1
|
Zhang C, Burger RM. Cholinergic modulation in the vertebrate auditory pathway. Front Cell Neurosci 2024; 18:1414484. [PMID: 38962512 PMCID: PMC11220170 DOI: 10.3389/fncel.2024.1414484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/06/2024] [Indexed: 07/05/2024] Open
Abstract
Acetylcholine (ACh) is a prevalent neurotransmitter throughout the nervous system. In the brain, ACh is widely regarded as a potent neuromodulator. In neurons, ACh signals are conferred through a variety of receptors that influence a broad range of neurophysiological phenomena such as transmitter release or membrane excitability. In sensory circuitry, ACh modifies neural responses to stimuli and coordinates the activity of neurons across multiple levels of processing. These factors enable individual neurons or entire circuits to rapidly adapt to the dynamics of complex sensory stimuli, underscoring an essential role for ACh in sensory processing. In the auditory system, histological evidence shows that acetylcholine receptors (AChRs) are expressed at virtually every level of the ascending auditory pathway. Despite its apparent ubiquity in auditory circuitry, investigation of the roles of this cholinergic network has been mainly focused on the inner ear or forebrain structures, while less attention has been directed at regions between the cochlear nuclei and midbrain. In this review, we highlight what is known about cholinergic function throughout the auditory system from the ear to the cortex, but with a particular emphasis on brainstem and midbrain auditory centers. We will focus on receptor expression, mechanisms of modulation, and the functional implications of ACh for sound processing, with the broad goal of providing an overview of a newly emerging view of impactful cholinergic modulation throughout the auditory pathway.
Collapse
Affiliation(s)
- Chao Zhang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States
| | - R. Michael Burger
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, United States
| |
Collapse
|
2
|
Steel D, Reid KM, Pisani A, Hess EJ, Fox S, Kurian MA. Advances in targeting neurotransmitter systems in dystonia. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 169:217-258. [PMID: 37482394 DOI: 10.1016/bs.irn.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Dystonia is characterised as uncontrolled, often painful involuntary muscle contractions that cause abnormal postures and repetitive or twisting movements. These movements can be continuous or sporadic and affect different parts of the body and range in severity. Dystonia and its related conditions present a huge cause of neurological morbidity worldwide. Although therapies are available, achieving optimal symptom control without major unwanted effects remains a challenge. Most pharmacological treatments for dystonia aim to modulate the effects of one or more neurotransmitters in the central nervous system, but doing so effectively and with precision is far from straightforward. In this chapter we discuss the physiology of key neurotransmitters, including dopamine, noradrenaline, serotonin (5-hydroxytryptamine), acetylcholine, GABA, glutamate, adenosine and cannabinoids, and their role in dystonia. We explore the ways in which existing pharmaceuticals as well as novel agents, currently in clinical trial or preclinical development, target dystonia, and their respective advantages and disadvantages. Finally, we discuss current and emerging genetic therapies which may be used to treat genetic forms of dystonia.
Collapse
Affiliation(s)
- Dora Steel
- UCL GOS Institute of Child Health (Zayed Centre for Research into Rare Diseases in Children), London, United Kingdom; Great Ormond Street Hospital for Children, London, United Kingdom
| | - Kimberley M Reid
- UCL GOS Institute of Child Health (Zayed Centre for Research into Rare Diseases in Children), London, United Kingdom
| | - Antonio Pisani
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy; IRCCS Mondino Foundation, Pavia, Italy
| | - Ellen J Hess
- Emory University School of Medicine, CA, United States
| | - Susan Fox
- Movement Disorders Clinic, Toronto Western Hospital, University of Toronto, ON, Canada
| | - Manju A Kurian
- UCL GOS Institute of Child Health (Zayed Centre for Research into Rare Diseases in Children), London, United Kingdom; Great Ormond Street Hospital for Children, London, United Kingdom.
| |
Collapse
|
3
|
Krentzel AA, Kimble LC, Dorris DM, Horman BM, Meitzen J, Patisaul HB. FireMaster® 550 (FM 550) exposure during the perinatal period impacts partner preference behavior and nucleus accumbens core medium spiny neuron electrophysiology in adult male and female prairie voles, Microtus ochrogaster. Horm Behav 2021; 134:105019. [PMID: 34182292 PMCID: PMC8403633 DOI: 10.1016/j.yhbeh.2021.105019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/27/2021] [Accepted: 06/11/2021] [Indexed: 11/23/2022]
Abstract
One of the most widely used flame retardant (FR) mixtures in household products is Firemaster 550 (FM 550). FM 550 leaches from items such as foam-based furniture and infant products, resulting in contamination of the household environment and biota. Previous studies indicate sex-specific behavioral deficits in rodents and zebrafish in response to developmental FM 550 exposure. These deficits include impacts on social and attachment behaviors in a prosocial rodent: the prairie vole (Microtus ochrogaster). The prairie vole is a laboratory-acclimated rodent that exhibits spontaneous attachment behaviors including pair bonding. Here we extend previous work by addressing how developmental exposure to FM 550 impacts pair bonding strength via an extended-time partner preference test, as well as neuron electrophysiological properties in a region implicated in pair bond behavior, the nucleus accumbens (NAcc) core. Dams were exposed to vehicle or 1000 μg of FM 550 via subcutaneous injections throughout gestation, and female and male pups were directly exposed beginning the day after birth until weaning. Pair bond behavior of adult female and male offspring was assessed using a three hour-long partner preference test. Afterwards, acute brain slices of the NAcc core were produced and medium spiny neuron electrophysiological attributes recorded via whole cell patch-clamp. Behavioral impacts were sex-specific. Partner preference behavior was increased in exposed females but decreased in exposed males. Electrophysiological impacts were similar between sexes and specific to attributes related to input resistance. Input resistance was decreased in neurons recorded from both sexes exposed to FM 550 compared to vehicle. This study supports the hypothesis that developmental exposure to FM 550 impacts attachment behaviors and demonstrates a novel FM 550 effect on neural electrophysiology.
Collapse
Affiliation(s)
- Amanda A Krentzel
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Laney C Kimble
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - David M Dorris
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Brian M Horman
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - John Meitzen
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA; Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27695, USA; Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27695, USA.
| | - Heather B Patisaul
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA; Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
4
|
Jiang X, Zhang JJ, Song S, Li Y, Sui N. The duration of withdrawal affects the muscarinic signaling in the nucleus accumbens after chronic morphine exposure in neonatal rats. J Neurophysiol 2021; 125:2228-2236. [PMID: 33978485 DOI: 10.1152/jn.00441.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The infants experience withdrawal from opiates, and time-dependent adaptations in neuronal activity of nucleus accumbens (NAc) may be crucial for this process. A key adaptation is an increased release of acetylcholine. The present study investigates muscarinic acetylcholine receptors (mAChRs) functions in the NAc at short-term (SWT) and long-term (LWT) withdrawal time following chronic morphine exposure in neonatal rats. The inhibitory role of presynaptic mAChRs activation in spontaneous excitatory postsynaptic currents (sEPSCs) in medium spiny neurons was decreased at LWT but not at SWT. Whereas, the excitatory role of post/extrasynaptic mAChRs activation in membrane currents was reduced at LWT but enhanced at SWT. Furthermore, the inhibitory effect of acute morphine on post/extrasynaptic mAChRs-mediated inward currents was enhanced at SWT but not at LWT. These results suggest that withdrawal from morphine leads to downregulation of presynaptic and post/extrasynaptic mAChRs functions in the NAc, which may coregulate the development of withdrawal in neonates.NEW & NOTEWORTHY We investigated for the first time how the duration of withdrawal affects mAChRs functions in the nucleus accumbens in neonatal rats. Compared with short-term withdrawal time, rats showed downregulation of presynaptic and post/extrasynaptic mAChRs functions during long-term withdrawal time. Our finding introduces a new possible correlation between the mAChRs dysfunction in the nucleus accumbens and the development of withdrawal in neonates.
Collapse
Affiliation(s)
- Xiao Jiang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, People's Republic of China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, People's Republic of China.,Department of Medical Psychology, School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, People's Republic of China
| | - Jian-Jun Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, People's Republic of China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Sen Song
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, People's Republic of China
| | - Yonghui Li
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, People's Republic of China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Nan Sui
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, People's Republic of China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| |
Collapse
|
5
|
Cao J, Meitzen J. Perinatal activation of ER α and ER β but not GPER-1 masculinizes female rat caudate-putamen medium spiny neuron electrophysiological properties. J Neurophysiol 2021; 125:2322-2338. [PMID: 33978486 DOI: 10.1152/jn.00063.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Exposure to steroid sex hormones such as 17β-estradiol (estradiol) during early life potentially permanently masculinize neuron electrophysiological phenotype. In rodents, one crucial component of this developmental process occurs in males, with estradiol aromatized in the brain from testes-sourced testosterone. However, it is unknown whether most neuron electrophysiological phenotypes are altered by this early masculinization process, including medium spiny neurons (MSNs) of the rat caudate-putamen. MSNs are the predominant and primary output neurons of the caudate-putamen and exhibit increased intrinsic excitability in females compared to males. Here, we hypothesize that since perinatal estradiol exposure occurs in males, then a comparable exposure in females to estradiol or its receptor agonists would be sufficient to induce masculinization. To test this hypothesis, we injected perinatal female rats with estradiol or its receptor agonists and then later assessed MSN electrophysiology. Female and male rats on postnatal day 0 and 1 were systemically injected with either vehicle, estradiol, the estrogen receptor (ER)α agonist PPT, the ERβ agonist DPN, or the G-protein-coupled receptor 1 (GPER-1) agonist G1. On postnatal days 19 ± 2, MSN electrophysiological properties were assessed using whole cell patch clamp recordings. Estradiol exposure abolished increased intrinsic excitability in female compared to male MSNs. Exposure to either an ERα or ERβ agonist masculinized female MSN evoked action potential firing rate properties, whereas exposure to an ERβ agonist masculinized female MSN inward rectification properties. Exposure to ER agonists minimally impacted male MSN electrophysiological properties. These findings indicate that perinatal estradiol exposure masculinizes MSN electrophysiological phenotype via activation of ERα and ERβ.NEW & NOTEWORTHY This study is the first to demonstrate that estradiol and estrogen receptor α and β stimulation during early development sexually differentiates the electrophysiological properties of caudate-putamen medium spiny neurons, the primary output neuron of the striatal regions. Overall, this evidence provides new insight into the neuroendocrine mechanism by which caudate-putamen neuron electrophysiology is sexually differentiated and demonstrates the powerful action of early hormone exposure upon individual neuron electrophysiology.
Collapse
Affiliation(s)
- Jinyan Cao
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina
| | - John Meitzen
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina.,Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina.,Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina
| |
Collapse
|
6
|
Oginsky MF, Ferrario CR. Eating "junk food" has opposite effects on intrinsic excitability of nucleus accumbens core neurons in obesity-susceptible versus -resistant rats. J Neurophysiol 2019; 122:1264-1273. [PMID: 31365322 DOI: 10.1152/jn.00361.2019] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The nucleus accumbens (NAc) plays critical roles in motivated behaviors, including food seeking and feeding. Differences in NAc function contribute to overeating that drives obesity, but the underlying mechanisms are poorly understood. In addition, there is a fair degree of variation in individual susceptibility versus resistance to obesity that is due in part to differences in NAc function. For example, using selectively bred obesity-prone and obesity-resistant rats, we have found that excitability of medium spiny neurons (MSNs) within the NAc core is enhanced in obesity-prone versus -resistant populations, before any diet manipulation. However, it is unknown whether consumption of sugary, fatty "junk food" alters MSN excitability. Here whole cell patch-clamp recordings were conducted to examine MSN intrinsic excitability in adult male obesity-prone and obesity-resistant rats with and without exposure to a sugary, fatty junk food diet. We replicated our initial finding that basal excitability is enhanced in obesity-prone versus obesity-resistant rats and determined that this is due to a lower fast transient potassium current (IA) in prone versus resistant groups. In addition, the junk food diet had opposite effects on excitability in obesity-prone versus obesity-resistant rats. Specifically, junk food enhanced excitability in MSNs of obesity-resistant rats; this was mediated by a reduction in IA. In contrast, junk food reduced excitability in MSNs from obesity-prone rats; this was mediated by an increase in inward-rectifying potassium current. Thus individual differences in obesity susceptibility influence both basal excitability and how MSN excitability adapts to junk food consumption.NEW & NOTEWORTHY Medium spiny neurons (MSNs) in the nucleus accumbens of obesity-prone rats are hyperexcitable compared with MSNs from obesity-resistant rats. We found that 10 days of "junk food" exposure reduces MSN excitability in obesity-prone rats by increasing inward-rectifying potassium current and increases MSN excitability in obesity-resistant rats by decreasing fast transient potassium current. These data show that there are basal and junk food diet-induced differences in MSN excitability in obesity-prone and obesity-resistant individuals; this may contribute to previously observed differences in incentive motivation.
