Pakistan; Centre for Organismal Studies (COS), Heidelberg University, 69120, Heidelberg, Germany
| | - Muhammad Sayyar Khan
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture Peshawar, 25130, Peshawar, Pakistan.
| | - Markus Wirtz
- Centre for Organismal Studies (COS), Heidelberg University, 69120, Heidelberg, Germany
| | - Mario Malagoli
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Legnaro, PD, Italy
| | - Fariha Qahar
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture Peshawar, 25130, Peshawar, Pakistan
| | - Rüdiger Hell
- Centre for Organismal Studies (COS), Heidelberg University, 69120, Heidelberg, Germany
| |
Collapse
|
25
|
Guo Z, Du N, Li Y, Zheng S, Shen S, Piao F. Gamma-aminobutyric acid enhances tolerance to iron deficiency by stimulating auxin signaling in cucumber (Cucumis sativusL.). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 192:110285. [PMID: 32035398 DOI: 10.1016/j.ecoenv.2020.110285] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/11/2020] [Accepted: 01/31/2020] [Indexed: 06/10/2023]
Abstract
Iron deficiency severely affects crop yield and quality. Gamma-aminobutyric acid (GABA) plays a vital role in plant responses to multifarious stresses. However, the role of GABA in Fe deficiency responses and the potential mechanisms remain largely unknown in cucumber. Here, we found that Fe deficiency raised the GABA levels in leaves and roots of cucumber. To probe the role of GABA in Fe deficiency, the seedlings were subjected to five levels of GABA concentrations (0, 5, 10, 20 and 40 mmol L-1) for 7 days under Fe deficiency. The results demonstrated that 20 mM GABA in alleviating the Fe deficiency-induced stress was the most effective. GABA pretreatment reduced the Fe deficiency-induced chlorosis and inhibition of photosynthesis and growth, and significantly enhanced the contents of iron in shoots and roots. Exogenous GABA significantly decreased the pH of nutrient solution and increased ferric-chelate reductase (FCR) activity induced by Fe deficiency and the transcript levels of Fe uptake-related genes HA1, FRO2 and IRT1 in roots. GABA also increased the content of auxin (IAA) and expression of auxin biosynthesis (YUC4), response (IAA1), and transport (PIN1) genes under Fe deficiency. Furthermore, exogenous the auxin transport inhibitor 1-naphthylphthalamic acid (NPA) application abolished the GABA-induced changes in Fe deficiency. In summary, we found that GABA improves tolerance to iron deficiency via an auxin-dependent mechanism in cucumber.
Collapse
Affiliation(s)
- Zhixin Guo
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450002, PR China
| | - Nanshan Du
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450002, PR China
| | - Yingnan Li
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450002, PR China
| | - Shuxin Zheng
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450002, PR China
| | - Shunshan Shen
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450002, PR China
| | - Fengzhi Piao
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450002, PR China.
| |
Collapse
|
26
|
The Effect of Sprouting in Lentil ( Lens culinaris) Nutritional and Microbiological Profile. Foods 2020; 9:foods9040400. [PMID: 32244579 PMCID: PMC7230579 DOI: 10.3390/foods9040400] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/18/2020] [Accepted: 03/20/2020] [Indexed: 11/29/2022] Open
Abstract
Biological and vegetarian raw food products, in particular based on legume sprouts, are an increasing food trend, due to their improved nutritional value when compared to seeds. Herein, protein and mineral profiles were studied in 12 lentil varieties, with varieties Du Puy, Kleine Schwarze, Rosana, Flora, Große Rote and Kleine Späths II demonstrating the highest protein percentages. After sprouting, protein percentages increased significantly in 10 of the 12 varieties, with the highest increases ranging between 20–23% in Dunkelgrün Marmorierte, Du Puy, Große Rote and Kleine Späths II varieties. While Fe concentration was significantly decreased in three varieties (Samos, Große Rote and Kleine Späths II), Zn and Mn were positively impacted by sprouting (p ≤ 0.05). Magnesium concentration was not affected by sprouting, while Ca and K had percentage increases between 41% and 58%, and 28% and 30%, respectively, in the best performing varieties (Kleine Schwarze, Dunkelgrün Marmorierte, Samos and Rosana). Regardless of the associated nutritional benefits, issues pertaining to sprouts microbiological safety must be ensured. The best results for the disinfection protocols were obtained when combining the seed treatment with SDS reagent followed by an Amukine application on the sprouts, which did not affect germination rates or sprout length. The increasing levels of sprout consumption throughout the world require efficient implementation of safety measures, as well as a knowledge-based selection for the nutritional quality of the seeds.
