1
|
Wang W, Liu D, Zhang T, Guo K, Liu X, Liu D, Chen L, Yang J, Teng Z, Zou Y, Ma J, Wang Y, Yang X, Guo X, Sun X, Zhang J, Xiao Y, Paterson AH, Zhang Z. Natural variation in GhROPGEF5 contributes to longer and stronger cotton fibers. THE NEW PHYTOLOGIST 2025; 245:1090-1105. [PMID: 39575696 DOI: 10.1111/nph.20286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/03/2024] [Indexed: 01/11/2025]
Abstract
Length and strength are key parameters impacting the quality of textiles that can be produced from cotton fibers, and therefore are important considerations in cotton breeding. Through map-based cloning and function analysis, we demonstrated that GhROPGEF5, encoding a ROP guanine nucleotide exchange factor, was the gene controlling fiber length and strength at qFSA10.1. Evolutionary analysis revealed that a base deletion in the third exon of GhROPGEF5 resulting in superior fiber length and strength was a rare mutation occurring in a tiny percentage of Upland cottons, with reduced fiber yield hindering its spread. GhROPGEF5 interacted with and activated GhROP10. Knockout or mutation of GhROPGEF5 resulted a loss of the ability to activate GhROP10. Knockout of GhROPGEF5 or GhROP10 affected the expression of many downstream genes associated with fiber elongation and secondary wall deposition, prolonged fiber elongation and delayed secondary wall deposition, producing denser fiber helices and increasing fiber length and strength. These results revealed new molecular aspects of fiber development and revealed a rare favorable allele for improving fiber quality in cotton breeding.
Collapse
Affiliation(s)
- Wenwen Wang
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, 400716, China
- Chongqing Key Laboratory of Crop Molecular Improvement, Southwest University, Chongqing, 400716, China
| | - Dexin Liu
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, 400716, China
- Chongqing Key Laboratory of Crop Molecular Improvement, Southwest University, Chongqing, 400716, China
| | - Tingfu Zhang
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, 400716, China
- Chongqing Key Laboratory of Crop Molecular Improvement, Southwest University, Chongqing, 400716, China
| | - Kai Guo
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, 400716, China
- Chongqing Key Laboratory of Crop Molecular Improvement, Southwest University, Chongqing, 400716, China
| | - Xueying Liu
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, 400716, China
- Chongqing Key Laboratory of Crop Molecular Improvement, Southwest University, Chongqing, 400716, China
| | - Dajun Liu
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, 400716, China
- Chongqing Key Laboratory of Crop Molecular Improvement, Southwest University, Chongqing, 400716, China
| | - Lei Chen
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, 400716, China
- Chongqing Key Laboratory of Crop Molecular Improvement, Southwest University, Chongqing, 400716, China
| | - Jinming Yang
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, 400716, China
- Chongqing Key Laboratory of Crop Molecular Improvement, Southwest University, Chongqing, 400716, China
| | - Zhonghua Teng
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, 400716, China
- Chongqing Key Laboratory of Crop Molecular Improvement, Southwest University, Chongqing, 400716, China
| | - Ying Zou
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, 400716, China
- Chongqing Key Laboratory of Crop Molecular Improvement, Southwest University, Chongqing, 400716, China
| | - Junrui Ma
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, 400716, China
- Chongqing Key Laboratory of Crop Molecular Improvement, Southwest University, Chongqing, 400716, China
| | - Yi Wang
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, 400716, China
- Chongqing Key Laboratory of Crop Molecular Improvement, Southwest University, Chongqing, 400716, China
| | - Xinrui Yang
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, 400716, China
- Chongqing Key Laboratory of Crop Molecular Improvement, Southwest University, Chongqing, 400716, China
| | - Xin Guo
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, 400716, China
- Chongqing Key Laboratory of Crop Molecular Improvement, Southwest University, Chongqing, 400716, China
| | - Xiaoting Sun
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, 400716, China
- Chongqing Key Laboratory of Crop Molecular Improvement, Southwest University, Chongqing, 400716, China
| | - Jian Zhang
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, 400716, China
- Chongqing Key Laboratory of Crop Molecular Improvement, Southwest University, Chongqing, 400716, China
| | - Yuehua Xiao
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, 400716, China
- Chongqing Key Laboratory of Crop Molecular Improvement, Southwest University, Chongqing, 400716, China
| | - Andrew H Paterson
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, 400716, China
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA, 30605, USA
| | - Zhengsheng Zhang
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, 400716, China
- Chongqing Key Laboratory of Crop Molecular Improvement, Southwest University, Chongqing, 400716, China
| |
Collapse
|
2
|
Li S, Yang Y, Zhou Z, Zhou X, Lei D, He R, Zhang Y, Zhang J, Lin Y, Wang Y, Li M, He W, Chen Q, Luo Y, Wang X, Tang H, Zhang Y. PbMYB5 transcription factor plays a role in regulating anthocyanin biosynthesis in pear ( Pyrus bretschneideri Rehd) skin. FRONTIERS IN PLANT SCIENCE 2025; 15:1492384. [PMID: 39877736 PMCID: PMC11772430 DOI: 10.3389/fpls.2024.1492384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/10/2024] [Indexed: 01/31/2025]
Abstract
The phenylacetone pathway, which encompasses flavonoids, lignin, and other compounds, is of paramount importance in determining the quality of pear fruit. Nevertheless, the precise regulatory functions of R2R3-MYB transcription factors in the metabolic pathways that regulate pear color changes remain unclear. In this study, we isolated an R2R3-PbMYB5(PbMYB5) transcription factor from 'Red Zaosu' pears and demonstrated that it influenced the expression of several genes, including PbCAD1, PbF5H, PbLAR, PbANR, and PbUFGT. The overexpression of PbMYB5 resulted in a notable elevation in anthocyanin concentration within the pear epidermis. Further research has shown that PbMYB5 is able to bind to PbANS and also has interactions with PbbHLH3 and PbbHLH33.We proposed that PbMYB5 forms a complex with PbbHLH3, PbbHLH33, and PbWD40 to activate PbANS and promote anthocyanin accumulation. This study offers new insights into the regulation of various metabolic pathways that impact fruit coloration.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Haoru Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Yong Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
3
|
Changsheng S, Huijun Z, Fangfang C, Zhongxing G. R2R3 MYB Transcription Factors Involved in Flower Petal Pigmentation via Regulating Anthocyanin Synthesis in Rhododendron simsii. Mol Biotechnol 2025:10.1007/s12033-024-01338-9. [PMID: 39752131 DOI: 10.1007/s12033-024-01338-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 11/26/2024] [Indexed: 01/04/2025]
Abstract
Azaleas (Rhododendron simsii) are popular ornamental woody plants known for their bright colors; however, very limited studies have been reported on the process of flower petal pigmentation. In this study, we found significant differences in the anthocyanin contents of petals from different colored azaleas, and the results of quantitative real-time PCR indicated that the R2R3 MYB genes, RsMYB12, RsMYB90, and RsMYB123, showed significant expression changes during the petal coloration in azalea petals; therefore, we hypothesized that RsMYB12, RsMYB90, and RsMYB123 might involve in the coloring process of azalea petals by regulating anthocyanin synthesis. This work provides insights into the underlying mechanisms of petal pigmentation in R. simsii and provides candidate genes for flower color breeding of azaleas and other ornamental flowers.
Collapse
Affiliation(s)
- Shao Changsheng
- Hangzhou Vocational and Technical College, Hangzhou, 310018, China
| | - Zheng Huijun
- Hangzhou Vocational and Technical College, Hangzhou, 310018, China
| | - Cai Fangfang
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Gong Zhongxing
- Hangzhou Vocational and Technical College, Hangzhou, 310018, China.
| |
Collapse
|
4
|
Song S, Guo W, Guo Y, Chao E, Sun S, Zhao L, Zhao Y, Zhang H. Transcription factor PdMYB118 in poplar regulates lignin deposition and xylem differentiation in addition to anthocyanin synthesis through suppressing the expression of PagKNAT2/6b gene. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 350:112277. [PMID: 39389317 DOI: 10.1016/j.plantsci.2024.112277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/11/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024]
Abstract
R2R3-MYB transcription factors function as the master regulators of the phenylpropanoid pathway in which both lignin and anthocyanin are produced. In poplar, R2R3-MYB transcription factor PdMYB118 positively regulates anthocyanin production to change leaf color. However, the molecular mechanism by which it controls different branches of the phenylpropanoid pathway still remains poorly understood. Here, we reported that in addition to anthocyanin synthesis, lignin deposition and xylem differentiation were regulated by PdMYB118 through inhibiting PagKNAT2/6b gene expression. The transgenic poplar plants overexpressing PdMYB118 accumulated more xylem, lignin and anthocyanin. Transcriptome and reverse transcription quantitative PCR analyses revealed that the expression of PagKNAT2/6b gene which inhibited lignin deposition and xylem differentiation was significantly down-regulated in transgenic poplar plants. Subsequent dual-luciferase reporter and yeast-one-hybrid assays demonstrated that PdMYB118 directly inhibited the transcription of PagKNAT2/6b by binding to the AC elements in its promoter region. Further experiments with transgenic poplar plants overexpressing PagKNAT2/6b demonstrated that overexpression of PagKNAT2/6b in the PdMYB118 overexpression background rescued lignin accumulation and xylem width to the same level of wild type plants. The findings in this work suggest that PdMYB118 is involved in the lignin deposition and xylem differentiation via modulating the expression of PagKNAT2/6b, and the PdMYB118- PagKNAT2/6b model can be used for the genetic breeding of new woody tree with high lignin production.
Collapse
Affiliation(s)
- Shuo Song
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, Shandong 264025, China; The Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in the Universities of Shandong, Ludong University, 186 Hongqizhong Road, Yantai 264025, China.
| | - Wei Guo
- Taishan Academy of Forestry Sciences, Luohanya Road, Taian, Shandong 27100, China.
| | - Yu Guo
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, Shandong 264025, China.
| | - Erkun Chao
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, Shandong 264025, China; The Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in the Universities of Shandong, Ludong University, 186 Hongqizhong Road, Yantai 264025, China.
| | - Sujie Sun
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, Shandong 264025, China; The Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in the Universities of Shandong, Ludong University, 186 Hongqizhong Road, Yantai 264025, China.
| | - Lizi Zhao
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, Shandong 264025, China; The Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in the Universities of Shandong, Ludong University, 186 Hongqizhong Road, Yantai 264025, China; Zhaoyuan Shenghui Agricultural Technology Development Co., Ltd, North of Beiyuanzhuang village, Fushan County, Zhaoyuan, Shandong 265400, China; Yantai Technology Center of Characteristic Plant Gene Editing and Germplasm Innovation, Yantai 2640014, China.
| | - Yanqiu Zhao
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, Shandong 264025, China; The Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in the Universities of Shandong, Ludong University, 186 Hongqizhong Road, Yantai 264025, China; Zhaoyuan Shenghui Agricultural Technology Development Co., Ltd, North of Beiyuanzhuang village, Fushan County, Zhaoyuan, Shandong 265400, China; Yantai Technology Center of Characteristic Plant Gene Editing and Germplasm Innovation, Yantai 2640014, China.
| | - Hongxia Zhang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, Shandong 264025, China; The Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in the Universities of Shandong, Ludong University, 186 Hongqizhong Road, Yantai 264025, China; Shandong Institute of Sericulture, Shandong Academy of Agricultural Sciences, 21 Zhichubei Road, Yantai 2640014, China; Zhaoyuan Shenghui Agricultural Technology Development Co., Ltd, North of Beiyuanzhuang village, Fushan County, Zhaoyuan, Shandong 265400, China; Yantai Technology Center of Characteristic Plant Gene Editing and Germplasm Innovation, Yantai 2640014, China.
| |
Collapse
|
5
|
Lin H, Fu F, Li J, Liu J, Du K, Zhu B, Guo Z, Pan T, She W. Investigation of Effects of Cushioning Packaging on the Physiological and Quality Changes in Chinese Olive Fruits During Cold Chain Transportation. Foods 2024; 13:4133. [PMID: 39767075 PMCID: PMC11675954 DOI: 10.3390/foods13244133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/16/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
To gain a deeper understanding of the mechanisms by which cushioning packaging preserves the quality of Chinese olive fruits during cold chain transportation and extends their shelf life, this study simulated cold chain conditions and investigated the effects of cushioning packaging on the physiology, antioxidant capacity, and secondary metabolites of fruits during a 20-day shelf life. The results indicated that the decay rate in cushioning-packaging-treated fruit was 75% lower than that in the unbuffered packaging fruit at day 20 of shelf life. Simultaneously, cushioning packaging treatment mitigated the damage severity of the cell membrane structure and kept the cell membrane permeability at a low level, which was 15.34% lower than that in the unbuffered packaging fruit at day 20 of shelf life. Additionally, cushioning packaging effectively restrained the increases in malondialdehyde (MDA) content and alleviated the decline in chlorophyll and total flavonoid contents. It kept a balance among reactive oxygen species (ROS), antioxidant levels, and antioxidant enzyme activities, thereby reducing mechanical-damage-induced decay rates in Chinese olive fruits during the shelf life. Furthermore, metabolome analysis of Chinese olives during the shelf life was performed comparing those without buffered packaging to those with buffered packaging. The metabolome analysis found that the flavonoid biosynthetic pathway exhibited a higher accumulation of chrysin, neohesperidin, naringenin chalcone, sakuranetin, quercetin, catechin, and naringenin metabolites in cushion-packaging treatment compared to those without cushioning treatment. Furthermore, within the phenylalanine metabolic pathway, the accumulation of phenylalanine, p-coumaraldehyde, p-coumaric acid, coniferin and caffeoyl quinic acid metabolites was significantly higher in buffered-packaging groups compared to those without buffering. Together, these findings suggest that cushioning packaging can effectively sustain the integrity of cell membranes and enhance the shelf-life quality of Chinese olive fruits by regulating the balance of ROS and mitigating oxidative stress during cold chain transportation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Wenqin She
- College of Horticulture/Institute of Storage, Transportation and Preservation of Horticultural Products, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.L.)
| |
Collapse
|
6
|
Li M, Fu Y, Li J, Shen W, Wang L, Li Z, Zhang S, Liu H, Su X, Zhao J. Why the adventitious roots of poplar are so colorful: RNAseq and metabolomic analysis reveal anthocyanin accumulation in canker pathogens-induced adventitious roots in poplar. PLANTA 2024; 261:19. [PMID: 39694940 DOI: 10.1007/s00425-024-04583-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 11/25/2024] [Indexed: 12/20/2024]
Abstract
MAIN CONCLUSION This study revealed a substrate-level synthesis of pigment cyanidin-3-O-glucoside and the redirection of metabolomic flux in the flavonoid/anthocyanin biosynthesis pathway in poplar adventitious roots (ARs) induced by stem canker pathogens. Recently, we observed a novel allometry on poplar stems, with copious colorful adventitious roots (ARs) induced by fungal canker pathogens. Here, we reveal chemical, physiological, and molecular mechanisms of AR coloration in poplar-pathogens (Valsa sordida/Botrosphaeria dothidea) interaction system using our phloem girdling-inoculation system. Light-induced coloration in ARs: red/rosy under sunlight, and milky white under shading. Chemical and metabolomic analyses indicated that numerous (93 in all 110) and high relative intensities/contents of flavonoids metabolites (mainly including flavonols, flavones, and anthocyanins class) accumulate in red ARs, some flavones and anthocyanins metabolites all contribute to the color of poplar ARs, and cyanidin-3-O-glucoside is the most abundant colorant. Integrated analysis of metabolomic and transcriptomic analysis suggested that sunlight exposure redirected the metabolomic flux from the flavonoid biosynthesis pathway to the flavonols and flavones branch pathways, induced by the upregulation of FLS (flavonol synthase/flavanone 3-hydroxylase) and other structural genes. The anthocyanins metabolomic analysis and the downregulation of the ANS (anthocyanin synthase) gene illustrated a retard of metabolomic flux from leucoanthocyanidins to anthocyanidins. Metabolomic results and the upregulation of the gene BZ1 (Bronze 1, anthocyanin 3-O-glucosyltransferase) illustrated that sunlight triggered a rapid biosynthesis of anthocyanin metabolites in poplar ARs, which based on the substrate level of anthocyanidins. Transcriptomic and RT-qPCR analyses showed that transcriptional factor MYB113, HY5 (Elongated hypocotyl 5), and COP1 (Ring-finger protein CONSTITUTIVE PHOTOMORPHOGENIC1) genes positively regulated the expression of the flavonoid/anthocyanin biosynthesis structural genes (such as the BZ1, FLS and LAR gene) in both sunlight-exposed red ARs and white ARs after light-exposure, suggesting sunlight induces anthocyanins biosynthesis through the interaction between "MBW" complex and COP1-HY5 module. Moreover, one SPL gene (squamosa promoter-binding-like protein gene, target of miR156, and one component of miR156-SPL module) was down-regulated in sunlight-exposed poplar ARs, implying the biosynthesis flavonoid/anthocyanin be regulated at the posttranscriptional level. This study provides a potential AR experimental system for research on flavonoid/anthocyanin biosynthesis in tree species.