Collapse
Affiliation(s)
- Max F Oginsky
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan
| | - Carrie R Ferrario
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
7
|
Porter NJ, Li WC. Muscarinic modulation of the Xenopus laevis tadpole spinal mechanosensory pathway. Brain Res Bull 2018; 139:278-284. [DOI: 10.1016/j.brainresbull.2018.03.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/19/2018] [Accepted: 03/24/2018] [Indexed: 02/06/2023]
|
8
|
Brown DA. Regulation of neural ion channels by muscarinic receptors. Neuropharmacology 2017; 136:383-400. [PMID: 29154951 DOI: 10.1016/j.neuropharm.2017.11.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 10/26/2017] [Accepted: 11/13/2017] [Indexed: 12/20/2022]
Abstract
The excitable behaviour of neurons is determined by the activity of their endogenous membrane ion channels. Since muscarinic receptors are not themselves ion channels, the acute effects of muscarinic receptor stimulation on neuronal function are governed by the effects of the receptors on these endogenous neuronal ion channels. This review considers some principles and factors determining the interaction between subtypes and classes of muscarinic receptors with neuronal ion channels, and summarizes the effects of muscarinic receptor stimulation on a number of different channels, the mechanisms of receptor - channel transduction and their direct consequences for neuronal activity. Ion channels considered include potassium channels (voltage-gated, inward rectifier and calcium activated), voltage-gated calcium channels, cation channels and chloride channels. This article is part of the Special Issue entitled 'Neuropharmacology on Muscarinic Receptors'.
Collapse
Affiliation(s)
- David A Brown
- Department of Neuroscience, Physiology & Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
9
|
Cui P, Li XY, Zhao Y, Li Q, Gao F, Li LZ, Yin N, Sun XH, Wang Z. Activation of dopamine D1 receptors enhances the temporal summation and excitability of rat retinal ganglion cells. Neuroscience 2017; 355:71-83. [DOI: 10.1016/j.neuroscience.2017.04.046] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 04/24/2017] [Accepted: 04/30/2017] [Indexed: 01/11/2023]
|
10
|
Domingos L, Desrus A, Même S, Même W. L-Phosphinothricin modulation of inwardly rectifying K+ channels increased excitability in striatal medium-sized spiny neurons. Arch Toxicol 2016; 90:1719-27. [DOI: 10.1007/s00204-016-1721-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 04/20/2016] [Indexed: 10/21/2022]
|
11
|
Zhang L, Bose P, Warren RA. Dopamine preferentially inhibits NMDA receptor-mediated EPSCs by acting on presynaptic D1 receptors in nucleus accumbens during postnatal development. PLoS One 2014; 9:e86970. [PMID: 24784836 PMCID: PMC4006738 DOI: 10.1371/journal.pone.0086970] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 12/19/2013] [Indexed: 11/23/2022] Open
Abstract
Nucleus accumbens (nAcb), a major site of action of drugs of abuse and dopamine (DA) signalling in MSNs (medium spiny neurons), is critically involved in mediating behavioural responses of drug addiction. Most studies have evaluated the effects of DA on MSN firing properties but thus far, the effects of DA on a cellular circuit involving glutamatergic afferents to the nAcb have remained rather elusive. In this study we attempted to characterize the effects of dopamine (DA) on evoked glutamatergic excitatory postsynaptic currents (EPSCs) in nAcb medium spiny (MS) neurons in 1 to 21 day-old rat pups. The EPSCs evoked by local nAcb stimuli displayed both AMPA/KA and NMDA receptor-mediated components. The addition of DA to the superfusing medium produced a marked decrease of both components of the EPSCs that did not change during the postnatal period studied. Pharmacologically isolated AMPA/KA receptor-mediated response was inhibited on average by 40% whereas the isolated NMDA receptor-mediated EPSC was decreased by 90%. The effect of DA on evoked EPSCs were mimicked by the D1-like receptor agonist SKF 38393 and antagonized by the D1-like receptor antagonist SCH 23390 whereas D2-like receptor agonist or antagonist respectively failed to mimic or to block the action of DA. DA did not change the membrane input conductance of MS neurons or the characteristics of EPSCs produced by the local administration of glutamate in the presence of tetrodotoxin. In contrast, DA altered the paired-pulse ratio of evoked EPSCs. The present results show that the activation D1-like dopaminergic receptors modulate glutamatergic neurotransmission by preferentially inhibiting NMDA receptor-mediated EPSC through presynaptic mechanisms.
Collapse
Affiliation(s)
- Liming Zhang
- Centre de recherche Fernand-Seguin, University of Montreal, Montreal, Canada
- Department of Physiology, University of Montreal, Montreal, Canada
| | - Poulomee Bose
- Department of Psychiatry, University of Montreal, Montreal, Canada
| | - Richard A. Warren
- Centre de recherche Fernand-Seguin, University of Montreal, Montreal, Canada
- Department of Psychiatry, University of Montreal, Montreal, Canada
- * E-mail:
| |
Collapse
|
12
|
JIANG X, ZHANG JJ, WANG MY, SUI N. Differential Muscarinic Modulation of Synaptic Transmission in Dorsal and Ventral Regions of the Rat Nucleus Accumbens Core. Physiol Res 2014; 63:135-42. [DOI: 10.33549/physiolres.932518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The nucleus accumbens (NAc) core is critical in the control of motivated behaviors. The muscarinic acetylcholine receptors (mAChRs) modulating the excitatory inputs into the NAc core have been reported to impact such behaviors. Recent studies suggest that ventral and dorsal regions of the NAc core seem to be innervated by distinct populations of glutamatergic projection neurons. To further examine mAChRs modulation of these glutamatergic inputs to the NAc core, we employed intracellular recordings in rat NAc coronal slice preparation to characterize: 1) the effects of muscarine, an mAChRs agonist, on membrane properties of the NAc core neurons; 2) depolarizing synaptic potentials (DPSP) elicited by ventral and dorsal focal electrical stimuli; and 3) paired-pulse response with paired-pulse stimulation. Here we report that the paired-pulse ratio (PPR) elicited by dorsal stimuli was greater than that elicited by ventral stimuli. Bath application of muscarine (1-30 μM) decreased both ventral and dorsal DPSP in a concentration-dependent manner, with no effect on electrophysiological properties of NAc core neurons. Muscarine at 30 μM also elicited larger depression of dorsal DPSP than ventral DPSP. Moreover, muscarine increased the PPR of both dorsal and ventral DPSP. These data indicate that the glutamatergic afferent fibers traversing the dorsal and ventral NAc are separate, and that differential decrease of distinct afferent excitatory neurotransmission onto NAc core neurons may be mediated by presynaptic mechanisms.
Collapse
Affiliation(s)
| | | | - M. Y. WANG
- Cell Electrophysiology Laboratory, Wannan Medical College, Wuhu, Anhui, China
| | - N. SUI
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
13
|
Glasgow SD, Chapman CA. Muscarinic depolarization of layer II neurons of the parasubiculum. PLoS One 2013; 8:e58901. [PMID: 23520542 PMCID: PMC3592838 DOI: 10.1371/journal.pone.0058901] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 02/08/2013] [Indexed: 11/18/2022] Open
Abstract
The parasubiculum (PaS) is a component of the hippocampal formation that sends its major output to layer II of the entorhinal cortex. The PaS receives strong cholinergic innervation from the basal forebrain that is likely to modulate neuronal excitability and contribute to theta-frequency network activity. The present study used whole cell current- and voltage-clamp recordings to determine the effects of cholinergic receptor activation on layer II PaS neurons. Bath application of carbachol (CCh; 10–50 µM) resulted in a dose-dependent depolarization of morphologically-identified layer II stellate and pyramidal cells that was not prevented by blockade of excitatory and inhibitory synaptic inputs. Bath application of the M1 receptor antagonist pirenzepine (1 µM), but not the M2-preferring antagonist methoctramine (1 µM), blocked the depolarization, suggesting that it is dependent on M1 receptors. Voltage-clamp experiments using ramped voltage commands showed that CCh resulted in the gradual development of an inward current that was partially blocked by concurrent application of the selective Kv7.2/3 channel antagonist XE-991, which inhibits the muscarine-dependent K+ current IM. The remaining inward current also reversed near EK and was inhibited by the K+ channel blocker Ba2+, suggesting that M1 receptor activation attenuates both IM as well as an additional K+ current. The additional K+ current showed rectification at depolarized voltages, similar to K+ conductances mediated by Kir 2.3 channels. The cholinergic depolarization of layer II PaS neurons therefore appears to occur through M1-mediated effects on IM as well as an additional K+ conductance.
Collapse
Affiliation(s)
- Stephen D. Glasgow
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal, Québec, Canada
| | - C. Andrew Chapman
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal, Québec, Canada
- * E-mail:
| |
Collapse
|
14
|
Yee J, Famous KR, Hopkins TJ, McMullen MC, Pierce RC, Schmidt HD. Muscarinic acetylcholine receptors in the nucleus accumbens core and shell contribute to cocaine priming-induced reinstatement of drug seeking. Eur J Pharmacol 2011; 650:596-604. [PMID: 21034738 PMCID: PMC3033040 DOI: 10.1016/j.ejphar.2010.10.045] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Revised: 09/22/2010] [Accepted: 10/20/2010] [Indexed: 02/03/2023]
Abstract
Muscarinic acetylcholine receptors in the nucleus accumbens play an important role in mediating the reinforcing effects of cocaine. However, there is a paucity of data regarding the role of accumbal muscarinic acetylcholine receptors in the reinstatement of cocaine-seeking behavior. The goal of these experiments was to assess the role of muscarinic acetylcholine receptors in the nucleus accumbens core and shell in cocaine and sucrose priming-induced reinstatement. Rats were initially trained to self-administer cocaine or sucrose on a fixed-ratio schedule of reinforcement. Lever-pressing behavior was then extinguished and followed by a subsequent reinstatement phase during which operant responding was induced by either a systemic injection of cocaine in cocaine-experienced rats or non-contingent delivery of sucrose pellets in subjects with a history of sucrose self-administration. Results indicated that systemic administration of the muscarinic acetylcholine receptor antagonist scopolamine (5.0 mg/kg, i.p.) dose-dependently attenuated cocaine, but not sucrose, reinstatement. Furthermore, administration of scopolamine (36.0 μg) directly into the nucleus accumbens shell or core attenuated cocaine priming-induced reinstatement. In contrast, infusion of scopolamine (36.0 μg) directly into the accumbens core, but not shell, attenuated sucrose reinstatement, which suggests that muscarinic acetylcholine receptors in these two subregions of the nucleus accumbens have differential roles in sucrose seeking. Taken together, these results indicate that cocaine priming-induced reinstatement is mediated, in part, by increased signaling through muscarinic acetylcholine receptors in the shell subregion of the nucleus accumbens. Muscarinic acetylcholine receptors in the core of the accumbens, in contrast, appear to play a more general (i.e. not cocaine specific) role in motivated behaviors.