Collapse
|
27
|
Wang X, Ruan M, Wan Q, He W, Yang L, Liu X, He L, Yan L, Bi Y. Nitric oxide and hydrogen peroxide increase glucose-6-phosphate dehydrogenase activities and expression upon drought stress in soybean roots. PLANT CELL REPORTS 2020; 39:63-73. [PMID: 31535176 DOI: 10.1007/s00299-019-02473-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 09/10/2019] [Indexed: 06/10/2023]
Abstract
KEY MESSAGE Changes in glucose-6-phosphate dehydrogenase (G6PD) isoforms activities and expression were investigated in soybean roots under drought, suggesting that cytosolic G6PD plays a main role by regulating H2O2 signal and redox homeostasis. G6PD acts a vital role in plant growth, development and stress adaptation. Drought (PEG6000 treatment) could markedly increase the enzymatic activities of cytosolic G6PD (Cyt-G6PD) and compartmented G6PD (mainly plastidic P2-G6PD) in soybean roots. Application of G6PD inhibitor upon drought condition dramatically decreased the intracellular NADPH and reduced glutathione levels in soybean roots. Nitric oxide (NO) and hydrogen peroxide (H2O2) participated in the regulation of Cyt-G6PD and P2-G6PD enzymatic activities under drought stress. Diphenylene iodonium (DPI), an inhibitor of NADPH oxidase, abolished the drought-induced accumulation of H2O2. The exogenous application of H2O2 and its production inhibitor (DPI) could stimulate and inhibit the NO accumulation, respectively, but not vice versa. qRT-PCR analysis confirmed that NO, as the downstream signal of H2O2, positively regulated the transcription of genes encoding Cyt-G6PD (GPD5, G6PD6, G6PD7) under drought stress in soybean roots. Comparatively, NO and H2O2 signals negatively regulated the gene expression of compartmented G6PD (GPD1, G6PD2, G6PD4), indicating that a post-transcriptional mechanism was involved in compartmented G6PD regulation. Taken together, the high Cyt-G6PD activity is essential for maintaining redox homeostasis upon drought condition in soybean roots, and the H2O2-dependent NO cascade signal is differently involved in Cyt-G6PD and compartmented G6PD regulation.
Collapse
Affiliation(s)
- Xiaomin Wang
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, Gansu, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, Qinghai, China
| | - Mengjiao Ruan
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Qi Wan
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Wenliang He
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Lei Yang
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Xinyuan Liu
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Li He
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Lili Yan
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Yurong Bi
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, Gansu, China.
| |
Collapse
|
28
|
Kaur G, Shukla V, Kumar A, Kaur M, Goel P, Singh P, Shukla A, Meena V, Kaur J, Singh J, Mantri S, Rouached H, Pandey AK. Integrative analysis of hexaploid wheat roots identifies signature components during iron starvation. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:6141-6161. [PMID: 31738431 PMCID: PMC6859736 DOI: 10.1093/jxb/erz358] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 07/24/2019] [Indexed: 05/05/2023]
Abstract
Iron (Fe) is an essential micronutrient for all organisms. In crop plants, Fe deficiency can decrease crop yield significantly; however, our current understanding of how major crops respond to Fe deficiency remains limited. Herein, the effect of Fe deprivation at both the transcriptomic and metabolic level in hexaploid wheat was investigated. Genome-wide gene expression reprogramming was observed in wheat roots subjected to Fe starvation, with a total of 5854 genes differentially expressed. Homoeologue and subgenome-specific analysis unveiled the induction-biased contribution from the A and B genomes. In general, the predominance of genes coding for nicotianamine synthase, yellow stripe-like transporters, metal transporters, ABC transporters, and zinc-induced facilitator-like protein was noted. Expression of genes related to the Strategy II mode of Fe uptake was also predominant. Our transcriptomic data were in agreement with the GC-MS analysis that showed the enhanced accumulation of various metabolites such as fumarate, malonate, succinate, and xylofuranose, which could be contributing to Fe mobilization. Interestingly, Fe starvation leads to a significant temporal increase of glutathione S-transferase at both the transcriptional level and enzymatic activity level, which indicates the involvement of glutathione in response to Fe stress in wheat roots. Taken together, our result provides new insight into the wheat response to Fe starvation at the molecular level and lays the foundation to design new strategies for the improvement of Fe nutrition in crops.
Collapse
Affiliation(s)
- Gazaldeep Kaur
- National Agri-Food Biotechnology Institute (Department of Biotechnology), Mohali, Punjab, India
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Vishnu Shukla
- National Agri-Food Biotechnology Institute (Department of Biotechnology), Mohali, Punjab, India
- University Institute of Engineering and Technology, Panjab University, Chandigarh, India
| | - Anil Kumar
- National Agri-Food Biotechnology Institute (Department of Biotechnology), Mohali, Punjab, India
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Mandeep Kaur
- National Agri-Food Biotechnology Institute (Department of Biotechnology), Mohali, Punjab, India
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Parul Goel
- National Agri-Food Biotechnology Institute (Department of Biotechnology), Mohali, Punjab, India
| | - Palvinder Singh
- National Agri-Food Biotechnology Institute (Department of Biotechnology), Mohali, Punjab, India
| | - Anuj Shukla
- National Agri-Food Biotechnology Institute (Department of Biotechnology), Mohali, Punjab, India
| | - Varsha Meena