Collapse
Affiliation(s)
- Min Li
- State Key Laboratory of Tree Genetics and Breeding, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China
- Comprehensive Experimental Center in Yellow River Delta of Chinese Academy of Forestry, Dongying, Shandong, China
| | - Yuchen Fu
- State Key Laboratory of Tree Genetics and Breeding, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China
- Comprehensive Experimental Center in Yellow River Delta of Chinese Academy of Forestry, Dongying, Shandong, China
| | - Jinxin Li
- State Key Laboratory of Tree Genetics and Breeding, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China
- Comprehensive Experimental Center in Yellow River Delta of Chinese Academy of Forestry, Dongying, Shandong, China
| | - Wanna Shen
- State Key Laboratory of Tree Genetics and Breeding, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China
- Comprehensive Experimental Center in Yellow River Delta of Chinese Academy of Forestry, Dongying, Shandong, China
| | - Li Wang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Zheng Li
- State Key Laboratory of Tree Genetics and Breeding, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China
- Comprehensive Experimental Center in Yellow River Delta of Chinese Academy of Forestry, Dongying, Shandong, China
| | - Shiqi Zhang
- State Key Laboratory of Tree Genetics and Breeding, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China
- Comprehensive Experimental Center in Yellow River Delta of Chinese Academy of Forestry, Dongying, Shandong, China
| | - Huixiang Liu
- Shandong Research Center for Forestry Harmful Biological Control Engineering and Technology, College of Plant Protection, Shandong Agricultural University, Taian, China
| | - Xiaohua Su
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Jiaping Zhao
- State Key Laboratory of Tree Genetics and Breeding, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China.
- Comprehensive Experimental Center in Yellow River Delta of Chinese Academy of Forestry, Dongying, Shandong, China.
| |
Collapse
|
7
|
Han C, Dong X, Xing X, Wang Y, Feng X, Sang W, Feng Y, Yu L, Chen M, Hao H, Huang T, Li B, Wu W, Zhou Z, He Y. Gibberellin-Induced Transcription Factor SmMYB71 Negatively Regulates Salvianolic Acid Biosynthesis in Salvia miltiorrhiza. Molecules 2024; 29:5892. [PMID: 39769982 PMCID: PMC11679863 DOI: 10.3390/molecules29245892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/07/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
Salvia miltiorrhiza, the valuable traditional Chinese medicinal plant, has been used in clinics for thousands of years. The water-soluble salvianolic acid compounds are bioactive substances used in treating many diseases. Gibberellins (GAs) are growth-promoting phytohormones that regulate plant growth and development. Previous studies have demonstrated that GAs can promote salvianolic acid accumulation in S. miltiorrhiza; however, the underlying mechanism requires further investigation. Here, we identified a GA-induced R2R3MYB transcription factor (TF), SmMYB71, from a transcriptome library of GA-treated S. miltiorrhiza. SmMYB71 was highly expressed in the root of S. miltiorrhiza and localized to the nucleus. SmMYB71-knockout hairy roots showed higher salvianolic acid accumulation compared to wild lines. Overexpressing SmMYB71 in S. miltiorrhiza hairy roots significantly decreased the content of salvianolic acid by downregulating key salvianolic acid biosynthesis enzymes such as SmRAS and SmCYP98A14. The GCC box in the promoter of SmMYB71 can bind with SmERF115, suggesting that SmMYB71 is regulated by SmERF115 in salvianolic acid biosynthesis. These findings demonstrate a novel regulatory role of SmMYB71 in GA-mediated phenolic acid biosynthesis. With the development of CRISPR/Cas9-based genome editing technology, the SmMYB71 regulation mechanism of salvianolic acid biosynthesis provides a potential target gene for metabolic engineering to increase the quality of S. miltiorrhiza.
Collapse
Affiliation(s)
- Cuicui Han
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (C.H.); (B.L.); (W.W.)
- Navy Special Medical Centre, Second Military Medical University, Shanghai 200433, China
| | - Xingwen Dong
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (C.H.); (B.L.); (W.W.)
| | - Xiaowen Xing
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (C.H.); (B.L.); (W.W.)
| | - Yun Wang
- Biomedical Innovation R&D Center, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Xiaobing Feng
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (C.H.); (B.L.); (W.W.)
| | - Wenjuan Sang
- Navy Special Medical Centre, Second Military Medical University, Shanghai 200433, China
| | - Yifei Feng
- Navy Special Medical Centre, Second Military Medical University, Shanghai 200433, China
| | - Luyao Yu
- Navy Special Medical Centre, Second Military Medical University, Shanghai 200433, China
| | - Mengxuan Chen
- Shanghai Analytical Applications Center, Shimadzu (China) Co., Ltd., Shanghai 200233, China
| | - Hongyuan Hao
- Shanghai Analytical Applications Center, Shimadzu (China) Co., Ltd., Shanghai 200233, China
| | - Taohong Huang
- Shanghai Analytical Applications Center, Shimadzu (China) Co., Ltd., Shanghai 200233, China
| | - Bailin Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (C.H.); (B.L.); (W.W.)
| | - Wenhui Wu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (C.H.); (B.L.); (W.W.)
| | - Zheng Zhou
- Navy Special Medical Centre, Second Military Medical University, Shanghai 200433, China
- National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai 200233, China
| | - Ying He
- Navy Special Medical Centre, Second Military Medical University, Shanghai 200433, China
- National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai 200233, China
| |
Collapse
|
8
|
Li W, Li Y, Zhang B, Ma Q, Hu H, Ding A, Shang L, Zong Z, Zhao W, Chen H, Zhang H, Zhang Z, Yan N. Overexpression of ZlMYB1 and ZlMYB2 increases flavonoid contents and antioxidant capacity and enhances the inhibition of α-glucosidase and tyrosinase activity in rice seeds. Food Chem 2024; 460:140670. [PMID: 39106747 DOI: 10.1016/j.foodchem.2024.140670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/01/2024] [Accepted: 07/25/2024] [Indexed: 08/09/2024]
Abstract
Anthocyanins are natural flavonoids with a high antioxidant power and many associated health benefits, but most rice produce little amounts of these compounds. In this study, 141 MYB transcription factors in 15 chromosomes, including the nucleus-localised ZlMYB1 (Zla03G003370) and ZlMYB2 (Zla15G015220), were discovered in Zizania latifolia. Overexpression of ZlMYB1 or ZlMYB2 in rice seeds induced black pericarps, and flavonoid content, antioxidant capacity, and α-glucosidase and tyrosinase inhibition effects significantly increased compared to those in the control seeds. ZlMYB1 and ZlMYB2 overexpression induced the upregulation of 764 and 279 genes, respectively, and the upregulation of 162 and 157 flavonoids, respectively, linked to a black pericarp phenotype. The expression of flavonoid 3'-hydroxylase and UDP-glycose flavonoid glycosyltransferase, as well as the activities of these enzymes, increased significantly in response to ZlMYB1 or ZlMYB2 overexpression. This study systematically confirmed that the overexpression of ZlMYB1 and ZlMYB2 promotes flavonoid biosynthesis (especially of anthocyanins) in rice.
Collapse
Affiliation(s)
- Wanhong Li
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yali Li
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Bintao Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Qing Ma
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hehe Hu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Anming Ding
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Lianguang Shang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Zhaohui Zong
- Guangdong Tobacco Scientific Research Institute, Shaoguan 512000, China
| | - Weicai Zhao
- Guangdong Tobacco Scientific Research Institute, Shaoguan 512000, China.
| | - Hao Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Hongbo Zhang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Zhongfeng Zhang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Ning Yan
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| |
Collapse
|
9
|
Zhang S, Liu S, Ren Y, Zhang J, Han N, Wang C, Wang D, Li H. The ERF transcription factor ZbERF3 promotes ethylene-induced anthocyanin biosynthesis in Zanthoxylum bungeanum. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 349:112264. [PMID: 39277047 DOI: 10.1016/j.plantsci.2024.112264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/23/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
Ethylene regulates fruit ripening, and in Zanthoxylum bungeanum, fruit color deepened with increasing of ethylene during fruit ripening. However, the molecular mechanism of this physiological process was still unclear. In this study, through the combined analysis of transcriptome and metabolome, it was found that ethylene release was consistent with anthocyanin synthesis, and ethylene response factors (ERFs) were significantly related to anthocyanin biosynthesis during the fruit ripening of Z. bungeanum. Ethylene treatment significantly induced fruit coloration and promoted anthocyanin synthesis and the expression of ZbERF3. Furthermore, Yeast one-hybrid assays and Luciferase reporter assays demonstrated that ZbERF3 directly bound to the promoter of ZbMYB17 and transcriptionally activated its expression. What's more, it was demonstrated that ZbMYB17 directly bound to the promoter of ZbANS, promoting anthocyanin biosynthesis. Overall, this study revealed the mechanism of ERF and MYB synergistically regulating the coloration of Z. bungeanum fruit.
Collapse
Affiliation(s)
- Shuangyu Zhang
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Shen Liu
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Yanshen Ren
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Jie Zhang
- College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Nuan Han
- College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Cheng Wang
- College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Dongmei Wang
- College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Houhua Li
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
10
|
Chai S, Yang J, Zhang X, Shang X, Lang L. Unraveling the Anthocyanin Regulatory Mechanisms of White Mutation in Verbena stricta by Integrative Transcriptome and Metabolome Analysis. Genes (Basel) 2024; 15:1496. [PMID: 39766764 PMCID: PMC11675223 DOI: 10.3390/genes15121496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025] Open
Abstract
Background: Verbena stricta is a perennial herb of the Verbenaceae family, known for its medicinal properties, wide adaptability, and high resistance. Methods: This research investigated the metabolic pathways of flower color change by combining transcriptome and metabolomics analyses. Results: In purple flowers and white variants, a total of 118 differentially accumulated metabolites (DAMs), including 20 anthocyanins, and 7627 differentially expressed genes (DEGs) were found. The downregulation of delphinidin-3-O-galactoside, delphinidin-3-O-glucoside, and delphinidin-3-O-(6″-O-p-coumaroyl) glucoside, along with the absence of petunidin and malvidin derivatives, may explain the loss of pigmentation in the white-flower mutant. Fourteen candidate genes involved in anthocyanin biosynthesis were identified, among which the expression of Flavonoid 3', 5'-hydroxylase (F3'5'H) was significantly downregulated, notably limiting flux through the delphinidin pathway and reducing delphinidin accumulation. This limitation in upstream reactions, coupled with the multi-shunt process in downstream reactions, completely blocked the production of petunidin and malvidin. Conclusions: These findings offer new opinions on the anthocyanin metabolites and key genes responsible for the floral pigmentation in V. stricta. Additionally, the white variant provides a valuable platform for future research into the ornamental flower color of the Verbenaceae family.
Collapse
Affiliation(s)
| | | | | | | | - Lixin Lang
- Institute of Flowers, Liaoning Academy of Agricultural Sciences, Shenyang 110161, China; (S.C.); (J.Y.); (X.Z.); (X.S.)
| |
Collapse
|
11
|
Xu Z, Liu Y, Zhao Y, Song X, Zhu Y, Wang Y, He Y, Li J, Wang Q, Yan F. R2R3-MYB transcription factor GmMYB68 is involved in the accumulation of soybean isoflavones. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109187. [PMID: 39406006 DOI: 10.1016/j.plaphy.2024.109187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/13/2024] [Accepted: 10/07/2024] [Indexed: 11/08/2024]
Abstract
We aimed to investigate the regulatory function of the soybean transcription factor R2R3-MYB (GmMYB68) in isoflavone biosynthesis. Through comprehensive subcellular and chromosomal localization analyses, we found that GmMYB68 was predominantly localized to the nucleus and mapped to chromosome Gm04. Notably, SSR markers near this gene significantly correlated with seed isoflavone content. GmMYB68 overexpression markedly increased isoflavone contents, confirming its positive role in regulating isoflavone synthesis. GmMYB68 also played a crucial role in the response of soybean to abiotic stress. Using RNA-seq and yeast one-hybrid techniques, we discovered an intricate interaction between GmMYB68 and key isoflavone biosynthesis genes GmCHS7 and GmCHS8. These findings provide novel insights into the mechanisms underlying isoflavone biosynthesis. Furthermore, using yeast two-hybrid experiments, we identified proteins interacting with GmMYB68, suggesting roles in the synthesis of physiologically active compounds and abiotic stress response. We not only elucidated the regulatory mechanisms of GmMYB68 in isoflavone biosynthesis and abiotic stress response but also constructed a molecular network encompassing GmMYB68, GmCHS7, and GmCHS8. This network provides a theoretical basis for a better understanding of and strategies for improving soybean isoflavone biosynthesis.
Collapse
Affiliation(s)
- Zibo Xu
- College of Plant Science, Jilin University, Changchun, China
| | - Yajing Liu
- College of Plant Science, Jilin University, Changchun, China
| | - Yuqian Zhao
- College of Plant Science, Jilin University, Changchun, China
| | - Xue Song
- Changchun Culture Square Greening Management Center, Changchun, China
| | - Youcheng Zhu
- College of Plant Science, Jilin University, Changchun, China
| | - Ying Wang
- College of Plant Science, Jilin University, Changchun, China
| | - Yuxuan He
- Institute of Agricultural Quality Standard and Testing Technology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Jingwen Li
- College of Plant Science, Jilin University, Changchun, China
| | - Qingyu Wang
- College of Plant Science, Jilin University, Changchun, China.
| | - Fan Yan
- College of Plant Science, Jilin University, Changchun, China.
| |
Collapse
|
12
|
Sun M, Xiao X, Khan KS, Lyu J, Yu J. Characterization and functions of Myeloblastosis (MYB) transcription factors in cucurbit crops. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 348:112235. [PMID: 39186952 DOI: 10.1016/j.plantsci.2024.112235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/15/2024] [Accepted: 08/18/2024] [Indexed: 08/28/2024]
Abstract
Myeloblastosis (MYB) is one of the largest family of transcription factors (TFs) in plants. It plays a key role in plant life activities, such as metabolic regulation, stress resistant, as well as helpful for plant growth and development. In China, cucurbit is an important and nutrients rich vegetable crop, which have high medicinal and socio-economic values. In this review, we discussed the structure and characterization of MYB TFs and how do regulate flower development, fruit maturity, fruit quality, and flavonoid biosynthesis. Furthermore, we highlight the effect and contribution of MYB TFs in the regulation of biotic and abiotic stress resistance. This comprehensive review will provide a new reference for the more effective application of MYB TF in quality control, stress resistance research and molecular breeding of cucurbit crops.
