1
|
García-Laynes S, Calderón-Vázquez CL, Puch-Hau C, Herrera-Valencia VA, Peraza-Echeverria S. Infiltration-RNAseq Reveals Enhanced Defense Responses in Nicothiana benthamiana Leaves Overexpressing the Banana Gene MaWRKY45. PLANTS (BASEL, SWITZERLAND) 2025; 14:483. [PMID: 39943045 PMCID: PMC11820619 DOI: 10.3390/plants14030483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/22/2025] [Accepted: 01/30/2025] [Indexed: 02/16/2025]
Abstract
The banana gene MaWRKY45 gene encodes a WRKY transcription factor (TF) that is closely related to OsWRKY45, which is a master regulator of defense responses in rice. MaWRKY45 is a transcription factor with proven transactivation activity and nuclear localization. Its expression is upregulated by the defense phytohormones salicylic acid (SA) and jasmonic acid (JA). Despite these findings, its transcriptome-wide impact during overexpression remains unexplored. Accordingly, the present study employed the Infiltration-RNAseq method to identify differentially expressed genes (DEGs) resulting from the overexpression of MaWRKY45 in the leaves of the model plant Nicotiana benthamiana. A total of 2473 DEGs were identified in N. benthamiana leaves overexpressing the banana gene MaWRKY45. Of these, 1092 were up-regulated and 1381 were down-regulated. Among the genes that were found to be up-regulated, those encoding proteins that are involved in plant immunity were identified. These included disease resistance receptors, proteins that are involved in cell wall reinforcement, proteins that possess antimicrobial and insecticidal activities, and defense-related TFs. It was thus concluded that the function of the banana gene MaWRKY45 is associated with the plant immune system, and that its overexpression can lead to enhance defense responses.
Collapse
Affiliation(s)
- Sergio García-Laynes
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida 97205, Yucatán, Mexico;
| | - Carlos Ligne Calderón-Vázquez
- Instituto Politécnico Nacional, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional CIIDIR Unidad Sinaloa, Guasave 81100, Sinaloa, Mexico;
| | - Carlos Puch-Hau
- Tecnológico Nacional de México, Campus Instituto Tecnológico Superior de Valladolid, Carretera Valladolid-Tizimín, km 3.5, C.P., Valladolid 97780, Yucatán, Mexico;
| | - Virginia Aurora Herrera-Valencia
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida 97205, Yucatán, Mexico;
| | - Santy Peraza-Echeverria
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida 97205, Yucatán, Mexico;
| |
Collapse
|
2
|
Shafi I, Gautam M, Kariyat R. Integrating ecophysiology and omics to unlock crop response to drought and herbivory stress. FRONTIERS IN PLANT SCIENCE 2024; 15:1500773. [PMID: 39559770 PMCID: PMC11570275 DOI: 10.3389/fpls.2024.1500773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 10/14/2024] [Indexed: 11/20/2024]
Affiliation(s)
| | | | - Rupesh Kariyat
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
3
|
Prior MJ, Weidauer D, Liao JY, Kuwata K, Locci F, Deng C, Ye HB, Cai Q, Bezrutczyk M, Zhao C, Chen LQ, Jonikas MC, Pilot G, Jin H, Parker J, Frommer WB, Kim JY. The Arabidopsis amino acid transporter UmamiT20 confers Botrytis cinerea susceptibility. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.26.620370. [PMID: 39554049 PMCID: PMC11565889 DOI: 10.1101/2024.10.26.620370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
• Induction of SWEET sugar transporters by bacterial pathogens via transcription activator-like (TAL) effectors is necessary for successful blight infection of rice, cassava and cotton, - likely providing sugars for bacterial propagation. • Here, we show that infection of Arabidopsis by the necrotrophic fungus Botrytis cinerea causes increased accumulation of amino acid transporter UmamiT20 mRNA in leaves. UmamiT20 protein accumulates in leaf veins surrounding the lesions after infection. Consistent with a role during infection, umamiT20 knock-out mutants were less susceptible to B. cinerea. • Functional assays demonstrate that UmamiT20 mediates amino acid transport of a wide range of amino acid substrates. • Pathogen-induced UmamiT20 mRNA and protein accumulation support the hypothesis that transporter-mediated pathogen susceptibility is not unique to SWEETs in bacterial blight of rice but also for a necrotrophic fungus and implicate nutrients other than sucrose, i.e., amino acids, in nutrition or nutrient signaling related to immunity. We hypothesize that stacking of mutations in different types of susceptibility-related nutrient carriers to interfere with access to several nutrients may enable engineering robust pathogen resistance in a wide range of plant-pathogen systems.
Collapse
Affiliation(s)
- Matthew J. Prior
- Division of Science and Technology, Clinton College, 1029 Crawford Road, Rock Hill, SC 29730
- Biology Department, Stanford University, 371 Serra Mall, Stanford, CA 94305
- Department of Plant Pathology and Microbiology, Center for Plant Cell Biology, Institute for integrative Genome Biology, University of California, Riverside, CA 92521
| | - Diana Weidauer
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute for Molecular Physiology, Düsseldorf, Germany
| | - Jui-Yu Liao
- Department of Plant Pathology and Microbiology, Center for Plant Cell Biology, Institute for integrative Genome Biology, University of California, Riverside, CA 92521
| | - Keiko Kuwata
- Institute for Transformative Biomolecules, ITbM, Nagoya, Japan
| | - Federica Locci
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Chen Deng
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute for Molecular Physiology, Düsseldorf, Germany
| | - Hong Bo Ye
- Biology Department, Stanford University, 371 Serra Mall, Stanford, CA 94305
| | - Qiang Cai
- Department of Plant Pathology and Microbiology, Center for Plant Cell Biology, Institute for integrative Genome Biology, University of California, Riverside, CA 92521
| | - Margot Bezrutczyk
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute for Molecular Physiology, Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf, Germany
| | - Chengsong Zhao
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg 24061, VA, USA
| | - Li-Qing Chen
- Department of Plant Biology, 265 Morrill Hall, 505 South Goodwin Avenue, University of Illinois, Urbana-Champaign, Urbana, IL 61801
| | - Martin C. Jonikas
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Guillaume Pilot
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg 24061, VA, USA
| | - Hailing Jin
- Department of Plant Pathology and Microbiology, Center for Plant Cell Biology, Institute for integrative Genome Biology, University of California, Riverside, CA 92521
| | - Jane Parker
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Wolf B. Frommer
- Biology Department, Stanford University, 371 Serra Mall, Stanford, CA 94305
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute for Molecular Physiology, Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf, Germany
- Institute for Transformative Biomolecules, ITbM, Nagoya, Japan
| | - Ji-Yun Kim
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute for Molecular Physiology, Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf, Germany
- Department of Biological Sciences, Sungkyunkwan University, Suwon, South Korea
| |
Collapse
|
4
|
Rurek M, Smolibowski M. Variability of plant transcriptomic responses under stress acclimation: a review from high throughput studies. Acta Biochim Pol 2024; 71:13585. [PMID: 39524930 PMCID: PMC11543463 DOI: 10.3389/abp.2024.13585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024]
Abstract
Plant transcriptomes are complex entities shaped spatially and temporally by a multitude of stressors. The aim of this review was to summarize the most relevant transcriptomic responses to selected abiotic (UV radiation, chemical compounds, drought, suboptimal temperature) and biotic (bacteria, fungi, viruses, viroids) stress conditions in a variety of plant species, including model species, crops, and medicinal plants. Selected basic and applicative studies employing RNA-seq from various sequencing platforms and single-cell RNA-seq were involved. The transcriptomic responsiveness of various plant species and the diversity of affected gene families were discussed. Under stress acclimation, plant transcriptomes respond particularly dynamically. Stress response involved both distinct, but also similar gene families, depending on the species, tissue, and the quality and dosage of the stressor. We also noted the over-representation of transcriptomic data for some plant organs. Studies on plant transcriptomes allow for a better understanding of response strategies to environmental conditions. Functional analyses reveal the multitude of stress-affected genes as well as acclimatory mechanisms and suggest metabolome diversity, particularly among medicinal species. Extensive characterization of transcriptomic responses to stress would result in the development of new cultivars that would cope with stress more efficiently. These actions would include modern methodological tools, including advanced genetic engineering, as well as gene editing, especially for the expression of selected stress proteins in planta and for metabolic modifications that allow more efficient synthesis of secondary metabolites.
Collapse
Affiliation(s)
- Michał Rurek
- Department of Molecular and Cellular Biology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | | |
Collapse
|
5
|
Eckardt NA, Avin-Wittenberg T, Bassham DC, Chen P, Chen Q, Fang J, Genschik P, Ghifari AS, Guercio AM, Gibbs DJ, Heese M, Jarvis RP, Michaeli S, Murcha MW, Mursalimov S, Noir S, Palayam M, Peixoto B, Rodriguez PL, Schaller A, Schnittger A, Serino G, Shabek N, Stintzi A, Theodoulou FL, Üstün S, van Wijk KJ, Wei N, Xie Q, Yu F, Zhang H. The lowdown on breakdown: Open questions in plant proteolysis. THE PLANT CELL 2024; 36:2931-2975. [PMID: 38980154 PMCID: PMC11371169 DOI: 10.1093/plcell/koae193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/16/2024] [Accepted: 06/19/2024] [Indexed: 07/10/2024]
Abstract
Proteolysis, including post-translational proteolytic processing as well as protein degradation and amino acid recycling, is an essential component of the growth and development of living organisms. In this article, experts in plant proteolysis pose and discuss compelling open questions in their areas of research. Topics covered include the role of proteolysis in the cell cycle, DNA damage response, mitochondrial function, the generation of N-terminal signals (degrons) that mark many proteins for degradation (N-terminal acetylation, the Arg/N-degron pathway, and the chloroplast N-degron pathway), developmental and metabolic signaling (photomorphogenesis, abscisic acid and strigolactone signaling, sugar metabolism, and postharvest regulation), plant responses to environmental signals (endoplasmic-reticulum-associated degradation, chloroplast-associated degradation, drought tolerance, and the growth-defense trade-off), and the functional diversification of peptidases. We hope these thought-provoking discussions help to stimulate further research.
Collapse
Affiliation(s)
| | - Tamar Avin-Wittenberg
- Department of Plant and Environmental Sciences, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Diane C Bassham
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Poyu Chen
- School of Biological Science and Technology, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Qian Chen
- Ministry of Agriculture and Rural Affairs Key Laboratory for Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Jun Fang
- Section of Molecular Plant Biology, Department of Biology, University of Oxford, Oxford OX1 3RB, UK
| | - Pascal Genschik
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, 12, rue du Général Zimmer, Strasbourg 67084, France
| | - Abi S Ghifari
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Angelica M Guercio
- Department of Plant Biology, College of Biological Sciences, University of California-Davis, Davis, CA 95616, USA
| | - Daniel J Gibbs
- School of Biosciences, University of Birmingham, Edgbaston B1 2RU, UK
| | - Maren Heese
- Department of Developmental Biology, University of Hamburg, Ohnhorststr. 18, Hamburg 22609, Germany
| | - R Paul Jarvis
- Section of Molecular Plant Biology, Department of Biology, University of Oxford, Oxford OX1 3RB, UK
| | - Simon Michaeli
- Department of Postharvest Sciences, Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZion 7505101, Israel
| | - Monika W Murcha
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Sergey Mursalimov
- Department of Postharvest Sciences, Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZion 7505101, Israel
| | - Sandra Noir
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, 12, rue du Général Zimmer, Strasbourg 67084, France
| | - Malathy Palayam
- Department of Plant Biology, College of Biological Sciences, University of California-Davis, Davis, CA 95616, USA
| | - Bruno Peixoto
- Section of Molecular Plant Biology, Department of Biology, University of Oxford, Oxford OX1 3RB, UK
| | - Pedro L Rodriguez
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Cientificas-Universidad Politecnica de Valencia, Valencia ES-46022, Spain
| | - Andreas Schaller
- Department of Plant Physiology and Biochemistry, Institute of Biology, University of Hohenheim, Stuttgart 70599, Germany
| | - Arp Schnittger
- Department of Developmental Biology, University of Hamburg, Ohnhorststr. 18, Hamburg 22609, Germany
| | - Giovanna Serino
- Department of Biology and Biotechnology, Sapienza Universita’ di Roma, p.le A. Moro 5, Rome 00185, Italy
| | - Nitzan Shabek
- Department of Plant Biology, College of Biological Sciences, University of California-Davis, Davis, CA 95616, USA
| | - Annick Stintzi
- Department of Plant Physiology and Biochemistry, Institute of Biology, University of Hohenheim, Stuttgart 70599, Germany
| | | | - Suayib Üstün
- Faculty of Biology and Biotechnology, Ruhr-University of Bochum, Bochum 44780, Germany
| | - Klaas J van Wijk
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, NY 14853, USA
| | - Ning Wei
- School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Qi Xie
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feifei Yu
- College of Grassland Science and Technology, China Agricultural University, Beijing 100083, China
| | - Hongtao Zhang
- Plant Sciences and the Bioeconomy, Rothamsted Research, Harpenden AL5 2JQ, UK
| |
Collapse
|
6
|
Liu L, Si L, Zhang L, Guo R, Wang R, Dong H, Guo C. Metabolomics and transcriptomics analysis revealed the response mechanism of alfalfa to combined cold and saline-alkali stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:1900-1919. [PMID: 38943631 DOI: 10.1111/tpj.16896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/03/2024] [Accepted: 06/13/2024] [Indexed: 07/01/2024]
Abstract
Cold and saline-alkali stress are frequently encountered by plants, and they often occur simultaneously in saline-alkali soils at mid to high latitudes, constraining forage crop distribution and production. However, the mechanisms by which forage crops respond to the combination of cold and saline-alkali stress remain unknown. Alfalfa (Medicago sativa L.) is one of the most essential forage grasses in the world. In this study, we analyzed the complex response mechanisms of two alfalfa species (Zhaodong [ZD] and Blue Moon [BM]) to combined cold and saline-alkali stress using multi-omics. The results revealed that ZD had a greater ability to tolerate combined stress than BM. The tricarboxylic acid cycles of the two varieties responded positively to the combined stress, with ZD accumulating more sugars, amino acids, and jasmonic acid. The gene expression and flavonoid content of the flavonoid biosynthesis pathway were significantly different between the two varieties. Weighted gene co-expression network analysis and co-expression network analysis based on RNA-Seq data suggested that the MsMYB12 gene may respond to combined stress by regulating the flavonoid biosynthesis pathway. MsMYB12 can directly bind to the promoter of MsFLS13 and promote its expression. Moreover, MsFLS13 overexpression can enhance flavonol accumulation and antioxidant capacity, which can improve combined stress tolerance. These findings provide new insights into improving alfalfa resistance to combined cold and saline-alkali stress, showing that flavonoids are essential for plant resistance to combined stresses, and provide theoretical guidance for future breeding programs.
