1
|
Lewis C, Rafi E, Dobbs B, Barton T, Hatipoglu B, Malin SK. Tailoring Exercise Prescription for Effective Diabetes Glucose Management. J Clin Endocrinol Metab 2025; 110:S118-S130. [PMID: 39836084 DOI: 10.1210/clinem/dgae908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Indexed: 01/22/2025]
Abstract
CONTEXT Physical activity, exercise, or both are a staple of lifestyle management approaches both for type 1 diabetes mellitus (T1DM) and type 2 diabetes (T2DM). While the current literature supports both physical activity and exercise for improving glycemic control, reducing cardiovascular risk, maintaining proper weight, and enhancing overall well-being, the optimal prescription regimen remains debated. EVIDENCE ACQUISITION We searched PubMed and Google Scholar databases for relevant studies on exercise, insulin sensitivity, and glycemic control in people with T1DM and T2DM. EVIDENCE SYNTHESIS In patients with T1DM, exercise generally improves cardiovascular fitness, muscle strength, and glucose levels. However, limited work has evaluated the effect of aerobic plus resistance exercise compared to either exercise type alone on glycemic outcomes. Moreover, less research has evaluated breaks in sedentary behavior with physical activity. When considering the factors that may cause hypoglycemic effects during exercise in T1DM, we found that insulin therapy, meal timing, and neuroendocrine regulation of glucose homeostasis are all important. In T2DM, physical activity is a recommended therapy independent of weight loss. Contemporary consideration of timing of exercise relative to meals and time of day, potential medication interactions, and breaks in sedentary behavior have gained recognition as potentially novel approaches that enhance glucose management. CONCLUSION Physical activity or exercise is, overall, an effective treatment for glycemia in people with diabetes independent of weight loss. However, additional research surrounding exercise is needed to maximize the health benefit, particularly in "free-living" settings.
Collapse
Affiliation(s)
- Claudia Lewis
- Department of Endocrinology, University Hospitals Diabetes and Metabolic Care Center, Cleveland, OH 44106, USA
| | - Ebne Rafi
- Department of Endocrinology, University Hospitals Diabetes and Metabolic Care Center, Cleveland, OH 44106, USA
| | - Brandi Dobbs
- Department of Endocrinology, University Hospitals Diabetes and Metabolic Care Center, Cleveland, OH 44106, USA
| | - Tanner Barton
- Department of Athletics, John Carroll University, University Heights, OH 44118, USA
| | - Betul Hatipoglu
- Department of Endocrinology, University Hospitals Diabetes and Metabolic Care Center, Cleveland, OH 44106, USA
- Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Steven K Malin
- Department of Kinesiology and Health, Rutgers University, New Brunswick, NJ 08901, USA
- Division of Endocrinology, Metabolism & Nutrition; Rutgers University, New Brunswick, NJ 08901, USA
- New Jersey Institute for Food, Nutrition and Health, Rutgers University, New Brunswick, NJ 08901, USA
- Institute of Translational Medicine and Science, Rutgers University, New Brunswick, NJ 08901, USA
| |
Collapse
|
2
|
Hamid RR, Hoseini R, Rahim HA. Impact of Combined Aerobic Training and Magnesium Supplementation on Serum Biomarkers and microRNA-155 and microRNA-21 Expression in Adipose Tissue of Type 2 Diabetic Rats: An Eight-Week Interventional Study. Biol Trace Elem Res 2025; 203:861-871. [PMID: 38658451 DOI: 10.1007/s12011-024-04186-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/12/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is a complex metabolic disorder characterized by insulin resistance and chronic inflammation. Aerobic training (AT) and magnesium supplementation (Mg) have both been independently shown to have beneficial effects on glucose control and insulin sensitivity in individuals with T2DM. However, the potential synergistic effects of combining AT and Mg supplementation have not been extensively studied. This study aimed to investigate the effects of an 8-week AT and Mg supplementation on serum levels of insulin, glucose, leptin, adiponectin, TNF-α, IL-1β, IL-6, NF-κB, as well as the expression of mir-155 and mir-21 in the visceral adipose tissue (VAT) of rats with T2DM. METHODS For this experimental study, 32 male Wistar rats were induced with T2DM by a high-fat diet combined with a low-dose streptozotocin injection. The rats were randomly assigned to four groups: AT and Mg supplementation (AT + Mg), AT (5 days/week for 8 weeks), Mg supplementation (received daily supplementation of Mg chloride), and diabetic control (C). An 8-week AT program was implemented, with gradually increasing the intensity and duration to reach 25 m/min and 60 min in the 8th week, respectively. The training intensity was set at 50-60% of VO2max. The Mg groups were provided with rat diets containing 1000 mg/kg of Mg. The AT + Mg group received both interventions, while the C group served as the untreated control. Serum biomarkers were measured using enzyme-linked immunosorbent assay (ELISA), and VAT samples were collected for gene expression analysis using real-time polymerase chain reaction (PCR). RESULTS Serum biomarker analysis revealed that the AT + Mg group had a significant decrease in fasting insulin (p = 0.001) and serum glucose (p = 0.001), as well as an increase in adiponectin levels compared to the C group (p = 0.002). Additionally, the AT + Mg group showed a significant reduction in serum leptin, TNF-α, IL-6, IL-1β, and NF-κB, as well as downregulation of mir-155 and mir-21 in the VAT compared to the other groups. The AT group also showed improvements in several parameters, while the Mg group had fewer significant differences compared to the C group. CONCLUSION The combination of AT and Mg supplementation provides a synergistic effect that improves serum biomarkers and downregulates pro-inflammatory microRNAs in the VAT of T2DM rats. Meanwhile, Mg supplementation alone does not have a significant effect on pro-inflammatory microRNAs in the VAT. These findings suggest that such combined interventions could be a promising strategy for managing T2DM, potentially ameliorating inflammatory states and improving metabolic health.
Collapse
Affiliation(s)
- Rasha Raed Hamid
- Physical Education and Sport Sciences Department, University of Garmian, Garmian, 46021, Kurdistan Region, Iraq
- Department of Exercise Physiology, Faculty of Sport Sciences, Razi University, Kermanshah, P.O. Box. 0776009060, Iran
| | - Rastegar Hoseini
- Department of Exercise Physiology, Faculty of Sport Sciences, Razi University, Kermanshah, P.O. Box. 0776009060, Iran.
| | - Hiwa Ahmed Rahim
- Physical Education and Sport Sciences Department, University of Halabja, Halabja, 46018, Kurdistan Region, Iraq
| |
Collapse
|
3
|
Barrett JS, Crozier A, Cuthbertson DJ, Strauss JA, Wagenmakers AJM, Shepherd SO. A free-living, walking-based, exercise programme, with exercise timed relative to breakfast, to improve metabolic health in people living with overweight and obesity: A feasibility study. PLoS One 2024; 19:e0307582. [PMID: 39570874 PMCID: PMC11581328 DOI: 10.1371/journal.pone.0307582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 07/08/2024] [Indexed: 11/24/2024] Open
Abstract
Optimising the timing of food intake relative to exercise may maximise the effectiveness of free-living exercise programmes on improvements in glycaemic control and cardio-metabolic health. This study aimed to assess the feasibility of a free-living, walking-based exercise programme and determine whether undertaking each exercise session before or after breakfast would most benefit longer-term metabolic health. Thirty-four people living with obesity (43±12 y, BMI 35.1±5.1 kg.m-2) undertook a 12-week walking-based programme, consisting of two continuous (30-60 min at 50% HRmax) and two interval exercise sessions per week (30-60 min, alternating 3 min at 85% HRmax and 3 min at 50% HRmax). Participants were allocated to exercise before (FASTED) or after (FED) breakfast (n = 17 per group). Feasibility (acceptability, adherence and compliance) to the exercise intervention were assessed, as well as changes in anthropometric variables, 24-hour continuous glucose monitoring, serum biochemistry including HbA1c, lipid profile and liver transaminases. Exercise adherence (FASTED: 93±4%, FED: 95±5%) and compliance (FASTED: 85±10%, FED: 88±10%) was high in both groups, and participants described exercise monitoring, programme structure and support as facilitators to this. Body mass, BMI, waist-to-hip ratio and HbA1c decreased similarly between groups (all P<0.01). However, serum ALT concentrations decreased after FASTED (-16± -14%; P = 0.001), but not FED training (-2 ± -4%; P = 0.720). We demonstrate that a free-living walking-based exercise programme, with exercise timed relative to breakfast can achieve high adherence and compliance and improve some anthropometric variables and HbA1c. Whether FASTED exercise can elicit greater improvements in liver health requires further investigation.
Collapse
Affiliation(s)
- Jennifer S. Barrett
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Anthony Crozier
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Daniel J. Cuthbertson
- Department of Cardiovascular and Metabolic Medicine, University of Liverpool, Liverpool, United Kingdom
- Metabolism & Nutrition Research Group, Liverpool University Hospitals NHS Foundation Trust, Liverpool, Merseyside, United Kingdom
| | - Juliette A. Strauss
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Anton J. M. Wagenmakers
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Sam O. Shepherd
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| |
Collapse
|
4
|
Poon ETC, Wongpipit W, Li HY, Wong SHS, Siu PM, Kong APS, Johnson NA. High-intensity interval training for cardiometabolic health in adults with metabolic syndrome: a systematic review and meta-analysis of randomised controlled trials. Br J Sports Med 2024; 58:1267-1284. [PMID: 39256000 DOI: 10.1136/bjsports-2024-108481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2024] [Indexed: 09/12/2024]
Abstract
OBJECTIVE To assess the effectiveness of high-intensity interval training (HIIT) compared with traditional moderate-intensity continuous training (MICT) and/or non-exercise control (CON) for modification of metabolic syndrome (MetS) components and other cardiometabolic health outcomes in individuals with MetS. DESIGN Systematic review and meta-analysis DATA SOURCES: Five databases were searched from inception to March 2024. STUDY APPRAISAL AND SYNTHESIS Meta-analyses of randomised controlled trials (RCTs) comparing HIIT with MICT/CON were performed for components of MetS (waist circumference (WC), systolic blood pressure (SBP), diastolic blood pressure (DBP), high-density lipoprotein cholesterol (HDL-C), triglyceride (TG), and fasting blood glucose (BG)) and clinically relevant cardiometabolic health parameters. Subgroup moderator analyses were conducted based on the intervention duration and HIIT volume. RESULTS Out of 4819 studies, 23 RCTs involving 1374 participants were included (mean age: 46.2-67.0 years, 55% male). HIIT significantly improved WC (weighted mean difference (WMD) -4.12 cm, 95% CI -4.71 to -3.53), SBP (WMD -6.05 mm Hg, 95% CI -8.11 to -4.00), DBP (WMD -3.68 mm Hg, 95% CI -5.70 to -1.65), HDL-C (WMD 0.12 mmol/L, 95% CI 0.04 to 0.20), TG (WMD -0.34 mmol/L, 95% CI -0.41 to -0.27) and BG (WMD -0.35 mmol/L, 95% CI -0.54 to -0.16) compared with CON (all p<0.01). HIIT approaches demonstrated comparable effects to MICT across all parameters. Subgroup analyses suggested that HIIT protocols with low volume (ie, <15 min of high-intensity exercise per session) were not inferior to higher volume protocols for improving MetS components. CONCLUSION This review supports HIIT as an efficacious exercise strategy for improving cardiometabolic health in individuals with MetS. Low-volume HIIT appears to be a viable alternative to traditional forms of aerobic exercise.