Collapse
Affiliation(s)
- Judy Yee
- Department of Pharmacology Boston University School of Medicine Boston, MA 02118
| | - Katie R. Famous
- Department of Pharmacology Boston University School of Medicine Boston, MA 02118
| | - Thomas J. Hopkins
- Center for Neurobiology and Behavior Department of Psychiatry University of Pennsylvania School of Medicine Philadelphia, PA 19104
| | - Michael C. McMullen
- Center for Neurobiology and Behavior Department of Psychiatry University of Pennsylvania School of Medicine Philadelphia, PA 19104
| | - R. Christopher Pierce
- Center for Neurobiology and Behavior Department of Psychiatry University of Pennsylvania School of Medicine Philadelphia, PA 19104
| | - Heath D. Schmidt
- Center for Neurobiology and Behavior Department of Psychiatry University of Pennsylvania School of Medicine Philadelphia, PA 19104
| |
Collapse
|
15
|
Gravati M, Busnelli M, Bulgheroni E, Reversi A, Spaiardi P, Parenti M, Toselli M, Chini B. Dual modulation of inward rectifier potassium currents in olfactory neuronal cells by promiscuous G protein coupling of the oxytocin receptor. J Neurochem 2010; 114:1424-35. [PMID: 20557424 DOI: 10.1111/j.1471-4159.2010.06861.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Oxytocin receptor is a seven transmembrane receptor widely expressed in the CNS that triggers G(i) or G(q) protein-mediated signaling cascades leading to the regulation of a variety of neuroendocrine and cognitive functions. We decided to investigate whether and how the promiscuous receptor/G protein coupling affects neuronal excitability. As an experimental model, we used the immortalized gonadotropin-releasing hormone-positive GN11 cell line displaying the features of immature, migrating olfactory neurons. Using RT-PCR analysis, we detected the presence of oxytocin receptors whose stimulation by oxytocin led to the accumulation of inositol phosphates and to the inhibition of cell proliferation, and the expression of several inward rectifier (IR) K+ channel subtypes. Moreover, electrophysiological and pharmacological inspections using whole-cell patch-clamp recordings evidenced that in GN11 cells, IR channel subtypes are responsive to oxytocin. In particular, we found that: (i) peptide activation of receptor either inhibited or stimulated IR conductances, and (ii) IR current inhibition was mediated by a pertussis toxin-resistant G protein presumably of the G(q/11) subtype, and by phospholipase C, whereas IR current activation was achieved via receptor coupling to a pertussis toxin-sensitive G(i/o) protein. The findings suggest that neuronal excitability might be tuned by a single peptide receptor that mediates opposing effects on distinct K+ channels through the promiscuous coupling to different G proteins.
Collapse
Affiliation(s)
- Marta Gravati
- Department of Physiology, University of Pavia, Pavia, Italy
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Ye M, Hayar A, Garcia-Rill E. Cholinergic responses and intrinsic membrane properties of developing thalamic parafascicular neurons. J Neurophysiol 2009; 102:774-85. [PMID: 19474169 DOI: 10.1152/jn.91132.2008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Parafascicular (Pf) neurons receive cholinergic input from the pedunculopontine nucleus (PPN), which is active during waking and REM sleep. There is a developmental decrease in REM sleep in humans between birth and puberty and 10-30 days in rat. Previous studies have established an increase in muscarinic and 5-HT1 serotonergic receptor-mediated inhibition and a transition from excitatory to inhibitory GABA(A) responses in the PPN during the developmental decrease in REM sleep. However, no studies have been conducted on the responses of Pf cells to the cholinergic input from the PPN during development, which is a major target of ascending cholinergic projections and may be an important mechanism for the generation of rhythmic oscillations in the cortex. Whole cell patch-clamp recordings were performed in 9- to 20-day-old rat Pf neurons in parasagittal slices, and responses to the cholinergic agonist carbachol (CAR) were determined. Three types of responses were identified: inhibitory (55.3%), excitatory (31.1%), and biphasic (fast inhibitory followed by slow excitatory, 6.8%), whereas 6.8% of cells showed no response. The proportion of CAR-inhibited Pf neurons increased with development. Experiments using cholinergic antagonists showed that M2 receptors mediated the inhibitory response, whereas excitatory modulation involved M1, nicotinic, and probably M3 or M5 receptors, and the biphasic response was caused by the activation of multiple types of muscarinic receptors. Compared with CAR-inhibited cells, CAR-excited Pf cells showed 1) a decreased membrane time constant, 2) higher density of hyperpolarization-activated channels (I(h)), 3) lower input resistance (R(in)), 4) lower action potential threshold, and 5) shorter half-width duration of action potentials. Some Pf cells exhibited spikelets, and all were excited by CAR. During development, we observed decreases in I(h) density, R(in), time constant, and action potential half-width. These results suggest that cholinergic modulation of Pf differentially affects separate populations, perhaps including electrically coupled cells. Pf cells tend to show decreased excitability and cholinergic activation during the developmental decrease in REM sleep.
Collapse
Affiliation(s)
- Meijun Ye
- Center for Translational Neuroscience, Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | | | | |
Collapse
|
17
|
Cholinergic innervation and thalamic input in rat nucleus accumbens. J Chem Neuroanat 2008; 37:33-45. [PMID: 18773952 DOI: 10.1016/j.jchemneu.2008.08.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Revised: 07/08/2008] [Accepted: 08/09/2008] [Indexed: 11/23/2022]
Abstract
Cholinergic interneurons are the only known source of acetylcholine in the rat nucleus accumbens (nAcb); yet there is little anatomical data about their mode of innervation and the origin of their excitatory drive. We characterized the cholinergic and thalamic innervations of nAcb with choline acetyltransferase (ChAT) immunocytochemistry and anterograde transport of Phaseolus vulgaris-leucoagglutinin (PHA-L) from the midline/intralaminar/paraventricular thalamic nuclei. The use of a monoclonal ChAT antiserum against whole rat ChAT protein allowed for an optimal visualization of the small dendritic branches and fine varicose axons of cholinergic interneurons. PHA-L-labeled thalamic afferents were heterogeneously distributed throughout the core and shell regions of nAcb, overlapping regionally with cholinergic somata and dendrites. At the ultrastructural level, several hundred single-section profiles of PHA-L and ChAT-labeled axon terminals were analyzed for morphology, synaptic frequency, and the nature of their synaptic targets. The cholinergic profiles were small and apposed to various neuronal elements, but rarely exhibited a synaptic membrane specialization (5% in single ultrathin sections). Stereological extrapolation indicated that less than 15% of these cholinergic varicosities were synaptic. The PHA-L-labeled profiles were comparatively large and often synaptic (37% in single ultrathin sections), making asymmetrical contacts primarily with dendritic spines (>90%). Stereological extrapolation indicated that all PHA-L-labeled terminals were synaptic. In double-labeled material, some PHA-L-labeled terminals were directly apposed to ChAT-labeled somata or dendrites, but synapses were never seen between the two types of elements. These observations demonstrate that the cholinergic innervation of rat nAcb is largely asynaptic. They confirm that the afferents from midline/intralaminar/paraventricular thalamic nuclei to rat nAcb synapse mostly on dendritic spines, presumably of medium spiny neurons, and suggest that the excitatory drive of nAcb cholinergic interneurons from thalamus is indirect, either via substance P release from recurrent collaterals of medium spiny neurons and/or by extrasynaptic diffusion of glutamate.
Collapse
|
18
|
Carr DB, Surmeier DJ. M1 Muscarinic Receptor Modulation of Kir2 Channels Enhances Temporal Summation of Excitatory Synaptic Potentials in Prefrontal Cortex Pyramidal Neurons. J Neurophysiol 2007; 97:3432-8. [PMID: 17376848 DOI: 10.1152/jn.00828.2006] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The cholinergic innervation of the prefrontal cortex (PFC) plays a pivotal role in regulating executive functions. Muscarinic receptors activated by acetylcholine depolarize pyramidal neurons in the rodent PFC homologue, but the mechanisms mediating this modulation are controversial. To address this question, we studied the responses of layer V rat pre- and infralimbic cortex pyramidal neurons to muscarinic receptor stimulation. Consistent with previous findings, M1 receptor stimulation produced a strong depolarization, leading to tonic firing. Voltage-clamp analysis revealed that M1 activation reduced constitutively active inwardly rectifying (Kir2) K+ channel currents. Blocking protein kinase C activation or depleting intracellular Ca2+ stores did not affect the modulation. However, reversal of the modulation was prevented by the phosphoinositide kinase inhibitor, wortmanin, suggesting the modulation was mediated by depletions of membrane phosphatidylinositol-4,5-bisphosphate (PIP2). Reduction of Kir2 channel currents by M1 receptor stimulation significantly increased the temporal summation of excitatory synaptic potentials (EPSPs) evoked by repetitive stimulation of layer I. This action was complimented by M2/4 receptor mediated presynaptic inhibition of the same terminals. As a consequence of this dual modulation, the responses to a single, isolated afferent volley was reduced, but the response to a high-frequency afferent burst was potentiated.
Collapse
Affiliation(s)
- David B Carr
- Dept. of Neuroscience, Medical University of South Carolina, Charleston, USA
| | | |
Collapse
|
19
|
Rossignol TM, Jones SVP. Regulation of a family of inwardly rectifying potassium channels (Kir2) by the m1 muscarinic receptor and the small GTPase Rho. Pflugers Arch 2005; 452:164-74. [PMID: 16328454 DOI: 10.1007/s00424-005-0014-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2005] [Accepted: 10/18/2005] [Indexed: 11/26/2022]
Abstract
Inwardly rectifying potassium channels Kir2.1-Kir2.3 are important regulators of membrane potential and, thus, control cellular excitability. However, little is known about the regulation of these channels. Therefore, we studied the mechanisms mediating the regulation of Kir2.1-Kir2.3 by the G-protein-coupled m1 muscarinic receptor using the whole-cell patch-clamp technique and recombinant expression in the tsA201 mammalian cell line. Stimulation of the m1 muscarinic receptor inhibited all subtypes of inward rectifier tested, Kir2.1-Kir2.3. The inhibition of each channel subtype was reversible and was attenuated by the muscarinic receptor antagonist, atropine. The protein kinase C activator phorbol 12-myristate 13-acetate (PMA) mimicked the effects of m1 receptor activation by inhibiting Kir2.1 currents. However, PMA had no effect on Kir2.2 or Kir2.3. Inclusion of 200-microM guanosine 5'-O-(2-thiodiphosphate) (GDPbetaS) in the patch pipette solution prevented the effects of m1 muscarinic receptor stimulation on all three of the channel subtypes tested, confirming the mediation of the responses by G-proteins. Cotransfection with the activated mutant of the small GTPase Rho reduced current density, while C3 exoenzyme, a selective inhibitor of Rho, attenuated the m1 muscarinic receptor-induced inhibition of Kir2.1-Kir2.3. Also, buffering the intracellular calcium concentration with a high concentration of EGTA abolished the m1 receptor-induced inhibition of Kir2.1-Kir2.3, implicating a role for calcium in these responses. These results indicate that all three of the Kir2 channels are similarly inhibited by m1 muscarinic receptor stimulation through calcium-dependent activation of the small GTPase Rho.