Collapse
Affiliation(s)
- Mingming Sun
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Xuemei Xiao
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, PR China; State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, PR China.
| | - Khuram Shehzad Khan
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, PR China; College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Jian Lyu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, PR China; State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Jihua Yu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, PR China; State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, PR China.
| |
Collapse
|
13
|
Delen Y, Mural RV, Palali‐Delen S, Xu G, Schnable JC, Dweikat I, Yang J. Dissecting the genetic architecture of sunflower disc diameter using genome-wide association study. PLANT DIRECT 2024; 8:e70010. [PMID: 39385760 PMCID: PMC11464090 DOI: 10.1002/pld3.70010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/31/2024] [Accepted: 09/22/2024] [Indexed: 10/12/2024]
Abstract
Sunflower (Helianthus annuus L.) plays an essential role in meeting the demand for edible oil worldwide. The yield of sunflower seeds encompasses several component traits, including the disc diameter. Over three consecutive years, 2019, 2020, and 2022, we assessed phenotypic variation in disc diameter across a diverse set of sunflower accessions (N = 342) in replicated field trials. Upon aggregating the phenotypic data from multiple years, we estimated the broad sense heritability (H 2) of the disc diameter trait to be 0.88. A subset of N = 274 accessions was genotyped by using the tunable genotyping-by-sequencing (tGBS) method, resulting in 226,779 high-quality SNPs. Using these SNPs and the disc diameter phenotype, we conducted a genome-wide association study (GWAS) employing two statistical approaches: the mixed linear model (MLM) and the fixed and random model circulating probability unification (farmCPU). The MLM and farmCPU GWAS approaches identified 106 and 8 significant SNPs located close to 53 and 21 genes, respectively. The MLM analysis identified two significant peaks: a prominent signal on chromosome 10 and a relatively weaker signal on chromosome 16, both of which were also detected by farmCPU. The genetic loci associated with disc diameter, as well as the related candidate genes, present promising avenues for further functional validation and serve as a basis for sunflower oil yield improvement.
Collapse
Affiliation(s)
- Yavuz Delen
- Department of Agronomy and HorticultureUniversity of Nebraska‐LincolnLincolnNEUSA
| | - Ravi V. Mural
- Department of Agronomy, Horticulture and Plant ScienceSouth Dakota State UniversityBrookingsSDUSA
| | - Semra Palali‐Delen
- Department of Agronomy and HorticultureUniversity of Nebraska‐LincolnLincolnNEUSA
- Center for Plant Science InnovationUniversity of Nebraska‐LincolnLincolnNEUSA
| | - Gen Xu
- Department of Agronomy and HorticultureUniversity of Nebraska‐LincolnLincolnNEUSA
- Center for Plant Science InnovationUniversity of Nebraska‐LincolnLincolnNEUSA
| | - James C. Schnable
- Department of Agronomy and HorticultureUniversity of Nebraska‐LincolnLincolnNEUSA
- Center for Plant Science InnovationUniversity of Nebraska‐LincolnLincolnNEUSA
| | - Ismail Dweikat
- Department of Agronomy and HorticultureUniversity of Nebraska‐LincolnLincolnNEUSA
| | - Jinliang Yang
- Department of Agronomy and HorticultureUniversity of Nebraska‐LincolnLincolnNEUSA
- Center for Plant Science InnovationUniversity of Nebraska‐LincolnLincolnNEUSA
| |
Collapse
|
14
|
Mo R, Zhang N, Qiu C, Huang S, Wei W, Zhang C, Liu D, Lin Q. Refinement and Enhancement of Agrobacterium-Mediated Transient Transformation for Functional Gene Examination in Mulberry ( Morus L.). Genes (Basel) 2024; 15:1277. [PMID: 39457401 PMCID: PMC11507023 DOI: 10.3390/genes15101277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Mulberry (Morus L.), a vital perennial woody plant with significant economic importance, is utilized for silkworm rearing, human consumption and medicinal use. The availability of mulberry's whole-genome sequencing data has underscored the demand for an effective, user-friendly, and high-throughput protocol to facilitate the elucidation of gene functions. Methods and Results: In this investigation, we established a transient transformation approach using Agrobacterium tumefaciens-mediated sonication followed by vacuum infiltration in mulberry tissue culture seedlings. Simultaneously, we optimized the transformation conditions, including mulberry genotypes, A. tumefaciens strain, acetosyringone concentration, bacterial density, sonication time, and days after agroinfiltration. These optimizations aimed to achieve heightened transformation efficiency, employing GFP as a reporter gene to monitor transformation events. The optimized method included the use of an infiltration medium (10 mM MgCl2, 10 mM MES (2-(N-morpholino)ethanesulfonic acid sodium salt), 150 μM acetosyringone, and OD600 0.5 of A. tumefaciens LBA4404) supplemented with the surfactant 0.02% Silwet L-77, with 20 s sonication followed by 20 min vacuum infiltration (0.07 MPa). Among the four mulberry genotypes, 'Taiguo' was the most responsive genotype and produced the highest levels of GFP expression at 7 d after infiltration. Furthermore, the optimized transient transformation approach has been proven to be successfully applicable for transiently overexpressing MaANS and MaDFR in mulberry fruits of 'Taiguo', in vitro, which distinctly enhanced fruit coloring and significantly increased anthocyanin accumulation, respectively. Conclusions: In summary, we devised a dependable, stable and highly efficient transient transformation approach suitable for rapid gene function examination in mulberry leaves and fruits, in vitro.
Collapse
Affiliation(s)
- Rongli Mo
- Guangxi Zhuang Autonomous Region Sericultural Technology Promotion Station, Nanning 530007, China; (R.M.); (N.Z.); (C.Q.); (S.H.); (W.W.); (C.Z.); (D.L.)
- Guangxi Research Academy of Sericultural Science, Nanning 530007, China
- Guangxi Key Laboratory of Sericultural Genetic Improvement and Efficient Breeding, Nanning 530007, China
| | - Na Zhang
- Guangxi Zhuang Autonomous Region Sericultural Technology Promotion Station, Nanning 530007, China; (R.M.); (N.Z.); (C.Q.); (S.H.); (W.W.); (C.Z.); (D.L.)
- Guangxi Research Academy of Sericultural Science, Nanning 530007, China
- Guangxi Key Laboratory of Sericultural Genetic Improvement and Efficient Breeding, Nanning 530007, China
| | - Changyu Qiu
- Guangxi Zhuang Autonomous Region Sericultural Technology Promotion Station, Nanning 530007, China; (R.M.); (N.Z.); (C.Q.); (S.H.); (W.W.); (C.Z.); (D.L.)
- Guangxi Research Academy of Sericultural Science, Nanning 530007, China
- Guangxi Key Laboratory of Sericultural Genetic Improvement and Efficient Breeding, Nanning 530007, China
| | - Sheng Huang
- Guangxi Zhuang Autonomous Region Sericultural Technology Promotion Station, Nanning 530007, China; (R.M.); (N.Z.); (C.Q.); (S.H.); (W.W.); (C.Z.); (D.L.)
- Guangxi Research Academy of Sericultural Science, Nanning 530007, China
- Guangxi Key Laboratory of Sericultural Genetic Improvement and Efficient Breeding, Nanning 530007, China
| | - Wei Wei
- Guangxi Zhuang Autonomous Region Sericultural Technology Promotion Station, Nanning 530007, China; (R.M.); (N.Z.); (C.Q.); (S.H.); (W.W.); (C.Z.); (D.L.)
- Guangxi Research Academy of Sericultural Science, Nanning 530007, China
- Guangxi Key Laboratory of Sericultural Genetic Improvement and Efficient Breeding, Nanning 530007, China
| | - Chaohua Zhang
- Guangxi Zhuang Autonomous Region Sericultural Technology Promotion Station, Nanning 530007, China; (R.M.); (N.Z.); (C.Q.); (S.H.); (W.W.); (C.Z.); (D.L.)
- Guangxi Research Academy of Sericultural Science, Nanning 530007, China
- Guangxi Key Laboratory of Sericultural Genetic Improvement and Efficient Breeding, Nanning 530007, China
| | - Dan Liu
- Guangxi Zhuang Autonomous Region Sericultural Technology Promotion Station, Nanning 530007, China; (R.M.); (N.Z.); (C.Q.); (S.H.); (W.W.); (C.Z.); (D.L.)
- Guangxi Research Academy of Sericultural Science, Nanning 530007, China
- Guangxi Key Laboratory of Sericultural Genetic Improvement and Efficient Breeding, Nanning 530007, China
| | - Qiang Lin
- Guangxi Zhuang Autonomous Region Sericultural Technology Promotion Station, Nanning 530007, China; (R.M.); (N.Z.); (C.Q.); (S.H.); (W.W.); (C.Z.); (D.L.)
- Guangxi Research Academy of Sericultural Science, Nanning 530007, China
- Guangxi Key Laboratory of Sericultural Genetic Improvement and Efficient Breeding, Nanning 530007, China
| |
Collapse
|
15
|
Xu P, Li M, Ma C, Li X, Bai P, Lin A, Wang C, Zhang L, Kuang H, Lian H. Loss-of-function mutation in anthocyanidin reductase activates the anthocyanin synthesis pathway in strawberry. MOLECULAR HORTICULTURE 2024; 4:33. [PMID: 39272174 PMCID: PMC11401314 DOI: 10.1186/s43897-024-00106-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/18/2024] [Indexed: 09/15/2024]
Abstract
Fruit color substantially affects consumer preferences, with darker red strawberries being economically more valuable due to their higher anthocyanin content. However, the molecular basis for the dark red coloration remains unclear. Through screening of an ethyl methanesulfonate mutant library, we identified a rg418 mutant, that demonstrated anthocyanin accumulation during early fruit development stages. Furthermore, the ripening fruits of this mutant had higher anthocyanin content than wild-type (WT) fruits. An analysis of flavonoid content in WT and rg418 mutant fruits revealed substantial changes in metabolic fluxes, with the mutant exhibiting increased levels of anthocyanins and flavonols and decreased levels of proanthocyanidins. Bulked sergeant analysis sequencing indicated that the mutant gene was anthocyanidin reductase (ANR), a key gene in the proanthocyanidin synthesis pathway. Furthermore, transcriptome sequencing revealed the increased expression of MYB105 during the early development stage of mutant fruits, which promoted the expression of UFGT (UDP-glucose flavonoid 3-O-glucosyltransferase), a key gene involved in anthocyanin synthesis, thus substantially enhancing the anthocyanin content in the mutant fruits. Additionally, mutating ANR in a white-fruited strawberry variant (myb10 mutant) resulted in appealing pink-colored fruits, suggesting the diverse roles of ANR in fruit color regulation. Our study provides valuable theoretical insights for improving strawberry fruit color.
Collapse
Affiliation(s)
- Pengbo Xu
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Maobai Li
- Shanghai Agricultural Technology Extension and Service Center, Shanghai, China
| | - Chao Ma
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xinyu Li
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Peng Bai
- Dandong Academy of Agricultural Sciences, Dandong, China
| | - Anqi Lin
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Chong Wang
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Liqing Zhang
- Forestry and Fruit Tree Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Huiyun Kuang
- Shanghai Agricultural Science and Technology Service Center, Shanghai, China
| | - Hongli Lian
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
16
|
Guo Y, Yao L, Chen X, Xu X, Sang YL, Liu LJ. The transcription factor PagLBD4 represses cell differentiation and secondary cell wall biosynthesis in Populus. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108924. [PMID: 38991593 DOI: 10.1016/j.plaphy.2024.108924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/20/2024] [Accepted: 07/07/2024] [Indexed: 07/13/2024]
Abstract
LBD (LATERAL ORGAN BOUNDARIES DOMAIN) transcription factors are key regulators of plant growth and development. In this study, we functionally characterized the PagLBD4 gene in Populus (Populus alba × Populus glandulosa). Overexpression of PagLBD4 (PagLBD4OE) significantly repressed secondary xylem differentiation and secondary cell wall (SCW) deposition, while CRISPR/Cas9-mediated PagLBD4 knockout (PagLBD4KO) significantly increased secondary xylem differentiation and SCW deposition. Consistent with the functional analysis, gene expression analysis revealed that SCW biosynthesis pathways were significantly down-regulated in PagLBD4OE plants but up-regulated in PagLBD4KO plants. We also performed DNA affinity purification followed by sequencing (DAP-seq) to identify genes bound by PagLBD4. Integration of RNA sequencing (RNA-seq) and DAP-seq data identified 263 putative direct target genes (DTGs) of PagLBD4, including important regulatory genes for SCW biosynthesis, such as PagMYB103 and PagIRX12. Together, our results demonstrated that PagLBD4 is a repressor of secondary xylem differentiation and SCW biosynthesis in Populus, which possibly lead to the dramatic growth repression in PagLBD4OE plants.
Collapse
Affiliation(s)
- Ying Guo
- State Forestry and Grassland Administration Key Laboratory of Silviculture in downstream areas of the Yellow River, College of Forestry, Shandong Agricultural University, Taian, 271018, China
| | - Lijuan Yao
- State Forestry and Grassland Administration Key Laboratory of Silviculture in downstream areas of the Yellow River, College of Forestry, Shandong Agricultural University, Taian, 271018, China
| | - Xiaoman Chen
- State Forestry and Grassland Administration Key Laboratory of Silviculture in downstream areas of the Yellow River, College of Forestry, Shandong Agricultural University, Taian, 271018, China
| | - Xiaoqi Xu
- State Forestry and Grassland Administration Key Laboratory of Silviculture in downstream areas of the Yellow River, College of Forestry, Shandong Agricultural University, Taian, 271018, China
| | - Ya Lin Sang
- State Forestry and Grassland Administration Key Laboratory of Silviculture in downstream areas of the Yellow River, College of Forestry, Shandong Agricultural University, Taian, 271018, China.
| | - Li-Jun Liu
- State Forestry and Grassland Administration Key Laboratory of Silviculture in downstream areas of the Yellow River, College of Forestry, Shandong Agricultural University, Taian, 271018, China.
| |
Collapse
|
17
|
Zhang Y, Zhang Z, Ai Y, Zhang H, Chen Y, Ye R, Sun L, Shen H, Cheng Q. CaAOS as a hub gene based on physiological and transcriptomic analyses of cold-resistant and cold-sensitive pepper cultivars. Int J Biol Macromol 2024; 276:133961. [PMID: 39029820 DOI: 10.1016/j.ijbiomac.2024.133961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/28/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
The yield and quality of pepper are considerably influenced by the cold conditions. Herein, we performed morphological, physiological and transcriptomic analyses by using two pepper seedlings, '2379' (cold-resistant) and '2380' (cold-sensitive). Briefly, 60 samples from each cultivar were analyzed at four distinct time points (0, 6, 24 and 48 h) at 5 °C in darkness. The physiological indices and activities of enzymes exhibited marked differences between the two cultivars. Transcriptomic analysis indicated that, compared to the control group, 11,415 DEGs were identified in '2379' and '2380' at 24 h. In the early stage, the number of DEGs in '2379' was 5.68 times higher than that in '2380', potentially explaining the observed differences in tolerance to colds. Processes such as protein targeting to membranes, jasmonic acid (JA)-mediated signalling, cold response and abscisic acid-activated signalling were involved. Subsequently, we identified a hub gene, CaAOS, that is involved in JA biosynthesis, positively influences cold tolerance and is a target of CaMYC2. Variations in the GC-motif of the CaAOS's promoter may influence the expression levels of CaAOS under cold treatment. The result of this study may lead to the development of more effective strategies for enhancing cold tolerance, potentially benefitting pepper breeding in cold regions.
