1
|
Hayes BJ, Mahony TJ, Villiers K, Warburton C, Kemper KE, Dinglasan E, Robinson H, Powell O, Voss-Fels K, Godwin ID, Hickey LT. Potential approaches to create ultimate genotypes in crops and livestock. Nat Genet 2024; 56:2310-2317. [PMID: 39402155 DOI: 10.1038/s41588-024-01942-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 09/09/2024] [Indexed: 11/10/2024]
Abstract
Many thousands and, in some cases, millions of individuals from the major crop and livestock species have been genotyped and phenotyped for the purpose of genomic selection. 'Ultimate genotypes', in which the marker allele haplotypes with the most favorable effects on a target trait or traits in the population are combined together in silico, can be constructed from these datasets. Ultimate genotypes display up to six times the performance of the current best individuals in the population, as demonstrated for net profit in dairy cattle (incorporating a range of economic traits), yield in wheat and 100-seed weight in chickpea. However, current breeding strategies that aim to assemble ultimate genotypes through conventional crossing take many generations. As a hypothetical thought piece, here, we contemplate three future pathways for rapidly achieving ultimate genotypes: accelerated recombination with gene editing, direct editing of whole-genome haplotype sequences and synthetic biology.
Collapse
Affiliation(s)
- Ben J Hayes
- Queensland Alliance for Agriculture and Food Innovation, the University of Queensland, St Lucia, Queensland, Australia.
| | - Timothy J Mahony
- Queensland Alliance for Agriculture and Food Innovation, the University of Queensland, St Lucia, Queensland, Australia
| | - Kira Villiers
- Queensland Alliance for Agriculture and Food Innovation, the University of Queensland, St Lucia, Queensland, Australia
| | - Christie Warburton
- Queensland Alliance for Agriculture and Food Innovation, the University of Queensland, St Lucia, Queensland, Australia
| | - Kathryn E Kemper
- Institute for Molecular Biology, the University of Queensland, St Lucia, Queensland, Australia
| | - Eric Dinglasan
- Queensland Alliance for Agriculture and Food Innovation, the University of Queensland, St Lucia, Queensland, Australia
| | - Hannah Robinson
- Department of Plant Breeding, Hochschule Geisenheim University, Geisenheim, Germany
| | - Owen Powell
- Queensland Alliance for Agriculture and Food Innovation, the University of Queensland, St Lucia, Queensland, Australia
| | - Kai Voss-Fels
- Department of Plant Breeding, Hochschule Geisenheim University, Geisenheim, Germany
| | - Ian D Godwin
- Queensland Alliance for Agriculture and Food Innovation, the University of Queensland, St Lucia, Queensland, Australia
| | - Lee T Hickey
- Queensland Alliance for Agriculture and Food Innovation, the University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
2
|
Schley TR, Zhu T, Geist B, Crabos A, Dietrich D, Alandes RA, Bennett M, Nacry P, Schäffner AR. The Arabidopsis PIP1;1 Aquaporin Represses Lateral Root Development and Nitrate Uptake Under Low Nitrate Availability. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39462913 DOI: 10.1111/pce.15222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 08/23/2024] [Accepted: 10/02/2024] [Indexed: 10/29/2024]
Abstract
Nitrate (NO3 -) deficiency decreases root water uptake and root hydraulic conductance. This adaptive response is correlated with reduced abundance and activity of plasma membrane intrinsic protein (PIP) aquaporins. We therefore screened changes in the root architecture of a complete set of Arabidopsis pip loss-of-function mutants grown under NO3 - deficiency to systematically approach the impact of PIPs under these conditions. NO3 - deprivation led to attenuated responses of specific pip single mutants compared to the strongly altered LR parameters of wild-type plants. In particular, pip1;1 exhibited a lower relative reduction in LR length and LR density, revealing that PIP1;1 represses LR development when NO3 - is scarce. Indeed, PIP1;1 compromises root and shoot NO3 - accumulation during early developmental stages. A fluorescent VENUS-PIP1;1 fusion revealed that PIP1;1 is specifically repressed in the pericycle, endodermis and at the flanks of emerging LRs upon NO3 - deficiency. Thus, LR plasticity and NO3 - uptake are affected by an interactive mechanism involving aquaporins (PIP1;1) and nitrate accumulation during seedling development under NO3 --deficient conditions.
Collapse
Affiliation(s)
- Thayssa Rabelo Schley
- Department of Environmental Sciences, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Ting Zhu
- Department of Environmental Sciences, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Birgit Geist
- Department of Environmental Sciences, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Amandine Crabos
- IPSiM, CNRS, INRAE, Institut Agro, University of Montpellier, Montpellier, France
| | - Daniela Dietrich
- Plant & Crop Sciences, School of Biosciences, University of Nottingham, Nottingham, UK
| | - Regina A Alandes
- Plant & Crop Sciences, School of Biosciences, University of Nottingham, Nottingham, UK
| | - Malcolm Bennett
- Plant & Crop Sciences, School of Biosciences, University of Nottingham, Nottingham, UK
| | - Philippe Nacry
- IPSiM, CNRS, INRAE, Institut Agro, University of Montpellier, Montpellier, France
| | - Anton R Schäffner
- Department of Environmental Sciences, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| |
Collapse
|
3
|
Sunil S, Beeh S, Stöbbe E, Fischer K, Wilhelm F, Meral A, Paris C, Teasdale L, Jiang Z, Zhang L, Urban M, Aguilar Parras E, Nürnberger T, Weigel D, Lozano-Duran R, El Kasmi F. Activation of an atypical plant NLR with an N-terminal deletion initiates cell death at the vacuole. EMBO Rep 2024; 25:4358-4386. [PMID: 39242777 PMCID: PMC11467418 DOI: 10.1038/s44319-024-00240-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 07/26/2024] [Accepted: 08/12/2024] [Indexed: 09/09/2024] Open
Abstract
Plants evolve nucleotide-binding leucine-rich repeat receptors (NLRs) to induce immunity. Activated coiled-coil (CC) domain containing NLRs (CNLs) oligomerize and form apparent cation channels promoting calcium influx and cell death, with the alpha-1 helix of the individual CC domains penetrating the plasma membranes. Some CNLs are characterized by putative N-myristoylation and S-acylation sites in their CC domain, potentially mediating permanent membrane association. Whether activated Potentially Membrane Localized NLRs (PMLs) mediate cell death and calcium influx in a similar way is unknown. We uncovered the cell-death function at the vacuole of an atypical but conserved Arabidopsis PML, PML5, which has a significant deletion in its CCG10/GA domain. Active PML5 oligomers localize in Golgi membranes and the tonoplast, alter vacuolar morphology, and induce cell death, with the short N-terminus being sufficient. Mutant analysis supports a potential role of PMLs in plant immunity. PML5-like deletions are found in several Brassicales paralogs, pointing to the evolutionary importance of this innovation. PML5, with its minimal CC domain, represents the first identified CNL utilizing vacuolar-stored calcium for cell death induction.
Collapse
Affiliation(s)
- Sruthi Sunil
- Centre for Plant Molecular Biology, University of Tübingen, 72076, Tübingen, Germany
| | - Simon Beeh
- Centre for Plant Molecular Biology, University of Tübingen, 72076, Tübingen, Germany
| | - Eva Stöbbe
- Centre for Plant Molecular Biology, University of Tübingen, 72076, Tübingen, Germany
| | - Kathrin Fischer
- Centre for Plant Molecular Biology, University of Tübingen, 72076, Tübingen, Germany
| | - Franziska Wilhelm
- Centre for Plant Molecular Biology, University of Tübingen, 72076, Tübingen, Germany
| | - Aron Meral
- Centre for Plant Molecular Biology, University of Tübingen, 72076, Tübingen, Germany
| | - Celia Paris
- Centre for Plant Molecular Biology, University of Tübingen, 72076, Tübingen, Germany
| | - Luisa Teasdale
- Max Planck Institute for Biology Tübingen, 72076, Tübingen, Germany
| | - Zhihao Jiang
- Centre for Plant Molecular Biology, University of Tübingen, 72076, Tübingen, Germany
| | - Lisha Zhang
- Centre for Plant Molecular Biology, University of Tübingen, 72076, Tübingen, Germany
| | - Moritz Urban
- Centre for Plant Molecular Biology, University of Tübingen, 72076, Tübingen, Germany
| | - Emmanuel Aguilar Parras
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora', Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Depto. Biología Celular, Genética y Fisiología, 29010, Málaga, Spain
| | - Thorsten Nürnberger
- Centre for Plant Molecular Biology, University of Tübingen, 72076, Tübingen, Germany
| | - Detlef Weigel
- Max Planck Institute for Biology Tübingen, 72076, Tübingen, Germany
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, 72076, Tübingen, Germany
| | - Rosa Lozano-Duran
- Centre for Plant Molecular Biology, University of Tübingen, 72076, Tübingen, Germany
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Farid El Kasmi
- Centre for Plant Molecular Biology, University of Tübingen, 72076, Tübingen, Germany.
| |
Collapse
|
4
|
Unger K, Raza SAK, Mayer T, Reichelt M, Stuttmann J, Hielscher A, Wittstock U, Gershenzon J, Agler MT. Glucosinolate structural diversity shapes recruitment of a metabolic network of leaf-associated bacteria. Nat Commun 2024; 15:8496. [PMID: 39353951 PMCID: PMC11445407 DOI: 10.1038/s41467-024-52679-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 09/13/2024] [Indexed: 10/03/2024] Open
Abstract
Host defenses can have broader ecological roles, but how they shape natural microbiome recruitment is poorly understood. Aliphatic glucosinolates (GLSs) are secondary defense metabolites in Brassicaceae plant leaves. Their genetically defined structure shapes interactions with pests in Arabidopsis thaliana leaves, and here we find that it also shapes bacterial recruitment. In model genotype Col-0, GLSs (mostly 4-methylsulfinylbutyl-GLS) have no clear effect on natural leaf bacterial recruitment. In a genotype from a wild population, however, GLSs (mostly allyl-GLS) enrich specific taxa, mostly Comamonadaceae and Oxalobacteraceae. Consistently, Comamonadaceae are also enriched in wild A. thaliana, and Oxalobacteraceae are enriched from wild plants on allyl-GLS as carbon source, but not on 4-methylsulfinylbutyl-GLS. Recruitment differences between GLS structures most likely arise from bacterial myrosinase specificity. Community recruitment is then defined by metabolic cross-feeding among bacteria. The link of genetically defined metabolites to recruitment could lead to new strategies to shape plant microbiome balance.
Collapse
Affiliation(s)
- Kerstin Unger
- Institute for Microbiology, Plant Microbiosis Group, Friedrich Schiller University Jena, Jena, Germany
| | - Syed Ali Komail Raza
- Institute for Microbiology, Plant Microbiosis Group, Friedrich Schiller University Jena, Jena, Germany
| | - Teresa Mayer
- Institute for Microbiology, Plant Microbiosis Group, Friedrich Schiller University Jena, Jena, Germany
- Schülerforschungszentrum Berchtesgaden, Didactics of Life Science, Technical University of Munich, Munich, Germany
| | - Michael Reichelt
- Department of Biochemistry, Max-Planck-Institute for Chemical Ecology, Jena, Germany
| | - Johannes Stuttmann
- CEA, CNRS, BIAM, UMR7265, LEMiRE (Rhizosphère et Interactions sol-plante-microbiote), Aix Marseille University, 13115, Saint-Paul lez Durance, France
| | - Annika Hielscher
- Institute of Pharmaceutical Biology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Ute Wittstock
- Institute of Pharmaceutical Biology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Jonathan Gershenzon
- Department of Biochemistry, Max-Planck-Institute for Chemical Ecology, Jena, Germany
| | - Matthew T Agler
- Institute for Microbiology, Plant Microbiosis Group, Friedrich Schiller University Jena, Jena, Germany.
| |
Collapse
|
5
|
Du Q, Yuan B, Thapa Chhetri G, Wang T, Qi L, Wang H. A transcriptional repressor HVA regulates vascular bundle formation through auxin transport in Arabidopsis stem. THE NEW PHYTOLOGIST 2024; 243:1681-1697. [PMID: 39014537 DOI: 10.1111/nph.19970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/02/2024] [Indexed: 07/18/2024]
Abstract
Vascular bundles transport water and photosynthate to all organs, and increased bundle number contributes to crop lodging resistance. However, the regulation of vascular bundle formation is poorly understood in the Arabidopsis stem. We report a novel semi-dominant mutant with high vascular activity, hva-d, showing increased vascular bundle number and enhanced cambium proliferation in the stem. The activation of a C2H2 zinc finger transcription factor, AT5G27880/HVA, is responsible for the hva-d phenotype. Genetic, biochemical, and fluorescent microscopic analyses were used to dissect the functions of HVA. HVA functions as a repressor and interacts with TOPLESS via the conserved Ethylene-responsive element binding factor-associated Amphiphilic Repression motif. In contrast to the HVA activation line, knockout of HVA function with a CRISPR-Cas9 approach or expression of HVA fused with an activation domain VP16 (HVA-VP16) resulted in fewer vascular bundles. Further, HVA directly regulates the expression of the auxin transport efflux facilitator PIN1, as a result affecting auxin accumulation. Genetics analysis demonstrated that PIN1 is epistatic to HVA in controlling bundle number. This research identifies HVA as a positive regulator of vascular initiation through negatively modulating auxin transport and sheds new light on the mechanism of bundle formation in the stem.
