1
|
Han Y, Bagchi P, Yun CC. Regulation of the intestinal Na +/H + exchanger NHE3 by AMP-activated kinase is dependent on phosphorylation of NHE3 at S555 and S563. Am J Physiol Cell Physiol 2024; 326:C50-C59. [PMID: 38047302 PMCID: PMC11192475 DOI: 10.1152/ajpcell.00540.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 12/05/2023]
Abstract
Electroneutral NaCl transport by Na+/H+ exchanger 3 (NHE3, SLC9A3) is the major Na+ absorptive mechanism in the intestine and decreased NHE3 activity contributes to diarrhea. Patients with diabetes often experience gastrointestinal adverse effects and medications are often a culprit for chronic diarrhea in type 2 diabetes (T2D). We have shown previously that metformin, the most widely prescribed drug for the treatment of T2D, induces diarrhea by inhibition of Na+/H+ exchanger 3 (NHE3) in rodent models of T2D. Metformin was shown to activate AMP-activated protein kinase (AMPK), but AMPK-independent glycemic effects of metformin are also known. The current study is undertaken to determine whether metformin inhibits NHE3 by activation of AMPK and the mechanism by which NHE3 is inhibited by AMPK. Inhibition of NHE3 by metformin was abolished by knockdown of AMPK-α1 or AMPK-α2. AMPK activation by 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) phosphorylated NHE3 at S555. S555 is the primary site of phosphorylation by protein kinase A (PKA), but AMPK phosphorylated S555 independently of PKA. Using Mass spectrometry, we found S563 as a newly recognized phosphorylation site in NHE3. Altering either S555 or S563 to Ala was sufficient to block the inhibition of NHE3 activity by AMPK. NHE3 inhibition is dependent on ubiquitination by the E3 ubiquitin ligase Nedd4-2 and metformin was shown to induce NHE3 internalization via Nedd4-2-mediated ubiquitination. AICAR did not increase NHE3 ubiquitination when S555 or S563 was mutated. We conclude that AMPK activation inhibits NHE3 activity and NHE3 inhibition is associated with phosphorylation of NHE3 at S555 and S563.NEW & NOTEWORTHY We show that AMP-activated protein kinase (AMPK) phosphorylates NHE3 at S555 and S563 to inhibit NHE3 activity in intestinal epithelial cells. Phosphorylation of NHE3 by AMPK is necessary for ubiquitination of NHE3.
Collapse
Affiliation(s)
- Yiran Han
- Gastroenterology Research, Atlanta Veterans Administration Medical Center, Decatur, Georgia, United States
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Pritha Bagchi
- Emory Integrated Proteomics Core, Emory University, Atlanta, Georgia, United States
| | - C Chris Yun
- Gastroenterology Research, Atlanta Veterans Administration Medical Center, Decatur, Georgia, United States
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, United States
| |
Collapse
|
2
|
Donowitz M, Sarker R, Lin R, McNamara G, Tse CM, Singh V. Identification of Intestinal NaCl Absorptive-Anion Secretory Cells: Potential Functional Significance. Front Physiol 2022; 13:892112. [PMID: 35928564 PMCID: PMC9343792 DOI: 10.3389/fphys.2022.892112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Use of human enteroids studied in the undifferentiated and differentiated state that mimic the intestinal crypt and villus, respectively, has allowed studies of multiple enterocyte populations, including a large population of enterocytes that are transitioning from the crypt to the villus. This population expresses NHE3, DRA, and CFTR, representing a combination of Na absorptive and anion secretory functions. In this cell population, these three transporters physically interact, which affects their baseline and regulated activities. A study of this cell population and differentiated Caco-2 cells transduced with NHE3 and endogenously expressing DRA and CFTR has allowed an understanding of previous studies in which cAMP seemed to stimulate and inhibit DRA at the same time. Understanding the contributions of these cells to overall intestinal transport function as part of the fasting and post-prandial state and their contribution to the pathophysiology of diarrheal diseases and some conditions with constipation will allow new approaches to drug development.
Collapse
Affiliation(s)
- Mark Donowitz
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- *Correspondence: Mark Donowitz,
| | - Rafiquel Sarker
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Ruxian Lin
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - George McNamara
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Chung Ming Tse
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Varsha Singh
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
3
|
Kovesdy CP, Adebiyi A, Rosenbaum D, Jacobs JW, Quarles LD. Novel Treatments from Inhibition of the Intestinal Sodium-Hydrogen Exchanger 3. Int J Nephrol Renovasc Dis 2021; 14:411-420. [PMID: 34880650 PMCID: PMC8646223 DOI: 10.2147/ijnrd.s334024] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/11/2021] [Indexed: 12/31/2022] Open
Abstract
Plasma membrane sodium–hydrogen exchangers (NHE) transport Na+ into cells in exchange for H+. While there are nine isoforms of NHE in humans, this review focuses on the NHE3 isoform, which is abundantly expressed in the gastrointestinal tract, where it plays a key role in acid–base balance and water homeostasis. NHE3 inhibition in the small intestine results in luminal sodium and water retention, leading to a general decrease in paracellular water flux and diffusional driving force, reduced intestinal sodium absorption, and increased stool sodium excretion. The resulting softer and more frequent stools are the rationale for the development of tenapanor as a novel, first-in-class NHE3 inhibitor to treat irritable bowel syndrome with constipation. NHE3 also has additional therapeutic implications in nephrology. Inhibition of intestinal NHE3 also lowers blood pressure by reducing intestinal sodium absorption. Perhaps, the most novel effect is its ability to decrease intestinal phosphate absorption by inhibiting the paracellular phosphate absorption pathway. Therefore, selective pharmacological inhibition of NHE3 could be a potential therapeutic strategy to treat not only heart failure and hypertension but also hyperphosphatemia. This review presents an overview of the molecular and physiological functions of NHE3 and discusses how these functions translate to potential clinical applications in nephrology.
Collapse
Affiliation(s)
- Csaba P Kovesdy
- Division of Nephrology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Adebowale Adebiyi
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | | | | | - L Darryl Quarles
- Division of Nephrology, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
4
|
Ran L, Yan T, Zhang Y, Niu Z, Kan Z, Song Z. The recycling regulation of sodium-hydrogen exchanger isoform 3(NHE3) in epithelial cells. Cell Cycle 2021; 20:2565-2582. [PMID: 34822321 DOI: 10.1080/15384101.2021.2005274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
As the main exchanger of electroneutral NaCl absorption, sodium-hydrogen exchanger isoform 3 (NHE3) circulates in the epithelial brush border (BB) and intracellular compartments in a multi-protein complex. The size of the NHE3 complex changes during rapid regulation events. Recycling regulation of NHE3 in epithelial cells can be roughly divided into three stages. First, when stimulated by Ca2+, cGMP, and cAMP-dependent signaling pathways, NHE3 is converted from an immobile complex found at the apical microvilli (MV) into an easily internalized and mobile form that relocates to a compartment near the base of the MV. Second, NHE3 is internalized by clathrin and albumin-dependent pathways into cytoplasmic endosomal compartments, where the complex is reprocessed and reassembled. Finally, NHE3 is translocated from the recycling endosomes (REs) to the apex of epithelial cells, a process that can be stimulated by an increase in sodium-glucose cotransporter 1 (SGLT1) activity, epidermal growth factor receptor (EGFR) signaling, Ca2+ signaling, and binding to βPix and SH3 and multiple ankyrin repeat domains 2 (Shank2) proteins. This review describes the molecular steps and protein interactions involved in the recycling movement of NHE3 from the apex of epithelial cells, into vesicles, where it is reprocessed and reassembled, and returned to its original location on the plasma membrane, where it exerts its physiological function.
Collapse
Affiliation(s)
- Ling Ran
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, China
| | - Tao Yan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Yiling Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, China
| | - Zheng Niu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, China
| | - Zifei Kan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, China
| | - Zhenhui Song
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, China
| |
Collapse
|
5
|
Cao L, Yuan Z, Liu M, Stock C. (Patho-)Physiology of Na +/H + Exchangers (NHEs) in the Digestive System. Front Physiol 2020; 10:1566. [PMID: 32009977 PMCID: PMC6974801 DOI: 10.3389/fphys.2019.01566] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 12/12/2019] [Indexed: 02/06/2023] Open
Abstract
Na+/H+ exchangers (NHEs) are expressed in virtually all human tissues and organs. Two major tasks of those NHE isoforms that are located in plasma membranes are cell volume control by Na+-uptake and cellular pH regulation by H+-extrusion. Several NHEs, particularly NHE 1–4 and 8, are involved in the pathogenesis of diseases of the digestive system such as inflammatory bowel disease (ulcerative colitis, Crohn’s disease) and gastric and colorectal tumorigenesis. In the present review, we describe the physiological purposes, possible malfunctions and pathophysiological effects of the different NHE isoforms along the alimentary canal from esophagus to colon, including pancreas, liver and gallbladder. Particular attention is paid to the functions of NHEs in injury repair and to the role of NHE1 in Barrett’s esophagus. The impact of NHEs on gut microbiota and intestinal mucosal integrity is also dealt with. As the hitherto existing findings are not always consistent, sometimes even controversial, they are compared and critically discussed.
Collapse
Affiliation(s)
- Li Cao
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhenglin Yuan
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mei Liu
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Christian Stock
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hanover, Germany
| |
Collapse
|
6
|
Chen T, Lin R, Avula L, Sarker R, Yang J, Cha B, Tse CM, McNamara G, Seidler U, Waldman S, Snook A, Bijvelds MJC, de Jonge HR, Li X, Donowitz M. NHERF3 is necessary for Escherichia coli heat-stable enterotoxin-induced inhibition of NHE3: differences in signaling in mouse small intestine and Caco-2 cells. Am J Physiol Cell Physiol 2019; 317:C737-C748. [PMID: 31365292 DOI: 10.1152/ajpcell.00351.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Enterotoxigenic Escherichia coli (ETEC) is a leading cause of childhood death from diarrhea and the leading cause of Traveler's diarrhea. E. coli heat-stable enterotoxin (ST) is a major virulence factor of ETEC and inhibits the brush border Na/H exchanger NHE3 in producing diarrhea. NHE3 regulation involves multiprotein signaling complexes that form on its COOH terminus. In this study, the hypothesis was tested that ST signals via members of the Na/H exchanger regulatory factor (NHERF) family of scaffolding proteins, NHERF2, which had been previously shown to have a role, and now with concentration on a role for NHERF3. Two models were used: mouse small intestine and Caco-2/BBe cells. In both models, ST rapidly increased intracellular cGMP, inhibited NHE3 activity, and caused a quantitatively similar decrease in apical expression of NHE3. The transport effects were NHERF3 and NHERF2 dependent. Also, mutation of the COOH-terminal amino acids of NHERF3 supported that NHERF3-NHERF2 heterodimerization was likely to account for this dual dependence. The ST increase in cGMP in both models was partially dependent on NHERF3. The intracellular signaling pathways by which ST-cGMP inhibits NHE3 were different in mouse jejunum (activation of cGMP kinase II, cGKII) and Caco-2 cells, which do not express cGKII (elevation of intracellular Ca2+ concentration [Ca2+]i). The ST elevation of [Ca2+]i was from intracellular stores and was dependent on NHERF3-NHERF2. This study shows that intracellular signaling in the same diarrheal model in multiple cell types may be different; this has implications for therapeutic strategies, which often assume that models have similar signaling mechanisms.
Collapse
Affiliation(s)
- Tiane Chen
- Departments of Physiology and Medicine, Gastroenterology Division, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ruxian Lin
- Departments of Physiology and Medicine, Gastroenterology Division, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Leela Avula
- Departments of Physiology and Medicine, Gastroenterology Division, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Rafiquel Sarker
- Departments of Physiology and Medicine, Gastroenterology Division, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jianbo Yang
- Departments of Physiology and Medicine, Gastroenterology Division, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Boyoung Cha
- Departments of Physiology and Medicine, Gastroenterology Division, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Chung Ming Tse
- Departments of Physiology and Medicine, Gastroenterology Division, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - George McNamara
- Departments of Physiology and Medicine, Gastroenterology Division, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ursula Seidler
- Department of Gastroenterology, Hannover Medical School, Hannover, Germany
| | - Scott Waldman
- Division of Clinical Pharmacology, Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Adam Snook
- Division of Clinical Pharmacology, Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Marcel J C Bijvelds
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Hugo R de Jonge
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Xuhang Li
- Departments of Physiology and Medicine, Gastroenterology Division, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Mark Donowitz
- Departments of Physiology and Medicine, Gastroenterology Division, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
7
|
Liu L, Dong Y, Ye M, Jin S, Yang J, Joosse ME, Sun Y, Zhang J, Lazarev M, Brant SR, Safar B, Marohn M, Mezey E, Li X. The Pathogenic Role of NLRP3 Inflammasome Activation in Inflammatory Bowel Diseases of Both Mice and Humans. J Crohns Colitis 2017; 11:737-750. [PMID: 27993998 PMCID: PMC5881697 DOI: 10.1093/ecco-jcc/jjw219] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Accepted: 12/08/2016] [Indexed: 02/05/2023]
Abstract
BACKGROUND AND AIMS NLRP3 inflammasome is known to be involved in inflammatory bowel diseases. However, it is controversial whether it is pathogenic or beneficial. This study evaluated the roles of NLRP3 inflammasome in the pathogenesis of inflammatory bowel disease in IL-10-/- mice and humans. METHODS NLRP3 inflammasome in colonic mucosa, macrophages, and colonic epithelial cells were analysed by western blotting. The NLRP3 inflammasome components were studied by sucrose density gradient fractionation, chemical cross-linking, and co-immunoprecipitation. The role of NLPR3 inflammasome in the pathogenesis of colitis was extensively evaluated in IL-10-/- mice, using a specific NLPR3 inflammasome inhibitor glyburide. RESULTS NLRP3 inflammasome was upregulated in colonic mucosa of both IL-10-/- mice and Crohn's patients. NLRP3 inflammasome activity in IL-10-/- mice was elevated prior to colitis onset; it progressively increased as disease worsened and peaked as macroscopic disease emerged. NLRP3 inflammasome was found in both intestinal epithelial cells and colonic macrophages, as a large complex with a molecular weight of ≥ 360 kDa in size. In the absence of IL-10, NLRP3 inflammasome was spontaneously active and more robustly responsive when activated by LPS and nigericin. Glyburide markedly suppressed NLRP3 inflammasome expression/activation in IL-10-/- mice, leading to not only alleviation of ongoing colitis but also prevention/delay of disease onset. Glyburide also effectively inhibited the release of proinflammatory cytokines/chemokines by mucosal explants from Crohn's patients. CONCLUSIONS Abnormal activation of NLRP3 inflammasome plays a major pathogenic role in the development of chronic colitis in IL-10-/- mice and humans. Glyburide, an FDA-approved drug, may have great potential in the management of inflammatory bowel diseases.