Collapse
Affiliation(s)
- Eric Tsz-Chun Poon
- Department of Sports Science and Physical Education, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Waris Wongpipit
- Department of Sports Science and Physical Education, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Department of Curriculum and Instruction, Faculty of Education, Chulalongkorn University, Bangkok, Thailand
- Research Unit for Sports Management & Physical Activity Policy (RU-SMPAP), Chulalongkorn University, Bangkok, Thailand
| | - Hong-Yat Li
- Department of Sports Science and Physical Education, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Stephen Heung-Sang Wong
- Department of Sports Science and Physical Education, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Parco M Siu
- Division of Kinesiology, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Alice Pik-Shan Kong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Nathan A Johnson
- Faculty of Medicine and Health, Discipline of Exercise and Sport Science, University of Sydney, Sydney, New South Wales, Australia
- Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
| |
Collapse
|
5
|
Bai B, Xu M, Zhou H, Liao Y, Liu F, Liu Y, Yuan Y, Geng Q, Ma H. Effects of aerobic training on cardiopulmonary fitness in patients with long COVID-19: a randomized controlled trial. Trials 2024; 25:649. [PMID: 39363376 PMCID: PMC11448255 DOI: 10.1186/s13063-024-08473-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 09/16/2024] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND Long COVID-19 is characterized by systemic deterioration of the entire body, leading to significant physical and mental disorders. Exercise training has the potential to improve persistent symptoms and cardiopulmonary functions. METHOD This was a single-center, randomized, controlled trial. Twenty-four patients aged 18 to 75 years who had a history of SARS-CoV-2 infection and long COVID symptoms. Patients were randomly allocated in a 1:1 ratio to receive either a 4-week exercise training program or an attention control group. The training group participated in 12 supervised aerobic sessions on a cycling ergometer over 4 weeks. The outcomes were to assess the impact of a 4-week aerobic exercise on the persistent symptoms and cardiopulmonary fitness, the surrogate endpoints of COVID-19 recovery and cardiopulmonary health. RESULTS After the 4-week intervention, significant reductions were observed in the total number of symptoms in the training group. Specifically, 67.8% of patients in the training group exhibited reduced or completely resolved symptoms, in comparison to 16.7% in the control group (P = 0.013). After adjusting for gender, significant improvements in the training group were observed for exercise time (Pgroup*time = 0.028), maximum load (Pgroup*time = 0.01), and peak VO2 (Pgroup*time = 0.001), as well as O2 pulse (Pgroup*time = 0.042) and maximum heart rate (Pgroup*time = 0.007). The score of Short Form-12, depression, anxiety, perceived stress, and insomnia did not show significant changes between groups (Pgroup*time > 0.05). CONCLUSION A supervised aerobic training program has the potential to alleviate persistent symptoms and improve exercise tolerance in patients with long COVID-19. Further research is necessary to confirm these effects in a large population. This intervention could be easily implemented in non-hospital settings, potentially benefiting a broader range of individuals. TRIAL REGISTRATION NUMBER ClinicalTrials.gov NCT05961462. Registered on July 25, 2023.
Collapse
Affiliation(s)
- Bingqing Bai
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, People's Republic of China
- Department of Cardiac Rehabilitation, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, People's Republic of China
| | - Mingyu Xu
- Department of Cardiac Rehabilitation, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, People's Republic of China
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Haofeng Zhou
- Department of Cardiac Rehabilitation, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, People's Republic of China
| | - Yingxue Liao
- Department of Cardiac Rehabilitation, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, People's Republic of China
| | - Fengyao Liu
- Department of Cardiac Rehabilitation, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, People's Republic of China
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Yuting Liu
- Department of Cardiac Rehabilitation, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, People's Republic of China
| | - Youyong Yuan
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, People's Republic of China
| | - Qingshan Geng
- Department of Cardiac Rehabilitation, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, People's Republic of China
| | - Huan Ma
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, People's Republic of China.
- Department of Cardiac Rehabilitation, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, People's Republic of China.
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, People's Republic of China.
| |
Collapse
|
6
|
Zhang Y, Cao C, Li C, Witt RG, Huang H, Tsung A, Zhang H. Physical exercise in liver diseases. Hepatology 2024:01515467-990000000-00900. [PMID: 38836646 DOI: 10.1097/hep.0000000000000941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/14/2024] [Indexed: 06/06/2024]
Abstract
Liver diseases contribute to ~2 million deaths each year and account for 4% of all deaths globally. Despite various treatment options, the management of liver diseases remains challenging. Physical exercise is a promising nonpharmacological approach to maintain and restore homeostasis and effectively prevent and mitigate liver diseases. In this review, we delve into the mechanisms of physical exercise in preventing and treating liver diseases, highlighting its effects on improving insulin sensitivity, regulating lipid homeostasis, and modulating immune function. In addition, we evaluate the impact of physical exercise on various liver diseases, including liver ischemia/reperfusion injury, cardiogenic liver disease, metabolic dysfunction-associated steatotic liver disease, portal hypertension, cirrhosis, and liver cancer. In conclusion, the review underscores the effectiveness of physical exercise as a beneficial intervention in combating liver diseases.
Collapse
Affiliation(s)
- Yunwei Zhang
- Department of Surgery, University of Virginia, Charlottesville, Virginia, USA
| | - Chunyan Cao
- Department of Surgery, University of Virginia, Charlottesville, Virginia, USA
| | - Chaofan Li
- Department of Medicine, Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Russell G Witt
- Department of Surgery, University of Virginia, Charlottesville, Virginia, USA
| | - Hai Huang
- Division of Hepatology, Center for Immunology and Inflammation, Departments of Molecular Medicine, Medicine, and Surgery at the School of Medicine, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Allan Tsung
- Department of Surgery, University of Virginia, Charlottesville, Virginia, USA
| | - Hongji Zhang
- Department of Surgery, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
7
|
Mora-Gonzalez D, Moreno-Cabañas A, Alvarez-Jimenez L, Morales-Palomo F, Ortega JF, Mora-Rodriguez R. Glucose volume of distribution affects insulin sensitivity measured by intravenous glucose tolerance test. Scand J Med Sci Sports 2024; 34:e14574. [PMID: 38389141 DOI: 10.1111/sms.14574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/31/2023] [Accepted: 01/24/2024] [Indexed: 02/24/2024]
Abstract
AIM To determine whether glucose volume of distribution (VdGLUCOSE ) affects the diagnosis of impaired insulin sensitivity (IS) when using an intravenous glucose tolerance test (IVGTT). METHODS Individuals with distinct levels of IS underwent IVGTT after an overnight fast. The prediabetic group (Prediab; n = 33) differed from the healthy group (Healthy; n = 14) in their larger glycosylated hemoglobin (HbA1c of 5.9 ± 0.3 vs. 5.4 ± 0.1%; 41 ± 4 vs. 36 ± 1 mmol/mol; p < 0.001), percent body fat (37 ± 6 vs. 24 ± 3%; p < 0.001) and cardiovascular fitness level (VO2MAX 22 ± 5 vs. 44 ± 5 mL of O2 ·kg-1 ·min-1 ; p < 0.001). Ten minutes after intravenous infusion of the glucose bolus (i.e., 35 g in a 30% solution), VdGLUCOSE was assessed from the increases in plasma glucose concentration. IS was calculated during the next 50 min using the slope of glucose disappearance and the insulin time-response curve. RESULTS VdGLUCOSE was higher in Healthy than in Prediab (230 ± 49 vs. 185 ± 21 mL·kg-1 ; p < 0.001). VdGLUCOSE was a strong predictor of IS (β standardized coefficient 0.362; p = 0.004). VO2MAX was associated with VdGLUCOSE and IS (Pearson r = 0.582 and 0.704, respectively; p < 0.001). However, body fat was inversely associated with VdGLUCOSE and IS (r = -0.548 and -0.555, respectively; p < 0.001). CONCLUSIONS Since fat mass is inversely related to VdGLUCOSE and in turn, VdGLUCOSE affects the calculations of IS, the IV glucose bolus dose should be calculated based on fat-free mass rather than body weight for a more accurate diagnosis of impaired IS.
Collapse
Affiliation(s)
- Diego Mora-Gonzalez
- Department of Nursing, Physiotherapy and Occupational Therapy, University of Castilla-La Mancha, Toledo, Spain
| | - Alfonso Moreno-Cabañas
- Exercise Physiology Lab at Toledo, University of Castilla-La Mancha, Toledo, Spain
- Center for Nutrition, Exercise and Metabolism, University of Bath, Bath, UK
| | | | - Felix Morales-Palomo
- Exercise Physiology Lab at Toledo, University of Castilla-La Mancha, Toledo, Spain
| | - Juan Fernando Ortega
- Exercise Physiology Lab at Toledo, University of Castilla-La Mancha, Toledo, Spain
| | | |
Collapse
|
8
|
Peterseim CM, Jabbour K, Kamath Mulki A. Metabolic Syndrome: An Updated Review on Diagnosis and Treatment for Primary Care Clinicians. J Prim Care Community Health 2024; 15:21501319241309168. [PMID: 39714021 DOI: 10.1177/21501319241309168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024] Open
Abstract
OBJECTIVE Metabolic syndrome is a cluster of cardiovascular risk factors (central obesity, hypertension, dyslipidemia, and insulin resistance) that affects between 12.5% and 31.4% of adults worldwide. It correlates with increased risks of cardiovascular disease, diabetes, cancer, and overall mortality in a dose-dependent fashion. This review aims to provide primary care clinicians an updated review of the evidence on metabolic syndrome, with a focus on treatment. DESIGN Scoping evidence review. ELIGIBILITY CRITERIA English-language studies of evidence Level I or II that focused on defining, diagnosing, and treating metabolic syndrome or its components. INFORMATION SOURCES PubMed and Cochrane Database of Systematic Reviews. RESULTS Though evidence is still lacking for improved outcomes with treating the syndrome per se, addressing its individual components reduces risks. Lifestyle changes like weight loss and increased physical activity are first line. Surgical options assist with weight loss for certain patients. Pharmacotherapies like glucagon-like peptide-1 receptor agonists, sodium-glucose cotransporter-2 inhibitors, statins, and antihypertensives also have efficacy. CONCLUSIONS Metabolic syndrome is an independent risk factor for many poor health outcomes. Its individual components should be treated with medication and behavioral changes to reduce cardiovascular risk and prevent diabetes and its complications. More research is needed on how to treat the syndrome itself. A diagnosis of metabolic syndrome may be useful for motivating patients toward lifestyle changes, though more research is needed on how to treat the syndrome versus its components.