- National Agri-Food Biotechnology Institute (Department of Biotechnology), Mohali, Punjab, India
| | - Jaspreet Kaur
- University Institute of Engineering and Technology, Panjab University, Chandigarh, India
| | - Jagtar Singh
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Shrikant Mantri
- National Agri-Food Biotechnology Institute (Department of Biotechnology), Mohali, Punjab, India
| | - Hatem Rouached
- BPMP, Université de Montpellier, INRA, CNRS, Montpellier SupAgro, Montpellier, France
| | - Ajay Kumar Pandey
- National Agri-Food Biotechnology Institute (Department of Biotechnology), Mohali, Punjab, India
- Correspondence: or
| |
Collapse
|
29
|
Kaya C, Ashraf M, Wijaya L, Ahmad P. The putative role of endogenous nitric oxide in brassinosteroid-induced antioxidant defence system in pepper (Capsicum annuum L.) plants under water stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 143:119-128. [PMID: 31493672 DOI: 10.1016/j.plaphy.2019.08.024] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 08/27/2019] [Accepted: 08/27/2019] [Indexed: 05/21/2023]
Abstract
Brassinosteroids (BRs) have been rarely tested for their effective roles in mitigation of deleterious effects of water stress (WS) on plants. In addition, the contribution of nitric oxide (NO) in BR-improved plant tolerance to water stress needs to be elucidated. So, a trial was carried out to uncover the contribution of NO in BR-induced tolerance of pepper plants to WS. For well-watered and water-stressed plants, soil water availability was sustained at 80% and 40% of the full water storage capacity, respectively. BR (24-epibrassinolide, EB; 1.0 μM) was sprayed to the leaves of both well-watered and water stressed-pepper plants every two days for 10 days prior to the initiation of stress treatment. After starting WS treatment, cPTIO was sprayed to plant leaves twice a week for four weeks. Water stress caused a reduced plant growth and oxidative stress, but the application of EB increased plant growth and reversed the oxidative stress. The EB treatment increased endogenous NO and reinforced antioxidant defence systems, but the cPTIO application reversed the NO levels, downregulated the antioxidant defence systems, and aggravated oxidative damages caused by WS. These results show that EB-induced NO generation and NO-mediated antioxidant defence systems might be crucial mechanisms for EB-improved tolerance of pepper plants to WS. So, both EB and NO jointly are responsible for achieving improved tolerance of pepper plants to water stress.
Collapse
Affiliation(s)
- Cengiz Kaya
- Soil Science and Plant Nutrition Department, Harran University, Sanliurfa, Turkey
| | | | - Leonard Wijaya
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box. 2460, Riyadh, 11451, Saudi Arabia
| | - Parvaiz Ahmad
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box. 2460, Riyadh, 11451, Saudi Arabia; Department of Botany, S.P. College Srinagar, Jammu and Kashmir, India.
| |
Collapse
|
30
|
Santos CS, Ozgur R, Uzilday B, Turkan I, Roriz M, Rangel AO, Carvalho SM, Vasconcelos MW. Understanding the Role of the Antioxidant System and the Tetrapyrrole Cycle in Iron Deficiency Chlorosis. PLANTS 2019; 8:plants8090348. [PMID: 31540266 PMCID: PMC6784024 DOI: 10.3390/plants8090348] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 09/05/2019] [Accepted: 09/11/2019] [Indexed: 12/18/2022]
Abstract
Iron deficiency chlorosis (IDC) is an abiotic stress often experienced by soybean, owing to the low solubility of iron in alkaline soils. Here, soybean lines with contrasting Fe efficiencies were analyzed to test the hypothesis that the Fe efficiency trait is linked to antioxidative stress signaling via proper management of tissue Fe accumulation and transport, which in turn influences the regulation of heme and non heme containing enzymes involved in Fe uptake and ROS scavenging. Inefficient plants displayed higher oxidative stress and lower ferric reductase activity, whereas root and leaf catalase activity were nine-fold and three-fold higher, respectively. Efficient plants do not activate their antioxidant system because there is no formation of ROS under iron deficiency; while inefficient plants are not able to deal with ROS produced under iron deficiency because ascorbate peroxidase and superoxide dismutase are not activated because of the lack of iron as a cofactor, and of heme as a constituent of those enzymes. Superoxide dismutase and peroxidase isoenzymatic regulation may play a determinant role: 10 superoxide dismutase isoenzymes were observed in both cultivars, but iron superoxide dismutase activity was only detected in efficient plants; 15 peroxidase isoenzymes were observed in the roots and trifoliate leaves of efficient and inefficient cultivars and peroxidase activity levels were only increased in roots of efficient plants.
Collapse
Affiliation(s)
- Carla S. Santos
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, Porto 4169-005, Portugal; (C.S.S.); (M.R.)
| | - Rengin Ozgur
- Department of Biology, Faculty of Science, Ege University, Bornova, İzmir 35100, Turkey (I.T.)
| | - Baris Uzilday
- Department of Biology, Faculty of Science, Ege University, Bornova, İzmir 35100, Turkey (I.T.)
| | - Ismail Turkan
- Department of Biology, Faculty of Science, Ege University, Bornova, İzmir 35100, Turkey (I.T.)
| | - Mariana Roriz
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, Porto 4169-005, Portugal; (C.S.S.); (M.R.)
| | - António O.S.S. Rangel
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, Porto 4169-005, Portugal; (C.S.S.); (M.R.)
| | - Susana M.P. Carvalho
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, Porto 4169-005, Portugal; (C.S.S.); (M.R.)
- GreenUPorto – Research Centre for Sustainable Agrifood Production, Faculty of Sciences of University of Porto, Rua da Agrária 747, 4485-646 Vairão, Portugal
| | - Marta W. Vasconcelos
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, Porto 4169-005, Portugal; (C.S.S.); (M.R.)