Collapse
Affiliation(s)
- Qian Du
- Department of Plant Science and Landscape Architecture, University of Connecticut, 1376 Storrs Rd, Storrs, CT, 06269, USA
| | - Bingjian Yuan
- Department of Plant Science and Landscape Architecture, University of Connecticut, 1376 Storrs Rd, Storrs, CT, 06269, USA
| | - Gaurav Thapa Chhetri
- Department of Plant Science and Landscape Architecture, University of Connecticut, 1376 Storrs Rd, Storrs, CT, 06269, USA
| | - Tong Wang
- Department of Plant Science and Landscape Architecture, University of Connecticut, 1376 Storrs Rd, Storrs, CT, 06269, USA
| | - Liying Qi
- Department of Plant Science and Landscape Architecture, University of Connecticut, 1376 Storrs Rd, Storrs, CT, 06269, USA
| | - Huanzhong Wang
- Department of Plant Science and Landscape Architecture, University of Connecticut, 1376 Storrs Rd, Storrs, CT, 06269, USA
- Institute for System Genomics, University of Connecticut, Storrs, CT, 06269, USA
| |
Collapse
|
6
|
Freitas-Alves NS, Moreira-Pinto CE, Távora FTPK, Paes-de-Melo B, Arraes FBM, Lourenço-Tessutti IT, Moura SM, Oliveira AC, Morgante CV, Qi Y, Fatima Grossi-de-Sa M. CRISPR/Cas genome editing in soybean: challenges and new insights to overcome existing bottlenecks. J Adv Res 2024:S2090-1232(24)00367-9. [PMID: 39163906 DOI: 10.1016/j.jare.2024.08.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 07/23/2024] [Accepted: 08/16/2024] [Indexed: 08/22/2024] Open
Abstract
BACKGROUND Soybean is a worldwide-cultivated crop due to its applications in the food, feed, and biodiesel industries. Genome editing in soybean began with ZFN and TALEN technologies; however, CRISPR/Cas has emerged and shortly became the preferable approach for soybean genome manipulation since it is more precise, easy to handle, and cost-effective. Recent reports have focused on the conventional Cas9 nuclease, Cas9 nickase (nCas9) derived base editors, and Cas12a (formally Cpf1) as the most commonly used genome editors in soybean. Nonetheless, several challenges in the complex plant genetic engineering pipeline need to be overcome to effectively edit the genome of an elite soybean cultivar. These challenges include (1) optimizing CRISPR cassette design (i.e., gRNA and Cas promoters, gRNA design and testing, number of gRNAs, and binary vector), (2) improving transformation frequency, (3) increasing the editing efficiency ratio of targeted plant cells, and (4) improving soybean crop production. AIM OF REVIEW This review provides an overview of soybean genome editing using CRISPR/Cas technology, discusses current challenges, and highlights theoretical (insights) and practical suggestions to overcome the existing bottlenecks. KEY SCIENTIFIC CONCEPTS OF REVIEW The CRISPR/Cas system was discovered as part of the bacterial innate immune system. It has been used as a biotechnological tool for genome editing and efficiently applied in soybean to unveil gene function, improve agronomic traits such as yield and nutritional grain quality, and enhance biotic and abiotic stress tolerance. To date, the efficiency of gRNAs has been validated using protoplasts and hairy root assays, while stable plant transformation relies on Agrobacterium-mediated and particle bombardment methods. Nevertheless, most steps of the CRISPR/Cas workflow require optimizations to achieve a more effective genome editing in soybean plants.
Collapse
Affiliation(s)
- Nayara Sabrina Freitas-Alves
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil; Bioprocess Engineering and Biotechnology Graduate Program, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | - Clidia E Moreira-Pinto
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasília, DF, Brazil
| | - Fabiano T P K Távora
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasília, DF, Brazil
| | - Bruno Paes-de-Melo
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasília, DF, Brazil
| | - Fabricio B M Arraes
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasília, DF, Brazil
| | - Isabela T Lourenço-Tessutti
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasília, DF, Brazil
| | - Stéfanie M Moura
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasília, DF, Brazil
| | - Antonio C Oliveira
- National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasília, DF, Brazil; Federal University of Pelotas (UFPEL), Pelotas, RS, Brazil
| | - Carolina V Morgante
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasília, DF, Brazil; Embrapa Semi-Arid, Petrolina, PE, Brazil
| | - Yiping Qi
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| | - Maria Fatima Grossi-de-Sa
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil; Bioprocess Engineering and Biotechnology Graduate Program, Federal University of Paraná (UFPR), Curitiba, PR, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasília, DF, Brazil; Catholic University of Brasília, Graduate Program in Genomic Sciences and Biotechnology, Brasília, DF, Brazil; Catholic University Dom Bosco, Graduate Program in Biotechnology, Campo Grande, MS, Brazil.
| |
Collapse
|
7
|
Ma S, An C, Lawson AW, Cao Y, Sun Y, Tan EYJ, Pan J, Jirschitzka J, Kümmel F, Mukhi N, Han Z, Feng S, Wu B, Schulze-Lefert P, Chai J. Oligomerization-mediated autoinhibition and cofactor binding of a plant NLR. Nature 2024; 632:869-876. [PMID: 38866053 PMCID: PMC11338831 DOI: 10.1038/s41586-024-07668-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/04/2024] [Indexed: 06/14/2024]
Abstract
Nucleotide-binding leucine-rich repeat (NLR) proteins play a pivotal role in plant immunity by recognizing pathogen effectors1,2. Maintaining a balanced immune response is crucial, as excessive NLR expression can lead to unintended autoimmunity3,4. Unlike most NLRs, the plant NLR required for cell death 2 (NRC2) belongs to a small NLR group characterized by constitutively high expression without self-activation5. The mechanisms underlying NRC2 autoinhibition and activation are not yet understood. Here we show that Solanum lycopersicum (tomato) NRC2 (SlNRC2) forms dimers and tetramers and higher-order oligomers at elevated concentrations. Cryo-electron microscopy shows an inactive conformation of SlNRC2 in these oligomers. Dimerization and oligomerization not only stabilize the inactive state but also sequester SlNRC2 from assembling into an active form. Mutations at the dimeric or interdimeric interfaces enhance pathogen-induced cell death and immunity in Nicotiana benthamiana. The cryo-electron microscopy structures unexpectedly show inositol hexakisphosphate (IP6) or pentakisphosphate (IP5) bound to the inner surface of the C-terminal leucine-rich repeat domain of SlNRC2, as confirmed by mass spectrometry. Mutations at the inositol phosphate-binding site impair inositol phosphate binding of SlNRC2 and pathogen-induced SlNRC2-mediated cell death in N. benthamiana. Our study indicates a negative regulatory mechanism of NLR activation and suggests inositol phosphates as cofactors of NRCs.
Collapse
Affiliation(s)
- Shoucai Ma
- School of Life Sciences, Westlake University, Institute of Biology, Westlake Institute for Advanced Study, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
- Xianghu Laboratory, Hangzhou, China.
| | - Chunpeng An
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Aaron W Lawson
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Yu Cao
- School of Life Sciences, Westlake University, Institute of Biology, Westlake Institute for Advanced Study, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| | - Yue Sun
- School of Life Sciences, Westlake University, Institute of Biology, Westlake Institute for Advanced Study, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| | - Eddie Yong Jun Tan
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Jinheng Pan
- School of Life Sciences, Westlake University, Institute of Biology, Westlake Institute for Advanced Study, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| | - Jan Jirschitzka
- Institute of Biochemistry, University of Cologne, Cologne, Germany
| | - Florian Kümmel
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Nitika Mukhi
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Zhifu Han
- School of Life Sciences, Westlake University, Institute of Biology, Westlake Institute for Advanced Study, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| | - Shan Feng
- School of Life Sciences, Westlake University, Institute of Biology, Westlake Institute for Advanced Study, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| | - Bin Wu
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Paul Schulze-Lefert
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany.
- Cluster of Excellence on Plant Sciences, Max Planck Institute for Plant Breeding Research, Cologne, Germany.
| | - Jijie Chai
- School of Life Sciences, Westlake University, Institute of Biology, Westlake Institute for Advanced Study, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany.
- Institute of Biochemistry, University of Cologne, Cologne, Germany.
| |
Collapse
|
8
|
Oberhofer G, Johnson ML, Ivy T, Antoshechkin I, Hay BA. Cleave and Rescue gamete killers create conditions for gene drive in plants. NATURE PLANTS 2024; 10:936-953. [PMID: 38886522 DOI: 10.1038/s41477-024-01701-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 04/16/2024] [Indexed: 06/20/2024]
Abstract
Gene drive elements promote the spread of linked traits and can be used to change the composition or fate of wild populations. Cleave and Rescue (ClvR) drive elements sit at a fixed chromosomal position and include a DNA sequence-modifying enzyme such as Cas9/gRNAs that disrupts endogenous versions of an essential gene and a recoded version of the essential gene resistant to cleavage. ClvR spreads by creating conditions in which those lacking ClvR die because they lack functional versions of the essential gene. Here we demonstrate the essential features of the ClvR gene drive in the plant Arabidopsis thaliana through killing of gametes that fail to inherit a ClvR that targets the essential gene YKT61. Resistant alleles, which can slow or prevent drive, were not observed. Modelling shows plant ClvRs are robust to certain failure modes and can be used to rapidly drive population modification or suppression. Possible applications are discussed.
Collapse
Affiliation(s)
- Georg Oberhofer
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Michelle L Johnson
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Tobin Ivy
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Igor Antoshechkin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Bruce A Hay
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
9
|
Rambaud-Lavigne L, Chatterjee A, Bovio S, Battu V, Lavigne Q, Gundiah N, Boudaoud A, Das P. Heterogeneous identity, stiffness and growth characterise the shoot apex of Arabidopsis stem cell mutants. Development 2024; 151:dev202810. [PMID: 38752444 DOI: 10.1242/dev.202810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/07/2024] [Indexed: 06/11/2024]
Abstract
Stem cell homeostasis in the shoot apical meristem involves a core regulatory feedback loop between the signalling peptide CLAVATA3 (CLV3), produced in stem cells, and the transcription factor WUSCHEL, expressed in the underlying organising centre. clv3 mutant meristems display massive overgrowth, which is thought to be caused by stem cell overproliferation, although it is unknown how uncontrolled stem cell divisions lead to this altered morphology. Here, we reveal local buckling defects in mutant meristems, and use analytical models to show how mechanical properties and growth rates may contribute to the phenotype. Indeed, clv3 mutant meristems are mechanically more heterogeneous than the wild type, and also display regional growth heterogeneities. Furthermore, stereotypical wild-type meristem organisation, in which cells simultaneously express distinct fate markers, is lost in mutants. Finally, cells in mutant meristems are auxin responsive, suggesting that they are functionally distinguishable from wild-type stem cells. Thus, all benchmarks show that clv3 mutant meristem cells are different from wild-type stem cells, suggesting that overgrowth is caused by the disruption of a more complex regulatory framework that maintains distinct genetic and functional domains in the meristem.
Collapse
Affiliation(s)
- Léa Rambaud-Lavigne
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, INRIA, 69364 Lyon Cedex 07, France
| | - Aritra Chatterjee
- Centre for BioSystems Science and Engineering, Indian Institute of Science, 560012 Bengaluru, India
| | - Simone Bovio
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, INRIA, 69364 Lyon Cedex 07, France
- PLATIM-LyMIC, Université de Lyon, ENS de Lyon, Inserm, CNRS, SFR Biosciences US8 UAR3444, UCB Lyon 1, 69364 Lyon Cedex 07, France
| | - Virginie Battu
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, INRIA, 69364 Lyon Cedex 07, France
| | - Quentin Lavigne
- Physikalisches Institut, Rheinische Friedrich-Wilhelms-Universität, 53115 Bonn, Germany
| | - Namrata Gundiah
- Department of Mechanical Engineering, Indian Institute of Science, 560012 Bengaluru, India
| | - Arezki Boudaoud
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, INRIA, 69364 Lyon Cedex 07, France
| | - Pradeep Das
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, INRIA, 69364 Lyon Cedex 07, France
| |
Collapse
|
10
|
Kim SC, Nusinow DA, Wang X. Identification of phospholipase Ds and phospholipid species involved in circadian clock alterations using CRISPR/Cas9-based multiplex editing of Arabidopsis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.09.574824. [PMID: 38260301 PMCID: PMC10802401 DOI: 10.1101/2024.01.09.574824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Reciprocal regulation between the circadian clock and lipid metabolism is emerging, but its mechanisms remain elusive. We reported that a lipid metabolite phosphatidic acid (PA) bound to the core clock transcription factors LATE ELONGATED HYPOCOTYL (LHY) and CIRCADIAN CLOCK ASSOCIATED1 (CCA1) and chemical suppression of phospholipase D (PLD)-catalyzed PA formation perturbed the clock in Arabidopsis. Here, we identified, among 12 members, specific PLDs critical to regulating clock function. We approached this using a multiplex CRISPR/Cas9 system to generate a library of plants bearing randomly mutated PLDs, then screening the mutants for altered rhythmic expression of CCA1 . All PLD s, except for β2 , were effectively edited, and the mutations were heritable. Screening of T2 plants identified some with an altered rhythm of CCA1 expression, and this trait was observed in many of their progenies. Genotyping revealed that at least two of six PLD s ( α1, α3 , γ1 , δ , ε and ζ2 ) were mutated in the clock-altered plants. Those plants also had reduced levels of PA molecular species that bound LHY and CCA1. This study identifies combinations of two or more PLDs and changes in particular phospholipid species involved in clock outputs and also suggests a functional redundancy of the six PLDs for regulating the plant circadian clock. One sentence summary This study identifies combinations of two or more phospholipase Ds involved in altering clock outputs and the specific phosphatidic acid species impacting the clock rhythms.
Collapse
|
11
|
Huang WRH, Braam C, Kretschmer C, Villanueva SL, Liu H, Ferik F, van der Burgh AM, Boeren S, Wu J, Zhang L, Nürnberger T, Wang Y, Seidl MF, Evangelisti E, Stuttmann J, Joosten MHAJ. Receptor-like cytoplasmic kinases of different subfamilies differentially regulate SOBIR1/BAK1-mediated immune responses in Nicotiana benthamiana. Nat Commun 2024; 15:4339. [PMID: 38773116 PMCID: PMC11109355 DOI: 10.1038/s41467-024-48313-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 04/26/2024] [Indexed: 05/23/2024] Open
Abstract
Cell-surface receptors form the front line of plant immunity. The leucine-rich repeat (LRR)-receptor-like kinases SOBIR1 and BAK1 are required for the functionality of the tomato LRR-receptor-like protein Cf-4, which detects the secreted effector Avr4 of the pathogenic fungus Fulvia fulva. Here, we show that the kinase domains of SOBIR1 and BAK1 directly phosphorylate each other and that residues Thr522 and Tyr469 of the kinase domain of Nicotiana benthamiana SOBIR1 are required for its kinase activity and for interacting with signalling partners, respectively. By knocking out multiple genes belonging to different receptor-like cytoplasmic kinase (RLCK)-VII subfamilies in N. benthamiana:Cf-4, we show that members of RLCK-VII-6, -7, and -8 differentially regulate the Avr4/Cf-4-triggered biphasic burst of reactive oxygen species. In addition, members of RLCK-VII-7 play an essential role in resistance against the oomycete pathogen Phytophthora palmivora. Our study provides molecular evidence for the specific roles of RLCKs downstream of SOBIR1/BAK1-containing immune complexes.