Collapse
Affiliation(s)
- Ling Liu
- Division of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, MD, USA,Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ying Dong
- Division of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, MD, USA,Department of Endocrinology, Renji Hospital, Shanghai Jiaotong University, Minhang Qu, Shanghai, China
| | - Mei Ye
- Division of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, MD, USA,Department of Internal Medicine & Geriatrics, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Shi Jin
- Division of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jianbo Yang
- Division of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Maria E. Joosse
- Division of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yu Sun
- Division of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jennifer Zhang
- Division of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mark Lazarev
- Division of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Steven R. Brant
- Division of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Bashar Safar
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael Marohn
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Esteban Mezey
- Division of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xuhang Li
- Division of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
8
|
He P, Zhao L, Zhu L, Weinman EJ, De Giorgio R, Koval M, Srinivasan S, Yun CC. Restoration of Na+/H+ exchanger NHE3-containing macrocomplexes ameliorates diabetes-associated fluid loss. J Clin Invest 2015; 125:3519-31. [PMID: 26258413 DOI: 10.1172/jci79552] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 06/25/2015] [Indexed: 01/19/2023] Open
Abstract
Diarrhea is one of the troublesome complications of diabetes, and the underlying causes of this problem are complex. Here, we investigated whether altered electrolyte transport contributes to diabetic diarrhea. We found that the expression of Na+/H+ exchanger NHE3 and several scaffold proteins, including NHE3 regulatory factors (NHERFs), inositol trisphosphate (IP₃) receptor-binding protein released with IP₃ (IRBIT), and ezrin, was decreased in the intestinal brush border membrane (BBM) of mice with streptozotocin-induced diabetes. Treatment of diabetic mice with insulin restored intestinal NHE3 activity and fluid absorption. Molecular analysis revealed that NHE3, NHERF1, IRBIT, and ezrin form macrocomplexes, which are perturbed under diabetic conditions, and insulin administration reconstituted these macrocomplexes and restored NHE3 expression in the BBM. Silencing of NHERF1 or IRBIT prevented NHE3 trafficking to the BBM and insulin-dependent NHE3 activation. IRBIT facilitated the interaction of NHE3 with NHERF1 via protein kinase D2-dependent phosphorylation. Insulin stimulated ezrin phosphorylation, which enhanced the interaction of ezrin with NHERF1, IRBIT, and NHE3. Additionally, oral administration of lysophosphatidic acid (LPA) increased NHE3 activity and fluid absorption in diabetic mice via an insulin-independent pathway. Together, these findings indicate the importance of NHE3 in diabetic diarrhea and suggest LPA administration as a potential therapeutic strategy for management of diabetic diarrhea.
Collapse
|
9
|
Abstract
Diarrhoeal disease remains a major health burden worldwide. Secretory diarrhoeas are caused by certain bacterial and viral infections, inflammatory processes, drugs and genetic disorders. Fluid secretion across the intestinal epithelium in secretory diarrhoeas involves multiple ion and solute transporters, as well as activation of cyclic nucleotide and Ca(2+) signalling pathways. In many secretory diarrhoeas, activation of Cl(-) channels in the apical membrane of enterocytes, including the cystic fibrosis transmembrane conductance regulator and Ca(2+)-activated Cl(-) channels, increases fluid secretion, while inhibition of Na(+) transport reduces fluid absorption. Current treatment of diarrhoea includes replacement of fluid and electrolyte losses using oral rehydration solutions, and drugs targeting intestinal motility or fluid secretion. Therapeutics in the development pipeline target intestinal ion channels and transporters, regulatory proteins and cell surface receptors. This Review describes pathogenic mechanisms of secretory diarrhoea, current and emerging therapeutics, and the challenges in developing antidiarrhoeal therapeutics.
Collapse
Affiliation(s)
- Jay R Thiagarajah
- Division of Gastroenterology, Hepatology and Nutrition, Children's Hospital Boston, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Mark Donowitz
- Departments of Physiology and Medicine, Division of Gastroenterology, Johns Hopkins University School of Medicine, Ross 925, 720 Rutland Avenue, Baltimore, MD 21205, USA
| | - Alan S Verkman
- Departments of Medicine and Physiology, 1246 Health Sciences East Tower, University of California, 500 Parnassus Avenue, San Francisco, CA 94143, USA
| |
Collapse
|
10
|
Chen T, Kocinsky HS, Cha B, Murtazina R, Yang J, Tse CM, Singh V, Cole R, Aronson PS, de Jonge H, Sarker R, Donowitz M. Cyclic GMP kinase II (cGKII) inhibits NHE3 by altering its trafficking and phosphorylating NHE3 at three required sites: identification of a multifunctional phosphorylation site. J Biol Chem 2014; 290:1952-65. [PMID: 25480791 DOI: 10.1074/jbc.m114.590174] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The epithelial brush-border Na(+)/H(+) exchanger NHE3 is acutely inhibited by cGKII/cGMP, but how cGKII inhibits NHE3 is unknown. This study tested the hypothesis that cGMP inhibits NHE3 by phosphorylating it and altering its membrane trafficking. Studies were carried out in PS120/NHERF2 and in Caco-2/Bbe cells overexpressing HA-NHE3 and cGKII, and in mouse ileum. NHE3 activity was measured with 2',7'-bis(carboxyethyl)-S-(and 6)carboxyfluorescein acetoxy methylester/fluorometry. Surface NHE3 was determined by cell surface biotinylation. Identification of NHE3 phosphorylation sites was by iTRAQ/LC-MS/MS with TiO2 enrichment and immunoblotting with specific anti-phospho-NHE3 antibodies. cGMP/cGKII rapidly inhibited NHE3, which was associated with reduced surface NHE3. cGMP/cGKII increased NHE3 phosphorylation at three sites (rabbit Ser(554), Ser(607), and Ser(663), equivalent to mouse Ser(552), Ser(605), and Ser(659)), all of which had to be present at the same time for cGMP to inhibit NHE3. NHE3-Ser(663) phosphorylation was not necessary for cAMP inhibition of NHE3. Dexamethasone (4 h) stimulated wild type NHE3 activity and increased surface expression but failed to stimulate NHE3 activity or increase surface expression when NHE3 was mutated to either S663A or S663D. We conclude that 1) cGMP inhibition of NHE3 is associated with phosphorylation of NHE3 at Ser(554), Ser(607), and Ser(663), all of which are necessary for cGMP/cGKII to inhibit NHE3. 2) Dexamethasone stimulates NHE3 by phosphorylation of a single site, Ser(663). The requirement for three phosphorylation sites in NHE3 for cGKII inhibition, and for phosphorylation of one of these sites for dexamethasone stimulation of NHE3, is a unique example of regulation by phosphorylation.
Collapse
Affiliation(s)
- Tiane Chen
- From the Departments of Physiology and Medicine, Gastroenterology Division, and
| | | | - Boyoung Cha
- From the Departments of Physiology and Medicine, Gastroenterology Division, and
| | - Rakhilya Murtazina
- From the Departments of Physiology and Medicine, Gastroenterology Division, and
| | - Jianbo Yang
- From the Departments of Physiology and Medicine, Gastroenterology Division, and
| | - C Ming Tse
- From the Departments of Physiology and Medicine, Gastroenterology Division, and
| | - Varsha Singh
- From the Departments of Physiology and Medicine, Gastroenterology Division, and
| | - Robert Cole
- the Biological Chemistry Department, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Peter S Aronson
- Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520, and
| | - Hugo de Jonge
- the GI Division, Erasmus Medical Center, 3015CN Rotterdam, Netherlands
| | - Rafiquel Sarker
- From the Departments of Physiology and Medicine, Gastroenterology Division, and
| | - Mark Donowitz
- From the Departments of Physiology and Medicine, Gastroenterology Division, and
| |
Collapse
|
11
|
Chen T, Hubbard A, Murtazina R, Price J, Yang J, Cha B, Sarker R, Donowitz M. Myosin VI mediates the movement of NHE3 down the microvillus in intestinal epithelial cells. J Cell Sci 2014; 127:3535-45. [PMID: 24928903 PMCID: PMC4132392 DOI: 10.1242/jcs.149930] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 05/13/2014] [Indexed: 12/27/2022] Open
Abstract
The intestinal brush border Na(+)/H(+) exchanger NHE3 is tightly regulated through changes in its endocytosis and exocytosis. Myosin VI, a minus-end-directed actin motor, has been implicated in endocytosis at the inter-microvillar cleft and during vesicle remodeling in the terminal web. Here, we asked whether myosin VI also regulates NHE3 movement down the microvillus. The basal NHE3 activity and its surface amount, determined by fluorometry of the ratiometric pH indicator BCECF and biotinylation assays, respectively, were increased in myosin-VI-knockdown (KD) Caco-2/Bbe cells. Carbachol (CCH) and forskolin (FSK) stimulated NHE3 endocytosis in control but not in myosin VI KD cells. Importantly, immunoelectron microscopy results showed that NHE3 was preferentially localized in the basal half of control microvilli but in the distal half in myosin VI KD cells. Treatment with dynasore duplicated some aspects of myosin VI KD: it increased basal surface NHE3 activity and prevented FSK-induced NHE3 endocytosis. However, NHE3 had an intermediate distribution along the microvillus (between that in myosin VI KD and untreated cells) in dynasore-treated cells. We conclude that myosin VI is required for basal and stimulated endocytosis of NHE3 in intestinal cells, and suggest that myosin VI also moves NHE3 down the microvillus.
Collapse
Affiliation(s)
- Tiane Chen
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ann Hubbard
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Rakhilya Murtazina
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jennifer Price
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA Department of Gastroenterology, University of California, School of Medicine, San Francisco, CA 94143, USA
| | - Jianbo Yang
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Boyoung Cha
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Rafiquel Sarker
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Mark Donowitz
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA Departments of Medicine and Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
12
|
Yang J, Singh V, Chen TE, Sarker R, Xiong L, Cha B, Jin S, Li X, Tse CM, Zachos NC, Donowitz M. NHERF2/NHERF3 protein heterodimerization and macrocomplex formation are required for the inhibition of NHE3 activity by carbachol. J Biol Chem 2014; 289:20039-53. [PMID: 24867958 DOI: 10.1074/jbc.m114.562413] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
NHERF1, NHERF2, and NHERF3 belong to the NHERF (Na(+)/H(+) exchanger regulatory factor) family of PSD-95/Discs-large/ZO-1 (PDZ) scaffolding proteins. Individually, each NHERF protein has been shown to be involved in the regulation of multiple receptors or transporters including Na(+)/H(+) exchanger 3 (NHE3). Although NHERF dimerizations have been reported, results have been inconsistent, and the physiological function of NHERF dimerizations is still unknown. The current study semiquantitatively compared the interaction strength among all possible homodimerizations and heterodimerizations of these three NHERF proteins by pulldown and co-immunoprecipitation assays. Both methods showed that NHERF2 and NHERF3 heterodimerize as the strongest interaction among all NHERF dimerizations. In vivo NHERF2/NHERF3 heterodimerization was confirmed by FRET and FRAP (fluorescence recovery after photobleach). NHERF2/NHERF3 heterodimerization is mediated by PDZ domains of NHERF2 and the C-terminal PDZ domain recognition motif of NHERF3. The NHERF3-4A mutant is defective in heterodimerization with NHERF2 and does not support the inhibition of NHE3 by carbachol. This suggests a role for NHERF2/NHERF3 heterodimerization in the regulation of NHE3 activity. In addition, both PDZ domains of NHERF2 could be simultaneously occupied by NHERF3 and another ligand such as NHE3, α-actinin-4, and PKCα, promoting formation of NHE3 macrocomplexes. This study suggests that NHERF2/NHERF3 heterodimerization mediates the formation of NHE3 macrocomplexes, which are required for the inhibition of NHE3 activity by carbachol.
