1
|
Sobhi HF, Mercer KE, Lan RS, Yeruva L, Ten Have GAM, Deutz NEP, Piccolo BD, Debédat J, Pack LM, Adams SH. Novel odd-chain cyclopropane fatty acids: detection in a mammalian lipidome and uptake by hepatosplanchnic tissues. J Lipid Res 2024; 65:100632. [PMID: 39182606 PMCID: PMC11439845 DOI: 10.1016/j.jlr.2024.100632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 08/07/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024] Open
Abstract
Microbe-produced molecules (xenometabolites) found in foods or produced by gut microbiota are increasingly implicated in microbe-microbe and microbe-host communication. Xenolipids, in particular, are a class of metabolites for which the full catalog remains to be elaborated in mammalian systems. We and others have observed that cis-3,4-methylene-heptanoylcarnitine is a lipid derivative that is one of the most abundant medium-chain acylcarnitines in human blood, hypothesized to be a product of incomplete β-oxidation of one or more "odd-chain" long-chain cyclopropane fatty acids (CpFAs). We deduced two possible candidates, cis-11,12-methylene-pentadecanoic acid (cis-11,12-MPD) and cis-13,14-methylene-heptadecanoic acid (cis-13,14-MHD). Authentic standards were synthesized: cis-11-pentadecenoic acid and cis-13-heptadecenoic acid were generated (using Jones reagent) from cis-11-pentadecene-1-ol and cis-13-heptadecene-1-ol, respectively, and these were converted to CpFAs via a reaction involving diiodomethane. Using these standards in mass spectrometry analyses, we determined the presence/absence of cis-11,12-MPD and cis-13,14-MHD in archived piglet biospecimens. Both CpFAs were detected in rectal contents of sow and soy-fed piglets. Archived mass spectra were analyzed post hoc from a second independent study that used tissue-specific catheterization to monitor net metabolite flux in growing pigs. This confirmed the presence of both CpFAs in plasma and revealed a significant net uptake of the odd-chain CpFAs across the splanchnic tissue bed and liver. The results confirm that the novel xenolipids cis-11,12-MPD and cis-13,14-MHD can be components of the mammalian lipidome and are viable candidate precursors of cis-3,4-methylene-heptanoylcarnitine produced from partial β-oxidation in liver or other tissues.
Collapse
Affiliation(s)
- Hany F Sobhi
- Center for Organic Synthesis, Department of Natural Sciences, Coppin State University, Baltimore, Maryland, USA.
| | - Kelly E Mercer
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA; Arkansas Children's Nutrition Center, Little Rock, Arkansas, USA
| | - Renny S Lan
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA; Arkansas Children's Nutrition Center, Little Rock, Arkansas, USA
| | - Laxmi Yeruva
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA; Arkansas Children's Nutrition Center, Little Rock, Arkansas, USA; USDA-ARS Southeast Area, Microbiome and Metabolism Research Unit, Arkansas Children's Nutrition Center, Little Rock, Arkansas, USA
| | - Gabriella A M Ten Have
- Center for Translational Research in Aging and Longevity, Department of Health and Kinesiology, Texas A & M University, College Station, Texas, USA
| | - Nicolaas E P Deutz
- Center for Translational Research in Aging and Longevity, Department of Health and Kinesiology, Texas A & M University, College Station, Texas, USA
| | - Brian D Piccolo
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA; Arkansas Children's Nutrition Center, Little Rock, Arkansas, USA
| | - Jean Debédat
- Department of Surgery, University of California Davis School of Medicine, Sacramento, California, USA; Center for Alimentary and Metabolic Science, University of California Davis School of Medicine, Sacramento, California, USA
| | - Lindsay M Pack
- Arkansas Children's Nutrition Center, Little Rock, Arkansas, USA
| | - Sean H Adams
- Department of Surgery, University of California Davis School of Medicine, Sacramento, California, USA; Center for Alimentary and Metabolic Science, University of California Davis School of Medicine, Sacramento, California, USA.
| |
Collapse
|
2
|
Zarei I, Eloranta AM, Klåvus A, Väistö J, Lehtonen M, Mikkonen S, Koistinen VM, Sallinen T, Haapala EA, Lintu N, Soininen S, Haikonen R, Atalay M, Schwab U, Auriola S, Kolehmainen M, Hanhineva K, Lakka TA. Eight-year diet and physical activity intervention affects serum metabolites during childhood and adolescence: A nonrandomized controlled trial. iScience 2024; 27:110295. [PMID: 39055945 PMCID: PMC11269805 DOI: 10.1016/j.isci.2024.110295] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 04/16/2024] [Accepted: 06/14/2024] [Indexed: 07/28/2024] Open
Abstract
Long-term lifestyle interventions in childhood and adolescence can significantly improve cardiometabolic health, but the underlying molecular mechanisms remain poorly understood. To address this knowledge gap, we conducted an 8-year diet and physical activity intervention in a general population of children. The research revealed that the intervention influenced 80 serum metabolites over two years, with 17 metabolites continuing to be affected after eight years. The intervention primarily impacted fatty amides, including palmitic amide, linoleamide, oleamide, and others, as well as unsaturated fatty acids, acylcarnitines, phospholipids, sterols, gut microbiota-derived metabolites, amino acids, and purine metabolites. Particularly noteworthy were the pronounced changes in serum fatty amides. These serum metabolite alterations could represent molecular mechanisms responsible for the observed benefits of long-term lifestyle interventions on cardiometabolic and overall health since childhood. Understanding these metabolic changes may provide valuable insights into the prevention of cardiometabolic and other non-communicable diseases since childhood.
Collapse
Affiliation(s)
- Iman Zarei
- Institute of Public Health and Clinical Nutrition, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
- Institute of Biomedicine, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Aino-Maija Eloranta
- Institute of Public Health and Clinical Nutrition, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
- Institute of Biomedicine, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
- Department of Medicine, Endocrinology and Clinical Nutrition, Kuopio University Hospital, Kuopio, Finland
| | - Anton Klåvus
- Institute of Public Health and Clinical Nutrition, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Juuso Väistö
- Institute of Biomedicine, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Marko Lehtonen
- School of Pharmacy, Faculty of Health Science, University of Eastern Finland, Kuopio, Finland
- LC-MS Metabolomics Center, Biocenter Kuopio, Kuopio, Finland
| | - Santtu Mikkonen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Ville M. Koistinen
- Institute of Public Health and Clinical Nutrition, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
- Food Chemistry and Food Development Unit, Department of Biochemistry, University of Turku, Turku, Finland
| | - Taisa Sallinen
- Institute of Public Health and Clinical Nutrition, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
- Institute of Biomedicine, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Eero A. Haapala
- Institute of Biomedicine, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Niina Lintu
- Institute of Biomedicine, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Sonja Soininen
- Institute of Biomedicine, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
- Physician and Nursing Services, Health and Social Services Centre, Wellbeing Services County of North Savo, Varkaus, Finland
| | - Retu Haikonen
- Institute of Public Health and Clinical Nutrition, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Mustafa Atalay
- Institute of Biomedicine, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Ursula Schwab
- Institute of Public Health and Clinical Nutrition, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
- Department of Medicine, Endocrinology and Clinical Nutrition, Kuopio University Hospital, Kuopio, Finland
| | - Seppo Auriola
- School of Pharmacy, Faculty of Health Science, University of Eastern Finland, Kuopio, Finland
| | - Marjukka Kolehmainen
- Institute of Public Health and Clinical Nutrition, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Kati Hanhineva
- Institute of Public Health and Clinical Nutrition, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
- Food Chemistry and Food Development Unit, Department of Biochemistry, University of Turku, Turku, Finland
| | - Timo A. Lakka
- Institute of Biomedicine, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, Finland
- Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
| |
Collapse
|
3
|
Hernández-Saavedra D, Hinkley JM, Baer LA, Pinckard KM, Vidal P, Nirengi S, Brennan AM, Chen EY, Narain NR, Bussberg V, Tolstikov VV, Kiebish MA, Markunas C, Ilkayeva O, Goodpaster BH, Newgard CB, Goodyear LJ, Coen PM, Stanford KI. Chronic exercise improves hepatic acylcarnitine handling. iScience 2024; 27:109083. [PMID: 38361627 PMCID: PMC10867450 DOI: 10.1016/j.isci.2024.109083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 12/21/2023] [Accepted: 01/28/2024] [Indexed: 02/17/2024] Open
Abstract
Exercise mediates tissue metabolic function through direct and indirect adaptations to acylcarnitine (AC) metabolism, but the exact mechanisms are unclear. We found that circulating medium-chain acylcarnitines (AC) (C12-C16) are lower in active/endurance trained human subjects compared to sedentary controls, and this is correlated with elevated cardiorespiratory fitness and reduced adiposity. In mice, exercise reduced serum AC and increased liver AC, and this was accompanied by a marked increase in expression of genes involved in hepatic AC metabolism and mitochondrial β-oxidation. Primary hepatocytes from high-fat fed, exercise trained mice had increased basal respiration compared to hepatocytes from high-fat fed sedentary mice, which may be attributed to increased Ca2+ cycling and lipid uptake into mitochondria. The addition of specific medium- and long-chain AC to sedentary hepatocytes increased mitochondrial respiration, mirroring the exercise phenotype. These data indicate that AC redistribution is an exercise-induced mechanism to improve hepatic function and metabolism.
Collapse
Affiliation(s)
- Diego Hernández-Saavedra
- Dorothy M. Davis Heart and Lung Research Institute; Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - J. Matthew Hinkley
- AdventHealth Translational Research Institute, AdventHealth, Orlando, FL 32804, USA
| | - Lisa A. Baer
- Dorothy M. Davis Heart and Lung Research Institute; Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Kelsey M. Pinckard
- Dorothy M. Davis Heart and Lung Research Institute; Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Pablo Vidal
- Dorothy M. Davis Heart and Lung Research Institute; Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Shinsuke Nirengi
- Dorothy M. Davis Heart and Lung Research Institute; Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Andrea M. Brennan
- AdventHealth Translational Research Institute, AdventHealth, Orlando, FL 32804, USA
| | | | | | | | | | | | - Christina Markunas
- Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute, Departments of Pharmacology and Cancer Biology and Medicine, Durham, NC 27701, USA
| | - Olga Ilkayeva
- Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute, Departments of Pharmacology and Cancer Biology and Medicine, Durham, NC 27701, USA
| | - Bret H. Goodpaster
- AdventHealth Translational Research Institute, AdventHealth, Orlando, FL 32804, USA
| | - Christopher B. Newgard
- Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute, Departments of Pharmacology and Cancer Biology and Medicine, Durham, NC 27701, USA
| | - Laurie J. Goodyear
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Boston, MA 02215, USA
| | - Paul M. Coen
- AdventHealth Translational Research Institute, AdventHealth, Orlando, FL 32804, USA
| | - Kristin I. Stanford
- Dorothy M. Davis Heart and Lung Research Institute; Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|
4
|
Ng TKS, Wee HN, Ching J, Kovalik JP, Chan AW, Matchar DB. Plasma Acylcarnitines as Metabolic Signatures of Declining Health-Related Quality of Life Measure in Community-Dwelling Older Adults: A Combined Cross-sectional and Longitudinal Pilot Study. J Gerontol A Biol Sci Med Sci 2024; 79:glac114. [PMID: 35605263 DOI: 10.1093/gerona/glac114] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Health-related quality of life (HRQoL) measures are predictors of adverse health outcomes in older adults. Studies have demonstrated cross-sectional associations between HRQoL measures and blood-based biochemical markers. Acylcarnitines (ACs) are a class of metabolites generated in the mitochondria and are predictive of multiple geriatric syndromes. Changes in ACs reflect alterations in central carbon metabolic pathways. However, the prospective relationship between plasma ACs and declining HRQoL has not been examined. This study aimed to investigate both cross-sectional and longitudinal associations of baseline ACs with baseline and declining EuroQol-5 Dimension/EuroQol Visual Analogue Scale (EQ-5D/EQ-VAS) in community-dwelling older adults. METHODS One hundred and twenty community-dwelling older adults with EQ-5D/EQ-VAS measurements at baseline and follow-up were included. We quantified ACs at baseline using targeted plasma metabolomics profiling. Multivariate regressions were performed to examine cross-sectional and longitudinal associations between the measures. RESULTS Cross-sectionally, ACs showed no significant associations with either EQ-5D index or EQ-VAS scores. Longitudinally, multiple baseline short-chain ACs were significantly and inversely associated with declining EQ-5D index score, explaining up to 8.5% of variance in the decline. CONCLUSIONS Within a cohort of community-dwelling older adults who had high HRQoL at baseline, we showed that higher levels of short-chain ACs are longitudinally associated with declining HRQoL. These findings reveal a novel association between central carbon metabolic pathways and declining HRQoL. Notably, dysregulation in mitochondrial central carbon metabolism could be detected prior to clinically important decline in HRQoL, providing the first evidence of objective biomarkers as novel predictors to monitor HRQoL in nonpharmacological interventions and epidemiology.
Collapse
Affiliation(s)
- Ted Kheng Siang Ng
- Edson College of Nursing and Health Innovation, Arizona State University, USA
| | - Hai Ning Wee
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore
| | - Jianhong Ching
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore
- KK Research Centre, KK Women's and Children's Hospital, Singapore
| | - Jean-Paul Kovalik
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore
| | - Angelique W Chan
- Program in Health Services and Systems Research, Duke-National University of Singapore Medical School, Singapore
- Department of Sociology, Faculty of Arts and Social Sciences, National University of Singapore, Singapore
- Center for Aging, Research and Education, Duke-National University of Singapore Medical School, Singapore
| | - David Bruce Matchar
- Program in Health Services and Systems Research, Duke-National University of Singapore Medical School, Singapore
- Center for Aging, Research and Education, Duke-National University of Singapore Medical School, Singapore
- Department of Medicine (General Internal Medicine), Duke University School of Medicine, USA
| |
Collapse
|
5
|
da Silva ACR, Yadegari A, Tzaneva V, Vasanthan T, Laketic K, Shearer J, Bainbridge SA, Harris C, Adamo KB. Metabolomics to Understand Alterations Induced by Physical Activity during Pregnancy. Metabolites 2023; 13:1178. [PMID: 38132860 PMCID: PMC10745110 DOI: 10.3390/metabo13121178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/20/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
Physical activity (PA) and exercise have been associated with a reduced risk of cancer, obesity, and diabetes. In the context of pregnancy, maintaining an active lifestyle has been shown to decrease gestational weight gain (GWG) and lower the risk of gestational diabetes mellitus (GDM), hypertension, and macrosomia in offspring. The main pathways activated by PA include BCAAs, lipids, and bile acid metabolism, thereby improving insulin resistance in pregnant individuals. Despite these known benefits, the underlying metabolites and biological mechanisms affected by PA remain poorly understood, highlighting the need for further investigation. Metabolomics, a comprehensive study of metabolite classes, offers valuable insights into the widespread metabolic changes induced by PA. This narrative review focuses on PA metabolomics research using different analytical platforms to analyze pregnant individuals. Existing studies support the hypothesis that exercise behaviour can influence the metabolism of different populations, including pregnant individuals and their offspring. While PA has shown considerable promise in maintaining metabolic health in non-pregnant populations, our comprehension of metabolic changes in the context of a healthy pregnancy remains limited. As a result, further investigation is necessary to clarify the metabolic impact of PA within this unique group, often excluded from physiological research.