Collapse
Affiliation(s)
- Lei Liu
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, No. 1 Shida Road, Limin Development Zone, Harbin, Heilongjiang, 150025, People's Republic of China
| | - Liang Si
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, No. 1 Shida Road, Limin Development Zone, Harbin, Heilongjiang, 150025, People's Republic of China
| | - Lishuang Zhang
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, No. 1 Shida Road, Limin Development Zone, Harbin, Heilongjiang, 150025, People's Republic of China
| | - Rui Guo
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, No. 1 Shida Road, Limin Development Zone, Harbin, Heilongjiang, 150025, People's Republic of China
| | - Ruixin Wang
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, No. 1 Shida Road, Limin Development Zone, Harbin, Heilongjiang, 150025, People's Republic of China
| | - Haimei Dong
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, No. 1 Shida Road, Limin Development Zone, Harbin, Heilongjiang, 150025, People's Republic of China
| | - Changhong Guo
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, No. 1 Shida Road, Limin Development Zone, Harbin, Heilongjiang, 150025, People's Republic of China
| |
Collapse
|
7
|
Cisse EHM, Jiang BH, Yin LY, Miao LF, Zhou JJ, Mekontso FN, Li DD, Xiang LS, Yang F. Dalbergia odorifera undergoes massive molecular shifts in response to waterlogging combined with salinity. PLANT PHYSIOLOGY 2024; 194:2301-2321. [PMID: 38048404 PMCID: PMC10980518 DOI: 10.1093/plphys/kiad639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/29/2023] [Accepted: 10/21/2023] [Indexed: 12/06/2023]
Abstract
Field and greenhouse studies attempting to describe the molecular responses of plant species under waterlogging (WL) combined with salinity (ST) are almost nonexistent. We integrated transcriptional, metabolic, and physiological responses involving several crucial transcripts and common differentially expressed genes and metabolites in fragrant rosewood (Dalbergia odorifera) leaflets to dissect plant-specific molecular responses and patterns under WL combined with ST (SWL). We discovered that the synergistic pattern of the transcriptional response of fragrant rosewood under SWL was exclusively characterized by the number of regulated transcripts. The response patterns under SWL based on transcriptome and metabolome regulation statuses revealed different patterns (additive, dominant, neutral, minor, unilateral, and antagonistic) of transcripts or metabolites that were commonly regulated or expressed uniquely under SWL. Under SWL, the synergistic transcriptional response of several functional gene subsets was positively associated with several metabolomic and physiological responses related to the shutdown of the photosynthetic apparatus and the extensive degradation of starch into saccharides through α-amylase, β-amylase, and α-glucosidase or plastoglobuli accumulation. The dissimilarity between the regulation status and number of transcripts in plants under combined stresses led to nonsynergistic responses in several physiological and phytohormonal traits. As inferred from the impressive synergistic transcriptional response to morpho-physiological changes, combined stresses exhibited a gradually decreasing effect on the changes observed at the molecular level compared to those in the morphological one. Here, by characterizing the molecular responses and patterns of plant species under SWL, our study considerably improves our understanding of the molecular mechanisms underlying combined stress.
Collapse
Affiliation(s)
- El-Hadji Malick Cisse
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Center for Eco-Environment Restoration Engineering of Hainan Province, School of Ecological and Environmental Sciences, Hainan University, Haikou 570228, China
- School of Life Sciences, Hainan University, Haikou 570228, China
| | - Bai-Hui Jiang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Center for Eco-Environment Restoration Engineering of Hainan Province, School of Ecological and Environmental Sciences, Hainan University, Haikou 570228, China
| | - Li-Yan Yin
- School of Life Sciences, Hainan University, Haikou 570228, China
| | - Ling-Feng Miao
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Center for Eco-Environment Restoration Engineering of Hainan Province, School of Ecological and Environmental Sciences, Hainan University, Haikou 570228, China
- School of Plant Protection, Hainan University, Haikou 570228, China
| | - Jing-Jing Zhou
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Center for Eco-Environment Restoration Engineering of Hainan Province, School of Ecological and Environmental Sciences, Hainan University, Haikou 570228, China
| | | | - Da-Dong Li
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Center for Eco-Environment Restoration Engineering of Hainan Province, School of Ecological and Environmental Sciences, Hainan University, Haikou 570228, China
- School of Life Sciences, Hainan University, Haikou 570228, China
| | - Li-Shan Xiang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Center for Eco-Environment Restoration Engineering of Hainan Province, School of Ecological and Environmental Sciences, Hainan University, Haikou 570228, China
| | - Fan Yang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Center for Eco-Environment Restoration Engineering of Hainan Province, School of Ecological and Environmental Sciences, Hainan University, Haikou 570228, China
| |
Collapse
|
8
|
Peláez-Vico MÁ, Sinha R, Induri SP, Lyu Z, Venigalla SD, Vasireddy D, Singh P, Immadi MS, Pascual LS, Shostak B, Mendoza-Cózatl D, Joshi T, Fritschi FB, Zandalinas SI, Mittler R. The impact of multifactorial stress combination on reproductive tissues and grain yield of a crop plant. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1728-1745. [PMID: 38050346 DOI: 10.1111/tpj.16570] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/15/2023] [Accepted: 11/20/2023] [Indexed: 12/06/2023]
Abstract
Global warming, climate change, and industrial pollution are altering our environment subjecting plants, microbiomes, and ecosystems to an increasing number and complexity of abiotic stress conditions, concurrently or sequentially. These conditions, termed, "multifactorial stress combination" (MFSC), can cause a significant decline in plant growth and survival. However, the impacts of MFSC on reproductive tissues and yield of major crop plants are largely unknown. We subjected soybean (Glycine max) plants to a MFSC of up to five different stresses (water deficit, salinity, low phosphate, acidity, and cadmium), in an increasing level of complexity, and conducted integrative transcriptomic-phenotypic analysis of their reproductive and vegetative tissues. We reveal that MFSC has a negative cumulative effect on soybean yield, that each set of MFSC condition elicits a unique transcriptomic response (that is different between flowers and leaves), and that selected genes expressed in leaves or flowers of soybean are linked to the effects of MFSC on different vegetative, physiological, and/or reproductive parameters. Our study identified networks and pathways associated with reactive oxygen species, ascorbic acid and aldarate, and iron/copper signaling/metabolism as promising targets for future biotechnological efforts to augment the resilience of reproductive tissues of major crop plants to MFSC. In addition, we provide unique phenotypic and transcriptomic datasets for dissecting the mechanistic effects of MFSC on the vegetative, physiological, and reproductive processes of a crop plant.
Collapse
Affiliation(s)
- María Ángeles Peláez-Vico
- Division of Plant Sciences and Technology, College of Agriculture Food and Natural Resources and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, 65211, USA
| | - Ranjita Sinha
- Division of Plant Sciences and Technology, College of Agriculture Food and Natural Resources and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, 65211, USA
| | - Sai Preethi Induri
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri, 65211, USA
| | - Zhen Lyu
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri, 65211, USA
| | - Sai Darahas Venigalla
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri, 65211, USA
| | - Dinesh Vasireddy
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri, 65211, USA
| | - Pallav Singh
- MU Institute for Data Science and Informatics and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, 65211, USA
| | - Manish Sridhar Immadi
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri, 65211, USA
| | - Lidia S Pascual
- Department of Biology, Biochemistry and Environmental Sciences, University Jaume I, Av. de Vicent Sos Baynat s/n, Castelló de la Plana, 12071, Spain
| | - Benjamin Shostak
- Division of Plant Sciences and Technology, College of Agriculture Food and Natural Resources and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, 65211, USA
| | - David Mendoza-Cózatl
- Division of Plant Sciences and Technology, College of Agriculture Food and Natural Resources and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, 65211, USA
| | - Trupti Joshi
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri, 65211, USA
- MU Institute for Data Science and Informatics and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, 65211, USA
- Department of Health Management and Informatics, and Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, 65211, USA
| | - Felix B Fritschi
- Division of Plant Sciences and Technology, College of Agriculture Food and Natural Resources and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, 65211, USA
| | - Sara I Zandalinas
- Department of Biology, Biochemistry and Environmental Sciences, University Jaume I, Av. de Vicent Sos Baynat s/n, Castelló de la Plana, 12071, Spain
| | - Ron Mittler
- Division of Plant Sciences and Technology, College of Agriculture Food and Natural Resources and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, 65211, USA
- Department of Surgery, School of Medicine, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, 65201, USA
| |
Collapse
|
9
|
Huang P, El‐Soda M, Wolinska KW, Zhao K, Davila Olivas NH, van Loon JJA, Dicke M, Aarts MGM. Genome-wide association analysis reveals genes controlling an antagonistic effect of biotic and osmotic stress on Arabidopsis thaliana growth. MOLECULAR PLANT PATHOLOGY 2024; 25:e13436. [PMID: 38460112 PMCID: PMC10924621 DOI: 10.1111/mpp.13436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 01/25/2024] [Accepted: 01/31/2024] [Indexed: 03/11/2024]
Abstract
While the response of Arabidopsis thaliana to drought, herbivory or fungal infection has been well-examined, the consequences of exposure to a series of such (a)biotic stresses are not well studied. This work reports on the genetic mechanisms underlying the Arabidopsis response to single osmotic stress, and to combinatorial stress, either fungal infection using Botrytis cinerea or herbivory using Pieris rapae caterpillars followed by an osmotic stress treatment. Several small-effect genetic loci associated with rosette dry weight (DW), rosette water content (WC), and the projected rosette leaf area in response to combinatorial stress were mapped using univariate and multi-environment genome-wide association approaches. A single-nucleotide polymorphism (SNP) associated with DROUGHT-INDUCED 19 (DI19) was identified by both approaches, supporting its potential involvement in the response to combinatorial stress. Several SNPs were found to be in linkage disequilibrium with known stress-responsive genes such as PEROXIDASE 34 (PRX34), BASIC LEUCINE ZIPPER 25 (bZIP25), RESISTANCE METHYLATED GENE 1 (RMG1) and WHITE RUST RESISTANCE 4 (WRR4). An antagonistic effect between biotic and osmotic stress was found for prx34 and arf4 mutants, which suggests PRX34 and ARF4 play an important role in the response to the combinatorial stress.
Collapse
Affiliation(s)
- Pingping Huang
- Laboratory of GeneticsWageningen University & ResearchWageningenNetherlands
- Present address:
Shenzhen SinoPlant Biotech LtdDapeng Marine Organism Industrial Park, Gongye Ave, Dapeng District518000ShenzhenChina.
| | - Mohamed El‐Soda
- Department of Genetics, Faculty of AgricultureCairo UniversityGizaEgypt
| | | | - Kaige Zhao
- Laboratory of GeneticsWageningen University & ResearchWageningenNetherlands
- Present address:
College of Horticulture and ForestryHuazhong Agriculture UniversityNanhu Road, Hongshan District430070WuhanChina.
| | - Nelson H. Davila Olivas
- Laboratory of EntomologyWageningen University & ResearchWageningenNetherlands
- Present address:
BASF Vegetables SeedsNapoleonsweg 152Nunhem6083 ABNetherlands.
| | - Joop J. A. van Loon
- Laboratory of EntomologyWageningen University & ResearchWageningenNetherlands
| | - Marcel Dicke
- Laboratory of EntomologyWageningen University & ResearchWageningenNetherlands
| | - Mark G. M. Aarts
- Laboratory of GeneticsWageningen University & ResearchWageningenNetherlands
| |
Collapse
|
10
|
Garcia-Molina A, Pastor V. Systemic analysis of metabolome reconfiguration in Arabidopsis after abiotic stressors uncovers metabolites that modulate defense against pathogens. PLANT COMMUNICATIONS 2024; 5:100645. [PMID: 37403356 PMCID: PMC10811363 DOI: 10.1016/j.xplc.2023.100645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/06/2023]
Abstract
Understanding plant immune responses is complex because of the high interdependence among biological processes in homeostatic networks. Hence, the integration of environmental cues causes network rewiring that interferes with defense responses. Similarly, plants retain molecular signatures configured under abiotic stress periods to rapidly respond to recurrent stress, and these can alter immunity. Metabolome changes imposed by abiotic stressors are persistent, although their impact on defense remains to be clarified. In this study, we profiled metabolomes of Arabidopsis plants under several abiotic stress treatments applied individually or simultaneously to capture temporal trajectories in metabolite composition during adverse conditions and recovery. Further systemic analysis was performed to address the relevance of metabolome changes and extract central features to be tested in planta. Our results demonstrate irreversibility in major fractions of metabolome changes as a general pattern in response to abiotic stress periods. Functional analysis of metabolomes and co-abundance networks points to convergence in the reconfiguration of organic acid and secondary metabolite metabolism. Arabidopsis mutant lines for components related to these metabolic pathways showed altered defense capacities against different pathogens. Collectively, our data suggest that sustained metabolome changes configured in adverse environments can act as modulators of immune responses and provide evidence for a new layer of regulation in plant defense.
Collapse
Affiliation(s)
- Antoni Garcia-Molina
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, C/Vall Moronta, Edifici CRAG, 08193 Bellaterra (Cerdanyola del Vallès), Barcelona, Spain.
| | - Victoria Pastor
- Department of Biology, Biochemistry, and Natural Sciences, School of Technology and Experimental Sciences, Universitat Jaume I, 12006 Castelló de la Plana, Spain
| |
Collapse
|
11
|
Anwar K, Joshi R, Bahuguna RN, Govindjee G, Sasidharan R, Singla-Pareek SL, Pareek A. Impact of individual, combined and sequential stress on photosynthesis machinery in rice (Oryza sativa L). PHYSIOLOGIA PLANTARUM 2024; 176:e14209. [PMID: 38348703 DOI: 10.1111/ppl.14209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/15/2024] [Accepted: 01/30/2024] [Indexed: 02/15/2024]
Abstract
Abiotic stresses such as heat, drought and submergence are major threats to global food security. Despite simultaneous or sequential occurrence of these stresses being recurrent under field conditions, crop response to such stress combinations is poorly understood. Rice is a staple food crop for the majority of human beings. Exploitation of existing genetic diversity in rice for combined and/or sequential stress is a useful approach for developing climate-resilient cultivars. We phenotyped ~400 rice accessions under high temperature, drought, or submergence and their combinations. A cumulative performance index revealed Lomello as the best performer across stress and stress combinations at the seedling stage. Lomello showed a remarkable ability to maintain a higher quantum yield of photosystem (PS) II photochemistry. Moreover, the structural integrity of the photosystems, electron flow through both PSI and PSII and the ability to protect photosystems against photoinhibition were identified as the key traits of Lomello across the stress environments. A higher membrane stability and an increased amount of leaf chlorophyll under stress may be due to an efficient management of reactive oxygen species (ROS) at the cellular level. Further, an efficient electron flow through the photosystems and, thus, a higher photosynthetic rate in Lomello is expected to act as a sink for ROS by reducing the rate of electron transport to the high amount of molecular oxygen present in the chloroplast. However, further studies are needed to identify the molecular mechanism(s) involved in the stability of photosynthetic machinery and stress management in Lomello during stress conditions.