Collapse
Affiliation(s)
- Jianbo Yang
- From the Department of Medicine, Division of Gastroenterology and
| | - Varsha Singh
- From the Department of Medicine, Division of Gastroenterology and
| | - Tian-E Chen
- From the Department of Medicine, Division of Gastroenterology and
| | - Rafiquel Sarker
- From the Department of Medicine, Division of Gastroenterology and
| | - Lishou Xiong
- From the Department of Medicine, Division of Gastroenterology and
| | - Boyoung Cha
- From the Department of Medicine, Division of Gastroenterology and
| | - Shi Jin
- From the Department of Medicine, Division of Gastroenterology and
| | - Xuhang Li
- From the Department of Medicine, Division of Gastroenterology and
| | - C Ming Tse
- From the Department of Medicine, Division of Gastroenterology and
| | | | - Mark Donowitz
- From the Department of Medicine, Division of Gastroenterology and Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
13
|
Zachos NC, Alamelumangpuram B, Lee LJ, Wang P, Kovbasnjuk O. Carbachol-mediated endocytosis of NHE3 involves a clathrin-independent mechanism requiring lipid rafts and Cdc42. Cell Physiol Biochem 2014; 33:869-81. [PMID: 24713550 PMCID: PMC4052452 DOI: 10.1159/000358659] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2014] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND In intestinal epithelial cells, acute regulation of the brush border Na(+)/H(+) exchanger, NHE3, usually occurs by changes in endocytosis and/or exocytosis. Constitutive NHE3 endocytosis involves clathrin. Carbachol (CCH), which elevates intracellular Ca(2+) ([Ca(2+)]i), decreases NHE3 activity and stimulates endocytosis; however, the mechanism involved in calcium-mediated endocytosis of NHE3 is unclear. A pool of NHE3 resides in lipid rafts, which contributes to basal, but not cAMP-mediated, NHE3 trafficking, suggesting that an alternative mechanism exists for NHE3 endocytosis. Cdc42 was demonstrated to play an integral role in some cases of cholesterol-sensitive, clathrin-independent endocytosis. Therefore, the current study was designed to test the hypotheses that (1) clathrin-mediated endocytosis (CME) is involved in constitutive, but not CCH-mediated, endocytosis of NHE3, and (2) CCH-mediated endocytosis of NHE3 occurs through a lipid raft, activated Cdc42-dependent pathway that does not involve clathrin. METHODS The role of Cdc42 and lipid rafts on NHE3 activity and endocytosis were investigated in polarized Caco-2/BBe cells using pharmacological and shRNA knockdown approaches. RESULTS Basal NHE3 activity was increased in the presence of CME blockers (chlorpromazine; K(+) depletion) supporting previous reports that constitutive NHE3 endocytosis is clathrin dependent. In contrast, CCH-inhibition of NHE3 activity was abolished in Caco-2/BBe cells treated with MβCD (to disrupt lipid rafts) as well as in Cdc42 knockdown cells but was unaffected by CME blockers. CONCLUSION CCH-mediated inhibition of NHE3 activity is not dependent on clathrin and involves lipid rafts and requires Cdc42.
Collapse
Affiliation(s)
- Nicholas C Zachos
- Department of Medicine/Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | | | |
Collapse
|
14
|
Singh V, Lin R, Yang J, Cha B, Sarker R, Tse CM, Donowitz M. AKT and GSK-3 are necessary for direct ezrin binding to NHE3 as part of a C-terminal stimulatory complex: role of a novel Ser-rich NHE3 C-terminal motif in NHE3 activity and trafficking. J Biol Chem 2014; 289:5449-61. [PMID: 24398676 DOI: 10.1074/jbc.m113.521336] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Basal activity of the BB Na(+)/H(+) exchanger NHE3 requires multiprotein complexes that form on its C terminus. One complex stimulates basal NHE3 activity and contains ezrin and phosphoinositides as major components; how it stimulates NHE3 activity is not known. This study tested the hypothesis that ezrin dynamically associates with this complex, which sets ezrin binding. NHE3 activity was reduced by an Akti. This effect was eliminated if ezrin binding to NHE3 was inhibited by a point mutant. Recombinant AKT phosphorylated NHE3 C terminus in the domain ezrin directly binds. This domain (amino acids 475-589) is predicted to be α-helical and contains a conserved cluster of three serines (Ser(515), Ser(522), and Ser(526)). Point mutations of two of these (S515A, S515D, or S526A) reduced basal NHE3 activity and surface expression and had no Akti inhibition. S526D had NHE3 activity equal to wild type with normal Akti inhibition. Ezrin binding to NHE3 was regulated by Akt, being eliminated by Akti. NHE3-S515A and -S526D did not bind ezrin; NHE3-S515D had reduced ezrin binding; NHE3-S526D bound ezrin normally. NHE3-Ser(526) is predicted to be a GSK-3 kinase phosphorylation site. A GSK-3 inhibitor reduced basal NHE3 activity as well as ezrin-NHE3 binding, and this effect was eliminated in NHE3-S526A and -S526D mutants. The conclusions were: 1) NHE3 basal activity is regulated by a signaling complex that is controlled by sequential effects of two kinases, Akt and GSK-3, which act on a Ser cluster in the same NHE3 C-terminal domain that binds ezrin; and 2) these kinases regulate the dynamic association of ezrin with NHE3 to affect basal NHE3 activity.
Collapse
Affiliation(s)
- Varsha Singh
- From the Departments of Physiology and Medicine, Gastroenterology Division, Johns, Hopkins University School of Medicine, Baltimore, Maryland 21205 and
| | | | | | | | | | | | | |
Collapse
|
15
|
Jakab RL, Collaco AM, Ameen NA. Characterization of CFTR High Expresser cells in the intestine. Am J Physiol Gastrointest Liver Physiol 2013; 305:G453-65. [PMID: 23868408 PMCID: PMC3761243 DOI: 10.1152/ajpgi.00094.2013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The CFTR High Expresser (CHE) cells express eightfold higher levels of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel compared with neighboring enterocytes and were first identified by our laboratory (Ameen et al., Gastroenterology 108: 1016, 1995). We used double-label immunofluorescence microscopy to further study these enigmatic epithelial cells in rat intestine in vivo or ex vivo. CHE cells were found in duodenum, most frequent in proximal jejunum, and absent in ileum and colon. CFTR abundance increased in CHE cells along the crypt-villus axis. The basolateral Na(+)K(+)Cl(-) cotransporter NKCC1, a key transporter involved in Cl(-) secretion, was detected at similar levels in CHE cells and neighboring enterocytes at steady state. Microvilli appeared shorter in CHE cells, with low levels of Myosin 1a, a villus enterocyte-specific motor that retains sucrase/isomaltase in the brush-border membrane (BBM). CHE cells lacked alkaline phosphatase and absorptive villus enterocyte BBM proteins, including Na(+)H(+) exchanger NHE3, Cl(-)/HCO3(-) exchanger SLC26A6 (putative anion exchanger 1), and sucrase/isomaltase. High levels of the vacuolar-ATPase proton pump were observed in the apical domain of CHE cells. Levels of the NHE regulatory factor NHERF1, Na-K-ATPase, and Syntaxin 3 were similar to that of neighboring enterocytes. cAMP or acetylcholine stimulation robustly increased apical CFTR and basolateral NKCC1 disproportionately in CHE cells relative to neighboring enterocytes. These data strongly argue for a specialized role of CHE cells in Cl(-)-mediated "high-volume" fluid secretion on the villi of the proximal small intestine.
Collapse
Affiliation(s)
- Robert L. Jakab
- Departments of 1Pediatrics/Gastroenterology and Hepatology, and
| | - Anne M. Collaco
- Departments of 1Pediatrics/Gastroenterology and Hepatology, and
| | - Nadia A. Ameen
- Departments of 1Pediatrics/Gastroenterology and Hepatology, and ,2Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
16
|
Pelaseyed T, Gustafsson JK, Gustafsson IJ, Ermund A, Hansson GC. Carbachol-induced MUC17 endocytosis is concomitant with NHE3 internalization and CFTR membrane recruitment in enterocytes. Am J Physiol Cell Physiol 2013; 305:C457-67. [PMID: 23784542 DOI: 10.1152/ajpcell.00141.2013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We have reported that transmembrane mucin MUC17 binds PDZ protein PDZK1, which retains MUC17 apically in enterocytes. MUC17 and transmembrane mucins MUC3 and MUC12 are suggested to build the enterocyte apical glycocalyx. Carbachol (CCh) stimulation of the small intestine results in gel-forming mucin secretion from goblet cells, something that requires adjacent enterocytes to secrete chloride and bicarbonate for proper mucin formation. Surface labeling and confocal imaging demonstrated that apically expressed MUC17 in Caco-2 cells and Muc3(17) in murine enterocytes were endocytosed upon stimulation with CCh. Relocation of MUC17 in response to CCh was specific as MUC3 and MUC12 did not relocate following CCh stimulation. MUC17 colocalized with PDZK1 under basal conditions, while MUC17 relocated to the terminal web and into early endosomes after CCh stimulation. CCh stimulation concomitantly internalized the Na(+/)H(+) exchanger 3 (NHE3) and recruited cystic fibrosis transmembrane conductance regulator (CFTR) to the apical membranes, a process that was important for CFTR-mediated bicarbonate secretion necessary for proper gel-forming mucin unfolding. The reason for the specific internalization of MUC17 is not understood, but it could limit the diffusion barrier for ion secretion caused by the apical enterocyte glycocalyx or alternatively act to sample luminal bacteria. Our results reveal well-orchestrated mucus secretion and trafficking of ion channels and the MUC17 mucin.
Collapse
Affiliation(s)
- Thaher Pelaseyed
- Department of Medical Biochemistry, University of Gothenburg, Gothenburg, Sweden
| | | | | | | | | |
Collapse
|
17
|
Zachos NC, Lee LJ, Kovbasnjuk O, Li X, Donowitz M. PLC-γ directly binds activated c-Src, which is necessary for carbachol-mediated inhibition of NHE3 activity in Caco-2/BBe cells. Am J Physiol Cell Physiol 2013; 305:C266-75. [PMID: 23703528 DOI: 10.1152/ajpcell.00277.2012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Elevated levels of intracellular Ca(2+) ([Ca(2+)]i) inhibit Na(+)/H(+) exchanger 3 (NHE3) activity in the intact intestine. We previously demonstrated that PLC-γ directly binds NHE3, an interaction that is necessary for [Ca(2+)]i inhibition of NHE3 activity, and that PLC-γ Src homology 2 (SH2) domains may scaffold Ca(2+) signaling proteins necessary for regulation of NHE3 activity. [Ca(2+)]i regulation of NHE3 activity is also c-Src dependent; however, the mechanism by which c-Src is involved is undetermined. We hypothesized that the SH2 domains of PLC-γ might link c-Src to NHE3-containing complexes to mediate [Ca(2+)]i inhibition of NHE3 activity. In Caco-2/BBe cells, carbachol (CCh) decreased NHE3 activity by ∼40%, an effect abolished with the c-Src inhibitor PP2. CCh treatment increased the amount of active c-Src as early as 1 min through increased Y(416) phosphorylation. Coimmunoprecipitation demonstrated that c-Src associated with PLC-γ, but not NHE3, under basal conditions, an interaction that increased rapidly after CCh treatment and occurred before the dissociation of PLC-γ and NHE3 that occurred 10 min after CCh treatment. Finally, direct binding to c-Src only occurred through the PLC-γ SH2 domains, an interaction that was prevented by blocking the PLC-γ SH2 domain. This study demonstrated that c-Src 1) activity is necessary for [Ca(2+)]i inhibition of NHE3 activity, 2) activation occurs rapidly (∼1 min) after CCh treatment, 3) directly binds PLC-γ SH2 domains and associates dynamically with PLC-γ under elevated [Ca(2+)]i conditions, and 4) does not directly bind NHE3. Under elevated [Ca(2+)]i conditions, PLC-γ scaffolds c-Src into NHE3-containing multiprotein complexes before dissociation of PLC-γ from NHE3 and subsequent endocytosis of NHE3.
Collapse
Affiliation(s)
- Nicholas C Zachos
- Department of Medicine/Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| | | | | | | | | |
Collapse
|
18
|
Yang J, Singh V, Cha B, Chen TE, Sarker R, Murtazina R, Jin S, Zachos NC, Patterson GH, Tse CM, Kovbasnjuk O, Li X, Donowitz M. NHERF2 protein mobility rate is determined by a unique C-terminal domain that is also necessary for its regulation of NHE3 protein in OK cells. J Biol Chem 2013; 288:16960-16974. [PMID: 23612977 DOI: 10.1074/jbc.m113.470799] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Na(+)/H(+) exchanger regulatory factor (NHERF) proteins are a family of PSD-95/Discs-large/ZO-1 (PDZ)-scaffolding proteins, three of which (NHERFs 1-3) are localized to the brush border in kidney and intestinal epithelial cells. All NHERF proteins are involved in anchoring membrane proteins that contain PDZ recognition motifs to form multiprotein signaling complexes. In contrast to their predicted immobility, NHERF1, NHERF2, and NHERF3 were all shown by fluorescence recovery after photobleaching/confocal microscopy to be surprisingly mobile in the microvilli of the renal proximal tubule OK cell line. Their diffusion coefficients, although different among the three, were all of the same magnitude as that of the transmembrane proteins, suggesting they are all anchored in the microvilli but to different extents. NHERF3 moves faster than NHERF1, and NHERF2 moves the slowest. Several chimeras and mutants of NHERF1 and NHERF2 were made to determine which part of NHERF2 confers the slower mobility rate. Surprisingly, the slower mobility rate of NHERF2 was determined by a unique C-terminal domain, which includes a nonconserved region along with the ezrin, radixin, moesin (ERM) binding domain. Also, this C-terminal domain of NHERF2 determined its greater detergent insolubility and was necessary for the formation of larger multiprotein NHERF2 complexes. In addition, this NHERF2 domain was functionally significant in NHE3 regulation, being necessary for stimulation by lysophosphatidic acid of activity and increased mobility of NHE3, as well as necessary for inhibition of NHE3 activity by calcium ionophore 4-Br-A23187. Thus, multiple functions of NHERF2 require involvement of an additional domain in this protein.