Collapse
Affiliation(s)
| | - Katarzyna Jabbour
- Lehigh Valley Health Network Family Medicine Residency, Allentown, PA, USA
- University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Ashwini Kamath Mulki
- Lehigh Valley Health Network Family Medicine Residency, Allentown, PA, USA
- University of South Florida Morsani College of Medicine, Tampa, FL, USA
- Valley Health Partners Family Health Center, Allentown, PA, USA
| |
Collapse
|
9
|
Pleguezuelos E, Sánchez-Nuño S, Del Carmen A, Serra-Payá N, Moreno E, Molina-Raya L, Robleda G, Benet M, Santos-Ruiz S, Garrido AB, Jerez-Molina C, Miravitlles M, Serra-Prat M, Viñals X, Farrés MG, Carbonell T, Garnacho-Castaño MV. Effect of different types of supervised exercise programs on cardiorespiratory and muscular fitness, pain, fatigue, mental health and inflammatory and oxidative stress biomarkers in older patients with post-COVID-19 sequelae "EJerSA-COVID-19": a randomized controlled trial. BMC Geriatr 2023; 23:865. [PMID: 38102536 PMCID: PMC10724883 DOI: 10.1186/s12877-023-04544-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Many patients with COVID-19 present the so-called post-acute sequelae of COVID-19 such as fatigue, post-stress discomfort, dyspnea, headache, pain mental impairment, incapacity to perform daily physical tasks ant exercise intolerance. This study aims to investigate the effects of different exercise programs on physical and mental fitness, physical condition and biomarkers of the immune system and oxidative stress in older patients with post-COVID-19 sequelae. METHODS The sample will be made up of 120 eligible participants, over the age of 60 years who have had COVID-19 disease and are survivors and present persistent COVID-19 symptomatology diagnosed by the corresponding physician. The participants will be randomly assigned to the experimental groups: supervised endurance group (SEG, n = 30), supervised strength group (SSG, n = 30), supervised concurrent group (SCG, n = 30), which will perform the corresponding exercise program 3 days a week compared to the control group (CG, n = 30), which will not carry out a supervised exercise program. The design of this project will include measurements of four relevant dimensions; 1) Cardiorespiratory fitness; 2) Muscle fitness; 3) Pain and mental health; and 4) Biomarkers of inflammation and oxidative stress. CONCLUSIONS The results of this study will provide insights into the effects of different exercise programs on physical and mental fitness, physical condition and biomarkers of the immune system and oxidative stress in older patients with post-COVID-19 sequelae. These findings may be the basis for the formulation of health plans and rehabilitation programs that allow healthy aging and a reduction in the associated morbidity in patients with post-COVID-19 sequelae. TRIAL REGISTRATION NCT05848518. Registered on May 8, 2023.
Collapse
Affiliation(s)
- Eulogio Pleguezuelos
- Departamento de Medicina Física y Rehabilitación, Hospital de Mataró, Barcelona, Spain
- Departamento de Ciencias Experimentales y Sanitarias. Facultad de Ciencias de la Salud, Universitat Pompeu Fabra, Barcelona, Spain
| | - Sergio Sánchez-Nuño
- Grupo de Investigación DAFNiS (Dolor, Actividad Física, Nutrición y Salud), Campus Docent Sant Joan de Déu, Universitat de Barcelona, C/ Sant, C. de Sta. Benito Menni, 18-20, Sant Boi de Llobregat, 08830, Barcelona, Spain
| | - Amin Del Carmen
- Departamento de Medicina Física y Rehabilitación, Hospital de Mataró, Barcelona, Spain
| | - Noemí Serra-Payá
- Grupo de Investigación DAFNiS (Dolor, Actividad Física, Nutrición y Salud), Campus Docent Sant Joan de Déu, Universitat de Barcelona, C/ Sant, C. de Sta. Benito Menni, 18-20, Sant Boi de Llobregat, 08830, Barcelona, Spain
| | - Eva Moreno
- Servicio de Medicina Física y Rehabilitación, Hospital General de Hospitalet, L´Hospitalet de Llobregat, Barcelona, Spain
| | - Lorena Molina-Raya
- Grupo de Investigación DAFNiS (Dolor, Actividad Física, Nutrición y Salud), Campus Docent Sant Joan de Déu, Universitat de Barcelona, C/ Sant, C. de Sta. Benito Menni, 18-20, Sant Boi de Llobregat, 08830, Barcelona, Spain
| | - Gemma Robleda
- Grupo de Investigación DAFNiS (Dolor, Actividad Física, Nutrición y Salud), Campus Docent Sant Joan de Déu, Universitat de Barcelona, C/ Sant, C. de Sta. Benito Menni, 18-20, Sant Boi de Llobregat, 08830, Barcelona, Spain
| | - Marta Benet
- Grupo de Investigación DAFNiS (Dolor, Actividad Física, Nutrición y Salud), Campus Docent Sant Joan de Déu, Universitat de Barcelona, C/ Sant, C. de Sta. Benito Menni, 18-20, Sant Boi de Llobregat, 08830, Barcelona, Spain
| | - Susana Santos-Ruiz
- Grupo de Investigación DAFNiS (Dolor, Actividad Física, Nutrición y Salud), Campus Docent Sant Joan de Déu, Universitat de Barcelona, C/ Sant, C. de Sta. Benito Menni, 18-20, Sant Boi de Llobregat, 08830, Barcelona, Spain
| | - Ainoa Biurrun Garrido
- Grupo de Investigación DAFNiS (Dolor, Actividad Física, Nutrición y Salud), Campus Docent Sant Joan de Déu, Universitat de Barcelona, C/ Sant, C. de Sta. Benito Menni, 18-20, Sant Boi de Llobregat, 08830, Barcelona, Spain
| | - Carmen Jerez-Molina
- Grupo de Investigación DAFNiS (Dolor, Actividad Física, Nutrición y Salud), Campus Docent Sant Joan de Déu, Universitat de Barcelona, C/ Sant, C. de Sta. Benito Menni, 18-20, Sant Boi de Llobregat, 08830, Barcelona, Spain
| | - Marc Miravitlles
- Servicio de Neumología. Hospital Universitari Vall d'HebronVall d'Hebron Institut de Recerca (VHIR), Campus Hospital Barcelona, CIBER de Enfermedades Respiratorias (CIBERES) Barcelona, Barcelona, Spain
| | - Mateu Serra-Prat
- Unidad de InvestigaciónConsorci Sanitari del Maresme, Mataró, Barcelona, Spain
| | - Xavier Viñals
- Grupo de Investigación DAFNiS (Dolor, Actividad Física, Nutrición y Salud), Campus Docent Sant Joan de Déu, Universitat de Barcelona, C/ Sant, C. de Sta. Benito Menni, 18-20, Sant Boi de Llobregat, 08830, Barcelona, Spain
| | - Montserrat Girabent Farrés
- Grupo de Investigación DAFNiS (Dolor, Actividad Física, Nutrición y Salud), Campus Docent Sant Joan de Déu, Universitat de Barcelona, C/ Sant, C. de Sta. Benito Menni, 18-20, Sant Boi de Llobregat, 08830, Barcelona, Spain
| | - Teresa Carbonell
- Departamento de Biología Celular, Fisiología e Inmunología, Universitat de Barcelona, Barcelona, Spain
| | - Manuel V Garnacho-Castaño
- Grupo de Investigación DAFNiS (Dolor, Actividad Física, Nutrición y Salud), Campus Docent Sant Joan de Déu, Universitat de Barcelona, C/ Sant, C. de Sta. Benito Menni, 18-20, Sant Boi de Llobregat, 08830, Barcelona, Spain.
- Facultad de Ciencias de la Salud, Universidad Internacional de Valencia (VIU), 46002, Valencia, Spain.
| |
Collapse
|
10
|
Trillaud E, Klemmer P, Malin SK, Erdbrügger U. Tracking Biomarker Responses to Exercise in Hypertension. Curr Hypertens Rep 2023; 25:299-311. [PMID: 37428393 PMCID: PMC10505098 DOI: 10.1007/s11906-023-01252-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2023] [Indexed: 07/11/2023]
Abstract
PURPOSE OF REVIEW Strong evidence is evolving that physical exercise prevents hypertension and reduces blood pressure in patients with pre- and manifest HTN. Yet, identifying and confirming the effectiveness of exercise are challenging. Herein, we discuss conventional and novel biomarkers such as extracellular vesicles (EVs) which may track responses to HTN before and after exercise. RECENT FINDINGS Evolving data shows that improved aerobic fitness and vascular function as well as lowered oxidative stress, inflammation, and gluco-lipid toxicity are leading biomarkers considered to promote HTN, but they explain only about a half of the pathophysiology. Novel biomarkers such as EVs or microRNA are providing additional input to understand the complex mechanisms involved in exercise therapy for HTN patients. Conventional and novel biomarkers are needed to fully understand the integrative "cross-talk" between tissues to regulate vasculature physiology for blood pressure control. These biomarker studies will lead to more specific disease markers and the development of even more personalized therapy in this field. However, more systematic approaches and randomized controlled trials in larger cohorts are needed to assess exercise effectiveness across the day and with different exercise types.
Collapse
Affiliation(s)
- Eric Trillaud
- Department of Medicine, Division of Nephrology, University of Virginia Health System, Charlottesville, VA, USA.