Collapse
Affiliation(s)
- Ana Carolina Rosa da Silva
- School of Human Kinetics, Faculty of Health Science, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (A.C.R.d.S.)
| | - Anahita Yadegari
- School of Human Kinetics, Faculty of Health Science, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (A.C.R.d.S.)
| | - Velislava Tzaneva
- School of Human Kinetics, Faculty of Health Science, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (A.C.R.d.S.)
| | - Tarushika Vasanthan
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, ON M5G 2A7, Canada
| | - Katarina Laketic
- Alberta Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Jane Shearer
- Department of Biochemistry and Molecular Biology, Faculty of Kinesiology, Cumming School of Medicine and Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Shannon A. Bainbridge
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, Ottawa, ON K1N 6N5, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Cory Harris
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada;
| | - Kristi B. Adamo
- School of Human Kinetics, Faculty of Health Science, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (A.C.R.d.S.)
| |
Collapse
|
6
|
Hinkley JM, Yu G, Standley RA, Distefano G, Tolstikov V, Narain NR, Greenwood BP, Karmacharya S, Kiebish MA, Carnero EA, Yi F, Vega RB, Goodpaster BH, Gardell SJ, Coen PM. Exercise and ageing impact the kynurenine/tryptophan pathway and acylcarnitine metabolite pools in skeletal muscle of older adults. J Physiol 2023; 601:2165-2188. [PMID: 36814134 PMCID: PMC10278663 DOI: 10.1113/jp284142] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/14/2023] [Indexed: 02/24/2023] Open
Abstract
Exercise-induced perturbation of skeletal muscle metabolites is a probable mediator of long-term health benefits in older adults. Although specific metabolites have been identified to be impacted by age, physical activity and exercise, the depth of coverage of the muscle metabolome is still limited. Here, we investigated resting and exercise-induced metabolite distribution in muscle from well-phenotyped older adults who were active or sedentary, and a group of active young adults. Percutaneous biopsies of the vastus lateralis were obtained before, immediately after and 3 h following a bout of endurance cycling. Metabolite profile in muscle biopsies was determined by tandem mass spectrometry. Mitochondrial energetics in permeabilized fibre bundles was assessed by high resolution respirometry and fibre type proportion was assessed by immunohistology. We found that metabolites of the kynurenine/tryptophan pathway were impacted by age and activity. Specifically, kynurenine was elevated in muscle from older adults, whereas downstream metabolites of kynurenine (kynurenic acid and NAD+ ) were elevated in muscle from active adults and associated with cardiorespiratory fitness and muscle oxidative capacity. Acylcarnitines, a potential marker of impaired metabolic health, were elevated in muscle from physically active participants. Surprisingly, despite baseline group difference, acute exercise-induced alterations in whole-body substrate utilization, as well as muscle acylcarnitines and ketone bodies, were remarkably similar between groups. Our data identified novel muscle metabolite signatures that associate with the healthy ageing phenotype provoked by physical activity and reveal that the metabolic responsiveness of muscle to acute endurance exercise is retained [NB]:AUTHOR: Please ensure that the appropriate material has been provide for Table S2, as well as for Figures S1 to S7, as also cited in the text with age regardless of activity levels. KEY POINTS: Kynurenine/tryptophan pathway metabolites were impacted by age and physical activity in human muscle, with kynurenine elevated in older muscle, whereas downstream products kynurenic acid and NAD+ were elevated in exercise-trained muscle regardless of age. Acylcarnitines, a marker of impaired metabolic health when heightened in circulation, were elevated in exercise-trained muscle of young and older adults, suggesting that muscle act as a metabolic sink to reduce the circulating acylcarnitines observed with unhealthy ageing. Despite the phenotypic differences, the exercise-induced response of various muscle metabolite pools, including acylcarnitine and ketone bodies, was similar amongst the groups, suggesting that older adults can achieve the metabolic benefits of exercise seen in young counterparts.
Collapse
Affiliation(s)
- J. Matthew Hinkley
- AdventHealth Translational Research Institute, AdventHealth Orlando, Orlando, FL, 32804, USA
| | - GongXin Yu
- AdventHealth Translational Research Institute, AdventHealth Orlando, Orlando, FL, 32804, USA
| | - Robert A. Standley
- AdventHealth Translational Research Institute, AdventHealth Orlando, Orlando, FL, 32804, USA
| | - Giovanna Distefano
- AdventHealth Translational Research Institute, AdventHealth Orlando, Orlando, FL, 32804, USA
| | | | | | | | | | | | - Elvis Alvarez Carnero
- AdventHealth Translational Research Institute, AdventHealth Orlando, Orlando, FL, 32804, USA
| | - Fanchao Yi
- AdventHealth Translational Research Institute, AdventHealth Orlando, Orlando, FL, 32804, USA
| | - Rick B. Vega
- AdventHealth Translational Research Institute, AdventHealth Orlando, Orlando, FL, 32804, USA
| | - Bret H. Goodpaster
- AdventHealth Translational Research Institute, AdventHealth Orlando, Orlando, FL, 32804, USA
| | - Stephen J. Gardell
- AdventHealth Translational Research Institute, AdventHealth Orlando, Orlando, FL, 32804, USA
| | - Paul M. Coen
- AdventHealth Translational Research Institute, AdventHealth Orlando, Orlando, FL, 32804, USA
| |
Collapse
|
7
|
Pfaff DH, Poschet G, Hell R, Szendrödi J, Teleman AA. Walking 200 min per day keeps the bariatric surgeon away. Heliyon 2023; 9:e16556. [PMID: 37274680 PMCID: PMC10238728 DOI: 10.1016/j.heliyon.2023.e16556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/19/2023] [Accepted: 05/19/2023] [Indexed: 06/06/2023] Open
Abstract
Exercise and increased physical activity are vital components of the standard treatment guidelines for many chronic diseases such as diabetes, obesity and cardiovascular disease. Although strenuous exercise cannot be recommended to people with numerous chronic conditions, walking is something most people can perform. In comparison to high-intensity training, the metabolic consequences of low-intensity walking have been less well studied. We present here a feasibility study of a subject who performed an exercise intervention of low-intensity, non-fatiguing walking on a deskmill/treadmill for 200 min daily, approximately the average time a German spends watching television per day. This low-impact physical activity has the advantages that it can be done while performing other tasks such as reading or watching TV, and it can be recommended to obese patients or patients with heart disease. We find that this intervention led to substantial weight loss, comparable to that of bariatric surgery. To study the metabolic changes caused by this intervention, we performed an in-depth metabolomic profiling of the blood both directly after walking to assess the acute changes, as well as 1.5 days after physical activity to identify the long-term effects that persist. We find changes in acylcarnitine levels suggesting that walking activates fatty acid beta oxidation, and that this mitochondrial reprogramming is still visible 1.5 days post-walking. We also find that walking mildly increases gut permeability, leading to increased exposure of the blood to metabolites from the gut microbiome. Overall, these data provide a starting point for designing future intervention studies with larger cohorts.
Collapse
Affiliation(s)
- Daniel H. Pfaff
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Internal Medicine I and Clinical Chemistry, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Gernot Poschet
- Centre for Organismal Studies (COS), Heidelberg University, 69120 Heidelberg, Germany
| | - Rüdiger Hell
- Centre for Organismal Studies (COS), Heidelberg University, 69120 Heidelberg, Germany
| | - Julia Szendrödi
- Department of Internal Medicine I and Clinical Chemistry, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Aurelio A. Teleman
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Heidelberg University, 69120 Heidelberg, Germany
| |
Collapse
|
8
|
Kasperek MC, Mailing L, Piccolo BD, Moody B, Lan R, Gao X, Hernandez‐Saavedra D, Woods JA, Adams SH, Allen JM. Exercise training modifies xenometabolites in gut and circulation of lean and obese adults. Physiol Rep 2023; 11:e15638. [PMID: 36945966 PMCID: PMC10031301 DOI: 10.14814/phy2.15638] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/17/2023] [Accepted: 02/18/2023] [Indexed: 03/23/2023] Open
Abstract
Regular, moderate exercise modifies the gut microbiome and contributes to human metabolic and immune health. The microbiome may exert influence on host physiology through the microbial production and modification of metabolites (xenometabolites); however, this has not been extensively explored. We hypothesized that 6 weeks of supervised, aerobic exercise 3×/week (60%-75% heart rate reserve [HRR], 30-60 min) in previously sedentary, lean (n = 14) and obese (n = 10) adults would modify both the fecal and serum xenometabolome. Serum and fecal samples were collected pre- and post-6 week intervention and analyzed by liquid chromatography/tandem mass spectrometry (LC-MS/MS). Linear mixed models (LMMs) identified multiple fecal and serum xenometabolites responsive to exercise training. Further cluster and pathway analysis revealed that the most prominent xenometabolic shifts occurred within aromatic amino acid (ArAA) metabolic pathways. Fecal and serum ArAA derivatives correlated with body composition (lean mass), markers of insulin sensitivity (insulin, HOMA-IR) and cardiorespiratory fitness (V ̇ O 2 max $$ \dot{\mathrm{V}}{\mathrm{O}}_{2\max } $$ ), both at baseline and in response to exercise training. Two serum aromatic microbial-derived amino acid metabolites that were upregulated following the exercise intervention, indole-3-lactic acid (ILA: fold change: 1.2, FDR p < 0.05) and 4-hydroxyphenyllactic acid (4-HPLA: fold change: 1.3, FDR p < 0.05), share metabolic pathways within the microbiota and were associated with body composition and markers of insulin sensitivity at baseline and in response to training. These data provide evidence of physiologically relevant shifts in microbial metabolism that occur in response to exercise training, and reinforce the view that host metabolic health influences gut microbiota population and function. Future studies should consider the microbiome and xenometabolome when investigating the health benefits of exercise.
Collapse
Affiliation(s)
- Mikaela C. Kasperek
- Division of Nutritional SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
- Department of Kinesiology and Community HealthUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| | - Lucy Mailing
- Division of Nutritional SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| | - Brian D. Piccolo
- Arkansas Children's Nutrition CenterLittle RockArkansasUSA
- Department of PediatricsUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - Becky Moody
- Department of PediatricsUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - Renny Lan
- Arkansas Children's Nutrition CenterLittle RockArkansasUSA
- Department of PediatricsUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - Xiaotian Gao
- Department of Kinesiology and Community HealthUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| | - Diego Hernandez‐Saavedra
- Department of Kinesiology and Community HealthUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| | - Jeffrey A. Woods
- Division of Nutritional SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
- Department of Kinesiology and Community HealthUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| | - Sean H. Adams
- Department of SurgeryUniversity of California, Davis School of MedicineSacramentoCaliforniaUSA
- Center for Alimentary and Metabolic ScienceUniversity of California, DavisSacramentoCaliforniaUSA
| | - Jacob M. Allen
- Division of Nutritional SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
- Department of Kinesiology and Community HealthUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| |
Collapse
|
9
|
Glass KA, Germain A, Huang YV, Hanson MR. Urine Metabolomics Exposes Anomalous Recovery after Maximal Exertion in Female ME/CFS Patients. Int J Mol Sci 2023; 24:3685. [PMID: 36835097 PMCID: PMC9958671 DOI: 10.3390/ijms24043685] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating disease with unknown etiology or effective treatments. Post-exertional malaise (PEM) is a key symptom that distinguishes ME/CFS patients. Investigating changes in the urine metabolome between ME/CFS patients and healthy subjects following exertion may help us understand PEM. The aim of this pilot study was to comprehensively characterize the urine metabolomes of eight female healthy sedentary control subjects and ten female ME/CFS patients in response to a maximal cardiopulmonary exercise test (CPET). Each subject provided urine samples at baseline and 24 h post-exercise. A total of 1403 metabolites were detected via LC-MS/MS by Metabolon® including amino acids, carbohydrates, lipids, nucleotides, cofactors and vitamins, xenobiotics, and unknown compounds. Using a linear mixed effects model, pathway enrichment analysis, topology analysis, and correlations between urine and plasma metabolite levels, significant differences were discovered between controls and ME/CFS patients in many lipid (steroids, acyl carnitines and acyl glycines) and amino acid subpathways (cysteine, methionine, SAM, and taurine; leucine, isoleucine, and valine; polyamine; tryptophan; and urea cycle, arginine and proline). Our most unanticipated discovery is the lack of changes in the urine metabolome of ME/CFS patients during recovery while significant changes are induced in controls after CPET, potentially demonstrating the lack of adaptation to a severe stress in ME/CFS patients.
Collapse
Affiliation(s)
| | | | | | - Maureen R. Hanson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
10
|
Zhao Q, Wu ZE, Li B, Li F. Recent advances in metabolism and toxicity of tyrosine kinase inhibitors. Pharmacol Ther 2022; 237:108256. [DOI: 10.1016/j.pharmthera.2022.108256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 11/15/2022]
|
11
|
Dambrova M, Makrecka-Kuka M, Kuka J, Vilskersts R, Nordberg D, Attwood MM, Smesny S, Sen ZD, Guo AC, Oler E, Tian S, Zheng J, Wishart DS, Liepinsh E, Schiöth HB. Acylcarnitines: Nomenclature, Biomarkers, Therapeutic Potential, Drug Targets, and Clinical Trials. Pharmacol Rev 2022; 74:506-551. [PMID: 35710135 DOI: 10.1124/pharmrev.121.000408] [Citation(s) in RCA: 147] [Impact Index Per Article: 73.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Acylcarnitines are fatty acid metabolites that play important roles in many cellular energy metabolism pathways. They have historically been used as important diagnostic markers for inborn errors of fatty acid oxidation and are being intensively studied as markers of energy metabolism, deficits in mitochondrial and peroxisomal β -oxidation activity, insulin resistance, and physical activity. Acylcarnitines are increasingly being identified as important indicators in metabolic studies of many diseases, including metabolic disorders, cardiovascular diseases, diabetes, depression, neurologic disorders, and certain cancers. The US Food and Drug Administration-approved drug L-carnitine, along with short-chain acylcarnitines (acetylcarnitine and propionylcarnitine), is now widely used as a dietary supplement. In light of their growing importance, we have undertaken an extensive review of acylcarnitines and provided a detailed description of their identity, nomenclature, classification, biochemistry, pathophysiology, supplementary use, potential drug targets, and clinical trials. We also summarize these updates in the Human Metabolome Database, which now includes information on the structures, chemical formulae, chemical/spectral properties, descriptions, and pathways for 1240 acylcarnitines. This work lays a solid foundation for identifying, characterizing, and understanding acylcarnitines in human biosamples. We also discuss the emerging opportunities for using acylcarnitines as biomarkers and as dietary interventions or supplements for many wide-ranging indications. The opportunity to identify new drug targets involved in controlling acylcarnitine levels is also discussed. SIGNIFICANCE STATEMENT: This review provides a comprehensive overview of acylcarnitines, including their nomenclature, structure and biochemistry, and use as disease biomarkers and pharmaceutical agents. We present updated information contained in the Human Metabolome Database website as well as substantial mapping of the known biochemical pathways associated with acylcarnitines, thereby providing a strong foundation for further clarification of their physiological roles.
Collapse
Affiliation(s)
- Maija Dambrova
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Marina Makrecka-Kuka
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Janis Kuka
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Reinis Vilskersts
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Didi Nordberg
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Misty M Attwood
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Stefan Smesny
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Zumrut Duygu Sen
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - An Chi Guo
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Eponine Oler
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Siyang Tian
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Jiamin Zheng
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - David S Wishart
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Edgars Liepinsh
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Helgi B Schiöth
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| |
Collapse
|
12
|
Chary S, Amrein K, Mahmoud SH, Lasky-Su JA, Christopher KB. Sex-Specific Catabolic Metabolism Alterations in the Critically Ill following High Dose Vitamin D. Metabolites 2022; 12:metabo12030207. [PMID: 35323650 PMCID: PMC8953844 DOI: 10.3390/metabo12030207] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 02/07/2023] Open
Abstract
Pharmacological interventions are essential for the treatment and management of critical illness. Although women comprise a large proportion of the critically ill, sex-specific pharmacological properties are poorly described in critical care. The sex-specific effects of vitamin D3 treatment in the critically ill are not known. Therefore, we performed a metabolomics cohort study with 1215 plasma samples from 428 patients from the VITdAL-ICU trial to study sex-specific differences in the metabolic response to critical illness following high-dose oral vitamin D3 intervention. In women, despite the dose of vitamin D3 being higher, pharmacokinetics demonstrated a lower extent of vitamin D3 absorption compared to men. Metabolic response to high-dose oral vitamin D3 is sex-specific. Sex-stratified individual metabolite associations with elevations in 25(OH)D following intervention showed female-specific positive associations in long-chain acylcarnitines and male-specific positive associations in free fatty acids. In subjects who responded to vitamin D3 intervention, significant negative associations were observed in short-chain acylcarnitines and branched chain amino acid metabolites in women as compared to men. Acylcarnitines and branched chain amino acids are reflective of fatty acid B oxidation, and bioenergesis may represent notable metabolic signatures of the sex-specific response to vitamin D. Demonstrating sex-specific pharmacometabolomics differences following intervention is an important movement towards the understanding of personalized medicine.