Collapse
Affiliation(s)
- Jianbo Yang
- Department of Medicine, Division of Gastroenterology, Baltimore, Maryland 21205
| | - Varsha Singh
- Department of Medicine, Division of Gastroenterology, Baltimore, Maryland 21205
| | - Boyoung Cha
- Department of Medicine, Division of Gastroenterology, Baltimore, Maryland 21205
| | - Tian-E Chen
- Department of Medicine, Division of Gastroenterology, Baltimore, Maryland 21205
| | - Rafiquel Sarker
- Department of Medicine, Division of Gastroenterology, Baltimore, Maryland 21205
| | - Rakhilya Murtazina
- Department of Medicine, Division of Gastroenterology, Baltimore, Maryland 21205
| | - Shi Jin
- Department of Medicine, Division of Gastroenterology, Baltimore, Maryland 21205
| | - Nicholas C Zachos
- Department of Medicine, Division of Gastroenterology, Baltimore, Maryland 21205
| | - George H Patterson
- Biophotonics Section, National Institute of Biomedical Imaging and Bioengineering, NIH, Bethesda, Maryland 20892
| | - C Ming Tse
- Department of Medicine, Division of Gastroenterology, Baltimore, Maryland 21205
| | - Olga Kovbasnjuk
- Department of Medicine, Division of Gastroenterology, Baltimore, Maryland 21205
| | - Xuhang Li
- Department of Medicine, Division of Gastroenterology, Baltimore, Maryland 21205
| | - Mark Donowitz
- Department of Medicine, Division of Gastroenterology, Baltimore, Maryland 21205; Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205.
| |
Collapse
|
19
|
Jakab RL, Collaco AM, Ameen NA. Cell-specific effects of luminal acid, bicarbonate, cAMP, and carbachol on transporter trafficking in the intestine. Am J Physiol Gastrointest Liver Physiol 2012; 303:G937-50. [PMID: 22936272 PMCID: PMC3469693 DOI: 10.1152/ajpgi.00452.2011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Changes in intestinal luminal pH affect mucosal ion transport. The aim of this study was to compare how luminal pH and specific second messengers modulate the membrane traffic of four major ion transporters (CFTR, NHE3, NKCC1, and NBCe1) in rat small intestine. Ligated duodenal, jejunal, and ileal segments were infused with acidic or alkaline saline, 8-Br-cAMP, or the calcium agonist carbachol in vivo for 20 min. Compared with untreated intestine, lumen pH was reduced after cAMP or carbachol and increased following HCO(3)(-)-saline. Following HCl-saline, lumen pH was restored to control pH levels. All four secretory stimuli resulted in brush-border membrane (BBM) recruitment of CFTR in crypts and villi. In villus enterocytes, CFTR recruitment was coincident with internalization of BBM NHE3 and basolateral membrane recruitment of the bicarbonate transporter NBCe1. Both cAMP and carbachol recruited NKCC1 to the basolateral membrane of enterocytes, while luminal acid or HCO(3)(-) retained NKCC1 in intracellular vesicles. Luminal acid resulted in robust recruitment of CFTR and NBCe1 to their respective enterocyte membrane domains in the upper third of the villi; luminal HCO(3)(-) induced similar membrane changes lower in the villi. These findings indicate that each stimulus promotes a specific transporter trafficking response along the crypt-villus axis. This is the first demonstration that physiologically relevant secretory stimuli exert their actions in villus enterocytes by membrane recruitment of CFTR and NBCe1 in tandem with NHE3 internalization.
Collapse
Affiliation(s)
- Robert L. Jakab
- 1Departments of Pediatrics/Gastroenterology and Hepatology, and
| | - Anne M. Collaco
- 1Departments of Pediatrics/Gastroenterology and Hepatology, and
| | - Nadia A. Ameen
- 1Departments of Pediatrics/Gastroenterology and Hepatology, and ,2Cellular and Molecular Physiology Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
20
|
Soundararajan R, Ziera T, Koo E, Ling K, Wang J, Borden SA, Pearce D. Scaffold protein connector enhancer of kinase suppressor of Ras isoform 3 (CNK3) coordinates assembly of a multiprotein epithelial sodium channel (ENaC)-regulatory complex. J Biol Chem 2012; 287:33014-25. [PMID: 22851176 DOI: 10.1074/jbc.m112.389148] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hormone regulation of ion transport in the kidney tubules is essential for fluid and electrolyte homeostasis in vertebrates. A large body of evidence has suggested that transporters and channels exist in multiprotein regulatory complexes; however, relatively little is known about the composition of these complexes or their assembly. The epithelial sodium channel (ENaC) in particular is tightly regulated by the salt-regulatory hormone aldosterone, which acts at least in part by increasing expression of the serine-threonine kinase SGK1. Here we show that aldosterone induces the formation of a 1.0-1.2-MDa plasma membrane complex, which includes ENaC, SGK1, and the ENaC inhibitor Nedd4-2, a key target of SGK1. We further show that this complex contains the PDZ domain-containing protein connector enhancer of kinase suppressor of Ras isoform 3 (CNK3). CNK3 physically interacts with ENaC, Nedd4-2, and SGK1; enhances the interactions among them; and stimulates ENaC function in a PDZ domain-dependent, aldosterone-induced manner. These results strongly suggest that CNK3 is a molecular scaffold, which coordinates the assembly of a multiprotein ENaC-regulatory complex and hence plays a central role in Na(+) homeostasis.
Collapse
Affiliation(s)
- Rama Soundararajan
- Division of Nephrology, Department of Medicine, University of California, San Francisco, California 94143, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Hassan HA, Cheng M, Aronson PS. Cholinergic signaling inhibits oxalate transport by human intestinal T84 cells. Am J Physiol Cell Physiol 2011; 302:C46-58. [PMID: 21956166 DOI: 10.1152/ajpcell.00075.2011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Urolithiasis remains a very common disease in Western countries. Seventy to eighty percent of kidney stones are composed of calcium oxalate, and minor changes in urinary oxalate affect stone risk. Intestinal oxalate secretion mediated by anion exchanger SLC26A6 plays a major constitutive role in limiting net absorption of ingested oxalate, thereby preventing hyperoxaluria and calcium oxalate urolithiasis. Using the relatively selective PKC-δ inhibitor rottlerin, we had previously found that PKC-δ activation inhibits Slc26a6 activity in mouse duodenal tissue. To identify a model system to study physiologic agonists upstream of PKC-δ, we characterized the human intestinal cell line T84. Knockdown studies demonstrated that endogenous SLC26A6 mediates most of the oxalate transport by T84 cells. Cholinergic stimulation with carbachol modulates intestinal ion transport through signaling pathways including PKC activation. We therefore examined whether carbachol affects oxalate transport in T84 cells. We found that carbachol significantly inhibited oxalate transport by T84 cells, an effect blocked by rottlerin. Carbachol also led to significant translocation of PKC-δ from the cytosol to the membrane of T84 cells. Using pharmacological inhibitors, we observed that carbachol inhibits oxalate transport through the M(3) muscarinic receptor and phospholipase C. Utilizing the Src inhibitor PP2 and phosphorylation studies, we found that the observed regulation downstream of PKC-δ is partially mediated by c-Src. Biotinylation studies revealed that carbachol inhibits oxalate transport by reducing SLC26A6 surface expression. We conclude that carbachol negatively regulates oxalate transport by reducing SLC26A6 surface expression in T84 cells through signaling pathways including the M(3) muscarinic receptor, phospholipase C, PKC-δ, and c-Src.
Collapse
Affiliation(s)
- Hatim A Hassan
- Section of Nephrology, Dept. of Medicine, The Univ. of Chicago, 5841 S. Maryland Ave., MC5100, Chicago, IL 60637, USA.
| | | | | |
Collapse
|
22
|
Zhu X, Cha B, Zachos NC, Sarker R, Chakraborty M, Chen TE, Kovbasnjuk O, Donowitz M. Elevated calcium acutely regulates dynamic interactions of NHERF2 and NHE3 proteins in opossum kidney (OK) cell microvilli. J Biol Chem 2011; 286:34486-96. [PMID: 21799002 DOI: 10.1074/jbc.m111.230219] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The brush border (BB) Na(+)/H(+) exchanger NHE3 is rapidly activated or inhibited by changes in trafficking, which mimics renal and intestinal physiology. However, there is a paradox in that NHE3 has limited mobility in the BB due to its binding to the multi-PDZ domain containing the NHERF family. To allow increased endocytosis, as occurs with elevated intracellular Ca(2+), we hypothesized that NHE3 had to be, at least transiently, released from the BB cytoskeleton. Because NHERF1 and -2 are localized at the BB, where they bind NHE3 as well as the cytoskeleton, we tested whether either or both might dynamically interact with NHE3 as part of Ca(2+) signaling. We employed FRET to study close association of NHE3 and these NHERFs and fluorescence recovery after photobleaching to monitor NHE3 mobility in the apical domain in polarized opossum kidney cells. Under basal conditions, NHERF2 and NHE3 exhibited robust FRET signaling. Within 1 min of A23187 (0.5 μm) exposure, the NHERF2-NHE3 FRET signal was abolished, and BB NHE3 mobility was transiently increased. The dynamics in FRET signal and NHE3 mobility correlated well with a change in co-precipitation of NHE3 and NHERF2 but not NHERF1. We conclude the following. 1) Under basal conditions, NHE3 closely associates with NHERF2 in opossum kidney cell microvilli. 2) Within 1 min of elevated Ca(2+), the close association of NHE3-NHERF2 is abolished but is re-established in ∼60 min. 3) The change in NHE3-NHERF2 association is accompanied by an increased BB mobile fraction of NHE3, which contributes to inhibition of NHE3 transport activity via increased endocytosis.
Collapse
Affiliation(s)
- Xinjun Zhu
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Lin R, Murtazina R, Cha B, Chakraborty M, Sarker R, Chen TE, Lin Z, Hogema BM, de Jonge HR, Seidler U, Turner JR, Li X, Kovbasnjuk O, Donowitz M. D-glucose acts via sodium/glucose cotransporter 1 to increase NHE3 in mouse jejunal brush border by a Na+/H+ exchange regulatory factor 2-dependent process. Gastroenterology 2011; 140:560-71. [PMID: 20977906 PMCID: PMC3031713 DOI: 10.1053/j.gastro.2010.10.042] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 09/13/2010] [Accepted: 10/15/2010] [Indexed: 01/13/2023]
Abstract
BACKGROUND & AIMS Oral rehydration solutions reduce diarrhea-associated mortality. Stimulated sodium absorption by these solutions is mediated by the Na(+)/H(+) hydrogen exchanger NHE3 and is increased by Na(+)-glucose co-transport in vitro, but the mechanisms of this up-regulated process are only partially understood. METHODS Intracellular pH was measured in jejunal enterocytes of wild-type mice and mice with disrupted Na+/H+ exchange regulatory co-factor 2 (NHERF2-/- mice) by multiphoton microscopy. Diarrhea was induced by cholera toxin. Caco-2BBe cells that express NHE3 and the sodium/glucose cotransporter 1 (SGLT1) were studied by fluorometry, before and after siRNA-mediated knockdown of NHERF1 or NHERF2. NHE3 distribution was assessed by cell-surface biotinylation and confocal microscopy. Brush-border mobility was determined by fluorescence recovery after photobleaching and confocal microscopy. RESULTS The nonmetabolized SGLT1 substrate α-methyl-D-Glu (α-MD-G) activated jejunal NHE3; this process required Akt and NHERF2. α-MD-G normalized NHE3 activity after cholera toxin-induced diarrhea. α-MD-G-stimulated jejunal NHE3 activity was defective in NHERF2-/- mice and cells with NHERF2 knockdown, but occurred normally with NHERF1 knockdown; was associated with increased NHE3 surface expression in Caco-2 cells, which also was NHERF2-dependent; was associated with dissociation of NHE3 from NHERF2 and an increase in the NHE3 mobile fraction from the brush border; and was accompanied by a NHERF2 ezrin-radixin-moesin-binding domain-dependent increase in co-precipitation of ezrin with NHE3. CONCLUSIONS SGLT1-mediated Na-glucose co-transport stimulates NHE3 activity in vivo by an Akt- and NHERF2-dependent signaling pathway. It is associated with increased brush-border NHE3 and association between ezrin and NHE3. Activation of NHE3 corrects cholera toxin-induced defects in Na absorption and might contribute to the efficacy of oral rehydration solutions.