Collapse
Affiliation(s)
- Todd M Rossignol
- Department of Psychiatry, University of Vermont College of Medicine, Burlington, VT 05405, USA
| | | |
Collapse
|
20
|
Michel FJ, Robillard JM, Trudeau LE. Regulation of rat mesencephalic GABAergic neurones through muscarinic receptors. J Physiol 2004; 556:429-45. [PMID: 14766941 PMCID: PMC1664952 DOI: 10.1113/jphysiol.2003.057737] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Central dopamine neurones are involved in regulating cognitive and motor processes. Most of these neurones are located in the ventral mesencephalon where they receive abundant intrinsic and extrinsic GABAergic input. Cholinergic neurones, originating from mesopontine nuclei, project profusely in the mesencephalon where they preferentially synapse onto local GABAergic neurones. The physiological role of this cholinergic innervation of GABAergic neurones remains to be determined, but these observations raise the hypothesis that ACh may regulate dopamine neurones indirectly through GABAergic interneurones. Using a mesencephalic primary culture model, we studied the impact of cholinergic agonists on mesencephalic GABAergic neurones. ACh increased the frequency of spontaneous IPSCs (151 +/- 49%). Selective activation of muscarinic receptors increased the firing rate of isolated GABAergic neurones by 67 +/- 13%. The enhancement in firing rate was Ca(2+) dependent since inclusion of BAPTA in the pipette blocked it, actually revealing a decrease in firing rate accompanied by membrane hyperpolarization. This inhibitory action was prevented by tertiapin, a blocker of GIRK-type K(+) channels. In addition to its excitatory somatodendritic effect, activation of muscarinic receptors also acted presynaptically, inhibiting the amplitude of unitary GABAergic synaptic currents. Both the enhancement in spontaneous IPSC frequency and presynaptic inhibition were abolished by 4-DAMP (100 nm), a preferential M3 muscarinic receptor antagonist. The presence of M3-like receptors on mesencephalic GABAergic neurones was confirmed by immunocytochemistry. Taken together, these results demonstrate that mesencephalic GABAergic neurones can be regulated directly through muscarinic receptors. Our findings provide new data that should be helpful in better understanding the influence of local GABAergic neurones during cholinergic activation of mesencephalic circuits.
Collapse
Affiliation(s)
- François J Michel
- Département de Pharmacologie, Faculté de Médecine, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, Québec, Canada
| | | | | |
Collapse
|
21
|
Postlethwaite M, Constanti A. Evidence for the involvement of G-proteins in the generation of the slow poststimulus afterdepolarisation (sADP) induced by muscarinic receptor activation in rat olfactory cortical neurones in vitro. Brain Res 2003; 978:124-35. [PMID: 12834906 DOI: 10.1016/s0006-8993(03)02799-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The involvement of G-proteins in generating the slow poststimulus afterdepolarising potential (sADP) induced by muscarinic receptor activation in immature (P10-20) rat olfactory cortical brain slice neurones was investigated under whole-cell patch clamp, using GTP-gamma-S (G-protein activator) or GDP-beta-S (G-protein blocker)-filled electrodes. In control experiments using K methylsulphate electrodes, cell resting potential (V(m)) and spike firing properties were unaffected over 10-15 min recording, although input resistance (R(N)) was slightly increased ( approximately 14%). Oxotremorine-M (OXO-M; 10 microM) produced a reversible slow depolarisation, an increase in R(N) ( approximately 90%) and induction of a slow poststimulus inward tail current (I(ADP)) (measured under voltage clamp at -60 mV) that was sustained during drug exposure (up to 15 min); the amplitude of slow inward rectifier (I(h)) currents activated from -50 mV were also apparently increased. By contrast, in GTP-gamma-S-loaded cells, R(N) was consistently decreased ( approximately 22%) and spike firing threshold (V(th)) was raised ( approximately 5 mV) after 10 min recording. In approximately 60% of loaded cells, a persistent muscarinic slow inward current and I(ADP) were induced by OXO-M; I(h) relaxation amplitude was also significantly decreased. The effects of GTP-gamma-S on R(N), V(th) and I(h) were partly counteracted by adding Ba(2+) (100 microM) to the bathing medium or mimicked by adding baclofen (GABA(B) receptor agonist; 100 microM) to normally-recorded cells. Intracellular GDP-beta-S (up to 30 min) had no effect on cell membrane properties or I(h), but irreversibly blocked the muscarinic slow inward current and I(ADP) induced by OXO-M. We conclude that both muscarinic responses require G-protein-linked transduction mechanisms for their generation.
Collapse
Affiliation(s)
- Michael Postlethwaite
- Department of Pharmacology, The School of Pharmacy, 29/39 Brunswick Square, London WC1N 1AX, UK
| | | |
Collapse
|
22
|
Zhou FM, Wilson C, Dani JA. Muscarinic and nicotinic cholinergic mechanisms in the mesostriatal dopamine systems. Neuroscientist 2003; 9:23-36. [PMID: 12580337 DOI: 10.1177/1073858402239588] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The striatum and its dense dopaminergic innervation originating in the midbrain, primarily from the substantia nigra pars compacta and the ventral tegmental area, compose the mesostriatal dopamine (DA) systems. The nigrostriatal system is involved mainly in motor coordination and in disorders such as Tourette's syndrome, Huntington's disease, and Parkinson's disease. The dopaminergic projections from the ventral tegmental area to the striatum participate more in the processes that shape behaviors leading to reward, and addictive drugs act upon this mesolimbic system. The midbrain DA areas receive cholinergic innervation from the pedunculopontine tegmentum and the laterodorsal pontine tegmentum, whereas the striatum receives dense cholinergic innervation from local interneurons. The various neurons of the mesostriatal systems express multiple types of muscarinic and nicotinic acetylcholine receptors as well as DA receptors. Especially in the striatum, the dense mingling of dopaminergic and cholinergic constituents enables potent interactions. Evidence indicates that cholinergic and dopaminergic systems work together to produce the coordinated functioning of the striatum. Loss of that cooperative activity contributes to the dysfunction underlying Parkinson's disease.
Collapse
Affiliation(s)
- Fu-Ming Zhou
- Division of Neuroscience, Baylor College of Medicine, Houston, Texas 77030-3498, USA
| | | | | |
Collapse
|
23
|
Zhou FM, Wilson CJ, Dani JA. Cholinergic interneuron characteristics and nicotinic properties in the striatum. JOURNAL OF NEUROBIOLOGY 2002; 53:590-605. [PMID: 12436423 DOI: 10.1002/neu.10150] [Citation(s) in RCA: 312] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The neostriatum (dorsal striatum) is composed of the caudate and putamen. The ventral striatum is the ventral conjunction of the caudate and putamen that merges into and includes the nucleus accumbens and striatal portions of the olfactory tubercle. About 2% of the striatal neurons are cholinergic. Most cholinergic neurons in the central nervous system make diffuse projections that sparsely innervate relatively broad areas. In the striatum, however, the cholinergic neurons are interneurons that provide very dense local innervation. The cholinergic interneurons provide an ongoing acetylcholine (ACh) signal by firing action potentials tonically at about 5 Hz. A high concentration of acetylcholinesterase in the striatum rapidly terminates the ACh signal, and thereby minimizes desensitization of nicotinic acetylcholine receptors. Among the many muscarinic and nicotinic striatal mechanisms, the ongoing nicotinic activity potently enhances dopamine release. This process is among those in the striatum that link the two extensive and dense local arbors of the cholinergic interneurons and dopaminergic afferent fibers. During a conditioned motor task, cholinergic interneurons respond with a pause in their tonic firing. It is reasonable to hypothesize that this pause in the cholinergic activity alters action potential dependent dopamine release. The correlated response of these two broad and dense neurotransmitter systems helps to coordinate the output of the striatum, and is likely to be an important process in sensorimotor planning and learning.
Collapse
Affiliation(s)
- Fu-Ming Zhou
- Division of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | |
Collapse
|
24
|
Zhang L, Warren RA. Muscarinic and nicotinic presynaptic modulation of EPSCs in the nucleus accumbens during postnatal development. J Neurophysiol 2002; 88:3315-30. [PMID: 12466449 DOI: 10.1152/jn.01025.2001] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have studied the modulatory effects of cholinergic agonists on excitatory postsynaptic currents (EPSCs) in nucleus accumbens (nAcb) neurons during postnatal development. Recordings were obtained in slices from postnatal day 1 (P1) to P27 rats using the whole cell patch-clamp technique. EPSCs were evoked by local electrical stimulation, and all experiments were conducted in the presence of bicuculline methchloride in the bathing medium and with QX-314 in the recording pipette. Under these conditions, postsynaptic currents consisted of glutamatergic EPSCs typically consisting of two components mediated by AMPA/kainate (KA) and N-methyl-D-aspartate (NMDA) receptors. The addition of acetylcholine (ACh) or carbachol (CCh) to the superfusing medium resulted in a decrease of 30-60% of both AMPA/KA- and NMDA-mediated EPSCs. In contrast, ACh produced an increase ( approximately 35%) in both AMPA/KA and NMDA receptor-mediated EPSCs when administered in the presence of the muscarinic antagonist atropine. These excitatory effects were mimicked by the nicotinic receptor agonist 1,1-dimethyl-4-phenyl-piperazinium iodide (DMPP) and blocked by the nicotinic receptor antagonist mecamylamine, showing the presence of a cholinergic modulation mediated by nicotinic receptors in the nAcb. The antagonistic effects of atropine were mimicked by pirenzepine, suggesting that the muscarinic depression of the EPSCs was mediated by M(1)/M(4) receptors. In addition, the inhibitory effects of ACh on NMDA but not on AMPA/KA receptor-mediated EPSC significantly increased during the first two postnatal weeks. We found that, under our experimental conditions, cholinergic agonists produced no changes on membrane holding currents, on the decay time of the AMPA/KA EPSC, or on responses evoked by exogenous application of glutamate in the presence of tetrodotoxin, but they produced significant changes in paired pulse ratio, suggesting that their action was mediated by presynaptic mechanisms. In contrast, CCh produced consistent changes in the membrane and firing properties of medium spiny (MS) neurons when QX-314 was omitted from the recording pipette solution, suggesting that this substance actually blocked postsynaptic cholinergic modulation. Together, these results suggest that ACh can decrease or increase glutamatergic neurotransmission in the nAcb by, respectively, acting on muscarinic and nicotinic receptors located on excitatory terminals. The cholinergic modulation of AMPA/KA and NMDA receptor-mediated neurotransmission in the nAcb during postnatal development could play an important role in activity-dependent developmental processes in refining the excitatory drive on MS neurons by gating specific inputs.
Collapse
Affiliation(s)
- Liming Zhang
- Centre de Recherche Fernand-Seguin, University of Montréal, Montreal, Quebec H1N 3V2, Canada
| | | |
Collapse
|
25
|
Stanfield PR, Nakajima S, Nakajima Y. Constitutively active and G-protein coupled inward rectifier K+ channels: Kir2.0 and Kir3.0. Rev Physiol Biochem Pharmacol 2002; 145:47-179. [PMID: 12224528 DOI: 10.1007/bfb0116431] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Peter R Stanfield
- Molecular Physiology Group, Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK
| | | | | |
Collapse
|
26
|
Abstract
The main source of excitation to the ventral cochlear nucleus (VCN) is from glutamatergic auditory nerve afferents, but the VCN is also innervated by two groups of cholinergic efferents from the ventral nucleus of the trapezoid body. One arises from collaterals of medial olivocochlear efferents, and the other arises from neurons that project solely to the VCN. This study examines the action of cholinergic inputs on stellate cells in the VCN. T stellate cells, which form one of the ascending auditory pathways to the inferior colliculus, and D stellate cells, which inhibit T stellate cells, are distinguished electrophysiologically. Whole-cell recordings from stellate cells in slices of the VCN of mice demonstrate that most T stellate cells are excited by cholinergic agonists through three types of receptors, whereas all D stellate cells tested were insensitive to cholinergic agonists. Nicotinic excitation in T stellate cells has two components. The faster component was blocked by alpha-bungarotoxin and methyllycaconitine, suggesting that receptors contained alpha7 subunits; the slower component was insensitive to both. Muscarinic receptors excite T stellate cells by blocking a voltage-insensitive, "leak" potassium conductance. Our results suggest that cholinergic efferent innervation enhances excitation by sounds of T stellate cells, opposing the inhibitory action of cholinergic innervation in the cochlea that is conveyed indirectly through the glutamatergic afferents. The inhibitory action of D stellate cells on their targets is probably not affected by cholinergic inputs. Excitation of T stellate cells by cholinergic efferents would be expected to enhance the encoding of spectral peaks in noise.
