1
|
Zhai X, Li Q, Li B, Gao X, Liao X, Chen J, Kai W. Overexpression of the persimmon ABA receptor DkPYL3 gene alters fruit development and ripening in transgenic tomato. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 350:112287. [PMID: 39396616 DOI: 10.1016/j.plantsci.2024.112287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024]
Abstract
Abscisic acid (ABA) is a crucial plant hormone that regulates various aspects of plant development. However, the specific function of the ABA receptor PYL in fruit development has not been fully understood. In this study, we focused on DkPYL3, a member of the ABA receptor subfamily Ⅰ in persimmon, which exhibited high expression levels in fruit, particularly during the young fruit and turning stages. Through yeast two-hybrid (Y2H), firefly luciferase complementation imaging (LCI), protein inhibition assays, and RNA-seq techniques, we identified and characterized the DkPYL3 protein, which was found to inhibit the activity of protein phosphatase type 2 C (PP2C). By heterologous overexpressing (OE) persimmon DkPYL3 in tomatoes, we investigated the impact of the DkPYL3 gene on fruit development and ripening. DkPYL3-OE upregulated the expression of genes related to chlorophyll synthesis and development, leading to a significant increase in chlorophyll content in young fruit. Several fruit quality parameters were also affected by DkPYL3 expression, including sugar content, single fruit weight, and photosynthesis rate. Additionally, fruits overexpressing DkPYL3 exhibited earlier ripening and higher levels of carotenoids and flavonoids compared to wild-type fruits. These results demonstrate the pivotal role of DkPYL3 in ABA-mediated young fruit development, ripening onset, and fruit quality in transgenic tomatoes.
Collapse
Affiliation(s)
- Xiawan Zhai
- Jiangxi Provincial Key Laboratory for Postharvest Storage and Preservation of Fruit & Vegetables, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Jiangxi Agricultural University, Nanchang 330045, China; National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Qian Li
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Bao Li
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Xiaoqing Gao
- Jiangxi Provincial Key Laboratory for Postharvest Storage and Preservation of Fruit & Vegetables, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xingqiang Liao
- Jiangxi Provincial Key Laboratory for Postharvest Storage and Preservation of Fruit & Vegetables, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jinyin Chen
- Jiangxi Provincial Key Laboratory for Postharvest Storage and Preservation of Fruit & Vegetables, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Jiangxi Agricultural University, Nanchang 330045, China
| | - Wenbin Kai
- Jiangxi Provincial Key Laboratory for Postharvest Storage and Preservation of Fruit & Vegetables, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
2
|
Wang X, Qi X, Zhuang Z, Bian J, Li J, Chen J, Li Z, Peng Y. Interactions between Brassinosteroids and Strigolactones in Alleviating Salt Stress in Maize. Int J Mol Sci 2024; 25:10505. [PMID: 39408841 PMCID: PMC11477198 DOI: 10.3390/ijms251910505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/27/2024] [Accepted: 09/28/2024] [Indexed: 10/20/2024] Open
Abstract
Exogenous brassinolide (BR) and strigolactones (SLs) play an important role in alleviating salt stress in maize. We studied the morphological and physiological responses of the salt-sensitive genotype PH4CV and salt-tolerant genotype Zheng58 to BR (1.65 nM), SL (1 µM), and BS (1.65 nM BR + 1 µM SL) under salt stress. Phenotypic analysis showed that salt stress significantly inhibited the growth of maize seedlings and significantly increased the content of Na+ in the roots. Exogenous hormones increased oxidase activity and decreased Na+ content in the roots and mitigated salt stress. Transcriptome analysis showed that the interaction of BR and SL is involved in photosynthesis-antenna proteins, the TCA cycle, and plant hormone signal transduction pathways. This interaction influences the expression of chlorophyll a/b-binding protein and glucose-6-phosphate isomerase 1 chloroplastic, and aconitase genes are affected. Furthermore, the application of exogenous hormones regulates the expression of genes associated with the signaling pathways of cytokinin (CK), gibberellins (GA), auxin (IAA), brassinosteroid (BR), abscisic acid (ABA), and jasmonic acid (JA). Additionally, exogenous hormones inhibit the expression of the AKT2/3 genes, which are responsible for regulating ion transduction and potassium ion influx. Four candidate genes that may regulate the seedling length of maize were screened out through WGCNA. Respective KOG notes concerned inorganic ion transport and metabolism, signal transduction mechanisms, energy production and conversion, and amino acid transport and metabolism. The findings of this study provide a foundation for the proposition that BR and SL can be employed to regulate salt stress alleviation in maize.
Collapse
Affiliation(s)
- Xinqi Wang
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, Gansu Agricultural University, Lanzhou 730070, China
| | - Xue Qi
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, Gansu Agricultural University, Lanzhou 730070, China
| | - Zelong Zhuang
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, Gansu Agricultural University, Lanzhou 730070, China
| | - Jianwen Bian
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, Gansu Agricultural University, Lanzhou 730070, China
| | - Jiawei Li
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Jiangtao Chen
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhiming Li
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Yunling Peng
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
3
|
Liu C, Gu W, Li B, Feng Y, Liu C, Shi X, Zhou Y. Screening key sorghum germplasms for low-nitrogen tolerance at the seedling stage and identifying from the carbon and nitrogen metabolism. FRONTIERS IN PLANT SCIENCE 2024; 15:1340509. [PMID: 39328797 PMCID: PMC11424420 DOI: 10.3389/fpls.2024.1340509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 08/15/2024] [Indexed: 09/28/2024]
Abstract
Introduction Sorghum (Sorghum bicolor L.) can withstand drought and heat stress and efficiently utilize water and nutrients. However, the underlying mechanism of its tolerance to low-nitrogen (N) stress remains poorly understood. Materials and methods This study assessed low-N tolerance in 100 sorghum-inbred lines and identified those with exceptional resilience. Principal component analysis, Pearson's correlation, and Y value analysis were used to examine various seedling growth metrics, including plant and root dimensions, biomass, chlorophyll content, root N content, shoot N content, and root/shoot ratio. Results and discussion The genotypes were categorized into four distinct groups based on their respective Y values, revealing a spectrum from highly tolerant to sensitive. Low-N-tolerant sorghum lines maintained higher photosynthetic rates and exhibited increased enzymatic activities linked to carbon and N metabolism in the leaves and roots. Furthermore, low-N-tolerant genotypes had higher levels of key amino acids, including cystine, glycine, histidine, isoleucine, leucine, phenylalanine, threonine, and tyrosine, indicating a robust internal metabolic response to N deficiency. Conclusion This study provides a comprehensive and reliable approach for the evaluation of sorghum tolerance to low-N environments, sheds light on its morphological and physiological adaptations, and provides valuable insights for future breeding programs and agricultural practices.
Collapse
Affiliation(s)
- Chunjuan Liu
- College of Agronomy, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Wendong Gu
- College of Agronomy, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Bang Li
- College of Agronomy and Horticulture, Liaoning Agricultural Vocational and Technical College, Yingkou, Liaoning, China
| | - Yihao Feng
- College of Agronomy, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Chang Liu
- College of Agronomy, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Xiaolong Shi
- College of Agronomy, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Yufei Zhou
- College of Agronomy, Shenyang Agricultural University, Shenyang, Liaoning, China
| |
Collapse
|
4
|
Hu Q, Zhang H, Song Y, Song L, Zhu L, Kuang H, Larkin RM. REDUCED CHLOROPLAST COVERAGE proteins are required for plastid proliferation and carotenoid accumulation in tomato. PLANT PHYSIOLOGY 2024; 196:511-534. [PMID: 38748600 DOI: 10.1093/plphys/kiae275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 03/22/2024] [Indexed: 09/03/2024]
Abstract
Increasing the amount of cellular space allocated to plastids will lead to increases in the quality and yield of crop plants. However, mechanisms that allocate cellular space to plastids remain poorly understood. To test whether the tomato (Solanum lycopersicum L.) REDUCED CHLOROPLAST COVERAGE (SlREC) gene products serve as central components of the mechanism that allocates cellular space to plastids and contribute to the quality of tomato fruit, we knocked out the 4-member SlREC gene family. We found that slrec mutants accumulated lower levels of chlorophyll in leaves and fruits, accumulated lower levels of carotenoids in flowers and fruits, allocated less cellular space to plastids in leaf mesophyll and fruit pericarp cells, and developed abnormal plastids in flowers and fruits. Fruits produced by slrec mutants initiated ripening later than wild type and produced abnormal levels of ethylene and abscisic acid (ABA). Metabolome and transcriptome analyses of slrec mutant fruits indicated that the SlREC gene products markedly influence plastid-related gene expression, primary and specialized metabolism, and the response to biotic stress. Our findings and previous work with distinct species indicate that REC proteins help allocate cellular space to plastids in diverse species and cell types and, thus, play a central role in allocating cellular space to plastids. Moreover, the SlREC proteins are required for the high-level accumulation of chlorophyll and carotenoids in diverse organs, including fruits, promote the development of plastids and influence fruit ripening by acting both upstream and downstream of ABA biosynthesis in a complex network.
Collapse
Affiliation(s)
- Qun Hu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Hui Zhang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Yuman Song
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Lijuan Song
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Lingling Zhu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Hanhui Kuang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Robert M Larkin
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| |
Collapse
|
5
|
Larkin RM. Recent progress on mechanisms that allocate cellular space to plastids. FUNDAMENTAL RESEARCH 2024; 4:1167-1170. [PMID: 39431144 PMCID: PMC11489472 DOI: 10.1016/j.fmre.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/29/2022] [Accepted: 09/07/2022] [Indexed: 11/19/2022] Open
Abstract
Mechanisms that allocate cellular space to organelles are of fundamental importance to biology but remain poorly understood. A detailed understanding of mechanisms that allocate cellular space to plastids, such as chloroplasts, will lead to high-yielding crops with enhanced nutritional value. The HIGH PIGMENT (HP) genes in tomato contribute to regulated proteolysis and abscisic acid metabolism. The HP1 gene was the first gene reported to influence the amount of cellular space occupied by chloroplasts and chromoplasts almost 20 years ago. Recently, our knowledge of mechanisms that allocate cellular space to plastids was enhanced by new information on the influence of cell type on the amount of cellular space occupied by plastids and the identification of new genes that help to allocate cellular space to plastids. These genes encode proteins with unknown and diverse biochemical functions. Several transcription factors were recently reported to regulate the numbers and sizes of chloroplasts in fleshy fruit. If these transcription factors do not induce compensating effects on cell size, they should affect the amount of cellular space occupied by plastids. Although we can now propose more detailed models for the network that allocates cellular space to plastids, many gaps remain in our knowledge of this network and the genes targeted by this network. Nonetheless, these recent breakthroughs provide optimism for future progress in this field.
Collapse
Affiliation(s)
- Robert M. Larkin
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
6
|
Jia T, Wang H, Cui S, Li Z, Shen Y, Li H, Xiao G. Cotton BLH1 and KNOX6 antagonistically modulate fiber elongation via regulation of linolenic acid biosynthesis. PLANT COMMUNICATIONS 2024; 5:100887. [PMID: 38532644 PMCID: PMC11287173 DOI: 10.1016/j.xplc.2024.100887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/19/2024] [Accepted: 03/23/2024] [Indexed: 03/28/2024]
Abstract
BEL1-LIKE HOMEODOMAIN (BLH) proteins are known to function in various plant developmental processes. However, the role of BLHs in regulating plant cell elongation is still unknown. Here, we identify a BLH gene, GhBLH1, that positively regulates fiber cell elongation. Combined transcriptomic and biochemical analyses reveal that GhBLH1 enhances linolenic acid accumulation to promote cotton fiber cell elongation by activating the transcription of GhFAD7A-1 via binding of the POX domain of GhBLH1 to the TGGA cis-element in the GhFAD7A-1 promoter. Knockout of GhFAD7A-1 in cotton significantly reduces fiber length, whereas overexpression of GhFAD7A-1 results in longer fibers. The K2 domain of GhKNOX6 directly interacts with the POX domain of GhBLH1 to form a functional heterodimer, which interferes with the transcriptional activation of GhFAD7A-1 via the POX domain of GhBLH1. Overexpression of GhKNOX6 leads to a significant reduction in cotton fiber length, whereas knockout of GhKNOX6 results in longer cotton fibers. An examination of the hybrid progeny of GhBLH1 and GhKNOX6 transgenic cotton lines provides evidence that GhKNOX6 negatively regulates GhBLH1-mediated cotton fiber elongation. Our results show that the interplay between GhBLH1 and GhKNOX6 modulates regulation of linolenic acid synthesis and thus contributes to plant cell elongation.
Collapse
Affiliation(s)
- Tingting Jia
- College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Huiqin Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Shiyan Cui
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Zihan Li
- Geosystems Research Institute, Mississippi State University, Starkville, MS 39762, USA
| | - Yongcui Shen
- College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Hongbin Li
- College of Life Sciences, Shihezi University, Shihezi 832003, China.
| | - Guanghui Xiao
- College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China.
| |
Collapse
|
7
|
Zhang H, Zhang K, Zhao X, Bi M, Liu Y, Wang S, He Y, Ma K, Qi M. Galactinol synthase 2 influences the metabolism of chlorophyll, carotenoids, and ethylene in tomato fruits. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3337-3350. [PMID: 38486362 DOI: 10.1093/jxb/erae121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/14/2024] [Indexed: 06/18/2024]
Abstract
Galactinol synthase (GolS), which catalyses the synthesis of galactinol, is the first critical enzyme in the biosynthesis of raffinose family oligosaccharides (RFOs) and contributes to plant growth and development, and resistance mechanisms. However, its role in fruit development remains largely unknown. In this study, we used CRISPR/Cas9 gene-editing technology in tomato (Solanum lycopersicum) to create the gols2 mutant showing uniformly green fruits without dark-green shoulders, and promoting fruit ripening. Analysis indicated that galactinol was undetectable in the ovaries and fruits of the mutant, and the accumulation of chlorophyll and chloroplast development was suppressed in the fruits. RNA-sequencing analysis showed that genes related to chlorophyll accumulation and chloroplast development were down-regulated, including PROTOCHLOROPHYLLIDE OXIDOREDUCTASE, GOLDEN 2-LIKE 2, and CHLOROPHYLL A/B-BINDING PROTEINS. In addition, early color transformation and ethylene release was prompted in the gols2 lines by regulation of the expression of genes involved in carotenoid and ethylene metabolism (e.g. PHYTOENE SYNTHASE 1, CAROTENE CIS-TRANS ISOMERASE, and 1-AMINOCYCLOPROPANE-1-CARBOXYLIC ACID SYNTHASE2/4) and fruit ripening (e.g. RIPENING INHIBITOR, NON-RIPENING, and APETALA2a). Our results provide evidence for the involvement of GolS2 in pigment and ethylene metabolism of tomato fruits.