Collapse
Affiliation(s)
- Rong Lin
- Department of Medicine, Division of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA, GI Division, Wuhan Union Hospital, Tongi Medical School, Huazhong University of Science and Technology, 1277 Jiefang Road, Wuhan, China
| | - Rakhilya Murtazina
- Department of Medicine, Division of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Boyoung Cha
- Department of Medicine, Division of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Molee Chakraborty
- Department of Medicine, Division of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Rafiquel Sarker
- Department of Medicine, Division of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Tian-e Chen
- Department of Medicine, Division of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Zhihong Lin
- Department of Medicine, Division of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Boris M. Hogema
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Hugo R. de Jonge
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Ursula Seidler
- Department of Pathology, The University of Chicago, Chicago, Illinois, USA
| | - Jerrold R. Turner
- Department of Physiology, Division of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Xuhang Li
- Department of Medicine, Division of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Olga Kovbasnjuk
- Department of Medicine, Division of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Mark Donowitz
- Department of Medicine, Division of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA, GI Division, Wuhan Union Hospital, Tongi Medical School, Huazhong University of Science and Technology, 1277 Jiefang Road, Wuhan, China
| |
Collapse
|
24
|
Wani NA, Kaur J. Reduced levels of folate transporters (PCFT and RFC) in membrane lipid rafts result in colonic folate malabsorption in chronic alcoholism. J Cell Physiol 2011; 226:579-87. [PMID: 21069807 DOI: 10.1002/jcp.22525] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We studied the effect of chronic ethanol ingestion on folate transport across the colonic apical membranes (CAM) in rats. Male Wistar rats were fed 1 g/kg body weight/day ethanol (20%) solution orally for 3 months and folate transport was studied in the isolated colon apical membrane vesicles. The folate transport was found to be carrier mediated, saturable, with pH optima at 5.0. Chronic ethanol ingestion reduced the folate transport across the CAM by decreasing the affinity of transporters (high Km) for the substrate and by decreasing the number of transporter molecules (low Vmax) on the colon luminal surface. The decreased transport activity at the CAM was associated with down-regulation of the proton-coupled folate transporter (PCFT) and the reduced folate carrier (RFC) which resulted in decreased PCFT and RFC protein levels in the colon of rats fed alcohol chronically. Moreover, the PCFT and the RFC were found to be distributed in detergent insoluble fraction of the CAM in rats. Floatation experiments on Optiprep density gradients demonstrated the association of the PCFT and the RFC protein with lipid rafts (LR). Chronic alcoholism decreased the PCFT and the RFC protein levels in the CAM LR in accordance with the decreased synthesis. Hence, we propose that downregulation in the expression of the PCFT and the RFC in colon results in reduced levels of these transporters in colon apical membrane LR as a mechanism of folate malabsorption during chronic alcoholism.
Collapse
Affiliation(s)
- Nissar Ahmad Wani
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | | |
Collapse
|
25
|
Jakab RL, Collaco AM, Ameen NA. Physiological relevance of cell-specific distribution patterns of CFTR, NKCC1, NBCe1, and NHE3 along the crypt-villus axis in the intestine. Am J Physiol Gastrointest Liver Physiol 2011; 300:G82-98. [PMID: 21030607 PMCID: PMC3025502 DOI: 10.1152/ajpgi.00245.2010] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Accepted: 10/27/2010] [Indexed: 01/31/2023]
Abstract
We examined the cell-specific subcellular expression patterns for sodium- and potassium-coupled chloride (NaK2Cl) cotransporter 1 (NKCC1), Na(+) bicarbonate cotransporter (NBCe1), cystic fibrosis transmembrane conductance regulator (CFTR), and Na(+)/H(+) exchanger 3 (NHE3) to understand the functional plasticity and synchronization of ion transport functions along the crypt-villus axis and its relevance to intestinal disease. In the unstimulated intestine, all small intestinal villus enterocytes coexpressed apical CFTR and NHE3, basolateral NBCe1, and mostly intracellular NKCC1. All (crypt and villus) goblet cells strongly expressed basolateral NKCC1 (at approximately three-fold higher levels than villus enterocytes), but no CFTR, NBCe1, or NHE3. Lower crypt cells coexpressed apical CFTR and basolateral NKCC1, but no NHE3 or NBCe1 (except NBCe1-expressing proximal colonic crypts). CFTR, NBCe1, and NKCC1 colocalized with markers of early and recycling endosomes, implicating endocytic recycling in cell-specific anion transport. Brunner's glands of the proximal duodenum coexpressed high levels of apical/subapical CFTR and basolateral NKCC1, but very low levels of NBCe1, consistent with secretion of Cl(-)-enriched fluid into the crypt. The cholinergic agonist carbachol rapidly (within 10 min) reduced cell volume along the entire crypt/villus axis and promoted NHE3 internalization into early endosomes. In contrast, carbachol induced membrane recruitment of NKCC1 and CFTR in all crypt and villus enterocytes, NKCC1 in all goblet cells, and NBCe1 in all villus enterocytes. These observations support regulated vesicle traffic in Cl(-) secretion by goblet cells and Cl(-) and HCO(3)(-) secretion by villus enterocytes during the transient phase of cholinergic stimulation. Overall, the carbachol-induced membrane trafficking profile of the four ion transporters supports functional plasticity of the small intestinal villus epithelium that enables it to conduct both absorptive and secretory functions.
Collapse
Affiliation(s)
- Robert L Jakab
- Department of Pediatrics/Gastroenterology and Hepatology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | |
Collapse
|
26
|
Sarker R, Valkhoff VE, Zachos NC, Lin R, Cha B, Chen TE, Guggino S, Zizak M, de Jonge H, Hogema B, Donowitz M. NHERF1 and NHERF2 are necessary for multiple but usually separate aspects of basal and acute regulation of NHE3 activity. Am J Physiol Cell Physiol 2010; 300:C771-82. [PMID: 21191106 DOI: 10.1152/ajpcell.00119.2010] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Na(+)/H(+) exchanger 3 (NHE3) is expressed in the brush border (BB) of intestinal epithelial cells and accounts for the majority of neutral NaCl absorption. It has been shown that the Na(+)/H(+) exchanger regulatory factor (NHERF) family members of multi-PDZ domain-containing scaffold proteins bind to the NHE3 COOH terminus and play necessary roles in NHE3 regulation in intestinal epithelial cells. Most studies of NHE3 regulation have been in cell models in which NHERF1 and/or NHERF2 were overexpressed. We have now developed an intestinal Na(+) absorptive cell model in Caco-2/bbe cells by expressing hemagglutinin (HA)-tagged NHE3 with an adenoviral infection system. Roles of NHERF1 and NHERF2 in NHE3 regulation were determined, including inhibition by cAMP, cGMP, and Ca(2+) and stimulation by EGF, with knockdown (KD) approaches with lentivirus (Lenti)-short hairpin RNA (shRNA) and/or adenovirus (Adeno)-small interfering RNA (siRNA). Stable infection of Caco-2/bbe cells by NHERF1 or NHERF2 Lenti-shRNA significantly and specifically reduced NHERF protein expression by >80%. NHERF1 KD reduced basal NHE3 activity, while NHERF2 KD stimulated NHE3 activity. siRNA-mediated (transient) and Lenti-shRNA-mediated (stable) gene silencing of NHERF2 (but not of NHERF1) abolished cGMP- and Ca(2+)-dependent inhibition of NHE3. KD of NHERF1 or NHERF2 alone had no effect on cAMP inhibition of NHE3, but KD of both simultaneously abolished the effect of cAMP. The stimulatory effect of EGF on NHE3 was eliminated in NHERF1-KD but occurred normally in NHERF2-KD cells. These findings show that both NHERF2 and NHERF1 are involved in setting NHE3 activity. NHERF2 is necessary for cGMP-dependent protein kinase (cGK) II- and Ca(2+)-dependent inhibition of NHE3. cAMP-dependent inhibition of NHE3 activity requires either NHERF1 or NHERF2. Stimulation of NHE3 activity by EGF is NHERF1 dependent.
Collapse
Affiliation(s)
- Rafiquel Sarker
- Gastroenterology and Hepatology Division, Department of Medicine, Johns Hopkins Univ. School of Medicine, Baltimore, MD 21205-2195, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Cha B, Zhu XC, Chen W, Jones M, Ryoo S, Zachos NC, Chen TE, Lin R, Sarker R, Kenworthy AK, Tse M, Kovbasnjuk O, Donowitz M. NHE3 mobility in brush borders increases upon NHERF2-dependent stimulation by lyophosphatidic acid. J Cell Sci 2010; 123:2434-43. [PMID: 20571054 DOI: 10.1242/jcs.056713] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The epithelial brush border (BB) Na(+)/H(+) exchanger NHE3 is associated with the actin cytoskeleton by binding both directly and indirectly to ezrin; indirect binding is via attachment to NHERF family proteins. NHE3 mobility in polarized epithelial cell BBs is restricted by the actin cytoskeleton and NHERF binding such that only approximately 30% of NHE3 in the apical domain of an OK cell line stably expressing NHERF2 is mobile, as judged by FRAP analysis. Given that levels of NHE3 are partially regulated by changes in trafficking, we investigated whether the cytoskeleton association of NHE3 was dynamic and changed as part of acute regulation to allow NHE3 trafficking. The agonist studied was lysophosphatidic acid (LPA), an inflammatory mediator, which acutely stimulates NHE3 activity by increasing the amount of NHE3 on the BBs by stimulated exocytosis. LPA acutely stimulated NHE3 activity in OK cells stably expressing NHERF2. Two conditions that totally prevented LPA stimulation of NHE3 activity only partially prevented stimulation of NHE3 mobility: the phosphoinositide 3-kinase (PI3K) inhibitor LY294002, and the NHE3F1 double mutant which has minimal direct binding of NHE3 to ezrin. These results show that LPA stimulation of NHE3 mobility occurs in two parts: (1) PI3K-dependent exocytic trafficking to the BB and (2) an increase in surface mobility of NHE3 in BBs under basal conditions. Moreover, the LPA stimulatory effect on NHE3 mobility required NHERF2. Although NHE3 and NHERF2 co-precipitated under basal conditions, they failed to co-precipitate 30 minutes after addition of LPA, whereas the physical association was re-established by 50-60 minutes. This dynamic interaction between NHERF2 and NHE3 was confirmed by acceptor photobleaching Förster Resonance energy Transfer (FRET). The restricted mobility of NHE3 in BBs under basal conditions as a result of cytoskeleton association is therefore dynamic and is reversed as part of acute LPA stimulation of NHE3. We suggest that this acute but transient increase in NHE3 mobility induced by LPA occurs via two processes: addition of NHE3 to the BB by exocytosis, a process which precedes binding of NHE3 to the actin cytoskeleton via NHERF2-ezrin, and by release of NHERF2 from the NHE3 already localized in the apical membrane, enabling NHE3 to distribute throughout the microvilli. These fractions of NHE3 make up a newly identified pool of NHE3 called the 'transit pool'. Moreover, our results show that there are two aspects of LPA signaling involved in stimulation of NHE3 activity: PI3K-dependent stimulated NHE3 exocytosis and the newly described, PI3K-independent dissociation of microvillar NHE3 from NHERF2.
Collapse
Affiliation(s)
- Boyoung Cha
- Departments of Physiology and Medicine, Gastroenterology Division, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, MD 212052, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Mechanisms of the regulation of the intestinal Na+/H+ exchanger NHE3. J Biomed Biotechnol 2010; 2010:238080. [PMID: 20011065 PMCID: PMC2789519 DOI: 10.1155/2010/238080] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Accepted: 09/11/2009] [Indexed: 01/25/2023] Open
Abstract
A major of Na+ absorptive process in the proximal part of intestine and kidney is electroneutral exchange of Na+ and H+ by Na+/H+ exchanger type 3 (NHE3). During the past decade, significant advance has been achieved in the mechanisms of NHE3 regulation. A bulk of the current knowledge on Na+/H+ exchanger regulation is based on heterologous expression of mammalian Na+/H+ exchangers in Na+/H+ exchanger deficient fibroblasts, renal epithelial, and intestinal epithelial cells. Based on the reductionist's approach, an understanding of NHE3 regulation has been greatly advanced. More recently, confirmations of in vitro studies have been made using animals deficient in one or more proteins but in some cases unexpected findings have emerged. The purpose of this paper is to provide a brief overview of recent progress in the regulation and functions of NHE3 present in the luminal membrane of the intestinal tract.
Collapse
|
29
|
Liu J, Xie ZJ. The sodium pump and cardiotonic steroids-induced signal transduction protein kinases and calcium-signaling microdomain in regulation of transporter trafficking. Biochim Biophys Acta Mol Basis Dis 2010; 1802:1237-45. [PMID: 20144708 DOI: 10.1016/j.bbadis.2010.01.013] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Revised: 01/28/2010] [Accepted: 01/30/2010] [Indexed: 12/12/2022]
Abstract
The Na/K-ATPase was discovered as an energy transducing ion pump. A major difference between the Na/K-ATPase and other P-type ATPases is its ability to bind a group of chemicals called cardiotonic steroids (CTS). The plant-derived CTS such as digoxin are valuable drugs for the management of cardiac diseases, whereas ouabain and marinobufagenin (MBG) have been identified as a new class of endogenous hormones. Recent studies have demonstrated that the endogenous CTS are important regulators of renal Na(+) excretion and blood pressure. The Na/K-ATPase is not only an ion pump, but also an important receptor that can transduce the ligand-like effect of CTS on intracellular protein kinases and Ca(2+) signaling. Significantly, these CTS-provoked signaling events are capable of reducing the surface expression of apical NHE3 (Na/H exchanger isoform 3) and basolateral Na/K-ATPase in renal proximal tubular cells. These findings suggest that endogenous CTS may play an important role in regulation of tubular Na(+) excretion under physiological conditions; conversely, a defect at either the receptor level (Na/K-ATPase) or receptor-effector coupling would reduce the ability of renal proximal tubular cells to excrete Na(+), thus culminating/resulting in salt-sensitive hypertension.