Collapse
|
27
|
Fujino K, Oertel D. Cholinergic modulation of stellate cells in the mammalian ventral cochlear nucleus. J Neurosci 2001; 21:7372-83. [PMID: 11549747 PMCID: PMC6763002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2001] [Revised: 06/19/2001] [Accepted: 07/05/2001] [Indexed: 02/21/2023] Open
Abstract
The main source of excitation to the ventral cochlear nucleus (VCN) is from glutamatergic auditory nerve afferents, but the VCN is also innervated by two groups of cholinergic efferents from the ventral nucleus of the trapezoid body. One arises from collaterals of medial olivocochlear efferents, and the other arises from neurons that project solely to the VCN. This study examines the action of cholinergic inputs on stellate cells in the VCN. T stellate cells, which form one of the ascending auditory pathways to the inferior colliculus, and D stellate cells, which inhibit T stellate cells, are distinguished electrophysiologically. Whole-cell recordings from stellate cells in slices of the VCN of mice demonstrate that most T stellate cells are excited by cholinergic agonists through three types of receptors, whereas all D stellate cells tested were insensitive to cholinergic agonists. Nicotinic excitation in T stellate cells has two components. The faster component was blocked by alpha-bungarotoxin and methyllycaconitine, suggesting that receptors contained alpha7 subunits; the slower component was insensitive to both. Muscarinic receptors excite T stellate cells by blocking a voltage-insensitive, "leak" potassium conductance. Our results suggest that cholinergic efferent innervation enhances excitation by sounds of T stellate cells, opposing the inhibitory action of cholinergic innervation in the cochlea that is conveyed indirectly through the glutamatergic afferents. The inhibitory action of D stellate cells on their targets is probably not affected by cholinergic inputs. Excitation of T stellate cells by cholinergic efferents would be expected to enhance the encoding of spectral peaks in noise.
Collapse
Affiliation(s)
- K Fujino
- Department of Physiology, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
28
|
Seeger T, Alzheimer C. Muscarinic activation of inwardly rectifying K(+) conductance reduces EPSPs in rat hippocampal CA1 pyramidal cells. J Physiol 2001; 535:383-96. [PMID: 11533131 PMCID: PMC2278799 DOI: 10.1111/j.1469-7793.2001.00383.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2001] [Accepted: 05/02/2001] [Indexed: 11/30/2022] Open
Abstract
1. To determine how acetylcholine (ACh) modulates the somatodendritic processing of EPSPs, we performed whole-cell recordings from CA1 pyramidal cells of hippocampal slices and examined the effect of the cholinergic agonist, carbachol (CCh), on alpha-amino-3-hydroxy-5-methyl isoxazole-4-propionate (AMPA) EPSPs, miniature EPSPs, and EPSP-like waveforms evoked by brief dendritic glutamate pulses (glutamate-evoked postsynaptic potentials, GPSPs). 2. Although CCh is known to enhance the intrinsic excitability of the neuron in several ways, activation of atropine-sensitive (muscarinic) receptors on the apical dendrite or the soma of CA1 pyramidal cells consistently reduced the amplitude of EPSPs and GPSPs. 3. Cholinergic inhibition of evoked and simulated EPSP waveforms displayed considerable voltage dependence, with the amplitude of the postsynaptic potentials progressively declining with membrane hyperpolarization indicating the involvement of an inwardly rectifying current. 4. Extracellular Ba(2+) (200 microM) and tertiapin (30 nM), a novel and selective blocker of G protein-activated, inwardly rectifying K(+) (GIRK) channels, completely blocked the effect of CCh on GPSP amplitude. 5. Muscarinic reduction of GPSPs was not sensitive to the M1 receptor-preferring antagonist, pirenzepine, but was suppressed by the M2 receptor-preferring antagonist, methoctramine, and by the allosteric M2 receptor antagonist, gallamine. 6. In voltage-clamp recordings, CCh induced an ion current displaying inward rectification in the hyperpolarizing direction, which was identified as a GIRK current based on its sensitivity to low Ba(2+) and tertiapin. Its pharmacological profile paralleled that of the cholinergic GPSP reduction. 7. We link the observed reduction of postsynaptic potentials to the cholinergic activation of a GIRK conductance, which serves to partially shunt excitatory synaptic input.
Collapse
Affiliation(s)
- T Seeger
- Department of Physiology, University of Munich, Pettenkoferstrasse 12, D-80336 Munich, Germany
| | | |
Collapse
|
29
|
Yan Z, Flores-Hernandez J, Surmeier DJ. Coordinated expression of muscarinic receptor messenger RNAs in striatal medium spiny neurons. Neuroscience 2001; 103:1017-24. [PMID: 11301208 DOI: 10.1016/s0306-4522(01)00039-2] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The postsynaptic effects of acetylcholine in the striatum are largely mediated by muscarinic receptors. Two of the five cloned muscarinic receptors (M1 and M4) are expressed at high levels by the medium spiny neurons-the principal projection neurons of the striatum. Previous studies have suggested that M4 muscarinic receptors are found primarily in medium spiny neurons that express substance P and participate in the "direct" striatonigral pathway. This view is difficult to reconcile with electrophysiological studies suggesting that nearly all medium spiny neurons exhibit responses characteristic of M4 receptors. To explore this apparent discrepancy, the coordinated expression of M1-M5 receptor messenger RNAs in identified medium spiny neurons was assayed using single-cell reverse transcription-polymerase chain reaction techniques. Nearly all medium spiny neurons had detectable levels of M1 receptor messenger RNA. Although M4 receptor messenger RNA was detected more frequently in substance P-expressing neurons (70%), it was readily seen in a substantial population of enkephalin-expressing neurons (50%). To provide a quantitative estimate of transcript abundance, quantitative reverse transcription-polymerase chain reaction experiments were performed. These studies revealed that M4 messenger RNA was expressed by both substance P and enkephalin neurons, but was roughly five-fold higher in abundance in substance P-expressing neurons. This quantitative difference provides a means of reconciling previous estimates of M4 receptor distribution and function.
Collapse
Affiliation(s)
- Z Yan
- Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14214-3005, USA
| | | | | |
Collapse
|
30
|
Firth TA, Jones SV. GTP-binding protein Gq mediates muscarinic-receptor-induced inhibition of the inwardly rectifying potassium channel IRK1 (Kir 2.1). Neuropharmacology 2001; 40:358-65. [PMID: 11166329 DOI: 10.1016/s0028-3908(00)00161-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The inwardly rectifying potassium channel IRK1, a member of the Kir 2.0 family, is inhibited by m1 muscarinic receptor stimulation. In this study the mechanism of action underlying the muscarinic response was investigated by identification of the subtype of heterotrimeric G-protein involved in transduction of the signal. tsA201 cells were simultaneously transfected with cDNAs encoding IRK1, m1 and the Galpha subunit of either G(q), G(12) or G(13). The whole-cell patch-clamp technique was used to study the effects of G-protein transfection. Antibodies generated against the C-terminal regions of Galpha(q/11) and Galpha(12) were used to confirm G-protein expression by Western blot. When challenged with carbachol, IRK1 currents recorded from cells co-transfected with Galpha(q) were potently inhibited compared with controls. Conversely, co-transfection with Galpha(12) or Galpha(13) subunits had no effect on muscarinic-receptor-induced inhibition of IRK1. Concentration response curves revealed that carbachol was 16 times more potent at inhibiting IRK1 currents in cells co-transfected with Galpha(q) as compared with Galpha(12) co-transfected cells. Immunoblotting illustrated low levels of endogenous Galpha(q/11) and Galpha(12) in untransfected tsA cells. Transfection with Galpha(q) or Galpha(12) cDNAs greatly increased the levels of G-protein expression in both cell populations. G-protein expression did not interfere with m1 muscarinic receptor expression levels. These findings suggest that the m1 muscarinic-receptor-induced inhibition of IRK1 is mediated by the heterotrimeric G-protein, Galpha(q), in tsA cells.
Collapse
Affiliation(s)
- T A Firth
- Department of Psychiatry, University of Vermont College of Medicine, Burlington, VT 05405, USA
| | | |
Collapse
|
31
|
Shao XM, Feldman JL. Acetylcholine modulates respiratory pattern: effects mediated by M3-like receptors in preBötzinger complex inspiratory neurons. J Neurophysiol 2000; 83:1243-52. [PMID: 10712452 PMCID: PMC4342063 DOI: 10.1152/jn.2000.83.3.1243] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Perturbations of cholinergic neurotransmission in the brain stem affect respiratory motor pattern both in vivo and in vitro; the underlying cellular mechanisms are unclear. Using a medullary slice preparation from neonatal rat that spontaneously generates respiratory rhythm, we patch-clamped inspiratory neurons in the preBötzinger complex (preBötC), the hypothesized site for respiratory rhythm generation, and simultaneously recorded respiratory-related motor output from the hypoglossal nerve (XIIn). Most (88%) of the inspiratory neurons tested responded to local application of acetylcholine (ACh) or carbachol (CCh) or bath application of muscarine. Bath application of 50 microM muscarine increased the frequency, amplitude, and duration of XIIn inspiratory bursts. At the cellular level, muscarine induced a tonic inward current, increased the duration, and decreased the amplitude of the phasic inspiratory inward currents in preBötC inspiratory neurons recorded under voltage clamp at -60 mV. Muscarine also induced seizure-like activity evident during expiratory periods in XIIn activity; these effects were blocked by atropine. In the presence of tetrodotoxin (TTX), local ejection of 2 mM CCh or ACh onto preBötC inspiratory neurons induced an inward current along with an increase in membrane conductance under voltage clamp and induced a depolarization under current clamp. This response was blocked by atropine in a concentration-dependent manner. Bath application of 1 microM pirenzepine, 10 microM gallamine, or 10 microM himbacine had little effect on the CCh-induced current, whereas 10 microM 4-diphenylacetoxy-N-methylpiperidine methiodide blocked the current. The current-voltage (I-V) relationship of the CCh-induced response was linear in the range of -110 to -20 mV and reversed at -11.4 mV. Similar responses were found in both pacemaker and nonpacemaker inspiratory neurons. The response to CCh was unaffected when patch electrodes contained a high concentration of EGTA (11 mM) or bis-(o-aminophenoxy)-N,N,N',N'-tetraacetic acid (10 mM). The response to CCh was reduced greatly by substitution of 128 mM Tris-Cl for NaCl in the bath solution; the I-V curve shifted to the left and the reversal potential shifted to -47 mV. Lowering extracellular Cl(-) concentration from 140 to 70 mM had no effect on the reversal potential. These results suggest that in preBötC inspiratory neurons, ACh acts on M3-like ACh receptors on the postsynaptic neurons to open a channel permeable to Na(+) and K(+) that is not Ca(2+) dependent. This inward cation current plays a major role in depolarizing preBötC inspiratory neurons, including pacemakers, that may account for the ACh-induced increase in the frequency of respiratory motor output observed at the systems/behavioral level.