Collapse
Affiliation(s)
- Khalid Anwar
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Rohit Joshi
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Rajeev N Bahuguna
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
- National Agri-Food Biotechnology Institute, Mohali, Punjab, India
| | - Govindjee Govindjee
- Department of Biochemistry, Center of Biophysics & Quantitative Biology, and Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Rashmi Sasidharan
- Plant Stress Resilience, Institute of Environmental Biology, Utrecht University, The Netherlands
| | - Sneh L Singla-Pareek
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Road, New Delhi, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
- National Agri-Food Biotechnology Institute, Mohali, Punjab, India
| |
Collapse
|
12
|
Gayathiri E, Prakash P, Pandiaraj S, Ramasubburayan R, Gaur A, Sekar M, Viswanathan D, Govindasamy R. Investigating the ecological implications of nanomaterials: Unveiling plants' notable responses to nano-pollution. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108261. [PMID: 38096734 DOI: 10.1016/j.plaphy.2023.108261] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/20/2023] [Accepted: 12/05/2023] [Indexed: 02/15/2024]
Abstract
The rapid advancement of nanotechnology has led to unprecedented innovations; however, it is crucial to analyze its environmental impacts carefully. This review thoroughly examines the complex relationship between plants and nanomaterials, highlighting their significant impact on ecological sustainability and ecosystem well-being. This study investigated the response of plants to nano-pollution stress, revealing the complex regulation of defense-related genes and proteins, and highlighting the sophisticated defense mechanisms in nature. Phytohormones play a crucial role in the complex molecular communication network that regulates plant responses to exposure to nanomaterials. The interaction between plants and nano-pollution influences plants' complex defense strategies. This reveals the interconnectedness of systems of nature. Nevertheless, these findings have implications beyond the plant domain. The incorporation of hyperaccumulator plants into pollution mitigation strategies has the potential to create more environmentally sustainable urban landscapes and improve overall environmental resilience. By utilizing these exceptional plants, we can create a future in which cities serve as centers of both innovation and ecological balance. Further investigation is necessary to explore the long-term presence of nanoparticles in the environment, their ability to induce genetic changes in plants over multiple generations, and their overall impact on ecosystems. In conclusion, this review summarizes significant scientific discoveries with broad implications beyond the confines of laboratories. This highlights the importance of understanding the interactions between plants and nanomaterials within the wider scope of environmental health. By considering these insights, we initiated a path towards the responsible utilization of nanomaterials, environmentally friendly management of pollution, and interdisciplinary exploration. We have the responsibility to balance scientific advancement and environmental preservation to create a sustainable future that combines nature's wisdom with human innovation.
Collapse
Affiliation(s)
- Ekambaram Gayathiri
- Department of Plant Biology and Plant Biotechnology, Guru Nanak College (Autonomous), Chennai 600042, Tamil Nadu India
| | - Palanisamy Prakash
- Department of Botany, Periyar University, Periyar Palkalai Nagar, Salem 636011, Tamil Nadu, India
| | - Saravanan Pandiaraj
- Department of Self-Development Skills, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Ramasamy Ramasubburayan
- Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Arti Gaur
- Department of Life Sciences, Parul Institute of Applied Sciences, Parul University, Vadodara-390025, Gujarat, India
| | - Malathy Sekar
- Department of Botany, PG and Research Department of Botany Government Arts College for Men, (autonomous), Nandanam, Chennai 35, Tamilnadu, India
| | - Dhivya Viswanathan
- Centre for Nanobioscience, Department of Orthodontics, Saveetha Dental College, and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai-600077, Tamilnadu, India
| | - Rajakumar Govindasamy
- Centre for Nanobioscience, Department of Orthodontics, Saveetha Dental College, and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai-600077, Tamilnadu, India.
| |
Collapse
|
13
|
Fernie AR, Yan J, Aharoni A, Ma J. Editorial: The past, present and future of The Plant Journal Resource Articles. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:967-973. [PMID: 37943112 DOI: 10.1111/tpj.16515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Affiliation(s)
- Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Jianbing Yan
- National Key Laboratory of Crop Genetics, Huazhong Agricultural District, Wuhan, China
| | - Asaph Aharoni
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Jianxian Ma
- Purdue University, 915 S. University St, West Lafayette, IN, USA
| |
Collapse
|
14
|
Rodriguez Gallo MC, Li Q, Talasila M, Uhrig RG. Quantitative Time-Course Analysis of Osmotic and Salt Stress in Arabidopsis thaliana Using Short Gradient Multi-CV FAIMSpro BoxCar DIA. Mol Cell Proteomics 2023; 22:100638. [PMID: 37704098 PMCID: PMC10663867 DOI: 10.1016/j.mcpro.2023.100638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 08/22/2023] [Accepted: 08/27/2023] [Indexed: 09/15/2023] Open
Abstract
A major limitation when undertaking quantitative proteomic time-course experimentation is the tradeoff between depth-of-analysis and speed-of-analysis. In high complexity and high dynamic range sample types, such as plant extracts, balance between resolution and time is especially apparent. To address this, we evaluate multiple compensation voltage (CV) high field asymmetric waveform ion mobility spectrometry (FAIMSpro) settings using the latest label-free single-shot Orbitrap-based DIA acquisition workflows for their ability to deeply quantify the Arabidopsis thaliana seedling proteome. Using a BoxCarDIA acquisition workflow with a -30 -50 -70 CV FAIMSpro setting, we were able to consistently quantify >5000 Arabidopsis seedling proteins over a 21-min gradient, facilitating the analysis of ∼42 samples per day. Utilizing this acquisition approach, we then quantified proteome-level changes occurring in Arabidopsis seedling shoots and roots over 24 h of salt and osmotic stress, to identify early and late stress response proteins and reveal stress response overlaps. Here, we successfully quantify >6400 shoot and >8500 root protein groups, respectively, quantifying nearly ∼9700 unique protein groups in total across the study. Collectively, we pioneer a short gradient, multi-CV FAIMSpro BoxCarDIA acquisition workflow that represents an exciting new analysis approach for undertaking quantitative proteomic time-course experimentation in plants.
Collapse
Affiliation(s)
- M C Rodriguez Gallo
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Q Li
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - M Talasila
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - R G Uhrig
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada; Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
15
|
Ran Z, Ding W, Yu H, Zhang L, Fang L, Guo L, Zhou J. Combinatorial transcriptomics and metabolomics analysis reveals the effects of the harvesting stages on the accumulation of phenylpropanoid metabolites in Lonicera japonica. FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:808-820. [PMID: 37607828 DOI: 10.1071/fp23033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 08/08/2023] [Indexed: 08/24/2023]
Abstract
The flower buds of Lonicera japonica are widely used for its high medicinal value. It is reported that the accumulation of phenylpropanoids in the buds of L. japonica is affected by the stage at which it is harvested. However, the changes of active components and the underlying mechanisms in flower buds at different harvesting stages have not been reported. Integrative analyses of transcriptomics and metabolomics was used to explore the underlying mechanism of harvesting stages (green bud, GB; and white bud, WB) on the phenylpropanoids metabolites accumulation in L. japonica . The result showed that 3735 differentially expressed genes were identified, and the genes related to glycolysis/gluconeogenesis and phenylalanine biosynthesis pathway were significantly upregulated in GB stage. A total of 510 differential metabolites were identified in GB stage. Among them, 14 phenylpropanoids were changed during the GB and WB, seven of which increased in GB, including caffeic acid, sauchinone, coniferin, secoisolariciresinol diglucoside, scopolin, methyl cinnamate, chlorogenic acid, 7-hydroxycoumarin, while others such as sibiricose A6, coumarin, eleutheroside E decreased. Further correlation analysis showed that the unigenes for CSE, CAD, bg1, ADH, ALDH, DLAT and ENO significantly correlated with the 10 phenylpropanoid. The above results would provide basic data for the selection of harvesting stages in the production of L. japonica .
Collapse
Affiliation(s)
- Zhifang Ran
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China; and School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Weina Ding
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Hongxia Yu
- Weihai (Wendeng) Authentic Ginseng Industry Development Co. Ltd., Wendeng 264407, China
| | - Li Zhang
- Shandong Zhongping Pharmaceutical Industry, Linyi 273399, China
| | - Lei Fang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Lanping Guo
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jie Zhou
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| |
Collapse
|
16
|
Jiang Y, Zhang S, Chen K, Xia X, Tao B, Kong W. Impacts of DNA methylases and demethylases on the methylation and expression of Arabidopsis ethylene signal pathway genes. Funct Integr Genomics 2023; 23:143. [PMID: 37127698 DOI: 10.1007/s10142-023-01069-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/03/2023]
Abstract
Arabidopsis ethylene (ET) signal pathway plays important roles in various aspects. Cytosine DNA methylation is significant in controlling gene expression in plants. Here, we analyzed the bisulfite sequencing and mRNA sequencing data from Arabidopsis (de)methylase mutants met1, cmt3, drm1/2, ddm1, ros1-4, and rdd to investigate how DNA (de)methylases influence the DNA methylation and expression of Arabidopsis ET pathway genes. At least 32 genes are found to involved in Arabidopsis ET pathway by text mining. Among them, 14 genes are unmethylated or methylated with very low levels. ACS6 and ACS9 are conspicuously methylated within their upstream regions. The other 16 genes are predominantly methylated at the CG sites within gene body regions in wild-type plants, and mutation of MET1 resulted in almost entire elimination of the CG methylations. In addition, CG methylations within some genes are jointly maintained by MET1 and other (de)methylases. Analyses of mRNA-seq data indicated that some ET pathway genes were differentially expressed between wild-type and diverse mutants. PDF1.2, the marker gene of ET signal pathway, was found being regulated indirectly by the methylases. Eighty-two transposable elements (TEs) were identified to be associated to 15 ET pathway genes. ACS11 is found located in a heterochromatin region that contains 57 TEs, indicating its specific expression and regulation. Together, our results suggest that DNA (de)methylases are implicated in the regulation of CG methylation within gene body regions and transcriptional activity of some ET pathway genes and that maintenance of normal CG methylation is essential for ET pathway in Arabidopsis.
Collapse
Affiliation(s)
- Yan Jiang
- School of Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Shengwei Zhang
- School of Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Kun Chen
- School of Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Xue Xia
- School of Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Bingqing Tao
- School of Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Weiwen Kong
- School of Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| |
Collapse
|
17
|
De Palma N, Yendo ACA, Vilasboa J, Chacon DS, Fett-Neto AG. Biochemical responses in leaf tissues of alkaloid producing Psychotria brachyceras under multiple stresses. JOURNAL OF PLANT RESEARCH 2023; 136:397-412. [PMID: 36809401 DOI: 10.1007/s10265-023-01441-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Under natural conditions plants are generally subjected to complex scenarios of combined or sequential environmental stresses. Among the various components of plant biochemistry modulated by abiotic variables, a pivotal role is played by antioxidant systems, including specialized metabolites and their interaction with central pathways. To help address this knowledge gap, a comparative analysis of metabolic changes in leaf tissues of the alkaloid accumulating plant Psychotria brachyceras Müll Arg. under individual, sequential, and combined stress conditions was carried out. Osmotic and heat stresses were evaluated. Protective systems (accumulation of the major antioxidant alkaloid brachycerine, proline, carotenoids, total soluble protein, and activity of the enzymes ascorbate peroxidase and superoxide dismutase) were measured in conjunction with stress indicators (total chlorophyll, ChA/ChB ratio, lipid peroxidation, H2O2 content and electrolyte leakage). Metabolic responses had a complex profile in sequential and combined stresses compared to single ones, being also modified over time. Different stress application schemes affected alkaloid accumulation in distinct ways, exhibiting similar profile to proline and carotenoids, constituting a complementary triad of antioxidants. These complementary non-enzymatic antioxidant systems appeared to be essential for mitigating stress damage and re-establishing cellular homeostasis. The data herein provides clues that may aid the development of a key component framework of stress responses and their appropriate balance to modulate tolerance and yield of target specialized metabolites.
Collapse
Affiliation(s)
- Nicolás De Palma
- Plant Physiology Laboratory, Department of Botany, Biosciences Institute, Federal University of Rio Grande do Sul, CP 15005, Porto Alegre, RS, 91501-970, Brazil
| | - Anna Carolina Alves Yendo
- Plant Physiology Laboratory, Department of Botany, Biosciences Institute, Federal University of Rio Grande do Sul, CP 15005, Porto Alegre, RS, 91501-970, Brazil
- Plant Physiology Laboratory, Center for Biotechnology, Federal University of Rio Grande do Sul, CP 15005, Porto Alegre, RS, 91501-970, Brazil
| | - Johnatan Vilasboa
- Plant Physiology Laboratory, Department of Botany, Biosciences Institute, Federal University of Rio Grande do Sul, CP 15005, Porto Alegre, RS, 91501-970, Brazil
| | - Daisy Sotero Chacon
- Pharmacognosy Laboratory, Department of Pharmacy, Federal University of Rio Grande do Norte, CP 59000, Natal, RN, 59012-570, Brazil
| | - Arthur Germano Fett-Neto
- Plant Physiology Laboratory, Department of Botany, Biosciences Institute, Federal University of Rio Grande do Sul, CP 15005, Porto Alegre, RS, 91501-970, Brazil.
- Plant Physiology Laboratory, Center for Biotechnology, Federal University of Rio Grande do Sul, CP 15005, Porto Alegre, RS, 91501-970, Brazil.
| |
Collapse
|
18
|
Macioszek VK, Jęcz T, Ciereszko I, Kononowicz AK. Jasmonic Acid as a Mediator in Plant Response to Necrotrophic Fungi. Cells 2023; 12:1027. [PMID: 37048100 PMCID: PMC10093439 DOI: 10.3390/cells12071027] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
Jasmonic acid (JA) and its derivatives, all named jasmonates, are the simplest phytohormones which regulate multifarious plant physiological processes including development, growth and defense responses to various abiotic and biotic stress factors. Moreover, jasmonate plays an important mediator's role during plant interactions with necrotrophic oomycetes and fungi. Over the last 20 years of research on physiology and genetics of plant JA-dependent responses to pathogens and herbivorous insects, beginning from the discovery of the JA co-receptor CORONATINE INSENSITIVE1 (COI1), research has speeded up in gathering new knowledge on the complexity of plant innate immunity signaling. It has been observed that biosynthesis and accumulation of jasmonates are induced specifically in plants resistant to necrotrophic fungi (and also hemibiotrophs) such as mostly investigated model ones, i.e., Botrytis cinerea, Alternaria brassicicola or Sclerotinia sclerotiorum. However, it has to be emphasized that the activation of JA-dependent responses takes place also during susceptible interactions of plants with necrotrophic fungi. Nevertheless, many steps of JA function and signaling in plant resistance and susceptibility to necrotrophs still remain obscure. The purpose of this review is to highlight and summarize the main findings on selected steps of JA biosynthesis, perception and regulation in the context of plant defense responses to necrotrophic fungal pathogens.