- Footwear R&D, On AG, Zurich, 8005, Switzerland.
| | - Philip Klemmer
- Department of Medicine, Division of Nephrology, University of North Carolina, Chapel Hill, NC, USA
| | - Steven K Malin
- Department of Kinesiology & Health, Rutgers University, New Brunswick, NJ, USA
- Division of Endocrinology, Metabolism & Nutrition, Department of Medicine, New Brunswick, NJ, USA
- The New Jersey Institute for Food, Nutrition and Health, Rutgers University, New Brunswick, NJ, USA
- Institute of Translational Medicine and Science, Rutgers University, New Brunswick, NJ, USA
| | - Uta Erdbrügger
- Department of Medicine, Division of Nephrology, University of Virginia Health System, Charlottesville, VA, USA
| |
Collapse
|
11
|
Faiz H, Heiston EM, Malin SK. β-Aminoisobutyric Acid Relates to Favorable Glucose Metabolism through Adiponectin in Adults with Obesity Independent of Prediabetes. J Diabetes Res 2023; 2023:4618215. [PMID: 37780967 PMCID: PMC10539091 DOI: 10.1155/2023/4618215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/09/2023] [Accepted: 09/01/2023] [Indexed: 10/03/2023] Open
Abstract
β-Aminoisobutyric acid (BAIBA) is secreted by skeletal muscle and promotes insulin sensitivity, fat oxidation, and anti-inflammation. While BAIBA is purportedly lower in individuals with obesity, no work has examined if prediabetes (PD) differentially impacts BAIBA concentrations in people with obesity. Methods. Adults were classified as normal glucose tolerant (NGT; n = 22 (20F); 48.0 ± 2.4 yrs; 36.9 ± 1.2 kg/m2) or PD (n = 23 (18F); 54.2 ± 1.6 yrs; 38.4 ± 1.2 kg/m2) based on ADA criteria. A 180-minute 75 g OGTT was used to estimate fasting (HOMA-IR (liver)) and postprandial (Matsuda index (muscle)) insulin sensitivity as well as β-cell function (disposition index (DI), glucose-stimulated insulin secretion adjusted for insulin sensitivity). Body composition and fasting measures of BAIBA, fat oxidation (indirect calorimetry), and adipokines were determined. Results. NGT and PD had similar BAIBA concentrations (1.4 ± 0.1 vs. 1.2 ± 0.1 μM, P = 0.23) and fat oxidation (P = 0.31), despite NGT having lower fasting (92.2 ± 1.2 vs. 104.1 ± 3.2 mg/dL, P = 0.002) and tAUC180min glucose (P < 0.001) compared to PD. Moreover, NGT had higher postprandial insulin sensitivity (P = 0.01) and higher total phase DIliver (P = 0.003) and DImuscle (P = 0.001). Increased BAIBA was associated with adiponectin (r = 0.37, P = 0.02), adiponectin/leptin ratio (r = 0.39, P = 0.01), and lower glucose and insulin at 180 minutes (r = -0.31, P = 0.03 and r = -0.39, P = 0.03, respectively). Adiponectin also correlated with lower glucose at 180 minutes (r = -0.45, P = 0.005), and mediation analysis showed that BAIBA was no longer a significant predictor of glucose at 180 minutes after controlling for adiponectin (P = 0.08). Conclusion. While BAIBA did not differ between NGT and PD, higher BAIBA is related to favorable glucose metabolism, possibly through an adiponectin-related mechanism. Additional work is required to understand how exercise and/or diet impact BAIBA in relation to type 2 diabetes risk.
Collapse
Affiliation(s)
| | - Emily M. Heiston
- University of Virginia, Charlottesville, VA, USA
- Virginia Commonwealth University, Richmond, VA, USA
| | - Steven K. Malin
- Rutgers University, New Brunswick, NJ, USA
- University of Virginia, Charlottesville, VA, USA
- Division of Endocrinology, Metabolism & Nutrition, Rutgers University, New Brunswick, NJ, USA
- New Jersey Institute for Food, Nutrition and Health, Rutgers University, New Brunswick, NJ, USA
- Institute of Translational Medicine and Science, Rutgers University, New Brunswick, NJ, USA
| |
Collapse
|
12
|
Bo B, Guo A, Kaila SJ, Hao Z, Zhang H, Wei J, Yao Y. Elucidating the primary mechanisms of high-intensity interval training for improved cardiac fitness in obesity. Front Physiol 2023; 14:1170324. [PMID: 37608837 PMCID: PMC10441243 DOI: 10.3389/fphys.2023.1170324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 07/31/2023] [Indexed: 08/24/2023] Open
Abstract
Obesity is a global and rising multifactorial pandemic associated with the emergence of several comorbidities that are risk factors for malignant cardiac remodeling and disease. High-intensity interval training (HIIT) has gained considerable attention due to its favorable outcomes of cardiometabolic health in individuals with overweight or obese. The primary aim of this review is to discuss the fundamental processes through which HIIT improves cardiac impairment in individuals with obesity to develop viable treatments for obesity management. In this review, a multiple database search and collection were conducted from the earliest record to January 2013 for studies included the qualitative component of HIIT intervention in humans and animals with overweight/obesity related to cardiac remodeling and fitness. We attempt to integrate the main mechanisms of HIIT in cardiac remolding improvement in obesity into an overall sequential hypothesis. This work focus on the ameliorative effects of HIIT on obesity-induced cardiac remodeling with respect to potential and pleiotropic mechanisms, including adipose distribution, energy metabolism, inflammatory response, insulin resistance, and related risk profiles in obesity. In conclusion, HIIT has been shown to reduce obesity-induced risks of cardiac remodeling, but the long-term effects of HIIT on obesity-induced cardiac injury and disease are presently unknown. Collective understanding highlights numerous specific research that are needed before the safety and effectiveness of HIIT can be confirmed and widely adopted in patient with obesity.
Collapse
Affiliation(s)
- Bing Bo
- Department of Kinesiology, School of Physical Education, Henan University, Kaifeng, China
- Sports Reform and Development Research Center, School of Physical Education, Henan University, Kaifeng, China
| | - Aijing Guo
- Department of Kinesiology, School of Physical Education, Henan University, Kaifeng, China
| | - Severa Jafeth Kaila
- Department of Kinesiology, School of Physical Education, Henan University, Kaifeng, China
| | - Zhe Hao
- Department of Kinesiology, School of Physical Education, Henan University, Kaifeng, China
| | - Huiqing Zhang
- Sports Reform and Development Research Center, School of Physical Education, Henan University, Kaifeng, China
| | - Jianshe Wei
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng, China
| | - Yuan Yao
- Sports Reform and Development Research Center, School of Physical Education, Henan University, Kaifeng, China
| |
Collapse
|
13
|
Faiz H, Malin SK. A low-calorie diet raises β-aminoisobutyric acid in relation to glucose regulation and leptin independent of exercise in women with obesity. Front Physiol 2023; 14:1210567. [PMID: 37362426 PMCID: PMC10289796 DOI: 10.3389/fphys.2023.1210567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 05/31/2023] [Indexed: 06/28/2023] Open
Abstract
Introduction: β-aminoisobutyric acid (BAIBA) is a suggested cytokine secreted from skeletal muscles that regulates insulin sensitivity, pancreatic function, and fat oxidation. However, no studies to date have examined if a low-calorie diet (LCD) or LCD + with interval exercise (LCD + INT) differentially raises BAIBA. The purpose was to examine if LCD or LCD + INT raises circulating BAIBA in relation to cardiometabolic health. Methods: For this, twenty-three women with obesity were randomized to either 2-weeks of LCD (n = 12, 48.4 ± 2.5 y, 37.84 ± 1.5 kg/m2; ∼1200 kcal/day) or LCD + INT (n = 11, 47.6 ± 4.3 y, 37.9 ± 2.3 kg/m2; ∼60 min/d of INT alternating 3 min of 90% and 50% HRpeak), with matched energy availability. Fasting BAIBA and adipokines along with glucose, insulin, C-peptide, and FFA after every 30 min up to 120 min were obtained during a 75 g OGTT to estimate total area under the curve (tAUC), insulin sensitivity (SIIS), pancreatic function [disposition index (DI)], and hepatic insulin clearance (HIC). Fuel use (indirect calorimetry) was tested at 0, 60, and 120 min of the OGTT along with fitness (VO2peak) and body composition (BodPod). Results: Both treatments lowered body weight (p < 0.001) and leptin (p < 0.001) but raised BAIBA (p = 0.007) and insulin sensitivity (p = 0.02). LCD + INT increased VO2peak (p = 0.02) and REE tAUC120min (p = 0.02) while LCD and LCD + INT decreased carbohydrate oxidation (CHOox) tAUC120min (p < 0.001). Increased BAIBA associated with reduced weight (r = -0.67, p < 0.001), leptin (r = -0.66, p = 0.001), CHOox tAUC120min (r = -0.44, p = 0.03) and DImuscle120min (r = -0.45, p = 0.03), but elevated HIC120min (r = 0.47, p = 0.02). Discussion: Concluding, LCD and LCD + INT increased BAIBA in relation to reduced body weight and pancreatic function in women with obesity. This suggests energy deficit is a key factor regulating circulating BAIBA.
Collapse
Affiliation(s)
- Habiba Faiz
- Department of Kinesiology and Health, Rutgers University, New Brunswick, NJ, United States
| | - Steven K. Malin
- Department of Kinesiology and Health, Rutgers University, New Brunswick, NJ, United States
- University of Virginia, Charlottesville, VA, United States
- Division of Endocrinology, Metabolism and Nutrition, Rutgers University, New Brunswick, NJ, United States
- New Jersey Institute for Food, Nutrition and Health, Rutgers University, New Brunswick, NJ, United States
- Institute of Translational Medicine and Science, Rutgers University, New Brunswick, NJ, United States
| |
Collapse
|
14
|
Syeda UA, Battillo D, Visaria A, Malin SK. The importance of exercise for glycemic control in type 2 diabetes. AMERICAN JOURNAL OF MEDICINE OPEN 2023; 9:100031. [PMID: 39035065 PMCID: PMC11256236 DOI: 10.1016/j.ajmo.2023.100031] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 12/01/2022] [Accepted: 01/10/2023] [Indexed: 07/23/2024]
Abstract
Exercise is a first-line therapy recommended for patients with type 2 diabetes (T2D). Although moderate to vigorous exercise (e.g. 150 min/wk) is often advised alongside diet and/or behavior modification, exercise is an independent treatment that can prevent, delay or reverse T2D. Habitual exercise, consisting of aerobic, resistance or their combination, fosters improved short- and long-term glycemic control. Recent work also shows high-intensity interval training is successful at lowering blood glucose, as is breaking up sedentary behavior with short-bouts of light to vigorous movement (e.g. up to 3min). Interestingly, performing afternoon compared with morning as well as post-meal versus pre-meal exercise may yield slightly better glycemic benefit. Despite these efficacious benefits of exercise for T2D care, optimal exercise recommendations remain unclear when considering, dietary, medication, and/or other behaviors.