Collapse
Affiliation(s)
| | - Karin Amrein
- Division of Endocrinology and Diabetology, Medical University of Graz, 8036 Graz, Austria;
| | - Sherif H. Mahmoud
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada;
| | - Jessica A. Lasky-Su
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
| | - Kenneth B. Christopher
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
- Division of Renal Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Correspondence:
| |
Collapse
|
13
|
Allman BR, Spray BJ, Lan RS, Andres A, Børsheim E. Circulating long-chain acylcarnitine concentrations are not affected by exercise training in pregnant women with obesity. J Appl Physiol (1985) 2022; 132:470-476. [PMID: 34989648 PMCID: PMC8816616 DOI: 10.1152/japplphysiol.00712.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The purpose of this study was to determine the effect of exercise during pregnancy in sedentary women with obesity on longitudinal changes in long-chain acylcarnitine (LC-AC) concentrations. We hypothesized that exercise training would significantly decrease circulating LC-ACs throughout gestation compared with a nonexercise control group. Pregnant women with obesity considered otherwise healthy [n = 80, means ± SD; body mass index (BMI): 36.9 ± 5.7 kg/m2] were randomized into an exercise (n = 40, aerobic/resistance 3 times/wk, ∼13th gestation week until birth) or a nonexercise control (n = 40) group. At gestation week 12.2 ± 0.5 and 36.0 ± 0.4, a submaximal exercise test was conducted, and indirect calorimetry was used to measure relative resting energy expenditure (REE), as well as respiratory exchange ratio (RER) at rest. Fasting blood samples were collected and analyzed for LC-AC concentrations. Fitness improved with prenatal exercise training; however, exercise training did not affect circulating LC-AC. When groups were collapsed, LC-ACs decreased during gestation (combined groups, P < 0.001), whereas REE (kcal/kg/day, P = 0.008) increased. However, average REE relative to fat-free mass (FFM) (kcal/kg FFM/day) and RER did not change. There was an inverse relationship between the change in RER and all LC-ACs (except C18:2) throughout gestation (C14: r = -0.26, P = 0.04; C16: r = -0.27, P = 0.03; C18:1: r = -0.28, P = 0.02). In summary, a moderate-intensity exercise intervention during pregnancy in women with obesity did not alter LC-ACs concentrations versus control, indicating that the balance between long-chain fatty acid availability and oxidation neither improved nor worsened with an exercise intervention.NEW & NOTEWORTHY This research showed that a moderate-intensity prenatal exercise program, consisting of aerobic and resistance training, did not negatively impact normal alterations in substrate supply and demand for the mother and the offspring throughout gestation. Findings provide support for metabolic safety of exercise during pregnancy.
Collapse
Affiliation(s)
- Brittany R. Allman
- 1Arkansas Children’s Nutrition Center, Little Rock, Arkansas,2Arkansas Children’s Research Institute, Little Rock, Arkansas,3Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | | | - Renny S. Lan
- 1Arkansas Children’s Nutrition Center, Little Rock, Arkansas,3Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Aline Andres
- 1Arkansas Children’s Nutrition Center, Little Rock, Arkansas,2Arkansas Children’s Research Institute, Little Rock, Arkansas,3Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Elisabet Børsheim
- 1Arkansas Children’s Nutrition Center, Little Rock, Arkansas,2Arkansas Children’s Research Institute, Little Rock, Arkansas,3Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas,4Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| |
Collapse
|
14
|
Devarshi PP, Pereyra AS, Ellis JM, Henagan TM. A single bout of cycling exercise induces nucleosome repositioning in the skeletal muscle of lean and overweight/obese individuals. Diabetes Obes Metab 2022; 24:21-33. [PMID: 34472674 PMCID: PMC8728694 DOI: 10.1111/dom.14541] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 01/03/2023]
Abstract
AIM To compare the molecular and metabolic effects of a single exercise bout in the skeletal muscle between lean and overweight/obese (Ov/Ob) individuals. MATERIALS AND METHODS Participants recruited were men, aged 19-30 years, who were either lean (body mass index [BMI] < 25, 18.5-24.1 kg/m2 ; n = 15) or Ov/Ob (BMI ≥ 25, 25.5-36.9 kg/m2 ; n = 15). Four hours after a high-carbohydrate breakfast (7 kcal/kg; 60% carbohydrate, 25% fat, 15% protein), participants performed a cycling exercise (50% VO2 max, expending ~650 kcal). Muscle biopsies and peripheral blood samples were collected 30 minutes before the meal and immediately after exercise. Blood analysis, and muscle acylcarnitine profiles, transcriptomics, and nucleosome mapping by micrococcal nuclease digestion with deep sequencing were performed. RESULTS A single exercise bout improved blood metabolite profiles in both lean and Ov/Ob individuals. Muscle long-chain acylcarnitines were increased in Ov/Ob compared with lean participants, but were not altered by exercise. A single exercise bout increased the mRNA abundance of genes related to mitochondria and insulin signalling in both lean and Ov/Ob participants. Nucleosome mapping by micrococcal nuclease digestion with deep sequencing revealed that exercise repositioned the -1 nucleosome away from the transcription start site of the PGC1a promoter and of other mitochondrial genes, but did not affect genes related to insulin signalling, in both lean and Ov/Ob participants. CONCLUSION These data suggest that a single exercise bout induced epigenetic alterations in skeletal muscle in a BMI-independent manner.
Collapse
Affiliation(s)
| | - Andrea S. Pereyra
- Brody School of Medicine at East Carolina University, Department of Physiology, and East Carolina Diabetes and Obesity Institute, Greenville, NC, 27834
| | - Jessica M. Ellis
- Brody School of Medicine at East Carolina University, Department of Physiology, and East Carolina Diabetes and Obesity Institute, Greenville, NC, 27834
| | - Tara M. Henagan
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907
- School of Medicine, LSU-Shreveport, Shreveport, LA 71103
| |
Collapse
|
15
|
Real-Time Monitoring of Metabolism during Exercise by Exhaled Breath. Metabolites 2021; 11:metabo11120856. [PMID: 34940614 PMCID: PMC8709070 DOI: 10.3390/metabo11120856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/29/2021] [Accepted: 12/04/2021] [Indexed: 01/24/2023] Open
Abstract
Continuous monitoring of metabolites in exhaled breath has recently been introduced as an advanced method to allow non-invasive real-time monitoring of metabolite shifts during rest and acute exercise bouts. The purpose of this study was to continuously measure metabolites in exhaled breath samples during a graded cycle ergometry cardiopulmonary exercise test (CPET), using secondary electrospray high resolution mass spectrometry (SESI-HRMS). We also sought to advance the research area of exercise metabolomics by comparing metabolite shifts in exhaled breath samples with recently published data on plasma metabolite shifts during CPET. We measured exhaled metabolites using SESI-HRMS during spiroergometry (ramp protocol) on a bicycle ergometer. Real-time monitoring through gas analysis enabled us to collect high-resolution data on metabolite shifts from rest to voluntary exhaustion. Thirteen subjects participated in this study (7 female). Median age was 30 years and median peak oxygen uptake (VO2max) was 50 mL·/min/kg. Significant changes in metabolites (n = 33) from several metabolic pathways occurred during the incremental exercise bout. Decreases in exhaled breath metabolites were measured in glyoxylate and dicarboxylate, tricarboxylic acid cycle (TCA), and tryptophan metabolic pathways during graded exercise. This exploratory study showed that selected metabolite shifts could be monitored continuously and non-invasively through exhaled breath, using SESI-HRMS. Future studies should focus on the best types of metabolites to monitor from exhaled breath during exercise and related sources and underlying mechanisms.
Collapse
|
16
|
Abstract
Background Cardiorespiratory fitness (CRF) is a potent health marker, the improvement of which is associated with a reduced incidence of non-communicable diseases and all-cause mortality. Identifying metabolic signatures associated with CRF could reveal how CRF fosters human health and lead to the development of novel health-monitoring strategies. Objective This article systematically reviewed reported associations between CRF and metabolites measured in human tissues and body fluids. Methods PubMed, EMBASE, and Web of Science were searched from database inception to 3 June, 2021. Metabolomics studies reporting metabolites associated with CRF, measured by means of cardiopulmonary exercise test, were deemed eligible. Backward and forward citation tracking on eligible records were used to complement the results of database searching. Risk of bias at the study level was assessed using QUADOMICS. Results Twenty-two studies were included and 667 metabolites, measured in plasma (n = 619), serum (n = 18), skeletal muscle (n = 16), urine (n = 11), or sweat (n = 3), were identified. Lipids were the metabolites most commonly positively (n = 174) and negatively (n = 274) associated with CRF. Specific circulating glycerophospholipids (n = 85) and cholesterol esters (n = 17) were positively associated with CRF, while circulating glycerolipids (n = 152), glycerophospholipids (n = 42), acylcarnitines (n = 14), and ceramides (n = 12) were negatively associated with CRF. Interestingly, muscle acylcarnitines were positively correlated with CRF (n = 15). Conclusions Cardiorespiratory fitness was associated with circulating and muscle lipidome composition. Causality of the revealed associations at the molecular species level remains to be investigated further. Finally, included studies were heterogeneous in terms of participants’ characteristics and analytical and statistical approaches. PROSPERO Registration Number CRD42020214375. Supplementary Information The online version contains supplementary material available at 10.1007/s40279-021-01590-y.
Collapse
|
17
|
Aboulmaouahib B, Kastenmüller G, Suhre K, Zöllner S, Weissensteiner H, Gieger C, Wang-Sattler R, Lichtner P, Strauch K, Flaquer A. First mitochondrial genome wide association study with metabolomics. Hum Mol Genet 2021; 31:3367-3376. [PMID: 34718574 PMCID: PMC9523559 DOI: 10.1093/hmg/ddab312] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 09/14/2021] [Accepted: 10/11/2021] [Indexed: 12/01/2022] Open
Abstract
In the era of personalized medicine with more and more patient-specific targeted therapies being used, we need reliable, dynamic, faster and sensitive biomarkers both to track the causes of disease and to develop and evolve therapies during the course of treatment. Metabolomics recently has shown substantial evidence to support its emerging role in disease diagnosis and prognosis. Aside from biomarkers and development of therapies, it is also an important goal to understand the involvement of mitochondrial DNA (mtDNA) in metabolic regulation, aging and disease development. Somatic mutations of the mitochondrial genome are also heavily implicated in age-related disease and aging. The general hypothesis is that an alteration in the concentration of metabolite profiles (possibly conveyed by lifestyle and environmental factors) influences the increase of mutation rate in the mtDNA and thereby contributes to a range of pathophysiological alterations observed in complex diseases. We performed an inverted mitochondrial genome-wide association analysis between mitochondrial nucleotide variants (mtSNVs) and concentration of metabolites. We used 151 metabolites and the whole sequenced mitochondrial genome from 2718 individuals to identify the genetic variants associated with metabolite profiles. Because of the high coverage, next-generation sequencing-based analysis of the mitochondrial genome allows for an accurate detection of mitochondrial heteroplasmy and for the identification of variants associated with the metabolome. The strongest association was found for mt715G > A located in the MT-12SrRNA with the metabolite ratio of C2/C10:1 (P-value = 6.82*10−09, β = 0.909). The second most significant mtSNV was found for mt3714A > G located in the MT-ND1 with the metabolite ratio of phosphatidylcholine (PC) ae C42:5/PC ae C44:5 (P-value = 1.02*10−08, β = 3.631). A large number of significant metabolite ratios were observed involving PC aa C36:6 and the variant mt10689G > A, located in the MT-ND4L gene. These results show an important interconnection between mitochondria and metabolite concentrations. Considering that some of the significant metabolites found in this study have been previously related to complex diseases, such as neurological disorders and metabolic conditions, these associations found here might play a crucial role for further investigations of such complex diseases. Understanding the mechanisms that control human health and disease, in particular, the role of genetic predispositions and their interaction with environmental factors is a prerequisite for the development of safe and efficient therapies for complex disorders.
Collapse
Affiliation(s)
- Brahim Aboulmaouahib
- Institute for Medical Information Processing, Biometry and Epidemiology - IBE, LMU, Munich, Germany.,Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Gabi Kastenmüller
- Institute of Computational Biology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Karsten Suhre
- Department of Physiology and Biophysics, Weill Cornell Medical College in Qatar, State of Qatar
| | - Sebastian Zöllner
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, United States of America.,Department of Psychiatry, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Hansi Weissensteiner
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Christian Gieger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany.,Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Rui Wang-Sattler
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany.,Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Peter Lichtner
- Institute of Human Genetics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Konstantin Strauch
- Institute for Medical Information Processing, Biometry and Epidemiology - IBE, LMU, Munich, Germany.,Institute of Genetic Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.,Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Antònia Flaquer
- Institute for Medical Information Processing, Biometry and Epidemiology - IBE, LMU, Munich, Germany.,Institute of Genetic Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| |
Collapse
|
18
|
van Roekel EH, Bours MJL, van Delden L, Breukink SO, Aquarius M, Keulen ETP, Gicquiau A, Viallon V, Rinaldi S, Vineis P, Arts ICW, Gunter MJ, Leitzmann MF, Scalbert A, Weijenberg MP. Longitudinal associations of physical activity with plasma metabolites among colorectal cancer survivors up to 2 years after treatment. Sci Rep 2021; 11:13738. [PMID: 34215757 PMCID: PMC8253824 DOI: 10.1038/s41598-021-92279-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 05/20/2021] [Indexed: 11/09/2022] Open
Abstract
We investigated longitudinal associations of moderate-to-vigorous physical activity (MVPA) and light-intensity physical activity (LPA) with plasma concentrations of 138 metabolites after colorectal cancer (CRC) treatment. Self-reported physical activity data and blood samples were obtained at 6 weeks, and 6, 12 and 24 months post-treatment in stage I-III CRC survivors (n = 252). Metabolite concentrations were measured by tandem mass spectrometry (BIOCRATES AbsoluteIDQp180 kit). Linear mixed models were used to evaluate confounder-adjusted longitudinal associations. Inter-individual (between-participant differences) and intra-individual associations (within-participant changes over time) were assessed as percentage difference in metabolite concentration per 5 h/week of MVPA or LPA. At 6 weeks post-treatment, participants reported a median of 6.5 h/week of MVPA (interquartile range:2.3,13.5) and 7.5 h/week of LPA (2.0,15.8). Inter-individual associations were observed with more MVPA being related (FDR-adjusted q-value < 0.05) to higher concentrations of arginine, citrulline and histidine, eight lysophosphatidylcholines, nine diacylphosphatidylcholines, 13 acyl-alkylphosphatidylcholines, two sphingomyelins, and acylcarnitine C10:1. No intra-individual associations were found. LPA was not associated with any metabolite. More MVPA was associated with higher concentrations of several lipids and three amino acids, which have been linked to anti-inflammatory processes and improved metabolic health. Mechanistic studies are needed to investigate whether these metabolites may affect prognosis.