Collapse
Affiliation(s)
- Yingxue Zhang
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Zongpeng Zhang
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Yixin Ai
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Haizhou Zhang
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Yan Chen
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Ruiquan Ye
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Liang Sun
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Huolin Shen
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Qing Cheng
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
18
|
Pang H, Dai X, Yan X, Liu Y, Li Q. C2H2 zinc finger protein PagIDD15A regulates secondary wall thickening and lignin biosynthesis in poplar. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 346:112159. [PMID: 38901779 DOI: 10.1016/j.plantsci.2024.112159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/14/2024] [Accepted: 06/11/2024] [Indexed: 06/22/2024]
Abstract
Wood production is largely determined by the activity of cambial cell proliferation, and the secondary cell wall (SCW) thickening of xylem cells determines the wood property. In this study, we identified an INDETERMINATE DOMAIN (IDD) type C2H2 zinc finger transcription factor PagIDD15A as a regulator of wood formation in Populus alba × Populus glandulosa. Downregulation of PagIDD15A expression by RNA interference (RNAi) inhibited xylem development and xylem cell secondary wall thickening. RNA-seq analysis showed that PagPAL1, PagCCR2 and PagCCoAOMT1 were downregulated in the differentiating xylem of the PagIDD15A-RNAi transgenic plants, showing that PagIDD15A may regulate SCW biosynthesis through inhibiting lignin biosynthesis. The downregulation of PagVND6-B2, PagMYB10 and PagMYC4 and upregulation of PagWRKY12 in the differentiating xylem of RNAi transgenic plants suggest that PagIDD15A may also regulate these transcription factor (TF) genes to affect SCW thickening. RT-qPCR analysis in the phloem-cambium of RNAi transgenic demonstrates that PagIDD15A may regulate the expression of the genes associated with cell proliferation, including, PagSHR (SHORTROOT), PagSCR (SCARECROW), PagCYCD3;1 (CYCLIN D3;1) and PagSMR4 (SIAMESE-RELATED4), to affect the cambial activity. This study provides the knowledge of the IDD-type C2H2 zinc finger protein in regulating wood formation.
Collapse
Affiliation(s)
- Hongying Pang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
| | - Xinren Dai
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
| | - Xiaojing Yan
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
| | - Yingli Liu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China.
| | - Quanzi Li
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China.
| |
Collapse
|
19
|
Li Y, Zhao ZA, Hu J, Lei T, Chen Q, Li J, Yang L, Hu D, Gao S. MeJA-induced hairy roots in Plumbago auriculata L. by RNA-seq profiling and key synthase provided new insights into the sustainable production of plumbagin and saponins. FRONTIERS IN PLANT SCIENCE 2024; 15:1411963. [PMID: 39070915 PMCID: PMC11272555 DOI: 10.3389/fpls.2024.1411963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/04/2024] [Indexed: 07/30/2024]
Abstract
Naturally synthesized secondary metabolites in plants are considered an important source of drugs, food additives, etc. Among them, research on natural plant medicinal components and their synthesis mechanisms has always been of high concern. We identified a novel medicinal floral crop, Plumbago auriculata L., that can be treated with methyl jasmonate (MeJA) for the rapid or sustainable production of natural bioactives from hairy roots. In the study, we globally analyzed the changes in the accumulation of plumbagin and others in the hairy roots of Plumbago auriculata L. hairy roots (PAHR) 15834 in P. auriculata L. based on 100 μmol/L of MeJA treatment by RNA-seq profiling, and we found that there was a significant increase in the accumulation of plumbagin and saponin before 24 h. To explain the principle of co-accumulation, it showed that MeJA induced JA signaling and the shikimic acid pathway, and the methylvaleric acid (MVA) pathway was activated downstream subsequently by the Mfuzz and weighted gene co-expression analysis. Under the shared metabolic pathway, the high expression of PAL3 and HMGR promoted the activity of the "gateway enzymes" phenylalanine ammonia lyase (PAL) and 3-hydroxy-3-methylglutaryl CoA reductase (HMGR), which respectively induced the high expression of key reaction enzyme genes, including chalcone synthase (CHS), isopentenyl diphosphate (IPP), and farnesyl pyrophosphate synthase (FPS), that led to the synthesis of plumbagin and saponin. We speculated that large amounts of ketones and/or aldehydes were formed under the action of these characteristic enzymes, ultimately achieving their co-accumulation through polyketone and high-level sugar and amino acid metabolism. The study results provided a theoretical basis for carrying out the factory refinement and biosynthesis of plumbagin and saponins and also provided new ideas for fully exploiting multifunctional agricultural crops and plants and developing new agricultural by-products.
Collapse
Affiliation(s)
- Yirui Li
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Zi-an Zhao
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Ju Hu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
- College of Biology and Pharmacy, Yulin Normal University, Yulin, China
| | - Ting Lei
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Qibing Chen
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Jiani Li
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Lijuan Yang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Di Hu
- School of Fine Arts and Calligraphy, Sichuan Normal University, Chengdu, China
| | - Suping Gao
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
20
|
Wang B, Xiong C, Peng Z, Luo Z, Wang X, Peng S, Yu Z. Genome-wide analysis of R2R3-MYB transcription factors in poplar and functional validation of PagMYB147 in defense against Melampsora magnusiana. PLANTA 2024; 260:47. [PMID: 38970694 PMCID: PMC11227472 DOI: 10.1007/s00425-024-04458-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 06/03/2024] [Indexed: 07/08/2024]
Abstract
MAIN CONCLUSION Transcription of PagMYB147 was induced in poplar infected by Melampsora magnusiana, and a decline in its expression levels increases the host's susceptibility, whereas its overexpression promotes resistance to rust disease. Poplars are valuable tree species with diverse industrial and silvicultural applications. The R2R3-MYB subfamily of transcription factors plays a crucial role in response to biotic stresses. However, the functional studies on poplar R2R3-MYB genes in resistance to leaf rust disease are still insufficient. We identified 191 putative R2R3-MYB genes in the Populus trichocarpa genome. A phylogenetic analysis grouped poplar R2R3-MYBs and Arabidopsis R2R3-MYBs into 33 subgroups. We detected 12 tandem duplication events and 148 segmental duplication events, with the latter likely being the main contributor to the expansion of poplar R2R3-MYB genes. The promoter regions of these genes contained numerous cis-acting regulatory elements associated with response to stress and phytohormones. Analyses of RNA-Seq data identified a multiple R2R3-MYB genes response to Melampsora magnusiana (Mmag). Among them, PagMYB147 was significantly up-regulated under Mmag inoculation, salicylic acid (SA) and methyl jasmonate (MeJA) treatment, and its encoded product was primarily localized to the cell nucleus. Silencing of PagMYB147 exacerbated the severity of Mmag infection, likely because of decreased reactive oxygen species (ROS) production and phenylalanine ammonia-lyase (PAL) enzyme activity, and up-regulation of genes related to ROS scavenging and down-regulation of genes related to PAL, SA and JA signaling pathway. In contrast, plants overexpressing PagMYB147 showed the opposite ROS accumulation, PAL enzyme activity, SA and JA-related gene expressions, and improved Mmag resistance. Our findings suggest that PagMYB147 acts as a positive regulatory factor, affecting resistance in poplar to Mmag by its involvement in the regulation of ROS homeostasis, SA and JA signaling pathway.
Collapse
Affiliation(s)
- Bin Wang
- College of Forestry, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Chaowei Xiong
- College of Forestry, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Zijia Peng
- College of Forestry, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Zeyu Luo
- College of Forestry, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Xiujuan Wang
- College of Plant Protection, Gansu Agricultural University, Lanzhou, 730070, Gansu, China
| | - Shaobing Peng
- College of Forestry, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Zhongdong Yu
- College of Forestry, Northwest A & F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
21
|
Guang H, Xiaoyang G, Zhian W, Ye W, Peng W, Linfang S, Bingting W, Anhong Z, Fuguang L, Jiahe W. The cotton MYB33 gene is a hub gene regulating the trade-off between plant growth and defense in Verticillium dahliae infection. J Adv Res 2024; 61:1-17. [PMID: 37648022 PMCID: PMC11258673 DOI: 10.1016/j.jare.2023.08.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/16/2023] [Accepted: 08/26/2023] [Indexed: 09/01/2023] Open
Abstract
INTRODUCTION Sessile plants engage in trade-offs between growth and defense capacity in response to fluctuating environmental cues. MYB is an important transcription factor that plays many important roles in controlling plant growth and defense. However, the mechanism behind how it keeps a balance between these two physiological processes is still largely unknown. OBJECTIVES Our work focuses on the dissection of the molecular mechanism by which GhMYB33 regulates plant growth and defense. METHODS The CRISPR/Cas9 technique was used to generate mutants for deciphering GhMYB33 functions. Yeast two-hybrid, luciferase complementary imaging, and co-immunoprecipitation assays were used to prove that proteins interact with each other. We used the electrophoretic mobility shift assay, yeast one-hybrid, and luciferase activity assays to analyze GhMYB33 acting as a promoter. A β-glucuronidase fusion reporter and 5' RNA ligase mediated amplification of cDNA ends analysis showed that ghr-miR319c directedly cleaved the GhMYB33 mRNA. RESULTS Overexpressing miR319c-resistant GhMYB33 (rGhMYB33) promoted plant growth, accompanied by a significant decline in resistance against Verticillium dahliae. Conversely, its knockout mutant, ghmyb33, demonstrated growth restriction and concomitant augmentation of V. dahliae resistance. GhMYB33 was found to couple with the DELLA protein GhGAI1 and bind to the specific cis-elements of GhSPL9 and GhDFR1 promoters, thereby modulating internode elongation and plant resistance in V. dahliae infection. The ghr-miR319c was discovered to target and suppress GhMYB33 expression. The overexpression of ghr-miR319c led to enhanced plant resistance and a simultaneous reduction in plant height. CONCLUSION Our findings demonstrate that GhMYB33 encodes a hub protein and controls the expression of GhSPL9 and GhDFR1, implicating a pivotal role for the miR319c-MYB33 module to regulate the trade-offs between plant growth and defense.
Collapse
Affiliation(s)
- Hu Guang
- National Key Laboratory of Cotton Bio‑breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ge Xiaoyang
- National Key Laboratory of Cotton Bio‑breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Wang Zhian
- Institute of Cotton Research, Shanxi Agricultural University, Yuncheng 044000, China
| | - Wang Ye
- National Key Laboratory of Cotton Bio‑breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Wang Peng
- National Key Laboratory of Cotton Bio‑breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Shi Linfang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wang Bingting
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhang Anhong
- Institute of Cotton Research, Shanxi Agricultural University, Yuncheng 044000, China
| | - Li Fuguang
- National Key Laboratory of Cotton Bio‑breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| | - Wu Jiahe
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
22
|
Liang Y, Weng X, Ling H, Mustafa G, Yang B, Lu N. Transcriptomic Insights into Molecular Response of Butter Lettuce to Different Light Wavelengths. PLANTS (BASEL, SWITZERLAND) 2024; 13:1582. [PMID: 38931014 PMCID: PMC11207648 DOI: 10.3390/plants13121582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/25/2024] [Accepted: 05/01/2024] [Indexed: 06/28/2024]
Abstract
Lettuce is a widely consumed leafy vegetable; it became popular due to its enhanced nutritional content. Recently, lettuce is also regarded as one of the model plants for vegetable production in plant factories. Light and nutrients are essential environmental factors that affect lettuce growth and morphology. To evaluate the impact of light spectra on lettuce, butter lettuce was grown under the light wavelengths of 460, 525, and 660 nm, along with white light as the control. Plant morphology, physiology, nutritional content, and transcriptomic analyses were performed to study the light response mechanisms. The results showed that the leaf fresh weight and length/width were higher when grown at 460 nm and lower when grown at 525 nm compared to the control treatment. When exposed to 460 nm light, the sugar, crude fiber, mineral, and vitamin concentrations were favorably altered; however, these levels decreased when exposed to light with a wavelength of 525 nm. The transcriptomic analysis showed that co-factor and vitamin metabolism- and secondary metabolism-related genes were specifically induced by 460 nm light exposure. Furthermore, the pathway enrichment analysis found that flavonoid biosynthesis- and vitamin B6 metabolism-related genes were significantly upregulated in response to 460 nm light exposure. Additional experiments demonstrated that the vitamin B6 and B2 content was significantly higher in leaves exposed to 460 nm light than those grown under the other conditions. Our findings suggested that the addition of 460 nm light could improve lettuce's biomass and nutritional value and help us to further understand how the light spectrum can be tuned as needed for lettuce production.
Collapse
Affiliation(s)
- Yongqi Liang
- Shanxi Qingmei Biotechnology Company Limited, Baoji 721000, China
| | - Xinying Weng
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310000, China; (X.W.); (H.L.); (B.Y.)
| | - Hao Ling
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310000, China; (X.W.); (H.L.); (B.Y.)
| | - Ghazala Mustafa
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan;
| | - Bingxian Yang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310000, China; (X.W.); (H.L.); (B.Y.)
| | - Na Lu
- Center for Environment, Health and Field Sciences, Chiba University, 6-2-1 Kashiwanoha, Kashiwa 277-0882, Japan
| |
Collapse
|
23
|
Jia LC, Yang ZT, Shang LL, He SZ, Zhang H, Li X, Xin GS. Genome-wide identification and expression analysis of the KNOX family and its diverse roles in response to growth and abiotic tolerance in sweet potato and its two diploid relatives. BMC Genomics 2024; 25:572. [PMID: 38844832 PMCID: PMC11157901 DOI: 10.1186/s12864-024-10470-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 05/29/2024] [Indexed: 06/09/2024] Open
Abstract
KNOXs, a type of homeobox genes that encode atypical homeobox proteins, play an essential role in the regulation of growth and development, hormonal response, and abiotic stress in plants. However, the KNOX gene family has not been explored in sweet potato. In this study, through sequence alignment, genomic structure analysis, and phylogenetic characterization, 17, 12 and 11 KNOXs in sweet potato (I. batatas, 2n = 6x = 90) and its two diploid relatives I. trifida (2n = 2x = 30) and I. triloba (2n = 2x = 30) were identified. The protein physicochemical properties, chromosome localization, phylogenetic relationships, gene structure, protein interaction network, cis-elements of promoters, tissue-specific expression and expression patterns under hormone treatment and abiotic stresses of these 40 KNOX genes were systematically studied. IbKNOX4, -5, and - 6 were highly expressed in the leaves of the high-yield varieties Longshu9 and Xushu18. IbKNOX3 and IbKNOX8 in Class I were upregulated in initial storage roots compared to fibrous roots. IbKNOXs in Class M were specifically expressed in the stem tip and hardly expressed in other tissues. Moreover, IbKNOX2 and - 6, and their homologous genes were induced by PEG/mannitol and NaCl treatments. The results showed that KNOXs were involved in regulating growth and development, hormone crosstalk and abiotic stress responses between sweet potato and its two diploid relatives. This study provides a comparison of these KNOX genes in sweet potato and its two diploid relatives and a theoretical basis for functional studies.
Collapse
Affiliation(s)
- Li-Cong Jia
- Institute of Grain and Oil Crops, Yantai Academy of Agricultural Sciences, Yantai, 265500, China
| | - Zi-Tong Yang
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Li-Li Shang
- Institute of Grain and Oil Crops, Yantai Academy of Agricultural Sciences, Yantai, 265500, China
| | - Shao-Zhen He
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China
- Sanya Institute of China Agricultural University, Hainan, 572025, China
| | - Huan Zhang
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China.
- Sanya Institute of China Agricultural University, Hainan, 572025, China.
| | - Xu Li
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China.