Collapse
Affiliation(s)
- Jiang Liu
- Department of Medicine, University of Toledo College of Medicine, Toledo, OH, USA
| | | |
Collapse
|
30
|
Donowitz M, Mohan S, Zhu CX, Chen TE, Lin R, Cha B, Zachos NC, Murtazina R, Sarker R, Li X. NHE3 regulatory complexes. ACTA ACUST UNITED AC 2009; 212:1638-46. [PMID: 19448074 DOI: 10.1242/jeb.028605] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The epithelial brush border Na/H exchanger NHE3 is active under basal conditions and functions as part of neutral NaCl absorption in the intestine and renal proximal tubule, where it accounts for the majority of total Na absorbed. NHE3 is highly regulated. Both stimulation and inhibition occur post-prandially. This digestion related regulation of NHE3 is mimicked by multiple extracellular agonists and intracellular second messengers. The regulation of NHE3 depends on its C-terminal cytoplasmic domain, which acts as a scaffold to bind multiple regulatory proteins and links NHE3 to the cytoskeleton. The cytoskeletal association occurs by both direct binding to ezrin and by indirect binding via ezrin binding to the C-terminus of the multi-PDZ domain containing proteins NHERF1 and NHERF2. This is a review of the domain structure of NHE3 and of the scaffolding function and role in the regulation of NHE3 of the NHE3 C-terminal domain.
Collapse
Affiliation(s)
- Mark Donowitz
- Johns Hopkins University School of Medicine, 720 Rutland Avenue Baltimore, MD 21205, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Zachos NC, Kovbasnjuk O, Donowitz M. Regulation of intestinal electroneutral sodium absorption and the brush border Na+/H+ exchanger by intracellular calcium. Ann N Y Acad Sci 2009; 1165:240-8. [PMID: 19538312 DOI: 10.1111/j.1749-6632.2009.04055.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The intestinal electroneutral Na(+) absorptive processes account for most small intestinal Na(+) absorption in the period between meals and also for the great majority of the increase in ileal Na(+) absorption that occurs postprandially. In most diarrheal diseases, there is inhibition of neutral NaCl absorption. Elevated levels of intracellular calcium ([Ca(2+)](i)) are known to inhibit NaCl absorption and involve multiple components of the Ca(2+) signaling pathway. The BB Na(+)/H(+) exchanger NHE3 accounts for most of the recognized digestive changes in neutral NaCl absorption, as well as most of the changes in Na(+) absorption that occur in diarrheal diseases. Previous studies have examined several aspects of Ca(2+) regulation of NHE3 activity. These include phosphorylation, protein trafficking, and multiprotein complex formation. In addition, recent studies have demonstrated the role of the NHERF family of PDZ domain-containing proteins in Ca(2+) regulation of NHE3 activity, thereby adding a new level of complexity to understanding Ca(2+)-dependent inhibition of Na(+) absorption. In this article, we will review the current understanding of (1) Ca(2+) signaling events in intestinal epithelial cells; (2) Ca(2+) regulation of intestinal electroneutral sodium absorption, which includes NHE3; and (3) the role of the NHERF family of PDZ domain-containing proteins in Ca(2+) regulation of NHE3 activity. We will also present new data on using advanced imaging showing rapid BB NHE3 endocytosis in response to elevated [Ca(2+)](i).
Collapse
Affiliation(s)
- Nicholas C Zachos
- Department of Medicine, Division of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
32
|
Zachos NC, Li X, Kovbasnjuk O, Hogema B, Sarker R, Lee LJ, Li M, de Jonge H, Donowitz M. NHERF3 (PDZK1) contributes to basal and calcium inhibition of NHE3 activity in Caco-2BBe cells. J Biol Chem 2009; 284:23708-18. [PMID: 19535329 DOI: 10.1074/jbc.m109.012641] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Elevated intracellular Ca(2+) ([Ca(2+)](i)) inhibition of NHE3 is reconstituted by NHERF2, but not NHERF1, by a mechanism involving the formation of multiprotein signaling complexes. To further evaluate the specificity of the NHERF family in calcium regulation of NHE3 activity, the current study determined whether NHERF3 reconstitutes elevated [Ca(2+)](i) regulation of NHE3. In vitro, NHERF3 bound the NHE3 C terminus between amino acids 588 and 667. In vivo, NHE3 and NHERF3 associate under basal conditions as indicated by co-immunoprecipitation, confocal microscopy, and fluorescence resonance energy transfer. Treatment of PS120/NHE3/NHERF3 cells, but not PS120/NHE3 cells, with the Ca(2+) ionophore, 4-bromo-A23187 (0.5 mum): 1) inhibited NHE3 V(max) activity; 2) decreased NHE3 surface amount; 3) dissociated NHE3 and NHERF3 at the plasma membrane by confocal immunofluorescence and fluorescence resonance energy transfer. Similarly, in Caco-2BBe cells, NHERF3 and NHE3 colocalized in the BB under basal conditions but after elevation of [Ca(2+)](i) by carbachol, this overlap was abolished. NHERF3 short hairpin RNA knockdown (>50%) in Caco-2BBe cells significantly reduced basal NHE3 activity by decreasing BB NHE3 amount. Also, carbachol-mediated inhibition of NHE3 activity was abolished in Caco-2BBe cells in which NHERF3 protein expression was significantly reduced. In summary: 1) NHERF3 colocalizes and directly binds NHE3 at the plasma membrane under basal conditions; 2) NHERF3 reconstitutes [Ca(2+)](i) inhibition of NHE3 activity and dissociates from NHE3 in fibroblasts and polarized intestinal epithelial cells with elevated [Ca(2+)](i); 3) NHERF3 short hairpin RNA significantly reduced NHE3 basal activity and brush border expression in Caco-2BBe cells. These results demonstrate that NHERF3 reconstitutes calcium inhibition of NHE3 activity by anchoring NHE3 basally and releasing it with elevated Ca(2+).
Collapse
Affiliation(s)
- Nicholas C Zachos
- Department of Medicine, Hopkins Center for Epithelial Disorders, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2195, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Alexander RT, Grinstein S. Tethering, recycling and activation of the epithelial sodium–proton exchanger, NHE3. J Exp Biol 2009; 212:1630-7. [DOI: 10.1242/jeb.027375] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
NHE3 is a sodium–proton exchanger expressed predominantly in the apical membrane of renal and intestinal epithelia, where it plays a key role in salt and fluid absorption and pH homeostasis. It performs these functions through the exchange of luminal sodium for cytosolic protons. Acute regulation of NHE3 function is mediated by altering the total number of exchangers in the plasma membrane as well as their individual activity. Traffic between endomembrane and plasmalemmal pools of NHE3 dictates the density of exchangers available at the cell surface. The activity of the plasmalemmal pool, however,is not fixed and can be altered by the association with modifier proteins, by post-translational alterations (such as cAMP-mediated phosphorylation) and possibly also via interaction with specific plasmalemmal phospholipids. Interestingly, association with cytoskeletal components affects both levels of regulation, tethering NHE3 molecules at the surface and altering their intrinsic activity. This paper reviews the role of proteins and lipids in the modulation of NHE3 function.
Collapse
Affiliation(s)
- R. Todd Alexander
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada,T6G 2R7
| | - Sergio Grinstein
- Program in Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada,M5G 1X8
- Department of Biochemistry, University of Toronto, Ontario, Canada
| |
Collapse
|
34
|
Lamprecht G, Gaco V, Turner JR, Natour D, Gregor M. Regulation of the Intestinal Anion Exchanger DRA (Downregulated in Adenoma). Ann N Y Acad Sci 2009; 1165:261-6. [DOI: 10.1111/j.1749-6632.2009.04044.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
35
|
Zachos NC, van Rossum DB, Li X, Caraveo G, Sarker R, Cha B, Mohan S, Desiderio S, Patterson RL, Donowitz M. Phospholipase C-gamma binds directly to the Na+/H+ exchanger 3 and is required for calcium regulation of exchange activity. J Biol Chem 2009; 284:19437-44. [PMID: 19473983 DOI: 10.1074/jbc.m109.006098] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Multiple studies suggest that phospholipase C-gamma (PLC-gamma) contributes to regulation of sodium/hydrogen exchanger 3 (NHE3) in the small intestine, although the mechanism(s) for this regulation remain unknown. We demonstrate here that PLC-gamma binds directly to the C terminus of NHE3 and exists in similar sized multiprotein complexes as NHE3. This binding is dynamic and decreases with elevated [Ca(2+)](i). The PLC-gamma-binding site in NHE3 was identified (amino acids 586-605) and shown to be a critical regulatory domain for protein complex formation, because when it is mutated, NHE3 binding to PLC-gamma as well as NHERF2 is lost. An inhibitory peptide, which binds to the Src homology 2 domains contained in PLC-gamma without interrupting binding of PLC-gamma to NHE3, was used to probe a non-lipase-dependent role of PLC-gamma. In the presence of this peptide, carbachol-stimulated calcium inhibition of NHE3 was lost. These results mirror previous studies with the transient receptor potential channel and suggest that PLC-gamma may play a common role in regulating the cell-surface expression of ion transporters.
Collapse
Affiliation(s)
- Nicholas C Zachos
- Division of Gastroenterology and Hepatology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Lamprecht G, Hsieh CJ, Lissner S, Nold L, Heil A, Gaco V, Schäfer J, Turner JR, Gregor M. Intestinal anion exchanger down-regulated in adenoma (DRA) is inhibited by intracellular calcium. J Biol Chem 2009; 284:19744-53. [PMID: 19447883 DOI: 10.1074/jbc.m109.004127] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The Na/H exchanger 3 (NHE3) and the Cl/HCO(3) exchanger down-regulated in adenoma (DRA) together facilitate intestinal electroneutral NaCl absorption. Elevated Ca(2+)(i) inhibits NHE3 through mechanisms involving the PDZ domain proteins NHE3 kinase A regulatory protein (E3KARP) or PDZ kidney 1 (PDZK1). DRA also possesses a PDZ-binding motif, but the roles of interactions with E3KARP or PDZK1 and Ca(2+)(i) in DRA regulation are unknown. Wild type DRA and a mutant lacking the PDZ interaction motif (DRA-ETKFminus) were expressed constitutively in human embryonic kidney (HEK) and inducibly in Caco-2/BBE cells. DRA-mediated Cl/HCO(3) exchange was measured as intracellular pH changes. Ca(2+)(i) was assessed fluorometrically. DRA was induced 8-16-fold and was delivered to the apical surface of polarized Caco-2 cells. Putative anion transporter 1 and cystic fibrosis transmembrane regulator did not contribute to Cl/HCO(3) exchange in transfected Caco-2 cells. The calcium ionophore 4Br-A23187 inhibited DRA and DRA-ETKFminus in HEK cells, but only full-length DRA was inhibited in Caco-2 cells. In contrast, 100 microm UTP, which increased Ca(2+)(i), inhibited full-length DRA but not DRA-ETKFminus in Caco-2 and HEK cells. In HEK cells, which express little PDZK1, additional transfection of PDZK1 was required for UTP to inhibit DRA. As HEK cells do not express cystic fibrosis transmembrane regulator or NHE3, the data indicate that Ca(2+)(i)-dependent DRA inhibition is not because of modulation of other transport activities. In polarized epithelium, this inhibition requires interaction of DRA with PDZK1. Together with data from PDZK1(-/-) mice, these data underscore the prominent role of PDZK1 in Ca(2+)(i)-mediated inhibition of colonic NaCl absorption.
Collapse
Affiliation(s)
- Georg Lamprecht
- 1st Medical Department, University of Tübingen, 72076 Tübingen, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Alex P, Zachos NC, Nguyen T, Gonzales L, Chen TE, Conklin LS, Centola M, Li X. Distinct cytokine patterns identified from multiplex profiles of murine DSS and TNBS-induced colitis. Inflamm Bowel Dis 2009; 15:341-52. [PMID: 18942757 PMCID: PMC2643312 DOI: 10.1002/ibd.20753] [Citation(s) in RCA: 590] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND The cytokine network in inflammatory bowel disease (IBD) is a complex, dynamic system that plays an important role in regulating mucosal innate and adaptive immune responses. While several studies have been done to evaluate immunomodulatory profiles in murine IBD, they have been limited to a relatively small number of cytokines that do not take into account its dependency of the interplay of multiple factors, and therefore the diagnostic potential of their cytokine profiles have been inconclusive. METHODS A novel approach of comprehensive serum multiplex cytokine profiling with biometric immunosandwich ELISA's was used to describe the modulation of 16 Th1, Th2, Th17 cytokines and chemokines in both acute and chronic murine models of DSS and TNBS-induced colitis. Advanced multivariate discriminant functional analyses (DFA) was used to identify statistically interrelated sets of variables with the most significant power to discriminate among the groups. Profiles of multiple cytokines seen systemically were also validated locally in colonic mucosa using Western blot analysis and fluorescent immunohistochemistry. RESULTS Distinctive disease-specific cytokine profiles were identified with significant correlations to disease activity and duration of disease. TNBS colitis exhibits heightened Th1-Th17 response (increased IL-12 and IL-17) as the disease becomes chronic. In contrast, DSS colitis switches from a Th1-Th17-mediated acute inflammation (increased TNF-alpha, IL6, IL-17, and KC) to a predominant Th2-mediated inflammatory response (increase in IL-4 and IL-10 and concomitant decrease in TNF-alpha, IL6, IL-17, and KC) in the chronic state. Moreover, DFA identified discriminatory cytokine profiles that can be sufficiently used to distinguish unaffected controls from diseases, and one disease type from another. IL-6 and IL-12 stratified gender-associated disease activity in chronic colitis. CONCLUSIONS Our studies provide insight into disease immunopathogenesis and illustrate the significant potential of utilizing multiplex cytokine profiles and bioinformatics as diagnostic tools in IBD.