Collapse
Affiliation(s)
- Huidong Zhang
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang, China
- Key Laboratory of Protected Horticulture (Shenyang Agricultural University), Ministry of Education, Shenyang, China
| | - Kunpeng Zhang
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang, China
- Key Laboratory of Protected Horticulture (Shenyang Agricultural University), Ministry of Education, Shenyang, China
| | - Xueya Zhao
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang, China
- Key Laboratory of Protected Horticulture (Shenyang Agricultural University), Ministry of Education, Shenyang, China
| | - Mengxi Bi
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang, China
- Key Laboratory of Protected Horticulture (Shenyang Agricultural University), Ministry of Education, Shenyang, China
| | | | - Shuo Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang, China
- Key Laboratory of Protected Horticulture (Shenyang Agricultural University), Ministry of Education, Shenyang, China
| | - Yi He
- Key Laboratory of Protected Horticulture (Shenyang Agricultural University), Ministry of Education, Shenyang, China
| | - Kui Ma
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang, China
| | - Mingfang Qi
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang, China
- Key Laboratory of Protected Horticulture (Shenyang Agricultural University), Ministry of Education, Shenyang, China
| |
Collapse
|
8
|
Ezura K, Lu Y, Suzuki Y, Mitsuda N, Ariizumi T. Class II knotted-like homeodomain protein SlKN5 with BEL1-like homeodomain proteins suppresses fruit greening in tomato fruit. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:2037-2054. [PMID: 38577750 DOI: 10.1111/tpj.16727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 03/01/2024] [Accepted: 03/10/2024] [Indexed: 04/06/2024]
Abstract
Knotted1-like homeodomain (KNOX) proteins are essential in regulating plant organ differentiation. Land plants, including tomato (Solanum lycopersicum), have two classes of the KNOX protein family, namely, class I (KNOX I) and class II KNOX (KNOX II). While tomato KNOX I proteins are known to stimulate chloroplast development in fruit, affecting fruit coloration, the role of KNOX II proteins in this context remains unclear. In this study, we employ CRISPR/Cas9 to generate knockout mutants of the KNOX II member, SlKN5. These mutants display increased leaf complexity, a phenotype commonly associated with reduced KNOX II activity, as well as enhanced accumulation of chloroplasts and chlorophylls in smaller cells within young, unripe fruit. RNA-seq data analyses indicate that SlKN5 suppresses the transcriptions of genes involved in chloroplast biogenesis, chlorophyll biosynthesis, and gibberellin catabolism. Furthermore, protein-protein interaction assays reveal that SlKN5 physically interacts with three transcriptional repressors from the BLH1-clade of BEL1-like homeodomain (BLH) protein family, SlBLH4, SlBLH5, and SlBLH7, with SlBLH7 showing the strongest interaction. CRISPR/Cas9-mediated knockout of these SlBLH genes confirmed their overlapping roles in suppressing chloroplast biogenesis, chlorophyll biosynthesis, and lycopene cyclization. Transient assays further demonstrate that the SlKN5-SlBLH7 interaction enhances binding capacity to regulatory regions of key chloroplast- and chlorophyll-related genes, including SlAPRR2-like1, SlCAB-1C, and SlGUN4. Collectively, our findings elucidate that the KNOX II SlKN5-SlBLH regulatory modules serve to inhibit fruit greening and subsequently promote lycopene accumulation, thereby fine-tuning the color transition from immature green fruit to mature red fruit.
Collapse
Affiliation(s)
- Kentaro Ezura
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
- Japan Society for Promotion of Science (JSPS), Kojimachi, Tokyo, 102-0083, Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, 305-8566, Japan
| | - Yu Lu
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 277-8562, Japan
| | - Nobutaka Mitsuda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, 305-8566, Japan
| | - Tohru Ariizumi
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| |
Collapse
|
9
|
Zhou J, Zhou S, Chen B, Sangsoy K, Luengwilai K, Albornoz K, Beckles DM. Integrative analysis of the methylome and transcriptome of tomato fruit ( Solanum lycopersicum L.) induced by postharvest handling. HORTICULTURE RESEARCH 2024; 11:uhae095. [PMID: 38840937 PMCID: PMC11151332 DOI: 10.1093/hr/uhae095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 04/11/2024] [Indexed: 06/07/2024]
Abstract
Tomato fruit ripening is triggered by the demethylation of key genes, which alters their transcriptional levels thereby initiating and propagating a cascade of physiological events. What is unknown is how these processes are altered when fruit are ripened using postharvest practices to extend shelf-life, as these practices often reduce fruit quality. To address this, postharvest handling-induced changes in the fruit DNA methylome and transcriptome, and how they correlate with ripening speed, and ripening indicators such as ethylene, abscisic acid, and carotenoids, were assessed. This study comprehensively connected changes in physiological events with dynamic molecular changes. Ripening fruit that reached 'Turning' (T) after dark storage at 20°C, 12.5°C, or 5°C chilling (followed by 20°C rewarming) were compared to fresh-harvest fruit 'FHT'. Fruit stored at 12.5°C had the biggest epigenetic marks and alterations in gene expression, exceeding changes induced by postharvest chilling. Fruit physiological and chronological age were uncoupled at 12.5°C, as the time-to-ripening was the longest. Fruit ripening to Turning at 12.5°C was not climacteric; there was no respiratory or ethylene burst, rather, fruit were high in abscisic acid. Clear differentiation between postharvest-ripened and 'FHT' was evident in the methylome and transcriptome. Higher expression of photosynthetic genes and chlorophyll levels in 'FHT' fruit pointed to light as influencing the molecular changes in fruit ripening. Finally, correlative analyses of the -omics data putatively identified genes regulated by DNA methylation. Collectively, these data improve our interpretation of how tomato fruit ripening patterns are altered by postharvest practices, and long-term are expected to help improve fruit quality.
Collapse
Affiliation(s)
- Jiaqi Zhou
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, CA, USA
| | - Sitian Zhou
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, CA, USA
- Department of Biostatistics, School of Public Health, Columbia University, 722 West 168th Street, New York, NY 10032, USA
| | - Bixuan Chen
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, CA, USA
- Germains Seed Technology, 8333 Swanston Lane, Gilroy, CA 95020, USA
| | - Kamonwan Sangsoy
- Department of Horticulture, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
| | - Kietsuda Luengwilai
- Department of Horticulture, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
| | - Karin Albornoz
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, CA, USA
- Department of Food, Nutrition, and Packaging Sciences, Coastal Research and Education Center, Clemson University, 2700 Savannah Highway, Charleston, SC 29414 USA
| | - Diane M Beckles
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, CA, USA
| |
Collapse
|
10
|
Zhang W, Ji Z, Hu G, Yuan L, Liu M, Zhang X, Wei C, Dai Z, Yang Z, Wang C, Wang X, Luan F, Liu S. Clpf encodes pentatricopeptide repeat protein (PPR5) and regulates pink flesh color in watermelon (Citrullus lanatus L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:126. [PMID: 38727833 DOI: 10.1007/s00122-024-04619-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 04/08/2024] [Indexed: 06/01/2024]
Abstract
KEY MESSAGE The gene controlling pink flesh in watermelon was finely mapped to a 55.26-kb region on chromosome 6. The prime candidate gene, Cla97C06G122120 (ClPPR5), was identified through forward genetics. Carotenoids offer numerous health benefits; while, they cannot be synthesized by the human body. Watermelon stands out as one of the richest sources of carotenoids. In this study, genetic generations derived from parental lines W15-059 (red flesh) and JQ13-3 (pink flesh) revealed the presence of the recessive gene Clpf responsible for the pink flesh (pf) trait in watermelon. Comparative analysis of pigment components and microstructure indicated that the disparity in flesh color between the parental lines primarily stemmed from variations in lycopene content, as well as differences in chromoplast number and size. Subsequent bulk segregant analysis (BSA-seq) and genetic mapping successfully narrowed down the Clpf locus to a 55.26-kb region on chromosome 6, harboring two candidate genes. Through sequence comparison and gene expression analysis, Cla97C06G122120 (annotated as a pentatricopeptide repeat, PPR) was predicted as the prime candidate gene related to pink flesh trait. To further investigate the role of the PPR gene, its homologous gene in tomato was silenced using a virus-induced system. The resulting silenced fruit lines displayed diminished carotenoid accumulation compared with the wild-type, indicating the potential regulatory function of the PPR gene in pigment accumulation. This study significantly contributes to our understanding of the forward genetics underlying watermelon flesh traits, particularly in relation to carotenoid accumulation. The findings lay essential groundwork for elucidating mechanisms governing pigment synthesis and deposition in watermelon flesh, thereby providing valuable insights for future breeding strategies aimed at enhancing fruit quality and nutritional value.
Collapse
Affiliation(s)
- Wencheng Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Ziqiao Ji
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Guiqiu Hu
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Li Yuan
- College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - Man Liu
- College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - Xian Zhang
- College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - Chunhua Wei
- College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - Zuyun Dai
- Anhui Jianghuai Horticulture Technology Co., Ltd, Hefei, 230031, China
| | - Zhongzhou Yang
- Anhui Jianghuai Horticulture Technology Co., Ltd, Hefei, 230031, China
| | - Chaonan Wang
- College of Horticulture, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Xuezheng Wang
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Feishi Luan
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China.
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China.
| | - Shi Liu
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China.
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
11
|
Xiong J, Liu Y, Wu P, Bian Z, Li B, Zhang Y, Zhu B. Identification and virus-induced gene silencing (VIGS) analysis of methyltransferase affecting tomato (Solanum lycopersicum) fruit ripening. PLANTA 2024; 259:109. [PMID: 38558186 DOI: 10.1007/s00425-024-04384-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/09/2024] [Indexed: 04/04/2024]
Abstract
MAIN CONCLUSION Six methyltransferase genes affecting tomato fruit ripening were identified through genome-wide screening, VIGS assay, and expression pattern analysis. The data provide the basis for understanding new mechanisms of methyltransferases. Fruit ripening is a critical stage for the formation of edible quality and seed maturation, which is finely modulated by kinds of factors, including genetic regulators, hormones, external signals, etc. Methyltransferases (MTases), important genetic regulators, play vital roles in plant development through epigenetic regulation, post-translational modification, or other mechanisms. However, the regulatory functions of numerous MTases except DNA methylation in fruit ripening remain limited so far. Here, six MTases, which act on different types of substrates, were identified to affect tomato fruit ripening. First, 35 MTase genes with relatively high expression at breaker (Br) stage of tomato fruit were screened from the tomato MTase gene database encompassing 421 genes totally. Thereafter, six MTase genes were identified as potential regulators of fruit ripening via virus-induced gene silencing (VIGS), including four genes with a positive regulatory role and two genes with a negative regulatory role, respectively. The expression of these six MTase genes exhibited diverse patterns during the fruit ripening process, and responded to various external ripening-related factors, including ethylene, 1-methylcyclopropene (1-MCP), temperature, and light exposure. These results help to further elaborate the biological mechanisms of MTase genes in tomato fruit ripening and enrich the understanding of the regulatory mechanisms of fruit ripening involving MTases, despite of DNA MTases.
Collapse
Affiliation(s)
- Jiaxin Xiong
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, People's Republic of China
| | - Ye Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, People's Republic of China
| | - Peiwen Wu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, People's Republic of China
| | - Zheng Bian
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, People's Republic of China
| | - Bowen Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, People's Republic of China
| | - Yifan Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, People's Republic of China
| | - Benzhong Zhu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, People's Republic of China.
| |
Collapse
|
12
|
Dong X, Liu X, Cheng L, Li R, Ge S, Wang S, Cai Y, Liu Y, Meng S, Jiang CZ, Shi CL, Li T, Fu D, Qi M, Xu T. SlBEL11 regulates flavonoid biosynthesis, thus fine-tuning auxin efflux to prevent premature fruit drop in tomato. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:749-770. [PMID: 38420861 DOI: 10.1111/jipb.13627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/13/2024] [Indexed: 03/02/2024]
Abstract
Auxin regulates flower and fruit abscission, but how developmental signals mediate auxin transport in abscission remains unclear. Here, we reveal the role of the transcription factor BEL1-LIKE HOMEODOMAIN11 (SlBEL11) in regulating auxin transport during abscission in tomato (Solanum lycopersicum). SlBEL11 is highly expressed in the fruit abscission zone, and its expression increases during fruit development. Knockdown of SlBEL11 expression by RNA interference (RNAi) caused premature fruit drop at the breaker (Br) and 3 d post-breaker (Br+3) stages of fruit development. Transcriptome and metabolome analysis of SlBEL11-RNAi lines revealed impaired flavonoid biosynthesis and decreased levels of most flavonoids, especially quercetin, which functions as an auxin transport inhibitor. This suggested that SlBEL11 prevents premature fruit abscission by modulating auxin efflux from fruits, which is crucial for the formation of an auxin response gradient. Indeed, quercetin treatment suppressed premature fruit drop in SlBEL11-RNAi plants. DNA affinity purification sequencing (DAP-seq) analysis indicated that SlBEL11 induced expression of the transcription factor gene SlMYB111 by directly binding to its promoter. Chromatin immunoprecipitation-quantitative polymerase chain reaction and electrophoretic mobility shift assay showed that S. lycopersicum MYELOBLASTOSIS VIRAL ONCOGENE HOMOLOG111 (SlMYB111) induces the expression of the core flavonoid biosynthesis genes SlCHS1, SlCHI, SlF3H, and SlFLS by directly binding to their promoters. Our findings suggest that the SlBEL11-SlMYB111 module modulates flavonoid biosynthesis to fine-tune auxin efflux from fruits and thus maintain an auxin response gradient in the pedicel, thereby preventing premature fruit drop.
Collapse
Affiliation(s)
- Xiufen Dong
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, China
- Key Laboratory for Quality and Safety Control of Subtropical Fruits and Vegetables, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, China
| | - Xianfeng Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, 110866, China
| | - Lina Cheng
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, 110866, China
| | - Ruizhen Li
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, 110866, China
| | - Siqi Ge
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, 110866, China
| | - Sai Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, 110866, China
| | - Yue Cai
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, 110866, China
| | - Yang Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, 110866, China
| | - Sida Meng
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, 110866, China
| | - Cai-Zhong Jiang
- Crops Pathology and Genetic Research Unit, United States Department of Agriculture Agricultural Research Service, Washington, DC, 20250, USA
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | | | - Tianlai Li
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, 110866, China
| | - Daqi Fu
- Laboratory of Fruit Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Mingfang Qi
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, 110866, China
| | - Tao Xu
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, 110866, China
| |
Collapse
|
13
|
He P, Zhu L, Zhou X, Fu X, Zhang Y, Zhao P, Jiang B, Wang H, Xiao G. Gibberellic acid promotes single-celled fiber elongation through the activation of two signaling cascades in cotton. Dev Cell 2024; 59:723-739.e4. [PMID: 38359829 DOI: 10.1016/j.devcel.2024.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/19/2023] [Accepted: 01/19/2024] [Indexed: 02/17/2024]
Abstract
The agricultural green revolution spectacularly enhanced crop yield through modification of gibberellin (GA) signaling. However, in cotton, the GA signaling cascades remain elusive, limiting our potential to cultivate new cotton varieties and improve yield and quality. Here, we identified that GA prominently stimulated fiber elongation through the degradation of DELLA protein GhSLR1, thereby disabling GhSLR1's physical interaction with two transcription factors, GhZFP8 and GhBLH1. Subsequently, the resultant free GhBLH1 binds to GhKCS12 promoter and activates its expression to enhance VLCFAs biosynthesis. With a similar mechanism, the free GhZFP8 binds to GhSDCP1 promoter and activates its expression. As a result, GhSDCP1 upregulates the expression of GhPIF3 gene associated with plant cell elongation. Ultimately, the two parallel signaling cascades synergistically promote cotton fiber elongation. Our findings outline the mechanistic framework that translates the GA signal into fiber cell elongation, thereby offering a roadmap to improve cotton fiber quality and yield.