- Correspondence:
| |
Collapse
|
31
|
Buet A, Galatro A, Ramos-Artuso F, Simontacchi M. Nitric oxide and plant mineral nutrition: current knowledge. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4461-4476. [PMID: 30903155 DOI: 10.1093/jxb/erz129] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/14/2019] [Indexed: 05/20/2023]
Abstract
Plants under conditions of essential mineral deficiency trigger signaling mechanisms that involve common components. Among these components, nitric oxide (NO) has been identified as a key participant in responses to changes in nutrient availability. Usually, nutrient imbalances affect the levels of NO in specific plant tissues, via modification of its rate of synthesis or degradation. Changes in the level of NO affect plant morphology and/or trigger responses associated with nutrient homeostasis, mediated by its interaction with reactive oxygen species, phytohormones, and through post-translational modification of proteins. NO-related events constitute an exciting field of research to understand how plants adapt and respond to conditions of nutrient shortage. This review summarizes the current knowledge on NO as a component of the multiple processes related to plant performance under conditions of deficiency in mineral nutrients, focusing on macronutrients such as nitrogen, phosphate, potassium, and magnesium, as well as micronutrients such as iron and zinc.
Collapse
Affiliation(s)
- Agustina Buet
- Instituto de Fisiología Vegetal, CCT-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata, Buenos Aires, Argentina
- Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, La Plata, Argentina
| | - Andrea Galatro
- Instituto de Fisiología Vegetal, CCT-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata, Buenos Aires, Argentina
| | - Facundo Ramos-Artuso
- Instituto de Fisiología Vegetal, CCT-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata, Buenos Aires, Argentina
- Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, La Plata, Argentina
| | - Marcela Simontacchi
- Instituto de Fisiología Vegetal, CCT-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata, Buenos Aires, Argentina
- Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, La Plata, Argentina
| |
Collapse
|
32
|
Romera FJ, García MJ, Lucena C, Martínez-Medina A, Aparicio MA, Ramos J, Alcántara E, Angulo M, Pérez-Vicente R. Induced Systemic Resistance (ISR) and Fe Deficiency Responses in Dicot Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:287. [PMID: 30915094 PMCID: PMC6421314 DOI: 10.3389/fpls.2019.00287] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 02/21/2019] [Indexed: 05/03/2023]
Abstract
Plants develop responses to abiotic stresses, like Fe deficiency. Similarly, plants also develop responses to cope with biotic stresses provoked by biological agents, like pathogens and insects. Some of these responses are limited to the infested damaged organ, but other responses systemically spread far from the infested organ and affect the whole plant. These latter responses include the Systemic Acquired Resistance (SAR) and the Induced Systemic Resistance (ISR). SAR is induced by pathogens and insects while ISR is mediated by beneficial microbes living in the rhizosphere, like bacteria and fungi. These root-associated mutualistic microbes, besides impacting on plant nutrition and growth, can further boost plant defenses, rendering the entire plant more resistant to pathogens and pests. In the last years, it has been found that ISR-eliciting microbes can induce both physiological and morphological responses to Fe deficiency in dicot plants. These results suggest that the regulation of both ISR and Fe deficiency responses overlap, at least partially. Indeed, several hormones and signaling molecules, like ethylene (ET), auxin, and nitric oxide (NO), and the transcription factor MYB72, emerged as key regulators of both processes. This convergence between ISR and Fe deficiency responses opens the way to the use of ISR-eliciting microbes as Fe biofertilizers as well as biopesticides. This review summarizes the progress in the understanding of the molecular overlap in the regulation of ISR and Fe deficiency responses in dicot plants. Root-associated mutualistic microbes, rhizobacteria and rhizofungi species, known for their ability to induce morphological and/or physiological responses to Fe deficiency in dicot plant species are also reviewed herein.
Collapse
Affiliation(s)
- Francisco J. Romera
- Department of Agronomy, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Córdoba, Spain
| | - María J. García
- Department of Botany, Ecology and Plant Physiology, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Córdoba, Spain
| | - Carlos Lucena
- Department of Botany, Ecology and Plant Physiology, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Córdoba, Spain
| | - Ainhoa Martínez-Medina
- Molecular Interaction Ecology, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Miguel A. Aparicio
- Department of Microbiology, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Córdoba, Spain
| | - José Ramos
- Department of Microbiology, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Córdoba, Spain
| | - Esteban Alcántara
- Department of Agronomy, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Córdoba, Spain
| | - Macarena Angulo
- Department of Agronomy, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Córdoba, Spain
| | - Rafael Pérez-Vicente
- Department of Botany, Ecology and Plant Physiology, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Córdoba, Spain
| |
Collapse
|
33
|
Kailasam S, Chien WF, Yeh KC. Small-Molecules Selectively Modulate Iron-Deficiency Signaling Networks in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2019; 10:8. [PMID: 30766541 PMCID: PMC6365448 DOI: 10.3389/fpls.2019.00008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 01/07/2019] [Indexed: 05/02/2023]
Abstract
Plant growth requires optimal levels of iron (Fe). Fe is used for energy production, numerous enzymatic processes, and is indispensable for cellular metabolism. Recent studies have established the mechanism involved in Fe uptake and transport. However, our knowledge of Fe sensing and signaling is limited. Dissecting Fe signaling may be useful for crop improvement by Fe fortification. Here, we report two small-molecules, R3 and R6 [where R denotes repressor of IRON-REGULATED TRANSPORTER 1 (IRT1)], identified through a chemical screening, whose use blocked activation of the Fe-deficiency response in Arabidopsis thaliana. Physiological analysis of plants treated with R3 and R6 showed that these small molecules drastically attenuated the plant response to Fe starvation. Small-molecule treatment caused severe chlorosis and strongly reduced chlorophyll levels in plants. Fe content in shoots was decreased considerably by small-molecule treatments especially in Fe deficiency. Small-molecule treatments attenuated the Fe-deficiency-induced expression of the Fe uptake gene IRT1. Analysis of FER-LIKE IRON-DEFICIENCY-INDUCED TRANSCRIPTION FACTOR (FIT) and subgroup Ib basic helix-loop-helix (bHLH) gene (bHLH38/39/100/101) expression showed that R3 affects the FIT-network, whereas R6 affects both the FIT and Ib bHLH networks. An assessment of the effects of the structural analogs of R3 and R6 on the induction of Fe-dependent chlorosis revealed the functional motif of the investigated chemicals. Our findings suggest that small-molecules selectively modulate the distinct signaling routes that operate in response to Fe-deficiency. R3 and R6 likely interrupt the activity of key upstream signaling regulators whose activities are required for the activation of the Fe-starvation transcriptional cascade in Arabidopsis roots.