Collapse
Affiliation(s)
- Philip Alex
- Div of Gastroenterology, Dept of Medicine, Johns Hopkins University, Baltimore, MD, Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Nicholas C. Zachos
- Div of Gastroenterology, Dept of Medicine, Johns Hopkins University, Baltimore, MD
| | - Thuan Nguyen
- Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Liberty Gonzales
- Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Tian E. Chen
- Div of Gastroenterology, Dept of Medicine, Johns Hopkins University, Baltimore, MD
| | - Laurie S. Conklin
- Div of Gastroenterology, Dept of Medicine, Johns Hopkins University, Baltimore, MD
| | - Michael Centola
- Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Xuhang Li
- Div of Gastroenterology, Dept of Medicine, Johns Hopkins University, Baltimore, MD,Address correspondence to: Xuhang Li, Ph.D. Gastroenterology, Dept of Medicine, Johns Hopkins University, 1120 Ross, 720 Rutland Avenue, Baltimore, MD 21205, Tel: 443-287-4804, Fax: 410-955-9677
| |
Collapse
|
38
|
Zachos NC, Hodson C, Kovbasnjuk O, Li X, Thelin WR, Cha B, Milgram S, Donowitz M. Elevated intracellular calcium stimulates NHE3 activity by an IKEPP (NHERF4) dependent mechanism. Cell Physiol Biochem 2008; 22:693-704. [PMID: 19088451 DOI: 10.1159/000185553] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2008] [Indexed: 01/09/2023] Open
Abstract
The ileal brush border (BB) contains four evolutionarily related multi-PDZ domain proteins including NHERF1, NHERF2, PDZK1 (NHERF3) and IKEPP (NHERF4). Why multiple related PDZ proteins are in a similar location in the same cell is unknown. However, some specificity in regulation of NHE3 activity has been identified. For example, elevated intracellular Ca(2+) ([Ca(2+)](i)) inhibition of NHE3 is reconstituted by NHERF2 but not NHERF1, and involves the formation of large NHE3 complexes. To further evaluate the specificity of the NHERF family in calcium regulation of NHE3 activity, the current study determined whether the four PDZ domain containing protein IKEPP reconstitutes elevated [Ca(2+)](i) regulation of NHE3. In vitro, IKEPP bound to the F2 region (aa 590-667) of NHE3 in overlay assays, which is the same region where NHERF1 and NHERF2 bind. PS120 cells lack endogenous NHE3 and IKEPP. Treatment of PS120/NHE3/IKEPP cells (stably transfected with NHE3 and IKEPP) with the Ca(2+) ionophore, 4-Br-A23187 (0.5 microM), stimulated NHE3 V(max) activity by approximately 40%. This was associated with an increase in plasma membrane expression of NHE3 by a similar amount. NHE3 activity and surface expression were unaffected by A23187 in PS120/NHE3 cells lacking IKEPP. Based on sucrose density gradient centrifugation, IKEPP was also shown to exist in large complexes, some of which overlap in size with NHE3, and the size of both NHE3 and IKEPP complexes decreased in parallel after [Ca(2+)](i) elevation. FRET experiments on fixed cells demonstrated that IKEPP and NHE3 directly associated at an intracellular site. Elevating [Ca(2+)](i) decreased this intracellular NHE3 and IKEPP association. In summary: (1) In the presence of IKEPP, elevated [Ca(2+)](i) stimulates NHE3 activity. This was associated with increased expression of NHE3 in the plasma membrane as well as a shift to smaller sizes of NHE3 and IKEPP containing complexes. (2) IKEPP directly binds NHE3 at its F2 C-terminal domain and directly associates with NHE3 in vivo (FRET). (3) Elevated [Ca(2+)](i) decreased the association of IKEPP and NHE3 in an intracellular compartment. Based on which NHERF family member is expressed in PS120 cells, elevated [Ca(2+)](i) stimulates (IKEPP), inhibits (NHERF2) or does not affect (NHERF1) NHE3 activity. This demonstrates that regulation of NHE3 depends on the nature of the NHERF family member associating with NHE3 and the accompanying NHE3 complexes.
Collapse
Affiliation(s)
- Nicholas C Zachos
- Department of Medicine and Physiology, Hopkins Center for Epithelial Disorders, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2195, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Kruger WA, Yun CC, Monteith GR, Poronnik P. Muscarinic-induced recruitment of plasma membrane Ca2+-ATPase involves PSD-95/Dlg/Zo-1-mediated interactions. J Biol Chem 2008; 284:1820-30. [PMID: 19017653 DOI: 10.1074/jbc.m804590200] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Efflux of cytosolic Ca2+ mediated by plasma membrane Ca2+-ATPases (PMCA) plays a key role in fine tuning the magnitude and duration of Ca2+ signaling following activation of G-protein-coupled receptors. However, the molecular mechanisms that underpin the trafficking of PMCA to the membrane during Ca2+ signaling remain largely unexplored in native cell models. One potential mechanism for the recruitment of proteins to the plasma membrane involves PDZ interactions. In this context, we investigated the role of PMCA interactions with the Na+/H+ exchanger regulatory factor 2 (NHERF-2) during muscarinic-induced Ca2+ mobilization in the HT-29 epithelial cell line. GST pull-downs in HT-29 cell lysates showed that the PDZ2 module of NHERF-2 bound to the PDZ binding motif on the C terminus of PMCA. Co-immunoprecipitations confirmed that PMCA1b and NHERF-2 associated under normal conditions in HT-29 cells. Cell surface biotinylations revealed significant increases in membrane-associated NHERF-2 and PMCA within 60 s following muscarinic activation, accompanied by increased association of the two proteins as seen by confocal microscopy. The recruitment of NHERF-2 to the membrane preceded that of PMCA, suggesting that NHERF-2 was involved in nucleating an efflux complex at the membrane. The muscarinic-mediated translocation of PMCA was abolished when NHERF-2 was silenced, and the rate of relative Ca2+ efflux was also reduced. These experiments also uncovered a NHERF-2-independent PMCA retrieval mechanism. Our findings describe rapid agonist-induced translocation of PMCA in a native cell model and suggest that NHERF-2 plays a key role in scaffolding and maintaining PMCA at the cell membrane.
Collapse
Affiliation(s)
- Wade A Kruger
- School of Biomedical Sciences and School of Pharmacy, The University of Queensland, Brisbane QLD 4072, Australia
| | | | | | | |
Collapse
|
40
|
Gill RK, Shen L, Turner JR, Saksena S, Alrefai WA, Pant N, Esmaili A, Dwivedi A, Ramaswamy K, Dudeja PK. Serotonin modifies cytoskeleton and brush-border membrane architecture in human intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol 2008; 295:G700-8. [PMID: 18669621 PMCID: PMC2575920 DOI: 10.1152/ajpgi.90362.2008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Serotonin or 5-hydroxytryptamine (5-HT) influences numerous functions in the gastrointestinal tract. We previously demonstrated that 5-HT treatment of Caco-2 cells inhibited Na(+)/H(+) exchangers (NHE) and Cl(-)/OH(-) exchange activities via distinct signaling mechanisms. Since regulation of several ion transporters such as NHE3 is influenced by intact cytoskeleton, we hypothesized that 5-HT modifies actin cytoskeleton and/or brush-border membrane architecture via involvement of signaling pathways. Ultrastructural analysis showed that 5-HT (0.1 muM, 1 h) treatment of Caco-2 cells caused the apical membrane to assume a convex dome shape that was associated with shortening of microvilli. To examine whether these cellular architecture changes are cytoskeleton driven, we analyzed actin cytoskeleton by fluorescence microscopy. 5-HT induced basal stress fibers with prominent cortical actin filaments via 5-HT3 and 5-HT4 receptor subtypes. This induction was partially attenuated by chelation of intracellular Ca(2+) and PKCalpha inhibition (Go6976). In vitro assays revealed that PKCalpha interacted with actin and this association was increased by 5-HT. Our data provide novel evidence that 5-HT-induced signaling via 5-HT3/4 receptor subtypes to cause Ca(2+) and PKCalpha-dependent regulation of actin cytoskeleton may play an important role in modulation of ion transporters that contribute to pathophysiology of diarrheal conditions associated with elevated levels of 5-HT.
Collapse
Affiliation(s)
- Ravinder K. Gill
- Section of Digestive Diseases and Nutrition, Department of Medicine, University of Illinois at Chicago; Jesse Brown Veterans Affairs Medical Center and Department of Pathology, the University of Chicago, Chicago, Illinois
| | - Le Shen
- Section of Digestive Diseases and Nutrition, Department of Medicine, University of Illinois at Chicago; Jesse Brown Veterans Affairs Medical Center and Department of Pathology, the University of Chicago, Chicago, Illinois
| | - Jerrold R. Turner
- Section of Digestive Diseases and Nutrition, Department of Medicine, University of Illinois at Chicago; Jesse Brown Veterans Affairs Medical Center and Department of Pathology, the University of Chicago, Chicago, Illinois
| | - Seema Saksena
- Section of Digestive Diseases and Nutrition, Department of Medicine, University of Illinois at Chicago; Jesse Brown Veterans Affairs Medical Center and Department of Pathology, the University of Chicago, Chicago, Illinois
| | - Waddah A. Alrefai
- Section of Digestive Diseases and Nutrition, Department of Medicine, University of Illinois at Chicago; Jesse Brown Veterans Affairs Medical Center and Department of Pathology, the University of Chicago, Chicago, Illinois
| | - Nitika Pant
- Section of Digestive Diseases and Nutrition, Department of Medicine, University of Illinois at Chicago; Jesse Brown Veterans Affairs Medical Center and Department of Pathology, the University of Chicago, Chicago, Illinois
| | - Ali Esmaili
- Section of Digestive Diseases and Nutrition, Department of Medicine, University of Illinois at Chicago; Jesse Brown Veterans Affairs Medical Center and Department of Pathology, the University of Chicago, Chicago, Illinois
| | - Alka Dwivedi
- Section of Digestive Diseases and Nutrition, Department of Medicine, University of Illinois at Chicago; Jesse Brown Veterans Affairs Medical Center and Department of Pathology, the University of Chicago, Chicago, Illinois
| | - Krishnamurthy Ramaswamy
- Section of Digestive Diseases and Nutrition, Department of Medicine, University of Illinois at Chicago; Jesse Brown Veterans Affairs Medical Center and Department of Pathology, the University of Chicago, Chicago, Illinois
| | - Pradeep K. Dudeja
- Section of Digestive Diseases and Nutrition, Department of Medicine, University of Illinois at Chicago; Jesse Brown Veterans Affairs Medical Center and Department of Pathology, the University of Chicago, Chicago, Illinois
| |
Collapse
|
41
|
Mathew S, George SP, Wang Y, Siddiqui MR, Srinivasan K, Tan L, Khurana S. Potential molecular mechanism for c-Src kinase-mediated regulation of intestinal cell migration. J Biol Chem 2008; 283:22709-22. [PMID: 18482983 DOI: 10.1074/jbc.m801319200] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The ubiquitously expressed Src tyrosine kinases (c-Src, c-Yes, and c-Fyn) regulate intestinal cell growth and differentiation. Src activity is also elevated in the majority of malignant and premalignant tumors of the colon. The development of fibroblasts with the three ubiquitously expressed kinases deleted (SYF cells) has identified the role of Src proteins in the regulation of actin dynamics associated with increased cell migration and invasion. Despite this, unexpectedly nothing is known about the role of the individual Src kinases on intestinal cell cytoskeleton and/or cell migration. We have previously reported that villin, an epithelial cell-specific actin-modifying protein that regulates actin reorganization, cell morphology, cell migration, cell invasion, and apoptosis, is tyrosine-phosphorylated. In this report using the SYF cells reconstituted individually with c-Src, c-Yes, c-Fyn, and wild type or phosphorylation site mutants of villin, we demonstrate for the first time the absolute requirement for c-Src in villin-induced regulation of cell migration. The other major finding of our study is that contrary to previous reports, the nonreceptor tyrosine kinase, Jak3 (Janus kinase 3), does not regulate phosphorylation of villin or villin-induced cell migration and is, in fact, not expressed in intestinal epithelial cells. Further, we identify SHP-2 and PTP-PEST (protein-tyrosine phosphatase proline-, glutamate-, serine-, and threonine-rich sequence) as negative regulators of c-Src kinase and demonstrate a new function for these phosphatases in intestinal cell migration. Together, these data suggest that in colorectal carcinogenesis, elevation of c-Src or down-regulation of SHP-2 and/or PTP-PEST may promote cancer metastases and invasion by regulating villin-induced cell migration and cell invasion.