Collapse
Affiliation(s)
- Peng He
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Liping Zhu
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Xin Zhou
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Xuan Fu
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Yu Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Peng Zhao
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Bin Jiang
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Huiqin Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Guanghui Xiao
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
14
|
Guo G, Liu L, Shen T, Wang H, Zhang S, Sun Y, Xiong G, Tang X, Zhu L, Jia B. Genome-wide identification of GA2ox genes family and analysis of PbrGA2ox1-mediated enhanced chlorophyll accumulation by promoting chloroplast development in pear. BMC PLANT BIOLOGY 2024; 24:166. [PMID: 38433195 PMCID: PMC10910807 DOI: 10.1186/s12870-024-04842-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 02/20/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND Chlorophyll (Chl) is an agronomic trait associated with photosynthesis and yield. Gibberellin 2-oxidases (GA2oxs) have previously been shown to be involved in Chl accumulation. However, whether and how the PbrGA2ox proteins (PbrGA2oxs) mediate Chl accumulation in pear (Pyrus spp.) is scarce. RESULTS Here, we aimed to elucidate the role of the pear GA2ox gene family in Chl accumulation and the related underlying mechanisms. We isolated 13 PbrGA2ox genes (PbrGA2oxs) from the pear database and identified PbrGA2ox1 as a potential regulator of Chl accumulation. We found that transiently overexpressing PbrGA2ox1 in chlorotic pear leaves led to Chl accumulation, and PbrGA2ox1 silencing in normal pear leaves led to Chl degradation, as evident by the regreening and chlorosis phenomenon, respectively. Meanwhile, PbrGA2ox1-overexpressing (OE) tobacco plants discernably exhibited Chl built-up, as evidenced by significantly higher Pn and Fv/Fm. In addition, RNA sequencing (RNA-seq), physiological and biochemical investigations revealed an increase in abscisic acid (ABA), methyl jasmonate (MeJA), and salicylic acid (SA) concentrations and signaling pathways; a marked elevation in reducing and soluble sugar contents; and a marginal decline in the starch and sucrose levels in OE plants. Interestingly, PbrGA2ox1 overexpression did not prominently affect Chl synthesis. However, it indeed facilitated chloroplast development by increasing chloroplast number per cell and compacting the thylakoid granum stacks. These findings might jointly contribute to Chl accumulation in OE plants. CONCLUSION Overall, our results suggested that GA2oxs accelerate Chl accumulation by stimulating chloroplast development and proved the potential of PbrGA2ox1 as a candidate gene for genetically breeding biofortified pear plants with a higher yield.
Collapse
Affiliation(s)
- Guoling Guo
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Lun Liu
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Taijing Shen
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Haozhe Wang
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Shuqin Zhang
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Yu Sun
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Guoyu Xiong
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Xiaomei Tang
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Liwu Zhu
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Bing Jia
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
15
|
Shi Y, Hu G, Wang Y, Liang Q, Su D, Lu W, Deng W, Bouzayen M, Liu Y, Li Z, Huang B. The SlGRAS9-SlZHD17 transcriptional cascade regulates chlorophyll and carbohydrate metabolism contributing to fruit quality traits in tomato. THE NEW PHYTOLOGIST 2024; 241:2540-2557. [PMID: 38263687 DOI: 10.1111/nph.19530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/12/2023] [Indexed: 01/25/2024]
Abstract
Some essential components of fleshy fruits are dependent on photosynthetic activity and carbohydrate metabolism. Nevertheless, the regulatory mechanisms linking chlorophyll and carbohydrate metabolism remain partially understood. Here, we uncovered the role of SlGRAS9 and SlZHD17 transcription factors in controlling chlorophyll and carbohydrate accumulation in tomato fruit. Knockout or knockdown of SlGRAS9 or SlZHD17 resulted in marked increase in chlorophyll content, reprogrammed chloroplast biogenesis and enhanced accumulation of starch and soluble sugars. Combined genome-wide transcriptomic profiling and promoter-binding experiments unveiled a complex mechanism in which the SlGRAS9/SlZHD17 regulatory module modulates the expression of chloroplast and sugar metabolism either via a sequential transcriptional cascade or through binding of both TFs to the same gene promoters, or, alternatively, via parallel pathways where each of the TFs act on different target genes. For instance, the regulation of SlAGPaseS1 and SlSUS1 is mediated by SlZHD17 whereas that of SlVI and SlGLK1 occurs only through SlGRAS9 without the intervention of SlZHD17. Both SlGRAS9 and SlZHD17 can also directly bind the promoter of SlPOR-B to regulate its expression. Taken together, our findings uncover two important regulators acting synergistically to manipulate chlorophyll and carbohydrate accumulation and provide new potential breeding targets for improving fruit quality in fleshy fruits.
Collapse
Affiliation(s)
- Yuan Shi
- Key Laboratory of Plant Hormones and Molecular Breeding of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China
| | - Guojian Hu
- Key Laboratory of Plant Hormones and Molecular Breeding of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China
- Laboratoire de Recherche en Sciences Vegetales - Genomique et Biotechnologie des Fruits - UMR5546, Universite de Toulouse, CNRS, UPS, Toulouse-INP, Toulouse, 31326, France
| | - Yan Wang
- Key Laboratory of Plant Hormones and Molecular Breeding of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China
| | - Qin Liang
- Key Laboratory of Plant Hormones and Molecular Breeding of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China
| | - Deding Su
- Key Laboratory of Plant Hormones and Molecular Breeding of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China
| | - Wang Lu
- Key Laboratory of Plant Hormones and Molecular Breeding of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China
| | - Wei Deng
- Key Laboratory of Plant Hormones and Molecular Breeding of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China
| | - Mondher Bouzayen
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China
- Laboratoire de Recherche en Sciences Vegetales - Genomique et Biotechnologie des Fruits - UMR5546, Universite de Toulouse, CNRS, UPS, Toulouse-INP, Toulouse, 31326, France
| | - Yudong Liu
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhengguo Li
- Key Laboratory of Plant Hormones and Molecular Breeding of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China
| | - Baowen Huang
- Key Laboratory of Plant Hormones and Molecular Breeding of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China
| |
Collapse
|
16
|
Baranov D, Dolgov S, Timerbaev V. New Advances in the Study of Regulation of Tomato Flowering-Related Genes Using Biotechnological Approaches. PLANTS (BASEL, SWITZERLAND) 2024; 13:359. [PMID: 38337892 PMCID: PMC10856997 DOI: 10.3390/plants13030359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/21/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024]
Abstract
The tomato is a convenient object for studying reproductive processes, which has become a classic. Such complex processes as flowering and fruit setting require an understanding of the fundamental principles of molecular interaction, the structures of genes and proteins, the construction of signaling pathways for transcription regulation, including the synchronous actions of cis-regulatory elements (promoter and enhancer), trans-regulatory elements (transcription factors and regulatory RNAs), and transposable elements and epigenetic regulators (DNA methylation and acetylation, chromatin structure). Here, we discuss the current state of research on tomatoes (2017-2023) devoted to studying the function of genes that regulate flowering and signal regulation systems using genome-editing technologies, RNA interference gene silencing, and gene overexpression, including heterologous expression. Although the central candidate genes for these regulatory components have been identified, a complete picture of their relationship has yet to be formed. Therefore, this review summarizes the latest achievements related to studying the processes of flowering and fruit set. This work attempts to display the gene interaction scheme to better understand the events under consideration.
Collapse
Affiliation(s)
- Denis Baranov
- Laboratory of Expression Systems and Plant Genome Modification, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia; (D.B.); (S.D.)
- Laboratory of Plant Genetic Engineering, All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia
| | - Sergey Dolgov
- Laboratory of Expression Systems and Plant Genome Modification, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia; (D.B.); (S.D.)
- Laboratory of Plant Genetic Engineering, All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia
| | - Vadim Timerbaev
- Laboratory of Expression Systems and Plant Genome Modification, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia; (D.B.); (S.D.)
- Laboratory of Plant Genetic Engineering, All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia
| |
Collapse
|
17
|
Sun M, Shen Y. Integrating the multiple functions of CHLH into chloroplast-derived signaling fundamental to plant development and adaptation as well as fruit ripening. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 338:111892. [PMID: 37821024 DOI: 10.1016/j.plantsci.2023.111892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 10/01/2023] [Accepted: 10/06/2023] [Indexed: 10/13/2023]
Abstract
Chlorophyll (Chl)-mediated oxygenic photosynthesis sustains life on Earth. Greening leaves play fundamental roles in plant growth and crop yield, correlating with the idea that more Chls lead to better adaptation. However, they face significant challenges from various unfavorable environments. Chl biosynthesis hinges on the first committed step, which involves inserting Mg2+ into protoporphyrin. This step is facilitated by the H subunit of magnesium chelatase (CHLH) and features a conserved mechanism from cyanobacteria to plants. For better adaptation to fluctuating land environments, especially drought, CHLH evolves multiple biological functions, including Chl biosynthesis, retrograde signaling, and abscisic acid (ABA) responses. Additionally, it integrates into various chloroplast-derived signaling pathways, encompassing both retrograde signaling and hormonal signaling. The former comprises ROS (reactive oxygen species), heme, GUN (genomes uncoupled), MEcPP (methylerythritol cyclodiphosphate), β-CC (β-cyclocitral), and PAP (3'-phosphoadenosine-5'-phosphate). The latter involves phytohormones like ABA, ethylene, auxin, cytokinin, gibberellin, strigolactone, brassinolide, salicylic acid, and jasmonic acid. Together, these elements create a coordinated regulatory network tailored to plant development and adaptation. An intriguing example is how drought-mediated improvement of fruit quality provides insights into chloroplast-derived signaling, aiding the shift from vegetative to reproductive growth. In this context, we explore the integration of CHLH's multifaceted roles into chloroplast-derived signaling, which lays the foundation for plant development and adaptation, as well as fruit ripening and quality. In the future, manipulating chloroplast-derived signaling may offer a promising avenue to enhance crop yield and quality through the homeostasis, function, and regulation of Chls.
Collapse
Affiliation(s)
- Mimi Sun
- College of Horticulture, China Agricultural University, Beijing 100193, China; College of Plant Science and Technology, Beijing University of Agriculture, 7 Beinong Road, Changping District, Beijing 102206, China
| | - Yuanyue Shen
- College of Plant Science and Technology, Beijing University of Agriculture, 7 Beinong Road, Changping District, Beijing 102206, China.
| |
Collapse
|
18
|
Zounková A, Konečný J, Lipavská H, Mašková P. BEL transcription factors in prominent Solanaceae crops: the missing pieces of the jigsaw in plant development. PLANTA 2023; 259:14. [PMID: 38070043 DOI: 10.1007/s00425-023-04289-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 11/13/2023] [Indexed: 12/18/2023]
Abstract
MAIN CONCLUSION Understanding BEL transcription factors roles in potato and tomato varies considerably with little overlap. The review suggests reciprocal use of gained results to proceed with the knowledge in both crops The proper development of organs that plants use for reproduction, like fruits or tubers, is crucial for the survival and competitiveness of the species and thus subject to strict regulations. Interestingly, the controls of potato (Solanum tuberosum) tuber and tomato (S. lycopersicum) fruit development use common mechanisms, including the action of the BEL transcription factors (TFs). Although more than ten BEL genes have been identified in either genome, only a few of them have been characterized. The review summarizes knowledge of BEL TFs' roles in these closely related Solanaceae species, focusing on those that are essential for tuberization in potato, namely StBEL5, StBEL11 and StBEL29, and for fruit development in tomato - SlBEL11, SlBL2 and SIBL4. Comprehension of the roles of individual BEL TFs, however, is not yet sufficient. Different levels of understanding of important characteristics are described, such as BEL transcript accumulation patterns, their mobility, BEL protein interaction with KNOX partners, subcellular localisation, and their target genes during initiation and development of the organs in question. A comparison of the knowledge on BEL TFs and their mechanisms of action in potato and tomato may provide inspiration for faster progress in the study of both models through the exchange of information and ideas. Both crops are extremely important for human nutrition. In addition, their production is likely to be threatened by the upcoming climate change, so there is a particular need for breeding using a deep knowledge of control mechanisms.
Collapse
Affiliation(s)
- Andrea Zounková
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 12800, Prague 2, Czech Republic
| | - Jan Konečný
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 12800, Prague 2, Czech Republic
| | - Helena Lipavská
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 12800, Prague 2, Czech Republic
| | - Petra Mašková
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 12800, Prague 2, Czech Republic.
| |
Collapse
|
19
|
Song Z, Zhu X, Lai X, Chen H, Wang L, Yao Y, Chen W, Li X. MaBEL1 regulates banana fruit ripening by activating cell wall and starch degradation-related genes. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:2036-2055. [PMID: 37177912 DOI: 10.1111/jipb.13506] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/12/2023] [Indexed: 05/15/2023]
Abstract
Banana is a typical subtropical fruit, sensitive to chilling injuries and prone to softening disorder. However, the underlying regulatory mechanisms of the softening disorder caused by cold stress remain obscure. Herein, we found that BEL1-LIKE HOMEODOMAIN transcription factor 1 (MaBEL1) and its associated proteins regulate the fruit softening and ripening process. The transcript and protein levels of MaBEL1 were up-regulated with fruit ripening but severely repressed by the chilling stress. Moreover, the MaBEL1 protein interacted directly with the promoters of the cell wall and starch degradation-related genes, such as MaAMY3, MaXYL32, and MaEXP-A8. The transient overexpression of MaBEL1 alleviated fruit chilling injury and ripening disorder caused by cold stress and promoted fruit softening and ripening of "Fenjiao" banana by inducing ethylene production and starch and cell wall degradation. The accelerated ripening was also validated by the ectopic overexpression in tomatoes. Conversely, MaBEL1-silencing aggravated the chilling injury and ripening disorder and repressed fruit softening and ripening by inhibiting ethylene production and starch and cell wall degradation. MaABI5-like and MaEBF1, the two positive regulators of the fruit softening process, interacted with MaBEL1 to enhance the promoter activity of the starch and cell wall degradation-related genes. Moreover, the F-box protein MaEBF1 does not modulate the degradation of MaBEL1, which regulates the transcription of MaABI5-like protein. Overall, we report a novel MaBEL1-MaEBF1-MaABI5-like complex system that mediates the fruit softening and ripening disorder in "Fenjiao" bananas caused by cold stress.