Collapse
|
34
|
García MJ, Corpas FJ, Lucena C, Alcántara E, Pérez-Vicente R, Zamarreño ÁM, Bacaicoa E, García-Mina JM, Bauer P, Romera FJ. A Shoot Fe Signaling Pathway Requiring the OPT3 Transporter Controls GSNO Reductase and Ethylene in Arabidopsis thaliana Roots. FRONTIERS IN PLANT SCIENCE 2018; 9:1325. [PMID: 30254659 PMCID: PMC6142016 DOI: 10.3389/fpls.2018.01325] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 08/23/2018] [Indexed: 05/12/2023]
Abstract
Ethylene, nitric oxide (NO) and glutathione (GSH) increase in Fe-deficient roots of Strategy I species where they participate in the up-regulation of Fe acquisition genes. However, S-nitrosoglutathione (GSNO), derived from NO and GSH, decreases in Fe-deficient roots. GSNO content is regulated by the GSNO-degrading enzyme S-nitrosoglutathione reductase (GSNOR). On the other hand, there are several results showing that the regulation of Fe acquisition genes does not solely depend on hormones and signaling molecules (such as ethylene or NO), which would act as activators, but also on the internal Fe content of plants, which would act as a repressor. Moreover, different results suggest that total Fe in roots is not the repressor of Fe acquisition genes, but rather the repressor is a Fe signal that moves from shoots to roots through the phloem [hereafter named LOng Distance Iron Signal (LODIS)]. To look further in the possible interactions between LODIS, ethylene and GSNOR, we compared Arabidopsis WT Columbia and LODIS-deficient mutant opt3-2 plants subjected to different Fe treatments that alter LODIS content. The opt3-2 mutant is impaired in the loading of shoot Fe into the phloem and presents constitutive expression of Fe acquisition genes. In roots of both Columbia and opt3-2 plants we determined 1-aminocyclopropane-1-carboxylic acid (ACC, ethylene precursor), expression of ethylene synthesis and signaling genes, and GSNOR expression and activity. The results obtained showed that both 'ethylene' (ACC and the expression of ethylene synthesis and signaling genes) and 'GSNOR' (expression and activity) increased in Fe-deficient WT Columbia roots. Additionally, Fe-sufficient opt3-2 roots had higher 'ethylene' and 'GSNOR' than Fe-sufficient WT Columbia roots. The increase of both 'ethylene' and 'GSNOR' was not related to the total root Fe content but to the absence of a Fe shoot signal (LODIS), and was associated with the up-regulation of Fe acquisition genes. The possible relationship between GSNOR(GSNO) and ethylene is discussed.