Collapse
Affiliation(s)
- Wen R H Huang
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
- The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom.
| | - Ciska Braam
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Carola Kretschmer
- Institute for Biology, Department of Plant Genetics, Martin Luther University Halle-Wittenberg, 06120, Halle, Germany
| | - Sergio Landeo Villanueva
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Huan Liu
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Filiz Ferik
- Institute for Biology, Department of Plant Genetics, Martin Luther University Halle-Wittenberg, 06120, Halle, Germany
| | - Aranka M van der Burgh
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
- Teaching and Learning Centre, Wageningen University & Research, Droevendaalsesteeg 4, 6708 PB, Wageningen, The Netherlands
| | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University and Research, Wageningen, the Netherlands
| | - Jinbin Wu
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lisha Zhang
- Department of Plant Biochemistry, Centre for Plant Molecular Biology (ZMBP), Eberhard Karls University Tübingen, Auf der Morgenstelle 32, D-72076, Tübingen, Germany
| | - Thorsten Nürnberger
- Department of Plant Biochemistry, Centre for Plant Molecular Biology (ZMBP), Eberhard Karls University Tübingen, Auf der Morgenstelle 32, D-72076, Tübingen, Germany
| | - Yulu Wang
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Michael F Seidl
- Theoretical Biology & Bioinformatics, Department of Biology, Utrecht University, 3584 CH, Utrecht, the Netherlands
| | - Edouard Evangelisti
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
- Université Côte d'Azur, INRAE UMR 1355, CNRS UMR 7254, Institut Sophia Agrobiotech (ISA), 06903, Sophia Antipolis, France
| | - Johannes Stuttmann
- Institute for Biology, Department of Plant Genetics, Martin Luther University Halle-Wittenberg, 06120, Halle, Germany
- Aix Marseille University, CEA, CNRS, BIAM, UMR7265, LEMiRE (Microbial Ecology of the Rhizosphere), 13115, Saint‑Paul lez Durance, France
| | - Matthieu H A J Joosten
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
| |
Collapse
|
12
|
Sarkar P, Santiago Vazquez J, Zhou M, Levy A, Mou Z, Orbović V. Multiplexed gene editing in citrus by using a multi-intron containing Cas9 gene. Transgenic Res 2024; 33:59-66. [PMID: 38564120 DOI: 10.1007/s11248-024-00380-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/11/2024] [Indexed: 04/04/2024]
Abstract
Several expression systems have been developed in clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (CRISPR/Cas9) framework allowing for gene editing of disease-associated genes across diverse citrus varieties. In this study, we present a new approach employing a multi-intron containing Cas9 gene plus multiple gRNAs separated with tRNA sequences to target the phytoene desaturase gene in both 'Carrizo' citrange and 'Duncan' grapefruit. Notably, using this unified vector significantly boosted editing efficiency in both citrus varieties, showcasing mutations in all three designated targets. The implementation of this multiplex gene editing system with a multi-intron-containing Cas9 plus a gRNA-tRNA array demonstrates a promising avenue for efficient citrus genome editing, equipping us with potent tools in the ongoing battle against several diseases such as canker and huanglongbing.
Collapse
Affiliation(s)
- Poulami Sarkar
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, 33850, USA
| | - Jorge Santiago Vazquez
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, 33850, USA
| | - Mingxi Zhou
- Department of Plant Pathology, University of Florida, Gainesville, FL, 32602, USA
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, 32611, USA
| | - Amit Levy
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, 33850, USA
- Department of Cell Sciences and Microbiology, University of Florida, Gainesville, FL, 32611, USA
| | - Zhonglin Mou
- Department of Plant Pathology, University of Florida, Gainesville, FL, 32602, USA
| | - Vladimir Orbović
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, 33850, USA.
| |
Collapse
|
13
|
He J, Zeng C, Li M. Plant Functional Genomics Based on High-Throughput CRISPR Library Knockout Screening: A Perspective. ADVANCED GENETICS (HOBOKEN, N.J.) 2024; 5:2300203. [PMID: 38465224 PMCID: PMC10919289 DOI: 10.1002/ggn2.202300203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/19/2023] [Indexed: 03/12/2024]
Abstract
Plant biology studies in the post-genome era have been focused on annotating genome sequences' functions. The established plant mutant collections have greatly accelerated functional genomics research in the past few decades. However, most plant genome sequences' roles and the underlying regulatory networks remain substantially unknown. Clustered, regularly interspaced short palindromic repeat (CRISPR)-associated systems are robust, versatile tools for manipulating plant genomes with various targeted DNA perturbations, providing an excellent opportunity for high-throughput interrogation of DNA elements' roles. This study compares methods frequently used for plant functional genomics and then discusses different DNA multi-targeted strategies to overcome gene redundancy using the CRISPR-Cas9 system. Next, this work summarizes recent reports using CRISPR libraries for high-throughput gene knockout and function discoveries in plants. Finally, this work envisions the future perspective of optimizing and leveraging CRISPR library screening in plant genomes' other uncharacterized DNA sequences.
Collapse
Affiliation(s)
- Jianjie He
- Department of BiotechnologyCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074China
- Key Laboratory of Molecular Biophysics of the Ministry of EducationWuhan430074China
| | - Can Zeng
- Department of BiotechnologyCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074China
- Key Laboratory of Molecular Biophysics of the Ministry of EducationWuhan430074China
| | - Maoteng Li
- Department of BiotechnologyCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074China
- Key Laboratory of Molecular Biophysics of the Ministry of EducationWuhan430074China
| |
Collapse
|
14
|
Oberhofer G, Johnson ML, Ivy T, Antoshechkin I, Hay BA. Cleave and Rescue gamete killers create conditions for gene drive in plants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.13.562303. [PMID: 37873352 PMCID: PMC10592828 DOI: 10.1101/2023.10.13.562303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Gene drive elements promote the spread of linked traits, even when their presence confers a fitness cost to carriers, and can be used to change the composition or fate of wild populations. Cleave and Rescue (ClvR) drive elements sit at a fixed chromosomal position and include a DNA sequence-modifying enzyme such as Cas9/gRNAs (the Cleaver/Toxin) that disrupts endogenous versions of an essential gene, and a recoded version of the essential gene resistant to cleavage (the Rescue/Antidote). ClvR spreads by creating conditions in which those lacking ClvR die because they lack functional versions of the essential gene. We demonstrate the essential features of ClvR gene drive in the plant Arabidopsis thaliana through killing of gametes that fail to inherit a ClvR that targets the essential gene YKT61, whose expression is required in male and female gametes for their survival. Resistant (uncleavable but functional) alleles, which can slow or prevent drive, were not observed. Modeling shows plant ClvRs are likely to be robust to certain failure modes and can be used to rapidly drive population modification or suppression. Possible applications in plant breeding, weed control, and conservation are discussed.
Collapse
Affiliation(s)
- Georg Oberhofer
- California Institute of Technology. Division of Biology and Biological Engineering. 1200 East California Boulevard, MC156-29, Pasadena, CA 91125
| | - Michelle L. Johnson
- California Institute of Technology. Division of Biology and Biological Engineering. 1200 East California Boulevard, MC156-29, Pasadena, CA 91125
| | - Tobin Ivy
- California Institute of Technology. Division of Biology and Biological Engineering. 1200 East California Boulevard, MC156-29, Pasadena, CA 91125
| | - Igor Antoshechkin
- California Institute of Technology. Division of Biology and Biological Engineering. 1200 East California Boulevard, MC156-29, Pasadena, CA 91125
| | - Bruce A. Hay
- California Institute of Technology. Division of Biology and Biological Engineering. 1200 East California Boulevard, MC156-29, Pasadena, CA 91125
| |
Collapse
|
15
|
Kiryushkin AS, Ilina EL, Kiikova TY, Pawlowski K, Demchenko KN. Do DEEPER ROOTING 1 Homologs Regulate the Lateral Root Slope Angle in Cucumber ( Cucumis sativus)? Int J Mol Sci 2024; 25:1975. [PMID: 38396652 PMCID: PMC10888659 DOI: 10.3390/ijms25041975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/28/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
The architecture of the root system is fundamental to plant productivity. The rate of root growth, the density of lateral roots, and the spatial structure of lateral and adventitious roots determine the developmental plasticity of the root system in response to changes in environmental conditions. One of the genes involved in the regulation of the slope angle of lateral roots is DEEPER ROOTING 1 (DRO1). Its orthologs and paralogs have been identified in rice, Arabidopsis, and several other species. However, nothing is known about the formation of the slope angle of lateral roots in species with the initiation of lateral root primordia within the parental root meristem. To address this knowledge gap, we identified orthologs and paralogs of the DRO1 gene in cucumber (Cucumis sativus) using a phylogenetic analysis of IGT protein family members. Differences in the transcriptional response of CsDRO1, CsDRO1-LIKE1 (CsDRO1L1), and CsDRO1-LIKE2 (CsDRO1L2) to exogenous auxin were analyzed. The results showed that only CsDRO1L1 is auxin-responsive. An analysis of promoter-reporter fusions demonstrated that the CsDRO1, CsDRO1L1, and CsDRO1L2 genes were expressed in the meristem in cell files of the central cylinder, endodermis, and cortex; the three genes displayed different expression patterns in cucumber roots with only partial overlap. A knockout of individual CsDRO1, CsDRO1L1, and CsDRO1L2 genes was performed via CRISPR/Cas9 gene editing. Our study suggests that the knockout of individual genes does not affect the slope angle formation during lateral root primordia development in the cucumber parental root.
Collapse
Affiliation(s)
- Alexey S. Kiryushkin
- Laboratory of Cellular and Molecular Mechanisms of Plant Development, Komarov Botanical Institute, Russian Academy of Sciences, 197022 Saint Petersburg, Russia; (A.S.K.); (E.L.I.)
| | - Elena L. Ilina
- Laboratory of Cellular and Molecular Mechanisms of Plant Development, Komarov Botanical Institute, Russian Academy of Sciences, 197022 Saint Petersburg, Russia; (A.S.K.); (E.L.I.)
| | - Tatyana Y. Kiikova
- Laboratory of Cellular and Molecular Mechanisms of Plant Development, Komarov Botanical Institute, Russian Academy of Sciences, 197022 Saint Petersburg, Russia; (A.S.K.); (E.L.I.)
| | - Katharina Pawlowski
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 10691 Stockholm, Sweden
| | - Kirill N. Demchenko
- Laboratory of Cellular and Molecular Mechanisms of Plant Development, Komarov Botanical Institute, Russian Academy of Sciences, 197022 Saint Petersburg, Russia; (A.S.K.); (E.L.I.)
| |
Collapse
|
16
|
Li Y, Huang C, Liu Y, Zeng J, Yu H, Tong Z, Yuan X, Sui X, Fang D, Xiao B, Zhao S, Yuan C. CRISPR/Cas9-mediated seamless gene replacement in protoplasts expands the resistance spectrum to TMV-U1 strain in regenerated Nicotiana tabacum. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:2641-2653. [PMID: 37610064 PMCID: PMC10651143 DOI: 10.1111/pbi.14159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 07/17/2023] [Accepted: 07/28/2023] [Indexed: 08/24/2023]
Abstract
CRISPR/Cas-based genome editing is now extensively used in plant breeding and continues to evolve. Most CRISPR/Cas current applications in plants focus on gene knock-outs; however, there is a pressing need for new methods to achieve more efficient delivery of CRISPR components and gene knock-ins to improve agronomic traits of crop cultivars. We report here a genome editing system that combines the advantages of protoplast technologies with recent CRISPR/Cas advances to achieve seamless large fragment insertions in the model Solanaceae plant Nicotiana tabacum. With this system, two resistance-related regions of the N' gene were replaced with homologous fragments from the N'alata gene to confer TMV-U1 resistance in the T0 generation of GMO-free plants. Our study establishes a reliable genome-editing tool for efficient gene modifications and provides a detailed description of the optimization process to assist other researchers adapt this system for their needs.
Collapse
Affiliation(s)
- Yanli Li
- National Tobacco Genetic Engineering Research CenterYunnan Academy of Tobacco Agricultural SciencesKunmingYunnanChina
- BGI‐ShenzhenShenzhenGuangdongChina
| | - Changjun Huang
- National Tobacco Genetic Engineering Research CenterYunnan Academy of Tobacco Agricultural SciencesKunmingYunnanChina
| | - Yong Liu
- National Tobacco Genetic Engineering Research CenterYunnan Academy of Tobacco Agricultural SciencesKunmingYunnanChina
| | - Jianmin Zeng
- National Tobacco Genetic Engineering Research CenterYunnan Academy of Tobacco Agricultural SciencesKunmingYunnanChina
| | - Haiqin Yu
- National Tobacco Genetic Engineering Research CenterYunnan Academy of Tobacco Agricultural SciencesKunmingYunnanChina
| | - Zhijun Tong
- National Tobacco Genetic Engineering Research CenterYunnan Academy of Tobacco Agricultural SciencesKunmingYunnanChina
| | - Xinjie Yuan
- Institute of Vegetables and FlowersJiangxi Academy of Agricultural SciencesNanchangChina
| | - Xueyi Sui
- National Tobacco Genetic Engineering Research CenterYunnan Academy of Tobacco Agricultural SciencesKunmingYunnanChina
| | - Dunhuang Fang
- National Tobacco Genetic Engineering Research CenterYunnan Academy of Tobacco Agricultural SciencesKunmingYunnanChina
| | - Bingguang Xiao
- National Tobacco Genetic Engineering Research CenterYunnan Academy of Tobacco Agricultural SciencesKunmingYunnanChina
| | | | - Cheng Yuan
- National Tobacco Genetic Engineering Research CenterYunnan Academy of Tobacco Agricultural SciencesKunmingYunnanChina
| |
Collapse
|
17
|
Zhang H, Hu Q. TOM1 family conservation within the plant kingdom for tobacco mosaic virus accumulation. MOLECULAR PLANT PATHOLOGY 2023; 24:1385-1399. [PMID: 37443447 PMCID: PMC10576174 DOI: 10.1111/mpp.13375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/03/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023]
Abstract
The susceptibility factor TOBAMOVIRUS MULTIPLICATION 1 (TOM1) is required for efficient multiplication of tobacco mosaic virus (TMV). Although some phylogenetic and functional analyses of the TOM1 family members have been conducted, a comprehensive analysis of the TOM1 homologues based on phylogeny from the most ancient to the youngest representatives within the plant kingdom, analysis of support for tobamovirus accumulation and interaction with other host and viral proteins has not been reported. In this study, using Nicotiana benthamiana and TMV as a model system, we functionally characterized the TOM1 homologues from N. benthamiana and other plant species from different plant lineages. We modified a multiplex genome editing tool and generated a sextuple mutant in which TMV multiplication was dramatically inhibited. We showed that TOM1 homologues from N. benthamiana exhibited variable capacities to support TMV multiplication. Evolutionary analysis revealed that the TOM1 family is restricted to the plant kingdom and probably originated in the Chlorophyta division, suggesting an ancient origin of the TOM1 family. We found that the TOM1 family acquired the ability to promote TMV multiplication after the divergence of moss and spikemoss. Moreover, the capacity of TOM1 orthologues from different plant species to promote TMV multiplication and the interactions between TOM1 and TOM2A and between TOM1 and TMV-encoded replication proteins are highly conserved, suggesting a conserved nature of the TOM2A-TOM1-TMV Hel module in promoting TMV multiplication. Our study not only revealed a conserved nature of a gene module to promote tobamovirus multiplication, but also provides a valuable strategy for TMV-resistant crop development.