Collapse
Affiliation(s)
- Violetta Katarzyna Macioszek
- Laboratory of Plant Physiology, Department of Biology and Plant Ecology, Faculty of Biology, University of Bialystok, 15-245 Bialystok, Poland
| | - Tomasz Jęcz
- Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland
| | - Iwona Ciereszko
- Laboratory of Plant Physiology, Department of Biology and Plant Ecology, Faculty of Biology, University of Bialystok, 15-245 Bialystok, Poland
| | - Andrzej Kiejstut Kononowicz
- Department of Plant Ecophysiology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland
| |
Collapse
|
19
|
Zhong Z, Wu Y, Zhang P, Hu G, Fu D, Yu G, Tong H. Transcriptomic Analysis Reveals Panicle Heterosis in an Elite Hybrid Rice ZZY10 and Its Parental Lines. PLANTS (BASEL, SWITZERLAND) 2023; 12:1309. [PMID: 36987003 PMCID: PMC10059593 DOI: 10.3390/plants12061309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 03/10/2023] [Accepted: 03/12/2023] [Indexed: 06/19/2023]
Abstract
Heterosis is the phenomenon in which some hybrid traits are superior to those of their parents. Most studies have analyzed the heterosis of agronomic traits of crops; however, heterosis of the panicles can improve yield and is important for crop breeding. Therefore, a systematic study of panicle heterosis is needed, especially during the reproductive stage. RNA sequencing (RNA Seq) and transcriptome analysis are suitable for further study of heterosis. Using the Illumina Nova Seq platform, the transcriptome of ZhongZheYou 10 (ZZY10), an elite rice hybrid, the maintainer line ZhongZhe B (ZZB), and the restorer line Z7-10 were analyzed at the heading date in Hangzhou, 2022. 581 million high-quality short reads were obtained by sequencing and were aligned against the Nipponbare reference genome. A total of 9000 differential expression genes were found between the hybrids and their parents (DGHP). Of the DGHP, 60.71% were up-regulated and 39.29% were down-regulated in the hybrid. Comparative transcriptome analysis revealed that 5235 and 3765 DGHP were between ZZY10 and ZhongZhe B and between ZZY10 and Z7-10, respectively. This result is consistent with the transcriptome profile of ZZY10 and was similar to Z7-10. The expression patterns of DGHP mainly exhibited over-dominance, under-dominance, and additivity. Among the DGHP-involved GO terms, pathways such as photosynthesis, DNA integration, cell wall modification, thylakoid, and photosystem were significant. 21 DGHP, which were involved in photosynthesis, and 17 random DGHP were selected for qRT-PCR validation. The up-regulated PsbQ and down-regulated subunits of PSI and PSII and photosynthetic electron transport in the photosynthesis pathway were observed in our study. Extensive transcriptome data were obtained by RNA-Seq, providing a comprehensive overview of panicle transcriptomes at the heading stage in a heterotic hybrid.
Collapse
Affiliation(s)
- Zhengzheng Zhong
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Yawen Wu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Peng Zhang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Guocheng Hu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Dong Fu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Guoping Yu
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya 572025, China
| | - Hanhua Tong
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China
| |
Collapse
|
20
|
Abiotic and Herbivory Combined Stress in Tomato: Additive, Synergic and Antagonistic Effects and Within-Plant Phenotypic Plasticity. Life (Basel) 2022; 12:life12111804. [DOI: 10.3390/life12111804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
Background: Drought, N deficiency and herbivory are considered the most important stressors caused by climate change in the agro- and eco-systems and varied in space and time shaping highly dynamic and heterogeneous stressful environments. This study aims to evaluate the tomato morpho-physiological and metabolic responses to combined abiotic and herbivory at different within-plant spatial levels and temporal scales. Methods: Leaf-level morphological, gas exchange traits and volatile organic compounds (VOCs) profiles were measured in tomato plants exposed to N deficiency and drought, Tuta absoluta larvae and their combination. Additive, synergistic or antagonistic effects of the single stress when combined were also evaluated. Morpho-physiological traits and VOCs profile were also measured on leaves located at three different positions along the shoot axes. Results: The combination of the abiotic and biotic stress has been more harmful than single stress with antagonistic and synergistic but non-additive effects for the morpho-physiological and VOCs tomato responses, respectively. Combined stress also determined a high within-plant phenotypic plasticity of the morpho-physiological responses. Conclusions: These results suggested that the combined stress in tomato determined a “new stress state” and a higher within-plant phenotypic plasticity which could permit an efficient use of the growth and defense resources in the heterogeneous and multiple stressful environmental conditions.
Collapse
|
21
|
Zhang Z, Liu Z, Li S, Xiong T, Ye F, Han Y, Sun M, Cao J, Luo T, Zhang C, Chen J, Zhang W, Lian S, Yuan H. Effect of prior drought and heat stress on Camellia sinensis transcriptome changes to Ectropis oblique (Lepidoptera: Geometridae) resistance. Genomics 2022; 114:110506. [PMID: 36265745 DOI: 10.1016/j.ygeno.2022.110506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/14/2022] [Accepted: 10/16/2022] [Indexed: 01/15/2023]
Abstract
Tea plants are continuously confronted with a wide range of biotic and abiotic stressors in the field, which can occur concurrently or sequentially. To elucidate the molecular mechanisms in responses to such individual and combined stresses, we used RNAseq to compare the temporal changes in the transcriptome of Camellia sinensis to Ectropis oblique Prout alone or in combination with exposure to drought and heat. Compared with the individual stress, tea plants exhibit significant differences in transcriptome profiles under the combined stresses. Additionally, many unique genes exhibited significant differences in expression in individual and combined stress conditions. Our research showed novel insights into the molecular mechanisms of E. oblique Prout resistance in tea plants and provided a valuable resource for developing tea varieties with broad spectrum stress tolerance.
Collapse
Affiliation(s)
- Zaibao Zhang
- College of Life Science, Xinyang Normal University, Xinyang, Henan, China.
| | - Zixiao Liu
- College of Physics and Electronic Engineering, Xinyang Normal University, Xinyang, Henan, China
| | - Shuangru Li
- Shandong Academy of Sciences Yida Technology Consulting Co., Ltd., Shangdong, China
| | - Tao Xiong
- College of Life Science, Xinyang Normal University, Xinyang, Henan, China
| | - Fan Ye
- College of Life Science, Xinyang Normal University, Xinyang, Henan, China
| | - Yanting Han
- College of Life Science, Xinyang Normal University, Xinyang, Henan, China
| | - Mengke Sun
- College of Life Science, Xinyang Normal University, Xinyang, Henan, China
| | - Jiajia Cao
- College of Life Science, Xinyang Normal University, Xinyang, Henan, China
| | - Tian Luo
- College of Life Science, Xinyang Normal University, Xinyang, Henan, China
| | - Chi Zhang
- College of Horticulture, Xinyang Agriculture and Forestry University, Xinyang, Henan, China
| | - Jiahui Chen
- College of Life Science, Xinyang Normal University, Xinyang, Henan, China
| | - Wei Zhang
- College of Life Science, Xinyang Normal University, Xinyang, Henan, China
| | - Shuaibin Lian
- College of Physics and Electronic Engineering, Xinyang Normal University, Xinyang, Henan, China.
| | - Hongyu Yuan
- College of Life Science, Xinyang Normal University, Xinyang, Henan, China.
| |
Collapse
|
22
|
Yang L, Yan C, Peng S, Chen L, Guo J, Lu Y, Li L, Ji Z. Broad-spectrum resistance mechanism of serine protease Sp1 in Bacillus licheniformis W10 via dual comparative transcriptome analysis. Front Microbiol 2022; 13:974473. [PMID: 36267189 PMCID: PMC9577198 DOI: 10.3389/fmicb.2022.974473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Antagonistic microorganisms are considered to be the most promising biological controls for plant disease. However, they are still not as popular as chemical pesticides due to complex environmental factors in the field. It is urgent to exploit their potential genetic characteristics and excellent properties to develop biopesticides with antimicrobial substances as the main components. Here, the serine protease Sp1 isolated from the Bacillus licheniformis W10 strain was confirmed to have a broad antifungal and antibacterial spectrum. Sp1 treatment significantly inhibited fungal vegetative growth and damaged the structure of hyphae, in accordance with that caused by W10 strain. Furthermore, Sp1 could activate the systemic resistance of peach twigs, fruits and tobacco. Dual comparative transcriptome analysis uncovered how Sp1 resisted the plant pathogenic fungus Phomopsis amygdali and the potential molecular resistance mechanisms of tobacco. In PSp1 vs. P. amygdali, RNA-seq identified 150 differentially expressed genes (DEGs) that were upregulated and 209 DEGs that were downregulated. Further analysis found that Sp1 might act on the energy supply and cell wall structure to inhibit the development of P. amygdali. In TSp1 vs. Xanthi tobacco, RNA-seq identified that 5937 DEGs were upregulated and 2929 DEGs were downregulated. DEGs were enriched in the metabolic biosynthesis pathways of secondary metabolites, plant hormone signal transduction, plant–pathogen interactions, and MAPK signaling pathway–plant and further found that the genes of salicylic acid (SA) and jasmonic acid (JA) signaling pathways were highly expressed and the contents of SA and JA increased significantly, suggesting that systemic resistance induced by Sp1 shares features of SAR and ISR. In addition, Sp1 might induce the plant defense responses of tobacco. This study provides insights into the broad-spectrum resistance molecular mechanism of Sp1, which could be used as a potential biocontrol product.
Collapse
Affiliation(s)
- Lina Yang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Chun Yan
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Shuai Peng
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Lili Chen
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Junjie Guo
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Yihe Lu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Lianwei Li
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Zhaolin Ji
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
- *Correspondence: Zhaolin Ji,
| |
Collapse
|
23
|
Stroud EA, Jayaraman J, Templeton MD, Rikkerink EHA. Comparison of the pathway structures influencing the temporal response of salicylate and jasmonate defence hormones in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2022; 13:952301. [PMID: 36160984 PMCID: PMC9504473 DOI: 10.3389/fpls.2022.952301] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/01/2022] [Indexed: 06/16/2023]
Abstract
Defence phytohormone pathways evolved to recognize and counter multiple stressors within the environment. Salicylic acid responsive pathways regulate the defence response to biotrophic pathogens whilst responses to necrotrophic pathogens, herbivory, and wounding are regulated via jasmonic acid pathways. Despite their contrasting roles in planta, the salicylic acid and jasmonic acid defence networks share a common architecture, progressing from stages of biosynthesis, to modification, regulation, and response. The unique structure, components, and regulation of each stage of the defence networks likely contributes, in part, to the speed, establishment, and longevity of the salicylic acid and jasmonic acid signaling pathways in response to hormone treatment and various biotic stressors. Recent advancements in the understanding of the Arabidopsis thaliana salicylic acid and jasmonic acid signaling pathways are reviewed here, with a focus on how the structure of the pathways may be influencing the temporal regulation of the defence responses, and how biotic stressors and the many roles of salicylic acid and jasmonic acid in planta may have shaped the evolution of the signaling networks.
Collapse
Affiliation(s)
- Erin A. Stroud
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Jay Jayaraman
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
- Bioprotection Aotearoa, Lincoln, New Zealand
| | - Matthew D. Templeton
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Bioprotection Aotearoa, Lincoln, New Zealand
| | - Erik H. A. Rikkerink
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| |
Collapse
|
24
|
García-Caparrós P, Vogelsang L, Persicke M, Wirtz M, Kumar V, Dietz KJ. Differential sensitivity of metabolic pathways in sugar beet roots to combined salt, heat, and light stress. PHYSIOLOGIA PLANTARUM 2022; 174:e13786. [PMID: 36169530 DOI: 10.1111/ppl.13786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/10/2022] [Accepted: 07/11/2022] [Indexed: 06/16/2023]
Abstract
Plants in nature commonly encounter combined stress scenarios. The response to combined stressors is often unpredictable from the response to single stresses. To address stress interference in roots, we applied salinity, heat, and high light to hydroponically grown sugar beet. Two main patterns of metabolomic acclimation were apparent. High salt of 300 mM NaCl considerably lowered metabolite amounts, for example, those of most amino acids, γ-amino butyric acid (GABA), and glucose. Very few metabolites revealed the opposite trend with increased contents at high salts, mostly organic acids such as citric acid and isocitric acid, but also tryptophan, tyrosine, and the compatible solute proline. High temperature (31°C vs. 21°C) also frequently lowered root metabolite pools. The individual effects of salinity and heat were superimposed under combined stress. Under high light and high salt conditions, there was a significant decline in root chloride, mannitol, ribulose 5-P, cysteine, and l-aspartate contents. The results reveal the complex interaction pattern of environmental parameters and urge researchers to elaborate in much more detail and width on combinatorial stress effects to bridge work under controlled growth conditions to growth in nature, and also to better understand acclimation to the consequences of climate change.
Collapse
Affiliation(s)
- Pedro García-Caparrós
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Lara Vogelsang
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | | | - Markus Wirtz
- Heidelberg University, Centre for Organismal Studies, Heidelberg, Germany
| | - Vijay Kumar
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Karl-Josef Dietz
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, Bielefeld, Germany
- CeBiTec, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
25
|
Pascual LS, Segarra-Medina C, Gómez-Cadenas A, López-Climent MF, Vives-Peris V, Zandalinas SI. Climate change-associated multifactorial stress combination: A present challenge for our ecosystems. JOURNAL OF PLANT PHYSIOLOGY 2022; 276:153764. [PMID: 35841741 DOI: 10.1016/j.jplph.2022.153764] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/30/2022] [Accepted: 07/03/2022] [Indexed: 05/28/2023]
Abstract
Humans negatively influence Earth ecosystems and biodiversity causing global warming, climate change as well as man-made pollution. Recently, the number of different stress factors have increased, and when impacting simultaneously, the multiple stress conditions cause dramatic declines in plant and ecosystem health. Although much is known about how plants and ecosystems are affected by each individual stress, recent research efforts have diverted into how these biological systems respond to several of these stress conditions applied together. Studies of such "multifactorial stress combination" concept have reported a severe decrease in plant survival and microbiome biodiversity along the increasing number of factors in a consistent directional trend. In addition, these results are in concert with studies about how ecosystems and microbiota are affected by natural conditions imposed by climate change. Therefore, all this evidence should serve as an important warning in order to decrease pollutants, create strategies to deal with global warming, and increase the tolerance of plants to multiple stressful factors in combination. Here we review recent studies focused on the impact of abiotic stresses on plants, agrosystems and different ecosystems including forests and microecosystems. In addition, different strategies to mitigate the impact of climate change in ecosystems are discussed.