Collapse
Affiliation(s)
- María J. García
- Department of Botany, Ecology and Plant Physiology, Campus de Excelencia Internacional Agroalimentario, Universidad de Córdoba, Córdoba, Spain
| | - Francisco J. Corpas
- Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Spanish National Research Council, Granada, Spain
| | - Carlos Lucena
- Department of Agronomy, Campus de Excelencia Internacional Agroalimentario, Universidad de Córdoba, Córdoba, Spain
| | - Esteban Alcántara
- Department of Agronomy, Campus de Excelencia Internacional Agroalimentario, Universidad de Córdoba, Córdoba, Spain
| | - Rafael Pérez-Vicente
- Department of Botany, Ecology and Plant Physiology, Campus de Excelencia Internacional Agroalimentario, Universidad de Córdoba, Córdoba, Spain
| | - Ángel M. Zamarreño
- Department of Environmental Biology, Faculty of Sciences, University of Navarra, Pamplona, Spain
| | - Eva Bacaicoa
- Department of Environmental Biology, Faculty of Sciences, University of Navarra, Pamplona, Spain
| | - José M. García-Mina
- Department of Environmental Biology, Faculty of Sciences, University of Navarra, Pamplona, Spain
| | - Petra Bauer
- Institute of Botany, University of Düsseldorf, Düsseldorf, Germany
| | - Francisco J. Romera
- Department of Agronomy, Campus de Excelencia Internacional Agroalimentario, Universidad de Córdoba, Córdoba, Spain
| |
Collapse
|
35
|
Noctor G, Reichheld JP, Foyer CH. ROS-related redox regulation and signaling in plants. Semin Cell Dev Biol 2018; 80:3-12. [DOI: 10.1016/j.semcdb.2017.07.013] [Citation(s) in RCA: 329] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 07/10/2017] [Accepted: 07/13/2017] [Indexed: 12/14/2022]
|
36
|
Kailasam S, Wang Y, Lo JC, Chang HF, Yeh KC. S-Nitrosoglutathione works downstream of nitric oxide to mediate iron-deficiency signaling in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:157-168. [PMID: 29396986 DOI: 10.1111/tpj.13850] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 12/12/2017] [Accepted: 01/10/2018] [Indexed: 05/18/2023]
Abstract
Iron (Fe) is essential for plant growth and development. Knowledge of Fe signaling, from the beginning of perception to activation of the uptake process, is critical for crop improvement. Here, by using chemical screening, we identified a small molecule 3-amino-N-(3-methylphenyl)thieno[2,3-b]pyridine-2-carboxamide named R7 ('R' denoting repressor of IRON-REGULATED TRANSPORTER 1), that modulates Fe homeostasis of Arabidopsis. R7 treatment led to reduced Fe levels in plants, thus causing severe chlorosis under Fe deficiency. Expression analysis of central transcription factors, FER-LIKE IRON DEFICIENCY INDUCED TRANSCRIPTION FACTOR (FIT) and subgroup Ib basic helix-loop-helix (Ib bHLH) genes bHLH38/39/100/101, revealed that R7 targets the FIT-dependent transcriptional pathway. Exogenously supplying S-nitrosoglutathione (GSNO), but not other nitric oxide (NO) donors sodium nitroprusside (SNP) and S-nitroso-N-acetyl-dl-penicillamine (SANP), alleviated the inhibitory effects of R7 on Fe homeostasis. R7 did not inhibit cellular levels of NO or glutathione but decreased GSNO level in roots. We demonstrate that NO is involved in regulating not only the FIT transcriptional network but also the Ib bHLH networks. In addition, GSNO, from S-nitrosylation of glutathione, specifically mediates the Fe-starvation signal to FIT, which is distinct from the NO to Ib bHLH signal. Our work dissects the molecular connection between NO and the Fe-starvation response. We present a new signaling route whereby GSNO acts downstream of NO to trigger the Fe-deficiency response in Arabidopsis.
Collapse
Affiliation(s)
- Sakthivel Kailasam
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung, 40227, Taiwan
- Molecular and Biological Agricultural Sciences, Taiwan International Graduate Program, Academia Sinica and National Chung-Hsing University, Taipei, 11529, Taiwan
| | - Ying Wang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Jing-Chi Lo
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Hsin-Fang Chang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Kuo-Chen Yeh
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
- Molecular and Biological Agricultural Sciences, Taiwan International Graduate Program, Academia Sinica and National Chung-Hsing University, Taipei, 11529, Taiwan
- Biotechnology Center, National Chung-Hsing University, Taichung, 40227, Taiwan
| |
Collapse
|
37
|
Lv X, Ge S, Jalal Ahammed G, Xiang X, Guo Z, Yu J, Zhou Y. Crosstalk between Nitric Oxide and MPK1/2 Mediates Cold Acclimation-induced Chilling Tolerance in Tomato. PLANT & CELL PHYSIOLOGY 2017; 58:1963-1975. [PMID: 29036450 DOI: 10.1093/pcp/pcx134] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 08/31/2017] [Indexed: 06/07/2023]
Abstract
The participation of nitric oxide (NO) in the responses of plants towards biotic and abiotic stresses is well established. However, the mechanism involved particularly in cold acclimation-induced chilling tolerance remains elusive. Here we show the cold acclimation induced-chilling tolerance was associated with inductions of nitrate reductase (NR)-dependent NO production, S-nitrosylated glutathione reductase (GSNOR) activity and mitogen-activated protein kinases MPK1/2 activation in tomato plants. Silencing of NR resulted in decreased GSNOR activity and MPK1/2 activation, which subsequently compromised cold acclimation-induced chilling tolerance. By contrast, silencing of GSNOR caused decreased NR activity, increased NO accumulation and MPK1/2 activation, and enhanced cold acclimation-induced chilling tolerance. Furthermore, co-silencing of MPK1 and MPK2 attenuated the NR-dependent NO production and cold acclimation-induced tolerance to chilling. Results from present study suggest the importance of MPK1/2 for the induction of NR-dependent NO generation, while the accumulation of nitrosylated glutathione from NO-derived reactive nitrogen species could potentially S-nitrosylate NR. These findings provide new insight into the crosstalk of NO and MPK1/2 in cold acclimation-induced chilling tolerance in tomato plants.