Collapse
Affiliation(s)
- Eline H van Roekel
- Department of Epidemiology, GROW School for Oncology and Developmental Biology, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands.
| | - Martijn J L Bours
- Department of Epidemiology, GROW School for Oncology and Developmental Biology, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Linda van Delden
- Department of Epidemiology, CAPHRI School for Public Health and Primary Care, Maastricht University, Maastricht, The Netherlands
| | - Stéphanie O Breukink
- Department of Surgery, GROW School for Oncology and Developmental Biology & NUTRIM, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Michèl Aquarius
- Department of Gastroenterology, VieCuri Medical Center, Venlo, the Netherlands
| | - Eric T P Keulen
- Department of Internal Medicine and Gastroenterology, Zuyderland Medical Centre, Sittard-Geleen, the Netherlands
| | - Audrey Gicquiau
- Biomarkers Group, Nutrition and Metabolism Section, International Agency for Research On Cancer (IARC-WHO), Lyon, France
| | - Vivian Viallon
- Nutritional Methodology and Biostatistics Group, Nutrition and Metabolism Section, International Agency for Research On Cancer (IARC-WHO), Lyon, France
| | - Sabina Rinaldi
- Biomarkers Group, Nutrition and Metabolism Section, International Agency for Research On Cancer (IARC-WHO), Lyon, France
| | - Paolo Vineis
- MRC Centre for Environment and Health, School of Public Health, Imperial College, London, UK
- Italian Institute of Technology, Genoa, Italy
| | - Ilja C W Arts
- Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, The Netherlands
- Department of Epidemiology, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| | - Marc J Gunter
- Nutritional Epidemiology Group, Nutrition and Metabolism Section, International Agency for Research On Cancer (IARC-WHO), Lyon, France
| | - Michael F Leitzmann
- Department of Epidemiology and Preventive Medicine, University of Regensburg, Regensburg, Germany
| | - Augustin Scalbert
- Biomarkers Group, Nutrition and Metabolism Section, International Agency for Research On Cancer (IARC-WHO), Lyon, France
| | - Matty P Weijenberg
- Department of Epidemiology, GROW School for Oncology and Developmental Biology, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| |
Collapse
|
19
|
Dagher R, Massie R, Gentil BJ. MTP deficiency caused by HADHB mutations: Pathophysiology and clinical manifestations. Mol Genet Metab 2021; 133:1-7. [PMID: 33744096 DOI: 10.1016/j.ymgme.2021.03.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 12/17/2022]
Abstract
Mutations in the HADHB gene lead to Mitochondrial Trifunctional Protein (MTP) deficiency. MTP deficiency is a rare autosomal recessive disorder affecting long-chain fatty acid oxidation. Patients affected by MTP deficiency are unable to metabolize long-chain fatty-acids and suffer a variety of symptoms exacerbated during fasting. The three phenotypes associated with complete MTP deficiency are an early-onset cardiomyopathy and early death, an intermediate form with recurrent hypoketotic hypoglycemia and a sensorimotor neuropathy with episodic rhabdomyolysis with small amount of residual enzyme activities. This review aims to discuss the pathophysiological mechanisms and clinical manifestations of each phenotype, which appears different and linked to HADHB expression levels. Notably, the pathophysiology of the sensorimotor neuropathy is relatively unknown and we provide a hypothesis on the qualitative aspect of the role of acylcarnitine buildup in Schwann cells in MTP deficiency patients. We propose that acylcarnitine may exit the Schwann cell and alter membrane properties of nearby axons leading to axonal degeneration based on recent findings in different metabolic disorders.
Collapse
Affiliation(s)
- Robin Dagher
- Department of Kinesiology and Physical Education, McGill University, Montreal, QC H3A 2B4, Canada
| | - Rami Massie
- Department of Neurology/Neurosurgery, McGill University, Montreal, QC H3A 2B4, Canada
| | - Benoit J Gentil
- Department of Kinesiology and Physical Education, McGill University, Montreal, QC H3A 2B4, Canada; Department of Neurology/Neurosurgery, McGill University, Montreal, QC H3A 2B4, Canada.
| |
Collapse
|
20
|
Mercer KE, Maurer A, Pack LM, Ono-Moore K, Spray BJ, Campbell C, Chandler CJ, Burnett D, Souza E, Casazza G, Keim N, Newman J, Hunter G, Fernadez J, Garvey WT, Harper ME, Hoppel C, Adams SH, Thyfault J. Exercise training and diet-induced weight loss increase markers of hepatic bile acid (BA) synthesis and reduce serum total BA concentrations in obese women. Am J Physiol Endocrinol Metab 2021; 320:E864-E873. [PMID: 33645254 PMCID: PMC8238126 DOI: 10.1152/ajpendo.00644.2020] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Regular exercise has profound metabolic influence on the liver, but effects on bile acid (BA) metabolism are less well known. BAs are synthesized exclusively in the liver from cholesterol via the rate-limiting enzyme cholesterol 7 alpha-hydroxylase (CYP7A1). BAs contribute to the solubilization and absorption of lipids and serve as important signaling molecules, capable of systemic endocrine function. Circulating BAs increase with obesity and insulin resistance, but effects following exercise and diet-induced weight loss are unknown. To test if improvements in fitness and weight loss as a result of exercise training enhance BA metabolism, we measured serum concentrations of total BAs (conjugated and unconjugated primary and secondary BAs) in sedentary, obese, insulin-resistant women (N = 11) before (PRE) and after (POST) a ∼14-wk exercise and diet-induced weight loss intervention. BAs were measured in serum collected after an overnight fast and during an oral glucose tolerance test (OGTT). Serum fibroblast growth factor 19 (FGF19; a regulator of BA synthesis) and 7-alpha-hydroxy-cholesten-3-one (C4, a marker of CYP7A1 enzymatic activity) also were measured. Using linear mixed-model analyses and the change in V̇O2peak (mL/min/kg) as a covariate, we observed that exercise and weight loss intervention decreased total fasting serum BA by ∼30% (P = 0.001) and increased fasting serum C4 concentrations by 55% (P = 0.004). C4 was significantly correlated with serum total BAs only in the POST condition, whereas serum FGF19 was unchanged. These data indicate that a fitness and weight loss intervention modifies BA metabolism in obese women and suggest that improved metabolic health associates with higher postabsorptive (fasting) BA synthesis. Furthermore, pre- vs. postintervention patterns of serum C4 following an OGTT support the hypothesis that responsiveness of BA synthesis to postprandial inhibition is improved after exercise and weight loss.NEW & NOTEWORTHY Exercise and weight loss in previously sedentary, insulin-resistant women facilitates a significant improvement in insulin sensitivity and fitness that may be linked to changes in bile acid metabolism. Diet-induced weight loss plus exercise-induced increases in fitness promote greater postabsorptive bile acid synthesis while also sensitizing the bile acid metabolic system to feedback inhibition during a glucose challenge when glucose and insulin are elevated.
Collapse
Affiliation(s)
- Kelly E Mercer
- Arkansas Children's Nutrition Center, Little Rock, Arkansas
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Adrianna Maurer
- Departments of Molecular and Integrative Physiology and Internal Medicine, Kansas Medical Center, Kansas City, Kansas
| | - Lindsay M Pack
- Arkansas Children's Nutrition Center, Little Rock, Arkansas
| | | | - Beverly J Spray
- Arkansas Children's Research Institute, Little Rock, Arkansas
| | - Caitlin Campbell
- United States Department of Agriculture-Agricultural Research Service Western Human Nutrition Research Center, Davis, California
| | - Carol J Chandler
- United States Department of Agriculture-Agricultural Research Service Western Human Nutrition Research Center, Davis, California
| | - Dustin Burnett
- United States Department of Agriculture-Agricultural Research Service Western Human Nutrition Research Center, Davis, California
| | - Elaine Souza
- United States Department of Agriculture-Agricultural Research Service Western Human Nutrition Research Center, Davis, California
| | - Gretchen Casazza
- Sports Medicine Program, University of California, Davis School of Medicine, Sacramento, California
| | - Nancy Keim
- United States Department of Agriculture-Agricultural Research Service Western Human Nutrition Research Center, Davis, California
| | - John Newman
- United States Department of Agriculture-Agricultural Research Service Western Human Nutrition Research Center, Davis, California
| | - Gary Hunter
- Department of Nutrition Sciences, University of Alabama, Birmingham, Alabama
| | - Jose Fernadez
- Department of Nutrition Sciences, University of Alabama, Birmingham, Alabama
| | - W Timothy Garvey
- Department of Nutrition Sciences, University of Alabama, Birmingham, Alabama
| | - Mary-Ellen Harper
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ontario, Canada
| | - Charles Hoppel
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio
| | - Sean H Adams
- Department of Surgery, University of California, Davis School of Medicine, Sacramento, California
- Center for Alimentary and Metabolic Science, University of California, Davis School of Medicine, Sacramento, California
| | - John Thyfault
- Departments of Molecular and Integrative Physiology and Internal Medicine, Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
21
|
Koh AS, Kovalik JP. Metabolomics and cardiovascular imaging: a combined approach for cardiovascular ageing. ESC Heart Fail 2021; 8:1738-1750. [PMID: 33783981 PMCID: PMC8120371 DOI: 10.1002/ehf2.13274] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 01/14/2021] [Accepted: 02/11/2021] [Indexed: 12/18/2022] Open
Abstract
The purpose of this review is to explore how metabolomics can help uncover new biomarkers and mechanisms for cardiovascular ageing. Cardiovascular ageing refers to cardiovascular structural and functional alterations that occur with chronological ageing and that can lead to the development of cardiovascular disease. These alterations, which were previously only detectable on tissue histology or corroborated on blood samples, are now detectable with modern imaging techniques. Despite the emergence of powerful new imaging tools, clinical investigation into cardiovascular ageing is challenging because ageing is a life course phenomenon involving known and unknown risk factors that play out in a dynamic fashion. Metabolomic profiling measures large numbers of metabolites with diverse chemical properties. Metabolomics has the potential to capture changes in biochemistry brought about by pathophysiologic processes as well as by normal ageing. When combined with non-invasive cardiovascular imaging tools, metabolomics can be used to understand pathological consequences of cardiovascular ageing. This review will summarize previous metabolomics and imaging studies in cardiovascular ageing. These methods may be a clinically relevant and novel approach to identify mechanisms of cardiovascular ageing and formulate or personalize treatment strategies.
Collapse
Affiliation(s)
- Angela S Koh
- National Heart Centre Singapore, 5 Hospital Drive, Singapore, 169609, Singapore.,Duke-NUS Medical School, Singapore, Singapore
| | - Jean-Paul Kovalik
- Duke-NUS Medical School, Singapore, Singapore.,Singapore General Hospital, Singapore, Singapore
| |
Collapse
|
22
|
Metabolomics and Lipidomics: Expanding the Molecular Landscape of Exercise Biology. Metabolites 2021; 11:metabo11030151. [PMID: 33799958 PMCID: PMC8001908 DOI: 10.3390/metabo11030151] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/05/2021] [Accepted: 03/05/2021] [Indexed: 02/08/2023] Open
Abstract
Dynamic changes in circulating and tissue metabolites and lipids occur in response to exercise-induced cellular and whole-body energy demands to maintain metabolic homeostasis. The metabolome and lipidome in a given biological system provides a molecular snapshot of these rapid and complex metabolic perturbations. The application of metabolomics and lipidomics to map the metabolic responses to an acute bout of aerobic/endurance or resistance exercise has dramatically expanded over the past decade thanks to major analytical advancements, with most exercise-related studies to date focused on analyzing human biofluids and tissues. Experimental and analytical considerations, as well as complementary studies using animal model systems, are warranted to help overcome challenges associated with large human interindividual variability and decipher the breadth of molecular mechanisms underlying the metabolic health-promoting effects of exercise. In this review, we provide a guide for exercise researchers regarding analytical techniques and experimental workflows commonly used in metabolomics and lipidomics. Furthermore, we discuss advancements in human and mammalian exercise research utilizing metabolomic and lipidomic approaches in the last decade, as well as highlight key technical considerations and remaining knowledge gaps to continue expanding the molecular landscape of exercise biology.
Collapse
|
23
|
Xu J, Liu G, Hegde SM, Palta P, Boerwinkle E, Gabriel KP, Yu B. Physical Activity-Related Metabolites Are Associated with Mortality: Findings from the Atherosclerosis Risk in Communities (ARIC) Study. Metabolites 2021; 11:metabo11010059. [PMID: 33477977 PMCID: PMC7835806 DOI: 10.3390/metabo11010059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 11/16/2022] Open
Abstract
Habitual physical activity can diminish the risk of premature death. Identifying a pattern of metabolites related to physical activity may advance our understanding of disease etiology. We quantified 245 serum metabolites in 3802 participants from the Atherosclerosis Risk in Communities (ARIC) study using chromatography-mass spectrometry. We regressed self-reported moderate-to-vigorous intensity leisure-time physical activity (LTPA) against each metabolite, adjusting for traditional risk factors. A standardized metabolite risk score (MRS) was constructed to examine its association with all-cause mortality using the Cox proportional hazard model. We identified 10 metabolites associated with LTPA (p < 2.04 × 10-4) and established that an increase of one unit of the metabolic equivalent of task-hours per week (MET·hr·wk-1) in LTPA was associated with a 0.012 SD increase in MRS. During a median of 27.5 years of follow-up, we observed 1928 deaths. One SD increase of MRS was associated with a 10% lower risk of death (HR = 0.90, 95% CI: 0.85-0.95). The highest vs. the lowest MRS quintile rank was associated with a 22% reduced risk of death (HR = 0.78, 95% CI: 0.62-0.94). The effects were consistent across race and sex groups. In summary, we identified a set of metabolites associated with LTPA and an MRS associated with a lower risk of death. Our study provides novel insights into the potential mechanisms underlying the health impacts of physical activity.
Collapse
Affiliation(s)
- Jun Xu
- Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (J.X.); (G.L.); (E.B.)
| | - Guning Liu
- Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (J.X.); (G.L.); (E.B.)
| | - Sheila M. Hegde
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA;
| | - Priya Palta
- Division of General Medicine, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA;
| | - Eric Boerwinkle
- Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (J.X.); (G.L.); (E.B.)
- Human Genome Sequencing Center, Balor College of Medicine, Houston, TX 77030, USA
| | - Kelley P. Gabriel
- Department of Epidemiology, School of Public Health, The University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Bing Yu
- Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (J.X.); (G.L.); (E.B.)
- Correspondence:
| |
Collapse
|
24
|
Allman BR, Spray BJ, Mercer KE, Andres A, Børsheim E. Markers of branched-chain amino acid catabolism are not affected by exercise training in pregnant women with obesity. J Appl Physiol (1985) 2021; 130:651-659. [PMID: 33444120 DOI: 10.1152/japplphysiol.00673.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Despite the role of branched-chain amino acids (BCAAs) in physiological processes such as nutrient signaling and protein synthesis, there is ongoing debate about the link between circulating BCAAs and insulin resistance (IR) in various populations. In healthy women, IR mildly increases during pregnancy, whereas both BCAAs and markers of BCAA catabolism decrease, indicating that fetal growth is being prioritized. Exercise reduces IR in nonpregnant adults, but less is known about the effect of exercise during pregnancy in women with obesity on IR and BCAA breakdown. The aim of this study was to determine the effect of a moderate-intensity exercise intervention during pregnancy on maternal circulating BCAAs and markers of BCAA catabolism [short-chain acylcarnitines (ACs)], and their associations with IR. Healthy obese [n = 80, means ± SD; body mass index (BMI): 36.9 ± 5.7 kg/m2] pregnant women were randomized into an exercise (n = 40, aerobic/resistance 3×/wk, ∼13th gestation week until birth) or a nonexercise control (n = 40) group. Blood was collected at 12.2 ± 0.5 and 36.0 ± 0.4 gestation weeks and analyzed for BCAA-derived acylcarnitine concentrations as markers of BCAA breakdown toward oxidative pathways, and glucose and insulin concentrations [updated homeostatic model assessment of IR (HOMA2-IR)]. After adjusting for HOMA2-IR, there were no interaction effects of group by time. In addition, there was a main positive effect of time on HOMA2-IR (12 wk: 2.3 ± 0.2, 36 wk: 3.0 ± 0.2, P = 0.003). A moderate-intensity exercise intervention during pregnancy in women with obesity was not associated with changes in BCAA-derived ACs versus standard of care. The decrease in BCAA-derived ACs throughout gestation could not be explained by IR.NEW & NOTEWORTHY This research showed an increase in insulin resistance (IR) and decrease in branched-chain amino acid catabolism throughout gestation in women with obesity, and addition of a moderate exercise intervention (known to attenuate IR in nonpregnant populations) did not alter these shifts. Findings provide support for metabolic safety of exercise during pregnancy.