- Sanya Institute of China Agricultural University, Hainan, 572025, China.
| | - Guo-Sheng Xin
- Institute of Grain and Oil Crops, Yantai Academy of Agricultural Sciences, Yantai, 265500, China.
| |
Collapse
|
24
|
Chen X, Fan Y, Guo Y, Li S, Zhang B, Li H, Liu LJ. Blue light photoreceptor cryptochrome 1 promotes wood formation and anthocyanin biosynthesis in Populus. PLANT, CELL & ENVIRONMENT 2024; 47:2044-2057. [PMID: 38392920 DOI: 10.1111/pce.14866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 01/26/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024]
Abstract
Blue light photoreceptor cryptochrome 1 (CRY1) in herbaceous plants plays crucial roles in various developmental processes, including cotyledon expansion, hypocotyl elongation and anthocyanin biosynthesis. However, the function of CRY1 in perennial trees is unclear. In this study, we identified two ortholog genes of CRY1 (PagCRY1a and PagCRY1b) from Populus, which displayed high sequence similarity to Arabidopsis CRY1. Overexpression of PagCRY1 substantially inhibited plant growth and promoted secondary xylem development in Populus, while CRISPR/Cas9-mediated knockout of PagCRY1 enhanced plant growth and delayed secondary xylem development. Moreover, overexpression of PagCRY1 dramatically increased anthocyanin accumulation. The further analysis supported that PagCRY1 functions specifically in response to blue light. Taken together, our results demonstrated that modulating the expression of blue light photoreceptor CRY1 ortholog gene in Populus could significantly influence plant biomass production and the process of wood formation, laying a foundation for further investigating the light-regulated tree growth.
Collapse
Affiliation(s)
- Xiaoman Chen
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Taian, Shandong, China
| | - Yiting Fan
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Taian, Shandong, China
| | - Ying Guo
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Taian, Shandong, China
| | - Shuyi Li
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Taian, Shandong, China
| | - Bo Zhang
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Taian, Shandong, China
| | - Hao Li
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Taian, Shandong, China
| | - Li-Jun Liu
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Taian, Shandong, China
| |
Collapse
|
25
|
Qiao Q, Gao Y, Liu Q. Metabolic and molecular mechanisms of spine color formation in Chinese red chestnut. FRONTIERS IN PLANT SCIENCE 2024; 15:1377899. [PMID: 38835869 PMCID: PMC11148441 DOI: 10.3389/fpls.2024.1377899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 04/11/2024] [Indexed: 06/06/2024]
Abstract
The spines of Chinese red chestnut are red and the depth of their color gradually increases with maturity. To identify the anthocyanin types and synthesis pathways in red chestnut and to identify the key genes regulating the anthocyanin biosynthesis pathway, we obtained and analyzed the transcriptome and anthocyanin metabolism of red chestnut and its control variety with green spines at 3 different periods. GO and KEGG analyses revealed that photosynthesis was more highly enriched in green spines compared with red spines, while processes related to defense and metabolism regulation were more highly enriched in red spines. The analysis showed that the change in spine color promoted photoprotection in red chestnut, especially at the early growth stage, which resulted in the accumulation of differentially expressed genes involved in the defense metabolic pathway. The metabolome results revealed 6 anthocyanins in red spines. Moreover, red spines exhibited high levels of cyanidin, peonidin and pelargonidin and low levels of delphinidin, petunidin and malvidin. Compared with those in the control group, the levels of cyanidin, peonidin, pelargonidin and malvidin in red spines were significantly increased, indicating that the cyanidin and pelargonidin pathways were enriched in the synthesis of anthocyanins in red spines, whereas the delphinidin pathways were inhibited and mostly transformed into malvidin. During the process of flower pigment synthesis, the expression of the CHS, CHI, F3H, CYP75A, CYP75B1, DFR and ANS genes clearly increased, that of CYP73A decreased obviously, and that of PAL, 4CL and LAR both increased and decreased. Notably, the findings revealed that the synthesized anthocyanin can be converted into anthocyanidin or epicatechin. In red spines, the upregulation of BZ1 gene expression increases the corresponding anthocyanidin content, and the upregulation of the ANR gene also promotes the conversion of anthocyanin to epicatechin. The transcription factors involved in color formation included 4 WRKYs.
Collapse
Affiliation(s)
- Qian Qiao
- Shandong Key Laboratory of Fruit Biotechnology Breeding, Shandong Institute of Pomology, Taian, Shandong, China
| | - Yun Gao
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong, China
| | - Qingzhong Liu
- Shandong Key Laboratory of Fruit Biotechnology Breeding, Shandong Institute of Pomology, Taian, Shandong, China
| |
Collapse
|
26
|
Zhu Y, Li L. Wood of trees: Cellular structure, molecular formation, and genetic engineering. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:443-467. [PMID: 38032010 DOI: 10.1111/jipb.13589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/28/2023] [Indexed: 12/01/2023]
Abstract
Wood is an invaluable asset to human society due to its renewable nature, making it suitable for both sustainable energy production and material manufacturing. Additionally, wood derived from forest trees plays a crucial role in sequestering a significant portion of the carbon dioxide fixed during photosynthesis by terrestrial plants. Nevertheless, with the expansion of the global population and ongoing industrialization, forest coverage has been substantially decreased, resulting in significant challenges for wood production and supply. Wood production practices have changed away from natural forests toward plantation forests. Thus, understanding the underlying genetic mechanisms of wood formation is the foundation for developing high-quality, fast-growing plantation trees. Breeding ideal forest trees for wood production using genetic technologies has attracted the interest of many. Tremendous studies have been carried out in recent years on the molecular, genetic, and cell-biological mechanisms of wood formation, and considerable progress and findings have been achieved. These studies and findings indicate enormous possibilities and prospects for tree improvement. This review will outline and assess the cellular and molecular mechanisms of wood formation, as well as studies on genetically improving forest trees, and address future development prospects.
Collapse
Affiliation(s)
- Yingying Zhu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems and College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Laigeng Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
27
|
Das S, Kwon M, Kim JY. Enhancement of specialized metabolites using CRISPR/Cas gene editing technology in medicinal plants. FRONTIERS IN PLANT SCIENCE 2024; 15:1279738. [PMID: 38450402 PMCID: PMC10915232 DOI: 10.3389/fpls.2024.1279738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 02/02/2024] [Indexed: 03/08/2024]
Abstract
Plants are the richest source of specialized metabolites. The specialized metabolites offer a variety of physiological benefits and many adaptive evolutionary advantages and frequently linked to plant defense mechanisms. Medicinal plants are a vital source of nutrition and active pharmaceutical agents. The production of valuable specialized metabolites and bioactive compounds has increased with the improvement of transgenic techniques like gene silencing and gene overexpression. These techniques are beneficial for decreasing production costs and increasing nutritional value. Utilizing biotechnological applications to enhance specialized metabolites in medicinal plants needs characterization and identification of genes within an elucidated pathway. The breakthrough and advancement of CRISPR/Cas-based gene editing in improving the production of specific metabolites in medicinal plants have gained significant importance in contemporary times. This article imparts a comprehensive recapitulation of the latest advancements made in the implementation of CRISPR-gene editing techniques for the purpose of augmenting specific metabolites in medicinal plants. We also provide further insights and perspectives for improving metabolic engineering scenarios in medicinal plants.
Collapse
Affiliation(s)
- Swati Das
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju, Republic of Korea
| | - Moonhyuk Kwon
- Division of Life Science, Anti-aging Bio Cell Factory Regional Leading Research Center (ABC-RLRC), Research Institute of Molecular Alchemy (RIMA), Gyeongsang National University, Jinju, Republic of Korea
| | - Jae-Yean Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju, Republic of Korea
- Nulla Bio R&D Center, Nulla Bio Inc., Jinju, Republic of Korea
| |
Collapse
|
28
|
Jiang S, Guo J, Khan I, Jahan MS, Tang K, Li G, Yang X, Fu M. Comparative Metabolome and Transcriptome Analyses Reveal the Regulatory Mechanism of Purple Leafstalk Production in Taro ( Colocasia esculenta L. Schott). Genes (Basel) 2024; 15:138. [PMID: 38275619 PMCID: PMC10815928 DOI: 10.3390/genes15010138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Taro is a plant in the Araceae family, and its leafstalk possesses significant botanical and culinary value owing to its noteworthy medicinal and nutritional attributes. Leafstalk colour is an essential attribute that significantly influences its desirability and appeal to both breeders and consumers. However, limited information is available about the underlying mechanism responsible for the taro plant's colouration. Thus, the purpose of the current study was to elucidate the information on purple leafstalks in taro through comprehensive metabolome and transcriptome analysis. In total, 187 flavonoids, including 10 anthocyanins, were identified. Among the various compounds analysed, it was observed that the concentrations of five anthocyanins (keracyanin chloride (cyanidin 3-O-rutinoside chloride), cyanidin 3-O-glucoside, tulipanin (delphinidin 3-rutinoside chloride), idaein chloride (cyanidin 3-O-galactoside), and cyanidin chloride) were found to be higher in purple taro leafstalk compared to green taro leafstalk. Furthermore, a total of 3330 differentially expressed genes (DEGs) were identified by transcriptome analysis. Subsequently, the correlation network analysis was performed to investigate the relationship between the expression levels of these differentially expressed genes and the content of anthocyanin. There were 18 DEGs encoding nine enzymes detected as the fundamental structural genes contributing to anthocyanin biosynthesis, along with seven transcription factors (3 MYB and 4 bHLH) that may be promising candidate modulators of the anthocyanin biosynthesis process in purple taro leafstalk. The findings of the current investigation not only provide a comprehensive transcriptional code, but also give information on anthocyanin metabolites as well as beneficial insights into the colour mechanism of purple taro leafstalk.
Collapse
Affiliation(s)
- Shizheng Jiang
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510642, China; (S.J.); (J.G.); (I.K.); (K.T.); (G.L.)
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China;
| | - Juxian Guo
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510642, China; (S.J.); (J.G.); (I.K.); (K.T.); (G.L.)
| | - Imran Khan
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510642, China; (S.J.); (J.G.); (I.K.); (K.T.); (G.L.)
| | - Mohammad Shah Jahan
- Department of Horticulture, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh;
| | - Kang Tang
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510642, China; (S.J.); (J.G.); (I.K.); (K.T.); (G.L.)
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China;
| | - Guihua Li
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510642, China; (S.J.); (J.G.); (I.K.); (K.T.); (G.L.)
| | - Xian Yang
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China;
| | - Mei Fu
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510642, China; (S.J.); (J.G.); (I.K.); (K.T.); (G.L.)
| |
Collapse
|
29
|
Kovalev MA, Gladysh NS, Bogdanova AS, Bolsheva NL, Popchenko MI, Kudryavtseva AV. Editing Metabolism, Sex, and Microbiome: How Can We Help Poplar Resist Pathogens? Int J Mol Sci 2024; 25:1308. [PMID: 38279306 PMCID: PMC10816636 DOI: 10.3390/ijms25021308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/14/2024] [Accepted: 01/19/2024] [Indexed: 01/28/2024] Open
Abstract
Poplar (Populus) is a genus of woody plants of great economic value. Due to the growing economic importance of poplar, there is a need to ensure its stable growth by increasing its resistance to pathogens. Genetic engineering can create organisms with improved traits faster than traditional methods, and with the development of CRISPR/Cas-based genome editing systems, scientists have a new highly effective tool for creating valuable genotypes. In this review, we summarize the latest research data on poplar diseases, the biology of their pathogens and how these plants resist pathogens. In the final section, we propose to plant male or mixed poplar populations; consider the genes of the MLO group, transcription factors of the WRKY and MYB families and defensive proteins BbChit1, LJAMP2, MsrA2 and PtDef as the most promising targets for genetic engineering; and also pay attention to the possibility of microbiome engineering.
Collapse
Affiliation(s)
- Maxim A. Kovalev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia; (M.A.K.); (N.S.G.); (A.S.B.); (N.L.B.); (M.I.P.)
- Department of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Natalya S. Gladysh
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia; (M.A.K.); (N.S.G.); (A.S.B.); (N.L.B.); (M.I.P.)
| | - Alina S. Bogdanova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia; (M.A.K.); (N.S.G.); (A.S.B.); (N.L.B.); (M.I.P.)
- Institute of Agrobiotechnology, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, 127434 Moscow, Russia
| | - Nadezhda L. Bolsheva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia; (M.A.K.); (N.S.G.); (A.S.B.); (N.L.B.); (M.I.P.)
| | - Mikhail I. Popchenko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia; (M.A.K.); (N.S.G.); (A.S.B.); (N.L.B.); (M.I.P.)
| | - Anna V. Kudryavtseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia; (M.A.K.); (N.S.G.); (A.S.B.); (N.L.B.); (M.I.P.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia
| |
Collapse
|
30
|
Zeng HT, Zheng T, Tang Q, Xu H, Chen M. Integrative metabolome and transcriptome analyses reveal the coloration mechanism in Camellia oleifera petals with different color. BMC PLANT BIOLOGY 2024; 24:19. [PMID: 38166635 PMCID: PMC10759395 DOI: 10.1186/s12870-023-04699-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Camellia olelfera petals are colorful, and have high ornamental value. However, the color formation mechanism of C. olelfera petals with different color is still unclear. In our study, WGCNA method was applied to integrate metabolites and transcriptomes to investigate the coloration mechanism of four C. olelfera cultivars with different petal colors. RESULTS Here, a total of 372 flavonoids were identified (including 27 anthocyanins), and 13 anthocyanins were significantly differentially accumulated in C. olelfera petals. Among them, cyanidin-3-O-(6''-O-p-Coumaroyl) glucoside was the main color constituent in pink petals, cyanidin-3-O-glucoside, cyanidin-3-O-galactoside, cyanidin-3-O-rutinoside, and cyanidin-3-O-(6''-O-malonyl) glucoside were the main contributors to candy pink petals, and peonidin-3-O-glucoside was the important color substance responsible for the red petals of C. oleifera. Furthermore, six structural genes (Co4CL1, CoF3H1, CoF3'H, CoANS, CoUGT75C1-4, and CoUGT75C1-5), three MYBs (CoMYB1, CoMYB4, and CoMYB44-3), three bHLHs (CobHLH30, CobHLH 77, and CobHLH 79-1), and two WRKYs (CoWRKY7 and CoWRKY22) could be identified candidate genes related to anthocyanins biosynthesis and accumulation, and lead to the pink and red phenotypes. The regulatory network of differentially accumulated anthocyanins and the anthocyanins related genes in C. olelfera petals were established. CONCLUSIONS These findings elucidate the molecular basis of the coloration mechanisms of pink and red color in C. olelfera petals, and provided valuable target genes for future improvement of petals color in C. olelfera.
Collapse
Affiliation(s)
- Hai-Tao Zeng
- College of Biology Science and Engineering, Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), Shaanxi University of Technology, Shaanxi Province Key Laboratory of Bio-Resources, Hanzhong, 723001, Shaanxi, China
| | - Tao Zheng
- College of Biology Science and Engineering, Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), Shaanxi University of Technology, Shaanxi Province Key Laboratory of Bio-Resources, Hanzhong, 723001, Shaanxi, China.
| | - Qi Tang
- College of Biology Science and Engineering, Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), Shaanxi University of Technology, Shaanxi Province Key Laboratory of Bio-Resources, Hanzhong, 723001, Shaanxi, China
| | - Hao Xu
- College of Biology Science and Engineering, Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), Shaanxi University of Technology, Shaanxi Province Key Laboratory of Bio-Resources, Hanzhong, 723001, Shaanxi, China
| | - Mengjiao Chen
- College of Biology Science and Engineering, Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), Shaanxi University of Technology, Shaanxi Province Key Laboratory of Bio-Resources, Hanzhong, 723001, Shaanxi, China
| |
Collapse
|
31
|
Jia P, Wang Y, Sharif R, Dong QL, Liu Y, Luan HA, Zhang XM, Guo SP, Qi GH. KNOTTED1-like homeobox (KNOX) transcription factors - Hubs in a plethora of networks: A review. Int J Biol Macromol 2023; 253:126878. [PMID: 37703987 DOI: 10.1016/j.ijbiomac.2023.126878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/09/2023] [Accepted: 09/10/2023] [Indexed: 09/15/2023]
Abstract
KNOX (KNOTTED1-like HOMEOBOX) belongs to a class of important homeobox genes, which encode the homeodomain proteins binding to the specific element of target genes, and widely participate in plant development. Advancements in genetics and molecular biology research generate a large amount of information about KNOX genes in model and non-model plants, and their functions in different developmental backgrounds are gradually becoming clear. In this review, we summarize the known and presumed functions of the KNOX gene in plants, focusing on horticultural plants and crops. The classification and structural characteristics, expression characteristics and regulation, interacting protein factors, functions, and mechanisms of KNOX genes are systematically described. Further, the current research gaps and perspectives were discussed. These comprehensive data can provide a reference for the directional improvement of agronomic traits through KNOX gene regulation.