Collapse
Affiliation(s)
- Xiangzhang Lv
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Shibei Ge
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Golam Jalal Ahammed
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Xun Xiang
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Zhixin Guo
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Jingquan Yu
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Yanhong Zhou
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, 866 Yuhangtang Road, Hangzhou 310058, China
| |
Collapse
|
38
|
Zuccarelli R, Coelho ACP, Peres LEP, Freschi L. Shedding light on NO homeostasis: Light as a key regulator of glutathione and nitric oxide metabolisms during seedling deetiolation. Nitric Oxide 2017; 68:77-90. [PMID: 28109803 DOI: 10.1016/j.niox.2017.01.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 01/11/2017] [Accepted: 01/14/2017] [Indexed: 10/20/2022]
Abstract
Despite the significant impacts of light on nitric oxide (NO) levels in plants, the mechanism underlying the influence of this environmental factor on NO metabolism remains poorly understood. A critical mechanism controlling NO levels in plant cells relies on the S-nitrosylation of glutathione (GSH), giving rise to S-nitrosoglutathione (GSNO), which can be either stored or degraded depending on the cellular context. Here, we demonstrate that a strict balance is maintained between NO generation and scavenging during tomato (Solanum lycopersicum) seedling deetiolation. Given the absence of accurate methods in the literature to estimate NO scavenging in planta, we first developed a simple, robust system to continuously monitor the global in vivo NO scavenging by plant tissues. Then, using photomorphogenic tomato mutants, we demonstrated that the light-evoked de-etiolation is associated with a dramatic rise in NO content followed by a progressive increment in NO scavenging capacity of the tissues. Light-driven increments in NO scavenging rates coincided with pronounced rises in S-nitrosothiol content and GSNO reductase (GSNOR) activity, thereby suggesting that GSNO formation and subsequent removal via GSNOR might be key for controlling NO levels during seedling deetiolation. Accordingly, treatments with thiol-blocking compounds further indicated that thiol nitrosylation might be critically involved in the NO scavenging mechanism responsible for maintaining NO homeostasis during deetiolation. The impacts of both light and NO on the transcriptional profile of glutathione metabolic genes also revealed an independent but coordinated action of these signals on the regulation of key components of glutathione and GSNO metabolisms. Altogether, these data indicated that GSNO formation and subsequent removal might facilitate maintaining NO homeostasis during light-driven seedling deetiolation.
Collapse
Affiliation(s)
- Rafael Zuccarelli
- Department of Botany, Institute of Biosciences, University of São Paulo (USP), São Paulo, 05508-090, Brazil
| | - Aline C P Coelho
- Department of Botany, Institute of Biosciences, University of São Paulo (USP), São Paulo, 05508-090, Brazil
| | - Lazaro E P Peres
- Department of Biological Sciences, Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ), University of São Paulo (USP), Piracicaba, 13418-900, Brazil
| | - Luciano Freschi
- Department of Botany, Institute of Biosciences, University of São Paulo (USP), São Paulo, 05508-090, Brazil.
| |
Collapse
|
39
|
Guo K, Tu L, Wang P, Du X, Ye S, Luo M, Zhang X. Ascorbate Alleviates Fe Deficiency-Induced Stress in Cotton ( Gossypium hirsutum) by Modulating ABA Levels. FRONTIERS IN PLANT SCIENCE 2017; 7:1997. [PMID: 28101095 PMCID: PMC5209387 DOI: 10.3389/fpls.2016.01997] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 12/16/2016] [Indexed: 05/30/2023]
Abstract
Fe deficiency causes significant losses to crop productivity and quality. To understand better the mechanisms of plant responses to Fe deficiency, we used an in vitro cotton ovule culture system. We found that Fe deficiency suppressed the development of ovules and fibers, and led to tissue browning. RNA-seq analysis showed that the myo-inositol and galacturonic acid pathways were activated and cytosolic APX (ascorbate peroxidase) was suppressed in Fe-deficient treated fibers, which increased ASC (ascorbate) concentrations to prevent tissue browning. Suppression of cytosolic APX by RNAi in cotton increased ASC contents and delayed tissue browning by maintaining ferric reduction activity under Fe-deficient conditions. Meanwhile, APX RNAi line also exhibited the activation of expression of iron-regulated transporter (IRT1) and ferric reductase-oxidase2 (FRO2) to adapt to Fe deficiency. Abscisic acid (ABA) levels were significantly decreased in Fe-deficient treated ovules and fibers, while the upregulated expression of ABA biosynthesis genes and suppression of ABA degradation genes in Fe-deficient ovules slowed down the decreased of ABA in cytosolic APX suppressed lines to delay the tissue browning. Moreover, the application of ABA in Fe-deficient medium suppressed the development of tissue browning and completely restored the ferric reduction activity. In addition, ABA 8'-hydroxylase gene (GhABAH1) overexpressed cotton has a decreased level of ABA and shows more sensitivity to Fe deficiency. Based on the results, we speculate that ASC could improve the tolerance to Fe deficiency through activating Fe uptake and maintaining ABA levels in cotton ovules and fibers, which in turn reduces symptom formation.