Collapse
Affiliation(s)
- X M Shao
- Department of Neurobiology, University of California, Los Angeles, California 90095-1763, USA
| | | |
Collapse
|
32
|
Galarraga E, Hernández-López S, Tapia D, Reyes A, Bargas J. Action of substance P (neurokinin-1) receptor activation on rat neostriatal projection neurons. Synapse 1999; 33:26-35. [PMID: 10380848 DOI: 10.1002/(sici)1098-2396(199907)33:1<26::aid-syn3>3.0.co;2-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Substance P (SP) acts as a neurotransmitter in the neostriatum through the axon collaterals of spiny projection neurons. However, possible direct or indirect actions of SP on the neostriatal output neurons have not been described. Targets of SP terminals within the neostriatum include interneurons, spiny neurons, afferent fibers and boutons. SP induces the release of both dopamine (DA) and acetylcholine (ACh). Since some postsynaptic actions of both DA and ACh on spiny neurons are known, we asked if activation of neostriatal NK1-class receptors is able to reproduce them. The SP NK1-receptor agonist, GR73632 (1 microM), had both excitatory and inhibitory actions on virtually all spiny neurons tested at resting potential. The excitatory action was blocked by atropine and coursed with an increase in firing rate and input resistance (R(N)). The inhibitory action was blocked by haloperidol and coursed with a reduction in firing rate and R(N). Therefore, the release of both DA and ACh induced by NK1-receptor activation modulates indirectly the excitability of the projection neurons. SP facilitates the actions of these transmitters on the spiny neuron. A residual excitatory response to the NK1-receptor agonist was observed in 30% of a sample of neurons tested in the presence of both haloperidol and atropine. The increase in R(N) that accompanied this response could be observed in the presence of 1 microM TTX or 100 microM Cd2+, suggesting a direct effect. Double labeling showed that only SP-immunoreactive neurons were facilitated by NK1-receptor activation in these conditions.
Collapse
Affiliation(s)
- E Galarraga
- Departamento de Biofísica, Instituto de Fisiología Celular, UNAM, México City DF, México.
| | | | | | | | | |
Collapse
|
33
|
Cholinergic modulation of neostriatal output: a functional antagonism between different types of muscarinic receptors. J Neurosci 1999. [PMID: 10212321 DOI: 10.1523/jneurosci.19-09-03629.1999] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
It is demonstrated that acetylcholine released from cholinergic interneurons modulates the excitability of neostriatal projection neurons. Physostigmine and neostigmine increase input resistance (RN) and enhance evoked discharge of spiny projection neurons in a manner similar to muscarine. Muscarinic RN increase occurs in the whole subthreshold voltage range (-100 to -45 mV), remains in the presence of TTX and Cd2+, and can be blocked by the relatively selective M1,4 muscarinic receptor antagonist pirenzepine but not by M2 or M3 selective antagonists. Cs+ occludes muscarinic effects at potentials more negative than -80 mV. A Na+ reduction in the bath occludes muscarinic effects at potentials more positive than -70 mV. Thus, muscarinic effects involve different ionic conductances: inward rectifying and cationic. The relatively selective M2 receptor antagonist AF-DX 116 does not block muscarinic effects on the projection neuron but, surprisingly, has the ability to mimic agonistic actions increasing RN and firing. Both effects are blocked by pirenzepine. HPLC measurements of acetylcholine demonstrate that AF-DX 116 but not pirenzepine greatly increases endogenous acetylcholine release in brain slices. Therefore, the effects of the M2 antagonist on the projection neurons were attributable to autoreceptor block on cholinergic interneurons. These experiments show distinct opposite functions of muscarinic M1- and M2-type receptors in neostriatal output, i.e., the firing of projection neurons. The results suggest that the use of more selective antimuscarinics may be more profitable for the treatment of motor deficits.
Collapse
|
34
|
Galarraga E, Hernández-López S, Reyes A, Miranda I, Bermudez-Rattoni F, Vilchis C, Bargas J. Cholinergic modulation of neostriatal output: a functional antagonism between different types of muscarinic receptors. J Neurosci 1999; 19:3629-38. [PMID: 10212321 PMCID: PMC6782250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/1998] [Revised: 01/28/1999] [Accepted: 02/16/1999] [Indexed: 02/12/2023] Open
Abstract
It is demonstrated that acetylcholine released from cholinergic interneurons modulates the excitability of neostriatal projection neurons. Physostigmine and neostigmine increase input resistance (RN) and enhance evoked discharge of spiny projection neurons in a manner similar to muscarine. Muscarinic RN increase occurs in the whole subthreshold voltage range (-100 to -45 mV), remains in the presence of TTX and Cd2+, and can be blocked by the relatively selective M1,4 muscarinic receptor antagonist pirenzepine but not by M2 or M3 selective antagonists. Cs+ occludes muscarinic effects at potentials more negative than -80 mV. A Na+ reduction in the bath occludes muscarinic effects at potentials more positive than -70 mV. Thus, muscarinic effects involve different ionic conductances: inward rectifying and cationic. The relatively selective M2 receptor antagonist AF-DX 116 does not block muscarinic effects on the projection neuron but, surprisingly, has the ability to mimic agonistic actions increasing RN and firing. Both effects are blocked by pirenzepine. HPLC measurements of acetylcholine demonstrate that AF-DX 116 but not pirenzepine greatly increases endogenous acetylcholine release in brain slices. Therefore, the effects of the M2 antagonist on the projection neurons were attributable to autoreceptor block on cholinergic interneurons. These experiments show distinct opposite functions of muscarinic M1- and M2-type receptors in neostriatal output, i.e., the firing of projection neurons. The results suggest that the use of more selective antimuscarinics may be more profitable for the treatment of motor deficits.
Collapse
Affiliation(s)
- E Galarraga
- Department of Biophysics, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City DF 04510, Mexico
| | | | | | | | | | | | | |
Collapse
|
35
|
Zholos AV, Baidan LV, Starodub AM, Wood JD. Potassium channels of myenteric neurons in guinea-pig small intestine. Neuroscience 1999; 89:603-18. [PMID: 10077339 DOI: 10.1016/s0306-4522(98)00337-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Patch-clamp recording was used to study rectifying K+ currents in myenteric neurons in short-term culture. In conditions that suppressed Ca2+ -activated K+ current, three kinds of voltage-activated K+ currents were identified by their voltage range of activation, inactivation, kinetics and pharmacology. These were A-type current, delayed outwardly rectifying current (I(K),dr) and inwardly rectifying current (I(K),ir). I(K),ir consisted of an instantaneous component followed by a time-dependent current that rapidly increased at potentials negative to -80 mV. Time-constant of activation was voltage-dependent with an e-fold decrease for a 31-mV hyperpolarization amounting to a decrease from 800 to 145 ms between -80 and -100 mV. I(K),ir did not inactivate. I(K),ir was abolished in K+ -free solution. Increases in external K+ increased I(K),ir conductance in direct relation to the square root of external K+ concentration. Activation kinetics were accelerated and the activation range shifted to more positive K+ equilibrium potentials. I(K),ir was suppressed by external Cs+ and Ba2+ in a concentration-dependent manner. Ca2+ and Mg+ were less effective than Ba2+. I(K),ir was unaffected by tetraethylammonium ions. I(K),dr was activated at membrane potentials positive to - 30 mV with an e-fold decrease in time-constant of activation from 145 to 16 ms between -20 and 30 mV. It was half-activated at 5 mV and fully activated at 50 mV. Inactivation was indiscernible during 2.5 s test pulses. I(K),dr was suppressed in a concentration-, but not voltage-dependent manner by either tetraethylammonium or 4-aminopyridine and was insensitive to Cs+. The results suggest that I(K),ir may be important in maintaining the high resting membrane potentials found in afterhyperpolarization-type enteric neurons. They also suggest importance of I(K),ir channels in augmentation of the large hyperpolarizing after-potentials in afterhyperpolarization-type neurons and the hyperpolarization associated with inhibitory postsynaptic potentials. I(K),dr in afterhyperpolarization-type enteric neurons has overall kinetics and voltage behaviour like delayed rectifier currents in other excitable cells where the currents can also be distinguished from A-type and Ca2+ -activated K+ current.
Collapse
Affiliation(s)
- A V Zholos
- Department of Physiology, College of Medicine, The Ohio State University, Columbus 43210, USA
| | | | | | | |
Collapse
|
36
|
Liu W, Kumar A, Alreja M. Excitatory effects of muscarine on septohippocampal neurons: involvement of M3 receptors. Brain Res 1998; 805:220-33. [PMID: 9733970 DOI: 10.1016/s0006-8993(98)00729-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cholinergic mechanisms in the septohippocampal pathway contribute to several cognitive functions and impaired cholinergic transmission in this pathway may be related to the memory loss and dementia that accompanies normal aging and Alzheimer's disease and behavioral studies suggest that muscarinic mechanisms in the medial septum/diagonal band of Broca (MSDB) may contribute to these functions. The goal of the present study was to begin a characterization of the physiological and pharmacological effects of muscarine on antidromically identified septohippocampal neurons (SHNs). Muscarinic agonists produced a concentration-dependent excitation in >90% of SHNs tested using extracellular recordings in an in vitro rat brain slice preparation. The SHNs excited by muscarine had a broad range of conduction velocities (0.2 to 3.7 m/s; mean: 1.6+/-0.06 m/s; n=110), suggesting involvement of neurons with both slow (possibly cholinergic) and fast (possibly GABAergic) conducting fibers. The muscarine-induced excitations in SHNs were found not to be mediated via M1, M2 or M4 receptors, as they were not blocked by the M1-selective antagonists, pirenzepine or telenzepine or by the M2/M4-selective antagonist, methoctramine. In contrast, the M3-selective antagonist, 4-DAMP-mustard, blocked muscarinic excitations in a majority of SHNs, indicating the presence of M3 as well as non-M3-type responses. McN-A-343, an M1 and M5-selective agonist, excited 33% of neurons tested, confirming involvement of non-M3 receptors (possibly M5) and M3 receptors. Since the cholinergic and GABAergic MSDB neurons together innervate almost every type of hippocampal neuron, the effects of muscarine on SHNs would also have a profound effect on hippocampal circuitry.
Collapse
Affiliation(s)
- W Liu
- Department of Psychiatry, CMHC 306, Yale University School of Medicine, 34 Park Street, New Haven, CT 06508, USA
| | | | | |
Collapse
|
37
|
Inwardly rectifying potassium (IRK) currents are correlated with IRK subunit expression in rat nucleus accumbens medium spiny neurons. J Neurosci 1998. [PMID: 9712637 DOI: 10.1523/jneurosci.18-17-06650.1998] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Inwardly rectifying K+ (IRK) channels are critical for shaping cell excitability. Whole-cell patch-clamp and single-cell RT-PCR techniques were used to characterize the inwardly rectifying K+ currents found in projection neurons of the rat nucleus accumbens. Inwardly rectifying currents were highly selective for K+ and blocked by low millimolar concentrations of Cs+ or Ba2+. In a subset of neurons, the inwardly rectifying current appeared to inactivate at hyperpolarized membrane potentials. In an attempt to identify this subset, neurons were profiled using single-cell RT-PCR. Neurons expressing substance P mRNA exhibited noninactivating inward rectifier currents, whereas neurons expressing enkephalin mRNA exhibited inactivating inward rectifier currents. The inactivation of the inward rectifier was correlated with the expression of IRK1 mRNA. These results demonstrate a clear physiological difference in the properties of medium spiny neurons and suggest that this difference could influence active state transitions driven by cortical and hippocampal excitatory input.