Collapse
Affiliation(s)
- Peng Jia
- College of Forestry, Hebei Agricultural University, Baoding 071000, China.
| | - Yuan Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China
| | - Rahat Sharif
- Department of Horticulture, School of Horticulture and Landscape, Yangzhou University, Yangzhou 225009, China
| | - Qing-Long Dong
- College of Forestry, Hebei Agricultural University, Baoding 071000, China
| | - Yang Liu
- College of Forestry, Hebei Agricultural University, Baoding 071000, China
| | - Hao-An Luan
- College of Forestry, Hebei Agricultural University, Baoding 071000, China
| | - Xue-Mei Zhang
- College of Forestry, Hebei Agricultural University, Baoding 071000, China
| | - Sup-Ping Guo
- College of Forestry, Hebei Agricultural University, Baoding 071000, China
| | - Guo-Hui Qi
- College of Forestry, Hebei Agricultural University, Baoding 071000, China.
| |
Collapse
|
32
|
Zhang S, Wang B, Li Q, Hui W, Yang L, Wang Z, Zhang W, Yue F, Liu N, Li H, Lu F, Zhang K, Zeng Q, Wu AM. CRISPR/Cas9 mutated p-coumaroyl shikimate 3'-hydroxylase 3 gene in Populus tomentosa reveals lignin functioning on supporting tree upright. Int J Biol Macromol 2023; 253:126762. [PMID: 37683750 DOI: 10.1016/j.ijbiomac.2023.126762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/04/2023] [Accepted: 09/04/2023] [Indexed: 09/10/2023]
Abstract
The lignin plays one of the most important roles in plant secondary metabolism. However, it is still unclear how lignin can contribute to the impressive height of wood growth. In this study, C3'H, a rate-limiting enzyme of the lignin pathway, was used as the target gene. C3'H3 was knocked out by CRISPR/Cas9 in Populus tomentosa. Compared with wild-type popular trees, c3'h3 mutants exhibited dwarf phenotypes, collapsed xylem vessels, weakened phloem thickening, decreased hydraulic conductivity and photosynthetic efficiency, and reduced auxin content, except for reduced total lignin content and significantly increased H-subunit lignin. In the c3'h3 mutant, the flavonoid biosynthesis genes CHS, CHI, F3H, DFR, ANR, and LAR were upregulated, and flavonoid metabolite accumulations were detected, indicating that decreasing the lignin biosynthesis pathway enhanced flavonoid metabolic flux. Furthermore, flavonoid metabolites, such as naringenin and hesperetin, were largely increased, while higher hesperetin content suppressed plant cell division. Thus, studying the c3'h3 mutant allows us to deduce that lignin deficiency suppresses tree growth and leads to the dwarf phenotype due to collapsed xylem and thickened phloem, limiting material exchanges and transport.
Collapse
Affiliation(s)
- Sufang Zhang
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China
| | - Bo Wang
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Qian Li
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China
| | - Wenkai Hui
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China
| | - Linjie Yang
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zhihua Wang
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China
| | - Wenjuan Zhang
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China
| | - Fengxia Yue
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Nian Liu
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China
| | - Huiling Li
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China
| | - Fachuang Lu
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China; Department of Biochemistry and Great Lakes Bioenergy Research Center, The Wisconsin Energy Institute, University of Wisconsin, Madison, WI 53726, USA
| | - Kewei Zhang
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Qingyin Zeng
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China.
| | - Ai-Min Wu
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
33
|
Xie W, Hao Z, Zhou J, Fu W, Guo L, Zhang X, Chen B. Integrated transcriptomics and metabolomics reveal specific phenolic and flavonoid accumulation in licorice (Glycyrrhiza uralensis Fisch.) induced by arbuscular mycorrhiza symbiosis under drought stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 205:108173. [PMID: 37984021 DOI: 10.1016/j.plaphy.2023.108173] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/24/2023] [Accepted: 11/06/2023] [Indexed: 11/22/2023]
Abstract
Arbuscular mycorrhizal (AM) symbiosis can strengthen plant defense against abiotic stress, such as drought, through multiple mechanisms; however, the specialized chemical defenses induced by AM symbiosis are largely unknown. In a pot experiment, licorice (Glycyrrhiza uralensis Fisch.) inoculated with and without arbuscular mycorrhizal fungus Rhizophagus irregularis Schenck & Smith were grown under well-watered or water deficit conditions. Transcriptomic and metabolomic analyses were combined to investigate licorice root specialized metabolism induced by AM symbiosis under drought stress. Results showed that mycorrhizal plants had few dead leaves, less biomass reduction, and less differentially expressed genes and metabolite features in response to drought compared with nonmycorrhizal plants. Transcriptomic and metabolomic data revealed that mycorrhizal roots generally accumulated lignin regardless of the water regime; however, the expression of genes involved in lignin biosynthesis was significantly downregulated by drought stress in mycorrhizal plants. By contrast, AM inoculation significantly decreased specialized metabolites accumulation, including phenolics and flavonoids under well-watered conditions, whereas these decreases turned to be nonsignificant under drought stress. Moreover, these specific phenolics and flavonoids showed significant drought-induced accumulation pattern in mycorrhizal roots. These results highlight that accumulation of specific root phenolics and flavonoids may support the drought tolerance of mycorrhizal plants.
Collapse
Affiliation(s)
- Wei Xie
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhipeng Hao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Jun Zhou
- Chrono-Environment UMR6249, CNRS, Université Bourgogne Franche-Comté, F-25000, Besançon, France
| | - Wei Fu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lanping Guo
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xin Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Baodong Chen
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
34
|
Kong L, Song Q, Wei H, Wang Y, Lin M, Sun K, Zhang Y, Yang J, Li C, Luo K. The AP2/ERF transcription factor PtoERF15 confers drought tolerance via JA-mediated signaling in Populus. THE NEW PHYTOLOGIST 2023; 240:1848-1867. [PMID: 37691138 DOI: 10.1111/nph.19251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 08/15/2023] [Indexed: 09/12/2023]
Abstract
Drought stress is one of the major limiting factors for the growth and development of perennial trees. Xylem vessels act as the center of water conduction in woody species, but the underlying mechanism of its development and morphogenesis under water-deficient conditions remains elucidation. Here, we identified and characterized an osmotic stress-induced ETHYLENE RESPONSE FACTOR 15 (PtoERF15) and its target, PtoMYC2b, which was involved in mediating vessel size, density, and cell wall thickness in response to drought in Populus tomentosa. PtoERF15 is preferentially expressed in differentiating xylem of poplar stems. Overexpression of PtoERF15 contributed to stem water potential maintaining, thus promoting drought tolerance. RNA-Seq and biochemical analysis further revealed that PtoERF15 directly regulated PtoMYC2b, encoding a switch of JA signaling pathway. Additionally, our findings verify that three sets of homologous genes from NAC (NAM, ATAF1/2, and CUC2) gene family: PtoSND1-A1/A2, PtoVND7-1/7-2, and PtoNAC118/120, as the targets of PtoMYC2b, are involved in the regulation of vessel morphology in poplar. Collectively, our study provides molecular evidence for the involvement of the PtoERF15-PtoMYC2b transcription cascade in maintaining stem water potential through the regulation of xylem vessel development, ultimately improving drought tolerance in poplar.
Collapse
Affiliation(s)
- Lingfei Kong
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creationin Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, 400715, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Qin Song
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creationin Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, 400715, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Hongbin Wei
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creationin Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, 400715, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Yanhong Wang
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creationin Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, 400715, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Minghui Lin
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creationin Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Kuan Sun
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creationin Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, 400715, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Yuqian Zhang
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creationin Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, 400715, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Jiarui Yang
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creationin Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, 400715, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Chaofeng Li
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creationin Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, 400715, China
- Maize Research Institute, Southwest University, Chongqing, 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, 400715, China
| | - Keming Luo
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creationin Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, 400715, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China
| |
Collapse
|
35
|
Huang Y, Li W, Jiao S, Huang J, Chen B. MdMYB66 Is Associated with Anthocyanin Biosynthesis via the Activation of the MdF3H Promoter in the Fruit Skin of an Apple Bud Mutant. Int J Mol Sci 2023; 24:16871. [PMID: 38069191 PMCID: PMC10706036 DOI: 10.3390/ijms242316871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/24/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
Skin color is an important trait that is mainly determined by the content and composition of anthocyanins in apples. In this study, a new bud mutant (RM) from 'Oregon Spur II' (OS) of Red Delicious apple was obtained to reveal the mechanism underlying red color formation. Results showed that the total anthocyanin content in RM was significantly higher than that in OS with the development of fruit. Through widely-targeted metabolomics, we found that cyanidin-3-O-galactoside was significantly accumulated in the fruit skin of RM. Transcriptome analysis revealed that the structural gene MdF3H and MdMYB66 transcription factor were significantly up-regulated in the mutant. Overexpression of MdMYB66 in apple fruit and apple callus significantly promoted anthocyanin accumulation and significantly increased the expression level of MdMYB66 and structural genes related to anthocyanin synthesis. Y1H and LUC analysis verified that MdMYB66 could specifically bind to the promoter of MdF3H. The results of the double luciferase activity test showed that MdMYB66 activated MdF3H 3.8 times, which led to increased anthocyanin contents. This might explain the phenotype of red color in RM at the early stage. Taken together, these results suggested that MdMYB66 was involved in regulating the anthocyanin metabolic pathways through precise regulation of gene expression. The functional characterization of MdMYB66 provides insight into the biosynthesis and regulation of anthocyanins.
Collapse
Affiliation(s)
- Yaping Huang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (Y.H.); (W.L.); (S.J.); (J.H.)
- Tianshui Institute of Pomology, Tianshui 741002, China
| | - Wenfang Li
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (Y.H.); (W.L.); (S.J.); (J.H.)
| | - Shuzhen Jiao
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (Y.H.); (W.L.); (S.J.); (J.H.)
| | - Juanjuan Huang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (Y.H.); (W.L.); (S.J.); (J.H.)
| | - Baihong Chen
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (Y.H.); (W.L.); (S.J.); (J.H.)
| |
Collapse
|
36
|
Liu X, Zheng R, Radani Y, Gao H, Yue S, Fan W, Tang J, Shi J, Zhu J. Transcriptional deciphering of the metabolic pathways associated with the bioactive ingredients of wolfberry species with different quality characteristics. BMC Genomics 2023; 24:658. [PMID: 37919673 PMCID: PMC10621208 DOI: 10.1186/s12864-023-09755-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 10/19/2023] [Indexed: 11/04/2023] Open
Abstract
BACKGROUND Wolfberry is rich in carotenoids, flavonoids, vitamins, alkaloids, betaines and other bioactive ingredients. For over 2,000 years, wolfberry has been used in China as a medicinal and edible plant resource. Nevertheless, the content of bioactive ingredients varies by cultivars, resulting in uneven quality across wolfberry cultivars and species. To date, research has revealed little about the underlying molecular mechanism of the metabolism of flavonoids, carotenoids, and other bioactive ingredients in wolfberry. RESULTS In this context, the transcriptomes of the Lycium barbarum L. cultivar 'Ningqi No. 1' and Lycium chinense Miller were compared during the fruit maturity stage using the Illumina NovaSeq 6000 sequencing platform, and subsequently, the changes of the gene expression profiles in two types of wolfberries were analysed. In total, 256,228,924 clean reads were obtained, and 8817 differentially expressed genes (DEGs) were identified, then assembled by Basic Local Alignment Search Tool (BLAST) similarity searches and annotated using Gene Ontology (GO), Clusters of Orthologous Groups of proteins (KOG), and the Kyoto Encyclopedia of Genes and Genomes (KEGG). By combining these transcriptome data with data from the PubMed database, 36 DEGs related to the metabolism of bioactive ingredients and implicated in the metabolic pathway of carotenoids, flavonoids, terpenoids, alkaloids, vitamins, etc., were identified. In addition, among the 9 differentially expressed transcription factors, LbAPL, LbPHL11 and LbKAN4 have raised concerns. The protein physicochemical properties, structure prediction and phylogenetic analysis indicated that LbAPL and LbPHL11 may be good candidate genes involved in regulating the flavonoid metabolism pathway in wolfberry. CONCLUSIONS This study provides preliminary evidence for the differences in bioactive ingredient content at the transcription level among different wolfberry species, as well as a research and theoretical basis for the screening, cloning and functional analysis of key genes involved in the metabolism of bioactive ingredients in wolfberry.
Collapse
Affiliation(s)
- Xuexia Liu
- Key Laboratory of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, College of Life Science, Ningxia University, Yinchuan, 750021, China
| | - Rui Zheng
- Key Laboratory of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, College of Life Science, Ningxia University, Yinchuan, 750021, China.
| | - Yasmina Radani
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Han Gao
- Key Laboratory of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, College of Life Science, Ningxia University, Yinchuan, 750021, China
| | - Sijun Yue
- Key Laboratory of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, College of Life Science, Ningxia University, Yinchuan, 750021, China.
| | - Wenqiang Fan
- Key Laboratory of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, College of Life Science, Ningxia University, Yinchuan, 750021, China
| | - Jianning Tang
- Ningxia Wolfberry Industry Development Center, Yinchuan, 750021, China.
| | - Jing Shi
- Key Laboratory of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, College of Life Science, Ningxia University, Yinchuan, 750021, China
| | - Jinzhong Zhu
- Qixin Wolfberry Seedling Professional Cooperatives, Zhongning, 755100, China
| |
Collapse
|
37
|
Zhang S, Yu X, Chen M, Chang C, Zhu J, Zhao H. Comparative Transcriptome and Metabolome Profiling Reveal Mechanisms of Red Leaf Color Fading in Populus × euramericana cv. 'Zhonghuahongye'. PLANTS (BASEL, SWITZERLAND) 2023; 12:3511. [PMID: 37836251 PMCID: PMC10575148 DOI: 10.3390/plants12193511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/03/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023]
Abstract
Anthocyanins are among the flavonoids that serve as the principal pigments affecting the color of plants. During leaf growth, the leaf color of 'Zhonghuahongye' gradually changes from copper-brown to yellow-green. At present, the mechanism of color change at different stages has not yet been discovered. To find this, we compared the color phenotype, metabolome, and transcriptome of the three leaf stages. The results showed that the anthocyanin content of leaves decreased by 62.5% and the chlorophyll content increased by 204.35%, 69.23%, 155.56% and 60%, respectively. Differential metabolites and genes were enriched in the pathway related to the synthesis of 'Zhonghuahongye' flavonoids and anthocyanins and to the biosynthesis of secondary metabolites. Furthermore, 273 flavonoid metabolites were detected, with a total of eight classes. DFR, FLS and ANS downstream of anthocyanin synthesis may be the key structural genes in reducing anthocyanin synthesis and accumulation in the green leaf of 'Zhonghuahongye'. The results of multi-omics analysis showed that the formation of color was primarily affected by anthocyanin regulation and its related synthesis-affected genes. This study preliminarily analyzed the green regression gene and metabolic changes in 'Zhonghuahongye' red leaves and constitutes a reference for the molecular breeding of 'Zhonghuahongye' red leaves.