Collapse
Affiliation(s)
- Kai Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural UniversityWuhan, China
| | - Lili Tu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural UniversityWuhan, China
| | - Pengcheng Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural UniversityWuhan, China
| | - Xueqiong Du
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural UniversityWuhan, China
| | - Shue Ye
- Key Laboratory of Biotechnology and Crop Quality Improvement of Ministry of Agriculture, Biotechnology Research Center, Southwest UniversityChongqing, China
| | - Ming Luo
- Key Laboratory of Biotechnology and Crop Quality Improvement of Ministry of Agriculture, Biotechnology Research Center, Southwest UniversityChongqing, China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural UniversityWuhan, China
| |
Collapse
|
40
|
Bashir K, Rasheed S, Kobayashi T, Seki M, Nishizawa NK. Regulating Subcellular Metal Homeostasis: The Key to Crop Improvement. FRONTIERS IN PLANT SCIENCE 2016; 7:1192. [PMID: 27547212 PMCID: PMC4974246 DOI: 10.3389/fpls.2016.01192] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 07/25/2016] [Indexed: 05/21/2023]
Abstract
Iron (Fe), zinc (Zn), manganese (Mn), and copper (Cu) are essential micronutrient mineral elements for living organisms, as they regulate essential cellular processes, such as chlorophyll synthesis and photosynthesis (Fe, Cu, and Mn), respiration (Fe and Cu), and transcription (Zn). The storage and distribution of these minerals in various cellular organelles is strictly regulated to ensure optimal metabolic rates. Alteration of the balance in uptake, distribution, and/or storage of these minerals severely impairs cellular metabolism and significantly affects plant growth and development. Thus, any change in the metal profile of a cellular compartment significantly affects metabolism. Different subcellular compartments are suggested to be linked through complex retrograde signaling networks to regulate cellular metal homeostasis. Various genes regulating cellular and subcellular metal distribution have been identified and characterized. Understanding the role of these transporters is extremely important to elaborate the signaling between various subcellular compartments. Moreover, modulation of the proteins involved in cellular metal homeostasis may help in the regulation of metabolism, adaptability to a diverse range of environmental conditions, and biofortification. Here, we review progress in the understanding of different subcellular metal transport components in plants and discuss the prospects of regulating cellular metabolism and strategies to develop biofortified crop plants.
Collapse
Affiliation(s)
- Khurram Bashir
- Plant Genomics Network Research Team, Center for Sustainable Resource Science, RIKEN, Yokohama Campus, YokohamaJapan
| | - Sultana Rasheed
- Plant Genomics Network Research Team, Center for Sustainable Resource Science, RIKEN, Yokohama Campus, YokohamaJapan
- Kihara Institute for Biological Research, Yokohama City University, YokohamaJapan
| | - Takanori Kobayashi
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, NonoichiJapan
| | - Motoaki Seki
- Plant Genomics Network Research Team, Center for Sustainable Resource Science, RIKEN, Yokohama Campus, YokohamaJapan
- Kihara Institute for Biological Research, Yokohama City University, YokohamaJapan
- Core Research for Evolutional Science and Technology – Japan Science and Technology Agency, KawaguchiJapan
| | - Naoko K. Nishizawa
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, NonoichiJapan
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, TokyoJapan
| |
Collapse
|
41
|
Deng XG, Zhu T, Zou LJ, Han XY, Zhou X, Xi DH, Zhang DW, Lin HH. Orchestration of hydrogen peroxide and nitric oxide in brassinosteroid-mediated systemic virus resistance in Nicotiana benthamiana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 85:478-93. [PMID: 26749255 DOI: 10.1111/tpj.13120] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 12/13/2015] [Accepted: 12/24/2015] [Indexed: 05/13/2023]
Abstract
Brassinosteroids (BRs) play essential roles in modulating plant growth, development and stress responses. Here, involvement of BRs in plant systemic resistance to virus was studied. Treatment of local leaves in Nicotiana benthamiana with BRs induced virus resistance in upper untreated leaves, accompanied by accumulations of H2O2 and NO. Scavenging of H2O2 or NO in upper leaves blocked BR-induced systemic virus resistance. BR-induced systemic H2O2 accumulation was blocked by local pharmacological inhibition of NADPH oxidase or silencing of respiratory burst oxidase homolog gene NbRBOHB, but not by systemic NADPH oxidase inhibition or NbRBOHA silencing. Silencing of the nitrite-dependent nitrate reductase gene NbNR or systemic pharmacological inhibition of NR compromised BR-triggered systemic NO accumulation, while local inhibition of NR, silencing of NbNOA1 and inhibition of NOS had little effect. Moreover, we provide evidence that BR-activated H2O2 is required for NO synthesis. Pharmacological scavenging or genetic inhibiting of H2O2 generation blocked BR-induced systemic NO production, but BR-induced H2O2 production was not sensitive to NO scavengers or silencing of NbNR. Systemically applied sodium nitroprusside rescued BR-induced systemic virus defense in NbRBOHB-silenced plants, but H2O2 did not reverse the effect of NbNR silencing on BR-induced systemic virus resistance. Finally, we demonstrate that the receptor kinase BRI1(BR insensitive 1) is an upstream component in BR-mediated systemic defense signaling, as silencing of NbBRI1 compromised the BR-induced H2O2 and NO production associated with systemic virus resistance. Together, our pharmacological and genetic data suggest the existence of a signaling pathway leading to BR-mediated systemic virus resistance that involves local Respiratory Burst Oxidase Homolog B (RBOHB)-dependent H2O2 production and subsequent systemic NR-dependent NO generation.
Collapse
Affiliation(s)
- Xing-Guang Deng
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
| | - Tong Zhu
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
| | - Li-Juan Zou
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
| | - Xue-Ying Han
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
| | - Xue Zhou
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
| | - De-Hui Xi
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
| | - Da-Wei Zhang
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
| | - Hong-Hui Lin
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
| |
Collapse
|