Collapse
Affiliation(s)
- Zunyang Song
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
| | - Xiaoyang Zhu
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Xiuhua Lai
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Hangcong Chen
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Lihua Wang
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Yulin Yao
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Weixin Chen
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Xueping Li
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
20
|
Voronezhskaya V, Volkova P, Bitarishvili S, Shesterikova E, Podlutskii M, Clement G, Meyer C, Duarte GT, Kudin M, Garbaruk D, Turchin L, Kazakova E. Multi-Omics Analysis of Vicia cracca Responses to Chronic Radiation Exposure in the Chernobyl Exclusion Zone. PLANTS (BASEL, SWITZERLAND) 2023; 12:2318. [PMID: 37375943 DOI: 10.3390/plants12122318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023]
Abstract
Our understanding of the long-term consequences of chronic ionising radiation for living organisms remains scarce. Modern molecular biology techniques are helpful tools for researching pollutant effects on biota. To reveal the molecular phenotype of plants growing under chronic radiation exposure, we sampled Vicia cracca L. plants in the Chernobyl exclusion zone and areas with normal radiation backgrounds. We performed a detailed analysis of soil and gene expression patterns and conducted coordinated multi-omics analyses of plant samples, including transcriptomics, proteomics, and metabolomics. Plants growing under chronic radiation exposure showed complex and multidirectional biological effects, including significant alterations in the metabolism and gene expression patterns of irradiated plants. We revealed profound changes in carbon metabolism, nitrogen reallocation, and photosynthesis. These plants showed signs of DNA damage, redox imbalance, and stress responses. The upregulation of histones, chaperones, peroxidases, and secondary metabolism was noted.
Collapse
Affiliation(s)
| | | | | | | | | | - Gilles Clement
- Institute Jean-Pierre Bourgin (IJPB), INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Christian Meyer
- Institute Jean-Pierre Bourgin (IJPB), INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | | | - Maksim Kudin
- Polesye State Radiation-Ecological Reserve, 247618 Khoiniki, Belarus
| | - Dmitrii Garbaruk
- Polesye State Radiation-Ecological Reserve, 247618 Khoiniki, Belarus
| | - Larisa Turchin
- Polesye State Radiation-Ecological Reserve, 247618 Khoiniki, Belarus
| | | |
Collapse
|
21
|
Pirona R, Frugis G, Locatelli F, Mattana M, Genga A, Baldoni E. Transcriptomic analysis reveals the gene regulatory networks involved in leaf and root response to osmotic stress in tomato. FRONTIERS IN PLANT SCIENCE 2023; 14:1155797. [PMID: 37332696 PMCID: PMC10272567 DOI: 10.3389/fpls.2023.1155797] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/10/2023] [Indexed: 06/20/2023]
Abstract
Introduction Tomato (Solanum lycopersicum L.) is a major horticultural crop that is cultivated worldwide and is characteristic of the Mediterranean agricultural system. It represents a key component of the diet of billion people and an important source of vitamins and carotenoids. Tomato cultivation in open field often experiences drought episodes, leading to severe yield losses, since most modern cultivars are sensitive to water deficit. Water stress leads to changes in the expression of stress-responsive genes in different plant tissues, and transcriptomics can support the identification of genes and pathways regulating this response. Methods Here, we performed a transcriptomic analysis of two tomato genotypes, M82 and Tondo, in response to a PEG-mediated osmotic treatment. The analysis was conducted separately on leaves and roots to characterize the specific response of these two organs. Results A total of 6,267 differentially expressed transcripts related to stress response was detected. The construction of gene co-expression networks defined the molecular pathways of the common and specific responses of leaf and root. The common response was characterized by ABA-dependent and ABA-independent signaling pathways, and by the interconnection between ABA and JA signaling. The root-specific response concerned genes involved in cell wall metabolism and remodeling, whereas the leaf-specific response was principally related to leaf senescence and ethylene signaling. The transcription factors representing the hubs of these regulatory networks were identified. Some of them have not yet been characterized and can represent novel candidates for tolerance. Discussion This work shed new light on the regulatory networks occurring in tomato leaf and root under osmotic stress and set the base for an in-depth characterization of novel stress-related genes that may represent potential candidates for improving tolerance to abiotic stress in tomato.
Collapse
Affiliation(s)
- Raul Pirona
- National Research Council (CNR), Institute of Agricultural Biology and Biotechnology (IBBA), Milano, Italy
| | - Giovanna Frugis
- National Research Council (CNR), Institute of Agricultural Biology and Biotechnology (IBBA), Rome Unit, Roma, Italy
| | - Franca Locatelli
- National Research Council (CNR), Institute of Agricultural Biology and Biotechnology (IBBA), Milano, Italy
| | - Monica Mattana
- National Research Council (CNR), Institute of Agricultural Biology and Biotechnology (IBBA), Milano, Italy
| | - Annamaria Genga
- National Research Council (CNR), Institute of Agricultural Biology and Biotechnology (IBBA), Milano, Italy
| | - Elena Baldoni
- National Research Council (CNR), Institute of Agricultural Biology and Biotechnology (IBBA), Milano, Italy
| |
Collapse
|
22
|
Peng Z, Li H, Liu G, Jia W, Fu D. NAC transcription factor NOR-like1 regulates tomato fruit size. PLANTA 2023; 258:9. [PMID: 37256357 DOI: 10.1007/s00425-023-04166-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/24/2023] [Indexed: 06/01/2023]
Abstract
MAIN CONCLUSION NOR-like1 regulates tomato fruit size by targeting SlARF9, SlGRAS2, SlFW3.2, and SlFW11.3 genes involved in cell division and cell expansion. Fruit size is an important agricultural character that determines the yield of crops. Here, we found that NAC transcription factor NOR-like1 regulated fruit size by regulating cell layer number and cell area in tomato. Over-expressing NOR-like1 gene in tomato reduced fruit weight and size, whereas the knock-out of NOR-like1 increased fruit weight and size. At the molecular level, NOR-like1 binds to the promoter of SlGRAS2, SlFW3.2, and SlFW11.3 to repress their transcription, while it also binds to the promoter of ARF9 to activate its transcription. Overall, these results expand the biological function of NOR-like1 and deepen our understanding of the transcriptional network that regulates tomato fruit size.
Collapse
Affiliation(s)
- Zhenzhen Peng
- Laboratory of Fruit Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Hongli Li
- Laboratory of Fruit Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Gangshuai Liu
- Laboratory of Fruit Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Wen Jia
- Laboratory of Fruit Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Daqi Fu
- Laboratory of Fruit Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
23
|
Jia P, Sharif R, Li Y, Sun T, Li S, Zhang X, Dong Q, Luan H, Guo S, Ren X, Qi G. The BELL1-like homeobox gene MdBLH14 from apple controls flowering and plant height via repression of MdGA20ox3. Int J Biol Macromol 2023; 242:124790. [PMID: 37169049 DOI: 10.1016/j.ijbiomac.2023.124790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/13/2023]
Abstract
Apple growth and yield are largely dependent on plant height and flowering characteristics. The BELL1-like homeobox (BLH) transcription factors regulate extensive plant biological processes. However, the BLH-mediated regulation of plant height and flowering in apple remains elusive. In the current study, 19 members of the MdBLH family were identified in the apple genome. Segmental duplication and purifying selection are the main reasons for the evolution of the MdBLH genes. A BLH1-like gene, MdBLH14, was isolated and functionally characterized. The MdBLH14 was preferentially expressed in flower buds, and downregulated during the floral induction period. The subcellular localization in tobacco leaves indicated that MdBLH14 is a nuclear protein. Overexpression of MdBLH14 in Arabidopsis led to a significant dwarfing and late-flowering phenotype by hindering active GA accumulation. Additionally, MdKNOX19, another member of the TALE superfamily, physically interacts with MdBLH14 and synergistically inhibits the expression of MdGA20ox3. This is the first report on the function of the MdBLH14 from apple, and its mechanism involving plant flower induction and growth. The data presented here provide a theoretical basis for genetically breeding new apple varieties.
Collapse
Affiliation(s)
- Peng Jia
- College of Forestry, Hebei Agricultural University, Baoding 071000, China; College of Horticulture, Northwest Agriculture and Forestry University, Yangling, Shaanxi 712100, China.
| | - Rahat Sharif
- Department of Horticulture, School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Youmei Li
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, Shaanxi 712100, China; Department of Horticulture, School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Tianbo Sun
- College of Forestry, Hebei Agricultural University, Baoding 071000, China
| | - Shikui Li
- College of Forestry, Hebei Agricultural University, Baoding 071000, China
| | - Xuemei Zhang
- College of Forestry, Hebei Agricultural University, Baoding 071000, China
| | - Qinglong Dong
- College of Forestry, Hebei Agricultural University, Baoding 071000, China
| | - Haoan Luan
- College of Forestry, Hebei Agricultural University, Baoding 071000, China
| | - Suping Guo
- College of Forestry, Hebei Agricultural University, Baoding 071000, China
| | - Xiaolin Ren
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, Shaanxi 712100, China.
| | - Guohui Qi
- College of Forestry, Hebei Agricultural University, Baoding 071000, China.
| |
Collapse
|
24
|
Luo J, Abid M, Zhang Y, Cai X, Tu J, Gao P, Wang Z, Huang H. Genome-Wide Identification of Kiwifruit SGR Family Members and Functional Characterization of SGR2 Protein for Chlorophyll Degradation. Int J Mol Sci 2023; 24:ijms24031993. [PMID: 36768313 PMCID: PMC9917040 DOI: 10.3390/ijms24031993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
The STAY-GREEN (SGR) proteins play an important role in chlorophyll (Chl) degradation and are closely related to plant photosynthesis. However, the availability of inadequate studies on SGR motivated us to conduct a comprehensive study on the identification and functional dissection of SGR superfamily members in kiwifruit. Here, we identified five SGR genes for each of the kiwifruit species [Actinidia chinensis (Ac) and Actinidia eriantha (Ae)]. The phylogenetic analysis showed that the kiwifruit SGR superfamily members were divided into two subfamilies the SGR subfamily and the SGRL subfamily. The results of transcriptome data and RT-qPCR showed that the expression of the kiwifruit SGRs was closely related to light and plant developmental stages (regulated by plant growth regulators), which were further supported by the presence of light and the plant hormone-responsive cis-regulatory element in the promoter region. The subcellular localization analysis of the AcSGR2 protein confirmed its localization in the chloroplast. The Fv/Fm, SPAD value, and Chl contents were decreased in overexpressed AcSGR2, but varied in different cultivars of A. chinensis. The sequence analysis showed significant differences within AcSGR2 proteins. Our findings provide valuable insights into the characteristics and evolutionary patterns of SGR genes in kiwifruit, and shall assist kiwifruit breeders to enhance cultivar development.
Collapse
Affiliation(s)
- Juan Luo
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China
- College of Life Science, Nanchang University, Nanchang 330031, China
| | - Muhammad Abid
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China
| | - Yi Zhang
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China
- College of Life Science, Nanchang University, Nanchang 330031, China
| | - Xinxia Cai
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China
- College of Life Science, Nanchang University, Nanchang 330031, China
| | - Jing Tu
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China
- College of Life Science, Nanchang University, Nanchang 330031, China
| | - Puxin Gao
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China
| | - Zupeng Wang
- Engineering Laboratory for Kiwifruit Industrial Technology, Chinese Academy of Sciences, Wuhan 430074, China
- Correspondence: (Z.W.); (H.H.)
| | - Hongwen Huang
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China
- College of Life Science, Nanchang University, Nanchang 330031, China
- Correspondence: (Z.W.); (H.H.)
| |
Collapse
|
25
|
He Y, Wang Y, Zhang M, Liu G, Tian C, Xu X, Pan Y, Shi X, Zhang Z, Meng L. SlBEL11 affects tomato carotenoid accumulation by regulating SlLCY-b2. Front Nutr 2022; 9:1062006. [PMID: 36618682 PMCID: PMC9814965 DOI: 10.3389/fnut.2022.1062006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/23/2022] [Indexed: 12/24/2022] Open
Abstract
Extensive data have demonstrated that carotenoid accumulation in tomato fruit is influenced by environmental cues and hormonal signals. However, there is insufficient information on the mechanism of its transcriptional regulation, as many molecular roles of carotenoid biosynthetic pathways remain unknown. In this work, we found that the silence of the BEL1-like family transcription factor (TF) BEL1-LIKE HOMEODOMAIN 11 (SlBEL11) enhanced carotenoid accumulation in virus induced gene silencing (VIGS) analysis. In its RNA interference (RNAi) transgenic lines, a significant increase in the transcription level for the lycopene beta cyclase 2 (SlLCY-b2) gene was detected, which encoded a key enzyme located at the downstream branch of the carotenoid biosynthetic pathway. In Electrophoretic mobility shift assay (EMSA), SlBEL11 protein was confirmed to bind to the promoter of SlLCY-b2 gene. In addition, the dual-luciferase reporter assay showed its intrinsic transcriptional repression activity. Collectively, our findings added a new member to the carotenoid transcriptional regulatory network and expanded the functions of the SlBEL11 transcription factor.