Collapse
Affiliation(s)
- Lidia S Pascual
- Department of Biology, Biochemistry and Environmental Sciences, University Jaume I, Av. de Vicent Sos Baynat, s/n, Castelló de la Plana, 12071, Spain
| | - Clara Segarra-Medina
- Department of Biology, Biochemistry and Environmental Sciences, University Jaume I, Av. de Vicent Sos Baynat, s/n, Castelló de la Plana, 12071, Spain
| | - Aurelio Gómez-Cadenas
- Department of Biology, Biochemistry and Environmental Sciences, University Jaume I, Av. de Vicent Sos Baynat, s/n, Castelló de la Plana, 12071, Spain
| | - María F López-Climent
- Department of Biology, Biochemistry and Environmental Sciences, University Jaume I, Av. de Vicent Sos Baynat, s/n, Castelló de la Plana, 12071, Spain
| | - Vicente Vives-Peris
- Department of Biology, Biochemistry and Environmental Sciences, University Jaume I, Av. de Vicent Sos Baynat, s/n, Castelló de la Plana, 12071, Spain
| | - Sara I Zandalinas
- Department of Biology, Biochemistry and Environmental Sciences, University Jaume I, Av. de Vicent Sos Baynat, s/n, Castelló de la Plana, 12071, Spain.
| |
Collapse
|
26
|
Karssemeijer PN, de Kreek KA, Gols R, Neequaye M, Reichelt M, Gershenzon J, van Loon JJA, Dicke M. Specialist root herbivore modulates plant transcriptome and downregulates defensive secondary metabolites in a brassicaceous plant. THE NEW PHYTOLOGIST 2022; 235:2378-2392. [PMID: 35717563 PMCID: PMC9540780 DOI: 10.1111/nph.18324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Plants face attackers aboveground and belowground. Insect root herbivores can lead to severe crop losses, yet the underlying transcriptomic responses have rarely been studied. We studied the dynamics of the transcriptomic response of Brussels sprouts (Brassica oleracea var. gemmifera) primary roots to feeding damage by cabbage root fly larvae (Delia radicum), alone or in combination with aboveground herbivory by cabbage aphids (Brevicoryne brassicae) or diamondback moth caterpillars (Plutella xylostella). This was supplemented with analyses of phytohormones and the main classes of secondary metabolites; aromatic, indole and aliphatic glucosinolates. Root herbivory leads to major transcriptomic rearrangement that is modulated by aboveground feeding caterpillars, but not aphids, through priming soon after root feeding starts. The root herbivore downregulates aliphatic glucosinolates. Knocking out aliphatic glucosinolate biosynthesis with CRISPR-Cas9 results in enhanced performance of the specialist root herbivore, indicating that the herbivore downregulates an effective defence. This study advances our understanding of how plants cope with root herbivory and highlights several novel aspects of insect-plant interactions for future research. Further, our findings may help breeders develop a sustainable solution to a devastating root pest.
Collapse
Affiliation(s)
- Peter N. Karssemeijer
- Laboratory of EntomologyWageningen University and Research6708PBWageningenthe Netherlands
| | - Kris A. de Kreek
- Laboratory of EntomologyWageningen University and Research6708PBWageningenthe Netherlands
| | - Rieta Gols
- Laboratory of EntomologyWageningen University and Research6708PBWageningenthe Netherlands
| | - Mikhaela Neequaye
- John Innes CentreNorwich Research ParkNR4 7UHNorwichUK
- Quadram Institute BioscienceNorwich Research ParkNR4 7UQNorwichUK
| | - Michael Reichelt
- Department of BiochemistryMax‐Planck‐Institute for Chemical Ecology07745JenaGermany
| | - Jonathan Gershenzon
- Department of BiochemistryMax‐Planck‐Institute for Chemical Ecology07745JenaGermany
| | - Joop J. A. van Loon
- Laboratory of EntomologyWageningen University and Research6708PBWageningenthe Netherlands
| | - Marcel Dicke
- Laboratory of EntomologyWageningen University and Research6708PBWageningenthe Netherlands
| |
Collapse
|
27
|
Tang B, Tan T, Chen Y, Hu Z, Xie Q, Yu X, Chen G. SlJAZ10 and SlJAZ11 mediate dark-induced leaf senescence and regeneration. PLoS Genet 2022; 18:e1010285. [PMID: 35830385 PMCID: PMC9278786 DOI: 10.1371/journal.pgen.1010285] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/07/2022] [Indexed: 11/29/2022] Open
Abstract
During evolutionary adaptation, the mechanisms for self-regulation are established between the normal growth and development of plants and environmental stress. The phytohormone jasmonate (JA) is a key tie of plant defence and development, and JASMONATE-ZIM DOMAIN (JAZ) repressor proteins are key components in JA signalling pathways. Here, we show that JAZ expression was affected by leaf senescence from the transcriptomic data. Further investigation revealed that SlJAZ10 and SlJAZ11 positively regulate leaf senescence and that SlJAZ11 can also promote plant regeneration. Moreover, we reveal that the SlJAV1-SlWRKY51 (JW) complex could suppress JA biosynthesis under normal growth conditions. Immediately after injury, SlJAZ10 and SlJAZ11 can regulate the activity of the JW complex through the effects of electrical signals and Ca2+ waves, which in turn affect JA biosynthesis, causing a difference in the regeneration phenotype between SlJAZ10-OE and SlJAZ11-OE transgenic plants. In addition, SlRbcs-3B could maintain the protein stability of SlJAZ11 to protect it from degradation. Together, SlJAZ10 and SlJAZ11 not only act as repressors of JA signalling to leaf senescence, but also regulate plant regeneration through coordinated electrical signals, Ca2+ waves, hormones and transcriptional regulation. Our study provides critical insights into the mechanisms by which SlJAZ11 can induce regeneration. In plants, senescence is the final stage of development, but regeneration can help them beyond the stage. Plants regeneration is essential for propagation, and in cultivated crops to maintain excellent traits as close as possible. JA signaling can sense environmental signals and integrate various regulatory mechanisms to ensure plants regeneration occurs under optimal conditions. In this work, the JAZ-JAV1-WRKY51 complexes with reported was further optimized, the function of SlJAZ10 and SlJAZ11 was identified to promote inhibitory activity of SlJAV1-SlWRKY51 complex which negatively regulated JA biosynthesis by direct binding of the W-box of the SlAOC promoter. The results of further investigation suggest that the differences in regulation of electrical signals, Ca2+ waves, hormones and transcriptional regulation are responsible for the regeneration between SlJAZ10 and SlJAZ11. In addition, we have found that SlRbcs-3B could maintain the protein stability of SlJAZ11 to protect it from degradation. In summary, despite both SlJAZ10 and SlJAZ11 can function as senescence, only SlJAZ11 has an important promoting function for regeneration.
Collapse
Affiliation(s)
- Boyan Tang
- Key Laboratory of Bioengineering Science and Technology, Chongqing University, Ministry of Education, Chongqing, China
- Bioengineering College, Campus B, Chongqing University, Chongqing, People’s Republic of China
| | - Tingting Tan
- Key Laboratory of Bioengineering Science and Technology, Chongqing University, Ministry of Education, Chongqing, China
- Bioengineering College, Campus B, Chongqing University, Chongqing, People’s Republic of China
| | - Yating Chen
- Key Laboratory of Bioengineering Science and Technology, Chongqing University, Ministry of Education, Chongqing, China
- Bioengineering College, Campus B, Chongqing University, Chongqing, People’s Republic of China
| | - Zongli Hu
- Key Laboratory of Bioengineering Science and Technology, Chongqing University, Ministry of Education, Chongqing, China
- Bioengineering College, Campus B, Chongqing University, Chongqing, People’s Republic of China
| | - Qiaoli Xie
- Key Laboratory of Bioengineering Science and Technology, Chongqing University, Ministry of Education, Chongqing, China
- Bioengineering College, Campus B, Chongqing University, Chongqing, People’s Republic of China
| | - Xiaohui Yu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, People’s Republic of China
- * E-mail: (XY); (GC)
| | - Guoping Chen
- Key Laboratory of Bioengineering Science and Technology, Chongqing University, Ministry of Education, Chongqing, China
- Bioengineering College, Campus B, Chongqing University, Chongqing, People’s Republic of China
- * E-mail: (XY); (GC)
| |
Collapse
|
28
|
Coolen S, van der Molen MR, Welte CU. The secret life of insect-associated microbes and how they shape insect-plant interactions. FEMS Microbiol Ecol 2022; 98:6643329. [PMID: 35830517 PMCID: PMC9409087 DOI: 10.1093/femsec/fiac083] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/14/2022] [Accepted: 07/11/2022] [Indexed: 12/04/2022] Open
Abstract
Insects are associated with a plethora of different microbes of which we are only starting to understand their role in shaping insect–plant interactions. Besides directly benefitting from symbiotic microbial metabolism, insects obtain and transmit microbes within their environment, making them ideal vectors and potential beneficiaries of plant diseases and microbes that alter plant defenses. To prevent damage, plants elicit stress-specific defenses to ward off insects and their microbiota. However, both insects and microbes harbor a wealth of adaptations that allow them to circumvent effective plant defense activation. In the past decades, it has become apparent that the enormous diversity and metabolic potential of insect-associated microbes may play a far more important role in shaping insect–plant interactions than previously anticipated. The latter may have implications for the development of sustainable pest control strategies. Therefore, this review sheds light on the current knowledge on multitrophic insect–microbe–plant interactions in a rapidly expanding field of research.
Collapse
Affiliation(s)
- Silvia Coolen
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, Nijmegen, The Netherlands
| | - Magda Rogowska- van der Molen
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, Nijmegen, The Netherlands
| | - Cornelia U Welte
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
29
|
Li W, Mi X, Jin X, Zhang D, Zhu G, Shang X, Zhang D, Guo W. Thiamine functions as a key activator for modulating plant health and broad-spectrum tolerance in cotton. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:374-390. [PMID: 35506325 DOI: 10.1111/tpj.15793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 04/23/2022] [Accepted: 05/01/2022] [Indexed: 06/14/2023]
Abstract
Global climate changes cause an increase of abiotic and biotic stresses that tremendously threaten the world's crop security. However, studies on broad-spectrum response pathways involved in biotic and abiotic stresses are relatively rare. Here, by comparing the time-dependent transcriptional changes and co-expression analysis of cotton (Gossypium hirsutum) root tissues under abiotic and biotic stress conditions, we discovered the common stress-responsive genes and stress metabolism pathways under different stresses, which included the circadian rhythm, thiamine and galactose metabolism, carotenoid, phenylpropanoid, flavonoid, and zeatin biosynthesis, and the mitogen-activated protein kinase signaling pathway. We found that thiamine metabolism was an important intersection between abiotic and biotic stresses; the key thiamine synthesis genes, GhTHIC and GhTHI1, were highly induced at the early stage of stresses. We confirmed that thiamine was crucial and necessary for cotton growth and development, and its deficiency could be recovered by exogenous thiamine supplement. Furthermore, we revealed that exogenous thiamine enhanced stress tolerance in cotton via increasing calcium signal transduction and activating downstream stress-responsive genes. Overall, our studies demonstrated that thiamine played a crucial role in the tradeoff between plant health and stress resistance. The thiamine deficiency caused by stresses could transiently induce upregulation of thiamine biosynthetic genes in vivo, while it could be totally salvaged by exogenous thiamine application, which could significantly improve cotton broad-spectrum stress tolerance and enhance plant growth and development.
Collapse
Affiliation(s)
- Weixi Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Nanjing Agricultural University, Nanjing, 210095, China
| | - Xinyue Mi
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Nanjing Agricultural University, Nanjing, 210095, China
| | - Xuanxiang Jin
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Nanjing Agricultural University, Nanjing, 210095, China
| | - Daiwei Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Nanjing Agricultural University, Nanjing, 210095, China
| | - Guozhong Zhu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaoguang Shang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Nanjing Agricultural University, Nanjing, 210095, China
| | - Dayong Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Nanjing Agricultural University, Nanjing, 210095, China
| | - Wangzhen Guo
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
30
|
Sun Y, Yang H, Li J. Transcriptome Analysis Reveals the Response Mechanism of Frl-Mediated Resistance to Fusarium oxysporum f. sp. radicis-lycopersici (FORL) Infection in Tomato. Int J Mol Sci 2022; 23:ijms23137078. [PMID: 35806084 PMCID: PMC9267026 DOI: 10.3390/ijms23137078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/15/2022] [Accepted: 06/24/2022] [Indexed: 12/10/2022] Open
Abstract
Tomato Fusarium crown and root rot (FCRR) is an extremely destructive soil-borne disease. To date, studies have shown that only plants with tomato mosaic virus (TMV) resistance exhibit similar resistance to tomato Fusarium oxysporum f. sp. radicis-lycopersici (FORL) and have identified a single relevant gene, Frl, in Peruvian tomato. Due to the relative lack of research on FCRR disease-resistance genes in China and elsewhere, transcriptome data for FORL-resistant (cv. ‘19912’) and FORL-susceptible (cv. ‘Moneymaker’) tomato cultivars were analysed for the first time in this study. The number of differentially expressed genes (DEGs) was higher in Moneymaker than in 19912, and 189 DEGs in the ‘plant–pathogen interaction’ pathway were subjected to GO and KEGG enrichment analyses. MAPK and WRKY genes were enriched in major metabolic pathways related to plant disease resistance; thus, we focused on these two gene families. In the early stage of tomato infection, the content of JA and SA increased, but the change in JA was more obvious. Fourteen genes were selected for confirmation of their differential expression levels by qRT-PCR. This study provides a series of novel disease resistance resources for tomato breeding and genetic resources for screening and cloning FORL resistance genes.
Collapse
|
31
|
Paul S, Duhan JS, Jaiswal S, Angadi UB, Sharma R, Raghav N, Gupta OP, Sheoran S, Sharma P, Singh R, Rai A, Singh GP, Kumar D, Iquebal MA, Tiwari R. RNA-Seq Analysis of Developing Grains of Wheat to Intrigue Into the Complex Molecular Mechanism of the Heat Stress Response. FRONTIERS IN PLANT SCIENCE 2022; 13:904392. [PMID: 35720556 PMCID: PMC9201344 DOI: 10.3389/fpls.2022.904392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
Heat stress is one of the significant constraints affecting wheat production worldwide. To ensure food security for ever-increasing world population, improving wheat for heat stress tolerance is needed in the presently drifting climatic conditions. At the molecular level, heat stress tolerance in wheat is governed by a complex interplay of various heat stress-associated genes. We used a comparative transcriptome sequencing approach to study the effect of heat stress (5°C above ambient threshold temperature of 20°C) during grain filling stages in wheat genotype K7903 (Halna). At 7 DPA (days post-anthesis), heat stress treatment was given at four stages: 0, 24, 48, and 120 h. In total, 115,656 wheat genes were identified, including 309 differentially expressed genes (DEGs) involved in many critical processes, such as signal transduction, starch synthetic pathway, antioxidant pathway, and heat stress-responsive conserved and uncharacterized putative genes that play an essential role in maintaining the grain filling rate at the high temperature. A total of 98,412 Simple Sequences Repeats (SSR) were identified from de novo transcriptome assembly of wheat and validated. The miRNA target prediction from differential expressed genes was performed by psRNATarget server against 119 mature miRNA. Further, 107,107 variants including 80,936 Single nucleotide polymorphism (SNPs) and 26,171 insertion/deletion (Indels) were also identified in de novo transcriptome assembly of wheat and wheat genome Ensembl version 31. The present study enriches our understanding of known heat response mechanisms during the grain filling stage supported by discovery of novel transcripts, microsatellite markers, putative miRNA targets, and genetic variant. This enhances gene functions and regulators, paving the way for improved heat tolerance in wheat varieties, making them more suitable for production in the current climate change scenario.