Collapse
Affiliation(s)
- U.S. Afsheen Syeda
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ, United States
| | - Daniel Battillo
- Department of Kinesiology and Health, Rutgers University, New Brunswick, NJ, United States
| | - Aayush Visaria
- Center for Pharmacoepidemiology and Treatment Sciences, Rutgers Institute for Health, Health Care Policy, and Aging Research, New Brunswick, NJ, United States
| | - Steven K. Malin
- Department of Kinesiology and Health, Rutgers University, New Brunswick, NJ, United States
- Center for Pharmacoepidemiology and Treatment Sciences, Rutgers Institute for Health, Health Care Policy, and Aging Research, New Brunswick, NJ, United States
- New Jersey Institute for Food, Nutrition and Health, Rutgers University, New Brunswick, NJ, United States
- Institute of Translational Medicine and Science, Rutgers University, New Brunswick, NJ, United States
| |
Collapse
|
15
|
Ragland TJ, Heiston EM, Ballantyne A, Stewart NR, La Salvia S, Musante L, Luse MA, Isakson BE, Erdbrügger U, Malin SK. Extracellular vesicles and insulin-mediated vascular function in metabolic syndrome. Physiol Rep 2023; 11:e15530. [PMID: 36597186 PMCID: PMC9810789 DOI: 10.14814/phy2.15530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 11/02/2022] [Indexed: 01/05/2023] Open
Abstract
Metabolic Syndrome (MetS) raises cardiovascular disease risk. Extracellular vesicles (EVs) have emerged as important mediators of insulin sensitivity, although few studies on vascular function exist in humans. We determined the effect of insulin on EVs in relation to vascular function. Adults with MetS (n = 51, n = 9 M, 54.8 ± 1.0 years, 36.4 ± 0.7 kg/m2 , ATPIII: 3.5 ± 0.1 a.u., VO2 max: 22.1 ± 0.6 ml/kg/min) were enrolled in this cross-sectional study. Peripheral insulin sensitivity (M-value) was determined during a euglycemic clamp (40 mU/m2 /min, 90 mg/dl), and blood was collected for EVs (CD105+, CD45+, CD41+, TX+, and CD31+; spectral flow cytometry), inflammation, insulin, and substrates. Central hemodynamics (applanation tonometry) was determined at 0 and 120 min via aortic waveforms. Pressure myography was used to assess insulin-induced arterial vasodilation from mouse 3rd order mesenteric arteries (100-200 μm in diameter) at 0.2, 2 and 20 nM of insulin with EVs from healthy and MetS adults. Adults with MetS had low peripheral insulin sensitivity (2.6 ± 0.2 mg/kg/min) and high HOMA-IR (4.7 ± 0.4 a.u.) plus Adipose-IR (13.0 ± 1.3 a.u.). Insulin decreased total/particle counts (p < 0.001), CD45+ EVs (p = 0.002), AIx75 (p = 0.005) and Pb (p = 0.04), FFA (p < 0.001), total adiponectin (p = 0.006), ICAM (p = 0.002), and VCAM (p = 0.03). Higher M-value related to lower fasted total EVs (r = -0.40, p = 0.004) while higher Adipose-IR associated with higher fasted EVs (r = 0.42, p = 0.004) independent of VAT. Fasting CD105+ and CD45+ derived total EVs correlated with fasting AIx75 (r = 0.29, p < 0.05) and Pb (r = 0.30, p < 0.05). EVs from MetS participants blunted insulin-induced vasodilation in mesenteric arteries compared with increases from healthy controls across insulin doses (all p < 0.005). These data highlight EVs as potentially novel mediators of vascular insulin sensitivity and disease risk.
Collapse
Affiliation(s)
- Tristan J. Ragland
- Department of Kinesiology & HealthRutgers UniversityNew BrunswickNew JerseyUSA
| | - Emily M. Heiston
- Department of Internal Medicine, Pauley Heart CenterVirginia Commonwealth UniversityRichmondVirginiaUSA
- Department of KinesiologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Anna Ballantyne
- Department of KinesiologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Nathan R. Stewart
- Department of Kinesiology & HealthRutgers UniversityNew BrunswickNew JerseyUSA
- Department of KinesiologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| | | | - Luca Musante
- School of Veterinary MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Melissa A. Luse
- Robert M Berne Cardiovascular Research CenterUniversity of Virginia School of MedicineCharlottesvilleVirginiaUSA
| | - Brant E. Isakson
- Robert M Berne Cardiovascular Research CenterUniversity of Virginia School of MedicineCharlottesvilleVirginiaUSA
- Department of Molecular Physiology and BiophysicsUniversity of Virginia School of MedicineCharlottesvilleVirginiaUSA
| | - Uta Erdbrügger
- Division of Nephrology, Department of MedicineUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Steven K. Malin
- Department of Kinesiology & HealthRutgers UniversityNew BrunswickNew JerseyUSA
- Department of KinesiologyUniversity of VirginiaCharlottesvilleVirginiaUSA
- Division of Endocrinology, Metabolism & NutritionDepartment of MedicineNew BrunswickNew JerseyUSA
- The New Jersey Institute for Food, Nutrition and HealthRutgers UniversityNew BrunswickNew JerseyUSA
- Institute of Translational Medicine and ScienceRutgers UniversityNew BrunswickNew JerseyUSA
| |
Collapse
|
16
|
Ouerghi N, Fradj MKB, Duclos M, Bouassida A, Feki M, Weiss K, Knechtle B. Effects of High-Intensity Interval Training on Selected Adipokines and Cardiometabolic Risk Markers in Normal-Weight and Overweight/Obese Young Males-A Pre-Post Test Trial. BIOLOGY 2022; 11:biology11060853. [PMID: 35741374 PMCID: PMC9219855 DOI: 10.3390/biology11060853] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/29/2022] [Accepted: 05/31/2022] [Indexed: 01/14/2023]
Abstract
The study aimed to assess effects of high-intensity interval training (HIIT) on plasma adipokines and cardiometabolic markers in normal and excess weight youth. Eighteen healthy young males (18.2 ± 1.06 yrs.) were divided in normal-weight group (NWG; body mass index (BMI), 20.5 ± 1.51 kg/m2; n = 9) and excess-weight group (EWG; BMI, 30.8 ± 4.56 kg/m2; n = 9). Participants performed an eight-week HIIT program without caloric restriction. Body composition, plasma leptin, adiponectin, chemerin, omentin-1, lipids, C-reactive protein (CRP), and the homeostasis model assessment index for insulin resistance (HOMA-IR) were assessed before and after the HIIT program. The program resulted in significant increases in omentin levels (p < 0.01) in EWG (27%) and NWG (22%), but no changes in leptin, adiponectin, and chemerin in both groups. BMI (−1.62%; p = 0.015), body fat (−1.59%; p = 0.021), total cholesterol (−11.8%; p = 0.026), triglycerides (−21.3%; p = 0.023), and HOMA-IR (−31.5%; p = 0.043) decreased in EWG only. Repeated measures detected significant interaction “Time x Group” for body mass and BMI only. Eight-week HIIT program improved body composition, lipid profile, and insulin sensitivity in excess-weight individuals. It resulted in an increase in omentin levels in both normal- and excess-weight groups, but no changes in leptin, adiponectin, and chemerin. Body composition has not influenced the response of the four adipokines to HIIT.
Collapse
Affiliation(s)
- Nejmeddine Ouerghi
- High Institute of Sport and Physical Education of Kef, University of Jendouba, UR13JS01, Jendouba 7100, Tunisia; (N.O.); (A.B.)
- Rabta Hospital, Faculty of Medicine of Tunis, University of Tunis El Manar, LR99ES11, Tunis 1007, Tunisia; (M.K.B.F.); (M.F.)
| | - Mohamed Kacem Ben Fradj
- Rabta Hospital, Faculty of Medicine of Tunis, University of Tunis El Manar, LR99ES11, Tunis 1007, Tunisia; (M.K.B.F.); (M.F.)
| | - Martine Duclos
- Departments of Sport Medicine and Functional Explorations, University-Hospital, G. Montpied Hospital, Clermont-Ferrand, F-63003 Clermont-Ferrand, France;
- INRA, UNH, CRNH Auvergne, F-63000 Clermont-Ferrand, France
- UFR Medicine, Clermont University, University of Auvergne, BP 10448, F-63000 Clermont-Ferrand, France
| | - Anissa Bouassida
- High Institute of Sport and Physical Education of Kef, University of Jendouba, UR13JS01, Jendouba 7100, Tunisia; (N.O.); (A.B.)
| | - Moncef Feki
- Rabta Hospital, Faculty of Medicine of Tunis, University of Tunis El Manar, LR99ES11, Tunis 1007, Tunisia; (M.K.B.F.); (M.F.)
| | - Katja Weiss
- Medbase St. Gallen Am Vadianplatz, 9000 St. Gallen, Switzerland;
- Institute of Primary Care, University of Zurich, 8001 Zurich, Switzerland
| | - Beat Knechtle
- Medbase St. Gallen Am Vadianplatz, 9000 St. Gallen, Switzerland;
- Institute of Primary Care, University of Zurich, 8001 Zurich, Switzerland
- Correspondence: ; Tel.: +41-(0)-71-226-93-00
| |
Collapse
|
17
|
Effectiveness of App-Based Intervention to Improve Health Status of Sedentary Middle-Aged Males and Females. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19105857. [PMID: 35627392 PMCID: PMC9141809 DOI: 10.3390/ijerph19105857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND Adherence to a nutritional program and physical activity are the fundamental aspects of treatment for weight loss and associated problems. Previous research has shown that self-monitoring using a mobile device improves self-management. METHODS A total of 35 subjects (40.6 ± 9.24 years) participated in the study. During the control period (3 months), they received physical exercise guidelines and a personalized nutritional program, with the aim of promoting health status. In the experimental period (3 months), there was also a connection between the physical world (health care processes) and the digital world (app). All participants had their body composition and cardiovascular variables measured. They also underwent calcaneal densitometry to determine bone quality. Descriptive statistics, correlations and analysis of variance were performed (by a researcher who was not involved in the data collection) to study the changes between before and after interventions, as well as to make a comparison between treatments. RESULTS The use of an app, in which there exist a prediction of the evolution, messages of results and advice, among others, mediated by the assistance of dietitians/nutritionists and sports scientists, had a positive impact on the improvement of health parameters, showing significant differences in all variables except troponin. CONCLUSIONS The combination of healthy habits with the use of the app provided benefits, improving health.