Collapse
Affiliation(s)
- Hui Zhang
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| | - Qun Hu
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
18
|
Yonehara K, Kumakura N, Motoyama T, Ishihama N, Dallery J, O'Connell R, Shirasu K. Efficient multiple gene knockout in Colletotrichum higginsianum via CRISPR/Cas9 ribonucleoprotein and URA3-based marker recycling. MOLECULAR PLANT PATHOLOGY 2023; 24:1451-1464. [PMID: 37522511 PMCID: PMC10576178 DOI: 10.1111/mpp.13378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/21/2023] [Accepted: 06/26/2023] [Indexed: 08/01/2023]
Abstract
Colletotrichum higginsianum is a hemibiotrophic pathogen that causes anthracnose disease on crucifer hosts, including Arabidopsis thaliana. Despite the availability of genomic and transcriptomic information and the ability to transform both organisms, identifying C. higginsianum genes involved in virulence has been challenging due to recalcitrance to gene targeting and redundancy of virulence factors. To overcome these obstacles, we developed an efficient method for multiple gene disruption in C. higginsianum by combining CRISPR/Cas9 and a URA3-based marker recycling system. Our method significantly increased the efficiency of gene knockout via homologous recombination by introducing genomic DNA double-strand breaks. We demonstrated the applicability of the URA3-based marker recycling system for multiple gene targeting in the same strain. Using our technology, we successfully targeted two melanin biosynthesis genes, SCD1 and PKS1, which resulted in deficiency in melanization and loss of pathogenicity in the mutants. Our findings demonstrate the effectiveness of our methods in analysing virulence factors in C. higginsianum, thus accelerating research on plant-fungus interactions.
Collapse
Affiliation(s)
- Katsuma Yonehara
- RIKEN Center for Sustainable Resource ScienceYokohamaJapan
- Department of Biological Science, Graduate School of ScienceThe University of TokyoTokyoJapan
| | | | | | | | | | | | - Ken Shirasu
- RIKEN Center for Sustainable Resource ScienceYokohamaJapan
- Department of Biological Science, Graduate School of ScienceThe University of TokyoTokyoJapan
| |
Collapse
|
19
|
Piepers M, Erbstein K, Reyes-Hernandez J, Song C, Tessi T, Petrasiunaite V, Faerber N, Distel K, Maizel A. GreenGate 2.0: Backwards compatible addons for assembly of complex transcriptional units and their stacking with GreenGate. PLoS One 2023; 18:e0290097. [PMID: 37682951 PMCID: PMC10490876 DOI: 10.1371/journal.pone.0290097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023] Open
Abstract
Molecular cloning is a crucial technique in genetic engineering that enables the precise design of synthetic transcriptional units (TUs) and the manipulation of genomes. GreenGate and several other modular molecular cloning systems were developed about ten years ago and are widely used in plant research. All these systems define grammars for assembling transcriptional units from building blocks, cloned as Level 0 modules flanked by four-base pair overhangs and recognition sites for a particular Type IIs endonuclease. Modules are efficiently assembled into Level 1 TUs in a hierarchical assembly process, and Level 2 multigene constructs are assembled by stacking Level 1 TUs. GreenGate is highly popular but has three main limitations. First, using ad-hoc overhangs added by PCR and classical restriction/ligation prevents the efficient use of a one-pot, one-step reaction to generate entry clones and domesticate internal sites; second, a Level 1 TU is assembled from a maximum of six modules, which may be limiting for applications such as multiplex genome editing; third, the generation of Level 2 assemblies is sequential and inefficient. GreenGate 2.0 (GG2.0) expands GreenGate features. It introduces additional overhangs, allowing for the combination of up to 12 Level 0 modules in a Level 1 TU. It includes a Universal Entry Generator plasmid (pUEG) to streamline the generation of Level 0 modules. GG2.0 introduces GreenBraid, a convenient method for stacking transcriptional units iteratively for multigene assemblies. Importantly, GG2.0 is backwards compatible with most existing GreenGate modules. Additionally, GG2.0 includes Level 0 modules for multiplex expression of guide RNAs for CRISPR/Cas9 genome editing and pre-assembled Level 1 vectors for dexamethasone-inducible gene expression and ubiquitous expression of plasma membrane and nuclear fluorescent markers. GG2.0 streamlines and increases the versatility of assembling complex transcriptional units and their combination.
Collapse
Affiliation(s)
- Marcel Piepers
- Center for Organismal Studies (COS), University of Heidelberg, Heidelberg, Germany
| | - Katarina Erbstein
- Center for Organismal Studies (COS), University of Heidelberg, Heidelberg, Germany
| | | | - Changzheng Song
- Center for Organismal Studies (COS), University of Heidelberg, Heidelberg, Germany
| | - Tomas Tessi
- Center for Organismal Studies (COS), University of Heidelberg, Heidelberg, Germany
| | - Vesta Petrasiunaite
- Center for Organismal Studies (COS), University of Heidelberg, Heidelberg, Germany
| | - Naja Faerber
- Center for Organismal Studies (COS), University of Heidelberg, Heidelberg, Germany
| | - Kathrin Distel
- Center for Organismal Studies (COS), University of Heidelberg, Heidelberg, Germany
| | - Alexis Maizel
- Center for Organismal Studies (COS), University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
20
|
Johnson LY, Major IT, Chen Y, Yang C, Vanegas-Cano LJ, Howe GA. Diversification of JAZ-MYC signaling function in immune metabolism. THE NEW PHYTOLOGIST 2023; 239:2277-2291. [PMID: 37403524 PMCID: PMC10528271 DOI: 10.1111/nph.19114] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/11/2023] [Indexed: 07/06/2023]
Abstract
Jasmonate (JA) re-programs metabolism to confer resistance to diverse environmental threats. Jasmonate stimulates the degradation of JASMONATE ZIM-DOMAIN (JAZ) proteins that repress the activity of MYC transcription factors. In Arabidopsis thaliana, MYC and JAZ are encoded by 4 and 13 genes, respectively. The extent to which expansion of the MYC and JAZ families has contributed to functional diversification of JA responses is not well understood. Here, we investigated the role of MYC and JAZ paralogs in controlling the production of defense compounds derived from aromatic amino acids (AAAs). Analysis of loss-of-function and dominant myc mutations identified MYC3 and MYC4 as the major regulators of JA-induced tryptophan metabolism. We developed a JAZ family-based, forward genetics approach to screen randomized jaz polymutants for allelic combinations that enhance tryptophan biosynthetic capacity. We found that mutants defective in all members (JAZ1/2/5/6) of JAZ group I over-accumulate AAA-derived defense compounds, constitutively express marker genes for the JA-ethylene branch of immunity and are more resistant to necrotrophic pathogens but not insect herbivores. In defining JAZ and MYC paralogs that regulate the production of amino-acid-derived defense compounds, our results provide insight into the specificity of JA signaling in immunity.
Collapse
Affiliation(s)
- Leah Y.D. Johnson
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
- Cell and Molecular Biology Program, Michigan State University, East Lansing, MI 48824, USA
- Molecular Plant Sciences Program, Michigan State University, East Lansing, MI 48824, USA
| | - Ian T. Major
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | - Yani Chen
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | - Changxian Yang
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | - Leidy J. Vanegas-Cano
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Gregg A. Howe
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
- Cell and Molecular Biology Program, Michigan State University, East Lansing, MI 48824, USA
- Molecular Plant Sciences Program, Michigan State University, East Lansing, MI 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
21
|
Xiang Y, Huang W, Tan L, Chen T, He Y, Irving PS, Weeks KM, Zhang QC, Dong X. Pervasive downstream RNA hairpins dynamically dictate start-codon selection. Nature 2023; 621:423-430. [PMID: 37674078 PMCID: PMC10499604 DOI: 10.1038/s41586-023-06500-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/31/2023] [Indexed: 09/08/2023]
Abstract
Translational reprogramming allows organisms to adapt to changing conditions. Upstream start codons (uAUGs), which are prevalently present in mRNAs, have crucial roles in regulating translation by providing alternative translation start sites1-4. However, what determines this selective initiation of translation between conditions remains unclear. Here, by integrating transcriptome-wide translational and structural analyses during pattern-triggered immunity in Arabidopsis, we found that transcripts with immune-induced translation are enriched with upstream open reading frames (uORFs). Without infection, these uORFs are selectively translated owing to hairpins immediately downstream of uAUGs, presumably by slowing and engaging the scanning preinitiation complex. Modelling using deep learning provides unbiased support for these recognizable double-stranded RNA structures downstream of uAUGs (which we term uAUG-ds) being responsible for the selective translation of uAUGs, and allows the prediction and rational design of translating uAUG-ds. We found that uAUG-ds-mediated regulation can be generalized to human cells. Moreover, uAUG-ds-mediated start-codon selection is dynamically regulated. After immune challenge in plants, induced RNA helicases that are homologous to Ded1p in yeast and DDX3X in humans resolve these structures, allowing ribosomes to bypass uAUGs to translate downstream defence proteins. This study shows that mRNA structures dynamically regulate start-codon selection. The prevalence of this RNA structural feature and the conservation of RNA helicases across kingdoms suggest that mRNA structural remodelling is a general feature of translational reprogramming.
Collapse
Affiliation(s)
- Yezi Xiang
- Department of Biology, Duke University, Durham, NC, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC, USA
| | - Wenze Huang
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Beijing Frontier Research Center for Biological Structures, Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Lianmei Tan
- Department of Pharmacology and Cancer Biology, Duke Medical Center, Duke University, Durham, NC, USA
| | - Tianyuan Chen
- Department of Biology, Duke University, Durham, NC, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC, USA
| | - Yang He
- Department of Biology, Duke University, Durham, NC, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC, USA
| | - Patrick S Irving
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, USA
| | - Kevin M Weeks
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, USA
| | - Qiangfeng Cliff Zhang
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Beijing Frontier Research Center for Biological Structures, Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Xinnian Dong
- Department of Biology, Duke University, Durham, NC, USA.
- Howard Hughes Medical Institute, Duke University, Durham, NC, USA.
| |
Collapse
|
22
|
Sikkema AP, Tabatabaei SK, Lee YJ, Lund S, Lohman GJS. High-Complexity One-Pot Golden Gate Assembly. Curr Protoc 2023; 3:e882. [PMID: 37755329 DOI: 10.1002/cpz1.882] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Golden Gate Assembly is a flexible method of DNA assembly and cloning that permits the joining of multiple fragments in a single reaction through predefined connections. The method depends on cutting DNA using a Type IIS restriction enzyme, which cuts outside its recognition site and therefore can generate overhangs of any sequence while separating the recognition site from the generated fragment. By choosing compatible fusion sites, Golden Gate permits the joining of multiple DNA fragments in a defined order in a single reaction. Conventionally, this method has been used to join five to eight fragments in a single assembly round, with yield and accuracy dropping off rapidly for more complex assemblies. Recently, we demonstrated the application of comprehensive measurements of ligation fidelity and bias data using data-optimized assembly design (DAD) to enable a high degree of assembly accuracy for very complex assemblies with the simultaneous joining of as many as 52 fragments in one reaction. Here, we describe methods for applying DAD principles and online tools to evaluate the fidelity of existing fusion site sets and assembly standards, selecting new optimal sets, and adding fusion sites to existing assemblies. We further describe the application of DAD to divide known sequences at optimal points, including designing one-pot assemblies of small genomes. Using the T7 bacteriophage genome as an example, we present a protocol that includes removal of native Type IIS sites (domestication) simultaneously with parts generation by PCR. Finally, we present recommended cycling protocols for assemblies of medium to high complexity (12-36 fragments), methods for producing high-quality parts, examples highlighting the importance of DNA purity and fragment stoichiometric balance for optimal assembly outcomes, and methods for assessing assembly success. © 2023 New England Biolabs, Inc. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Assessing the fidelity of an overhang set using the NEBridge Ligase Fidelity Viewer Basic Protocol 2: Generating a high-fidelity overhang set using the NEBridge GetSet Tool Alternate Protocol 1: Expanding an existing overhang set using the NEBridge GetSet Tool Basic Protocol 3: Dividing a genomic sequence with optimal fusion sites using the NEBridge SplitSet Tool Basic Protocol 4: One-pot Golden Gate Assembly of 12 fragments into a destination plasmid Alternate Protocol 2: One-pot Golden Gate Assembly of 24+ fragments into a destination plasmid Basic Protocol 5: One-pot Golden Gate Assembly of the T7 bacteriophage genome from 12+ parts Support Protocol 1: Generation of high-purity amplicons for assembly Support Protocol 2: Cloning assembly parts into a holding vector Support Protocol 3: Quantifying DNA concentration using a Qubit 4 fluorometer Support Protocol 4: Visualizing large assemblies via TapeStation Support Protocol 5: Validating phage genome assemblies via ONT long-read sequencing.
Collapse
Affiliation(s)
- Andrew P Sikkema
- Research Department, New England Biolabs, Ipswich, Massachusetts, USA
| | | | - Yan-Jiun Lee
- Research Department, New England Biolabs, Ipswich, Massachusetts, USA
| | - Sean Lund
- Research Department, New England Biolabs, Ipswich, Massachusetts, USA
| | | |
Collapse
|
23
|
Nolan TM, Vukašinović N, Hsu CW, Zhang J, Vanhoutte I, Shahan R, Taylor IW, Greenstreet L, Heitz M, Afanassiev A, Wang P, Szekely P, Brosnan A, Yin Y, Schiebinger G, Ohler U, Russinova E, Benfey PN. Brassinosteroid gene regulatory networks at cellular resolution in the Arabidopsis root. Science 2023; 379:eadf4721. [PMID: 36996230 PMCID: PMC10119888 DOI: 10.1126/science.adf4721] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 02/09/2023] [Indexed: 04/01/2023]
Abstract
Brassinosteroids are plant steroid hormones that regulate diverse processes, such as cell division and cell elongation, through gene regulatory networks that vary in space and time. By using time series single-cell RNA sequencing to profile brassinosteroid-responsive gene expression specific to different cell types and developmental stages of the Arabidopsis root, we identified the elongating cortex as a site where brassinosteroids trigger a shift from proliferation to elongation associated with increased expression of cell wall-related genes. Our analysis revealed HOMEOBOX FROM ARABIDOPSIS THALIANA 7 (HAT7) and GT-2-LIKE 1 (GTL1) as brassinosteroid-responsive transcription factors that regulate cortex cell elongation. These results establish the cortex as a site of brassinosteroid-mediated growth and unveil a brassinosteroid signaling network regulating the transition from proliferation to elongation, which illuminates aspects of spatiotemporal hormone responses.