Collapse
Affiliation(s)
- Surinder Paul
- Department of Biotechnology, Chaudhary Devi Lal University, Sirsa, India
- Indian Council of Agricultural Research, Indian Institute of Wheat and Barley Research, Karnal, India
- ICAR, National Bureau of Agriculturally Important Microorganisms, Kushmaur, Maunath Bhanjan, India
| | | | - Sarika Jaiswal
- Indian Council of Agricultural Research, Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Ulavappa B. Angadi
- Indian Council of Agricultural Research, Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Ruchika Sharma
- Indian Council of Agricultural Research, Indian Institute of Wheat and Barley Research, Karnal, India
| | - Nishu Raghav
- Indian Council of Agricultural Research, Indian Institute of Wheat and Barley Research, Karnal, India
| | - Om Prakash Gupta
- Indian Council of Agricultural Research, Indian Institute of Wheat and Barley Research, Karnal, India
| | - Sonia Sheoran
- Indian Council of Agricultural Research, Indian Institute of Wheat and Barley Research, Karnal, India
| | - Pradeep Sharma
- Indian Council of Agricultural Research, Indian Institute of Wheat and Barley Research, Karnal, India
| | - Rajender Singh
- Indian Council of Agricultural Research, Indian Institute of Wheat and Barley Research, Karnal, India
| | - Anil Rai
- Indian Council of Agricultural Research, Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Gyanendra Pratap Singh
- Indian Council of Agricultural Research, Indian Institute of Wheat and Barley Research, Karnal, India
| | - Dinesh Kumar
- Indian Council of Agricultural Research, Indian Agricultural Statistics Research Institute, New Delhi, India
- Department of Biotechnology, Central University of Haryana, Gurgaon, India
| | - Mir Asif Iquebal
- Indian Council of Agricultural Research, Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Ratan Tiwari
- Indian Council of Agricultural Research, Indian Institute of Wheat and Barley Research, Karnal, India
| |
Collapse
|
32
|
Zandalinas SI, Mittler R. Plant responses to multifactorial stress combination. THE NEW PHYTOLOGIST 2022; 234:1161-1167. [PMID: 35278228 DOI: 10.1111/nph.18087] [Citation(s) in RCA: 129] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/26/2022] [Indexed: 05/20/2023]
Abstract
Human activity is causing a global change in plant environment that includes a significant increase in the number and intensity of different stress factors. These include combinations of multiple abiotic and biotic stressors that simultaneously or sequentially impact plants and microbiomes, causing a significant decrease in plant growth, yield and overall health. It was recently found that with the increasing number and complexity of stressors simultaneously impacting a plant, plant growth and survival decline dramatically, even if the level of each individual stress, involved in such 'multifactorial stress combination', is low enough not to have a significant effect. Here we highlight this new concept of multifactorial stress combination and discuss its importance for our efforts to develop climate change-resilient crops.
Collapse
Affiliation(s)
- Sara I Zandalinas
- Department of Agricultural and Environmental Sciences, University Jaume I, Av. de Vicent Sos Baynat, s/n, Castelló de la Plana, 12071, Spain
| | - Ron Mittler
- Division of Plant Sciences and Interdisciplinary Plant Group, College of Agriculture, Food and Natural Resources, Christopher S. Bond Life Sciences Center, University of Missouri, 1201 Rollins Street, Columbia, MO, 65201, USA
| |
Collapse
|
33
|
Scrutinizing the Impact of Alternating Electromagnetic Fields on Molecular Features of the Model Plant Arabidopsis thaliana. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19095144. [PMID: 35564539 PMCID: PMC9099453 DOI: 10.3390/ijerph19095144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/20/2022] [Accepted: 04/20/2022] [Indexed: 02/05/2023]
Abstract
Natural and anthropogenic electromagnetic fields (EMFs) are ubiquitous in the environment and interfere with all biological organisms including plants. Particularly the quality and quantity of alternating EMFs from anthropogenic sources are increasing due to the implementation of novel technologies. There is a significant interest in exploring the impact of EMFs (similar to those emitted from battery chargers of electric cars) on plants. The model plant Arabidopsis thaliana was exposed to a composite alternating EMF program for 48 h and scrutinized for molecular alterations using photosynthetic performance, metabolite profiling, and RNA sequencing followed by qRT-PCR validation. Clear differences in the photosynthetic parameters between the treated and control plants indicated either lower nonphotochemical quenching or higher reduction of the plastoquinone pool or both. Transcriptome analysis by RNA sequencing revealed alterations in transcript amounts upon EMF exposure; however, the gene ontology groups of, e.g., chloroplast stroma, thylakoids, and envelope were underrepresented. Quantitative real-time PCR validated deregulation of some selected transcripts. More profound were the readjustments in metabolite pool sizes with variations in photosynthetic and central energy metabolism. These findings together with the invariable phenotype indicate efficient adjustment of the physiological state of the EMF-treated plants, suggesting testing for more challenging growth conditions in future experiments.
Collapse
|
34
|
Val‐Torregrosa B, Bundó M, Martín‐Cardoso H, Bach‐Pages M, Chiou T, Flors V, Segundo BS. Phosphate-induced resistance to pathogen infection in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:452-469. [PMID: 35061924 PMCID: PMC9303409 DOI: 10.1111/tpj.15680] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 12/30/2021] [Accepted: 01/17/2022] [Indexed: 05/12/2023]
Abstract
In nature, plants are concurrently exposed to a number of abiotic and biotic stresses. Our understanding of convergence points between responses to combined biotic/abiotic stress pathways remains, however, rudimentary. Here we show that MIR399 overexpression, loss-of-function of PHOSPHATE2 (PHO2), or treatment with high phosphate (Pi) levels is accompanied by an increase in Pi content and accumulation of reactive oxygen species (ROS) in Arabidopsis thaliana. High Pi plants (e.g., miR399 overexpressors, pho2 mutants, and plants grown under high Pi supply) exhibited resistance to infection by necrotrophic and hemibiotrophic fungal pathogens. In the absence of pathogen infection, the expression levels of genes in the salicylic acid (SA)- and jasmonic acid (JA)-dependent signaling pathways were higher in high Pi plants compared to wild-type plants grown under control conditions, which is consistent with increased levels of SA and JA in non-infected high Pi plants. During infection, an opposite regulation in the two branches of the JA pathway (ERF1/PDF1.2 and MYC2/VSP2) occurs in high Pi plants. Thus, while pathogen infection induces PDF1.2 expression in miR399 OE and pho2 plants, VSP2 expression is downregulated by pathogen infection in these plants. This study supports the notion that Pi accumulation promotes resistance to infection by fungal pathogens in Arabidopsis, while providing a basis to better understand interactions between Pi signaling and hormonal signaling pathways for modulation of plant immune responses.
Collapse
Affiliation(s)
- Beatriz Val‐Torregrosa
- Centre for Research in Agricultural Genomics (CRAG) CSIC‐IRTA‐UAB‐UBCampus Universitat Autònoma de Barcelona (UAB), Bellaterra (Cerdanyola del Vallés)BarcelonaSpain
| | - Mireia Bundó
- Centre for Research in Agricultural Genomics (CRAG) CSIC‐IRTA‐UAB‐UBCampus Universitat Autònoma de Barcelona (UAB), Bellaterra (Cerdanyola del Vallés)BarcelonaSpain
| | - Héctor Martín‐Cardoso
- Centre for Research in Agricultural Genomics (CRAG) CSIC‐IRTA‐UAB‐UBCampus Universitat Autònoma de Barcelona (UAB), Bellaterra (Cerdanyola del Vallés)BarcelonaSpain
| | - Marcel Bach‐Pages
- Centre for Research in Agricultural Genomics (CRAG) CSIC‐IRTA‐UAB‐UBCampus Universitat Autònoma de Barcelona (UAB), Bellaterra (Cerdanyola del Vallés)BarcelonaSpain
| | - Tzyy‐Jen Chiou
- Agricultural Biotechnology Research Center, Academia SinicaTaipei 115Taiwan
| | - Victor Flors
- Departamento de Ciencias Agrarias y del Medio Natural, Escuela Superior de Tecnología y Ciencias ExperimentalesUniversitat Jaume ICastellóSpain
| | - Blanca San Segundo
- Centre for Research in Agricultural Genomics (CRAG) CSIC‐IRTA‐UAB‐UBCampus Universitat Autònoma de Barcelona (UAB), Bellaterra (Cerdanyola del Vallés)BarcelonaSpain
- Consejo Superior de Investigaciones Científicas (CSIC)BarcelonaSpain
| |
Collapse
|
35
|
Monson RK, Trowbridge AM, Lindroth RL, Lerdau MT. Coordinated resource allocation to plant growth-defense tradeoffs. THE NEW PHYTOLOGIST 2022; 233:1051-1066. [PMID: 34614214 DOI: 10.1111/nph.17773] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
Plant resource allocation patterns often reveal tradeoffs that favor growth (G) over defense (D), or vice versa. Ecologists most often explain G-D tradeoffs through principles of economic optimality, in which negative trait correlations are attributed to the reconciliation of fitness costs. Recently, researchers in molecular biology have developed 'big data' resources including multi-omic (e.g. transcriptomic, proteomic and metabolomic) studies that describe the cellular processes controlling gene expression in model species. In this synthesis, we bridge ecological theory with discoveries in multi-omics biology to better understand how selection has shaped the mechanisms of G-D tradeoffs. Multi-omic studies reveal strategically coordinated patterns in resource allocation that are enabled by phytohormone crosstalk and transcriptional signal cascades. Coordinated resource allocation justifies the framework of optimality theory, while providing mechanistic insight into the feedbacks and control hubs that calibrate G-D tradeoff commitments. We use the existing literature to describe the coordinated resource allocation hypothesis (CoRAH) that accounts for balanced cellular controls during the expression of G-D tradeoffs, while sustaining stored resource pools to buffer the impacts of future stresses. The integrative mechanisms of the CoRAH unify the supply- and demand-side perspectives of previous G-D tradeoff theories.
Collapse
Affiliation(s)
- Russell K Monson
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, 80309, USA
| | - Amy M Trowbridge
- Department of Entomology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Richard L Lindroth
- Department of Entomology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Manuel T Lerdau
- Department of Environmental Sciences, University of Virginia, Charlottesville, VA, 22904, USA
| |
Collapse
|
36
|
Davoudi M, Song M, Zhang M, Chen J, Lou Q. Long-distance control of pumpkin rootstock over cucumber scion under drought stress as revealed by transcriptome sequencing and mobile mRNAs identifications. HORTICULTURE RESEARCH 2022; 9:uhab033. [PMID: 35043177 PMCID: PMC8854630 DOI: 10.1093/hr/uhab033] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 10/21/2021] [Indexed: 06/01/2023]
Abstract
Grafting with pumpkin rootstock is commonly used not only to improve the quality of cucumber fruits but also to confer biotic or abiotic stress tolerance. However, the molecular mechanism of grafted cucumbers to drought stress and the possible roles of mobile mRNAs to improve stress tolerance have remained obscure. Hence, we conducted transcriptome sequencing and combined it with morpho-physiological experiments to compare the response of homografts (cucumber as scion and rootstock) (C) and heterografts (cucumber as scion and pumpkin as rootstock) (P) to drought stress. After applying drought stress, homografts and heterografts expressed 2960 and 3088 genes in response to drought stress, respectively. The identified DEGs in heterografts under drought stress were categorized into different stress-responsive groups, such as carbohydrate metabolism (involved in osmotic adjustment by sugar accumulation), lipid and cell wall metabolism (involved in cell membrane integrity by a reduction in lipid peroxidation), redox homeostasis (increased antioxidant enzymes activities), phytohormone (increased ABA content), protein kinases and transcription factors (TFs) using MapMan software. Earlier and greater H2O2 accumulation in xylem below the graft union was accompanied by leaf ABA accumulation in heterografts in response to drought stress. Greater leaf ABA helped heterografted cucumbers to sense and respond to drought stress earlier than homografts. The timely response of heterografts to drought stress led to maintain higher water content in the leaves even in the late stage of drought stress. The identified mobile mRNAs (mb-mRNAs) in heterografts were mostly related to photosynthesis which would be the possible reason for improved chlorophyll content and maximum photochemical efficiency of PSII (Fv/Fm). The existence of some stress-responsive pumpkin (rootstock) mRNAs in cucumber (scion), such as heat shock protein (HSP70, a well-known stress-responsive gene), led to the higher proline accumulation than homografts. The expression of the mobile and immobile stress-responsive mRNAs and timely response of heterografts to drought stress could improve drought tolerance in pumpkin-rooted plants.
Collapse
Affiliation(s)
- Marzieh Davoudi
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street 13 No.1, Nanjing 210095, China
| | - Mengfei Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street 13 No.1, Nanjing 210095, China
| | - Mengru Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street 13 No.1, Nanjing 210095, China
| | - Jinfeng Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street 13 No.1, Nanjing 210095, China
| | - Qunfeng Lou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street 13 No.1, Nanjing 210095, China
| |
Collapse
|
37
|
Wang Y, Yang Z, Shi L, Yang R, Guo H, Zhang S, Geng G. Transcriptome analysis of Auricularia fibrillifera fruit-body responses to drought stress and rehydration. BMC Genomics 2022; 23:58. [PMID: 35033026 PMCID: PMC8760723 DOI: 10.1186/s12864-021-08284-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 12/28/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Drought stress severely restricts edible fungus production. The genus Auricularia has a rare drought tolerance, a rehydration capability, and is nutrient rich. RESULTS The key genes and metabolic pathways involved in drought-stress and rehydration were investigated using a transcriptome analysis to clarify the relevant molecular mechanisms. In total, 173.93 Mb clean reads, 26.09 Gb of data bulk, and 52,954 unigenes were obtained. Under drought-stress and rehydration conditions, 14,235 and 8539 differentially expressed genes, respectively, were detected. 'Tyrosine metabolic', 'caffeine metabolism', 'ribosome', 'phagosome', and 'proline and arginine metabolism', as well as 'peroxisome' and 'mitogen-activated protein kinase signaling' pathways, had major roles in A. fibrillifera responses to drought stress. 'Tyrosine' and 'caffeine metabolism' might reveal unknown mechanisms for the antioxidation of A. fibrillifera under drought-stress conditions. During the rehydration process, 'diterpenoid biosynthesis', 'butanoate metabolism', 'C5-branched dibasic acid', and 'aflatoxin biosynthesis' pathways were significantly enriched. Gibberellins and γ-aminobutyric acid were important in the recovery of A. fibrillifera growth after rehydration. Many genes related to antibiotics, vitamins, and other health-related ingredients were found in A. fibrillifera. CONCLUSION These findings suggested that the candidate genes and metabolites involved in crucial biological pathways might regulate the drought tolerance or rehydration of Auricularia, shedding light on the corresponding mechanisms and providing new potential targets for the breeding and cultivation of drought-tolerant fungi.
Collapse
Affiliation(s)
- Yiqin Wang
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| | - Zhifen Yang
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| | - Luxi Shi
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| | - Rui Yang
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| | - Hao Guo
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| | - Suqin Zhang
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China.
| | - Guangdong Geng
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China.
| |
Collapse
|
38
|
Delplace F, Huard-Chauveau C, Berthomé R, Roby D. Network organization of the plant immune system: from pathogen perception to robust defense induction. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:447-470. [PMID: 34399442 DOI: 10.1111/tpj.15462] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/29/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
The plant immune system has been explored essentially through the study of qualitative resistance, a simple form of immunity, and from a reductionist point of view. The recent identification of genes conferring quantitative disease resistance revealed a large array of functions, suggesting more complex mechanisms. In addition, thanks to the advent of high-throughput analyses and system approaches, our view of the immune system has become more integrative, revealing that plant immunity should rather be seen as a distributed and highly connected molecular network including diverse functions to optimize expression of plant defenses to pathogens. Here, we review the recent progress made to understand the network complexity of regulatory pathways leading to plant immunity, from pathogen perception, through signaling pathways and finally to immune responses. We also analyze the topological organization of these networks and their emergent properties, crucial to predict novel immune functions and test them experimentally. Finally, we report how these networks might be regulated by environmental clues. Although system approaches remain extremely scarce in this area of research, a growing body of evidence indicates that the plant response to combined biotic and abiotic stresses cannot be inferred from responses to individual stresses. A view of possible research avenues in this nascent biology domain is finally proposed.