Collapse
Affiliation(s)
- Shaowei Zhang
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, 3 Weiwu Road, Zhengzhou 450003, China;
- College of Rural Revitalization, The Open University of Henan, 36 Longzi Lake North Road, Zhengzhou 450046, China
| | - Xinran Yu
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, 3 Weiwu Road, Zhengzhou 450003, China;
| | - Mengjiao Chen
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, 682 Guangshan 1st Road, Guangzhou 510520, China;
| | - Cuifang Chang
- The College of Landscape Architecture and the Arts, Henan Agricultural University, 63 Agricultural Road, Zhengzhou 450002, China;
| | - Jingle Zhu
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, 3 Weiwu Road, Zhengzhou 450003, China;
| | - Han Zhao
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, 3 Weiwu Road, Zhengzhou 450003, China;
| |
Collapse
|
38
|
Zhu Y, Wang Y, Jiang H, Liu W, Zhang S, Hou X, Zhang S, Wang N, Zhang R, Zhang Z, Chen X. Transcriptome analysis reveals that PbMYB61 and PbMYB308 are involved in the regulation of lignin biosynthesis in pear fruit stone cells. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:217-233. [PMID: 37382050 DOI: 10.1111/tpj.16372] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 06/27/2023] [Indexed: 06/30/2023]
Abstract
Pear fruit stone cells have thick walls and are formed by the secondary deposition of lignin in the primary cell wall of thin-walled cells. Their content and size seriously affect fruit characteristics related to edibility. To reveal the regulatory mechanism underlying stone cell formation during pear fruit development and to identify hub genes, we examined the stone cell and lignin contents of 30 'Shannongsu' pear flesh samples and analyzed the transcriptomes of 15 pear flesh samples collected at five developmental stages. On the basis of the RNA-seq data, 35 874 differentially expressed genes were detected. Additionally, two stone cell-related modules were identified according to a WGCNA. A total of 42 lignin-related structural genes were subsequently obtained. Furthermore, nine hub structural genes were identified in the lignin regulatory network. We also identified PbMYB61 and PbMYB308 as candidate transcriptional regulators of stone cell formation after analyzing co-expression networks and phylogenetic relationships. Finally, we experimentally validated and characterized the candidate transcription factors and revealed that PbMYB61 regulates stone cell lignin formation by binding to the AC element in the PbLAC1 promoter to upregulate expression. However, PbMYB308 negatively regulates stone cell lignin synthesis by binding to PbMYB61 to form a dimer that cannot activate PbLAC1 expression. In this study, we explored the lignin synthesis-related functions of MYB family members. The results presented herein are useful for elucidating the complex mechanisms underlying lignin biosynthesis during pear fruit stone cell development.
Collapse
Affiliation(s)
- Yansong Zhu
- College of Horticulture Sciences, Shandong Agricultural University, Taian, Shandong, China
| | - Yicheng Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Huiyan Jiang
- College of Horticulture Sciences, Shandong Agricultural University, Taian, Shandong, China
| | - Wenjun Liu
- College of Horticulture Sciences, Shandong Agricultural University, Taian, Shandong, China
| | - Shuhui Zhang
- College of Horticulture Sciences, Shandong Agricultural University, Taian, Shandong, China
| | - Xukai Hou
- College of Horticulture Sciences, Shandong Agricultural University, Taian, Shandong, China
| | - Susu Zhang
- College of Horticulture Sciences, Shandong Agricultural University, Taian, Shandong, China
| | - Nan Wang
- College of Horticulture Sciences, Shandong Agricultural University, Taian, Shandong, China
| | - Rui Zhang
- College of Agriculture and Bioengineering, Heze University, Heze, Shandong, China
| | - Zongying Zhang
- College of Horticulture Sciences, Shandong Agricultural University, Taian, Shandong, China
| | - Xuesen Chen
- College of Horticulture Sciences, Shandong Agricultural University, Taian, Shandong, China
| |
Collapse
|
39
|
Wang X, Zhang J, Chai M, Han L, Cao X, Zhang J, Kong Y, Fu C, Wang ZY, Mysore KS, Wen J, Zhou C. The role of Class Ⅱ KNOX family in controlling compound leaf patterning in Medicago truncatula. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:2279-2291. [PMID: 37526388 DOI: 10.1111/jipb.13549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/31/2023] [Indexed: 08/02/2023]
Abstract
Compound leaf development requires the coordination of genetic factors, hormones, and other signals. In this study, we explored the functions of Class Ⅱ KNOTTED-like homeobox (KNOXII) genes in the model leguminous plant Medicago truncatula. Phenotypic and genetic analyses suggest that MtKNOX4, 5 are able to repress leaflet formation, while MtKNOX3, 9, 10 are not involved in this developmental process. Further investigations have shown that MtKNOX4 represses the CK signal transduction, which is downstream of MtKNOXⅠ-mediated CK biosynthesis. Additionally, two boundary genes, FUSED COMPOUND LEAF1 (orthologue of Arabidopsis Class M KNOX) and NO APICAL MERISTEM (orthologue of Arabidopsis CUP-SHAPED COTYLEDON), are necessary for MtKNOX4-mediated compound leaf formation. These findings suggest, that among the members of MtKNOXⅡ, MtKNOX4 plays a crucial role in integrating the CK pathway and boundary regulators, providing new insights into the roles of MtKNOXⅡ in regulating the elaboration of compound leaves in M. truncatula.
Collapse
Affiliation(s)
- Xiao Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Juanjuan Zhang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Maofeng Chai
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, 266109, China
| | - Lu Han
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Xiaohua Cao
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Jing Zhang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Yiming Kong
- College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Chunxiang Fu
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Zeng-Yu Wang
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, 266109, China
| | - Kirankumar S Mysore
- Institute of Agricultural Biosciences, Oklahoma State University, Ardmore, 73401, Oklahoma, USA
| | - Jiangqi Wen
- Institute of Agricultural Biosciences, Oklahoma State University, Ardmore, 73401, Oklahoma, USA
| | - Chuanen Zhou
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| |
Collapse
|
40
|
He Y, Hao Q, Chen P, Qin Y, Peng M, Yao S, He X, Yu Q, Agassin RH, Ji K. Cloning of PmMYB6 in Pinus massoniana and an Analysis of Its Function. Int J Mol Sci 2023; 24:13766. [PMID: 37762069 PMCID: PMC10530544 DOI: 10.3390/ijms241813766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/02/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Phenylpropanoids are crucial for the growth and development of plants and their interaction with the environment. As key transcriptional regulators of plant growth and development, MYB-like transcription factors play a vital role in the biosynthesis of phenylpropanoid metabolites. In this study, we functionally characterized PmMYB6, a Pinus massoniana gene that encodes an R2R3-MYB transcription factor. It was confirmed by qPCR that PmMYB6 was highly expressed in the flowers, xylem, and phloem of P. massoniana. By overexpressing PmMYB6 in tobacco and poplar, we found that transgenic plants had enlarged xylem, increased content of lignin and flavonoids, and up-regulated expression of several enzyme genes of the phenylpropane metabolism pathway to different degrees. The above research results indicate that PmMYB6 is involved in the metabolic flux distribution of different branches of the phenylpropane metabolic pathway, and the results may provide clues for the regulation of metabolic fluxes between flavonoids and the lignin biosynthesis pathways of P. massoniana, as well as provide a basis for the molecular breeding of P. massoniana.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Kongshu Ji
- State Key Laboratory of Tree Genetics and Breeding, Key Open Laboratory of Forest Genetics and Gene Engineering of National Forestry & Grassland Administration, Key Laboratory of Forestry Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (Y.H.); (Q.H.); (P.C.); (Y.Q.); (M.P.); (S.Y.); (X.H.); (Q.Y.); (R.H.A.)
| |
Collapse
|
41
|
Wang Y, Zhang H, Zhu S, Shen T, Pan H, Xu M. Association Mapping and Expression Analysis of the Genes Involved in the Wood Formation of Poplar. Int J Mol Sci 2023; 24:12662. [PMID: 37628843 PMCID: PMC10454019 DOI: 10.3390/ijms241612662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/04/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Xylogenesis is a complex and sequential biosynthetic process controlled by polygenes. Deciphering the genetic architecture of this complex quantitative trait could provide valuable information for increasing wood biomass and improving its properties. Here, we performed genomic resequencing of 64 24-year-old trees (64 hybrids of section Aigeiros and their parents) grown in the same field and conducted full-sib family-based association analyses of two growth and six woody traits using GEMMA as a choice of association model selection. We identified 1342 significantly associated single nucleotide polymorphisms (SNPs), 673 located in the region upstream and downstream of 565 protein-encoding genes. The transcriptional regulation network of secondary cell wall (SCW) biosynthesis was further constructed based on the published data of poplar miRNA, transcriptome, and degradome. These provided a certain scientific basis for the in-depth understanding of the mechanism of poplar timber formation and the molecular-assisted breeding in the future.
Collapse
Affiliation(s)
| | | | | | | | | | - Meng Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, Satae Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing 210037, China; (Y.W.); (H.Z.); (S.Z.); (T.S.); (H.P.)
| |
Collapse
|
42
|
Zhang L, Wang Y, Yue M, Jiang L, Zhang N, Luo Y, Chen Q, Zhang Y, Wang Y, Li M, Zhang Y, Lin Y, Tang H. FaMYB5 Interacts with FaBBX24 to Regulate Anthocyanin and Proanthocyanidin Biosynthesis in Strawberry ( Fragaria × ananassa). Int J Mol Sci 2023; 24:12185. [PMID: 37569565 PMCID: PMC10418308 DOI: 10.3390/ijms241512185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
MYB and BBX transcription factors play important roles in flavonoid biosynthesis. Here, we obtained transgenic woodland strawberry with stable overexpression of FaMYB5, demonstrating that FaMYB5 can increase anthocyanin and proanthocyanidin content in roots, stems and leaves of woodland strawberry. In addition, bimolecular fluorescence complementation assays and yeast two-hybridization demonstrated that the N-terminal (1-99aa) of FaBBX24 interacts with FaMYB5. Transient co-expression of FaBBX24 and FaMYB5 in cultivated strawberry 'Xiaobai' showed that co-expression strongly promoted the expression of F3'H, 4CL-2, TT12, AHA10 and ANR and then increased the content of anthocyanin and proanthocyanidin in strawberry fruits. We also determined that FaBBX24 is also a positive regulator of anthocyanin and proanthocyanidin biosynthesis in strawberry. The results reveal a novel mechanism by which the FaMYB5-FaBBX24 module collaboratively regulates anthocyanin and proanthocyanidin in strawberry fruit.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Haoru Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (L.Z.); (Y.W.); (M.Y.); (L.J.); (N.Z.); (Y.L.); (Q.C.); (Y.Z.); (Y.W.); (M.L.); (Y.Z.); (Y.L.)
| |
Collapse
|
43
|
Jiang L, Gao Y, Han L, Zhang W, Fan P. Designing plant flavonoids: harnessing transcriptional regulation and enzyme variation to enhance yield and diversity. FRONTIERS IN PLANT SCIENCE 2023; 14:1220062. [PMID: 37575923 PMCID: PMC10420081 DOI: 10.3389/fpls.2023.1220062] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/05/2023] [Indexed: 08/15/2023]
Abstract
Plant synthetic biology has emerged as a powerful and promising approach to enhance the production of value-added metabolites in plants. Flavonoids, a class of plant secondary metabolites, offer numerous health benefits and have attracted attention for their potential use in plant-based products. However, achieving high yields of specific flavonoids remains challenging due to the complex and diverse metabolic pathways involved in their biosynthesis. In recent years, synthetic biology approaches leveraging transcription factors and enzyme diversity have demonstrated promise in enhancing flavonoid yields and expanding their production repertoire. This review delves into the latest research progress in flavonoid metabolic engineering, encompassing the identification and manipulation of transcription factors and enzymes involved in flavonoid biosynthesis, as well as the deployment of synthetic biology tools for designing metabolic pathways. This review underscores the importance of employing carefully-selected transcription factors to boost plant flavonoid production and harnessing enzyme promiscuity to broaden flavonoid diversity or streamline the biosynthetic steps required for effective metabolic engineering. By harnessing the power of synthetic biology and a deeper understanding of flavonoid biosynthesis, future researchers can potentially transform the landscape of plant-based product development across the food and beverage, pharmaceutical, and cosmetic industries, ultimately benefiting consumers worldwide.
Collapse
Affiliation(s)
- Lina Jiang
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Yifei Gao
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Leiqin Han
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Wenxuan Zhang
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Pengxiang Fan
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
- Key Laboratory of Horticultural Plants Growth and Development, Agricultural Ministry of China, Hangzhou, China
| |
Collapse
|
44
|
Zhao X, Jiang X, Li Z, Song Q, Xu C, Luo K. Jasmonic acid regulates lignin deposition in poplar through JAZ5-MYB/NAC interaction. FRONTIERS IN PLANT SCIENCE 2023; 14:1232880. [PMID: 37546258 PMCID: PMC10401599 DOI: 10.3389/fpls.2023.1232880] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/10/2023] [Indexed: 08/08/2023]
Abstract
Jasmonic acid (JA) is a phytohormone involved in plant defense, growth, and development, etc. However, the regulatory mechanisms underlying JA-mediated lignin deposition and secondary cell wall (SCW) formation remain poorly understood. In this study, we found that JA can inhibit lignin deposition and SCW thickening in poplar trees through exogenous MeJA treatment and observation of the phenotypes of a JA synthesis mutant, opdat1. Hence, we identified a JA signal inhibitor PtoJAZ5, belonging to the TIFY gene family, which is involved in the regulation of secondary vascular development of Populus tomentosa. RT-qPCR and GUS staining revealed that PtoJAZ5 was highly expressed in poplar stems, particularly in developing xylem. Overexpression of PtoJAZ5 inhibited SCW thickening and down-regulated the expression of SCW biosynthesis-related genes. Further biochemical analysis showed that PtoJAZ5 interacted with multiple SCW switches NAC/MYB transcription factors, including MYB3 and WND6A, through yeast two-hybrid and bimolecular fluorescent complementation experiments. Transcriptional activation assays demonstrated that MYB3-PtoJAZ5 and WND6A-PtoJAZ5 complexes regulated the expression of lignin synthetic genes. Our results suggest that PtoJAZ5 plays a negative role in JA-induced lignin deposition and SCW thickening in poplar and provide new insights into the molecular mechanisms underlying JA-mediated regulation of SCW formation.