Collapse
Affiliation(s)
| | - Nemanja Vukašinović
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Che-Wei Hsu
- Department of Biology, Duke University, Durham, NC, USA
- Department of Biology, Humboldt Universitat zu Berlin, Berlin, Germany
- The Berlin Institute for Medical Systems Biology, Max Delbruck Center for Molecular Medicine, Berlin, Germany
| | | | - Isabelle Vanhoutte
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Rachel Shahan
- Department of Biology, Duke University, Durham, NC, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC, USA
| | | | - Laura Greenstreet
- Department of Mathematics, University of British Columbia, Vancouver, BC, Canada
| | - Matthieu Heitz
- Department of Mathematics, University of British Columbia, Vancouver, BC, Canada
| | - Anton Afanassiev
- Department of Mathematics, University of British Columbia, Vancouver, BC, Canada
| | - Ping Wang
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, USA
| | - Pablo Szekely
- Department of Biology, Duke University, Durham, NC, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC, USA
| | - Aiden Brosnan
- Department of Biology, Duke University, Durham, NC, USA
| | - Yanhai Yin
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, USA
| | - Geoffrey Schiebinger
- Department of Mathematics, University of British Columbia, Vancouver, BC, Canada
| | - Uwe Ohler
- Department of Biology, Humboldt Universitat zu Berlin, Berlin, Germany
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, USA
- Department of Computer Science, Humboldt Universitat zu Berlin, Berlin, Germany
| | - Eugenia Russinova
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Philip N Benfey
- Department of Biology, Duke University, Durham, NC, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC, USA
| |
Collapse
|
24
|
Ordon J, Kiel N, Becker D, Kretschmer C, Schulze-Lefert P, Stuttmann J. Targeted gene deletion with SpCas9 and multiple guide RNAs in Arabidopsis thaliana: four are better than two. PLANT METHODS 2023; 19:30. [PMID: 36978193 PMCID: PMC10053088 DOI: 10.1186/s13007-023-01010-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/21/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND In plant genome editing, RNA-guided nucleases such as Cas9 from Streptococcus pyogenes (SpCas9) predominantly induce small insertions or deletions at target sites. This can be used for inactivation of protein-coding genes by frame shift mutations. However, in some cases, it may be advantageous to delete larger chromosomal segments. This is achieved by simultaneously inducing double strand breaks upstream and downstream of the segment to be deleted. Experimental approaches for the deletion of larger chromosomal segments have not been systematically evaluated. RESULTS We designed three pairs of guide RNAs for deletion of a ~ 2.2 kb chromosomal segment containing the Arabidopsis WRKY30 locus. We tested how the combination of guide RNA pairs and co-expression of the exonuclease TREX2 affect the frequency of wrky30 deletions in editing experiments. Our data demonstrate that compared to one pair of guide RNAs, two pairs increase the frequency of chromosomal deletions. The exonuclease TREX2 enhanced mutation frequency at individual target sites and shifted the mutation profile towards larger deletions. However, TREX2 did not elevate the frequency of chromosomal segment deletions. CONCLUSIONS Multiplex editing with at least two pairs of guide RNAs (four guide RNAs in total) elevates the frequency of chromosomal segment deletions at least at the AtWRKY30 locus, and thus simplifies the selection of corresponding mutants. Co-expression of the TREX2 exonuclease can be used as a general strategy to increase editing efficiency in Arabidopsis without obvious negative effects.
Collapse
Affiliation(s)
- Jana Ordon
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, D50829, Cologne, Germany
| | - Niklas Kiel
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, D50829, Cologne, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Dieter Becker
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, D50829, Cologne, Germany
| | - Carola Kretschmer
- Institute for Biology, Department of Plant Genetics, Martin Luther University Halle-Wittenberg, D06120, Halle, Germany
| | - Paul Schulze-Lefert
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, D50829, Cologne, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Johannes Stuttmann
- Institute for Biosafety in Plant Biotechnology, Federal Research Centre for Cultivated Plants, Julius Kühn-Institute (JKI), 06484, Quedlinburg, Germany.
- CEA, CNRS, BIAM, UMR7265, LEMiRE (Rhizosphère et Interactions sol-plante-microbiote), Aix Marseille University, 13115, Saint-Paul lez Durance, France.
| |
Collapse
|
25
|
Wu Y, Sexton W, Yang B, Xiao S. Genetic approaches to dissect plant nonhost resistance mechanisms. MOLECULAR PLANT PATHOLOGY 2023; 24:272-283. [PMID: 36617319 PMCID: PMC9923397 DOI: 10.1111/mpp.13290] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 10/17/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Nonhost resistance (NHR) refers to the immunity of most tested genotypes of a plant species to most tested variants of a pathogen species. Thus, NHR is broad spectrum and durable in nature and constitutes a major safety barrier against invasion of a myriad of potentially pathogenic microbes in any plants including domesticated crops. Genetic study of NHR is generally more difficult compared to host resistance mainly because NHR is genetically more complicated and often lacks intraspecific polymorphisms. Nevertheless, substantial progress has been made towards the understanding of the molecular basis of NHR in the past two decades using various approaches. Not surprisingly, molecular mechanisms of NHR revealed so far encompasses pathogen-associated molecular pattern-triggered immunity and effector-triggered immunity. In this review, we briefly discuss the inherent difficulty in genetic studies of NHR and summarize the main approaches that have been taken to identify genes contributing to NHR. We also discuss new enabling strategies for dissecting multilayered NHR in model plants with a focus on NHR against filamentous pathogens, especially biotrophic pathogens such as powdery mildew and rust fungi.
Collapse
Affiliation(s)
- Ying Wu
- Institute for Bioscience and Biotechnology ResearchUniversity of Maryland College ParkRockvilleMarylandUSA
| | - William Sexton
- Institute for Bioscience and Biotechnology ResearchUniversity of Maryland College ParkRockvilleMarylandUSA
| | - Bing Yang
- Division of Plant Science and Technology, Bond Life Sciences CenterUniversity of MissouriColumbiaMissouriUSA
- Donald Danforth Plant Science CenterSt. LouisMissouriUSA
| | - Shunyuan Xiao
- Institute for Bioscience and Biotechnology ResearchUniversity of Maryland College ParkRockvilleMarylandUSA
- Department of Plant Science and Landscape ArchitectureUniversity of MarylandCollege ParkMarylandUSA
| |
Collapse
|
26
|
Manning T, Birch R, Stevenson T, Nugent G, Whitney S. Bacterial Form II Rubisco can support wild-type growth and productivity in Solanum tuberosum cv. Desiree (potato) under elevated CO 2. PNAS NEXUS 2023; 2:pgac305. [PMID: 36743474 PMCID: PMC9896143 DOI: 10.1093/pnasnexus/pgac305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 12/22/2022] [Indexed: 02/05/2023]
Abstract
The last decade has seen significant advances in the development of approaches for improving both the light harvesting and carbon fixation pathways of photosynthesis by nuclear transformation, many involving multigene synthetic biology approaches. As efforts to replicate these accomplishments from tobacco into crops gather momentum, similar diversification is needed in the range of transgenic options available, including capabilities to modify crop photosynthesis by chloroplast transformation. To address this need, here we describe the first transplastomic modification of photosynthesis in a crop by replacing the native Rubisco in potato with the faster, but lower CO2-affinity and poorer CO2/O2 specificity Rubisco from the bacterium Rhodospirillum rubrum. High level production of R. rubrum Rubisco in the potRr genotype (8 to 10 µmol catalytic sites m2) allowed it to attain wild-type levels of productivity, including tuber yield, in air containing 0.5% (v/v) CO2. Under controlled environment growth at 25°C and 350 µmol photons m2 PAR, the productivity and leaf biochemistry of wild-type potato at 0.06%, 0.5%, or 1.5% (v/v) CO2 and potRr at 0.5% or 1.5% (v/v) CO2 were largely indistinguishable. These findings suggest that increasing the scope for enhancing productivity gains in potato by improving photosynthate production will necessitate improvement to its sink-potential, consistent with current evidence productivity gains by eCO2 fertilization for this crop hit a ceiling around 560 to 600 ppm CO2.
Collapse
Affiliation(s)
- Tahnee Manning
- School of Science, RMIT University, Bundoora, VIC 3083, Australia
| | - Rosemary Birch
- Australian Research Council Centre of Excellence for Translational Photosynthesis, Research School of Biology, The Australian National University, 134 Linnaeus Way, Acton, ACT 0200, Australia
| | - Trevor Stevenson
- School of Science, RMIT University, Bundoora, VIC 3083, Australia
| | - Gregory Nugent
- School of Science, RMIT University, Bundoora, VIC 3083, Australia
| | - Spencer Whitney
- Australian Research Council Centre of Excellence for Translational Photosynthesis, Research School of Biology, The Australian National University, 134 Linnaeus Way, Acton, ACT 0200, Australia
| |
Collapse
|
27
|
Rizzo P, Chavez BG, Leite Dias S, D'Auria JC. Plant synthetic biology: from inspiration to augmentation. Curr Opin Biotechnol 2023; 79:102857. [PMID: 36502769 DOI: 10.1016/j.copbio.2022.102857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/17/2022] [Indexed: 12/13/2022]
Abstract
Although it is still in its infancy, synthetic biology has the capacity to face scientific and societal problems related to modern agriculture. Innovations in cloning toolkits and genetic parts allow increased precision over gene expression in planta. We review the vast spectrum of available technologies providing a practical list of toolkits that take advantage of combinatorial power to introduce/alter metabolic pathways. We highlight that rational design is inspired by deep knowledge of natural and biochemical mechanisms. Finally, we provide several examples in which modern technologies have been applied to address these critical topics. Future applications in plants include not only pathway modifications but also prospects of augmenting plant anatomical features and developmental processes.
Collapse
Affiliation(s)
- Paride Rizzo
- Metabolite Diversity Group, Department of Molecular Genetics, Leibniz Institute for Plant Genetics and Crop Plant Research (IPK) OT Gatersleben, Correnstr. 3, D-06466 Seeland, Germany
| | - Benjamin G Chavez
- Metabolite Diversity Group, Department of Molecular Genetics, Leibniz Institute for Plant Genetics and Crop Plant Research (IPK) OT Gatersleben, Correnstr. 3, D-06466 Seeland, Germany
| | - Sara Leite Dias
- Metabolite Diversity Group, Department of Molecular Genetics, Leibniz Institute for Plant Genetics and Crop Plant Research (IPK) OT Gatersleben, Correnstr. 3, D-06466 Seeland, Germany
| | - John C D'Auria
- Metabolite Diversity Group, Department of Molecular Genetics, Leibniz Institute for Plant Genetics and Crop Plant Research (IPK) OT Gatersleben, Correnstr. 3, D-06466 Seeland, Germany.
| |
Collapse
|
28
|
Xu X, Jackson D. Single-cell analysis opens a goldmine for plant functional studies. Curr Opin Biotechnol 2023; 79:102858. [PMID: 36493588 DOI: 10.1016/j.copbio.2022.102858] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022]
Abstract
Functional studies in biology require the identification of genes, regulatory elements, and networks, followed by a deep understanding of how they orchestrate to specify cell types, mediate signaling, and respond to internal and external cues over evolutionary timescales. Advances in single-cell analysis have enabled biologists to tackle these questions at the resolution of the individual cell. Here, we highlight recent studies in plants that have embraced single-cell analyses to facilitate functional studies. This review will provide guidance and perspectives for incorporating these advanced approaches in plant research for the coming decades.
Collapse
Affiliation(s)
- Xiaosa Xu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - David Jackson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
29
|
Kong X, Pan W, Zhang T, Liu L, Zhang H. A simple and efficient strategy to produce transgene-free gene edited plants in one generation using paraquat resistant 1 as a selection marker. FRONTIERS IN PLANT SCIENCE 2023; 13:1051991. [PMID: 36733591 PMCID: PMC9888365 DOI: 10.3389/fpls.2022.1051991] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/19/2022] [Indexed: 06/18/2023]
Abstract
INTRODUCTION DNA integration is a key factor limiting the marketing of CRISPR/Cas9-mediated gene edited crops. Several strategies have been established to obtain transgene-free gene edited plants; however, these strategies are usually time-consuming, technically difficult, providing low mutagenesis efficiency, and/or including a narrow host range. METHOD To overcome such issues, we established a paraquat resistant 1 (PAR1)-based positive screening (PARS) strategy, which achieved efficient screening of transgene-free gene edited plants. RESULTS With PARS, the screening efficiency of mutant increased by 2.81-fold on average, and approximately 10% of T1 plants selected via PARS were transgenefree. Moreover, heritable transgene-free mutations at target loci were identified in the T1 generation. DISCUSSION Based on the previous reports and our data, we know that paraquat is toxic to all green plants, PAR1 is conserved among all plant species tested, and the transient expression of Cas9 editor can produce transgene-free gene edited plants. Thus, we assume that the PARS strategy established here has the potential to be widely used to screen transgene-free mutants in various crops using diverse CRISPR/Cas9 delivery approaches.
Collapse
Affiliation(s)
- Xiangjiu Kong
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Wenbo Pan
- Peking University Institute of Advanced Agricultural Sciences, Weifang, China
- Shandong Laboratory of Advanced Agricultural Sciences, Weifang, China
| | - Tingyu Zhang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Lijing Liu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Huawei Zhang
- Peking University Institute of Advanced Agricultural Sciences, Weifang, China
- Shandong Laboratory of Advanced Agricultural Sciences, Weifang, China
| |
Collapse
|
30
|
Prautsch J, Erickson JL, Özyürek S, Gormanns R, Franke L, Lu Y, Marx J, Niemeyer F, Parker JE, Stuttmann J, Schattat MH. Effector XopQ-induced stromule formation in Nicotiana benthamiana depends on ETI signaling components ADR1 and NRG1. PLANT PHYSIOLOGY 2023; 191:161-176. [PMID: 36259930 PMCID: PMC9806647 DOI: 10.1093/plphys/kiac481] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 09/22/2022] [Indexed: 05/28/2023]
Abstract
In Nicotiana benthamiana, the expression of the Xanthomonas effector XANTHOMONAS OUTER PROTEIN Q (XopQ) triggers RECOGNITION OF XOPQ1 (ROQ1)-dependent effector-triggered immunity (ETI) responses accompanied by the accumulation of plastids around the nucleus and the formation of stromules. Both plastid clustering and stromules were proposed to contribute to ETI-related hypersensitive cell death and thereby to plant immunity. Whether these reactions are directly connected to ETI signaling events has not been tested. Here, we utilized transient expression experiments to determine whether XopQ-triggered plastid reactions are a result of XopQ perception by the immune receptor ROQ1 or a consequence of XopQ virulence activity. We found that N. benthamiana mutants lacking ROQ1, ENHANCED DISEASE SUSCEPTIBILITY 1, or the helper NUCLEOTIDE-BINDING LEUCINE-RICH REPEAT IMMUNE RECEPTORS (NLRs) N-REQUIRED GENE 1 (NRG1) and ACTIVATED DISEASE RESISTANCE GENE 1 (ADR1), fail to elicit XopQ-dependent host cell death and stromule formation. Mutants lacking only NRG1 lost XopQ-dependent cell death but retained some stromule induction that was abolished in the nrg1_adr1 double mutant. This analysis aligns XopQ-triggered stromules with the ETI signaling cascade but not to host programmed cell death. Furthermore, data reveal that XopQ-triggered plastid clustering is not strictly linked to stromule formation during ETI. Our data suggest that stromule formation, in contrast to chloroplast perinuclear dynamics, is an integral part of the N. benthamiana ETI response and that both NRG1 and ADR1 hNLRs play a role in this ETI response.