Collapse
|
18
|
Kanaley JA, Colberg SR, Corcoran MH, Malin SK, Rodriguez NR, Crespo CJ, Kirwan JP, Zierath JR. Exercise/Physical Activity in Individuals with Type 2 Diabetes: A Consensus Statement from the American College of Sports Medicine. Med Sci Sports Exerc 2022; 54:353-368. [PMID: 35029593 PMCID: PMC8802999 DOI: 10.1249/mss.0000000000002800] [Citation(s) in RCA: 321] [Impact Index Per Article: 107.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
ABSTRACT This consensus statement is an update of the 2010 American College of Sports Medicine position stand on exercise and type 2 diabetes. Since then, a substantial amount of research on select topics in exercise in individuals of various ages with type 2 diabetes has been published while diabetes prevalence has continued to expand worldwide. This consensus statement provides a brief summary of the current evidence and extends and updates the prior recommendations. The document has been expanded to include physical activity, a broader, more comprehensive definition of human movement than planned exercise, and reducing sedentary time. Various types of physical activity enhance health and glycemic management in people with type 2 diabetes, including flexibility and balance exercise, and the importance of each recommended type or mode are discussed. In general, the 2018 Physical Activity Guidelines for Americans apply to all individuals with type 2 diabetes, with a few exceptions and modifications. People with type 2 diabetes should engage in physical activity regularly and be encouraged to reduce sedentary time and break up sitting time with frequent activity breaks. Any activities undertaken with acute and chronic health complications related to diabetes may require accommodations to ensure safe and effective participation. Other topics addressed are exercise timing to maximize its glucose-lowering effects and barriers to and inequities in physical activity adoption and maintenance.
Collapse
Affiliation(s)
- Jill A Kanaley
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO
| | - Sheri R Colberg
- Human Movement Sciences Department, Old Dominion University, Norfolk, VA
| | | | - Steven K Malin
- Department of Kinesiology and Health, Rutgers University, New Brunswick, NJ
| | - Nancy R Rodriguez
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT
| | - Carlos J Crespo
- Oregon Health and Science University-Portland State University School of Public Health, Portland, OR
| | - John P Kirwan
- Pennington Biomedical Research Center, Baton Rouge, LA
| | - Juleen R Zierath
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, SWEDEN
| |
Collapse
|
19
|
Poon ETC, Siu PMF, Wongpipit W, Gibala M, Wong SHS. Alternating high-intensity interval training and continuous training is efficacious in improving cardiometabolic health in obese middle-aged men. J Exerc Sci Fit 2022; 20:40-47. [PMID: 34987589 PMCID: PMC8689221 DOI: 10.1016/j.jesf.2021.11.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 01/13/2023] Open
Abstract
Background High-intensity interval training (HIIT) or moderate-intensity continuous training (MICT) alone has been shown to improve metabolic health, but the effects of alternating the two training approaches as often practiced in real life remained unclear. Purpose To examine the effects of HIIT or MICT alone or alternating HIIT-MICT on cardiometabolic responses in inactive obese middle-aged men. Methods Forty-two participants (age: 42 ± 5 y; BMI: 26.3 ± 2.1 kg m−2) were randomly assigned to four groups: HIIT (12 x 1-min running bouts at 80–90% HRmax interspersed with 1-min active recovery at 50% HRmax), MICT (40-min brisk walk at 65–70% HRmax), alternating HIIT-MICT or a non-exercise control group (CON). Exercise sessions were conducted three times per week for 16 weeks. Maximal oxygen uptake (VO2max), body composition (by bioelectrical impedance analysis), blood pressure, fasting blood glucose, insulin resistance (HOMA-IR) and lipid profile were assessed at baseline and after the 16-week intervention. Enjoyment and self-efficacy were also assessed at the end of intervention. Results All exercise groups showed a similar VO2max increase of ∼15% (HIIT: 34.3 ± 4.4 vs 39.1 ± 5.4; MICT: 34.9 ± 5.0 vs 39.4 ± 7.2; and alternating HIIT-MICT: 34.4 ± 5.0 vs 40.3 ± 4.6 mL kg−1min−1) compared to baseline and CON (all p < 0.05). Weight, BMI, % fat and waist circumference also showed similar reductions in all exercise groups compared to baseline and CON (all p < 0.05). No significant group difference was observed for all blood markers. Compared to baseline, total cholesterol decreased after HIIT-MICT, while HIIT significantly decreased fasting insulin level and improved insulin resistance (p < 0.05). Enjoyment, self-efficacy and adherence were similar among all exercise groups. Conclusion HIIT or MICT alone or alternating HIIT-MICT similarly improve cardiovascular fitness and body composition in obese middle-aged men despite differences in total training volume and time commitment.
Collapse
Affiliation(s)
- Eric Tsz-Chun Poon
- Department of Sports Science and Physical Education, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Parco Ming-Fai Siu
- Division of Kinesiology, School of Public Health, The University of Hong Kong, Pokfulam, Hong Kong
| | - Waris Wongpipit
- Department of Sports Science and Physical Education, The Chinese University of Hong Kong, Shatin, Hong Kong
- Faculty of Education, Chulalongkorn University, Bangkok, Thailand
| | - Martin Gibala
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Stephen Heung-Sang Wong
- Department of Sports Science and Physical Education, The Chinese University of Hong Kong, Shatin, Hong Kong
- Corresponding author.
| |
Collapse
|
20
|
Wang H, Wang J, Zhu Y, Yan H, Lu Y. Effects of Different Intensity Exercise on Glucose Metabolism and Hepatic IRS/PI3K/AKT Pathway in SD Rats Exposed with TCDD. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:13141. [PMID: 34948750 PMCID: PMC8701401 DOI: 10.3390/ijerph182413141] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 11/17/2022]
Abstract
The objective of the study was to investigate the effects of different intensity exercise and 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) exposure on glucose metabolism in Sprague Dawley (SD) rats, as well as the action of insulin receptor substrate (IRS)/phosphatidylinositol-3-kinases (PI3K)/protein kinase (AKT) signaling pathway in it. Besides that, we explored whether exercise can alleviate the toxicity induced by TCDD. Sixty male SD rats (8 weeks old) were randomly divided into non-exercise group, none-exercise toxic group, moderate-intensity exercise group, moderate-intensity exercise toxic group, high-intensity exercise group, high-intensity exercise toxic group. The toxic groups were intraperitoneally injected with TCDD, which the dose was 6.4 µg/kg· BW for the first week, then 21% of the above week dose for continuous 8 weeks. The 8-week treadmill running of moderate intensity (15 m/min, 60 min/day) and high intensity (26 m/min, 35 min/day) were implemented separately in exercise groups five times a week. After detecting the concentration of fasting serum glucose, insulin and C-peptide, the index of the homeostasis model assessment of insulin resistance (HOMA-IR) and islet β-cell secretion (HOMA-β) were calculated. We measured the hepatic mRNA expression levels of IRS2, phosphatidylinositol-3-kinases catalytic subunit alpha (PIK3CA), AKT by real-time PCR. The protein expression of total IRS2 (tIRS2), phosphorylated IRS2 at Ser731 (pSer731), total PIK3CA (tPIK3CA), total Akt (tAkt), phosphorylated Akt at Thr308 (pThr308) in liver were analyzed by western blot. We observed that compared to the non-exercise group, insulin and HOMA-IR index were significantly higher in the none-exercise toxic group (p < 0.05), while glucose, insulin, C-peptide and HOMA-IR index were significantly lower in the moderate-intensity exercise group (p < 0.05). In the high-intensity exercise group, the HOMA-IR index was significantly lower and the gene expression of IRS2 was significantly higher than in the non-exercise group (p < 0.05). Besides that, the HOMA-β index in the moderate-intensity exercise toxic group was significantly higher compared to the none-exercise toxic group and moderate-intensity exercise group (p < 0.05). The level of IRS2mRNA was significantly lower in the high-intensity exercise toxic group than in the high-intensity exercise group (p < 0.05). Our results demonstrated that 8-week TCDD exposure could induce insulin resistance in rats, while exercise could improve insulin sensitivity in which moderate intensity was more obvious than high intensity exercise. Meanwhile, both intensity exercise could not effectively alleviate the insulin resistance induced by TCDD, but high intensity exercise could promote compensatory insulin secretion to maintain glucose homeostasis. Although the gene expression of IRS2 was changed in high-intensity exercise groups, the mediation role of the hepatic IRS2/PI3K/AKT pathway in the effects of exercise and TCDD exposure on glucose metabolism remains very limited.
Collapse
Affiliation(s)
- Huohuo Wang
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China; (H.W.); (J.W.); (Y.Z.)
| | - Juanjuan Wang
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China; (H.W.); (J.W.); (Y.Z.)
| | - Yihua Zhu
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China; (H.W.); (J.W.); (Y.Z.)
| | - Huiping Yan
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China; (H.W.); (J.W.); (Y.Z.)
| | - Yifan Lu
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China; (H.W.); (J.W.); (Y.Z.)
- Key Laboratory of Sports and Physical Fitness of the Ministry of Education, Beijing Sport University, Beijing 100084, China
| |
Collapse
|
21
|
Zhou L. CELL METABOLISM UNDER DIFFERENT INTENSITY EXERCISES IN SPORTS MEDICINE. REV BRAS MED ESPORTE 2021. [DOI: 10.1590/1517-8692202127072021_0334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
ABSTRACT Introduction: Articular cartilage is an essential structure for joint weight-bearing and movement. If it is always under a specific mechanical stimulation, it will cause osteoarthritis (OA) and even involve the articular cartilage. Sports can affect articular cartilage thickness, cartilage surface morphology, and cartilage cell metabolism. Objective: This thesis studies the cell metabolism of knee cartilage tissue with exercises of different intensities. Methods: We divided 40 rats into four groups according to exercise intensity. The control group exercised freely, while the experimental group exercised with different intensities. After eight weeks of exercise, we extracted the knee joint cartilage to observe its cell metabolism. Results: We found that the cartilage surface of the rats was complete after exercise, and the thickness of the cartilage layer was significantly greater than that of rats without exercise. Conclusion: Exercises of different intensities have different effects on the metabolism of cartilage cells in the knee joint of rats. Level of evidence II; Therapeutic studies - investigation of treatment results.
Collapse
|
22
|
Remchak MME, Piersol KL, Bhatti S, Spaeth AM, Buckman JF, Malin SK. Considerations for Maximizing the Exercise "Drug" to Combat Insulin Resistance: Role of Nutrition, Sleep, and Alcohol. Nutrients 2021; 13:1708. [PMID: 34069950 PMCID: PMC8157556 DOI: 10.3390/nu13051708] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/24/2021] [Accepted: 05/13/2021] [Indexed: 01/12/2023] Open
Abstract
Insulin resistance is a key etiological factor in promoting not only type 2 diabetes mellitus but also cardiovascular disease (CVD). Exercise is a first-line therapy for combating chronic disease by improving insulin action through, in part, reducing hepatic glucose production and lipolysis as well as increasing skeletal muscle glucose uptake and vasodilation. Just like a pharmaceutical agent, exercise can be viewed as a "drug" such that identifying an optimal prescription requires a determination of mode, intensity, and timing as well as consideration of how much exercise is done relative to sitting for prolonged periods (e.g., desk job at work). Furthermore, proximal nutrition (nutrient timing, carbohydrate intake, etc.), sleep (or lack thereof), as well as alcohol consumption are likely important considerations for enhancing adaptations to exercise. Thus, identifying the maximal exercise "drug" for reducing insulin resistance will require a multi-health behavior approach to optimize type 2 diabetes and CVD care.