Collapse
Affiliation(s)
- Brittany R Allman
- Arkansas Children's Nutrition Center, Little Rock, Arkansas.,Arkansas Children's Research Institute, Little Rock, Arkansas.,Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Beverly J Spray
- Arkansas Children's Research Institute, Little Rock, Arkansas
| | - Kelly E Mercer
- Arkansas Children's Nutrition Center, Little Rock, Arkansas.,Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Aline Andres
- Arkansas Children's Nutrition Center, Little Rock, Arkansas.,Arkansas Children's Research Institute, Little Rock, Arkansas.,Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Elisabet Børsheim
- Arkansas Children's Nutrition Center, Little Rock, Arkansas.,Arkansas Children's Research Institute, Little Rock, Arkansas.,Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas.,Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| |
Collapse
|
25
|
Baraniuk JN, Kern G, Narayan V, Cheema A. Exercise modifies glutamate and other metabolic biomarkers in cerebrospinal fluid from Gulf War Illness and Myalgic encephalomyelitis / Chronic Fatigue Syndrome. PLoS One 2021; 16:e0244116. [PMID: 33440400 PMCID: PMC7806361 DOI: 10.1371/journal.pone.0244116] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 12/02/2020] [Indexed: 12/21/2022] Open
Abstract
Myalgic encephalomyelitis / Chronic Fatigue Syndrome (ME/CFS) and Gulf War Illness (GWI) share many symptoms of fatigue, pain, and cognitive dysfunction that are not relieved by rest. Patterns of serum metabolites in ME/CFS and GWI are different from control groups and suggest potential dysfunction of energy and lipid metabolism. The metabolomics of cerebrospinal fluid was contrasted between ME/CFS, GWI and sedentary controls in 2 sets of subjects who had lumbar punctures after either (a) rest or (b) submaximal exercise stress tests. Postexercise GWI and control subjects were subdivided according to acquired transient postexertional postural tachycardia. Banked cerebrospinal fluid specimens were assayed using Biocrates AbsoluteIDQ® p180 kits for quantitative targeted metabolomics studies of amino acids, amines, acylcarnitines, sphingolipids, lysophospholipids, alkyl and ether phosphocholines. Glutamate was significantly higher in the subgroup of postexercise GWI subjects who did not develop postural tachycardia after exercise compared to nonexercise and other postexercise groups. The only difference between nonexercise groups was higher lysoPC a C28:0 in GWI than ME/CFS suggesting this biochemical or phospholipase activities may have potential as a biomarker to distinguish between the 2 diseases. Exercise effects were suggested by elevation of short chain acylcarnitine C5-OH (C3-DC-M) in postexercise controls compared to nonexercise ME/CFS. Limitations include small subgroup sample sizes and absence of postexercise ME/CFS specimens. Mechanisms of glutamate neuroexcitotoxicity may contribute to neuropathology and “neuroinflammation” in the GWI subset who did not develop postural tachycardia after exercise. Dysfunctional lipid metabolism may distinguish the predominantly female ME/CFS group from predominantly male GWI subjects.
Collapse
Affiliation(s)
- James N Baraniuk
- Department of Medicine, Georgetown University, Washington, DC, United States of America
| | - Grant Kern
- Department of Medicine, Georgetown University, Washington, DC, United States of America
| | - Vaishnavi Narayan
- Department of Medicine, Georgetown University, Washington, DC, United States of America
| | - Amrita Cheema
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Centre, Georgetown University, Washington, DC, United States of America
| |
Collapse
|
26
|
Nayor M, Shah RV, Miller PE, Blodgett JB, Tanguay M, Pico AR, Murthy VL, Malhotra R, Houstis NE, Deik A, Pierce KA, Bullock K, Dailey L, Velagaleti RS, Moore SA, Ho JE, Baggish AL, Clish CB, Larson MG, Vasan RS, Lewis GD. Metabolic Architecture of Acute Exercise Response in Middle-Aged Adults in the Community. Circulation 2020; 142:1905-1924. [PMID: 32927962 PMCID: PMC8049528 DOI: 10.1161/circulationaha.120.050281] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Whereas regular exercise is associated with lower risk of cardiovascular disease and mortality, mechanisms of exercise-mediated health benefits remain less clear. We used metabolite profiling before and after acute exercise to delineate the metabolic architecture of exercise response patterns in humans. METHODS Cardiopulmonary exercise testing and metabolite profiling was performed on Framingham Heart Study participants (age 53±8 years, 63% women) with blood drawn at rest (n=471) and at peak exercise (n=411). RESULTS We observed changes in circulating levels for 502 of 588 measured metabolites from rest to peak exercise (exercise duration 11.9±2.1 minutes) at a 5% false discovery rate. Changes included reductions in metabolites implicated in insulin resistance (glutamate, -29%; P=1.5×10-55; dimethylguanidino valeric acid [DMGV], -18%; P=5.8×10-18) and increases in metabolites associated with lipolysis (1-methylnicotinamide, +33%; P=6.1×10-67), nitric oxide bioavailability (arginine/ornithine + citrulline, +29%; P=2.8×10-169), and adipose browning (12,13-dihydroxy-9Z-octadecenoic acid +26%; P=7.4×10-38), among other pathways relevant to cardiometabolic risk. We assayed 177 metabolites in a separate Framingham Heart Study replication sample (n=783, age 54±8 years, 51% women) and observed concordant changes in 164 metabolites (92.6%) at 5% false discovery rate. Exercise-induced metabolite changes were variably related to the amount of exercise performed (peak workload), sex, and body mass index. There was attenuation of favorable excursions in some metabolites in individuals with higher body mass index and greater excursions in select cardioprotective metabolites in women despite less exercise performed. Distinct preexercise metabolite levels were associated with different physiologic dimensions of fitness (eg, ventilatory efficiency, exercise blood pressure, peak Vo2). We identified 4 metabolite signatures of exercise response patterns that were then analyzed in a separate cohort (Framingham Offspring Study; n=2045, age 55±10 years, 51% women), 2 of which were associated with overall mortality over median follow-up of 23.1 years (P≤0.003 for both). CONCLUSIONS In a large sample of community-dwelling individuals, acute exercise elicits widespread changes in the circulating metabolome. Metabolic changes identify pathways central to cardiometabolic health, cardiovascular disease, and long-term outcome. These findings provide a detailed map of the metabolic response to acute exercise in humans and identify potential mechanisms responsible for the beneficial cardiometabolic effects of exercise for future study.
Collapse
Affiliation(s)
- Matthew Nayor
- Cardiology Division and the Simches Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Ravi V. Shah
- Cardiology Division and the Simches Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Patricia E. Miller
- Department of Biostatistics, Boston University School of Public Health, Boston, MA
| | - Jasmine B. Blodgett
- Cardiology Division and the Simches Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Melissa Tanguay
- Cardiology Division and the Simches Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Alexander R. Pico
- Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA
| | - Venkatesh L. Murthy
- Division of Cardiovascular Medicine, Department of Medicine, University of Michigan, Ann Arbor
- Frankel Cardiovascular Center, University of Michigan, Ann Arbor
| | - Rajeev Malhotra
- Cardiology Division and the Simches Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA
| | - Nicholas E. Houstis
- Cardiology Division and the Simches Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Amy Deik
- Broad Institute of MIT and Harvard, Cambridge, MA
| | | | | | - Lucas Dailey
- Broad Institute of MIT and Harvard, Cambridge, MA
| | - Raghava S. Velagaleti
- Cardiology Section, Department of Medicine, Boston VA Healthcare System, West Roxbury, MA
| | - Stephanie A. Moore
- Cardiology Section, Department of Medicine, Boston VA Healthcare System, West Roxbury, MA
| | - Jennifer E. Ho
- Cardiology Division and the Simches Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Aaron L. Baggish
- Cardiology Division and the Simches Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | | | - Martin G. Larson
- Department of Biostatistics, Boston University School of Public Health, Boston, MA
- Boston University’s and National Heart, Lung, and Blood Institute’s Framingham Heart Study, Framingham, MA
| | - Ramachandran S. Vasan
- Boston University’s and National Heart, Lung, and Blood Institute’s Framingham Heart Study, Framingham, MA
- Sections of Preventive Medicine and Epidemiology, and Cardiology, Department of Medicine, Boston University School of Medicine, Boston, MA
| | - Gregory D. Lewis
- Cardiology Division and the Simches Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA
- Pulmonary Critical Care Unit, Massachusetts General Hospital, Boston, MA
| |
Collapse
|
27
|
Metabolomics profiling of plasma, urine and saliva after short term training in young professional football players in Saudi Arabia. Sci Rep 2020; 10:19759. [PMID: 33184375 PMCID: PMC7665217 DOI: 10.1038/s41598-020-75755-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/19/2020] [Indexed: 02/06/2023] Open
Abstract
Metabolomics profiling was carried out to observe the effect of short-term intensive physical activity on the metabolome of young Saudi professional football players. Urine, plasma and saliva were collected on 2 days pre- and post-training. An Orbitrap Exactive mass spectrometer was used to analyze the samples. A reversed-phase (RP) column was used for the analysis of non-polar plasma metabolites, and a ZIC-pHILIC column was used for the analysis of plasma, saliva and urine. mzMine was used to extract the data, and the results were modelled using Simca-P 14.1 software. There was no marked variation in the metabolite profiles between pre day 1 and 2 or between post day 1 and 2 according to principal components analysis (PCA). When orthogonal partial least squares (OPLSDA) modelling was also used, and then models could be fitted based on a total number of metabolites of 75, 16 and 32 for urine, plasma and saliva using hydrophilic interaction chromatography (HILIC) and 6 for analysis of plasma with reversed-phase (RP) chromatography respectively. The present study concludes that acylcarnitine may increase post-exercise in football players suggesting that they may burn fat rather than glucose. The levels of carnitine metabolites in plasma post-exercise could provide an important indicator of fitness.
Collapse
|
28
|
Pereyra AS, Rajan A, Ferreira CR, Ellis JM. Loss of Muscle Carnitine Palmitoyltransferase 2 Prevents Diet-Induced Obesity and Insulin Resistance despite Long-Chain Acylcarnitine Accumulation. Cell Rep 2020; 33:108374. [PMID: 33176143 PMCID: PMC7680579 DOI: 10.1016/j.celrep.2020.108374] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/16/2020] [Accepted: 10/20/2020] [Indexed: 02/07/2023] Open
Abstract
To assess the effects of acylcarnitine accumulation on muscle insulin sensitivity, a model of muscle acylcarnitine accumulation was generated by deleting carnitine palmitoyltransferase 2 (CPT2) specifically from skeletal muscle (Cpt2Sk-/- mice). CPT2 is an irreplaceable enzyme for mitochondrial long-chain fatty acid oxidation, converting matrix acylcarnitines to acyl-CoAs. Compared with controls, Cpt2Sk-/- muscles do not accumulate anabolic lipids but do accumulate ∼22-fold more long-chain acylcarnitines. High-fat-fed Cpt2Sk-/- mice resist weight gain, adiposity, glucose intolerance, insulin resistance, and impairments in insulin-induced Akt phosphorylation. Obesity resistance of Cpt2Sk-/- mice could be attributed to increases in lipid excretion via feces, GFD15 production, and energy expenditure. L-carnitine supplement intervention lowers acylcarnitines and improves insulin sensitivity independent of muscle mitochondrial fatty acid oxidative capacity. The loss of muscle CPT2 results in a high degree of long-chain acylcarnitine accumulation, simultaneously protecting against diet-induced obesity and insulin resistance.
Collapse
Affiliation(s)
- Andrea S Pereyra
- Brody School of Medicine at East Carolina University, Department of Physiology and East Carolina Diabetes and Obesity Institute, Greenville, NC 27834, USA
| | - Arvind Rajan
- Department of Chemistry, East Carolina University, Greenville, NC 27834, USA
| | | | - Jessica M Ellis
- Brody School of Medicine at East Carolina University, Department of Physiology and East Carolina Diabetes and Obesity Institute, Greenville, NC 27834, USA.
| |
Collapse
|
29
|
Grapov D, Fiehn O, Campbell C, Chandler CJ, Burnett DJ, Souza EC, Casazza GA, Keim NL, Hunter GR, Fernandez JR, Garvey WT, Hoppel CL, Harper M, Newman JW, Adams SH. Impact of a weight loss and fitness intervention on exercise-associated plasma oxylipin patterns in obese, insulin-resistant, sedentary women. Physiol Rep 2020; 8:e14547. [PMID: 32869956 PMCID: PMC7460071 DOI: 10.14814/phy2.14547] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/26/2020] [Accepted: 07/27/2020] [Indexed: 12/18/2022] Open
Abstract
Very little is known about how metabolic health status, insulin resistance or metabolic challenges modulate the endocannabinoid (eCB) or polyunsaturated fatty acid (PUFA)-derived oxylipin (OxL) lipid classes. To address these questions, plasma eCB and OxL concentrations were determined at rest, 10 and 20 min during an acute exercise bout (30 min total, ~45% of preintervention V̇O2peak , ~63 W), and following 20 min recovery in overnight-fasted sedentary, obese, insulin-resistant women under controlled diet conditions. We hypothesized that increased fitness and insulin sensitivity following a ~14-week training and weight loss intervention would lead to significant changes in lipid signatures using an identical acute exercise protocol to preintervention. In the first 10 min of exercise, concentrations of a suite of OxL diols and hydroxyeicosatetraenoic acid (HETE) metabolites dropped significantly. There was no increase in 12,13-DiHOME, previously reported to increase with exercise and proposed to activate muscle fatty acid uptake and tissue metabolism. Following weight loss intervention, exercise-associated reductions were more pronounced for several linoleate and alpha-linolenate metabolites including DiHOMEs, DiHODEs, KODEs, and EpODEs, and fasting concentrations of 9,10-DiHODE, 12,13-DiHODE, and 9,10-DiHOME were reduced. These findings suggest that improved metabolic health modifies soluble epoxide hydrolase, cytochrome P450 epoxygenase (CYP), and lipoxygenase (LOX) systems. Acute exercise led to reductions for most eCB metabolites, with no evidence for concentration increases even at recovery. It is proposed that during submaximal aerobic exercise, nonoxidative fates of long-chain saturated, monounsaturated, and PUFAs are attenuated in tissues that are important contributors to the blood OxL and eCB pools.
Collapse
Affiliation(s)
| | - Oliver Fiehn
- West Coast Metabolomics CenterUniversity of CaliforniaDavisCAUSA
| | - Caitlin Campbell
- United States Department of Agriculture‐Agricultural Research Service Western Human Nutrition Research CenterDavisCAUSA
| | - Carol J. Chandler
- United States Department of Agriculture‐Agricultural Research Service Western Human Nutrition Research CenterDavisCAUSA
| | - Dustin J. Burnett
- United States Department of Agriculture‐Agricultural Research Service Western Human Nutrition Research CenterDavisCAUSA
| | - Elaine C. Souza
- United States Department of Agriculture‐Agricultural Research Service Western Human Nutrition Research CenterDavisCAUSA
| | | | - Nancy L. Keim
- United States Department of Agriculture‐Agricultural Research Service Western Human Nutrition Research CenterDavisCAUSA
- Department of NutritionUniversity of CaliforniaDavisCAUSA
| | - Gary R. Hunter
- Department of Nutrition SciencesUniversity of AlabamaBirminghamALUSA
- Human Studies DepartmentUniversity of AlabamaBirminghamALUSA
| | - Jose R. Fernandez
- Department of Nutrition SciencesUniversity of AlabamaBirminghamALUSA
| | - W. Timothy Garvey
- Department of Nutrition SciencesUniversity of AlabamaBirminghamALUSA
| | - Charles L. Hoppel
- Pharmacology DepartmentCase Western Reserve UniversityClevelandOHUSA
| | - Mary‐Ellen Harper
- Department of Biochemistry, Microbiology and Immunology, and Ottawa Institute of Systems BiologyUniversity of OttawaOttawaONCanada
| | - John W. Newman
- United States Department of Agriculture‐Agricultural Research Service Western Human Nutrition Research CenterDavisCAUSA
- Department of NutritionUniversity of CaliforniaDavisCAUSA
| | - Sean H. Adams
- Arkansas Children’s Nutrition CenterLittle RockARUSA
- Department of PediatricsUniversity of Arkansas for Medical SciencesLittle RockARUSA
| |
Collapse
|
30
|
Contrepois K, Wu S, Moneghetti KJ, Hornburg D, Ahadi S, Tsai MS, Metwally AA, Wei E, Lee-McMullen B, Quijada JV, Chen S, Christle JW, Ellenberger M, Balliu B, Taylor S, Durrant MG, Knowles DA, Choudhry H, Ashland M, Bahmani A, Enslen B, Amsallem M, Kobayashi Y, Avina M, Perelman D, Schüssler-Fiorenza Rose SM, Zhou W, Ashley EA, Montgomery SB, Chaib H, Haddad F, Snyder MP. Molecular Choreography of Acute Exercise. Cell 2020; 181:1112-1130.e16. [PMID: 32470399 PMCID: PMC7299174 DOI: 10.1016/j.cell.2020.04.043] [Citation(s) in RCA: 234] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 12/10/2019] [Accepted: 04/21/2020] [Indexed: 02/07/2023]
Abstract
Acute physical activity leads to several changes in metabolic, cardiovascular, and immune pathways. Although studies have examined selected changes in these pathways, the system-wide molecular response to an acute bout of exercise has not been fully characterized. We performed longitudinal multi-omic profiling of plasma and peripheral blood mononuclear cells including metabolome, lipidome, immunome, proteome, and transcriptome from 36 well-characterized volunteers, before and after a controlled bout of symptom-limited exercise. Time-series analysis revealed thousands of molecular changes and an orchestrated choreography of biological processes involving energy metabolism, oxidative stress, inflammation, tissue repair, and growth factor response, as well as regulatory pathways. Most of these processes were dampened and some were reversed in insulin-resistant participants. Finally, we discovered biological pathways involved in cardiopulmonary exercise response and developed prediction models revealing potential resting blood-based biomarkers of peak oxygen consumption.