Collapse
Affiliation(s)
- Yan He
- School of Food Science and Engineering, Hainan University, Haikou, China,Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou, China
| | - Yu Wang
- School of Food Science and Engineering, Hainan University, Haikou, China,Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou, China
| | - Mengzhuo Zhang
- School of Food Science and Engineering, Hainan University, Haikou, China,Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou, China
| | - Guangsen Liu
- School of Food Science and Engineering, Hainan University, Haikou, China,Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou, China
| | - Cong Tian
- School of Food Science and Engineering, Hainan University, Haikou, China,Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou, China
| | - Xiangbin Xu
- School of Food Science and Engineering, Hainan University, Haikou, China,Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou, China
| | - Yonggui Pan
- School of Food Science and Engineering, Hainan University, Haikou, China
| | - Xuequn Shi
- School of Food Science and Engineering, Hainan University, Haikou, China,Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou, China
| | - Zhengke Zhang
- School of Food Science and Engineering, Hainan University, Haikou, China,Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou, China
| | - Lanhuan Meng
- School of Food Science and Engineering, Hainan University, Haikou, China,Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou, China,*Correspondence: Lanhuan Meng,
| |
Collapse
|
26
|
Chen Y, Feng P, Zhang X, Xie Q, Chen G, Zhou S, Hu Z. Silencing of SlMYB50 affects tolerance to drought and salt stress in tomato. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 193:139-152. [PMID: 36356545 DOI: 10.1016/j.plaphy.2022.10.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 10/08/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
High salinity and drought stresses often cause plants to produce ROS, including hydrogen peroxide (H2O2) and superoxide (O2-), which interfere with plant growth and affect crop yield. The transcription factors of the MYB family are involved in responses to biotic and abiotic stresses. Here, we isolated the R2R3-MYB transcription factor gene SlMYB50 and found that silencing of SlMYB50 increased resistance to PEG 6000, mannitol and salt. In addition, the resistance of transgenic tomatoes increased under high salt and drought stress. After stress treatment, the relative water content, chlorophyll content (critical for carbon fixation) and root vitality of the SlMYB50-RNAi lines were higher than those of the wild-type (WT). The opposite was true the water loss rate, relative conductivity, and MDA (as a sign of cell wall disruption). Under drought stress conditions, SlMYB50-silenced lines exhibited less H2O2 and less O2- accumulation, as well as higher CAT enzyme activity, than were exhibited by the WT. Notably, after stress treatment, the expression levels of chlorophyll-synthesis-related, flavonoid-synthesis-related, carotenoid-related, antioxidant-enzyme-related and ABA-biosynthesis-related genes were all upregulated in SlMYB50-silenced lines compared to those of WT. A dual-luciferase reporter system was used to verify that SlMYB50 could bind to the CHS1 promoter. In summary, this study identified essential roles for SlMYB50 in regulating drought and salt tolerance.
Collapse
Affiliation(s)
- Yanan Chen
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, PR China.
| | - Panpan Feng
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, PR China.
| | - Xianwei Zhang
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, PR China.
| | - Qiaoli Xie
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, PR China.
| | - Guoping Chen
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, PR China.
| | - Shuang Zhou
- College of Agriculture/Mudan, Henan University of Science and Technology, Henan Province, PR China.
| | - Zongli Hu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, PR China.
| |
Collapse
|
27
|
Niu XL, Li HL, Li R, Liu GS, Peng ZZ, Jia W, Ji X, Zhu HL, Zhu BZ, Grierson D, Giuliano G, Luo YB, Fu DQ. Transcription factor SlBEL2 interferes with GOLDEN2-LIKE and influences green shoulder formation in tomato fruits. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:982-997. [PMID: 36164829 DOI: 10.1111/tpj.15989] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 09/09/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
Chloroplasts play a crucial role in plant growth and fruit quality. However, the molecular mechanisms of chloroplast development are still poorly understood in fruits. In this study, we investigated the role of the transcription factor SlBEL2 (BEL1-LIKE HOMEODOMAIN 2) in fruit of Solanum lycopersicum (tomato). Phenotypic analysis of SlBEL2 overexpression (OE-SlBEL2) and SlBEL2 knockout (KO-SlBEL2) plants revealed that SlBEL2 has the function of inhibiting green shoulder formation in tomato fruits by affecting the development of fruit chloroplasts. Transcriptome profiling revealed that the expression of chloroplast-related genes such as SlGLK2 and SlLHCB1 changed significantly in the fruit of OE-SlBEL2 and KO-SlBEL2 plants. Further analysis showed that SlBEL2 could not only bind to the promoter of SlGLK2 to inhibit its transcription, but also interacted with the SlGLK2 protein to inhibit the transcriptional activity of SlGLK2 and its downstream target genes. SlGLK2 knockout (KO-SlGLK2) plants exhibited a complete absence of the green shoulder, which was consistent with the fruit phenotype of OE-SlBEL2 plants. SlBEL2 showed an expression gradient in fruits, in contrast with that reported for SlGLK2. In conclusion, our study reveals that SlBEL2 affects the formation of green shoulder in tomato fruits by negatively regulating the gradient expression of SlGLK2, thus providing new insights into the molecular mechanism of fruit green shoulder formation.
Collapse
Affiliation(s)
- Xiao-Lin Niu
- Laboratory of Fruit Biology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Hong-Li Li
- Laboratory of Fruit Biology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Rui Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Gang-Shuai Liu
- Laboratory of Fruit Biology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Zhen-Zhen Peng
- Laboratory of Fruit Biology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Wen Jia
- Laboratory of Fruit Biology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Xiang Ji
- Laboratory of Fruit Biology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Hong-Liang Zhu
- Laboratory of Fruit Biology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Ben-Zhong Zhu
- Laboratory of Fruit Biology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Donald Grierson
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- Plant Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Giovanni Giuliano
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Casaccia Res. Ctr, Via Anguillarese 301, Rome, 00123, Italy
| | - Yun-Bo Luo
- Laboratory of Fruit Biology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Da-Qi Fu
- Laboratory of Fruit Biology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| |
Collapse
|
28
|
Xing M, Li H, Liu G, Zhu B, Zhu H, Grierson D, Luo Y, Fu D. A MADS-box transcription factor, SlMADS1, interacts with SlMACROCALYX to regulate tomato sepal growth. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 322:111366. [PMID: 35779674 DOI: 10.1016/j.plantsci.2022.111366] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/14/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
In flowering plants, sepals play important roles in the development of flowers and fruit, and both processes are regulated by MADS-box (MADS) transcription factors (TFs). SlMADS1 was previously reported to act as a negative regulator of fruit ripening. In this study, expression analysis shown that its transcripts were very highly expressed during the development of sepals. To test the role of SlMADS1, we generated KO-SlMADS1 (knock-out) tomato mutants by CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats and CRISPR-associated protein 9) technology and over-expression of SlMADS1 (OE-SlMADS1). The sepals and individual cells of KO-SlMADS1 mutants were significantly elongated, compared with the wild type (WT), whereas the sepals of OE-SlMADS1 tomatoes were significantly shorter and their cells were wider. RNA-seq (RNA-sequencing) of sepal samples showed that ethylene-, gibberellin-, auxin-, cytokinin- and cell wall metabolism-related genes were significantly affected in both KO-SlMADS1 and OE-SlMADS1 plants with altered sepal size. Since SlMACROCALYX (MC) is known to regulate the development of tomato sepals, we also studied the relationship between SlMC and SlMADS1 and the result showed that SlMADS1 interacts directly with SlMC. In addition, we also found that manipulating SlMADS1 expression alters the development of tomato plant leaves, roots and plant height. These results enrich our understanding of sepal development and the function of SlMADS1 throughout the plant.
Collapse
Affiliation(s)
- Mengyang Xing
- Laboratory of Fruit Biology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100093, China
| | - Hongli Li
- Laboratory of Fruit Biology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Gangshuai Liu
- Laboratory of Fruit Biology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Benzhong Zhu
- Laboratory of Fruit Biology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Hongliang Zhu
- Laboratory of Fruit Biology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Donald Grierson
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China; Plant Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD UK
| | - Yunbo Luo
- Laboratory of Fruit Biology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Daqi Fu
- Laboratory of Fruit Biology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
29
|
Lin D, Zhu X, Qi B, Gao Z, Tian P, Li Z, Lin Z, Zhang Y, Huang T. SlMIR164A regulates fruit ripening and quality by controlling SlNAM2 and SlNAM3 in tomato. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:1456-1469. [PMID: 35403821 PMCID: PMC9342619 DOI: 10.1111/pbi.13824] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/25/2022] [Accepted: 04/01/2022] [Indexed: 06/01/2023]
Abstract
MiRNAs are important posttranscriptional regulators of plant development. Many miRNAs, such as the conserved miR164 species, are encoded by families of MIRNA genes, but the specific roles of individual MIRNA genes are largely undefined. Here, we characterize the functions and regulatory mechanisms of SlMIR164A, one of the primary genes of Sly-miR164, in tomato. We show that SlMIR164A is preferentially expressed at late stages of fruit development and plays a vital role in controlling fruit ripening and quality. Loss of function of SlMIR164A by CRISPR/Cas9-mediated mutagenesis results in accelerated fruit ripening and enhanced chloroplast development, which leads to altered sugar and organic acid contents and affects the nutritional quality of fruits. We also show that SlMIR164A modulates fruit ripening and quality through specific target genes, SlNAM2 and SlNAM3, which control key regulators of chloroplast function and fruit ripening processes. MIR164 genes have been shown to play conserved roles in regulating organ ageing, such as leaf senescence and fruit ripening, in a variety of plants, but whether and how their family members in tomato exert the same function remain to be elucidated. Our results reveal a previously undiscovered role of SlMIR164A in ripening control, which will further our understanding of the actions of MIR164 family, as well as the mechanisms of fruit ripening and quality control in tomato. Moreover, as loss of SlMIR164A exhibits minor impacts on organ morphology, our results can be leveraged in tomato breeding for specific manipulation of fruit ripening and quality to facilitate tomato improvement in agriculture.
Collapse
Affiliation(s)
- Dongbo Lin
- Guangdong Provincial Key Laboratory for Plant EpigeneticsCollege of Life Sciences and OceanographyShenzhen UniversityShenzhenGuangdongChina
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and GuangdongCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhenGuangdongChina
| | - Xiaoen Zhu
- Guangdong Provincial Key Laboratory for Plant EpigeneticsCollege of Life Sciences and OceanographyShenzhen UniversityShenzhenGuangdongChina
| | - Binglin Qi
- Guangdong Provincial Key Laboratory for Plant EpigeneticsCollege of Life Sciences and OceanographyShenzhen UniversityShenzhenGuangdongChina
| | - Zhong Gao
- Guangdong Provincial Key Laboratory for Plant EpigeneticsCollege of Life Sciences and OceanographyShenzhen UniversityShenzhenGuangdongChina
| | - Peng Tian
- Guangdong Provincial Key Laboratory for Plant EpigeneticsCollege of Life Sciences and OceanographyShenzhen UniversityShenzhenGuangdongChina
| | - Ziwei Li
- Guangdong Provincial Key Laboratory for Plant EpigeneticsCollege of Life Sciences and OceanographyShenzhen UniversityShenzhenGuangdongChina
| | - Zeteng Lin
- Guangdong Provincial Key Laboratory for Plant EpigeneticsCollege of Life Sciences and OceanographyShenzhen UniversityShenzhenGuangdongChina
| | - Yongxia Zhang
- Guangdong Provincial Key Laboratory for Plant EpigeneticsCollege of Life Sciences and OceanographyShenzhen UniversityShenzhenGuangdongChina
| | - Tengbo Huang
- Guangdong Provincial Key Laboratory for Plant EpigeneticsCollege of Life Sciences and OceanographyShenzhen UniversityShenzhenGuangdongChina
| |
Collapse
|
30
|
Ezura K, Nakamura A, Mitsuda N. Genome-wide characterization of the TALE homeodomain family and the KNOX-BLH interaction network in tomato. PLANT MOLECULAR BIOLOGY 2022; 109:799-821. [PMID: 35543849 DOI: 10.1007/s11103-022-01277-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/23/2022] [Indexed: 05/05/2023]
Abstract
Comprehensive yeast and protoplast two-hybrid analyses illustrated the protein-protein interaction network of the TALE homeodomain protein family, KNOX and BLH proteins, in tomato leaf and fruit development. KNOTTED-like (KNOX, KN) proteins and BELL1-like (BLH) proteins, which belong to the same TALE homeodomain family, act together by forming KNOX-BLH heterodimer modules. These modules play crucial roles in regulating multiple developmental processes in plants, like organ differentiation. However, despite the increasing knowledge about individual KNOX and BLH functions, a comprehensive view of their functional protein-protein interaction (PPI) network remains elusive in most plants, including tomato (Solanum lycopersicum), an important model plant to study fruit and leaf development. Here, we characterized eight tomato KNOX genes (SlKN1 to SlKN8) and fourteen tomato BLH genes (SlBLH1 to SlBLH14) by expression profiling, co-expression analysis, and PPI network analysis using two-hybrid techniques in yeasts (Y2H) and protoplasts (P2H). We identified 75 pairwise KNOX-BLH interactions, including ten novel interactors of SlKN2/TKN2, a primary class I KNOX protein, and nine novel interactors of SlKN5, a primary class II KNOX protein. Based on these data, we classified KNOX-BLH modules into several categories, which made us infer the order and combination of the KNOX-BLH modules involved in differentiation processes in leaf and fruit. Notably, the co-expression and interaction of SlKN5 and fruit preferentially expressing BLH1-clade paralogs (SlBLH5/SlBEL11 and SlBLH7) suggest their important roles in regulating fruit differentiation. Furthermore, in silico modeling of the KNOX-BLH modules, sequence analysis, and P2H assay identified several residues and a linker region potentially influencing the affinity of BLHs to KNOXs within their conserved dimerization domains. Together, these findings provide insights into the regulatory mechanism of KNOX-BLH modules underlying tomato organ differentiation.
Collapse
Affiliation(s)
- Kentaro Ezura
- Japan Society for the Promotion of Science, Tokyo, Japan.
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, 305-8566, Japan.
| | - Akiyoshi Nakamura
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, 305-8566, Japan
| | - Nobutaka Mitsuda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, 305-8566, Japan
| |
Collapse
|
31
|
Luo J, Abid M, Tu J, Gao P, Wang Z, Huang H. Genome-Wide Identification of the LHC Gene Family in Kiwifruit and Regulatory Role of AcLhcb3.1/3.2 for Chlorophyll a Content. Int J Mol Sci 2022; 23:ijms23126528. [PMID: 35742967 PMCID: PMC9224368 DOI: 10.3390/ijms23126528] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/29/2022] [Accepted: 06/09/2022] [Indexed: 02/04/2023] Open
Abstract
Light-harvesting chlorophyll a/b-binding (LHC) protein is a superfamily that plays a vital role in photosynthesis. However, the reported knowledge of LHCs in kiwifruit is inadequate and poorly understood. In this study, we identified 42 and 45 LHC genes in Actinidia chinensis (Ac) and A. eriantha (Ae) genomes. Phylogenetic analysis showed that the kiwifruit LHCs of both species were grouped into four subfamilies (Lhc, Lil, PsbS, and FCII). Expression profiles and qRT-PCR results revealed expression levels of LHC genes closely related to the light, temperature fluctuations, color changes during fruit ripening, and kiwifruit responses to Pseudomonas syringae pv. actinidiae (Psa). Subcellular localization analysis showed that AcLhcb1.5/3.1/3.2 were localized in the chloroplast while transient overexpression of AcLhcb3.1/3.2 in tobacco leaves confirmed a significantly increased content of chlorophyll a. Our findings provide evidence of the characters and evolution patterns of kiwifruit LHCs genes in kiwifruit and verify the AcLhcb3.1/3.2 genes controlling the chlorophyll a content.
Collapse
Affiliation(s)
- Juan Luo
- College of Life Science, Nanchang University, Nanchang 330031, China; (J.L.); (J.T.)