Collapse
Affiliation(s)
- Xin Zhao
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, China
- Lab of Plant Cell Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Xuemei Jiang
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Zeyu Li
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Qin Song
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Changzhen Xu
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Keming Luo
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| |
Collapse
|
45
|
Liu C, Qiao L, Gao Q, Zhang F, Zhang X, Lei J, Ren M, Xiao S, Kuang J, Deng S, Yuan X, Jiang Y, Wang G. Total biflavonoids extraction from Selaginella chaetoloma utilizing ultrasound-assisted deep eutectic solvent: Optimization of conditions, extraction mechanism, and biological activity in vitro. ULTRASONICS SONOCHEMISTRY 2023; 98:106491. [PMID: 37379745 PMCID: PMC10320385 DOI: 10.1016/j.ultsonch.2023.106491] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/01/2023] [Accepted: 06/14/2023] [Indexed: 06/30/2023]
Abstract
In this study, the deep eutectic solvent based ultrasound-assisted extraction (DES-UAE) was investigated for the efficient and environmentally friendly extraction of Selaginella chaetoloma total biflavonoids (SCTB). As an extractant for optimization, tetrapropylaminium bromide-1,4-butanediol (Tpr-But) was employed for the first time. 36 DESs were created, with Tpr-But producing the most effective results. Based on response surface methodology (RSM), the greatest extraction rate of SCTB was determined to be 21.68 ± 0.78 mg/g, the molar ratio of HBD to HBA was 3.70:1, the extraction temperature was 57 °C, and the water content of DES was 22 %. In accordance with Fick's second rule, a kinetic model for the extraction of SCTB by DES-UAE has been derived. With correlation coefficients 0.91, the kinetic model of the extraction process was significantly correlated with the general and exponential equations of kinetics, and some important kinetic parameters such as rate constants, energy of activation and raffinate rate were determined. In addition, molecular dynamics simulations were used to study the extraction mechanisms generated by different solvents. Comparing the effect of several extraction methods on S.chaetoloma using ultrasound-assisted extraction and conventional methods, together with SEM examination, revealed that DES-UAE not only saved time but also enhanced SCTB extraction rate by 1.5-3 folds. SCTB demonstrated superior antioxidant activity in three studies in vitro. Furthermore, the extract could suppress the growth of A549, HCT-116, HepG2, and HT-29 cancer cells. Alpha-Glucosidase (AG) inhibition experiment and molecular docking studies suggested that SCTB exhibited strong inhibitory activity against AG and potential hypoglycemic effects. The results of this study indicated that a Tpr-But-based UAE method was suitable for the efficient and environmentally friendly extraction of SCTB, and also shed light on the mechanisms responsible for the increased extraction efficiency, which could aid in the application of S.chaetoloma and provide insight into the extraction mechanism of DES.
Collapse
Affiliation(s)
- Chao Liu
- School of Pharmacy, Zunyi Medical University, Zunyi 563003, Guizhou, China
| | - Lei Qiao
- School of Pharmacy, Zunyi Medical University, Zunyi 563003, Guizhou, China
| | - Qiong Gao
- School of Pharmacy, Zunyi Medical University, Zunyi 563003, Guizhou, China
| | - Feng Zhang
- School of Pharmacy, Zunyi Medical University, Zunyi 563003, Guizhou, China
| | - Xin Zhang
- School of Pharmacy, Zunyi Medical University, Zunyi 563003, Guizhou, China
| | - Jie Lei
- Huabang Shengkai Pharmaceutical Co., Ltd, 400000 Chongqing, China
| | - Mengdie Ren
- School of Pharmacy, Zunyi Medical University, Zunyi 563003, Guizhou, China
| | - Shiji Xiao
- School of Pharmacy, Zunyi Medical University, Zunyi 563003, Guizhou, China
| | - Juxiang Kuang
- School of Pharmacy, Zunyi Medical University, Zunyi 563003, Guizhou, China
| | - Shixing Deng
- School of Pharmacy, Zunyi Medical University, Zunyi 563003, Guizhou, China
| | - Xinglin Yuan
- School of Pharmacy, Zunyi Medical and Pharmaceutical College, Zunyi 563003, Guizhou, China
| | - Yongmei Jiang
- School of Pharmacy, Zunyi Medical University, Zunyi 563003, Guizhou, China.
| | - Gang Wang
- School of Pharmacy, Zunyi Medical University, Zunyi 563003, Guizhou, China.
| |
Collapse
|
46
|
Shu P, Zhang Z, Wu Y, Chen Y, Li K, Deng H, Zhang J, Zhang X, Wang J, Liu Z, Xie Y, Du K, Li M, Bouzayen M, Hong Y, Zhang Y, Liu M. A comprehensive metabolic map reveals major quality regulations in red-flesh kiwifruit (Actinidia chinensis). THE NEW PHYTOLOGIST 2023; 238:2064-2079. [PMID: 36843264 DOI: 10.1111/nph.18840] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 02/12/2023] [Indexed: 05/04/2023]
Abstract
Kiwifruit (Actinidia chinensis) is one of the popular fruits world-wide, and its quality is mainly determined by key metabolites (sugars, flavonoids, and vitamins). Previous works on kiwifruit are mostly done via a single omics approach or involve only limited metabolites. Consequently, the dynamic metabolomes during kiwifruit development and ripening and the underlying regulatory mechanisms are poorly understood. In this study, using high-resolution metabolomic and transcriptomic analyses, we investigated kiwifruit metabolic landscapes at 11 different developmental and ripening stages and revealed a parallel classification of 515 metabolites and their co-expressed genes into 10 distinct metabolic vs gene modules (MM vs GM). Through integrative bioinformatics coupled with functional genomic assays, we constructed a global map and uncovered essential transcriptomic and transcriptional regulatory networks for all major metabolic changes that occurred throughout the kiwifruit growth cycle. Apart from known MM vs GM for metabolites such as soluble sugars, we identified novel transcription factors that regulate the accumulation of procyanidins, vitamin C, and other important metabolites. Our findings thus shed light on the kiwifruit metabolic regulatory network and provide a valuable resource for the designed improvement of kiwifruit quality.
Collapse
Affiliation(s)
- Peng Shu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Zixin Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Yi Wu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Yuan Chen
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Kunyan Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Heng Deng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Jing Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Xin Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Jiayu Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Zhibin Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Yue Xie
- Key Laboratory of Breeding and Utilization of Kiwifruit in Sichuan Province, Sichuan Provincial Academy of Natural Resource Sciences, Chengdu, 610213, Sichuan, China
| | - Kui Du
- Key Laboratory of Breeding and Utilization of Kiwifruit in Sichuan Province, Sichuan Provincial Academy of Natural Resource Sciences, Chengdu, 610213, Sichuan, China
| | - Mingzhang Li
- Key Laboratory of Breeding and Utilization of Kiwifruit in Sichuan Province, Sichuan Provincial Academy of Natural Resource Sciences, Chengdu, 610213, Sichuan, China
| | - Mondher Bouzayen
- GBF Laboratory, Université de Toulouse, INRA, Castanet-Tolosan, 31320, France
| | - Yiguo Hong
- School of Life Sciences, University of Warwick, Warwick, CV4 7AL, UK
- School of Science and the Environment, University of Worcester, Worcester, WR2 6AJ, UK
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yang Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Mingchun Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| |
Collapse
|
47
|
Liu Y, Wang M, Huang Y, Zhu P, Qian G, Zhang Y, Li L. Genome-Wide Identification and Analysis of R2R3-MYB Genes Response to Saline-Alkali Stress in Quinoa. Int J Mol Sci 2023; 24:ijms24119132. [PMID: 37298082 DOI: 10.3390/ijms24119132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
Soil saline-alkalization inhibits plant growth and development and seriously affects crop yields. Over their long-term evolution, plants have formed complex stress response systems to maintain species continuity. R2R3-MYB transcription factors are one of the largest transcription factor families in plants, widely involved in plant growth and development, metabolism, and stress response. Quinoa (Chenopodium quinoa Willd.), as a crop with high nutritional value, is tolerant to various biotic and abiotic stress. In this study, we identified 65 R2R3-MYB genes in quinoa, which are divided into 26 subfamilies. In addition, we analyzed the evolutionary relationships, protein physicochemical properties, conserved domains and motifs, gene structure, and cis-regulatory elements of CqR2R3-MYB family members. To investigate the roles of CqR2R3-MYB transcription factors in abiotic stress response, we performed transcriptome analysis to figure out the expression file of CqR2R3-MYB genes under saline-alkali stress. The results indicate that the expression of the six CqMYB2R genes was altered significantly in quinoa leaves that had undergone saline-alkali stress. Subcellular localization and transcriptional activation activity analysis revealed that CqMYB2R09, CqMYB2R16, CqMYB2R25, and CqMYB2R62, whose Arabidopsis homologues are involved in salt stress response, are localized in the nucleus and exhibit transcriptional activation activity. Our study provides basic information and effective clues for further functional investigation of CqR2R3-MYB transcription factors in quinoa.
Collapse
Affiliation(s)
- Yuqi Liu
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Mingyu Wang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Yongshun Huang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Peng Zhu
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Guangtao Qian
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Yiming Zhang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Lixin Li
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
48
|
Li S, Qin Y, Jing S, Wang D, Zhang Z, Qin Y, Hu G, Zhao J. Metabolome and transcriptome analyses reveal the molecular mechanisms of LcMYB1 regulating anthocyanin accumulation in litchi hairy roots. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 200:107749. [PMID: 37224629 DOI: 10.1016/j.plaphy.2023.107749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/22/2023] [Accepted: 05/08/2023] [Indexed: 05/26/2023]
Abstract
Agrobacterium rhizogenes-mediated hairy root culture offer a promising approach for gene function analysis and production of plant secondary metabolites. Here, we obtained red litchi hairy roots using A. rhizogenes-mediated LcMYB1 transformation. Using high performance liquid chromatography, the main anthocyanins in the red hairy roots were determined to be cyanidin 3-rutinoside and cyanidin 3-glucoside. A total of 164 metabolites were significantly upregulated or downregulated in the red hairy roots, which were mostly involved in flavone and flavonol pathway, and flavonoid pathway. The transcriptome analysis revealed 472 differentially expressed genes (DEGs). Up-regulated genes were considerably enriched in anthocyanin, flavone and flavonol biosynthesis. Integrative metabolite profiling and transcriptome analyses showed that LcF3'H, LcUFGT1, and LcGST4 were key structural genes in anthocyanin biosynthesis. However, the expression of Cinnamyl-alcohol dehydrogenase (CAD) and Peroxidase (POD) leading to the production of lignin were significantly down-regulated, suggesting flavonoids and lignin compete with each other in the phenylpropanoid pathway. A total of 52 DEGs were identified as transcription factors. Correlation analysis showed that 8 transcription factors were positively correlated with LcUFGT1, and LcGST4, involving in anthocyanin biosynthesis. These findings clarify the molecular mechanisms of LcMYB1 regulating anthocyanin accumulation in litchi hairy roots.
Collapse
Affiliation(s)
- Sha Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/ Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Yaqi Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/ Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Shiqi Jing
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/ Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Dan Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/ Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Zhike Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/ Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Yonghua Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/ Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Guibing Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/ Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Jietang Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/ Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
49
|
Zhang B, Dang X, Chen H, Li T, Zhu F, Nagawa S. Ectopic Expression of FvVND4c Promotes Secondary Cell Wall Thickening and Flavonoid Accumulation in Fragaria vesca. Int J Mol Sci 2023; 24:ijms24098110. [PMID: 37175817 PMCID: PMC10179399 DOI: 10.3390/ijms24098110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 04/23/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Secondary cell wall (SCW) thickening has a significant effect on the growth and development of plants, as well as in the resistance to various biotic and abiotic stresses. Lignin accounts for the strength of SCW. It is synthesized through the phenylpropanoid pathway that also leads to flavonoid synthesis. The coupling strategies for lignin and flavonoid syntheses are diverse in plants. How their syntheses are balanced by transcriptional regulation in fleshy fruits is still unclear. The diploid strawberry (Fragaria vesca) is a model for fleshy fruits research due to its small genome and wide scope of genetic transformation. SCW thickening is regulated by a multilevel transcriptional regulatory network wherein vascular-related NAC domains (VNDs) act as key regulators. In this study, we systematically characterized VNDs in Fragaria vesca and explored their functions. The overexpression of FvVND4c in diploid strawberry fruits resulted in SCW thickening and fruit color changes accompanied with the accumulation of lignin and flavonoids. Genes related to these phenotypes were also induced upon FvVND4c overexpression. Among the induced genes, we found FvMYB46 to be a direct downstream regulator of FvVND4c. The overexpression of FvMYB46 resulted in similar phenotypes as FvVND4c, except for the color change. Transcriptomic analyses suggest that both FvVND4c and FvMYB46 act on phenylpropanoid and flavonoid biosynthesis pathways, and induce lignin synthesis for SCW. These results suggest that FvVND4c and FvMYB46 cooperatively regulate SCW thickening and flavonoid accumulation in Fragaria vesca.
Collapse
Affiliation(s)
- Bei Zhang
- College of Horticulture, Fujian Agriculture and Forestry University (FAFU), Fuzhou 350002, China
| | - Xiaofei Dang
- College of Horticulture, Fujian Agriculture and Forestry University (FAFU), Fuzhou 350002, China
| | - Hao Chen
- College of Life Science, Fujian Agriculture and Forestry University (FAFU), Fuzhou 350002, China
| | - Tian Li
- College of Future Technology, Fujian Agriculture and Forestry University (FAFU), Fuzhou 350002, China
| | - Fangjie Zhu
- College of Life Science, Fujian Agriculture and Forestry University (FAFU), Fuzhou 350002, China
- Fujian Agriculture and Forestry University-University of California, Riverside, Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shingo Nagawa
- Fujian Agriculture and Forestry University-University of California, Riverside, Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
50
|
Xu S, Sun M, Yao JL, Liu X, Xue Y, Yang G, Zhu R, Jiang W, Wang R, Xue C, Mao Z, Wu J. Auxin inhibits lignin and cellulose biosynthesis in stone cells of pear fruit via the PbrARF13-PbrNSC-PbrMYB132 transcriptional regulatory cascade. PLANT BIOTECHNOLOGY JOURNAL 2023. [PMID: 37031416 DOI: 10.1111/pbi.14046] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/10/2023] [Accepted: 03/15/2023] [Indexed: 06/19/2023]
Abstract
Stone cells are often present in pear fruit, and they can seriously affect the fruit quality when present in large numbers. The plant growth regulator NAA, a synthetic auxin, is known to play an active role in fruit development regulation. However, the genetic mechanisms of NAA regulation of stone cell formation are still unclear. Here, we demonstrated that exogenous application of 200 μM NAA reduced stone cell content and also significantly decreased the expression level of PbrNSC encoding a transcriptional regulator. PbrNSC was shown to bind to an auxin response factor, PbrARF13. Overexpression of PbrARF13 decreased stone cell content in pear fruit and secondary cell wall (SCW) thickness in transgenic Arabidopsis plants. In contrast, knocking down PbrARF13 expression using virus-induced gene silencing had the opposite effect. PbrARF13 was subsequently shown to inhibit PbrNSC expression by directly binding to its promoter, and further to reduce stone cell content. Furthermore, PbrNSC was identified as a positive regulator of PbrMYB132 through analyses of co-expression network of stone cell formation-related genes. PbrMYB132 activated the expression of gene encoding cellulose synthase (PbrCESA4b/7a/8a) and lignin laccase (PbrLAC5) binding to their promotors. As expected, overexpression or knockdown of PbrMYB132 increased or decreased stone cell content in pear fruit and SCW thickness in Arabidopsis transgenic plants. In conclusion, our study shows that the 'PbrARF13-PbrNSC-PbrMYB132' regulatory cascade mediates the biosynthesis of lignin and cellulose in stone cells of pear fruit in response to auxin signals and also provides new insights into plant SCW formation.
Collapse
Affiliation(s)
- Shaozhuo Xu
- College of Horticulture, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Manyi Sun
- College of Horticulture, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jia-Long Yao
- The New Zealand Institute for Plant and Food Research Ltd, Mt Albert Research Centre, Auckland, New Zealand
| | - Xiuxia Liu
- College of Horticultural Science and Engineering, Shandong Agricultural University, Taian, Shandong, China
| | - Yongsong Xue
- College of Horticulture, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Guangyan Yang
- College of Horticulture, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Rongxiang Zhu
- College of Horticulture, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Weitao Jiang
- College of Horticultural Science and Engineering, Shandong Agricultural University, Taian, Shandong, China
| | - Runze Wang
- College of Horticulture, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Cheng Xue
- College of Horticultural Science and Engineering, Shandong Agricultural University, Taian, Shandong, China
| | - Zhiquan Mao
- College of Horticultural Science and Engineering, Shandong Agricultural University, Taian, Shandong, China
| | - Jun Wu
- College of Horticulture, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|