Collapse
Affiliation(s)
- Kévin Contrepois
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA; Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Si Wu
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Kegan J Moneghetti
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA; Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA; Department of Medicine, St. Vincent's Hospital, University of Melbourne, Melbourne, VIC, Australia; Stanford Sports Cardiology, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Daniel Hornburg
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Sara Ahadi
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Ming-Shian Tsai
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Ahmed A Metwally
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Eric Wei
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Jeniffer V Quijada
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Songjie Chen
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Jeffrey W Christle
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA; Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA; Stanford Sports Cardiology, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Mathew Ellenberger
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Brunilda Balliu
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Shalina Taylor
- Pediatrics Department, Stanford University School of Medicine, Stanford, CA, USA
| | - Matthew G Durrant
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - David A Knowles
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA; Department of Radiology, Stanford University, Stanford, CA, USA
| | - Hani Choudhry
- Department of Biochemistry, Faculty of Science, Cancer and Mutagenesis Unit, King Fahd Center for Medical Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Melanie Ashland
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Amir Bahmani
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Brooke Enslen
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Myriam Amsallem
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA; Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Yukari Kobayashi
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA; Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Monika Avina
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Dalia Perelman
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Wenyu Zhou
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Euan A Ashley
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA; Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA; Center for Undiagnosed Diseases, Stanford University, Stanford, CA, USA
| | - Stephen B Montgomery
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA; Department of Pathology, Stanford University, Stanford, CA, USA
| | - Hassan Chaib
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Francois Haddad
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA; Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA; Stanford Diabetes Research Center, Stanford University, Stanford, CA, USA.
| | - Michael P Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA; Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA; Stanford Diabetes Research Center, Stanford University, Stanford, CA, USA.
| |
Collapse
|
31
|
Midlife Chronological and Endocrinological Transitions in Brain Metabolism: System Biology Basis for Increased Alzheimer's Risk in Female Brain. Sci Rep 2020; 10:8528. [PMID: 32444841 PMCID: PMC7244485 DOI: 10.1038/s41598-020-65402-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/30/2020] [Indexed: 12/27/2022] Open
Abstract
Decline in brain glucose metabolism is a hallmark of late-onset Alzheimer’s disease (LOAD). Comprehensive understanding of the dynamic metabolic aging process in brain can provide insights into windows of opportunities to promote healthy brain aging. Chronological and endocrinological aging are associated with brain glucose hypometabolism and mitochondrial adaptations in female brain. Using a rat model recapitulating fundamental features of the human menopausal transition, results of transcriptomic analysis revealed stage-specific shifts in bioenergetic systems of biology that were paralleled by bioenergetic dysregulation in midlife aging female brain. Transcriptomic profiles were predictive of outcomes from unbiased, discovery-based metabolomic and lipidomic analyses, which revealed a dynamic adaptation of the aging female brain from glucose centric to utilization of auxiliary fuel sources that included amino acids, fatty acids, lipids, and ketone bodies. Coupling between brain and peripheral metabolic systems was dynamic and shifted from uncoupled to coupled under metabolic stress. Collectively, these data provide a detailed profile across transcriptomic and metabolomic systems underlying bioenergetic function in brain and its relationship to peripheral metabolic responses. Mechanistically, these data provide insights into the complex dynamics of chronological and endocrinological bioenergetic aging in female brain. Translationally, these findings are predictive of initiation of the prodromal / preclinical phase of LOAD for women in midlife and highlight therapeutic windows of opportunity to reduce the risk of late-onset Alzheimer’s disease.
Collapse
|
32
|
Kistner S, Rist MJ, Döring M, Dörr C, Neumann R, Härtel S, Bub A. An NMR-Based Approach to Identify Urinary Metabolites Associated with Acute Physical Exercise and Cardiorespiratory Fitness in Healthy Humans-Results of the KarMeN Study. Metabolites 2020; 10:metabo10050212. [PMID: 32455749 PMCID: PMC7281079 DOI: 10.3390/metabo10050212] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/15/2020] [Accepted: 05/19/2020] [Indexed: 12/19/2022] Open
Abstract
Knowledge on metabolites distinguishing the metabolic response to acute physical exercise between fit and less fit individuals could clarify mechanisms and metabolic pathways contributing to the beneficial adaptations to exercise. By analyzing data from the cross-sectional KarMeN (Karlsruhe Metabolomics and Nutrition) study, we characterized the acute effects of a standardized exercise tolerance test on urinary metabolites of 255 healthy women and men. In a second step, we aimed to detect a urinary metabolite pattern associated with the cardiorespiratory fitness (CRF), which was determined by measuring the peak oxygen uptake (VO2peak) during incremental exercise. Spot urine samples were collected pre- and post-exercise and 47 urinary metabolites were identified by nuclear magnetic resonance (NMR) spectroscopy. While the univariate analysis of pre-to-post-exercise differences revealed significant alterations in 37 urinary metabolites, principal component analysis (PCA) did not show a clear separation of the pre- and post-exercise urine samples. Moreover, both bivariate correlation and multiple linear regression analyses revealed only weak relationships between the VO2peak and single urinary metabolites or urinary metabolic pattern, when adjusting for covariates like age, sex, menopausal status, and lean body mass (LBM). Taken as a whole, our results show that several urinary metabolites (e.g., lactate, pyruvate, alanine, and acetate) reflect acute exercise-induced alterations in the human metabolism. However, as neither pre- and post-exercise levels nor the fold changes of urinary metabolites substantially accounted for the variation of the covariate-adjusted VO2peak, our results furthermore indicate that the urinary metabolites identified in this study do not allow to draw conclusions on the individual's physical fitness status. Studies investigating the relationship between the human metabolome and functional variables like the CRF should adjust for confounders like age, sex, menopausal status, and LBM.
Collapse
Affiliation(s)
- Sina Kistner
- Institute of Sports and Sports Science, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany; (R.N.); (S.H.); (A.B.)
- Correspondence: ; Tel.: +49-721-608-46981
| | - Manuela J. Rist
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, 76131 Karlsruhe, Germany; (M.J.R.); (M.D.); (C.D.)
| | - Maik Döring
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, 76131 Karlsruhe, Germany; (M.J.R.); (M.D.); (C.D.)
| | - Claudia Dörr
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, 76131 Karlsruhe, Germany; (M.J.R.); (M.D.); (C.D.)
| | - Rainer Neumann
- Institute of Sports and Sports Science, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany; (R.N.); (S.H.); (A.B.)
| | - Sascha Härtel
- Institute of Sports and Sports Science, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany; (R.N.); (S.H.); (A.B.)
| | - Achim Bub
- Institute of Sports and Sports Science, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany; (R.N.); (S.H.); (A.B.)
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, 76131 Karlsruhe, Germany; (M.J.R.); (M.D.); (C.D.)
| |
Collapse
|
33
|
Sobhi HF, Zhao X, Plomgaard P, Hoene M, Hansen JS, Karus B, Niess AM, Häring HU, Lehmann R, Adams SH, Xu G, Weigert C. Identification and regulation of the xenometabolite derivatives cis- and trans-3,4-methylene-heptanoylcarnitine in plasma and skeletal muscle of exercising humans. Am J Physiol Endocrinol Metab 2020; 318:E701-E709. [PMID: 32101032 DOI: 10.1152/ajpendo.00510.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Little is known about xenometabolites in human metabolism, particularly under exercising conditions. Previously, an exercise-modifiable, likely xenometabolite derivative, cis-3,4-methylene-heptanoylcarnitine, was reported in human plasma. Here, we identified trans-3,4-methylene-heptanoylcarnitine, and its cis-isomer, in plasma and skeletal muscle by liquid chromatography-mass spectrometry. We analyzed the regulation by exercise and the arterial-to-venous differences of these cyclopropane ring-containing carnitine esters over the hepatosplanchnic bed and the exercising leg in plasma samples obtained in three separate studies from young, lean and healthy males. Compared with other medium-chain acylcarnitines, the plasma concentrations of the 3,4-methylene-heptanoylcarnitine isomers only marginally increased with exercise. Both isomers showed a more than twofold increase in the skeletal muscle tissue of the exercising leg; this may have been due to the net effect of fatty acid oxidation in the exercising muscle and uptake from blood. The latter idea is supported by a more than twofold increased net uptake in the exercising leg only. Both isomers showed a constant release from the hepatosplanchnic bed, with an increased release of the trans-isomer after exercise. The isomers differ in their plasma concentration, with a four times higher concentration of the cis-isomer regardless of the exercise state. This is the first approach studying kinetics and fluxes of xenolipid isomers from tissues under exercise conditions, supporting the hypothesis that hepatic metabolism of cyclopropane ring-containing fatty acids is one source of these acylcarnitines in plasma. The data also provide clear evidence for an exercise-dependent regulation of xenometabolites, opening perspectives for future studies about the physiological role of this largely unknown class of metabolites.
Collapse
Affiliation(s)
- Hany F Sobhi
- Department of Natural Sciences, Center for Organic Synthesis, Coppin State University, Baltimore, Maryland
| | - Xinjie Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Dalian, China
| | - Peter Plomgaard
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Department of Infectious Diseases and CMRC, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Miriam Hoene
- Institute for Clinical Chemistry and Pathobiochemistry, University Hospital, Tuebingen, Germany
| | - Jakob S Hansen
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Department of Infectious Diseases and CMRC, Rigshospitalet, Copenhagen, Denmark
| | - Benedikt Karus
- Department for Sports Medicine, University Hospital, Tuebingen, Germany
| | - Andreas M Niess
- Department for Sports Medicine, University Hospital, Tuebingen, Germany
| | - Hans U Häring
- Institute for Diabetes Research and Metabolic Diseases, Helmholtz Zentrum Muenchen, University of Tuebingen, Tuebingen, Germany
- German Center for Diabetes Research, Oberschleissheim, Germany
| | - Rainer Lehmann
- Institute for Clinical Chemistry and Pathobiochemistry, University Hospital, Tuebingen, Germany
- Institute for Diabetes Research and Metabolic Diseases, Helmholtz Zentrum Muenchen, University of Tuebingen, Tuebingen, Germany
- German Center for Diabetes Research, Oberschleissheim, Germany
| | - Sean H Adams
- Arkansas Children's Nutrition Center, Little Rock, Arkansas
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Dalian, China
| | - Cora Weigert
- Institute for Clinical Chemistry and Pathobiochemistry, University Hospital, Tuebingen, Germany
- Institute for Diabetes Research and Metabolic Diseases, Helmholtz Zentrum Muenchen, University of Tuebingen, Tuebingen, Germany
- German Center for Diabetes Research, Oberschleissheim, Germany
| |
Collapse
|
34
|
McCoin CS, Gillingham MB, Knotts TA, Vockley J, Ono-Moore KD, Blackburn ML, Norman JE, Adams SH. Blood cytokine patterns suggest a modest inflammation phenotype in subjects with long-chain fatty acid oxidation disorders. Physiol Rep 2020; 7:e14037. [PMID: 30912279 PMCID: PMC6434073 DOI: 10.14814/phy2.14037] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/04/2019] [Accepted: 03/05/2019] [Indexed: 12/17/2022] Open
Abstract
Excessive cellular accumulation or exposure to lipids such as long‐chain acylcarnitines (LCACs), ceramides, and others is implicated in cell stress and inflammation. Such a situation might manifest when there is a significant mismatch between long‐chain fatty acid (LCFA) availability versus storage and oxidative utilization; for example, in cardiac ischemia, increased LCACs may contribute to tissue cell stress and infarct damage. Perturbed LCFAβ‐oxidation is also seen in fatty acid oxidation disorders (FAODs). FAODs typically manifest with fasting‐ or stress‐induced symptoms, and patients can manage many symptoms through control of diet and physical activity. However, episodic clinical events involving cardiac and skeletal muscle myopathies are common and can present without an obvious molecular trigger. We have speculated that systemic or tissue‐specific lipotoxicity and activation of inflammation pathways contribute to long‐chain FAOD pathophysiology. With this in mind, we characterized inflammatory phenotype (14 blood plasma cytokines) in resting, overnight‐fasted (~10 h), or exercise‐challenged subjects with clinically well‐controlled long‐chain FAODs (n = 12; 10 long‐chain 3‐hydroxyacyl‐CoA dehydrogenase [LCHAD]; 2 carnitine palmitoyltransferase 2 [CPT2]) compared to healthy controls (n = 12). Across experimental conditions, concentrations of three cytokines were modestly but significantly increased in FAOD (IFNγ, IL‐8, and MDC), and plasma levels of IL‐10 (considered an inflammation‐dampening cytokine) were significantly decreased. These novel results indicate that while asymptomatic FAOD patients do not display gross body‐wide inflammation even after moderate exercise, β‐oxidation deficiencies might be associated with chronic and subtle activation of “sterile inflammation.” Further studies are warranted to determine if inflammation is more apparent in poorly controlled long‐chain FAOD or when long‐chain FAOD‐associated symptoms are present.
Collapse
Affiliation(s)
- Colin S McCoin
- Department of Molecular and Integrative Physiology, Medical Center, University of Kansas, Kansas City, Kansas
| | - Melanie B Gillingham
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, Oregon
| | - Trina A Knotts
- School of Medicine Department of Anatomy, Physiology and Cell Biology, University of California, Davis, School of Veterinary Medicine, Davis, California
| | - Jerry Vockley
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Michael L Blackburn
- Arkansas Children's Nutrition Center, Little Rock, Arkansas.,Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Jennifer E Norman
- Department of Internal Medicine, University of California, Davis, School of Medicine, Davis, California
| | - Sean H Adams
- Arkansas Children's Nutrition Center, Little Rock, Arkansas.,Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| |
Collapse
|
35
|
Grapov D, Fiehn O, Campbell C, Chandler CJ, Burnett DJ, Souza EC, Casazza GA, Keim NL, Newman JW, Hunter GR, Fernandez JR, Garvey WT, Hoppel CL, Harper ME, Adams SH. Exercise plasma metabolomics and xenometabolomics in obese, sedentary, insulin-resistant women: impact of a fitness and weight loss intervention. Am J Physiol Endocrinol Metab 2019; 317:E999-E1014. [PMID: 31526287 PMCID: PMC6962502 DOI: 10.1152/ajpendo.00091.2019] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Insulin resistance has wide-ranging effects on metabolism, but there are knowledge gaps regarding the tissue origins of systemic metabolite patterns and how patterns are altered by fitness and metabolic health. To address these questions, plasma metabolite patterns were determined every 5 min during exercise (30 min, ∼45% of V̇o2peak, ∼63 W) and recovery in overnight-fasted sedentary, obese, insulin-resistant women under controlled conditions of diet and physical activity. We hypothesized that improved fitness and insulin sensitivity following a ∼14-wk training and weight loss intervention would lead to fixed workload plasma metabolomics signatures reflective of metabolic health and muscle metabolism. Pattern analysis over the first 15 min of exercise, regardless of pre- versus postintervention status, highlighted anticipated increases in fatty acid tissue uptake and oxidation (e.g., reduced long-chain fatty acids), diminution of nonoxidative fates of glucose [e.g., lowered sorbitol-pathway metabolites and glycerol-3-galactoside (possible glycerolipid synthesis metabolite)], and enhanced tissue amino acid use (e.g., drops in amino acids; modest increase in urea). A novel observation was that exercise significantly increased several xenometabolites ("non-self" molecules, from microbes or foods), including benzoic acid-salicylic acid-salicylaldehyde, hexadecanol-octadecanol-dodecanol, and chlorogenic acid. In addition, many nonannotated metabolites changed with exercise. Although exercise itself strongly impacted the global metabolome, there were surprisingly few intervention-associated differences despite marked improvements in insulin sensitivity, fitness, and adiposity. These results and previously reported plasma acylcarnitine profiles support the principle that most metabolic changes during submaximal aerobic exercise are closely tethered to absolute ATP turnover rate (workload), regardless of fitness or metabolic health status.