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China; (M.A.); (P.G.)
| | - Muhammad Abid
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China; (M.A.); (P.G.)
| | - Jing Tu
- College of Life Science, Nanchang University, Nanchang 330031, China; (J.L.); (J.T.)
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China; (M.A.); (P.G.)
| | - Puxing Gao
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China; (M.A.); (P.G.)
| | - Zupeng Wang
- Engineering Laboratory for Kiwifruit Industrial Technology, Chinese Academy of Sciences, Wuhan 430074, China
- Correspondence: (Z.W.); (H.H.)
| | - Hongwen Huang
- College of Life Science, Nanchang University, Nanchang 330031, China; (J.L.); (J.T.)
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China; (M.A.); (P.G.)
- Correspondence: (Z.W.); (H.H.)
| |
Collapse
|
32
|
Cao Y, Liu L, Ma K, Wang W, Lv H, Gao M, Wang X, Zhang X, Ren S, Zhang N, Guo YD. The jasmonate-induced bHLH gene SlJIG functions in terpene biosynthesis and resistance to insects and fungus. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:1102-1115. [PMID: 35293128 DOI: 10.1111/jipb.13248] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/14/2022] [Indexed: 05/27/2023]
Abstract
Jasmonic acid (JA) is a key regulator of plant defense responses. Although the transcription factor MYC2, the master regulator of the JA signaling pathway, orchestrates a hierarchical transcriptional cascade that regulates the JA responses, only a few transcriptional regulators involved in this cascade have been described. Here, we identified the basic helix-loop-helix (bHLH) transcription factor gene in tomato (Solanum lycopersicum), METHYL JASMONATE (MeJA)-INDUCED GENE (SlJIG), the expression of which was strongly induced by MeJA treatment. Genetic and molecular biology experiments revealed that SlJIG is a direct target of MYC2. SlJIG knockout plants generated by gene editing had lower terpene contents than the wild type from the lower expression of TERPENE SYNTHASE (TPS) genes, rendering them more appealing to cotton bollworm (Helicoverpa armigera). Moreover, SlJIG knockouts exhibited weaker JA-mediated induction of TPSs, suggesting that SlJIG may participate in JA-induced terpene biosynthesis. Knocking out SlJIG also resulted in attenuated expression of JA-responsive defense genes, which may contribute to the observed lower resistance to cotton bollworm and to the fungus Botrytis cinerea. We conclude that SlJIG is a direct target of MYC2, forms a MYC2-SlJIG module, and functions in terpene biosynthesis and resistance against cotton bollworm and B. cinerea.
Collapse
Affiliation(s)
- Yunyun Cao
- College of Horticulture, China Agricultural University, Beijing, 100193, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
| | - Lun Liu
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Kangsheng Ma
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenjing Wang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Hongmei Lv
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Ming Gao
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xinman Wang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xichun Zhang
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
| | - Shuxin Ren
- School of Agriculture, Virginia State University, Petersburg, 23806, VA, USA
| | - Na Zhang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
- Sanya Institute of China Agricultural University, Sanya, 572000, China
| | - Yang-Dong Guo
- College of Horticulture, China Agricultural University, Beijing, 100193, China
- Sanya Institute of China Agricultural University, Sanya, 572000, China
| |
Collapse
|
33
|
Identification of TALE Transcription Factor Family and Expression Patterns Related to Fruit Chloroplast Development in Tomato ( Solanum lycopersicum L.). Int J Mol Sci 2022; 23:ijms23094507. [PMID: 35562896 PMCID: PMC9104321 DOI: 10.3390/ijms23094507] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/07/2022] [Accepted: 04/14/2022] [Indexed: 02/01/2023] Open
Abstract
The TALE gene family is an important transcription factor family that regulates meristem formation, organ morphogenesis, signal transduction, and fruit development. A total of 24 genes of the TALE family were identified and analyzed in tomato. The 24 SlTALE family members could be classified into five BELL subfamilies and four KNOX subfamilies. SlTALE genes were unevenly distributed on every tomato chromosome, lacked syntenic gene pairs, and had conserved structures but diverse regulatory functions. Promoter activity analysis showed that cis-elements responsive to light, phytohormone, developmental regulation, and environmental stress were enriched in the promoter of SlTALE genes, and the light response elements were the most abundant. An abundance of TF binding sites was also enriched in the promoter of SlTALE genes. Phenotype identification revealed that the green shoulder (GS) mutant fruits showed significantly enhanced chloroplast development and chlorophyll accumulation, and a significant increase of chlorophyll fluorescence parameters in the fruit shoulder region. Analysis of gene expression patterns indicated that six SlTALE genes were highly expressed in the GS fruit shoulder region, and four SlTALE genes were highly expressed in the parts with less-developed chloroplasts. The protein-protein interaction networks predicted interaction combinations among these SlTALE genes, especially between the BELL subfamilies and the KNOX subfamilies, indicating a complex regulatory network of these SlTALE genes in chloroplast development and green fruit shoulder formation. In conclusion, our result provides detailed knowledge of the SlTALE gene for functional research and the utilization of the TALE gene family in fruit quality improvement.
Collapse
|
34
|
Niu X, Fu D. The Roles of BLH Transcription Factors in Plant Development and Environmental Response. Int J Mol Sci 2022; 23:3731. [PMID: 35409091 PMCID: PMC8998993 DOI: 10.3390/ijms23073731] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/16/2022] [Accepted: 03/22/2022] [Indexed: 02/04/2023] Open
Abstract
Despite recent advancements in plant molecular biology and biotechnology, providing enough, and safe, food for an increasing world population remains a challenge. The research into plant development and environmental adaptability has attracted more and more attention from various countries. The transcription of some genes, regulated by transcript factors (TFs), and their response to biological and abiotic stresses, are activated or inhibited during plant development; examples include, rooting, flowering, fruit ripening, drought, flooding, high temperature, pathogen infection, etc. Therefore, the screening and characterization of transcription factors have increasingly become a hot topic in the field of plant research. BLH/BELL (BEL1-like homeodomain) transcription factors belong to a subfamily of the TALE (three-amino-acid-loop-extension) superfamily and its members are involved in the regulation of many vital biological processes, during plant development and environmental response. This review focuses on the advances in our understanding of the function of BLH/BELL TFs in different plants and their involvement in the development of meristems, flower, fruit, plant morphogenesis, plant cell wall structure, the response to the environment, including light and plant resistance to stress, biosynthesis and signaling of ABA (Abscisic acid), IAA (Indoleacetic acid), GA (Gibberellic Acid) and JA (Jasmonic Acid). We discuss the theoretical basis and potential regulatory models for BLH/BELL TFs' action and provide a comprehensive view of their multiple roles in modulating different aspects of plant development and response to environmental stress and phytohormones. We also present the value of BLHs in the molecular breeding of improved crop varieties and the future research direction of the BLH gene family.
Collapse
Affiliation(s)
| | - Daqi Fu
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China;
| |
Collapse
|
35
|
Genome-Wide Identification, Expression, and Interaction Analysis of BEL-Like Homeodomain Gene Family in Peach. Biochem Genet 2022; 60:2037-2051. [PMID: 35230561 DOI: 10.1007/s10528-022-10203-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 02/09/2022] [Indexed: 11/02/2022]
Abstract
BEL1-like homeodomain (BLH) family genes as homeodomain transcription factors are found ubiquitously in plants to play important regulatory roles in reproductive development, morphological development, and stress response. Although BLH proteins have been reported in some species, there is little information about BLH genes in peach. In this study, we identified 11 peach PpBLH genes based on the conserved domain. Phylogenetic analysis suggested that the PpBLH proteins could be divided into five groups, which might be involved in different aspects of morphogenesis. Genomics structure analysis revealed that there were four exons in the PpBLH gene, and the length of the third exon was 61 bp. Chromosomal location analysis showed that the PpBLH genes were not distributed uniformly on six chromosomes. Promoter analysis showed that the promoter sequences of six PpBLH genes contained multiple cis-acting elements for hormones and stress. Six PpBLH genes were cloned by RT-PCR, and PpBLH1, PpBLH4, and PpBLH7 showed different expression patterns in the tested fruits under common temperature and high temperature. Y2H results indicated that PpBLH7 andPpBLH10 interacted with the PpOFP6 protein, and PpBLH1 interacted with the PpOFP1, PpOFP2, PpOFP4, and PpOFP13 proteins. These results provide new insight for further study of PpBLH genes, and construction of regulatory networks of PpBLH proteins in the growth, development, and stress response of peach.
Collapse
|
36
|
He Y, Yang T, Yan S, Niu S, Zhang Y. Identification and characterization of the BEL1-like genes reveal their potential roles in plant growth and abiotic stress response in tomato. Int J Biol Macromol 2022; 200:193-205. [PMID: 34995657 DOI: 10.1016/j.ijbiomac.2021.12.175] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 12/27/2021] [Accepted: 12/27/2021] [Indexed: 11/05/2022]
Abstract
BEL1-like (BELL) transcription factors, belonging to three-amino acid-loop-extension (TALE) superfamily, are ubiquitous in plants. BELLs regulate a wide range of plant biological processes, but the understanding of the BELL family in tomato (Solanum lycopersicum) remains fragmentary. In this study, a total of 14 members of the SlBELL family were identified in tomato. SlBELL proteins contained the conserved BELL and SKY domains that served as typical structures of the BELL family. Syntenic analysis indicated that the BELL orthologs between tomato and other dicots had close evolutionary relationships. Furthermore, the promoters of SlBELLs contained numerous cis-elements related to plant growth, development, and stress response. The SlBELL genes exhibited different tissue-specific expression profiles and responded to cold, heat, and drought stresses, implying their potential functions in regulating multiple aspects of plant growth, as well as in response to abiotic stresses. Through the interaction network prediction, we found that most SlBELL proteins displayed probable interactions with the KNOTTED1-like (KNOX) proteins, another kind of transcription factor in the TALE superfamily. These findings laid foundations for further dissection of the functions of SlBELL genes in tomato, as well as for exploration of the evolutionary relationships of BELL homologs among different plant species.
Collapse
Affiliation(s)
- Yu He
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Shaanxi Engineering Research Center for Vegetables, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Tongwen Yang
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Shaanxi Engineering Research Center for Vegetables, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Siwei Yan
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Shaanxi Engineering Research Center for Vegetables, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Shaobo Niu
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Shaanxi Engineering Research Center for Vegetables, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Yan Zhang
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Shaanxi Engineering Research Center for Vegetables, Northwest A&F University, Yangling 712100, Shaanxi, PR China.
| |
Collapse
|
37
|
Sun Y, Zhang H, Dong W, He S, Qiao S, Qi X, Hu Q. Integrated analysis of the transcriptome, sRNAome, and degradome reveals the network regulating fruit skin coloration in sponge gourd (Luffa cylindrica). Sci Rep 2022; 12:3338. [PMID: 35228643 PMCID: PMC8885689 DOI: 10.1038/s41598-022-07431-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/18/2022] [Indexed: 11/09/2022] Open
Abstract
Sponge gourd fruit skin color is an important quality-related trait because it substantially influences consumer preferences. However, little is known about the miRNAs and genes regulating sponge gourd fruit skin coloration. This study involved an integrated analysis of the transcriptome, sRNAome, and degradome of sponge gourd fruit skins with green skin (GS) and white skin (WS). A total of 4,331 genes were differentially expressed between the GS and WS, with 2,442 down-regulated and 1,889 up-regulated genes in WS. The crucial genes involved in chlorophyll metabolism, chloroplast development, and chloroplast protection were identified (e.g., HEMA, CHLM, CRD1, POR, CAO, CLH, SGR, CAB, BEL1-like, KNAT, ARF, and peroxidase genes). Additionally, 167 differentially expressed miRNAs were identified, with 70 up-regulated and 97 down-regulated miRNAs in WS. Degradome sequencing identified 125 differentially expressed miRNAs and their 521 differentially expressed target genes. The miR156, miR159, miR166, miR167, miR172, and miR393 targeted the genes involved in chlorophyll metabolism, chloroplast development, and chloroplast protection. Moreover, a flavonoid biosynthesis regulatory network was established involving miR159, miR166, miR169, miR319, miR390, miR396, and their targets CHS, 4CL, bHLH, and MYB. The qRT-PCR data for the differentially expressed genes were generally consistent with the transcriptome results. Subcellular localization analysis of selected proteins revealed their locations in different cellular compartments, including nucleus, cytoplasm and endoplasmic reticulum. The study findings revealed the important miRNAs, their target genes, and the regulatory network controlling fruit skin coloration in sponge gourd.
Collapse
|
38
|
Liu GS, Li HL, Grierson D, Fu DQ. NAC Transcription Factor Family Regulation of Fruit Ripening and Quality: A Review. Cells 2022; 11:cells11030525. [PMID: 35159333 PMCID: PMC8834055 DOI: 10.3390/cells11030525] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 01/18/2023] Open
Abstract
The NAC transcription factor (TF) family is one of the largest plant-specific TF families and its members are involved in the regulation of many vital biological processes during plant growth and development. Recent studies have found that NAC TFs play important roles during the ripening of fleshy fruits and the development of quality attributes. This review focuses on the advances in our understanding of the function of NAC TFs in different fruits and their involvement in the biosynthesis and signal transduction of plant hormones, fruit textural changes, color transformation, accumulation of flavor compounds, seed development and fruit senescence. We discuss the theoretical basis and potential regulatory models for NAC TFs action and provide a comprehensive view of their multiple roles in modulating different aspects of fruit ripening and quality.
Collapse
Affiliation(s)
- Gang-Shuai Liu
- Laboratory of Fruit Biology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (G.-S.L.); (H.-L.L.)
| | - Hong-Li Li
- Laboratory of Fruit Biology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (G.-S.L.); (H.-L.L.)
| | - Donald Grierson
- Laboratory of Fruit Quality Biology, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China;
- Plant Sciences Division, School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough LE12 5RD, UK
| | - Da-Qi Fu
- Laboratory of Fruit Biology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (G.-S.L.); (H.-L.L.)
- Correspondence:
| |
Collapse
|
39
|
Pradeepkumara N, Sharma PK, Munshi AD, Behera TK, Bhatia R, Kumari K, Singh J, Jaiswal S, Iquebal MA, Arora A, Rai A, Kumar D, Bhattacharya RC, Dey SS. Fruit transcriptional profiling of the contrasting genotypes for shelf life reveals the key candidate genes and molecular pathways regulating post-harvest biology in cucumber. Genomics 2022; 114:110273. [PMID: 35092817 DOI: 10.1016/j.ygeno.2022.110273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 02/07/2023]
Abstract
Cucumber fruits are perishable in nature and become unfit for market within 2-3 days of harvesting. A natural variant, DC-48 with exceptionally high shelf life was developed and used to dissect the genetic architecture and molecular mechanism for extended shelf life through RNA-seq for first time. A total of 1364 DEGs were identified and cell wall degradation, chlorophyll and ethylene metabolism related genes played key role. Polygalacturunase (PG), Expansin (EXP) and xyloglucan were down regulated determining fruit firmness and retention of fresh green colour was mainly attributed to the low expression level of the chlorophyll catalytic enzymes (CCEs). Gene regulatory networks revealed the hub genes and cross-talk associated with wide variety of the biological processes. Large number of SSRs (21524), SNPs (545173) and InDels (126252) identified will be instrumental in cucumber improvement. A web genomic resource, CsExSLDb developed will provide a platform for future investigation on cucumber post-harvest biology.