Collapse
Affiliation(s)
- Florent Delplace
- Laboratoire des Interactions Plantes-Microbes-Environnement, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, 31326, France
| | - Carine Huard-Chauveau
- Laboratoire des Interactions Plantes-Microbes-Environnement, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, 31326, France
| | - Richard Berthomé
- Laboratoire des Interactions Plantes-Microbes-Environnement, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, 31326, France
| | - Dominique Roby
- Laboratoire des Interactions Plantes-Microbes-Environnement, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, 31326, France
| |
Collapse
|
39
|
Atriztán-Hernández K, Herrera-Estrella A. Drosophila attack inhibits hyphal regeneration and defense mechanisms activation for the fungus Trichoderma atroviride. THE ISME JOURNAL 2022; 16:149-158. [PMID: 34282283 PMCID: PMC8692604 DOI: 10.1038/s41396-021-01068-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 06/30/2021] [Accepted: 07/09/2021] [Indexed: 02/07/2023]
Abstract
The capability to respond to wounding is a process shared by organisms of different kingdoms that can result in the regeneration of whole-body parts or lost structures or organs. Filamentous fungi constitute a rich food source that ensures survival and reproduction of their predators and are therefore continuously exposed to mechanical damage. Nevertheless, our understanding of how fungi respond to wounding and predators is scarce. Fungi like plants and animals respond to injury recognizing Damage- and Microbe-Associated Molecular Patterns (DAMPs/MAMPs) that activate Ca2+ and Mitogen-Activated Protein Kinase dependent signaling for the activation of defense mechanisms. During herbivory, plants, in addition to activating pathways related to injury, activate specific responses to combat their predators. Using a transcriptional approach, we studied the capacity of the filamentous fungus Trichoderma atroviride to activate specific responses to injury and attack by different arthropods. Attack by Drosophila melanogaster inhibited the transcriptional activation of genes required for hyphal regeneration, and the fungal innate immune and chemical defense responses. We also provide mechanistic insight of this inhibition involving components of the D. melanogaster salivary glands that repress the expression of a set of genes and block hyphal regeneration.
Collapse
|
40
|
Smulders L, Ferrero V, de la Peña E, Pozo MJ, Díaz Pendón JA, Benítez E, López-García Á. Resistance and Not Plant Fruit Traits Determine Root-Associated Bacterial Community Composition along a Domestication Gradient in Tomato. PLANTS (BASEL, SWITZERLAND) 2021; 11:plants11010043. [PMID: 35009046 PMCID: PMC8747438 DOI: 10.3390/plants11010043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 05/12/2023]
Abstract
Soil bacterial communities are involved in multiple ecosystem services, key in determining plant productivity. Crop domestication and intensive agricultural practices often disrupt species interactions with unknown consequences for rhizosphere microbiomes. This study evaluates whether variation in plant traits along a domestication gradient determines the composition of root-associated bacterial communities; and whether these changes are related to targeted plant traits (e.g., fruit traits) or are side effects of less-often-targeted traits (e.g., resistance) during crop breeding. For this purpose, 18 tomato varieties (wild and modern species) differing in fruit and resistance traits were grown in a field experiment, and their root-associated bacterial communities were characterised. Root-associated bacterial community composition was influenced by plant resistance traits and genotype relatedness. When only considering domesticated tomatoes, the effect of resistance on bacterial OTU composition increases, while the effect due to phylogenetic relatedness decreases. Furthermore, bacterial diversity positively correlated with plant resistance traits. These results suggest that resistance traits not selected during domestication are related to the capacity of tomato varieties to associate with different bacterial groups. Taken together, these results evidence the relationship between plant traits and bacterial communities, pointing out the potential of breeding to affect plant microbiomes.
Collapse
Affiliation(s)
- Lisanne Smulders
- Department Enviromental Protection, Estación Experimental del Zaidín (EEZ), CSIC, 18008 Granada, Spain;
- Correspondence:
| | - Victoria Ferrero
- Department of Biodiversity and Environmental Management, Campus de Vegazana s/n, University of León, 24071 León, Spain;
| | - Eduardo de la Peña
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium;
- Department Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (EEZ), CSIC, 18008 Granada, Spain; (M.J.P.); (Á.L.-G.)
| | - María J. Pozo
- Department Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (EEZ), CSIC, 18008 Granada, Spain; (M.J.P.); (Á.L.-G.)
| | - Juan Antonio Díaz Pendón
- Finca Experimental “La Mayora” CSIC, Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM-UMA-CSIC), 29750 Málaga, Spain;
| | - Emilio Benítez
- Department Enviromental Protection, Estación Experimental del Zaidín (EEZ), CSIC, 18008 Granada, Spain;
| | - Álvaro López-García
- Department Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (EEZ), CSIC, 18008 Granada, Spain; (M.J.P.); (Á.L.-G.)
- Department Animal Biology, Plant Biology and Ecology, Universidad de Jaén, 23071 Jaén, Spain
- Instituto Interuniversitario de Investigación del Sistema Tierra en Andalucía (IISTA), 18006 Granada, Spain
| |
Collapse
|
41
|
Calle García J, Guadagno A, Paytuvi-Gallart A, Saera-Vila A, Amoroso CG, D'Esposito D, Andolfo G, Aiese Cigliano R, Sanseverino W, Ercolano MR. PRGdb 4.0: an updated database dedicated to genes involved in plant disease resistance process. Nucleic Acids Res 2021; 50:D1483-D1490. [PMID: 34850118 PMCID: PMC8729912 DOI: 10.1093/nar/gkab1087] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/11/2021] [Accepted: 11/19/2021] [Indexed: 12/03/2022] Open
Abstract
The Plant Resistance Genes database (PRGdb; http://prgdb.org/prgdb4/) has been greatly expanded, keeping pace with the increasing amount of available knowledge and data (sequenced proteomes, cloned genes, public analysis data, etc.). The easy-to-use style of the database website has been maintained, while an updated prediction tool, more data and a new section have been added. This new section will contain plant resistance transcriptomic experiments, providing additional easy-to-access experimental information. DRAGO3, the tool for automatic annotation and prediction of plant resistance genes behind PRGdb, has been improved in both accuracy and sensitivity, leading to more reliable predictions. PRGdb offers 199 reference resistance genes and 586.652 putative resistance genes from 182 sequenced proteomes. Compared to the previous release, PRGdb 4.0 has increased the number of reference resistance genes from 153 to 199, the number of putative resistance genes from 177K from 76 proteomes to 586K from 182 sequenced proteomes. A new section has been created that collects plant-pathogen transcriptomic data for five species of agricultural interest. Thereby, with these improvements and data expansions, PRGdb 4.0 aims to serve as a reference to the plant scientific community and breeders worldwide, helping to further study plant resistance mechanisms that contribute to fighting pathogens.
Collapse
Affiliation(s)
- Joan Calle García
- Sequentia Biotech SL, Calle Comte D'Urgell 240, 08036 Barcelona, Spain
| | - Anna Guadagno
- Dipartimento di Agraria, Università di Napoli 'Federico II', Via Università 100, 80055 Portici, Italy
| | | | | | - Ciro Gianmaria Amoroso
- Dipartimento di Agraria, Università di Napoli 'Federico II', Via Università 100, 80055 Portici, Italy
| | - Daniela D'Esposito
- Dipartimento di Agraria, Università di Napoli 'Federico II', Via Università 100, 80055 Portici, Italy
| | - Giuseppe Andolfo
- Dipartimento di Agraria, Università di Napoli 'Federico II', Via Università 100, 80055 Portici, Italy
| | | | | | - Maria Raffaella Ercolano
- Dipartimento di Agraria, Università di Napoli 'Federico II', Via Università 100, 80055 Portici, Italy
| |
Collapse
|
42
|
Depuydt T, Vandepoele K. Multi-omics network-based functional annotation of unknown Arabidopsis genes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:1193-1212. [PMID: 34562334 DOI: 10.1111/tpj.15507] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
Unraveling gene function is pivotal to understanding the signaling cascades that control plant development and stress responses. As experimental profiling is costly and labor intensive, there is a clear need for high-confidence computational annotation. In contrast to detailed gene-specific functional information, transcriptomics data are widely available for both model and crop species. Here, we describe a novel automated function prediction method, which leverages complementary information from multiple expression datasets by analyzing study-specific gene co-expression networks. First, we benchmarked the prediction performance on recently characterized Arabidopsis thaliana genes, and showed that our method outperforms state-of-the-art expression-based approaches. Next, we predicted biological process annotations for known (n = 15 790) and unknown (n = 11 865) genes in A. thaliana and validated our predictions using experimental protein-DNA and protein-protein interaction data (covering >220 000 interactions in total), obtaining a set of high-confidence functional annotations. Our method assigned at least one validated annotation to 5054 (42.6%) unknown genes, and at least one novel validated function to 3408 (53.0%) genes with computational annotations only. These omics-supported functional annotations shed light on a variety of developmental processes and molecular responses, such as flower and root development, defense responses to fungi and bacteria, and phytohormone signaling, and help fill the information gap on biological process annotations in Arabidopsis. An in-depth analysis of two context-specific networks, modeling seed development and response to water deprivation, shows how previously uncharacterized genes function within the respective networks. Moreover, our automated function prediction approach can be applied in future studies to facilitate gene discovery for crop improvement.
Collapse
Affiliation(s)
- Thomas Depuydt
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, Vlaams Instituut voor Biotechnologie, Ghent, Belgium
| | - Klaas Vandepoele
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, Vlaams Instituut voor Biotechnologie, Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, Ghent, Belgium
| |
Collapse
|
43
|
Becker C, Han P, de Campos MR, Béarez P, Thomine E, Le Bot J, Adamowicz S, Brun R, Fernandez X, Desneux N, Michel T, Lavoir AV. Feeding guild determines strength of top-down forces in multitrophic system experiencing bottom-up constraints. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 793:148544. [PMID: 34182448 DOI: 10.1016/j.scitotenv.2021.148544] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
Nitrogen (N) and water are crucial in crop production but increasingly scarce environmental resources. Reducing their inputs can affect the whole plant-arthropod community including biocontrol agents. In a multitrophic system, we studied the interaction of the bottom-up effects of moderately reduced N concentration and/or water supply as well as the top-down effects of pests of different feeding guilds on plant nutritional quality (N and carbon concentration), direct defense (alkaloids and phenolics), and indirect defense (plant volatile organic compounds); on herbivore performance and host quality (N and carbon) to parasitoids and the latter's performance. Studied organisms were tomato plants, the sap feeders Macrosiphum euphorbiae and Bemisia tabaci, the leaf chewers Tuta absoluta and Spodoptera littoralis, and the parasitic wasps Aphelinus abdominalis and Necremnus tutae. Resource limitation affected plant quality, triggering bottom-up effects on herbivore and parasitoid performance, except for T. absoluta and N. tutae. Feeding guild had a major influence: bottom-up effects were stronger on sap feeders; N effects were stronger on sap feeders while water effects were stronger with leaf chewers (S. littoralis). Top-down effects of leaf chewer herbivory partly attenuated bottom-up effects and partly suppressed plant defenses. Bottom-up effects weakened when cascading up trophic levels. In summary, the interaction between plants, pests, and beneficial insects was modulated by abiotic factors, affecting insect performance. Simultaneous abiotic and biotic impact shaped plant biochemistry depending on the feeding guild: the biotic top-down effect of leaf chewer herbivory attenuated the bottom-up effects of plant nutrition and hence dominated the plant biochemical profile whereas in sap feeder infested leaves, it corresponded to the abiotic impact. This study highlights the plant's finely tuned regulatory system facilitating response prioritization. It offers perspectives on how smart manipulation of plant nutrient solutions might save resources while maintaining efficient biocontrol in crop production.
Collapse
Affiliation(s)
- Christine Becker
- Université Côte d'Azur, INRAE, CNRS, UMR ISA, 06000 Nice, France.
| | - Peng Han
- Université Côte d'Azur, INRAE, CNRS, UMR ISA, 06000 Nice, France
| | | | - Philippe Béarez
- Université Côte d'Azur, INRAE, CNRS, UMR ISA, 06000 Nice, France
| | - Eva Thomine
- Université Côte d'Azur, INRAE, CNRS, UMR ISA, 06000 Nice, France
| | | | | | - Richard Brun
- Université Côte d'Azur, INRAE, CNRS, UMR ISA, 06000 Nice, France
| | - Xavier Fernandez
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice, UMR, 7272 Nice, France
| | - Nicolas Desneux
- Université Côte d'Azur, INRAE, CNRS, UMR ISA, 06000 Nice, France
| | - Thomas Michel
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice, UMR, 7272 Nice, France
| | | |
Collapse
|
44
|
A High-Throughput 3'-Tag RNA Sequencing for Large-Scale Time-Series Transcriptome Studies. Methods Mol Biol 2021; 2398:151-172. [PMID: 34674175 DOI: 10.1007/978-1-0716-1912-4_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
RNA sequencing (RNA-seq) has proven invaluable for exploring gene expression variation under complex environmental cues. However, the cost of standard RNA-seq (e.g., Illumina TruSeq or NEBNext) remains a barrier for high-throughput applications. 3'-Tag RNA-seq (3'-TagSeq) is a cost-effective solution that permits large-scale experiments. Unlike standard RNA-seq, which generates sequencing libraries for full-length mRNAs, 3'-TagSeq only generates a single fragment from the 3' end of each transcript (a tag read) and quantifies gene expression by tag abundance. Consequently, 3'-TagSeq requires lower sequencing depth (~5 million reads per sample) than standard RNA-seq (~30 million reads per sample), which reduces costs and allows increased technical and biological replication in experiments. Because 3'-TagSeq is considerably cheaper than standard RNA-seq while exhibiting comparable accuracy and reproducibility, researchers focusing on gene expression levels in large or extensive time-series experiments might find 3'-TagSeq to be superior to standard RNA-seq. In this chapter, we describe 3'-TagSeq sequencing library preparation and provide example bioinformatics and statistical analyses of gene expression data.
Collapse
|
45
|
Zhang H, Xu X, Wang M, Wang H, Deng P, Zhang Y, Wang Y, Wang C, Wang Y, Ji W. A dominant spotted leaf gene TaSpl1 activates endocytosis and defense-related genes causing cell death in the absence of dominant inhibitors. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 310:110982. [PMID: 34315598 DOI: 10.1016/j.plantsci.2021.110982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 06/13/2021] [Accepted: 06/16/2021] [Indexed: 06/13/2023]
Abstract
The spotted leaf lesion mimic trait simulates cell death in a plant responding to pathogen infection. Some spotted leaf genes are recessive, while others are dominant. A small number of plants with a lesion mimic phenotype appeared in a segregating population obtained by crossing two normal green wheat strains, XN509 and N07216. Here, we clarified the genetic model and its breeding value. Phenotyping of the consecutive progeny populations over six cropping seasons showed that the spotted leaf lesion mimic phenotype was controlled by a dominant gene designated TaSpl1, which was inhibited by two other dominant genes, designated TaSpl1-I1 and TaSpl1-I2. Using bulked segregant analysis RNA-seq (BSR-Seq) and newly developed KASP-PCR markers, the TaSpl1 and TaSpl1-I1 loci in N07216 were mapped to the end of chromosomes 3DS and 3BS, respectively. Plants with the spotted phenotype showed lower levels of stripe rust and powdery mildew than those with the normal green phenotype. Compared with normal leaves, the differentially expressed genes in spotted leaves were significantly enriched in plant-pathogen interaction and endocytosis pathways. There were no differences in the yield parameters of the F5 and F6 sister lines, N13039S with TaSpl1 and N13039 N without TaSpl1. These results provide a greater understanding of spotted leaf phenotyping and the breeding value of the lesion mimic allele in developing disease-resistance varieties.