Collapse
Affiliation(s)
| | - Oliver Fiehn
- West Coast Metabolomics Center, Genome Center, University of California, Davis, California
| | - Caitlin Campbell
- United States Department of Agriculture-Agricultural Research Service Western Human Nutrition Research Center, Davis, California
| | - Carol J Chandler
- United States Department of Agriculture-Agricultural Research Service Western Human Nutrition Research Center, Davis, California
| | - Dustin J Burnett
- United States Department of Agriculture-Agricultural Research Service Western Human Nutrition Research Center, Davis, California
| | - Elaine C Souza
- United States Department of Agriculture-Agricultural Research Service Western Human Nutrition Research Center, Davis, California
| | - Gretchen A Casazza
- Sports Medicine Program, School of Medicine, University of California, Davis, California
| | - Nancy L Keim
- United States Department of Agriculture-Agricultural Research Service Western Human Nutrition Research Center, Davis, California
- Department of Nutrition, University of California, Davis, California
| | - John W Newman
- United States Department of Agriculture-Agricultural Research Service Western Human Nutrition Research Center, Davis, California
- Department of Nutrition, University of California, Davis, California
| | - Gary R Hunter
- Department of Nutrition Sciences, University of Alabama, Birmingham, Alabama
- Human Studies Department, University of Alabama, Birmingham, Alabama
| | - Jose R Fernandez
- Department of Nutrition Sciences, University of Alabama, Birmingham, Alabama
| | - W Timothy Garvey
- Department of Nutrition Sciences, University of Alabama, Birmingham, Alabama
| | - Charles L Hoppel
- Pharmacology Department, Case Western Reserve University, Cleveland, Ohio
| | - Mary-Ellen Harper
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Sean H Adams
- Arkansas Children's Nutrition Center, Little Rock, Arkansas
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| |
Collapse
|
36
|
Khodabukus A, Madden L, Prabhu NK, Koves TR, Jackman CP, Muoio DM, Bursac N. Electrical stimulation increases hypertrophy and metabolic flux in tissue-engineered human skeletal muscle. Biomaterials 2019; 198:259-269. [PMID: 30180985 PMCID: PMC6395553 DOI: 10.1016/j.biomaterials.2018.08.058] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 07/05/2018] [Accepted: 08/27/2018] [Indexed: 02/08/2023]
Abstract
In vitro models of contractile human skeletal muscle hold promise for use in disease modeling and drug development, but exhibit immature properties compared to native adult muscle. To address this limitation, 3D tissue-engineered human muscles (myobundles) were electrically stimulated using intermittent stimulation regimes at 1 Hz and 10 Hz. Dystrophin in myotubes exhibited mature membrane localization suggesting a relatively advanced starting developmental maturation. One-week stimulation significantly increased myobundle size, sarcomeric protein abundance, calcium transient amplitude (∼2-fold), and tetanic force (∼3-fold) resulting in the highest specific force generation (19.3mN/mm2) reported for engineered human muscles to date. Compared to 1 Hz electrical stimulation, the 10 Hz stimulation protocol resulted in greater myotube hypertrophy and upregulated mTORC1 and ERK1/2 activity. Electrically stimulated myobundles also showed a decrease in fatigue resistance compared to control myobundles without changes in glycolytic or mitochondrial protein levels. Greater glucose consumption and decreased abundance of acetylcarnitine in stimulated myobundles indicated increased glycolytic and fatty acid metabolic flux. Moreover, electrical stimulation of myobundles resulted in a metabolic shift towards longer-chain fatty acid oxidation as evident from increased abundances of medium- and long-chain acylcarnitines. Taken together, our study provides an advanced in vitro model of human skeletal muscle with improved structure, function, maturation, and metabolic flux.
Collapse
Affiliation(s)
| | - Lauran Madden
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Neel K Prabhu
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Timothy R Koves
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
| | | | - Deborah M Muoio
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
| | - Nenad Bursac
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
| |
Collapse
|
37
|
Muise ES, Guan HP, Liu J, Nawrocki AR, Yang X, Wang C, Rodríguez CG, Zhou D, Gorski JN, Kurtz MM, Feng D, Leavitt KJ, Wei L, Wilkening RR, Apgar JM, Xu S, Lu K, Feng W, Li Y, He H, Previs SF, Shen X, van Heek M, Souza SC, Rosenbach MJ, Biftu T, Erion MD, Kelley DE, Kemp DM, Myers RW, Sebhat IK. Pharmacological AMPK activation induces transcriptional responses congruent to exercise in skeletal and cardiac muscle, adipose tissues and liver. PLoS One 2019; 14:e0211568. [PMID: 30811418 PMCID: PMC6392219 DOI: 10.1371/journal.pone.0211568] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 01/16/2019] [Indexed: 12/25/2022] Open
Abstract
Physical activity promotes metabolic and cardiovascular health benefits that derive in part from the transcriptional responses to exercise that occur within skeletal muscle and other organs. There is interest in discovering a pharmacologic exercise mimetic that could imbue wellness and alleviate disease burden. However, the molecular physiology by which exercise signals the transcriptional response is highly complex, making it challenging to identify a single target for pharmacological mimicry. The current studies evaluated the transcriptome responses in skeletal muscle, heart, liver, and white and brown adipose to novel small molecule activators of AMPK (pan-activators for all AMPK isoforms) compared to that of exercise. A striking level of congruence between exercise and pharmacological AMPK activation was observed across the induced transcriptome of these five tissues. However, differences in acute metabolic response between exercise and pharmacologic AMPK activation were observed, notably for acute glycogen balances and related to the energy expenditure induced by exercise but not pharmacologic AMPK activation. Nevertheless, intervention with repeated daily administration of short-acting activation of AMPK was found to mitigate hyperglycemia and hyperinsulinemia in four rodent models of metabolic disease and without the cardiac glycogen accretion noted with sustained pharmacologic AMPK activation. These findings affirm that activation of AMPK is a key node governing exercise mediated transcription and is an attractive target as an exercise mimetic.
Collapse
Affiliation(s)
- Eric S. Muise
- Genetics and Pharmacogenomics Department, MRL, Kenilworth, NJ, United States of America
- * E-mail: (ESM); (IKS)
| | - Hong-Ping Guan
- Biology-Discovery Department, MRL, Kenilworth, NJ, United States of America
| | - Jinqi Liu
- Biology-Discovery Department, MRL, Kenilworth, NJ, United States of America
| | - Andrea R. Nawrocki
- In Vivo Pharmacology Department, MRL, Kenilworth, NJ, United States of America
| | - Xiaodong Yang
- Biology-Discovery Department, MRL, Kenilworth, NJ, United States of America
| | - Chuanlin Wang
- Biology-Discovery Department, MRL, Kenilworth, NJ, United States of America
| | - Carlos G. Rodríguez
- In Vivo Pharmacology Department, MRL, Kenilworth, NJ, United States of America
| | - Dan Zhou
- In Vivo Pharmacology Department, MRL, Kenilworth, NJ, United States of America
| | - Judith N. Gorski
- In Vivo Pharmacology Department, MRL, Kenilworth, NJ, United States of America
| | - Marc M. Kurtz
- In Vitro PharmacologyDepartment, MRL, NJ, United States of America
| | - Danqing Feng
- Medicinal ChemistryDepartment, MRL, Kenilworth, NJ, United States of America
| | - Kenneth J. Leavitt
- Medicinal ChemistryDepartment, MRL, Kenilworth, NJ, United States of America
| | - Lan Wei
- Medicinal ChemistryDepartment, MRL, Kenilworth, NJ, United States of America
| | - Robert R. Wilkening
- Medicinal ChemistryDepartment, MRL, Kenilworth, NJ, United States of America
| | - James M. Apgar
- Medicinal ChemistryDepartment, MRL, Kenilworth, NJ, United States of America
| | - Shiyao Xu
- PPDM Preclinical ADME Department, MRL, Kenilworth, NJ, United States of America
| | - Ku Lu
- Biology-Discovery Department, MRL, Kenilworth, NJ, United States of America
| | - Wen Feng
- Biology-Discovery Department, MRL, Kenilworth, NJ, United States of America
| | - Ying Li
- Biology-Discovery Department, MRL, Kenilworth, NJ, United States of America
| | - Huaibing He
- PPDM Preclinical ADME Department, MRL, Kenilworth, NJ, United States of America
| | - Stephen F. Previs
- Biology-Discovery Department, MRL, Kenilworth, NJ, United States of America
| | - Xiaolan Shen
- SALAR Department, MRL, Kenilworth, NJ, United States of America
| | - Margaret van Heek
- In Vivo Pharmacology Department, MRL, Kenilworth, NJ, United States of America
| | - Sandra C. Souza
- Biology-Discovery Department, MRL, Kenilworth, NJ, United States of America
| | - Mark J. Rosenbach
- Biology-Discovery Department, MRL, Kenilworth, NJ, United States of America
| | - Tesfaye Biftu
- Medicinal ChemistryDepartment, MRL, Kenilworth, NJ, United States of America
| | - Mark D. Erion
- Biology-Discovery Department, MRL, Kenilworth, NJ, United States of America
| | - David E. Kelley
- Biology-Discovery Department, MRL, Kenilworth, NJ, United States of America
| | - Daniel M. Kemp
- Biology-Discovery Department, MRL, Kenilworth, NJ, United States of America
| | - Robert W. Myers
- In Vitro PharmacologyDepartment, MRL, NJ, United States of America
| | - Iyassu K. Sebhat
- Medicinal ChemistryDepartment, MRL, Kenilworth, NJ, United States of America
- * E-mail: (ESM); (IKS)
| |
Collapse
|
38
|
Li YY, Stewart DA, Ye XM, Yin LH, Pathmasiri WW, McRitchie SL, Fennell TR, Cheung HY, Sumner SJ. A Metabolomics Approach to Investigate Kukoamine B-A Potent Natural Product With Anti-diabetic Properties. Front Pharmacol 2019; 9:1575. [PMID: 30723413 PMCID: PMC6350459 DOI: 10.3389/fphar.2018.01575] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 12/31/2018] [Indexed: 12/11/2022] Open
Abstract
Due to the surge in type 2 diabetes mellitus (T2DM), treatments for chronic metabolic dysregulations with fewer side-effects are sought. Lycii Cortex (LyC), a traditional Chinese Medicine (TCM) herb has a long history of being widely prescribed to treat T2DM as alternative medicine; however, the bioactive molecules and working mechanism remained unknown. Previous studies revealed kukoamine B (KB) as a major and featured compound for LyC with bioactivities for anti-oxidation and acute inflammation, which may be related to anti-diabetes properties. This study aims to understand the efficacy and the mode of action of KB in the diabetic (db/db) mouse model using a metabolomics approach. Parallel comparison was conducted using the first-line anti-diabetic drugs, metformin and rosligtazone, as positive controls. The db/db mice were treated with KB (50 mg kg-1 day-1) for 9 weeks. Bodyweight and fasting blood glucose were monitored every 5 and 7 days, respectively. Metabolomics and high-throughput molecular approaches, including lipidomics, targeted metabolomics (Biocrates p180), and cytokine profiling were applied to measure the alteration of serum metabolites and inflammatory biomarkers between different treatments vs. control (db/db mice treated with vehicle). After 9 weeks of treatment, KB lowered blood glucose, without the adverse effects of bodyweight gain and hepatomegaly shown after rosiglitazone treatment. Lipidomics analysis revealed that KB reduced levels of circulating triglycerides, cholesterol, phosphatidylethanolamine, and increased levels of phosphatidylcholines. KB also increased acylcarnitines, and reduced systemic inflammation (cytokine array). Pathway analysis suggested that KB may regulate nuclear transcription factors (e.g., NF-κB and/or PPAR) to reduce inflammation and facilitate a shift toward metabolic and inflammatory homeostasis. Comparison of KB with first-line drugs suggests that rosiglitazone may over-regulate lipid metabolism and anti-inflammatory responses, which may be associated with adverse side effects, while metformin had less impact on lipid and anti-inflammation profiles. Our research from holistic and systemic views supports the conclusion that KB is the bioactive compound of LyC for managing T2DM, and suggests KB as a nutraceutical or a pharmaceutical candidate for T2D treatment. In addition, our research provides insights related to metformin and rosiglitazone action, beyond lowering blood glucose.
Collapse
Affiliation(s)
- Yuan-Yuan Li
- NIH Eastern Regional Comprehensive Metabolomics Resource Core, Nutrition Research Institute, Department of Nutrition, University of North Carolina at Chapel Hill, Kannapolis, NC, United States
| | - Delisha A Stewart
- NIH Eastern Regional Comprehensive Metabolomics Resource Core, Nutrition Research Institute, Department of Nutrition, University of North Carolina at Chapel Hill, Kannapolis, NC, United States
| | - Xiao-Min Ye
- Department of Pharmacology, Wuhan Institute for Drug and Medical Device Control, Wuhan, China
| | - Li-Hua Yin
- Department of Pharmacology, Wuhan Institute for Drug and Medical Device Control, Wuhan, China
| | - Wimal W Pathmasiri
- NIH Eastern Regional Comprehensive Metabolomics Resource Core, Nutrition Research Institute, Department of Nutrition, University of North Carolina at Chapel Hill, Kannapolis, NC, United States
| | - Susan L McRitchie
- NIH Eastern Regional Comprehensive Metabolomics Resource Core, Nutrition Research Institute, Department of Nutrition, University of North Carolina at Chapel Hill, Kannapolis, NC, United States
| | - Timothy R Fennell
- Analytical Chemistry and Pharmaceutics, RTI International, Research Triangle Park, Durham, NC, United States
| | - Hon-Yeung Cheung
- Department of Biomedical Science, City University of Hong Kong, Kowloon, Hong Kong
| | - Susan J Sumner
- NIH Eastern Regional Comprehensive Metabolomics Resource Core, Nutrition Research Institute, Department of Nutrition, University of North Carolina at Chapel Hill, Kannapolis, NC, United States
| |
Collapse
|
39
|
Zhang J, Bhattacharyya S, Hickner RC, Light AR, Lambert CJ, Gale BK, Fiehn O, Adams SH. Skeletal muscle interstitial fluid metabolomics at rest and associated with an exercise bout: application in rats and humans. Am J Physiol Endocrinol Metab 2019; 316:E43-E53. [PMID: 30398905 PMCID: PMC6417688 DOI: 10.1152/ajpendo.00156.2018] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Blood or biopsies are often used to characterize metabolites that are modulated by exercising muscle. However, blood has inputs derived from multiple tissues, biopsies cannot discriminate between secreted and intracellular metabolites, and their invasive nature is challenging for frequent collections in sensitive populations (e.g., children and pregnant women). Thus, minimally invasive approaches to interstitial fluid (IF) metabolomics would be valuable. A catheter was designed to collect IF from the gastrocnemius muscle of acutely anesthetized adult male rats at rest or immediately following 20 min of exercise (~60% of maximal O2 uptake). Nontargeted, gas chromatography-time-of-flight mass spectrometry analysis was used to detect 299 metabolites, including nonannotated metabolites, sugars, fatty acids, amino acids, and purine metabolites and derivatives. Just 43% of all detected metabolites were common to IF and blood plasma, and only 20% of exercise-modified metabolites were shared in both pools, highlighting that the blood does not fully reflect the metabolic outcomes in muscle. Notable exercise patterns included increased IF amino acids (except leucine and isoleucine), increased α-ketoglutarate and citrate (which may reflect tricarboxylic acid cataplerosis or shifts in nonmitochondrial pathways), and higher concentration of the signaling lipid oleamide. A preliminary study of human muscle IF was conducted using a 20-kDa microdialysis catheter placed in the vastus lateralis of five healthy adults at rest and during exercise (65% of estimated maximal heart rate). Approximately 70% of commonly detected metabolites discriminating rest vs. exercise in rats were also changed in exercising humans. Interstitium metabolomics may aid in the identification of molecules that signal muscle work (e.g., exertion and fatigue) and muscle health.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Anesthesiology, University of Utah School of Medicine , Salt Lake City, Utah
| | - Sudeepa Bhattacharyya
- Arkansas Children's Nutrition Center , Little Rock, Arkansas
- Department of Pediatrics, University of Arkansas for Medical Sciences , Little Rock, Arkansas
| | - Robert C Hickner
- Department of Nutrition, Food, and Exercise Sciences, Florida State University , Tallahassee, Florida
- College of Health Sciences, University of KwaZulu-Natal, Westville, South Africa
| | - Alan R Light
- Department of Anesthesiology, University of Utah School of Medicine , Salt Lake City, Utah
| | | | - Bruce K Gale
- Department of Mechanical Engineering, University of Utah , Salt Lake City, Utah
| | - Oliver Fiehn
- West Coast Metabolomics Center, University of California , Davis, California
| | - Sean H Adams
- Arkansas Children's Nutrition Center , Little Rock, Arkansas
- Department of Pediatrics, University of Arkansas for Medical Sciences , Little Rock, Arkansas
| |
Collapse
|
40
|
Niu X, He B, Du Y, Sui Z, Rong W, Wang X, Li Q, Bi K. The investigation of immunoprotective and sedative hypnotic effect of total polysaccharide from Suanzaoren decoction by serum metabonomics approach. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1086:29-37. [PMID: 29654984 DOI: 10.1016/j.jchromb.2018.04.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 03/19/2018] [Accepted: 04/05/2018] [Indexed: 12/17/2022]
Abstract
Suanzaoren decoction, as one of the traditional Chinese medicine prescriptions, has been most commonly used in Asian countries and reported to inhibit the process of immunodeficiency insomnia. Polysaccharide is important component which also contributes to the role of immunoprotective and sedative hypnotic effects. This study was aimed to explore the immunoprotective and sedative hypnotic mechanisms of polysaccharide from Suanzaoren decoction by serum metabonomics approach. With this purpose, complex physical and chemical immunodeficiency insomnia models were firstly established according to its multi-target property. Serum samples were analyzed using UHPLC/Q-TOF-MS spectrometry approach to determine endogenous metabolites. Then, principal component analysis was used to distinguish the groups, and partial least squares discriminate analysis was carried out to confirm the important variables. The serum metabolic profiling was identified and pathway analysis was performed after the total polysaccharide administration. The twenty-one potential biomarkers were screened, and the levels were all reversed to different degrees in the total polysaccharide treated groups. These potential biomarkers were mainly related to vitamin, sphingolipid, bile acid, phospholipid and acylcarnitine metabolisms. The result has indicated that total polysaccharide could inhibit insomnia triggered by immunodeficiency stimulation through regulating those metabolic pathways. This study provides a useful approach for exploring the mechanism and evaluating the efficacy of total polysaccharide from Suanzaoren decoction.