Collapse
Affiliation(s)
- Jennifer Prautsch
- Biology, Plant Physiology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Jessica Lee Erickson
- Biology, Plant Genetics, Martin-Luther-University Halle-Wittenberg, Halle, Germany
- Leibniz-Institut for Plant Biochemistry, Halle, Germany
| | - Sedef Özyürek
- Biology, Plant Physiology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Rahel Gormanns
- Biology, Plant Physiology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Lars Franke
- Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Yang Lu
- Biology, Plant Physiology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Jolina Marx
- Leibniz-Institut for Plant Biochemistry, Halle, Germany
| | - Frederik Niemeyer
- Biology, Plant Physiology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Jane E Parker
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Johannes Stuttmann
- Biology, Plant Genetics, Martin-Luther-University Halle-Wittenberg, Halle, Germany
- Institute for Biosafety in Plant Biotechnology, Federal Research Centre for Cultivated Plants, Julius Kühn-Institute (JKI), Quedlinburg, Germany
| | | |
Collapse
|
31
|
Zönnchen J, Gantner J, Lapin D, Barthel K, Eschen-Lippold L, Erickson JL, Villanueva SL, Zantop S, Kretschmer C, Joosten MHAJ, Parker JE, Guerois R, Stuttmann J. EDS1 complexes are not required for PRR responses and execute TNL-ETI from the nucleus in Nicotiana benthamiana. THE NEW PHYTOLOGIST 2022; 236:2249-2264. [PMID: 36151929 DOI: 10.1111/nph.18511] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 09/02/2022] [Indexed: 06/16/2023]
Abstract
Heterodimeric complexes incorporating the lipase-like proteins EDS1 with PAD4 or SAG101 are central hubs in plant innate immunity. EDS1 functions encompass signal relay from TIR domain-containing intracellular NLR-type immune receptors (TNLs) towards RPW8-type helper NLRs (RNLs) and, in Arabidopsis thaliana, bolstering of signaling and resistance mediated by cell-surface pattern recognition receptors (PRRs). Increasing evidence points to the activation of EDS1 complexes by small molecule binding. We used CRISPR/Cas-generated mutant lines and agroinfiltration-based complementation assays to interrogate functions of EDS1 complexes in Nicotiana benthamiana. We did not detect impaired PRR signaling in N. benthamiana lines deficient in EDS1 complexes or RNLs. Intriguingly, in assays monitoring functions of SlEDS1-NbEDS1 complexes in N. benthamiana, mutations within the SlEDS1 catalytic triad could abolish or enhance TNL immunity. Furthermore, nuclear EDS1 accumulation was sufficient for N. benthamiana TNL (Roq1) immunity. Reinforcing PRR signaling in Arabidopsis might be a derived function of the TNL/EDS1 immune sector. Although Solanaceae EDS1 functionally depends on catalytic triad residues in some contexts, our data do not support binding of a TNL-derived small molecule in the triad environment. Whether and how nuclear EDS1 activity connects to membrane pore-forming RNLs remains unknown.
Collapse
Affiliation(s)
- Josua Zönnchen
- Department of Plant Genetics, Institute for Biology, Martin Luther University Halle-Wittenberg, D-06120, Halle, Germany
| | - Johannes Gantner
- Department of Plant Genetics, Institute for Biology, Martin Luther University Halle-Wittenberg, D-06120, Halle, Germany
| | - Dmitry Lapin
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, D-50829, Cologne, Germany
- Department of Biology, Plant-Microbe Interactions, Utrecht University, 3584 CH, Utrecht, the Netherlands
| | - Karen Barthel
- Department of Plant Genetics, Institute for Biology, Martin Luther University Halle-Wittenberg, D-06120, Halle, Germany
| | - Lennart Eschen-Lippold
- Department of Crop Physiology, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, D-06120, Halle, Germany
- Department of Biochemistry of Plant Interactions, Leibniz Institute of Plant Biochemistry, D-06120, Halle, Germany
| | - Jessica L Erickson
- Department of Biochemistry of Plant Interactions, Leibniz Institute of Plant Biochemistry, D-06120, Halle, Germany
| | - Sergio Landeo Villanueva
- Laboratory of Phytopathology, Wageningen University and Research, 6708 PB, Wageningen, the Netherlands
| | - Stefan Zantop
- Department of Plant Genetics, Institute for Biology, Martin Luther University Halle-Wittenberg, D-06120, Halle, Germany
| | - Carola Kretschmer
- Department of Plant Genetics, Institute for Biology, Martin Luther University Halle-Wittenberg, D-06120, Halle, Germany
| | - Matthieu H A J Joosten
- Laboratory of Phytopathology, Wageningen University and Research, 6708 PB, Wageningen, the Netherlands
| | - Jane E Parker
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, D-50829, Cologne, Germany
- Cologne-Düsseldorf Cluster of Excellence in Plant Sciences (CEPLAS), D-40225, Düsseldorf, Germany
| | - Raphael Guerois
- Institute for Integrative Biology of the Cell (I2BC), IBITECS, CEA, CNRS, Université Paris-Saclay, F-91198, Gif-sur-Yvette, France
| | - Johannes Stuttmann
- Department of Plant Genetics, Institute for Biology, Martin Luther University Halle-Wittenberg, D-06120, Halle, Germany
- Institute for Biosafety in Plant Biotechnology, Federal Research Centre for Cultivated Plants, Julius Kühn-Institute (JKI), 06484, Quedlinburg, Germany
| |
Collapse
|
32
|
Doll NM, Berenguer E, Truskina J, Ingram G. AtEXT3 is not essential for early embryogenesis or plant viability in Arabidopsis. THE NEW PHYTOLOGIST 2022; 236:1629-1633. [PMID: 36052714 PMCID: PMC9826179 DOI: 10.1111/nph.18452] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Nicolas Max Doll
- Laboratoire Reproduction et Développement des PlantesENS de Lyon, CNRS, INRAE, UCBLF‐69342LyonFrance
| | - Eduardo Berenguer
- Laboratoire Reproduction et Développement des PlantesENS de Lyon, CNRS, INRAE, UCBLF‐69342LyonFrance
| | - Jekaterina Truskina
- Laboratoire Reproduction et Développement des PlantesENS de Lyon, CNRS, INRAE, UCBLF‐69342LyonFrance
| | - Gwyneth Ingram
- Laboratoire Reproduction et Développement des PlantesENS de Lyon, CNRS, INRAE, UCBLF‐69342LyonFrance
| |
Collapse
|
33
|
Rudenko NN, Permyakova NV, Ignatova LK, Nadeeva EM, Zagorskaya AA, Deineko EV, Ivanov BN. The Role of Carbonic Anhydrase αCA4 in Photosynthetic Reactions in Arabidopsis thaliana Studied, Using the Cas9 and T-DNA Induced Mutations in Its Gene. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11233303. [PMID: 36501340 PMCID: PMC9735932 DOI: 10.3390/plants11233303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 05/27/2023]
Abstract
An homozygous mutant line of Arabidopsis thaliana with a knocked out At4g20990 gene encoding thylakoid carbonic anhydrase αCA4 was created using a CRISPR/Cas9 genome editing system. The effects of the mutation were compared with those in two mutant lines obtained by the T-DNA insertion method. In αCA4 knockouts of all three lines, non-photochemical quenching of chlorophyll a fluorescence was lower than in the wild type (WT) plants due to a decrease in its energy-dependent component. The αCA4 knockout also affected the level of expression of the genes encoding all proteins of the PSII light harvesting antennae, the genes encoding cytoplasmic and thylakoid CAs and the genes induced by plant immune signals. The production level of starch synthesis during the light period, as well as the level of its utilization during the darkness, were significantly higher in these mutants than in WT plants. These data confirm that the previously observed differences between insertional mutants and WT plants were not the result of the negative effects of T-DNA insertion transgenesis but the results of αCA4 gene knockout. Overall, the data indicate the involvement of αCA4 in the photosynthetic reactions in the thylakoid membrane, in particular in processes associated with the protection of higher plants' photosynthetic apparatus from photoinhibition.
Collapse
Affiliation(s)
- Natalia N. Rudenko
- Institute of Basic Biological Problems, Federal Research Center «Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences» Pushchino, Moscow Region 142290, Russia
| | - Natalya V. Permyakova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Lyudmila K. Ignatova
- Institute of Basic Biological Problems, Federal Research Center «Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences» Pushchino, Moscow Region 142290, Russia
| | - Elena M. Nadeeva
- Institute of Basic Biological Problems, Federal Research Center «Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences» Pushchino, Moscow Region 142290, Russia
| | - Alla A. Zagorskaya
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Elena V. Deineko
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Boris N. Ivanov
- Institute of Basic Biological Problems, Federal Research Center «Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences» Pushchino, Moscow Region 142290, Russia
| |
Collapse
|
34
|
Gouthu S, Mandelli C, Eubanks BA, Deluc LG. Transgene-free genome editing and RNAi ectopic application in fruit trees: Potential and limitations. FRONTIERS IN PLANT SCIENCE 2022; 13:979742. [PMID: 36325537 PMCID: PMC9621297 DOI: 10.3389/fpls.2022.979742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
For the past fifteen years, significant research advances in sequencing technology have led to a substantial increase in fruit tree genomic resources and databases with a massive number of OMICS datasets (transcriptomic, proteomics, metabolomics), helping to find associations between gene(s) and performance traits. Meanwhile, new technology tools have emerged for gain- and loss-of-function studies, specifically in gene silencing and developing tractable plant models for genetic transformation. Additionally, innovative and adapted transformation protocols have optimized genetic engineering in most fruit trees. The recent explosion of new gene-editing tools allows for broadening opportunities for functional studies in fruit trees. Yet, the fruit tree research community has not fully embraced these new technologies to provide large-scale genome characterizations as in cereals and other staple food crops. Instead, recent research efforts in the fruit trees appear to focus on two primary translational tools: transgene-free gene editing via Ribonucleoprotein (RNP) delivery and the ectopic application of RNA-based products in the field for crop protection. The inherent nature of the propagation system and the long juvenile phase of most fruit trees are significant justifications for the first technology. The second approach might have the public favor regarding sustainability and an eco-friendlier environment for a crop production system that could potentially replace the use of chemicals. Regardless of their potential, both technologies still depend on the foundational knowledge of gene-to-trait relationships generated from basic genetic studies. Therefore, we will discuss the status of gene silencing and DNA-based gene editing techniques for functional studies in fruit trees followed by the potential and limitations of their translational tools (RNP delivery and RNA-based products) in the context of crop production.
Collapse
Affiliation(s)
- Satyanarayana Gouthu
- Department of Horticulture, Oregon State University, Corvallis, OR, United States
| | - Christian Mandelli
- Oregon Wine Research Institute, Oregon State University, Corvallis, OR, United States
| | - Britt A. Eubanks
- Department of Horticulture, Oregon State University, Corvallis, OR, United States
| | - Laurent G. Deluc
- Department of Horticulture, Oregon State University, Corvallis, OR, United States
- Oregon Wine Research Institute, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
35
|
Muto N, Matsumoto T. CRISPR/Cas9-mediated genome editing of RsGL1a and RsGL1b in radish ( Raphanus sativus L.). FRONTIERS IN PLANT SCIENCE 2022; 13:951660. [PMID: 36311091 PMCID: PMC9606758 DOI: 10.3389/fpls.2022.951660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) is a powerful tool widely used for genome editing in various organisms, including plants. It introduces and facilitates the study of rare genetic mutations in a short time and is a potent tool to assist in plant molecular breeding. Radish (Raphanus sativus L.) is an important Brassicaceae vegetable cultivated and consumed worldwide. However, the application of the CRISPR/Cas9 system is limited by the absence of an efficient transformation system in radish. This study aimed to establish a CRISPR/Cas9 system in radish employing the Agrobacterium-mediated genetic transformation system reported recently. For this purpose, we performed genome editing using the CRISPR/Cas9 system targeting the GLABRA1 (GL1) orthologs, RsGL1a and RsGL1b, that induces leaf trichome formation in radish. A Cas9/single guide RNA (sgRNA) vector with a common sgRNA corresponding to RsGL1a and RsGL1b was transferred. A total of eight T0 plants were analyzed, of which six (editing efficiency 75%) had a mutated RsGL1a, five (62.5%) had a mutated RsGL1b, and five showed mutations in both RsGL1a and RsGL1b. Most mutations in T0 plants were short (<3 bp) deletions or insertions, causing frameshift mutations that might produce non-functional proteins. Chimeric mutations were detected in several T0 generation plants. In the T1 generation, the hairless phenotype was observed only in plants with knockout mutations in both RsGL1a and RsGL1b. The majority of mutant alleles in T0 plants, with the exception of the chimeric mutant plants detected, were stably inherited in the T1 generation. In conclusion, we successfully knocked out RsGL1a and RsGL1b using the CRISPR/Cas9 system and demonstrated that both RsGL1a and RsGL1b independently contribute to the induction of leaf trichome formation in radish. In this study, genome-edited plants without T-DNA, which are useful as breeding material, were obtained. The findings prove the feasibility of genome editing in radish using a CRISPR/Cas9 system that could accelerate its molecular breeding to improve agronomically desirable traits.
Collapse
|
36
|
Bollier N, Gonzalez N, Chevalier C, Hernould M. Zinc Finger-Homeodomain and Mini Zinc Finger proteins are key players in plant growth and responses to environmental stresses. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4662-4673. [PMID: 35536651 DOI: 10.1093/jxb/erac194] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/06/2022] [Indexed: 06/14/2023]
Abstract
The ZINC FINGER-HOMEODOMAIN (ZHD) protein family is a plant-specific family of transcription factors containing two conserved motifs: a non-canonical C5H3 zinc finger domain (ZF) and a DNA-binding homeodomain (HD). The MINI ZINC FINGER (MIF) proteins belong to this family, but were possibly derived from the ZHDs by losing the HD. Information regarding the function of ZHD and MIF proteins is scarce. However, different studies have shown that ZHD/MIF proteins play important roles not only in plant growth and development, but also in response to environmental stresses, including drought and pathogen attack. Here we review recent advances relative to ZHD/MIF functions in multiple species, to provide new insights into the diverse roles of these transcription factors in plants. Their mechanism of action in relation to their ability to interact with other proteins and DNA is also discussed. We then propose directions for future studies to understand better their important roles and pinpoint strategies for potential applications in crop improvement.