Collapse
Affiliation(s)
- N Pradeepkumara
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Parva Kumar Sharma
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - A D Munshi
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - T K Behera
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Reeta Bhatia
- Division of Floriculture and Landscaping, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Khushboo Kumari
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Jogendra Singh
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Sarika Jaiswal
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Mir Asif Iquebal
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Ajay Arora
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Anil Rai
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Dinesh Kumar
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - R C Bhattacharya
- ICAR-National Institute of Plant Biotechnology, New Delhi, India
| | - S S Dey
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India.
| |
Collapse
|
40
|
Sun L, Yang Y, Pan H, Zhu J, Zhu M, Xu T, Li Z, Dong T. Molecular Characterization and Target Prediction of Candidate miRNAs Related to Abiotic Stress Responses and/or Storage Root Development in Sweet Potato. Genes (Basel) 2022; 13:110. [PMID: 35052451 PMCID: PMC8774570 DOI: 10.3390/genes13010110] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/30/2021] [Accepted: 01/04/2022] [Indexed: 02/01/2023] Open
Abstract
Sweet potato is a tuberous root crop with strong environmental stress resistance. It is beneficial to study its storage root formation and stress responses to identify sweet potato stress- and storage-root-thickening-related regulators. Here, six conserved miRNAs (miR156g, miR157d, miR158a-3p, miR161.1, miR167d and miR397a) and six novel miRNAs (novel 104, novel 120, novel 140, novel 214, novel 359 and novel 522) were isolated and characterized in sweet potato. Tissue-specific expression patterns suggested that miR156g, miR157d, miR158a-3p, miR167d, novel 359 and novel 522 exhibited high expression in fibrous roots or storage roots and were all upregulated in response to storage-root-related hormones (indole acetic acid, IAA; zeaxanthin, ZT; abscisic acid, ABA; and gibberellin, GAs). The expression of miR156g, miR158a-3p, miR167d, novel 120 and novel 214 was induced or reduced dramatically by salt, dehydration and cold or heat stresses. Moreover, these miRNAs were all upregulated by ABA, a crucial hormone modulator in regulating abiotic stresses. Additionally, the potential targets of the twelve miRNAs were predicted and analyzed. Above all, these results indicated that these miRNAs might play roles in storage root development and/or stress responses in sweet potato as well as provided valuable information for the further investigation of the roles of miRNA in storage root development and stress responses.
Collapse
Affiliation(s)
- Li Sun
- Institute of Integrative Plant Biology, School of Life Science, Jiangsu Normal University, Xuzhou 221008, China; (L.S.); (Y.Y.); (J.Z.); (M.Z.)
| | - Yiyu Yang
- Institute of Integrative Plant Biology, School of Life Science, Jiangsu Normal University, Xuzhou 221008, China; (L.S.); (Y.Y.); (J.Z.); (M.Z.)
| | - Hong Pan
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou 221008, China; (H.P.); (T.X.)
| | - Jiahao Zhu
- Institute of Integrative Plant Biology, School of Life Science, Jiangsu Normal University, Xuzhou 221008, China; (L.S.); (Y.Y.); (J.Z.); (M.Z.)
| | - Mingku Zhu
- Institute of Integrative Plant Biology, School of Life Science, Jiangsu Normal University, Xuzhou 221008, China; (L.S.); (Y.Y.); (J.Z.); (M.Z.)
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou 221008, China; (H.P.); (T.X.)
| | - Tao Xu
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou 221008, China; (H.P.); (T.X.)
| | - Zongyun Li
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou 221008, China; (H.P.); (T.X.)
| | - Tingting Dong
- Institute of Integrative Plant Biology, School of Life Science, Jiangsu Normal University, Xuzhou 221008, China; (L.S.); (Y.Y.); (J.Z.); (M.Z.)
| |
Collapse
|
41
|
Ganopoulou M, Michailidis M, Angelis L, Ganopoulos I, Molassiotis A, Xanthopoulou A, Moysiadis T. Could Causal Discovery in Proteogenomics Assist in Understanding Gene-Protein Relations? A Perennial Fruit Tree Case Study Using Sweet Cherry as a Model. Cells 2021; 11:cells11010092. [PMID: 35011654 PMCID: PMC8750600 DOI: 10.3390/cells11010092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 12/12/2022] Open
Abstract
Genome-wide transcriptome analysis is a method that produces important data on plant biology at a systemic level. The lack of understanding of the relationships between proteins and genes in plants necessitates a further thorough analysis at the proteogenomic level. Recently, our group generated a quantitative proteogenomic atlas of 15 sweet cherry (Prunus avium L.) cv. ‘Tragana Edessis’ tissues represented by 29,247 genes and 7584 proteins. The aim of the current study was to perform a targeted analysis at the gene/protein level to assess the structure of their relation, and the biological implications. Weighted correlation network analysis and causal modeling were employed to, respectively, cluster the gene/protein pairs, and reveal their cause–effect relations, aiming to assess the associated biological functions. To the best of our knowledge, this is the first time that causal modeling has been employed within the proteogenomics concept in plants. The analysis revealed the complex nature of causal relations among genes/proteins that are important for traits of interest in perennial fruit trees, particularly regarding the fruit softening and ripening process in sweet cherry. Causal discovery could be used to highlight persistent relations at the gene/protein level, stimulating biological interpretation and facilitating further study of the proteogenomic atlas in plants.
Collapse
Affiliation(s)
- Maria Ganopoulou
- School of Informatics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
- Correspondence: (M.G.); (T.M.)
| | - Michail Michailidis
- Laboratory of Pomology, Department of Horticulture, Aristotle University of Thessaloniki, Thermi, 57001 Thessaloniki, Greece; (M.M.); (A.M.); (A.X.)
| | - Lefteris Angelis
- School of Informatics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Ioannis Ganopoulos
- Institute of Plant Breeding and Genetic Resources, ELGO-DIMITRA, Thermi, 57001 Thessaloniki, Greece;
| | - Athanassios Molassiotis
- Laboratory of Pomology, Department of Horticulture, Aristotle University of Thessaloniki, Thermi, 57001 Thessaloniki, Greece; (M.M.); (A.M.); (A.X.)
| | - Aliki Xanthopoulou
- Laboratory of Pomology, Department of Horticulture, Aristotle University of Thessaloniki, Thermi, 57001 Thessaloniki, Greece; (M.M.); (A.M.); (A.X.)
- Institute of Plant Breeding and Genetic Resources, ELGO-DIMITRA, Thermi, 57001 Thessaloniki, Greece;
| | - Theodoros Moysiadis
- Institute of Plant Breeding and Genetic Resources, ELGO-DIMITRA, Thermi, 57001 Thessaloniki, Greece;
- Department of Computer Science, School of Sciences and Engineering, University of Nicosia, Nicosia 2417, Cyprus
- Correspondence: (M.G.); (T.M.)
| |
Collapse
|
42
|
Shi Y, Pang X, Liu W, Wang R, Su D, Gao Y, Wu M, Deng W, Liu Y, Li Z. SlZHD17 is involved in the control of chlorophyll and carotenoid metabolism in tomato fruit. HORTICULTURE RESEARCH 2021; 8:259. [PMID: 34848692 PMCID: PMC8632997 DOI: 10.1038/s41438-021-00696-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/09/2021] [Accepted: 08/02/2021] [Indexed: 05/19/2023]
Abstract
Chlorophylls and carotenoids are essential and beneficial substances for both plant and human health. Identifying the regulatory network of these pigments is necessary for improving fruit quality. In a previous study, we identified an R2R3-MYB transcription factor, SlMYB72, that plays an important role in chlorophyll and carotenoid metabolism in tomato fruit. Here, we demonstrated that the SlMYB72-interacting protein SlZHD17, which belongs to the zinc-finger homeodomain transcription factor family, also functions in chlorophyll and carotenoid metabolism. Silencing SlZHD17 in tomato improved multiple beneficial agronomic traits, including dwarfism, accelerated flowering, and earlier fruit harvest. More importantly, downregulating SlZHD17 in fruits resulted in larger chloroplasts and a higher chlorophyll content. Dual-luciferase, yeast one-hybrid and electrophoretic mobility shift assays clarified that SlZHD17 regulates the chlorophyll biosynthesis gene SlPOR-B and chloroplast developmental regulator SlTKN2 in a direct manner. Chlorophyll degradation and plastid transformation were also retarded after suppression of SlZHD17 in fruits, which was caused by the inhibition of SlSGR1, a crucial factor in chlorophyll degradation. On the other hand, the expression of the carotenoid biosynthesis genes SlPSY1 and SlZISO was also suppressed and directly regulated by SlZHD17, which induced uneven pigmentation and decreased the lycopene content in fruits with SlZHD17 suppression at the ripe stage. Furthermore, the protein-protein interactions between SlZHD17 and other pigment regulators, including SlARF4, SlBEL11, and SlTAGL1, were also presented. This study provides new insight into the complex pigment regulatory network and provides new options for breeding strategies aiming to improve fruit quality.
Collapse
Affiliation(s)
- Yuan Shi
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, 401331, Chongqing, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, 401331, Chongqing, China
| | - Xiaoqin Pang
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, 401331, Chongqing, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, 401331, Chongqing, China
| | - Wenjing Liu
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, 401331, Chongqing, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, 401331, Chongqing, China
| | - Rui Wang
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, 401331, Chongqing, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, 401331, Chongqing, China
| | - Deding Su
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, 401331, Chongqing, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, 401331, Chongqing, China
| | - Yushuo Gao
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, 401331, Chongqing, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, 401331, Chongqing, China
| | - Mengbo Wu
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, 401331, Chongqing, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, 401331, Chongqing, China
| | - Wei Deng
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, 401331, Chongqing, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, 401331, Chongqing, China
| | - Yudong Liu
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, 401331, Chongqing, China.
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, 401331, Chongqing, China.
| | - Zhengguo Li
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, 401331, Chongqing, China.
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, 401331, Chongqing, China.
| |
Collapse
|
43
|
Lu J, Pan C, Li X, Huang Z, Shu J, Wang X, Lu X, Pan F, Hu J, Zhang H, Su W, Zhang M, Du Y, Liu L, Guo Y, Li J. OBV (obscure vein), a C 2H 2 zinc finger transcription factor, positively regulates chloroplast development and bundle sheath extension formation in tomato (Solanum lycopersicum) leaf veins. HORTICULTURE RESEARCH 2021; 8:230. [PMID: 34719693 PMCID: PMC8558323 DOI: 10.1038/s41438-021-00659-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/07/2021] [Accepted: 07/14/2021] [Indexed: 06/01/2023]
Abstract
Leaf veins play an important role in plant growth and development, and the bundle sheath (BS) is believed to greatly improve the photosynthetic efficiency of C4 plants. The OBV mutation in tomato (Solanum lycopersicum) results in dark veins and has been used widely in processing tomato varieties. However, physiological performance has difficulty explaining fitness in production. In this study, we confirmed that this mutation was caused by both the increased chlorophyll content and the absence of bundle sheath extension (BSE) in the veins. Using genome-wide association analysis and map-based cloning, we revealed that OBV encoded a C2H2L domain class transcription factor. It was localized in the nucleus and presented cell type-specific gene expression in the leaf veins. Furthermore, we verified the gene function by generating CRISPR/Cas9 knockout and overexpression mutants of the tomato gene. RNA sequencing analysis revealed that OBV was involved in regulating chloroplast development and photosynthesis, which greatly supported the change in chlorophyll content by mutation. Taken together, these findings demonstrated that OBV affected the growth and development of tomato by regulating chloroplast development in leaf veins. This study also provides a solid foundation to further decipher the mechanism of BSEs and to understand the evolution of photosynthesis in land plants.
Collapse
Affiliation(s)
- Jinghua Lu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chunyang Pan
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xin Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zejun Huang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jinshuai Shu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaoxuan Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaoxiao Lu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Feng Pan
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Junling Hu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hui Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wenyue Su
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Min Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yongchen Du
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lei Liu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yanmei Guo
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Junming Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
44
|
Yue Z, Ma R, Cheng D, Yan X, He Y, Wang C, Pan X, Yin L, Zhang X, Wei C. Candidate gene analysis of watermelon stripe pattern locus ClSP ongoing recombination suppression. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:3263-3277. [PMID: 34185107 DOI: 10.1007/s00122-021-03891-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 06/10/2021] [Indexed: 05/15/2023]
Abstract
Using two segregating population, watermelon stripe pattern underlying gene ClSP was delimited to a 611.78 Kb region, consisting of four discrete haploblocks and ongoing recombination suppression. Stripe pattern is an important commodity trait in watermelon, displaying diverse types. In this study, two segregating populations were generated for genetic mapping the single dominant locus ClSP, which was finally delimited to a 611.78 Kb interval with suppression of recombination. According to polymorphism sites detected among genotypes, four discrete haploblocks were characterized in this target region. Based on reference genomes, 81 predicted genes were annotated in the ClSP interval, including seven transcription factors namely as candidate No1-No7. Meanwhile, the ortholog gene of cucumber ist responsible for the irregular stripes was considered as candidate No8. Strikingly, gene structures of No1-No5 completely varied from their reference descriptions and subsequently re-annotated. For instance, the original adjacent distribution candidates No2 and No3 were re-annotated as No2_3, while No4 and No5 were integrated as No4_5. Sequence analysis demonstrated the third polymorphism in CDS of re-annotated No4_5 resulting in truncated proteins in non-stripe plants. Furthermore, only No4_5 was down-regulated in light green stripes relative to dark green stripes. Transcriptome analysis identified 356 DEGs between dark green striped and light green striped peels, with genes involved in photosynthesis and chloroplast development down-regulated in light green stripes but calcium ion binding related genes up-regulated. Additionally, 38 DEGs were annotated as transcription factors, with the majority up-regulated in light green stripes, such as ERFs and WRKYs. This study not only contributes to a better understanding of the molecular mechanisms underlying watermelon stripe development, but also provides new insights into the genomic structure of ClSP locus and valuable candidates.