Collapse
Affiliation(s)
- Xiaoyi Niu
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Bosai He
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Yiyang Du
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Zhenyu Sui
- China Food and Drug Administration Institute of Executive Development, 16 Xizhannan Road, Beijing 100073, China
| | - Weiwei Rong
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Xiaotong Wang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Qing Li
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Kaishun Bi
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
41
|
Untargeted Metabolomics Profiling of an 80.5 km Simulated Treadmill Ultramarathon. Metabolites 2018; 8:metabo8010014. [PMID: 29438325 PMCID: PMC5876003 DOI: 10.3390/metabo8010014] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 02/08/2018] [Accepted: 02/08/2018] [Indexed: 01/23/2023] Open
Abstract
Metabolomic profiling of nine trained ultramarathon runners completing an 80.5 km self-paced treadmill-based time trial was carried out. Plasma samples were obtained from venous whole blood, collected at rest and on completion of the distance (post-80.5 km). The samples were analyzed by using high-resolution mass spectrometry in combination with both hydrophilic interaction (HILIC) and reversed phase (RP) chromatography. The extracted putatively identified features were modeled using Simca P 14.1 software (Umetrics, Umea, Sweden). A large number of amino acids decreased post-80.5 km and fatty acid metabolism was affected with an increase in the formation of medium-chain unsaturated and partially oxidized fatty acids and conjugates of fatty acids with carnitines. A possible explanation for the complex pattern of medium-chain and oxidized fatty acids formed is that the prolonged exercise provoked the proliferation of peroxisomes. The peroxisomes may provide a readily utilizable form of energy through formation of acetyl carnitine and other acyl carnitines for export to mitochondria in the muscles; and secondly may serve to regulate the levels of oxidized metabolites of long-chain fatty acids. This is the first study to provide evidence of the metabolic profile in response to prolonged ultramarathon running using an untargeted approach. The findings provide an insight to the effects of ultramarathon running on the metabolic specificities and alterations that may demonstrate cardio-protective effects.
Collapse
|
42
|
Bhattacharyya S, Ali M, Smith WH, Minkler PE, Stoll MS, Hoppel CL, Adams SH. Anesthesia and bariatric surgery gut preparation alter plasma acylcarnitines reflective of mitochondrial fat and branched-chain amino acid oxidation. Am J Physiol Endocrinol Metab 2017; 313:E690-E698. [PMID: 28830869 PMCID: PMC5814600 DOI: 10.1152/ajpendo.00222.2017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/14/2017] [Accepted: 08/14/2017] [Indexed: 01/08/2023]
Abstract
The period around bariatric surgery offers a unique opportunity to characterize metabolism responses to dynamic shifts in energy, gut function, and anesthesia. We analyzed plasma acylcarnitines in obese women (n = 17) sampled in the overnight fasted/postabsorptive state approximately 1-2 wk before surgery (condition A), the morning of surgery (prior restriction to a 48-h clear liquid diet coupled in some cases a standard polyethylene glycol gut evacuation: condition B), and following induction of anesthesia (condition C). Comparisons tested if 1) plasma acylcarnitine derivatives reflective of fatty acid oxidation (FAO) and xenometabolism would be significantly increased and decreased, respectively, by preoperative gut preparation/negative energy balance (condition A vs. B), and 2) anesthesia would acutely depress markers of FAO. Acylcarnitines associated with fat mobilization and FAO were significantly increased in condition B: long-chain acylcarnitines (i.e., C18:1, ~70%), metabolites from active but incomplete FAO [i.e., C14:1 (161%) and C14:2 (102%)] and medium- to short-chain acylcarnitines [i.e., C2 (91%), R-3-hydroxybutyryl-(245%), C6 (45%), and cis-3,4-methylene-heptanoyl-(17%), etc.]. Branched-chain amino acid markers displayed disparate patterns [i.e., isobutyryl-(40% decreased) vs. isovaleryl carnitine (51% increased)]. Anesthesia reduced virtually every acylcarnitine. These results are consistent with a fasting-type metabolic phenotype coincident with the presurgical "gut preparation" phase of bariatric surgery, and a major and rapid alteration of both fat and amino acid metabolism with onset of anesthesia. Whether presurgical or anesthesia-associated metabolic shifts in carnitine and fuel metabolism impact patient outcomes or surgical risks remains to be evaluated experimentally.
Collapse
Affiliation(s)
- Sudeepa Bhattacharyya
- Arkansas Children's Nutrition Center, Little Rock, Arkansas
- Department of Pediatrics, University of Arkansas for Medical Science, Little Rock, Arkansas
| | - Mohamed Ali
- Department of Surgery, University of California, Davis School of Medicine, Sacramento, California; and
| | - William H Smith
- Department of Surgery, University of California, Davis School of Medicine, Sacramento, California; and
| | - Paul E Minkler
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio
| | - Maria S Stoll
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio
| | - Charles L Hoppel
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio
| | - Sean H Adams
- Arkansas Children's Nutrition Center, Little Rock, Arkansas;
- Department of Pediatrics, University of Arkansas for Medical Science, Little Rock, Arkansas
| |
Collapse
|
43
|
Bruno C, Patin F, Bocca C, Nadal-Desbarats L, Bonnier F, Reynier P, Emond P, Vourc'h P, Joseph-Delafont K, Corcia P, Andres CR, Blasco H. The combination of four analytical methods to explore skeletal muscle metabolomics: Better coverage of metabolic pathways or a marketing argument? J Pharm Biomed Anal 2017; 148:273-279. [PMID: 29059617 DOI: 10.1016/j.jpba.2017.10.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 10/12/2017] [Accepted: 10/13/2017] [Indexed: 01/11/2023]
Abstract
OBJECTIVES Metabolomics is an emerging science based on diverse high throughput methods that are rapidly evolving to improve metabolic coverage of biological fluids and tissues. Technical progress has led researchers to combine several analytical methods without reporting the impact on metabolic coverage of such a strategy. The objective of our study was to develop and validate several analytical techniques (mass spectrometry coupled to gas or liquid chromatography and nuclear magnetic resonance) for the metabolomic analysis of small muscle samples and evaluate the impact of combining methods for more exhaustive metabolite covering. DESIGN AND METHODS We evaluated the muscle metabolome from the same pool of mouse muscle samples after 2 metabolite extraction protocols. Four analytical methods were used: targeted flow injection analysis coupled with mass spectrometry (FIA-MS/MS), gas chromatography coupled with mass spectrometry (GC-MS), liquid chromatography coupled with high-resolution mass spectrometry (LC-HRMS), and nuclear magnetic resonance (NMR) analysis. We evaluated the global variability of each compound i.e., analytical (from quality controls) and extraction variability (from muscle extracts). We determined the best extraction method and we reported the common and distinct metabolites identified based on the number and identity of the compounds detected with low analytical variability (variation coefficient<30%) for each method. Finally, we assessed the coverage of muscle metabolic pathways obtained. RESULTS Methanol/chloroform/water and water/methanol were the best extraction solvent for muscle metabolome analysis by NMR and MS, respectively. We identified 38 metabolites by nuclear magnetic resonance, 37 by FIA-MS/MS, 18 by GC-MS, and 80 by LC-HRMS. The combination led us to identify a total of 132 metabolites with low variability partitioned into 58 metabolic pathways, such as amino acid, nitrogen, purine, and pyrimidine metabolism, and the citric acid cycle. This combination also showed that the contribution of GC-MS was low when used in combination with other mass spectrometry methods and nuclear magnetic resonance to explore muscle samples. CONCLUSION This study reports the validation of several analytical methods, based on nuclear magnetic resonance and several mass spectrometry methods, to explore the muscle metabolome from a small amount of tissue, comparable to that obtained during a clinical trial. The combination of several techniques may be relevant for the exploration of muscle metabolism, with acceptable analytical variability and overlap between methods However, the difficult and time-consuming data pre-processing, processing, and statistical analysis steps do not justify systematically combining analytical methods.
Collapse
Affiliation(s)
- C Bruno
- CHRU de Tours, Laboratoire de Biochimie et Biologie Moléculaire, Tours, France; UMR INSERM U930, Université François Rabelais de Tours, France
| | - F Patin
- CHRU de Tours, Laboratoire de Biochimie et Biologie Moléculaire, Tours, France; UMR INSERM U930, Université François Rabelais de Tours, France
| | - C Bocca
- Institut MITOVASC, CNRS 6015, INSERM U1083, Université d'Angers, Angers, France
| | | | - F Bonnier
- Université François-Rabelais de Tours, Faculté de Pharmacie, EA 6295 Nanomédicaments et Nanosondes, Tours, France
| | - P Reynier
- Institut MITOVASC, CNRS 6015, INSERM U1083, Université d'Angers, Angers, France
| | - P Emond
- UMR INSERM U930, Université François Rabelais de Tours, France
| | - P Vourc'h
- CHRU de Tours, Laboratoire de Biochimie et Biologie Moléculaire, Tours, France; UMR INSERM U930, Université François Rabelais de Tours, France
| | - K Joseph-Delafont
- CHRU de Tours, Laboratoire de Biochimie et Biologie Moléculaire, Tours, France
| | - P Corcia
- UMR INSERM U930, Université François Rabelais de Tours, France; Centre de Ressources et de Compétences SLA, CHU Tours, France; Fédération des Centres de Ressources et de Compétences de Tours et Limoges, Litorals, France
| | - C R Andres
- CHRU de Tours, Laboratoire de Biochimie et Biologie Moléculaire, Tours, France; UMR INSERM U930, Université François Rabelais de Tours, France
| | - H Blasco
- CHRU de Tours, Laboratoire de Biochimie et Biologie Moléculaire, Tours, France; UMR INSERM U930, Université François Rabelais de Tours, France.
| |
Collapse
|
44
|
Abstract
PURPOSE OF REVIEW Exercise is recommended as therapeutic intervention for people at risk to develop type 2 diabetes to prevent or treat the disease. Recent studies on the influence of obesity and type 2 diabetes on the outcome of exercise programs are discussed. RECENT FINDINGS Poor glycemic control before an intervention can be a risk factor of reduced therapeutic benefit from exercise. But the acute metabolic response to exercise and the transcriptional profile of the working muscle is similar in healthy controls and type 2 diabetic patients, including but not limited to intact activation of skeletal muscle AMP-activated kinase signaling, glucose uptake and expression of peroxisome proliferator-activated receptor gamma coactivator 1α. The increase in plasma acylcarnitines during exercise is not influenced by type 2 diabetes or obesity. The hepatic response to exercise is dependent on the glucagon/insulin ratio and the exercise-induced increase in hepatokines such as fibroblast growth factor 21 and follistatin is impaired in type 2 diabetes and obesity, but consequences for the benefit from exercise are unknown yet. SUMMARY Severe metabolic dysregulation can reduce the benefit from exercise, but the intact response of key metabolic regulators in exercising skeletal muscle of diabetic patients demonstrates the effectiveness of exercise programs to treat the disease.
Collapse
Affiliation(s)
- Peter Plomgaard
- aThe Centre of Inflammation and Metabolism, Centre for Physical Activity Research bDepartment of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark cDivision of Endocrinology, Diabetology, Angiology, Nephrology, Pathobiochemistry and Clinical Chemistry, Department of Internal Medicine IV dInstitute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tuebingen eGerman Center for Diabetes Research (DZD), Tuebingen, Germany
| | | |
Collapse
|
45
|
Chintapalli SV, Jayanthi S, Mallipeddi PL, Gundampati R, Suresh Kumar TK, van Rossum DB, Anishkin A, Adams SH. Novel Molecular Interactions of Acylcarnitines and Fatty Acids with Myoglobin. J Biol Chem 2016; 291:25133-25143. [PMID: 27758871 DOI: 10.1074/jbc.m116.754978] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 09/29/2016] [Indexed: 11/06/2022] Open
Abstract
Previous research has indicated that long-chain fatty acids can bind myoglobin (Mb) in an oxygen-dependent manner. This suggests that oxy-Mb may play an important role in fuel delivery in Mb-rich muscle fibers (e.g. type I fibers and cardiomyocytes), and raises the possibility that Mb also serves as an acylcarnitine-binding protein. We report for the first time the putative interaction and affinity characteristics for different chain lengths of both fatty acids and acylcarnitines with oxy-Mb using molecular dynamic simulations and isothermal titration calorimetry experiments. We found that short- to medium-chain fatty acids or acylcarnitines (ranging from C2:0 to C10:0) fail to achieve a stable conformation with oxy-Mb. Furthermore, our results indicate that C12:0 is the minimum chain length essential for stable binding of either fatty acids or acylcarnitines with oxy-Mb. Importantly, the empirical lipid binding studies were consistent with structural modeling. These results reveal that: (i) the lipid binding affinity for oxy-Mb increases as the chain length increases (i.e. C12:0 to C18:1), (ii) the binding affinities of acylcarnitines are higher when compared with their respective fatty acid counterparts, and (iii) both fatty acids and acylcarnitines bind to oxy-Mb in 1:1 stoichiometry. Taken together, our results support a model in which oxy-Mb is a novel regulator of long-chain acylcarnitine and fatty acid pools in Mb-rich tissues. This has important implications for physiological fuel management during exercise, and relevance to pathophysiological conditions (e.g. fatty acid oxidation disorders and cardiac ischemia) where long-chain acylcarnitine accumulation is evident.
Collapse
Affiliation(s)
- Sree V Chintapalli
- From the Arkansas Children's Nutrition Center and Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72202,
| | - Srinivas Jayanthi
- the Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701
| | - Prema L Mallipeddi
- the Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204
| | - Ravikumar Gundampati
- the Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701
| | | | - Damian B van Rossum
- the Center for Computational Proteomics and.,the Department of Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, and
| | - Andriy Anishkin
- the Department of Biology, University of Maryland, College Park, Maryland 20742
| | - Sean H Adams
- From the Arkansas Children's Nutrition Center and Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72202,
| |
Collapse
|