Collapse
|
38
|
Mermelstein PG, Song WJ, Tkatch T, Yan Z, Surmeier DJ. Inwardly rectifying potassium (IRK) currents are correlated with IRK subunit expression in rat nucleus accumbens medium spiny neurons. J Neurosci 1998; 18:6650-61. [PMID: 9712637 PMCID: PMC6792959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Inwardly rectifying K+ (IRK) channels are critical for shaping cell excitability. Whole-cell patch-clamp and single-cell RT-PCR techniques were used to characterize the inwardly rectifying K+ currents found in projection neurons of the rat nucleus accumbens. Inwardly rectifying currents were highly selective for K+ and blocked by low millimolar concentrations of Cs+ or Ba2+. In a subset of neurons, the inwardly rectifying current appeared to inactivate at hyperpolarized membrane potentials. In an attempt to identify this subset, neurons were profiled using single-cell RT-PCR. Neurons expressing substance P mRNA exhibited noninactivating inward rectifier currents, whereas neurons expressing enkephalin mRNA exhibited inactivating inward rectifier currents. The inactivation of the inward rectifier was correlated with the expression of IRK1 mRNA. These results demonstrate a clear physiological difference in the properties of medium spiny neurons and suggest that this difference could influence active state transitions driven by cortical and hippocampal excitatory input.
Collapse
Affiliation(s)
- P G Mermelstein
- Department of Anatomy and Neurobiology, College of Medicine, University of Tennessee, Memphis Tennessee 38163, USA
| | | | | | | | | |
Collapse
|
39
|
Bai D, Renaud LP. ANG II AT1 receptors induce depolarization and inward current in rat median preoptic neurons in vitro. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:R632-9. [PMID: 9688703 DOI: 10.1152/ajpregu.1998.275.2.r632] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
To examine ANG II receptors in rat median preoptic (MnPO) neurons, we used patch-clamp whole cell recordings in a parasagittal brain slice preparation. Lucifer yellow-filled neurons displayed a simple morphology with two to three aspiny dendrites. Bath-applied ANG II (1-2,000 nM for 30 s) induced a response in 37 of 70 cells. In current-clamp recordings, cells displayed a prolonged (10- to 30-min) depolarizing plateau with action potential discharges and an associated reduction in postburst afterhyperpolarization and spike frequency adaptation. In voltage-clamp recordings (holding potential -65 mV), cells displayed tetrodotoxin-resistant inward currents of 7. 6 +/- 1.9 (n = 5), 9.9 +/- 1.9 (n = 9), and 9.2 +/- 2.2 pA (n = 6) at 10, 200, and 2,000 nM, respectively. Responses were blockable by pretreatment with losartan (2 microM; n = 6) but not by PD-123177 (20 microM; n = 3). Net ANG II-induced current revealed a 7.8 +/- 0. 9% reduction in membrane conductance, decreasing but not reversing at hyperpolarized levels. Neurons expressing a strong hyperpolarization-activated, time-independent inward rectification were more likely to respond to ANG II. There was no correlation between the response of a neuron to ANG II and its response to norepinephrine.
Collapse
Affiliation(s)
- D Bai
- Neurosciences, Loeb Research Institute, Ottawa Civic Hospital, and University of Ottawa, Ottawa, Ontario, Canada K1Y 4E9
| | | |
Collapse
|
40
|
Baba H, Kohno T, Okamoto M, Goldstein PA, Shimoji K, Yoshimura M. Muscarinic facilitation of GABA release in substantia gelatinosa of the rat spinal dorsal horn. J Physiol 1998; 508 ( Pt 1):83-93. [PMID: 9490821 PMCID: PMC2230847 DOI: 10.1111/j.1469-7793.1998.083br.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
1. Blind patch clamp recordings were made from substantia gelatinosa (SG) neurones in the adult rat spinal cord slice to study the mechanisms of cholinergic modulation of GABAergic inhibition. 2. In the majority of SG neurones tested, carbachol (10 microM) increased the frequency (677 % of control) of spontaneous GABAergic inhibitory postsynaptic currents (IPSCs). A portion of these events appeared to result from the generation of spikes by GABAergic interneurones, since large amplitude IPSCs were eliminated by tetrodotoxin (1 microM). 3. The effect of carbachol on spontaneous IPSCs was mimicked by neostigmine, suggesting that GABAergic interneurones are under tonic regulation by cholinergic systems. 4. The frequency of GABAergic miniature IPSCs in the presence of tetrodotoxin (1 microM) was also increased by carbachol without affecting amplitude distribution, indicating that acetylcholine facilitates quantal release of GABA through presynaptic mechanisms. 5. Neither the M1 receptor agonist McN-A-343 (10-300 microM) nor the M2 receptor agonist, arecaidine (10-100 microM), mimicked the effects of carbachol. All effects of carbachol and neostigmine were antagonized by atropine (1 muM), while pirenzepine (100 nM), methoctramine (1 microM) and hexahydrosiladifenidol hydrochloride, p-fluoro-analog (100 nM) had no effect. 6. Focal stimulation of deep dorsal horn, but not dorsolateral funiculus, evoked a similar increase in IPSC frequency to that evoked by carbachol and neostigmine. The stimulation-induced facilitation of GABAergic transmission lasted for 2-3 min post stimulation, and the effect was antagonized by atropine (100 nM). 7. Our observations suggest that GABAergic interneurones possess muscarinic receptors on both axon terminals and somatodendritic sites, that the activation of these receptors increases the excitability of inhibitory interneurones and enhances GABA release in SG and that the GABAergic inhibitory system is further controlled by cholinergic neurones located in the deep dorsal horn. Those effects may be responsible for the antinociceptive action produced by the intrathecal administration of muscarinic agonists and acetylcholinesterase inhibitors.
Collapse
Affiliation(s)
- H Baba
- Department of Anaesthesiology, Niigata University School of Medicine, Niigata 951, Japan.
| | | | | | | | | | | |
Collapse
|
41
|
Chuang H, Jan YN, Jan LY. Regulation of IRK3 inward rectifier K+ channel by m1 acetylcholine receptor and intracellular magnesium. Cell 1997; 89:1121-32. [PMID: 9215634 DOI: 10.1016/s0092-8674(00)80299-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Inward rectifier K+ channels control the cell's membrane potential and neuronal excitability. We report that the IRK3 but not the IRK1 inward rectifier K+ channel activity is inhibited by m1 muscarinic acetylcholine receptor. This m1 modulation cannot be accounted for by protein kinase C, Ca2+, or channel phosphorylation, but can be mimicked by Mg2+. Based on quantitative analyses of IRK3 and two different IRK1 mutant channels bestowed with sensitivity to m1 modulation, we suggest that the resting Mg2+ level causes chronic inhibition of IRK3 channels, and m1 receptor stimulation may lead to an increase of cytoplasmic Mg2+ concentration and further channel inhibition, due to the ability of Mg2+ to lead these channels into a prolonged inactivated state.
Collapse
Affiliation(s)
- H Chuang
- Department of Physiology, Howard Hughes Medical Institute, University of California, San Francisco 94143-0724, USA
| | | | | |
Collapse
|
42
|
Abstract
The modulation of a constitutively active IRK1-like inwardly rectifying potassium channel, that is endogenously expressed in the RBL-2H3 cell, was studied with the whole-cell patch-clamp technique. Activation of G-proteins by intracellular application of GTP gamma S revealed a dual modulation of the inward rectifier. An initial increase in inward current amplitude was induced by GTP gamma S, followed by a profound inhibition of the current. The stimulation of the inward rectifier by GTP gamma S was abolished by pretreatment with pertussis toxin. The inhibitory phase of the GTP gamma S-induced response was pertussis toxin-insensitive. Stimulation of the m1-muscarinic receptor expressed in the RBL cell after stable transfection, induced an inhibition of the inwardly rectifying currents. Application of protein kinase C activators such as phorbol 12-myristate 13-acetate and phorbol 12,13-dibutyrate, resulted in a strong inhibition of the currents. Application of the cAMP-dependent protein kinase activator 8-bromo cAMP also induced an inhibition of the inward rectifier. It is concluded that the inward rectifier of the RBL-2H3 cell may be inhibited both by activation of protein kinase C and by cAMP-dependent protein kinase. As this type of inward rectifier is widely expressed in the nervous system, these data imply that the channel can be inhibited by receptors that stimulate phospholipase C and/or stimulate adenylyl cyclase, and can be activated by receptors that inhibit adenylyl cyclase activity.
Collapse
Affiliation(s)
- S V Jones
- Department of Psychiatry, University of Vermont College of Medicine, Burlington 05405, USA
| |
Collapse
|
43
|
Brown DA, Abogadie FC, Allen TG, Buckley NJ, Caulfield MP, Delmas P, Haley JE, Lamas JA, Selyanko AA. Muscarinic mechanisms in nerve cells. Life Sci 1997; 60:1137-44. [PMID: 9121358 DOI: 10.1016/s0024-3205(97)00058-1] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The receptor subtype and transduction mechanisms involved in the regulation of various neuronal ionic currents are reviewed, with some recent observations on sympathetic neurons, hippocampal cell membranes and basal forebrain cells.
Collapse
Affiliation(s)
- D A Brown
- Department of Pharmacology, University College London, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Hsu KS, Yang CH, Huang CC, Gean PW. Carbachol induces inward current in neostriatal neurons through M1-like muscarinic receptors. Neuroscience 1996; 73:751-60. [PMID: 8809795 DOI: 10.1016/0306-4522(96)00066-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The effects of carbachol on rat neostriatal neurons were examined in the slice and the freshly dissociated neuron preparations using intracellular and whole-cell voltage-clamp recording methods. Superfusion of carbachol (30 microM) produced a depolarization concomitant with an increase in the rate of spontaneous action potentials. This depolarization was associated with an increase in the input resistance. The carbachol-induced membrane depolarization was blocked by pirenzepine (1 microM), a selective M1 muscarinic receptor antagonist. In other experiments, we observed that carbachol induced a transient inward current on the freshly dissociated neostriatal neuron at a holding potential of -60 mV in a concentration-dependent manner underlying the whole-cell voltage-clamp mode. The inward current caused by carbachol was not reduced by tetrodotoxin (1 microM), calcium-free recording solution or Cd2+ (100 microM). However, it was blocked by Ba2+ (100 microM). In addition, the carbachol-induced inward current reversed polarity at about the potassium equilibrium potential. The whole-cell membrane inward current in response to voltage-clamp step from -90 to -140 mV was reduced by 30 microM carbachol. With stronger hyperpolarization beyond the potassium equilibrium potential, carbachol produced a progressively greater reduction in membrane current. This inhibitory effect was also abolished by Ba2+ (100 microM). A concentration of 30 microM carbachol-induced inward current could be reversibly antagonized by the M1 muscarinic receptor antagonist pirenzepine (0.1-1 microM), with an estimated IC50 of 0.3 microM. However, other muscarinic receptor subtype (M2 or M3) antagonists could also block the carbachol-induced inward current. The rank order of antagonist potency was: pirenzepine (M1 antagonist) > 4-diphenylacetoxy-N,N-methyl-piperidine methiodide (M3/M1 antagonist) > gallamine (M2 antagonist). Based on these pharmacological data, we concluded that carbachol can act at M1-like muscarinic receptors to reduce the membrane K+ conductances and excite the neostriatal neurons.