Collapse
Affiliation(s)
- Norbert Bollier
- Université de Bordeaux, INRAE, UMR1332 Biologie du Fruit et Pathologie, F-33882 Villenave d'Ornon, France
| | - Nathalie Gonzalez
- Université de Bordeaux, INRAE, UMR1332 Biologie du Fruit et Pathologie, F-33882 Villenave d'Ornon, France
| | - Christian Chevalier
- Université de Bordeaux, INRAE, UMR1332 Biologie du Fruit et Pathologie, F-33882 Villenave d'Ornon, France
| | - Michel Hernould
- Université de Bordeaux, INRAE, UMR1332 Biologie du Fruit et Pathologie, F-33882 Villenave d'Ornon, France
| |
Collapse
|
37
|
Uetz P, Melnik S, Grünwald-Gruber C, Strasser R, Stoger E. CRISPR/Cas9-mediated knockout of a prolyl-4-hydroxylase subfamily in Nicotiana benthamiana using DsRed2 for plant selection. Biotechnol J 2022; 17:e2100698. [PMID: 35427441 DOI: 10.1002/biot.202100698] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 04/01/2022] [Accepted: 04/11/2022] [Indexed: 11/08/2022]
Abstract
The properties of host plants used for molecular farming can be modified by CRISPR/Cas9 genome editing to improve the quality and yield of recombinant proteins. However, it is often necessary to target multiple genes simultaneously, particularly when using host plants with large and complex genomes. This is the case for Nicotiana benthamiana, an allotetraploid relative of tobacco frequently used for transient protein expression. A multiplex genome editing system incorporating the DsRed2 fluorescent marker for the identification and selection of transgenic plants was established. As proof of principle, NbP4H4 was targeted encoding a prolyl-4-hydroxylase involved in protein O-linked glycosylation. Using preselected gRNAs with efficiencies confirmed by transient expression, transgenic plant lines with knockout mutations in all four NbP4H4 genes were obtained. Leaf fluorescence was then used to screen for the absence of the SpCas9 transgene in T1 plants, and transgene-free lines with homozygous or biallelic mutations were identified. The analysis of plant-produced recombinant IgA1 as a reporter protein revealed changes in the number of peptides containing hydroxyproline residues and pentoses in the knockout plants. The selection of efficient gRNAs combined with the DsRed2 marker reduces the effort needed to generate N. benthamiana mutants and simplifies the screening processes to obtain transgene-free progeny.
Collapse
Affiliation(s)
- Pia Uetz
- Institute of Plant Biotechnology and Cell Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Stanislav Melnik
- Institute of Plant Biotechnology and Cell Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Clemens Grünwald-Gruber
- Core Facility Mass Spectrometry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Richard Strasser
- Institute of Plant Biotechnology and Cell Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Eva Stoger
- Institute of Plant Biotechnology and Cell Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
38
|
Van Huffel K, Stock M, Ruttink T, De Baets B. Covering the Combinatorial Design Space of Multiplex CRISPR/Cas Experiments in Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:907095. [PMID: 35795354 PMCID: PMC9251496 DOI: 10.3389/fpls.2022.907095] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Over the past years, CRISPR/Cas-mediated genome editing has revolutionized plant genetic studies and crop breeding. Specifically, due to its ability to simultaneously target multiple genes, the multiplex CRISPR/Cas system has emerged as a powerful technology for functional analysis of genetic pathways. As such, it holds great potential for application in plant systems to discover genetic interactions and to improve polygenic agronomic traits in crop breeding. However, optimal experimental design regarding coverage of the combinatorial design space in multiplex CRISPR/Cas screens remains largely unexplored. To contribute to well-informed experimental design of such screens in plants, we first establish a representation of the design space at different stages of a multiplex CRISPR/Cas experiment. We provide two independent computational approaches yielding insights into the plant library size guaranteeing full coverage of all relevant multiplex combinations of gene knockouts in a specific multiplex CRISPR/Cas screen. These frameworks take into account several design parameters (e.g., the number of target genes, the number of gRNAs designed per gene, and the number of elements in the combinatorial array) and efficiencies at subsequent stages of a multiplex CRISPR/Cas experiment (e.g., the distribution of gRNA/Cas delivery, gRNA-specific mutation efficiency, and knockout efficiency). With this work, we intend to raise awareness about the limitations regarding the number of target genes and order of genetic interaction that can be realistically analyzed in multiplex CRISPR/Cas experiments with a given number of plants. Finally, we establish guidelines for designing multiplex CRISPR/Cas experiments with an optimal coverage of the combinatorial design space at minimal plant library size.
Collapse
Affiliation(s)
- Kirsten Van Huffel
- Knowledge-based Systems (KERMIT), Department of Data Analysis and Mathematical Modelling, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Michiel Stock
- Knowledge-based Systems (KERMIT), Department of Data Analysis and Mathematical Modelling, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Tom Ruttink
- Plant Sciences Unit, Flanders Research Institute for Agricultural, Fisheries and Food (ILVO), Melle, Belgium
| | - Bernard De Baets
- Knowledge-based Systems (KERMIT), Department of Data Analysis and Mathematical Modelling, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
39
|
A peptide-mediated, multilateral molecular dialogue for the coordination of pollen wall formation. Proc Natl Acad Sci U S A 2022; 119:e2201446119. [PMID: 35609199 DOI: 10.1073/pnas.2201446119] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
SignificancePollen viability depends on a tough external barrier called the pollen wall. Pollen wall components are produced by tapetum cells, which surround developing pollen grains within the anther. Precise coordination of tapetum activity with pollen grain development is required to ensure effective pollen wall formation. Here, we reveal that this is achieved through a multidirectional dialogue involving three distinct cell types. We show that peptide precursors from the tapetum are activated by proteases produced stage specifically in developing pollen grains. Unexpectedly, we found that activated peptides are perceived not in the tapetum, but in the middle layer, which encloses the developing tapetum and pollen grains, revealing an unsuspected role for this enigmatic cell layer in the control of tapetum development.
Collapse
|
40
|
Kwon CT, Tang L, Wang X, Gentile I, Hendelman A, Robitaille G, Van Eck J, Xu C, Lippman ZB. Dynamic evolution of small signalling peptide compensation in plant stem cell control. NATURE PLANTS 2022; 8:346-355. [PMID: 35347264 DOI: 10.1038/s41477-022-01118-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
Gene duplications are a hallmark of plant genome evolution and a foundation for genetic interactions that shape phenotypic diversity1-5. Compensation is a major form of paralogue interaction6-8 but how compensation relationships change as allelic variation accumulates is unknown. Here we leveraged genomics and genome editing across the Solanaceae family to capture the evolution of compensating paralogues. Mutations in the stem cell regulator CLV3 cause floral organs to overproliferate in many plants9-11. In tomato, this phenotype is partially suppressed by transcriptional upregulation of a closely related paralogue12. Tobacco lost this paralogue, resulting in no compensation and extreme clv3 phenotypes. Strikingly, the paralogues of petunia and groundcherry nearly completely suppress clv3, indicating a potent ancestral state of compensation. Cross-species transgenic complementation analyses show that this potent compensation partially degenerated in tomato due to a single amino acid change in the paralogue and cis-regulatory variation that limits its transcriptional upregulation. Our findings show how genetic interactions are remodelled following duplications and suggest that dynamic paralogue evolution is widespread over short time scales and impacts phenotypic variation from natural and engineered mutations.
Collapse
Affiliation(s)
- Choon-Tak Kwon
- School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
- Department of Horticultural Biotechnology, Kyung Hee University, Yongin, Republic of Korea
| | - Lingli Tang
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xingang Wang
- School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
| | - Iacopo Gentile
- School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
| | - Anat Hendelman
- School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
| | - Gina Robitaille
- School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
| | - Joyce Van Eck
- Boyce Thompson Institute, Ithaca, NY, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Cao Xu
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Zachary B Lippman
- School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA.
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA.
| |
Collapse
|
41
|
Helderman TA, Deurhof L, Bertran A, Richard MMS, Kormelink R, Prins M, Joosten MHAJ, van den Burg HA. Members of the ribosomal protein S6 (RPS6) family act as pro-viral factor for tomato spotted wilt orthotospovirus infectivity in Nicotiana benthamiana. MOLECULAR PLANT PATHOLOGY 2022; 23:431-446. [PMID: 34913556 PMCID: PMC8828452 DOI: 10.1111/mpp.13169] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 05/07/2023]
Abstract
To identify host factors for tomato spotted wilt orthotospovirus (TSWV), a virus-induced gene silencing (VIGS) screen using tobacco rattle virus (TRV) was performed on Nicotiana benthamiana for TSWV susceptibility. To rule out any negative effect on the plants' performance due to a double viral infection, the method was optimized to allow screening of hundreds of clones in a standardized fashion. To normalize the results obtained in and between experiments, a set of controls was developed to evaluate in a consist manner both VIGS efficacy and the level of TSWV resistance. Using this method, 4532 random clones of an N. benthamiana cDNA library were tested, resulting in five TRV clones that provided nearly complete resistance against TSWV. Here we report on one of these clones, of which the insert targets a small gene family coding for the ribosomal protein S6 (RPS6) that is part of the 40S ribosomal subunit. This RPS6 family is represented by three gene clades in the genome of Solanaceae family members, which were jointly important for TSWV susceptibility. Interestingly, RPS6 is a known host factor implicated in the replication of different plant RNA viruses, including the negative-stranded TSWV and the positive-stranded potato virus X.
Collapse
Affiliation(s)
- Tieme A. Helderman
- Molecular Plant PathologySwammerdam Institute for Life SciencesUniversity of AmsterdamAmsterdamNetherlands
| | - Laurens Deurhof
- Laboratory of PhytopathologyDepartment of Plant SciencesWageningen UniversityWageningenNetherlands
| | - André Bertran
- Laboratory of VirologyDepartment of Plant SciencesWageningen UniversityWageningenNetherlands
| | - Manon M. S. Richard
- Molecular Plant PathologySwammerdam Institute for Life SciencesUniversity of AmsterdamAmsterdamNetherlands
| | - Richard Kormelink
- Laboratory of VirologyDepartment of Plant SciencesWageningen UniversityWageningenNetherlands
| | - Marcel Prins
- Molecular Plant PathologySwammerdam Institute for Life SciencesUniversity of AmsterdamAmsterdamNetherlands
- KeyGene N.V.WageningenNetherlands
| | | | - Harrold A. van den Burg
- Molecular Plant PathologySwammerdam Institute for Life SciencesUniversity of AmsterdamAmsterdamNetherlands
| |
Collapse
|
42
|
Pizzio GA, Mayordomo C, Lozano-Juste J, Garcia-Carpintero V, Vazquez-Vilar M, Nebauer SG, Kaminski KP, Ivanov NV, Estevez JC, Rivera-Moreno M, Albert A, Orzaez D, Rodriguez PL. PYL1- and PYL8-like ABA Receptors of Nicotiana benthamiana Play a Key Role in ABA Response in Seed and Vegetative Tissue. Cells 2022; 11:795. [PMID: 35269417 PMCID: PMC8909036 DOI: 10.3390/cells11050795] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/16/2022] [Accepted: 02/20/2022] [Indexed: 02/04/2023] Open
Abstract
To face the challenges of climate change and sustainable food production, it is essential to develop crop genome editing techniques to pinpoint key genes involved in abiotic stress signaling. The identification of those prevailing abscisic acid (ABA) receptors that mediate plant-environment interactions is quite challenging in polyploid plants because of the high number of genes in the PYR/PYL/RCAR ABA receptor family. Nicotiana benthamiana is a biotechnological crop amenable to genome editing, and given the importance of ABA signaling in coping with drought stress, we initiated the analysis of its 23-member family of ABA receptors through multiplex CRISPR/Cas9-mediated editing. We generated several high-order mutants impaired in NbPYL1-like and NbPYL8-like receptors, which showed certain insensitivity to ABA for inhibition of seedling establishment, growth, and development of shoot and lateral roots as well as reduced sensitivity to the PYL1-agonist cyanabactin (CB). However, in these high-order mutants, regulation of transpiration was not affected and was responsive to ABA treatment. This reveals a robust and redundant control of transpiration in this allotetraploid plant that probably reflects its origin from the extreme habitat of central Australia.
Collapse
Affiliation(s)
- Gaston A. Pizzio
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, ES-46022 Valencia, Spain; (G.A.P.); (C.M.); (J.L.-J.); (V.G.-C.); (M.V.-V.); (D.O.)
| | - Cristian Mayordomo
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, ES-46022 Valencia, Spain; (G.A.P.); (C.M.); (J.L.-J.); (V.G.-C.); (M.V.-V.); (D.O.)
| | - Jorge Lozano-Juste
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, ES-46022 Valencia, Spain; (G.A.P.); (C.M.); (J.L.-J.); (V.G.-C.); (M.V.-V.); (D.O.)
| | - Victor Garcia-Carpintero
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, ES-46022 Valencia, Spain; (G.A.P.); (C.M.); (J.L.-J.); (V.G.-C.); (M.V.-V.); (D.O.)
| | - Marta Vazquez-Vilar
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, ES-46022 Valencia, Spain; (G.A.P.); (C.M.); (J.L.-J.); (V.G.-C.); (M.V.-V.); (D.O.)
| | - Sergio G. Nebauer
- Plant Production Department, Universitat Politècnica de València, ES-46022 Valencia, Spain;
| | - Kacper P. Kaminski
- PMI R&D, Philip Morris Products S.A., Quai Jean Renaud 5, CH-2000 Neuchâtel, Switzerland; (K.P.K.); (N.V.I.)
| | - Nikolai V. Ivanov
- PMI R&D, Philip Morris Products S.A., Quai Jean Renaud 5, CH-2000 Neuchâtel, Switzerland; (K.P.K.); (N.V.I.)
| | - Juan C. Estevez
- Centro Singular de Investigación en Química e Bioloxía Molecular (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| | - Maria Rivera-Moreno
- Instituto de Química-Física Rocasolano, Departamento de Cristalografía y Biología Estructural, CSIC, ES-28006 Madrid, Spain; (M.R.-M.); (A.A.)
| | - Armando Albert
- Instituto de Química-Física Rocasolano, Departamento de Cristalografía y Biología Estructural, CSIC, ES-28006 Madrid, Spain; (M.R.-M.); (A.A.)
| | - Diego Orzaez
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, ES-46022 Valencia, Spain; (G.A.P.); (C.M.); (J.L.-J.); (V.G.-C.); (M.V.-V.); (D.O.)
| | - Pedro L. Rodriguez
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, ES-46022 Valencia, Spain; (G.A.P.); (C.M.); (J.L.-J.); (V.G.-C.); (M.V.-V.); (D.O.)
| |
Collapse
|
43
|
Son S, Park SR. Challenges Facing CRISPR/Cas9-Based Genome Editing in Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:902413. [PMID: 35677236 PMCID: PMC9169250 DOI: 10.3389/fpls.2022.902413] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/29/2022] [Indexed: 05/18/2023]
Abstract
The development of plant varieties with desired traits is imperative to ensure future food security. The revolution of genome editing technologies based on the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated nuclease 9 (Cas9) system has ushered in a new era in plant breeding. Cas9 and the single-guide RNA (sgRNA) form an effective targeting complex on a locus or loci of interest, enabling genome editing in all plants with high accuracy and efficiency. Therefore, CRISPR/Cas9 can save both time and labor relative to what is typically associated with traditional breeding methods. However, despite improvements in gene editing, several challenges remain that limit the application of CRISPR/Cas9-based genome editing in plants. Here, we focus on four issues relevant to plant genome editing: (1) plant organelle genome editing; (2) transgene-free genome editing; (3) virus-induced genome editing; and (4) editing of recalcitrant elite crop inbred lines. This review provides an up-to-date summary on the state of CRISPR/Cas9-mediated genome editing in plants that will push this technique forward.