Collapse
Affiliation(s)
- Zhen Yue
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A and F University, Yangling, 712100, Shaanxi, China
| | - Rongxue Ma
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A and F University, Yangling, 712100, Shaanxi, China
| | - Denghu Cheng
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A and F University, Yangling, 712100, Shaanxi, China
| | - Xing Yan
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A and F University, Yangling, 712100, Shaanxi, China
| | - Yaping He
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A and F University, Yangling, 712100, Shaanxi, China
| | - Chunxia Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A and F University, Yangling, 712100, Shaanxi, China
| | - Xiaona Pan
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A and F University, Yangling, 712100, Shaanxi, China
| | - Lijuan Yin
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A and F University, Yangling, 712100, Shaanxi, China
| | - Xian Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A and F University, Yangling, 712100, Shaanxi, China
| | - Chunhua Wei
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A and F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
45
|
Wei Y, Jin J, Xu Y, Liu W, Yang G, Bu H, Li T, Wang A. Ethylene-activated MdPUB24 mediates ubiquitination of MdBEL7 to promote chlorophyll degradation in apple fruit. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:169-182. [PMID: 34296800 DOI: 10.1111/tpj.15432] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 07/02/2021] [Accepted: 07/20/2021] [Indexed: 05/21/2023]
Abstract
Chlorophyll (Chl) degradation is a natural phenomenon that occurs during ripening in many fleshy fruit species, and also during fruit storage. The plant hormone ethylene is a key factor in promoting Chl degradation during fruit storage, but the mechanisms involved in this induction are largely unknown. In this study, an apple (Malus domestica) BEL1-LIKE HOMEODOMAIN transcription factor 7 (MdBEL7), potentially functioning as a transcriptional repressor of the Chl catabolic genes (CCGs), including MdCLH, MdPPH2 and MdRCCR2, was identified as a partner of the ethylene-activated U-box type E3 ubiquitin ligase MdPUB24 in a yeast library screen. Yeast-two-hybrid, co-immunoprecipitation and luciferase complementation imaging assays were then used to verify the interaction between MdBEL7 and MdPUB24. In vitro and in vivo ubiquitination experiments revealed that MdPUB24 functions as an E3 ubiquitin ligase to ubiquitinate MdBEL7, thereby causing its degradation through the 26S proteasome pathway. Transient overexpression of MdPUB24 in apple fruit led to a decrease in MdBEL7 abundance and increased expression of CCG genes, including MdCLH, MdPPH2 and MdRCCR2, as well as greater Chl degradation. Taken together, the data indicated that an ethylene-activated U-box type E3 ubiquitin ligase MdPUB24 directly interacts with and ubiquitinates MdBEL7. Consequent degradation of MdBEL7 results in enhanced expression of MdCLH, MdPPH2 and MdRCCR2, and thus Chl degradation during apple fruit storage. Our results reveal that an ethylene-MdPUB24-MdBEL7 module regulates Chl degradation by post-translational modification during apple fruit storage.
Collapse
Affiliation(s)
- Yun Wei
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang, 110866, China
- Key Laboratory of Fruit Postharvest Biology, Liaoning Province, 110866, China
| | - Juntong Jin
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang, 110866, China
- Key Laboratory of Fruit Postharvest Biology, Liaoning Province, 110866, China
| | - Yaxiu Xu
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang, 110866, China
- Key Laboratory of Fruit Postharvest Biology, Liaoning Province, 110866, China
| | - Weiting Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang, 110866, China
- Key Laboratory of Fruit Postharvest Biology, Liaoning Province, 110866, China
| | - Guangxin Yang
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang, 110866, China
- Key Laboratory of Fruit Postharvest Biology, Liaoning Province, 110866, China
| | - Haidong Bu
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang, 110866, China
- Key Laboratory of Fruit Postharvest Biology, Liaoning Province, 110866, China
| | - Tong Li
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang, 110866, China
- Key Laboratory of Fruit Postharvest Biology, Liaoning Province, 110866, China
| | - Aide Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang, 110866, China
- Key Laboratory of Fruit Postharvest Biology, Liaoning Province, 110866, China
| |
Collapse
|
46
|
Liu G, Li H, Fu D. Applications of virus-induced gene silencing for identification of gene function in fruit. FOOD QUALITY AND SAFETY 2021. [DOI: 10.1093/fqsafe/fyab018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Abstract
With the development of bioinformatics, it is easy to obtain information and data about thousands of genes, but the determination of the functions of these genes depends on methods for rapid and effective functional identification. Virus-induced gene silencing (VIGS) is a mature method of gene functional identification developed over the last 20 years, which has been widely used in many research fields involving many species. Fruit quality formation is a complex biological process, which is closely related to ripening. Here, we review the progress and contribution of VIGS to our understanding of fruit biology and its advantages and disadvantages in determining gene function.
Collapse
|
47
|
Liu G, Yu H, Yuan L, Li C, Ye J, Chen W, Wang Y, Ge P, Zhang J, Ye Z, Zhang Y. SlRCM1, which encodes tomato Lutescent1, is required for chlorophyll synthesis and chloroplast development in fruits. HORTICULTURE RESEARCH 2021; 8:128. [PMID: 34059638 PMCID: PMC8166902 DOI: 10.1038/s41438-021-00563-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 03/24/2021] [Accepted: 04/01/2021] [Indexed: 05/12/2023]
Abstract
In plants, chloroplasts are the sites at which photosynthesis occurs, and an increased abundance of chloroplasts increases the nutritional quality of plants and the resultant color of fruits. However, the molecular mechanisms underlying chlorophyll synthesis and chloroplast development in tomato fruits remain unknown. In this study, we isolated a chlorophyll-deficient mutant, reduced chlorophyll mutant 1 (rcm1), by ethylmethanesulfonate mutagenesis; this mutant produced yellowish fruits with altered chloroplast development. MutMap revealed that Solyc08g005010 is the causal gene underlying the rcm1 mutant phenotype. A single-nucleotide base substitution in the second exon of SlRCM1 results in premature termination of its translated protein. SlRCM1 encodes a chloroplast-targeted metalloendopeptidase that is orthologous to the BCM1 protein of Arabidopsis and the stay-green G protein of soybean (Glycine max L. Merr.). Notably, the yellowish phenotype of the lutescent1 mutant can be restored with the allele of SlRCM1 from wild-type tomato. In contrast, knockout of SlRCM1 by the CRISPR/Cas9 system in Alisa Craig yielded yellowish fruits at the mature green stage, as was the case for lutescent1. Amino acid sequence alignment and functional complementation assays showed that SlRCM1 is indeed Lutescent1. These findings provide new insights into the regulation of chloroplast development in tomato fruits.
Collapse
Affiliation(s)
- Genzhong Liu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Huiyang Yu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Lei Yuan
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Changxing Li
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Jie Ye
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Weifang Chen
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Ying Wang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Pingfei Ge
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Junhong Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Zhibiao Ye
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Yuyang Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
48
|
Yan F, Gong Z, Hu G, Ma X, Bai R, Yu R, Zhang Q, Deng W, Li Z, Wuriyanghan H. Tomato SlBL4 plays an important role in fruit pedicel organogenesis and abscission. HORTICULTURE RESEARCH 2021; 8:78. [PMID: 33790250 PMCID: PMC8012377 DOI: 10.1038/s41438-021-00515-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 01/08/2021] [Accepted: 02/06/2021] [Indexed: 05/21/2023]
Abstract
Abscission, a cell separation process, is an important trait that influences grain and fruit yield. We previously reported that BEL1-LIKE HOMEODOMAIN 4 (SlBL4) is involved in chloroplast development and cell wall metabolism in tomato fruit. In the present study, we showed that silencing SlBL4 resulted in the enlargement and pre-abscission of the tomato (Solanum lycopersicum cv. Micro-TOM) fruit pedicel. The anatomic analysis showed the presence of more epidermal cell layers and no obvious abscission zone (AZ) in the SlBL4 RNAi lines compared with the wild-type plants. RNA-seq analysis indicated that the regulation of abscission by SlBL4 was associated with the altered abundance of genes related to key meristems, auxin transporters, signaling components, and cell wall metabolism. Furthermore, SlBL4 positively affected the auxin concentration in the abscission zone. A dual-luciferase reporter assay revealed that SlBL4 activated the transcription of the JOINTLESS, OVATE, PIN1, and LAX3 genes. We reported a novel function of SlBL4, which plays key roles in fruit pedicel organogenesis and abscission in tomatoes.
Collapse
Affiliation(s)
- Fang Yan
- Key Laboratory of Herbage & Endemic Crop Biotechnology, Ministry of Education, School of Life Science, Inner Mongolia University, Hohhot, 010021, China
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, 401331, Chongqing, China
| | - Zhehao Gong
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, 401331, Chongqing, China
| | - Guojian Hu
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, 401331, Chongqing, China
| | - Xuesong Ma
- Key Laboratory of Herbage & Endemic Crop Biotechnology, Ministry of Education, School of Life Science, Inner Mongolia University, Hohhot, 010021, China
| | - Runyao Bai
- Key Laboratory of Herbage & Endemic Crop Biotechnology, Ministry of Education, School of Life Science, Inner Mongolia University, Hohhot, 010021, China
| | - Ruonan Yu
- Key Laboratory of Herbage & Endemic Crop Biotechnology, Ministry of Education, School of Life Science, Inner Mongolia University, Hohhot, 010021, China
| | - Qiang Zhang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Wei Deng
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, 401331, Chongqing, China
| | - Zhengguo Li
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, 401331, Chongqing, China.
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, 401331, Chongqing, China.
| | - Hada Wuriyanghan
- Key Laboratory of Herbage & Endemic Crop Biotechnology, Ministry of Education, School of Life Science, Inner Mongolia University, Hohhot, 010021, China.
| |
Collapse
|
49
|
Guo DL, Wang ZG, Pei MS, Guo LL, Yu YH. Transcriptome analysis reveals mechanism of early ripening in Kyoho grape with hydrogen peroxide treatment. BMC Genomics 2020; 21:784. [PMID: 33176674 PMCID: PMC7657363 DOI: 10.1186/s12864-020-07180-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 10/22/2020] [Indexed: 02/06/2023] Open
Abstract
Background In a previous study, the early ripening of Kyoho grape following H2O2 treatment was explored at the physiological level, but the mechanism by which H2O2 promotes ripening at the molecular level is unclear. To reveal the molecular mechanism, RNA-sequencing analysis was conducted on the different developmental stages of Kyoho berry treated with H2O2. Results In the comparison of treatment and control groups, 406 genes were up-regulated and 683 were down-regulated. Time course sequencing (TCseq) analysis showed that the expression patterns of most of the genes were similar between the treatment and control, except for some genes related to chlorophyll binding and photosynthesis. Differential expression analysis and the weighted gene co-expression network were used to screen significantly differentially expressed genes and hub genes associated with oxidative stress (heat shock protein, HSP), cell wall deacetylation (GDSL esterase/lipase, GDSL), cell wall degradation (xyloglucan endotransglucosylase/ hydrolase, XTH), and photosynthesis (chlorophyll a-b binding protein, CAB1). Gene expression was verified with RT-qPCR, and the results were largely consistent with those of RNA sequencing. Conclusions The RNA-sequencing analysis indicated that H2O2 treatment promoted the early ripening of Kyoho berry by affecting the expression levels of HSP, GDSL, XTH, and CAB1 and- photosynthesis- pathways. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-020-07180-y.
Collapse
Affiliation(s)
- Da-Long Guo
- College of Forestry, Henan University of Science and Technology, Luoyang, 471023, Henan Province, China. .,Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang, 471023, Henan Province, China.
| | - Zhen-Guang Wang
- College of Forestry, Henan University of Science and Technology, Luoyang, 471023, Henan Province, China.,Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang, 471023, Henan Province, China
| | - Mao-Song Pei
- College of Forestry, Henan University of Science and Technology, Luoyang, 471023, Henan Province, China.,Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang, 471023, Henan Province, China
| | - Li-Li Guo
- Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang, 471023, Henan Province, China
| | - Yi-He Yu
- College of Forestry, Henan University of Science and Technology, Luoyang, 471023, Henan Province, China.,Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang, 471023, Henan Province, China
| |
Collapse
|
50
|
Li X, Hou Y, Xie X, Li H, Li X, Zhu Y, Zhai L, Zhang C, Bian S. A blueberry MIR156a-SPL12 module coordinates the accumulation of chlorophylls and anthocyanins during fruit ripening. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5976-5989. [PMID: 32686829 DOI: 10.1093/jxb/eraa327] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/14/2020] [Indexed: 05/24/2023]
Abstract
Color change is an important event during fruit maturation in blueberry, usually depending on chlorophyll degradation and anthocyanin accumulation. MicroRNA156 (miR156)-SPL modules are an important group of regulatory hubs involved in the regulation of anthocyanin biosynthesis. However, little is known regarding their roles in blueberry or in chlorophyll metabolism during color change. In this study, a MIR156 gene (VcMIR156a) was experimentally identified in blueberry (Vaccinium corymbosum). Overexpression of VcMIR156a in tomato (Solanum lycopersicum) enhanced anthocyanin biosynthesis and chlorophyll degradation in the stem by altering pigment-associated gene expression. Further investigation indicated that the VcSPL12 transcript could be targeted by miR156, and showed the reverse accumulation patterns during blueberry fruit development and maturation. Noticeably, VcSPL12 was highly expressed at green fruit stages, while VcMIR156a transcripts mainly accumulated at the white fruit stage when expression of VcSPL12 was dramatically decreased, implying that VcMIR156a-VcSPL12 is a key regulatory hub during fruit coloration. Moreover, VcSPL12 decreased the expression of several anthocyanin biosynthetic and regulatory genes, and a yeast two-hybrid assay indicated that VcSPL12 interacted with VcMYBPA1. Intriguingly, expression of VcSPL12 significantly enhanced chlorophyll accumulation and altered the expression of several chlorophyll-associated genes. Additionally, the chloroplast ultrastructure was altered by the expression of VcMIR156a and VcSPL12. These findings provide a novel insight into the functional roles of miR156-SPLs in plants, especially in blueberry fruit coloration.
Collapse
Affiliation(s)
- Xuyan Li
- College of Plant Science, Jilin University, Changchun, Jilin, China
| | - Yanming Hou
- College of Plant Science, Jilin University, Changchun, Jilin, China
| | - Xin Xie
- College of Plant Science, Jilin University, Changchun, Jilin, China
| | - Hongxue Li
- College of Plant Science, Jilin University, Changchun, Jilin, China
| | - Xiaodong Li
- Institute of Botany, the Chinese Academy of Sciences, Beijing, China
| | - Yan Zhu
- Institute of Botany, the Chinese Academy of Sciences, Beijing, China
| | - Lulu Zhai
- College of Plant Science, Jilin University, Changchun, Jilin, China
| | - Chunyu Zhang
- College of Plant Science, Jilin University, Changchun, Jilin, China
| | - Shaomin Bian
- College of Plant Science, Jilin University, Changchun, Jilin, China
| |
Collapse
|