Collapse
Affiliation(s)
- Mary-Margaret E. Remchak
- Department of Kinesiology & Health, Rutgers University, New Brunswick, NJ 08901, USA; (M.-M.E.R.); (K.L.P.); (A.M.S.); (J.F.B.)
| | - Kelsey L. Piersol
- Department of Kinesiology & Health, Rutgers University, New Brunswick, NJ 08901, USA; (M.-M.E.R.); (K.L.P.); (A.M.S.); (J.F.B.)
| | - Sabha Bhatti
- Division of Cardiovascular Medicine, Rutgers University, New Brunswick, NJ 08901, USA;
| | - Andrea M. Spaeth
- Department of Kinesiology & Health, Rutgers University, New Brunswick, NJ 08901, USA; (M.-M.E.R.); (K.L.P.); (A.M.S.); (J.F.B.)
| | - Jennifer F. Buckman
- Department of Kinesiology & Health, Rutgers University, New Brunswick, NJ 08901, USA; (M.-M.E.R.); (K.L.P.); (A.M.S.); (J.F.B.)
- Center of Alcohol Studies, Rutgers University, Piscataway, NJ 08854, USA
| | - Steven K. Malin
- Department of Kinesiology & Health, Rutgers University, New Brunswick, NJ 08901, USA; (M.-M.E.R.); (K.L.P.); (A.M.S.); (J.F.B.)
- Division of Endocrinology, Metabolism & Nutrition, Rutgers University, New Brunswick, NJ 08901, USA
- New Jersey Institute for Food, Nutrition and Health, Rutgers University, New Brunswick, NJ 08901, USA
- Institute of Translational Medicine and Science, Rutgers University, New Brunswick, NJ 08901, USA
| |
Collapse
|
23
|
Jimeno-Almazán A, Pallarés JG, Buendía-Romero Á, Martínez-Cava A, Franco-López F, Sánchez-Alcaraz Martínez BJ, Bernal-Morel E, Courel-Ibáñez J. Post-COVID-19 Syndrome and the Potential Benefits of Exercise. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:5329. [PMID: 34067776 PMCID: PMC8156194 DOI: 10.3390/ijerph18105329] [Citation(s) in RCA: 150] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 01/25/2023]
Abstract
The coronavirus disease (COVID-19), caused by severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infection, is leading to unknown and unusual health conditions that are challenging to manage. Post-COVID-19 syndrome is one of those challenges, having become increasingly common as the pandemic evolves. The latest estimates suggest that 10 to 20% of the SARS-CoV-2 patients who undergo an acute symptomatic phase are experiencing effects of the disease beyond 12 weeks after diagnosis. Although research is beginning to examine this new condition, there are still serious concerns about the diagnostic identification, which limits the best therapeutic approach. Exercise programs and physical activity levels are well-known modulators of the clinical manifestations and prognosis in many chronic diseases. This narrative review summarizes the up-to-date evidence on post-COVID-19 syndrome to contribute to a better knowledge of the disease and explains how regular exercise may improve many of these symptoms and could reduce the long-term effects of COVID-19.
Collapse
Affiliation(s)
- Amaya Jimeno-Almazán
- Department of Infectious Diseases, Hospital Universitario Santa Lucía, Cartagena, 30202 Murcia, Spain;
- Human Performance & Sport Sciences Laboratory, University of Murcia, 30720 Murcia, Spain; (J.G.P.); (Á.B.-R.); (A.M.-C.); (F.F.-L.)
| | - Jesús G. Pallarés
- Human Performance & Sport Sciences Laboratory, University of Murcia, 30720 Murcia, Spain; (J.G.P.); (Á.B.-R.); (A.M.-C.); (F.F.-L.)
| | - Ángel Buendía-Romero
- Human Performance & Sport Sciences Laboratory, University of Murcia, 30720 Murcia, Spain; (J.G.P.); (Á.B.-R.); (A.M.-C.); (F.F.-L.)
| | - Alejandro Martínez-Cava
- Human Performance & Sport Sciences Laboratory, University of Murcia, 30720 Murcia, Spain; (J.G.P.); (Á.B.-R.); (A.M.-C.); (F.F.-L.)
| | - Francisco Franco-López
- Human Performance & Sport Sciences Laboratory, University of Murcia, 30720 Murcia, Spain; (J.G.P.); (Á.B.-R.); (A.M.-C.); (F.F.-L.)
| | | | - Enrique Bernal-Morel
- Department of Infectious Diseases, Hospital General Universitario Reina Sofía, University of Murcia, IMIB, 30003 Murcia, Spain;
| | - Javier Courel-Ibáñez
- Human Performance & Sport Sciences Laboratory, University of Murcia, 30720 Murcia, Spain; (J.G.P.); (Á.B.-R.); (A.M.-C.); (F.F.-L.)
- Department of Physical Training, Post-COVID-19 Rehabilitation Unit, Hospital QuirónSalud, 30011 Murcia, Spain
| |
Collapse
|
24
|
da Silva Rosa SC, Liu M, Sweeney G. Adiponectin Synthesis, Secretion and Extravasation from Circulation to Interstitial Space. Physiology (Bethesda) 2021; 36:134-149. [PMID: 33904786 PMCID: PMC8461789 DOI: 10.1152/physiol.00031.2020] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Adiponectin, an adipokine that circulates as multiple multimeric complexes at high levels in serum, has antidiabetic, anti-inflammatory, antiatherogenic, and cardioprotective properties. Understanding the mechanisms regulating adiponectin's physiological effects is likely to provide critical insight into the development of adiponectin-based therapeutics to treat various metabolic-related diseases. In this review, we summarize our current understanding on adiponectin action in its various target tissues and in cellular models. We also focus on recent advances in two particular regulatory aspects; namely, the regulation of adiponectin gene expression, multimerization, and secretion, as well as extravasation of circulating adiponectin to the interstitial space and its degradation. Finally, we discuss some potential therapeutic approaches using adiponectin as a target and the current challenges facing adiponectin-based therapeutic interventions.
Collapse
Affiliation(s)
| | - Meilian Liu
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Gary Sweeney
- Department of Biology, York University, Toronto, Ontario, Canada
| |
Collapse
|
25
|
Korivi M, Huang YW, Liu BR. Cell-Penetrating Peptides as a Potential Drug Delivery System for Effective Treatment of Diabetes. Curr Pharm Des 2021; 27:816-825. [PMID: 33076803 DOI: 10.2174/1381612826666201019102640] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 08/02/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND/PURPOSE Type 2 diabetes (T2D) is characterized by hyperglycemia resulting from the body's inability to produce and/or use insulin. Patients with T2D often have hyperinsulinemia, dyslipidemia, inflammation, and oxidative stress, which then lead to hypertension, chronic kidney disease, cardiovascular disease, and increased risk of morbidity and mortality (9th leading cause globally). Insulin and related pharmacological therapies are widely used to manage T2D, despite their limitations. Efficient drug delivery systems (DDS) that control drug kinetics may decrease side effects, allow for efficient targeting, and increase the bioavailability of drugs to achieve maximum therapeutic benefits. Thus, the development of effective DDS is crucial to beat diabetes. METHODS Here, we introduced a highly bioavailable vector, cell-penetrating peptides (CPPs), as a powerful DDS to overcome limitations of free drug administration. RESULTS CPPs are short peptides that serve as a potent tool for delivering therapeutic agents across cell membranes. Various cargoes, including proteins, DNA, RNA, liposomes, therapeutic molecules, and nanomaterials, generally retain their bioactivity upon entering cells. The mechanisms of CPPs/cargoes intracellular entry are classified into two parts: endocytic pathways and direct membrane translocation. In this article, we focus on the applications of CPPs/therapeutic agents in the treatment of diabetes. Hypoglycemic drugs with CPPs intervention can enhance therapeutic effectiveness, and CPP-mediated drug delivery can facilitate the actions of insulin. Numerous studies indicate that CPPs can effectively deliver insulin, produce synergistic effects with immunosuppressants for successful pancreatic islet xenotransplantation, prolong pharmacokinetics, and retard diabetic nephropathy. CONCLUSION We suggest that CPPs can be a new generation of drug delivery systems for effective treatment and management of diabetes and diabetes-associated complications.
Collapse
Affiliation(s)
- Mallikarjuna Korivi
- Exercise and Metabolism Research Center, College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Yue-Wern Huang
- Department of Biological Sciences, Missouri University of Science and Technology, Rolla, MO 65409-1120, United States
| | - Betty R Liu
- Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualien 97004, Taiwan
| |
Collapse
|
26
|
Heiston EM, Gilbertson NM, Eichner NZM, Malin SK. A Low-Calorie Diet with or without Exercise Reduces Postprandial Aortic Waveform in Females with Obesity. Med Sci Sports Exerc 2021; 53:796-803. [PMID: 32925495 DOI: 10.1249/mss.0000000000002515] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE Arterial stiffness is considered a predictor of cardiovascular disease. Females have higher values of arterial stiffness than males, suggesting a greater risk of heart-related complications. Although a low-calorie diet (LCD) reduces fasting arterial stiffness, in part through weight loss, it is unknown if interval exercise (INT) adds to the benefit of LCD on fasting and postprandial arterial stiffness in females with obesity. METHODS Twenty-five females (47 ± 2.6 yr, 37.6 ± 1.3 kg·m-2) were randomized to 13 d of LCD (n = 12; mixed meals of ~1200 kcal·d-1) or LCD + INT (n = 13; 60 min·d-1 of supervised 3-min intervals at 90% HRpeak and 50% HRpeak). Arterial stiffness (augmentation index [AIx] and carotid-femoral pulse wave velocity [cfPWV]) and blood biochemistries were measured during a 75-g oral glucose tolerance test before and after the intervention to determine fasting and postprandial arterial stiffness as well as insulin sensitivity (simple index of insulin sensitivity [SIIS]) and inflammation (C-reactive protein, interleukin 8, and tumor necrosis factor alpha). RESULTS Although LCD + INT increased V˙O2peak and HDL compared with LCD (P = 0.04 and P < 0.01, respectively), both interventions decreased body fat, LDL, total cholesterol, and triglycerides (all P < 0.01) and increased SIIS (P = 0.03). Despite no effect on fasting AIx (P = 0.27), LCD and LCD + INT decreased AIx60min (-7.4% ± 4.3% vs -7.0% ± 5.0%, P = 0.04) and tAUC120min (-663 ± 263 vs -457 ± 406, P = 0.03). There were no changes in fasting cfPWV (P = 0.91) or cfPWV120min (P = 0.62). Increased SIIS and decreased interleukin 8 were associated with reduced fasting AIx (r = -0.44, P = 0.03, and r = 0.40, P = 0.055), whereas decreased C-reactive protein correlated with reduced postprandial AIx60min (r = 0.43, P = 0.04). CONCLUSION Independent of exercise, 13 d of LCD reduces postprandial AIx in females with obesity. Insulin sensitivity and inflammation correlated with improved arterial stiffness, suggesting unique mechanisms regulate fasted versus postprandial arterial stiffness.