Collapse
Affiliation(s)
- K S Hsu
- Department of Pharmacology, College of Medicine, National Cheng-Kung University, Tainan, Taiwan
| | | | | | | |
Collapse
|
45
|
Hsu KS, Kan WM. Thromboxane A2 agonist modulation of excitatory synaptic transmission in the rat hippocampal slice. Br J Pharmacol 1996; 118:2220-7. [PMID: 8864565 PMCID: PMC1909899 DOI: 10.1111/j.1476-5381.1996.tb15666.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
1. The effects of the selective thromboxane A2 (TXA2) receptor agonist I-BOP on neuronal excitability and synaptic transmission were studied in the CAl neurones of rat hippocampal slices by an intracellular recording technique. 2. Superfusion of I-BOP (0.5 microM) resulted in a biphasic change of the excitatory postsynaptic potential (e.p.s.p.), which was blocked by pretreatment with SQ 29548, a specific antagonist of TXA2 receptors. The inhibitory phase of I-BOP on the e.p.s.p. was accompanied by a decrease in neuronal membrane input resistance. 3. The sensitivity of postsynaptic neurones to glutamate receptor agonists, alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) or N-methyl-D-aspartate (NMDA), was unchanged by I-BOP (0.5 microM) pretreatment. 4. Bath application of Ba2+ (0.5 mM) prevented both the I-BOP-induced reduction of the neuronal membrane input resistance and the blockade of e.p.s.p. induced by I-BOP. 5. Intracellular dialysis of the hippocampal CA1 neurones with GDP (10 mM) significantly attenuated the I-BOP inhibition of e.p.s.p. and membrane input resistance. Incubation of the slices with either pertussis toxin (PTX, 5 micrograms ml-1 for 12 h) or cholera toxin (CTX, 5 micrograms ml-1 for 12 h) did not affect the biphasic action of I-BOP on the e.p.s.p. or the reduction of membrane input resistance induced by I-BOP. 6. Pretreatment of the slices with the protein kinase C (PKC) inhibitor, NPC-15437 (20 microM), abolished the biphasic modulation by I-BOP (0.5 microM) of the e.p.s.p. Intracellular application of a specific PKC inhibitor, PKCI 19-36 (20 microM), completely inhibited the I-BOP reduction of e.p.s.p. The specific cyclic AMP-dependent protein kinase (PKA) inhibitor, Rp-cyclic adenosine 3',5'-monophosphate (Rp-cyclic AMPS, 25 microM), had no effect on the I-BOP action. 7. In this study we have demonstrated, for the first time, the existence of functional TXA2 receptors in the hippocampus which mediate the effects of a TXA2 agonist on neuronal excitability and synaptic transmission. Activation of the presynaptic TXA2 receptors may stimulate the release of glutamate. Conversely, activation of postsynaptic TXA2 receptors leads to inhibition of synaptic transmission resulting from a decrease in the membrane input resistance of the neurones. The pre- and postsynaptic actions of the TXA2 agonist are both mediated by PTX- and CTX-insensitive G-protein-coupled activation of PKC pathways.
Collapse
Affiliation(s)
- K S Hsu
- Department of Pharmacology, College of Medicine, National Cheng-Kung University, Tainan, Taiwan
| | | |
Collapse
|
46
|
Kukkonen JP, Hautala R, Akerman KE. Muscarinic depolarization of SH-SY5Y human neuroblastoma cells as determined using oxonol V. Neurosci Lett 1996; 212:57-60. [PMID: 8823762 DOI: 10.1016/0304-3940(96)12781-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Membrane potential was measured in the suspension of SH-SY5Y cells using the anionic potentiometric probe, oxonol V. The relation of fluorescence to membrane potential was assessed by increasing the external [K+] in the presence of the K+ ionophore valinomycin. The response was linear in the range of 5 to 30 mM K+ (membrane potential change of approximately 40 mV). Muscarine increased the fluorescence indicating a depolarization. The competitive inhibitory constant (112 nM) of the muscarinic antagonist pirenzepine (5,11-dihydro-11-([4-methyl-1-piperazinyl]acetyl)-6H-pyrido[2,3-b] (1,4)benzodiazepin-6-one-dihydrochloride) suggests that Hm1 receptors are not involved. The protein kinase C inhibitor, GF 109203X (3-[1-(3-demethylaminopropyl)-indol-3-yl]-3-(indol-3-yl)-maleimide ), and a reduction of extracellular Na+ both produced an additive partial inhibition. The results suggest that muscarinic receptors depolarize these cells by separate Na(+)-dependent and -independent mechanisms, the Na(+)-independent mechanism being protein kinase C-dependent.
Collapse
Affiliation(s)
- J P Kukkonen
- Department of Biochemistry and Pharmacy, Abo Akademi University BioCity, Turku, Finland.
| | | | | |
Collapse
|
47
|
Wang HS, McKinnon D. Modulation of inwardly rectifying currents in rat sympathetic neurones by muscarinic receptors. J Physiol 1996; 492 ( Pt 2):467-78. [PMID: 9019543 PMCID: PMC1158841 DOI: 10.1113/jphysiol.1996.sp021322] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
1. Intracellular recordings were made from rat sympathetic neurones in isolated superior cervical ganglia (SCG), coeliac ganglia (CG), and superior mesenteric ganglia (SMG). 2. Following classification of the firing properties of these neurones as either 'phasic' or 'tonic', single-electrode voltage-clamp recordings of the inwardly rectifying current were performed. The inward rectifier conductance was 6.4 times larger in tonic neurones than in phasic neurones. 3. The basic features of the inward rectifier in sympathetic neurones were similar to those of the classic inward rectifier described in several neuronal and non-neuronal preparations. The properties of the native channel were also similar to a subset of recently cloned inwardly rectifying channels. The reversal potential and the slope conductance were both dependent on external potassium ion concentration. The conductance was blocked by low concentrations of external Ba(2+) and Cs(+) ions. 4. A striking feature of the inward rectifier in sympathetic neurones was its modulation by muscarine. Application of 20 microM muscarine produced a mean 78 +/- 1.4% inhibition of the current. From dose-response curves for muscarine a mean dissociation constant of K(D) = 1.95 +/- 0.2 microM was determined. Schild plot analysis using the competitive antagonists pirenzepine and himbacine indicated that the effect of muscarine was mediated by the M(1) class of muscarinic receptors. 5. The inward rectifier was also inhibited by repetitive nerve stimulation which produced a block of the conductance similar to that seen in response to bath-applied muscarine. The onset of inhibition was relatively slow, 20-30 s, suggesting that it is mediated by a soluble second messenger pathway.
Collapse
Affiliation(s)
- H S Wang
- Department of Neurobiology and Behavior, State University of New York at Stony Brook, NY 11794-5230, USA
| | | |
Collapse
|
48
|
Mihara S, Nishi S. Neurokinin A mimics the slow excitatory postsynaptic current in submucous plexus neurons of the guinea-pig caecum. Neuroscience 1994; 62:1245-55. [PMID: 7531303 DOI: 10.1016/0306-4522(94)90356-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Single microelectrode voltage-clamp recordings were made from submucous neurons of the guinea-pig caecum. The slow excitatory postsynaptic current was compared with the currents induced by neurokinin A and substance P. The current induced by neurokinin A (100-300 nM) was associated with a decreased membrane conductance and reversed in polarity between -90 and -100 mV. The neurokinin A current was reduced by Co2+ (1-2 mM), but was not affected by Cs+ (1-2 mM), Ba2+ (10-100 microM) or low Cl- (20-40 mM) solutions. In about 80% of the neurons, the current induced by substance P (100-300 nM) was associated with a decreased membrane conductance and did not reverse with hyperpolarization of the membrane potential up to -130 mV. The current was reduced by Co2+ (1-2 mM) and augmented by low Cl- (20-40 mM) solutions, but was not affected by Cs+ (1-2 mM) or Ba2+ (10-100 microM)-containing solutions. In about 20% of the neurons, the substance P current reversed in polarity between -100 and -120 mV. The slow excitatory postsynaptic current elicited by repetitive nerve stimulation (10-40 Hz, three to five pulses) was accompanied by a decreased membrane conductance, and reversed in polarity between -90 and -100 mV. The slow excitatory postsynaptic current was abolished by Co2+ (1-2 mM) or low Na+ (12 mM) solutions, but was not affected by Cs+ (1-2 mM), Ba2+ (10-100 microM) or low Cl- (20-40 mM) solutions. In such neurons, the neurokinin A current was reversed at approximately the same potential at which the slow excitatory postsynaptic current was reversed, while the substance P current was not reversed even by much stronger hyperpolarizations. It was concluded that the neurokinin A current was mainly due to depression of potassium conductances, while the substance P current resulted from both increased anion conductance and decreased potassium conductances. The conductance change underlying the slow excitatory postsynaptic current is similar to that caused by neurokinin A.
Collapse
Affiliation(s)
- S Mihara
- Department of Physiology, Kurume University School of Medicine, Japan
| | | |
Collapse
|
49
|
Womble MD, Moises HC. Metabotropic glutamate receptor agonist ACPD inhibits some, but not all, muscarinic-sensitive K+ conductances in basolateral amygdaloid neurons. Synapse 1994; 17:69-75. [PMID: 8091303 DOI: 10.1002/syn.890170202] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Muscarinic agonists produce membrane depolarization and losses of spike frequency accommodation and the slow afterhyperpolarization (AHP) when applied to neurons of the basolateral amygdala (BLA). Underlying these changes are the muscarinic-induced inhibitions of several K+ conductances, including the voltage-activated M-current (IM), a slowly decaying Ca(2+)-activated current (IAHP), a voltage-insensitive leak current (ILeak), and the hyperpolarization-activated inward rectifier current (IIR). Similar depolarizations and losses of the slow AHP have been observed in other neuronal cell types following stimulation of metabotropic glutamate receptors. Therefore, we tested the effects of the metabotropic glutamate receptor agonist, 1-aminocyclopentane-1s,3R-dicarboxylic acid (ACPD), on pyramidal neurons impaled with a single microelectrode for current- and voltage-clamp recordings in a brain slice preparation of the rat BLA. Application of ACPD (20 or 100 microM) to BLA neurons inhibited IM and IAHP, resulting in membrane depolarization and reductions in the amplitude and duration of the slow AHP. However, ACPD did not inhibit the muscarinic-sensitive current IIR, nor was ILeak blocked in the majority of neurons examined. These findings suggest the possibility that muscarinic cholinergic and metabotropic glutamatergic receptor agonists may activate separate intracellular transduction pathways which have convergent inhibitory effects onto IM and IAHP in BLA pyramidal neurons.
Collapse
Affiliation(s)
- M D Womble
- Department of Physiology, University of Michigan Medical School, Ann Arbor 48109-0622
| | | |
Collapse
|
50
|
Pennartz CM, Lopes da Silva FH. Muscarinic modulation of synaptic transmission in slices of the rat ventral striatum is dependent on the frequency of afferent stimulation. Brain Res 1994; 645:231-9. [PMID: 8062086 DOI: 10.1016/0006-8993(94)91656-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Extracellular, intracellular and tight-seal patch-clamp recordings in ventral striatal slices were used to investigate whether the effectiveness of muscarinic neuromodulation of fast synaptic transmission may be dependent on the frequency of afferent stimulation. In all neurons tested, EPSPs were reversibly attenuated by muscarine or carbachol. This action was completely antagonized by atropine or pirenzepine. Several observations indicated a presynaptic site of action. In extracellular recordings, carbachol reduced the monosynaptic population spike but not the non-synaptic compound action potential. The acetylcholinesterase inhibitors eserine and pyridostigmine also induced an atropine-sensitive reduction of the EPSP. When the rate of afferent stimulation was increased, control EPSPs or EPSCs exhibited a decline in peak amplitude until reaching a steady-state value. Muscarinic modulation of steady-state EPSPs/EPSCs was significantly stronger in the range of lower frequencies (0.25-4 Hz) than at higher frequencies (8 and 12 Hz). The GABAA and GABAB-receptor/channel antagonists picrotoxin and 2-hydroxy-saclofen, the opiate receptor antagonist naloxone and atropine failed to alter the shape of the frequency-response curve. These results show that both exogenous and endogenous muscarinic receptor agonists are capable of activating a presynaptic mechanism by which fast excitatory inputs to the ventral striatum are depressed. The depressive effect is clearly stronger at lower rates of afferent stimulation than at high rates. This frequency-dependent attenuation of excitatory synaptic inputs exemplifies a new type of activity-dependent neuromodulation in central neural circuits.
Collapse
Affiliation(s)
- C M Pennartz
- Graduate School Neurosciences Amsterdam, Institute of Neurobiology, University of Amsterdam, The Netherlands
| | | |
Collapse
|