Collapse
|
44
|
Gu X, Liu L, Zhang H. Transgene-free Genome Editing in Plants. Front Genome Ed 2021; 3:805317. [PMID: 34927134 PMCID: PMC8678605 DOI: 10.3389/fgeed.2021.805317] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 11/12/2021] [Indexed: 01/29/2023] Open
Abstract
Genome editing is widely used across plant species to generate and study the impact of functional mutations in crop improvement. However, transgene integration in plant genomes raises important legislative concerns regarding genetically modified organisms. Several strategies have been developed to remove or prevent the integration of gene editor constructs, which can be divided into three major categories: 1) elimination of transgenic sequences via genetic segregation; 2) transient editor expression from DNA vectors; and 3) DNA-independent editor delivery, including RNA or preassembled Cas9 protein-gRNA ribonucleoproteins (RNPs). Here, we summarize the main strategies employed to date and discuss the advantages and disadvantages of using these different tools. We hope that our work can provide important information concerning the value of alternative genome editing strategies to advance crop breeding.
Collapse
Affiliation(s)
- Xiaoyong Gu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Lijing Liu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Huawei Zhang
- Institute of Advanced Agricultural Science, Peking University, Weifang, China
| |
Collapse
|
45
|
Hassan MM, Zhang Y, Yuan G, De K, Chen JG, Muchero W, Tuskan GA, Qi Y, Yang X. Construct design for CRISPR/Cas-based genome editing in plants. TRENDS IN PLANT SCIENCE 2021; 26:1133-1152. [PMID: 34340931 DOI: 10.1016/j.tplants.2021.06.015] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 06/21/2021] [Accepted: 06/24/2021] [Indexed: 05/06/2023]
Abstract
CRISPR construct design is a key step in the practice of genome editing, which includes identification of appropriate Cas proteins, design and selection of guide RNAs (gRNAs), and selection of regulatory elements to express gRNAs and Cas proteins. Here, we review the choices of CRISPR-based genome editors suited for different needs in plant genome editing applications. We consider the technical aspects of gRNA design and the associated computational tools. We also discuss strategies for the design of multiplex CRISPR constructs for high-throughput manipulation of complex biological processes or polygenic traits. We provide recommendations for different elements of CRISPR constructs and discuss the remaining challenges of CRISPR construct optimization in plant genome editing.
Collapse
Affiliation(s)
- Md Mahmudul Hassan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; Department of Genetics and Plant Breeding, Patuakhali Science and Technology University, Dumki, Patuakhali-8602, Bangladesh
| | - Yingxiao Zhang
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA
| | - Guoliang Yuan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Kuntal De
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Jin-Gui Chen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Wellington Muchero
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Gerald A Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Yiping Qi
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA; Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA.
| | - Xiaohan Yang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
| |
Collapse
|
46
|
Abdelrahman M, Wei Z, Rohila JS, Zhao K. Multiplex Genome-Editing Technologies for Revolutionizing Plant Biology and Crop Improvement. FRONTIERS IN PLANT SCIENCE 2021; 12:721203. [PMID: 34691102 PMCID: PMC8526792 DOI: 10.3389/fpls.2021.721203] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 09/01/2021] [Indexed: 05/26/2023]
Abstract
Multiplex genome-editing (MGE) technologies are recently developed versatile bioengineering tools for modifying two or more specific DNA loci in a genome with high precision. These genome-editing tools have greatly increased the feasibility of introducing desired changes at multiple nucleotide levels into a target genome. In particular, clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) [CRISPR/Cas] system-based MGE tools allow the simultaneous generation of direct mutations precisely at multiple loci in a gene or multiple genes. MGE is enhancing the field of plant molecular biology and providing capabilities for revolutionizing modern crop-breeding methods as it was virtually impossible to edit genomes so precisely at the single base-pair level with prior genome-editing tools, such as zinc-finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs). Recently, researchers have not only started using MGE tools to advance genome-editing applications in certain plant science fields but also have attempted to decipher and answer basic questions related to plant biology. In this review, we discuss the current progress that has been made toward the development and utilization of MGE tools with an emphasis on the improvements in plant biology after the discovery of CRISPR/Cas9. Furthermore, the most recent advancements involving CRISPR/Cas applications for editing multiple loci or genes are described. Finally, insights into the strengths and importance of MGE technology in advancing crop-improvement programs are presented.
Collapse
Affiliation(s)
- Mohamed Abdelrahman
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
- Rice Research and Training Center, Field Crops Research Institute, Agricultural Research Center, Kafr El-Shaikh, Egypt
| | - Zheng Wei
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jai S. Rohila
- Dale Bumpers National Rice Research Center, United States Department of Agriculture - Agricultural Research Services, Stuttgart, AR, United States
| | - Kaijun Zhao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
47
|
Venezia M, Creasey Krainer KM. Current Advancements and Limitations of Gene Editing in Orphan Crops. FRONTIERS IN PLANT SCIENCE 2021; 12:742932. [PMID: 34630494 PMCID: PMC8493294 DOI: 10.3389/fpls.2021.742932] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 08/20/2021] [Indexed: 05/23/2023]
Abstract
Gene editing provides precise, heritable genome mutagenesis without permanent transgenesis, and has been widely demonstrated and applied in planta. In the past decade, clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated proteins (Cas) has revolutionized the application of gene editing in crops, with mechanistic advances expanding its potential, including prime editing and base editing. To date, CRISPR/Cas has been utilized in over a dozen orphan crops with diverse genetic backgrounds, leading to novel alleles and beneficial phenotypes for breeders, growers, and consumers. In conjunction with the adoption of science-based regulatory practices, there is potential for CRISPR/Cas-mediated gene editing in orphan crop improvement programs to solve a plethora of agricultural problems, especially impacting developing countries. Genome sequencing has progressed, becoming more affordable and applicable to orphan crops. Open-access resources allow for target gene identification and guide RNA (gRNA) design and evaluation, with modular cloning systems and enzyme screening methods providing experimental feasibility. While the genomic and mechanistic limitations are being overcome, crop transformation and regeneration continue to be the bottleneck for gene editing applications. International collaboration between all stakeholders involved in crop improvement is vital to provide equitable access and bridge the scientific gap between the world's most economically important crops and the most under-researched crops. This review describes the mechanisms and workflow of CRISPR/Cas in planta and addresses the challenges, current applications, and future prospects in orphan crops.
Collapse
|
48
|
Evolution-aided engineering of plant specialized metabolism. ABIOTECH 2021; 2:240-263. [PMID: 36303885 PMCID: PMC9590541 DOI: 10.1007/s42994-021-00052-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 06/04/2021] [Indexed: 02/07/2023]
Abstract
The evolution of new traits in living organisms occurs via the processes of mutation, recombination, genetic drift, and selection. These processes that have resulted in the immense biological diversity on our planet are also being employed in metabolic engineering to optimize enzymes and pathways, create new-to-nature reactions, and synthesize complex natural products in heterologous systems. In this review, we discuss two evolution-aided strategies for metabolic engineering-directed evolution, which improves upon existing genetic templates using the evolutionary process, and combinatorial pathway reconstruction, which brings together genes evolved in different organisms into a single heterologous host. We discuss the general principles of these strategies, describe the technologies involved and the molecular traits they influence, provide examples of their use, and discuss the roadblocks that need to be addressed for their wider adoption. A better understanding of these strategies can provide an impetus to research on gene function discovery and biochemical evolution, which is foundational for improved metabolic engineering. These evolution-aided approaches thus have a substantial potential for improving our understanding of plant metabolism in general, for enhancing the production of plant metabolites, and in sustainable agriculture.
Collapse
|
49
|
Gogolev YV, Ahmar S, Akpinar BA, Budak H, Kiryushkin AS, Gorshkov VY, Hensel G, Demchenko KN, Kovalchuk I, Mora-Poblete F, Muslu T, Tsers ID, Yadav NS, Korzun V. OMICs, Epigenetics, and Genome Editing Techniques for Food and Nutritional Security. PLANTS (BASEL, SWITZERLAND) 2021; 10:1423. [PMID: 34371624 PMCID: PMC8309286 DOI: 10.3390/plants10071423] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/30/2021] [Accepted: 07/07/2021] [Indexed: 12/22/2022]
Abstract
The incredible success of crop breeding and agricultural innovation in the last century greatly contributed to the Green Revolution, which significantly increased yields and ensures food security, despite the population explosion. However, new challenges such as rapid climate change, deteriorating soil, and the accumulation of pollutants require much faster responses and more effective solutions that cannot be achieved through traditional breeding. Further prospects for increasing the efficiency of agriculture are undoubtedly associated with the inclusion in the breeding strategy of new knowledge obtained using high-throughput technologies and new tools in the future to ensure the design of new plant genomes and predict the desired phenotype. This article provides an overview of the current state of research in these areas, as well as the study of soil and plant microbiomes, and the prospective use of their potential in a new field of microbiome engineering. In terms of genomic and phenomic predictions, we also propose an integrated approach that combines high-density genotyping and high-throughput phenotyping techniques, which can improve the prediction accuracy of quantitative traits in crop species.
Collapse
Affiliation(s)
- Yuri V. Gogolev
- Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, Kazan Institute of Biochemistry and Biophysics, 420111 Kazan, Russia;
- Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, Laboratory of Plant Infectious Diseases, 420111 Kazan, Russia;
| | - Sunny Ahmar
- Institute of Biological Sciences, University of Talca, 1 Poniente 1141, Talca 3460000, Chile; (S.A.); (F.M.-P.)
| | | | - Hikmet Budak
- Montana BioAg Inc., Missoula, MT 59802, USA; (B.A.A.); (H.B.)
| | - Alexey S. Kiryushkin
- Laboratory of Cellular and Molecular Mechanisms of Plant Development, Komarov Botanical Institute of the Russian Academy of Sciences, 197376 Saint Petersburg, Russia; (A.S.K.); (K.N.D.)
| | - Vladimir Y. Gorshkov
- Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, Kazan Institute of Biochemistry and Biophysics, 420111 Kazan, Russia;
- Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, Laboratory of Plant Infectious Diseases, 420111 Kazan, Russia;
| | - Goetz Hensel
- Centre for Plant Genome Engineering, Institute of Plant Biochemistry, Heinrich-Heine-University, 40225 Dusseldorf, Germany;
- Centre of the Region Haná for Biotechnological and Agricultural Research, Czech Advanced Technology and Research Institute, Palacký University Olomouc, 78371 Olomouc, Czech Republic
| | - Kirill N. Demchenko
- Laboratory of Cellular and Molecular Mechanisms of Plant Development, Komarov Botanical Institute of the Russian Academy of Sciences, 197376 Saint Petersburg, Russia; (A.S.K.); (K.N.D.)
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (I.K.); (N.S.Y.)
| | - Freddy Mora-Poblete
- Institute of Biological Sciences, University of Talca, 1 Poniente 1141, Talca 3460000, Chile; (S.A.); (F.M.-P.)
| | - Tugdem Muslu
- Faculty of Engineering and Natural Sciences, Sabanci University, 34956 Istanbul, Turkey;
| | - Ivan D. Tsers
- Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, Laboratory of Plant Infectious Diseases, 420111 Kazan, Russia;
| | - Narendra Singh Yadav
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (I.K.); (N.S.Y.)
| | - Viktor Korzun
- Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, Laboratory of Plant Infectious Diseases, 420111 Kazan, Russia;
- KWS SAAT SE & Co. KGaA, Grimsehlstr. 31, 37555 Einbeck, Germany
| |
Collapse
|
50
|
Vazquez-Vilar M, Garcia-Carpintero V, Selma S, Bernabé-Orts JM, Sanchez-Vicente J, Salazar-Sarasua B, Ressa A, de Paola C, Ajenjo M, Quintela JC, Fernández-del-Carmen A, Granell A, Orzáez D. The GB4.0 Platform, an All-In-One Tool for CRISPR/Cas-Based Multiplex Genome Engineering in Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:689937. [PMID: 34276739 PMCID: PMC8284049 DOI: 10.3389/fpls.2021.689937] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/31/2021] [Indexed: 05/22/2023]
Abstract
CRISPR/Cas ability to target several loci simultaneously (multiplexing) is a game-changer in plant breeding. Multiplexing not only accelerates trait pyramiding but also can unveil traits hidden by functional redundancy. Furthermore, multiplexing enhances dCas-based programmable gene expression and enables cascade-like gene regulation. However, the design and assembly of multiplex constructs comprising tandemly arrayed guide RNAs (gRNAs) requires scarless cloning and is still troublesome due to the presence of repetitive sequences, thus hampering a more widespread use. Here we present a comprehensive extension of the software-assisted cloning platform GoldenBraid (GB), in which, on top of its multigene cloning software, we integrate new tools for the Type IIS-based easy and rapid assembly of up to six tandemly-arrayed gRNAs with both Cas9 and Cas12a, using the gRNA-tRNA-spaced and the crRNA unspaced approaches, respectively. As stress tests for the new tools, we assembled and used for Agrobacterium-mediated stable transformation a 17 Cas9-gRNAs construct targeting a subset of the Squamosa-Promoter Binding Protein-Like (SPL) gene family in Nicotiana tabacum. The 14 selected genes are targets of miR156, thus potentially playing an important role in juvenile-to-adult and vegetative-to-reproductive phase transitions. With the 17 gRNAs construct we generated a collection of Cas9-free SPL edited T1 plants harboring up to 9 biallelic mutations and showing leaf juvenility and more branching. The functionality of GB-assembled dCas9 and dCas12a-based CRISPR/Cas activators and repressors using single and multiplexing gRNAs was validated using a Luciferase reporter with the Solanum lycopersicum Mtb promoter or the Agrobacterium tumefaciens nopaline synthase promoter in transient expression in Nicotiana benthamiana. With the incorporation of the new web-based tools and the accompanying collection of DNA parts, the GB4.0 genome edition turns an all-in-one open platform for plant genome engineering.
Collapse
Affiliation(s)
- Marta Vazquez-Vilar
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, Valencia, Spain
| | - Víctor Garcia-Carpintero
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, Valencia, Spain
| | - Sara Selma
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, Valencia, Spain
| | - Joan M. Bernabé-Orts
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, Valencia, Spain
| | - Javier Sanchez-Vicente
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, Valencia, Spain
| | - Blanca Salazar-Sarasua
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, Valencia, Spain
| | - Arianna Ressa
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, Valencia, Spain
| | - Carmine de Paola
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, Valencia, Spain
| | - María Ajenjo
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, Valencia, Spain
| | | | - Asun Fernández-del-Carmen
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, Valencia, Spain
| | - Antonio Granell
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, Valencia, Spain
| | - Diego Orzáez
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, Valencia, Spain
| |
Collapse
|