Collapse
Affiliation(s)
- Emily M Heiston
- Department of Kinesiology, University of Virginia, Charlottesville, VA
| | | | | | | |
Collapse
|
27
|
Beals JW, Kayser BD. When Exercising for Metabolic Health, the Work is Never Done, But HIIT Will Save You Time. J Clin Endocrinol Metab 2021; 106:e365-e366. [PMID: 32678867 PMCID: PMC7765641 DOI: 10.1210/clinem/dgaa451] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 07/08/2020] [Indexed: 11/19/2022]
Affiliation(s)
- Joseph W Beals
- Center for Human Nutrition, Washington University School of Medicine, St Louis, Missouri
- Correspondence and Reprint Requests: Joseph W. Beals, PhD, Center for Human Nutrition, School of Medicine, Washington University, 660 S Euclid Avenue, Campus Box 8031, St Louis, Missouri 63110, USA. E-mail:
| | - Brandon D Kayser
- Center for Human Nutrition, Washington University School of Medicine, St Louis, Missouri
| |
Collapse
|
28
|
From Obesity to Hippocampal Neurodegeneration: Pathogenesis and Non-Pharmacological Interventions. Int J Mol Sci 2020; 22:ijms22010201. [PMID: 33379163 PMCID: PMC7796248 DOI: 10.3390/ijms22010201] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 12/16/2022] Open
Abstract
High-caloric diet and physical inactivity predispose individuals to obesity and diabetes, which are risk factors of hippocampal neurodegeneration and cognitive deficits. Along with the adipose-hippocampus crosstalk, chronically inflamed adipose tissue secretes inflammatory cytokine could trigger neuroinflammatory responses in the hippocampus, and in turn, impairs hippocampal neuroplasticity under obese and diabetic conditions. Hence, caloric restriction and physical exercise are critical non-pharmacological interventions to halt the pathogenesis from obesity to hippocampal neurodegeneration. In response to physical exercise, peripheral organs, including the adipose tissue, skeletal muscles, and liver, can secret numerous exerkines, which bring beneficial effects to metabolic and brain health. In this review, we summarized how chronic inflammation in adipose tissue could trigger neuroinflammation and hippocampal impairment, which potentially contribute to cognitive deficits in obese and diabetic conditions. We also discussed the potential mechanisms underlying the neurotrophic and neuroprotective effects of caloric restriction and physical exercise by counteracting neuroinflammation, plasticity deficits, and cognitive impairments. This review provides timely insights into how chronic metabolic disorders, like obesity, could impair brain health and cognitive functions in later life.
Collapse
|
29
|
Remesar X, Alemany M. Dietary Energy Partition: The Central Role of Glucose. Int J Mol Sci 2020; 21:E7729. [PMID: 33086579 PMCID: PMC7593952 DOI: 10.3390/ijms21207729] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/15/2020] [Accepted: 10/15/2020] [Indexed: 12/17/2022] Open
Abstract
Humans have developed effective survival mechanisms under conditions of nutrient (and energy) scarcity. Nevertheless, today, most humans face a quite different situation: excess of nutrients, especially those high in amino-nitrogen and energy (largely fat). The lack of mechanisms to prevent energy overload and the effective persistence of the mechanisms hoarding key nutrients such as amino acids has resulted in deep disorders of substrate handling. There is too often a massive untreatable accumulation of body fat in the presence of severe metabolic disorders of energy utilization and disposal, which become chronic and go much beyond the most obvious problems: diabetes, circulatory, renal and nervous disorders included loosely within the metabolic syndrome. We lack basic knowledge on diet nutrient dynamics at the tissue-cell metabolism level, and this adds to widely used medical procedures lacking sufficient scientific support, with limited or nil success. In the present longitudinal analysis of the fate of dietary nutrients, we have focused on glucose as an example of a largely unknown entity. Even most studies on hyper-energetic diets or their later consequences tend to ignore the critical role of carbohydrate (and nitrogen disposal) as (probably) the two main factors affecting the substrate partition and metabolism.
Collapse
Affiliation(s)
- Xavier Remesar
- Department of Biochemistry and Molecular Biomedicine Faculty of Biology, University Barcelona, 08028 Barcelona, Spain;
- IBUB Institute of Biomedicine, University of Barcelona, 08028 Barcelona, Spain
- CIBER Obesity and Nutrition, Institute of Health Carlos III, 08028 Barcelona, Spain
| | - Marià Alemany
- Department of Biochemistry and Molecular Biomedicine Faculty of Biology, University Barcelona, 08028 Barcelona, Spain;
- IBUB Institute of Biomedicine, University of Barcelona, 08028 Barcelona, Spain
- CIBER Obesity and Nutrition, Institute of Health Carlos III, 08028 Barcelona, Spain
| |
Collapse
|
30
|
Malin SK, Stewart NR. Metformin May Contribute to Inter-individual Variability for Glycemic Responses to Exercise. Front Endocrinol (Lausanne) 2020; 11:519. [PMID: 32849302 PMCID: PMC7431621 DOI: 10.3389/fendo.2020.00519] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/26/2020] [Indexed: 12/20/2022] Open
Abstract
Metformin and exercise independently improve glycemic control. Metformin traditionally is considered to reduce hepatic glucose production, while exercise training is thought to stimulate skeletal muscle glucose disposal. Collectively, combining treatments would lead to the anticipation for additive glucose regulatory effects. Herein, we discuss recent literature suggesting that metformin may inhibit, enhance or have no effect on exercise mediated benefits toward glucose regulation, with particular emphasis on insulin sensitivity. Importantly, we address issues surrounding the impact of metformin on exercise induced glycemic benefit across multiple insulin sensitive tissues (e.g., skeletal muscle, liver, adipose, vasculature, and the brain) in effort to illuminate potential sources of inter-individual glycemic variation. Therefore, the review identifies gaps in knowledge that require attention in order to optimize medical approaches that improve care of people with elevated blood glucose levels and are at risk of cardiovascular disease.
Collapse
Affiliation(s)
- Steven K. Malin
- Department of Kinesiology, University of Virginia, Charlottesville, VA, United States
- Division of Endocrinology and Metabolism, University of Virginia, Charlottesville, VA, United States
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, United States
| | - Nathan R. Stewart
- Department of Kinesiology, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
31
|
Ryan BJ, Schleh MW, Ahn C, Ludzki AC, Gillen JB, Varshney P, Van Pelt DW, Pitchford LM, Chenevert TL, Gioscia-Ryan RA, Howton SM, Rode T, Hummel SL, Burant CF, Little JP, Horowitz JF. Moderate-Intensity Exercise and High-Intensity Interval Training Affect Insulin Sensitivity Similarly in Obese Adults. J Clin Endocrinol Metab 2020; 105:5850995. [PMID: 32492705 PMCID: PMC7347288 DOI: 10.1210/clinem/dgaa345] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 05/28/2020] [Indexed: 01/25/2023]
Abstract
OBJECTIVE We compared the effects of high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT) on insulin sensitivity and other important metabolic adaptations in adults with obesity. METHODS Thirty-one inactive adults with obesity (age: 31 ± 6 years; body mass index: 33 ± 3 kg/m2) completed 12 weeks (4 sessions/week) of either HIIT (10 × 1-minute at 90%HRmax, 1-minute active recovery; n = 16) or MICT (45 minutes at 70%HRmax; n = 15). To assess the direct effects of exercise independent of weight/fat loss, participants were required to maintain body mass. RESULTS Training increased peak oxygen uptake by ~10% in both HIIT and MICT (P < 0.0001), and body weight/fat mass were unchanged. Peripheral insulin sensitivity (hyperinsulinemic-euglycemic clamp) was ~20% greater the day after the final exercise session compared to pretraining (P < 0.01), with no difference between HIIT and MICT. When trained participants abstained from exercise for 4 days, insulin sensitivity returned to pretraining levels in both groups. HIIT and MICT also induced similar increases in abundance of many skeletal muscle proteins involved in mitochondrial respiration and lipid and carbohydrate metabolism. Training-induced alterations in muscle lipid profile were also similar between groups. CONCLUSION Despite large differences in training intensity and exercise time, 12 weeks of HIIT and MICT induce similar acute improvements in peripheral insulin sensitivity the day after exercise, and similar longer term metabolic adaptations in skeletal muscle in adults with obesity. These findings support the notion that the insulin-sensitizing effects of both HIIT and MICT are mediated by factors stemming from the most recent exercise session(s) rather than adaptations that accrue with training.
Collapse
Affiliation(s)
- Benjamin J Ryan
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan
| | - Michael W Schleh
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan
| | - Cheehoon Ahn
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan
| | - Alison C Ludzki
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan
| | - Jenna B Gillen
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| | - Pallavi Varshney
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan
| | - Douglas W Van Pelt
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan
| | - Lisa M Pitchford
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan
| | | | - Rachel A Gioscia-Ryan
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan
| | - Suzette M Howton
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan
| | - Thomas Rode
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan
| | - Scott L Hummel
- Division of Cardiology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
- Ann Arbor Veterans Affairs Health System, Ann Arbor, Michigan
| | - Charles F Burant
- Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Jonathan P Little
- School of Health and Exercise Sciences, University of British Columbia, Okanagan Campus, Kelowna, British Columbia, Canada
| | - Jeffrey F Horowitz
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan
- Correspondence and Reprint Requests: Jeffrey F. Horowitz, PhD, School of Kinesiology, University of Michigan, 401 Washtenaw Ave., Ann Arbor, MI, USA 48109-2214.
| |
Collapse
|
32
|
Khalafi M, Symonds ME. The impact of high‐intensity interval training on inflammatory markers in metabolic disorders: A meta‐analysis. Scand J Med Sci Sports 2020; 30:2020-2036. [DOI: 10.1111/sms.13754] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/11/2020] [Accepted: 06/15/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Mousa Khalafi
- Department of Exercise Physiology Faculty of Sport Sciences University of Guilan Rasht Iran
| | - Michael E. Symonds
- The Early Life Research Unit Division of Child Health, Obstetrics and Gynaecology, and Nottingham Digestive Disease Centre and Biomedical Research Centre School of Medicine University of Nottingham Nottingham UK
| |
Collapse
|