Collapse
Affiliation(s)
- Hong Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, PR China; China-Australia Joint Research Center for Abiotic and Biotic Stress Management, Northwest A&F University, Yangling, Shaanxi, 712100, PR China.
| | - Xiaomin Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Mengmeng Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Hui Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Pingchuan Deng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Yaoyuan Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Yanzhen Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Changyou Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Yajuan Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, PR China; Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Yangling, Shaanxi, 712100, PR China
| | - Wanquan Ji
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, PR China; Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Yangling, Shaanxi, 712100, PR China.
| |
Collapse
|
46
|
Brasileiro ACM, Lacorte C, Pereira BM, Oliveira TN, Ferreira DS, Mota APZ, Saraiva MAP, Araujo ACG, Silva LP, Guimaraes PM. Ectopic expression of an expansin-like B gene from wild Arachis enhances tolerance to both abiotic and biotic stresses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:1681-1696. [PMID: 34231270 DOI: 10.1111/tpj.15409] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 06/22/2021] [Accepted: 06/30/2021] [Indexed: 05/15/2023]
Abstract
Plant expansins are structural cell wall-loosening proteins implicated in several developmental processes and responses to environmental constraints and pathogen infection. To date, there is limited information about the biological function of expansins-like B (EXLBs), one of the smallest and less-studied subfamilies of plant expansins. In the present study, we conducted a functional analysis of the wild Arachis AdEXLB8 gene in transgenic tobacco (Nicotiana tabacum) plants to clarify its putative role in mediating defense responses to abiotic and biotic stresses. First, its cell wall localization was confirmed in plants expressing an AdEXLB8:eGFP fusion protein, while nanomechanical assays indicated cell wall reorganization and reassembly due to AdEXLB8 overexpression without compromising the phenotype. We further demonstrated that AdEXLB8 increased tolerance not only to isolated abiotic (drought) and biotic (Sclerotinia sclerotiorum and Meloidogyne incognita) stresses but also to their combination. The jasmonate and abscisic acid signaling pathways were clearly favored in transgenic plants, showing an activated antioxidative defense system. In addition to modifications in the biomechanical properties of the cell wall, we propose that AdEXLB8 overexpression interferes with phytohormone dynamics leading to a defense primed state, which culminates in plant defense responses against isolated and combined abiotic and biotic stresses.
Collapse
Affiliation(s)
| | | | - Bruna M Pereira
- EMBRAPA Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil
| | - Thais N Oliveira
- EMBRAPA Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil
| | - Deziany S Ferreira
- EMBRAPA Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil
- Universidade de Brasília, Brasília, Brazil
| | - Ana P Z Mota
- EMBRAPA Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil
| | | | - Ana C G Araujo
- EMBRAPA Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil
| | - Luciano P Silva
- EMBRAPA Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil
| | | |
Collapse
|
47
|
Romero-Puertas MC, Terrón-Camero LC, Peláez-Vico MÁ, Molina-Moya E, Sandalio LM. An update on redox signals in plant responses to biotic and abiotic stress crosstalk: insights from cadmium and fungal pathogen interactions. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5857-5875. [PMID: 34111283 PMCID: PMC8355756 DOI: 10.1093/jxb/erab271] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 06/07/2021] [Indexed: 05/09/2023]
Abstract
Complex signalling pathways are involved in plant protection against single and combined stresses. Plants are able to coordinate genome-wide transcriptional reprogramming and display a unique programme of transcriptional responses to a combination of stresses that differs from the response to single stresses. However, a significant overlap between pathways and some defence genes in the form of shared and general stress-responsive genes appears to be commonly involved in responses to multiple biotic and abiotic stresses. Reactive oxygen and nitrogen species, as well as redox signals, are key molecules involved at the crossroads of the perception of different stress factors and the regulation of both specific and general plant responses to biotic and abiotic stresses. In this review, we focus on crosstalk between plant responses to biotic and abiotic stresses, in addition to possible plant protection against pathogens caused by previous abiotic stress. Bioinformatic analyses of transcriptome data from cadmium- and fungal pathogen-treated plants focusing on redox gene ontology categories were carried out to gain a better understanding of common plant responses to abiotic and biotic stresses. The role of reactive oxygen and nitrogen species in the complex network involved in plant responses to changes in their environment is also discussed.
Collapse
Affiliation(s)
- María C Romero-Puertas
- Department of Biochemistry and Molecular and Cellular Biology of Plants, Estacion Experimental del Zaidin (EEZ), Consejo Superior de Investigaciones Cientificas (CSIC), Apartado 419, 18080 Granada, Spain
| | - Laura C Terrón-Camero
- Department of Biochemistry and Molecular and Cellular Biology of Plants, Estacion Experimental del Zaidin (EEZ), Consejo Superior de Investigaciones Cientificas (CSIC), Apartado 419, 18080 Granada, Spain
- Bioinformatics Unit, Institute of Parasitology and Biomedicine “López-Neyra” (IPBLN-CSIC), Granada, Spain
| | - M Ángeles Peláez-Vico
- Department of Biochemistry and Molecular and Cellular Biology of Plants, Estacion Experimental del Zaidin (EEZ), Consejo Superior de Investigaciones Cientificas (CSIC), Apartado 419, 18080 Granada, Spain
| | - Eliana Molina-Moya
- Department of Biochemistry and Molecular and Cellular Biology of Plants, Estacion Experimental del Zaidin (EEZ), Consejo Superior de Investigaciones Cientificas (CSIC), Apartado 419, 18080 Granada, Spain
| | - Luisa M Sandalio
- Department of Biochemistry and Molecular and Cellular Biology of Plants, Estacion Experimental del Zaidin (EEZ), Consejo Superior de Investigaciones Cientificas (CSIC), Apartado 419, 18080 Granada, Spain
| |
Collapse
|
48
|
Zhang J, Huang D, Zhao X, Zhang M. Evaluation of drought resistance and transcriptome analysis for the identification of drought-responsive genes in Iris germanica. Sci Rep 2021; 11:16308. [PMID: 34381085 PMCID: PMC8358056 DOI: 10.1038/s41598-021-95633-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 07/28/2021] [Indexed: 02/07/2023] Open
Abstract
Iris germanica, a species with very high ornamental value, exhibits the strongest drought resistance among the species in the genus Iris, but the molecular mechanism underlying its drought resistance has not been evaluated. To investigate the gene expression profile changes exhibited by high-drought-resistant I. germanica under drought stress, 10 cultivars with excellent characteristics were included in pot experiments under drought stress conditions, and the changes in the chlorophyll (Chl) content, plasma membrane relative permeability (RP), and superoxide dismutase (SOD), malondialdehyde (MDA), free proline (Pro), and soluble protein (SP) levels in leaves were compared among these cultivars. Based on their drought-resistance performance, the 10 cultivars were ordered as follows: 'Little Dream' > 'Music Box' > 'X'Brassie' > 'Blood Stone' > 'Cherry Garden' > 'Memory of Harvest' > 'Immortality' > 'White and Gold' > 'Tantara' > 'Clarence'. Using the high-drought-resistant cultivar 'Little Dream' as the experimental material, cDNA libraries from leaves and rhizomes treated for 0, 6, 12, 24, and 48 h with 20% polyethylene glycol (PEG)-6000 to simulate a drought environment were sequenced using the Illumina sequencing platform. We obtained 1, 976, 033 transcripts and 743, 982 unigenes (mean length of 716 bp) through a hierarchical clustering analysis of the resulting transcriptome data. The unigenes were compared against the Nr, Nt, Pfam, KOG/COG, Swiss-Prot, KEGG, and gene ontology (GO) databases for functional annotation, and the gene expression levels in leaves and rhizomes were compared between the 20% PEG-6000 stress treated (6, 12, 24, and 48 h) and control (0 h) groups using DESeq2. 7849 and 24,127 differentially expressed genes (DEGs) were obtained from leaves and rhizomes, respectively. GO and KEGG enrichment analyses of the DEGs revealed significantly enriched KEGG pathways, including ribosome, photosynthesis, hormone signal transduction, starch and sucrose metabolism, synthesis of secondary metabolites, and related genes, such as heat shock proteins (HSPs), transcription factors (TFs), and active oxygen scavengers. In conclusion, we conducted the first transcriptome sequencing analysis of the I. germanica cultivar 'Little Dream' under drought stress and generated a large amount of genetic information. This study lays the foundation for further exploration of the molecular mechanisms underlying the responses of I. germanica to drought stress and provides valuable genetic resources for the breeding of drought-resistant plants.
Collapse
Affiliation(s)
- Jingwei Zhang
- grid.274504.00000 0001 2291 4530College of Landscape Architecture and Tourism, Hebei Agricultural University, Baoding, China
| | - Dazhuang Huang
- grid.274504.00000 0001 2291 4530College of Landscape Architecture and Tourism, Hebei Agricultural University, Baoding, China
| | - Xiaojie Zhao
- grid.274504.00000 0001 2291 4530College of Landscape Architecture and Tourism, Hebei Agricultural University, Baoding, China
| | - Man Zhang
- grid.274504.00000 0001 2291 4530State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
| |
Collapse
|
49
|
Broda M, Khan K, O’Leary B, Pružinská A, Lee CP, Millar AH, Van Aken O. Increased expression of ANAC017 primes for accelerated senescence. PLANT PHYSIOLOGY 2021; 186:2205-2221. [PMID: 33914871 PMCID: PMC8331134 DOI: 10.1093/plphys/kiab195] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/02/2021] [Indexed: 05/06/2023]
Abstract
Recent studies in Arabidopsis (Arabidopsis thaliana) have reported conflicting roles for NAC DOMAIN CONTAINING PROTEIN 17 (ANAC017), a transcription factor regulating mitochondria-to-nuclear signaling, and its closest paralog NAC DOMAIN CONTAINING PROTEIN 16 (ANAC016), in leaf senescence. By synchronizing senescence in individually darkened leaves of knockout and overexpressing mutants from these contrasting studies, we demonstrate that elevated ANAC017 expression consistently causes accelerated senescence and cell death. A time-resolved transcriptome analysis revealed that senescence-associated pathways such as autophagy are not constitutively activated in ANAC017 overexpression lines, but require a senescence-stimulus to trigger accelerated induction. ANAC017 transcript and ANAC017-target genes are constitutively upregulated in ANAC017 overexpression lines, but surprisingly show a transient "super-induction" 1 d after senescence induction. This induction of ANAC017 and its target genes is observed during the later stages of age-related and dark-induced senescence, indicating the ANAC017 pathway is also activated in natural senescence. In contrast, knockout mutants of ANAC017 showed lowered senescence-induced induction of ANAC017 target genes during the late stages of dark-induced senescence. Finally, promoter binding analyses show that the ANAC016 promoter sequence is directly bound by ANAC017, so ANAC016 likely acts downstream of ANAC017 and is directly transcriptionally controlled by ANAC017 in a feed-forward loop during late senescence.
Collapse
Affiliation(s)
- Martyna Broda
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, University of Western Australia, Perth, Western Australia 6009, Australia
| | - Kasim Khan
- Department of Biology, Lund University, Lund 22362, Sweden
| | - Brendan O’Leary
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, University of Western Australia, Perth, Western Australia 6009, Australia
| | - Adriana Pružinská
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, University of Western Australia, Perth, Western Australia 6009, Australia
| | - Chun Pong Lee
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, University of Western Australia, Perth, Western Australia 6009, Australia
| | - A Harvey Millar
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, University of Western Australia, Perth, Western Australia 6009, Australia
| | - Olivier Van Aken
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, University of Western Australia, Perth, Western Australia 6009, Australia
- Department of Biology, Lund University, Lund 22362, Sweden
- Author for communication:
| |
Collapse
|
50
|
Winkelmüller TM, Entila F, Anver S, Piasecka A, Song B, Dahms E, Sakakibara H, Gan X, Kułak K, Sawikowska A, Krajewski P, Tsiantis M, Garrido-Oter R, Fukushima K, Schulze-Lefert P, Laurent S, Bednarek P, Tsuda K. Gene expression evolution in pattern-triggered immunity within Arabidopsis thaliana and across Brassicaceae species. THE PLANT CELL 2021; 33:1863-1887. [PMID: 33751107 PMCID: PMC8290292 DOI: 10.1093/plcell/koab073] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 02/24/2021] [Indexed: 05/20/2023]
Abstract
Plants recognize surrounding microbes by sensing microbe-associated molecular patterns (MAMPs) to activate pattern-triggered immunity (PTI). Despite their significance for microbial control, the evolution of PTI responses remains largely uncharacterized. Here, by employing comparative transcriptomics of six Arabidopsis thaliana accessions and three additional Brassicaceae species to investigate PTI responses, we identified a set of genes that commonly respond to the MAMP flg22 and genes that exhibit species-specific expression signatures. Variation in flg22-triggered transcriptome responses across Brassicaceae species was incongruent with their phylogeny, while expression changes were strongly conserved within A. thaliana. We found the enrichment of WRKY transcription factor binding sites in the 5'-regulatory regions of conserved and species-specific responsive genes, linking the emergence of WRKY-binding sites with the evolution of gene expression patterns during PTI. Our findings advance our understanding of the evolution of the transcriptome during biotic stress.
Collapse
Affiliation(s)
- Thomas M Winkelmüller
- Department of Plant–Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Frederickson Entila
- Department of Plant–Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Shajahan Anver
- Department of Plant–Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
- Present address: Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Anna Piasecka
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Baoxing Song
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
- Present address: Institute for Genomic Diversity, Cornell University, Ithaca, New York
| | - Eik Dahms
- Department of Plant–Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Hitoshi Sakakibara
- RIKEN Center for Sustainable Resource Science, 230-0045 Yokohama, Japan
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Xiangchao Gan
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Karolina Kułak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
- Present address: Department of Computational Biology, Adam Mickiewicz University, 61-614 Poznań, Poland
| | - Aneta Sawikowska
- Department of Mathematical and Statistical Methods, Poznań University of Life Sciences, 60-628 Poznań, Poland
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznań, Poland
| | - Paweł Krajewski
- Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznań, Poland
| | - Miltos Tsiantis
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Ruben Garrido-Oter
- Department of Plant–Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Kenji Fukushima
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, 97082 Würzburg, Germany
| | - Paul Schulze-Lefert
- Department of Plant–Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Stefan Laurent
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Paweł Bednarek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Kenichi Tsuda
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Interdisciplinary Science Research Institute, Huazhong Agricultural University, 430070 Wuhan, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, 430070 Wuhan, China
- Department of Plant–Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
- Author for correspondence:
| |
Collapse
|