Collapse
Affiliation(s)
- Sijo Mathew
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Tobin V, Le Gall M, Fioramonti X, Stolarczyk E, Blazquez AG, Klein C, Prigent M, Serradas P, Cuif MH, Magnan C, Leturque A, Brot-Laroche E. Insulin internalizes GLUT2 in the enterocytes of healthy but not insulin-resistant mice. Diabetes 2008; 57:555-62. [PMID: 18057092 DOI: 10.2337/db07-0928] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
OBJECTIVES A physiological adaptation to a sugar-rich meal is achieved by increased sugar uptake to match dietary load, resulting from a rapid transient translocation of the fructose/glucose GLUT2 transporter to the brush border membrane (BBM) of enterocytes. The aim of this study was to define the contributors and physiological mechanisms controlling intestinal sugar absorption, focusing on the action of insulin and the contribution of GLUT2-mediated transport. RESEARCH DESIGN AND METHODS The studies were performed in the human enterocytic colon carcinoma TC7 subclone (Caco-2/TC7) cells and in vivo during hyperinsulinemic-euglycemic clamp experiments in conscious mice. Chronic high-fructose or high-fat diets were used to induce glucose intolerance and insulin resistance in mice. RESULTS AND CONCLUSIONS In Caco-2/TC7 cells, insulin action diminished the transepithelial transfer of sugar and reduced BBM and basolateral membrane (BLM) GLUT2 levels, demonstrating that insulin can target sugar absorption by controlling the membrane localization of GLUT2 in enterocytes. Similarly, in hyperinsulinemic-euglycemic clamp experiments in sensitive mice, insulin abolished GLUT2 (i.e., the cytochalasin B-sensitive component of fructose absorption), decreased BBM GLUT2, and concomitantly increased intracellular GLUT2. Acute insulin treatment before sugar intake prevented the insertion of GLUT2 into the BBM. Insulin resistance in mice provoked a loss of GLUT2 trafficking, and GLUT2 levels remained permanently high in the BBM and low in the BLM. We propose that, in addition to its peripheral effects, insulin inhibits intestinal sugar absorption to prevent excessive blood glucose excursion after a sugar meal. This protective mechanism is lost in the insulin-resistant state induced by high-fat or high-fructose feeding.
Collapse
Affiliation(s)
- Vanessa Tobin
- Université Pierre et Marie Curie-Paris 6, Unité Mixte de Recherche S 872, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Annaba F, Sarwar Z, Kumar P, Saksena S, Turner JR, Dudeja PK, Gill RK, Alrefai WA. Modulation of ileal bile acid transporter (ASBT) activity by depletion of plasma membrane cholesterol: association with lipid rafts. Am J Physiol Gastrointest Liver Physiol 2008; 294:G489-97. [PMID: 18063707 PMCID: PMC4880014 DOI: 10.1152/ajpgi.00237.2007] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Apical sodium-dependent bile acid transporter (ASBT) represents a highly efficient conservation mechanism of bile acids via mediation of their active transport across the luminal membrane of terminal ileum. To gain insight into the cellular regulation of ASBT, we investigated the association of ASBT with cholesterol and sphingolipid-enriched specialized plasma membrane microdomains known as lipid rafts and examined the role of membrane cholesterol in maintaining ASBT function. Human embryonic kidney (HEK)-293 cells stably transfected with human ASBT, human ileal brush-border membrane vesicles, and human intestinal epithelial Caco-2 cells were utilized for these studies. Floatation experiments on Optiprep density gradients demonstrated the association of ASBT protein with lipid rafts. Disruption of lipid rafts by depletion of membrane cholesterol with methyl-beta-cyclodextrin (MbetaCD) significantly reduced the association of ASBT with lipid rafts, which was paralleled by a decrease in ASBT activity in Caco-2 and HEK-293 cells treated with MbetaCD. The inhibition in ASBT activity by MbetaCD was blocked in the cells treated with MbetaCD-cholesterol complexes. Kinetic analysis revealed that MbetaCD treatment decreased the V(max) of the transporter, which was not associated with alteration in the plasma membrane expression of ASBT. Our study illustrates that cholesterol content of lipid rafts is essential for the optimal activity of ASBT and support the association of ASBT with lipid rafts. These findings suggest a novel mechanism by which ASBT activity may be rapidly modulated by alterations in cholesterol content of plasma membrane and thus have important implications in processes related to maintenance of bile acid and cholesterol homeostasis.
Collapse
Affiliation(s)
- Fadi Annaba
- Section of Digestive Diseases and Nutrition, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Zaheer Sarwar
- Section of Digestive Diseases and Nutrition, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Pradeep Kumar
- Section of Digestive Diseases and Nutrition, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Seema Saksena
- Section of Digestive Diseases and Nutrition, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | | | - Pradeep K. Dudeja
- Section of Digestive Diseases and Nutrition, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois,Jesse Brown Veterans Affairs Medical Center, University of Chicago, Chicago, Illinois
| | - Ravinder K. Gill
- Section of Digestive Diseases and Nutrition, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Waddah A. Alrefai
- Section of Digestive Diseases and Nutrition, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
44
|
Abstract
NHE3 is the brush-border (BB) Na+/H+exchanger of small intestine, colon, and renal proximal tubule which is involved in large amounts of neutral Na+absorption. NHE3 is a highly regulated transporter, being both stimulated and inhibited by signaling that mimics the postprandial state. It also undergoes downregulation in diarrheal diseases as well as changes in renal disorders. For this regulation, NHE3 exists in large, multiprotein complexes in which it associates with at least nine other proteins. This review deals with short-term regulation of NHE3 and the identity and function of its recognized interacting partners and the multiprotein complexes in which NHE3 functions.
Collapse
Affiliation(s)
- Mark Donowitz
- Department of Medicine, GI Division, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| | | |
Collapse
|
45
|
Murtazina R, Kovbasnjuk O, Zachos NC, Li X, Chen Y, Hubbard A, Hogema BM, Steplock D, Seidler U, Hoque KM, Tse CM, De Jonge HR, Weinman EJ, Donowitz M. Tissue-specific regulation of sodium/proton exchanger isoform 3 activity in Na(+)/H(+) exchanger regulatory factor 1 (NHERF1) null mice. cAMP inhibition is differentially dependent on NHERF1 and exchange protein directly activated by cAMP in ileum versus proximal tubule. J Biol Chem 2007; 282:25141-51. [PMID: 17580307 DOI: 10.1074/jbc.m701910200] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The multi-PDZ domain containing protein Na(+)/H(+) Exchanger Regulatory Factor 1 (NHERF1) binds to Na(+)/H(+) exchanger 3 (NHE3) and is associated with the brush border (BB) membrane of murine kidney and small intestine. Although studies in BB isolated from kidney cortex of wild type and NHERF1(-/-) mice have shown that NHERF1 is necessary for cAMP inhibition of NHE3 activity, a role of NHERF1 in NHE3 regulation in small intestine and in intact kidney has not been established. Here a method using multi-photon microscopy with the pH-sensitive dye SNARF-4F (carboxyseminaphthorhodafluors-4F) to measure BB NHE3 activity in intact murine tissue and use it to examine the role of NHERF1 in regulation of NHE3 activity. NHE3 activity in wild type and NHERF1(-/-) ileum and wild type kidney cortex were inhibited by cAMP, whereas the cAMP effect was abolished in kidney cortex of NHERF1(-/-) mice. cAMP inhibition of NHE3 activity in these two tissues is mediated by different mechanisms. In ileum, a protein kinase A (PKA)-dependent mechanism accounts for all cAMP inhibition of NHE3 activity since the PKA antagonist H-89 abolished the inhibitory effect of cAMP. In kidney, both PKA-dependent and non-PKA-dependent mechanisms were involved, with the latter reproduced by the effect on an EPAC (exchange protein directly activated by cAMP) agonist (8-(4-chlorophenylthio)-2'O-Me-cAMP). In contrast, the EPAC agonist had no effect in proximal tubules in NHERF1(-/-) mice. These data suggest that in proximal tubule, NHERF1 is required for all cAMP inhibition of NHE3, which occurs through both EPAC-dependent and PKA-dependent mechanisms; in contrast, cAMP inhibits ileal NHE3 only by a PKA-dependent pathway, which is independent of NHERF1 and EPAC.
Collapse
Affiliation(s)
- Rakhilya Murtazina
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Lamprecht G, Seidler U. The emerging role of PDZ adapter proteins for regulation of intestinal ion transport. Am J Physiol Gastrointest Liver Physiol 2006; 291:G766-77. [PMID: 16798722 DOI: 10.1152/ajpgi.00135.2006] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In the gastrointestinal tract, CFTR, in conjunction with one or several members of the SLC26 anion exchanger family, mediates electrogenic Cl- and HCO3- secretion. Na+/H+ exchanger isoform NHE3, on the other hand, coupled to one or several of the SLC26 isoforms, mediates electroneutral NaCl absorption. The agonist-induced activation of anion secretion and inhibition of salt absorption causes secretory diarrhea. Current dogma sees the formation of a multiprotein complex of transport proteins, postsynaptic density-95/discs large/zonula occludens-1 (PDZ) adapter proteins, anchoring proteins, the cytoskeleton, and the involved protein kinases as one crucial step in the regulation of these transport processes. Data obtained in heterologous expression studies suggest an important role of these PDZ adapter proteins in trafficking, endocytic recycling, and membrane retention of the respective transmembrane proteins. This article reviews recent advances in our understanding of the role of the PDZ adapter proteins NHERF, E3KARP, PDZK1, IKEPP (NHERF-1 to NHERF-4), CAL, and Shank-2 that bind to CFTR, NHE3, and the intestinal SLC26 members in the regulation of intestinal fluid transport. Current concepts are mostly derived from heterologous expression studies and studies on their role in organ physiology are still in infancy. Recently, however, PDZ adapter protein-deficient mice and organ-specific cell lines have become available, and the first results suggest a more cell-type and possibly signal-specific role of these adapter proteins. This opens the potential for drug development targeted to PDZ domain interactions, which is, in theory, one of the most efficient antidiarrheal strategies.
Collapse
Affiliation(s)
- G Lamprecht
- First Medical Department, University of Tuebingen, Germany
| | | |
Collapse
|
47
|
Bachmann O, Reichelt D, Tuo B, Manns MP, Seidler U. Carbachol increases Na+-HCO3- cotransport activity in murine colonic crypts in a M3-, Ca2+/calmodulin-, and PKC-dependent manner. Am J Physiol Gastrointest Liver Physiol 2006; 291:G650-7. [PMID: 16675744 DOI: 10.1152/ajpgi.00376.2005] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The Na(+)-HCO(3)(-) cotransporter (NBC) mediates HCO(3)(-) import into the colonocyte via its pNBC1 isoform. Whereas renal kNBC1 is inhibited by increased cAMP levels, pNBC1 is stimulated. Cholinergic stimulation activates renal NBC, but the effect on intestinal NBC is unknown. Therefore, crypts were isolated from the murine proximal colon by Ca(2+) chelation and loaded with the pH-sensitive dye 2',7'-bis-carboxyethyl-5,6-carboxyfluorescein. Na(+)-HCO(3)(-) cotransport activity was calculated from the dimethylamiloride-insensitive (500 microM) intracellular pH recovery from an acid load in the presence of CO(2)-HCO(3)(-) and the intracellular buffering capacity. Carbachol strongly increased Na(+)-HCO(3)(-) cotransport activity compared with control rates. Ca(2+) chelation with BAPTA-AM, blockade of the M(3) subtype of muscarinergic receptors with 4-diphenylacetoxy-N-methylpiperidine methiodide, and inhibition of Ca(2+)/calmodulin kinase II with KN-62 all caused significant inhibition of the carbachol-induced NBC activity increase. Furthermore, PKC inhibition with Gö-6976 and Gö-6850 significantly reduced the carbachol effect, which may be related to the unique NH(2)-terminal consensus site for PKC-dependent phosphorylation of pNBC1. We conclude that NBC in the murine colon is thus activated by carbachol, consistent with its presumed function as an anion uptake pathway during intestinal anion secretion, but that the signal transductions pathways are distinct from those involved in the cholinergic activation of renal NBC1.
Collapse
Affiliation(s)
- O Bachmann
- Dept. of Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, Carl-Neuberg-Strasse 1, Hannover 30625, Germany
| | | | | | | | | |
Collapse
|
48
|
Murtazina R, Kovbasnjuk O, Donowitz M, Li X. Na+/H+ exchanger NHE3 activity and trafficking are lipid Raft-dependent. J Biol Chem 2006; 281:17845-55. [PMID: 16648141 DOI: 10.1074/jbc.m601740200] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A previous study showed that approximately 25-50% of rabbit ileal brush border (BB) Na(+)/H(+) exchanger NHE3 is in lipid rafts (LR) (Li, X., Galli, T., Leu, S., Wade, J. B., Weinman E. J., Leung, G., Cheong, A., Louvard, D., and Donowitz, M. (2001) J. Physiol. (Lond.) 537, 537-552). Here, we examined the role of LR in NHE3 transport activity using a simpler system: opossum kidney (OK) cells (a renal proximal tubule epithelial cell line) containing NHE3. approximately 50% of surface (biotinylated) NHE3 in OK cells distributed in LR by density gradient centrifugation. Disruption of LR with methyl-beta-cyclodextrin (MbetaCD) decreased NHE3 activity and increased K'(H+)(i), but K(m)((Na+)) was not affected. The MbetaCD effect was completely reversed by repletion of cholesterol, but not by an inactive analog of cholesterol (cholestane-3beta,5alpha,6beta-triol). The MbetaCD effect was specific for NHE3 activity because it did not alter Na(+)-dependent l-Ala uptake. MbetaCD did not alter OK cell BB topology and did not change the surface amount of NHE3, but greatly reduced the rate of NHE3 endocytosis. The effects of inhibiting phosphatidylinositol 3-kinase and of MbetaCD on NHE3 activity were not additive, indicating a common inhibitory mechanism. In contrast, 8-bromo-cAMP and MbetaCD inhibition of NHE3 was additive, indicating different mechanisms for inhibition of NHE3 activity. Approximately 50% of BB NHE3 and only approximately 11% of intracellular NHE3 in polarized OK cells were in LR. In summary, the BB pool of NHE3 in LR is functionally active because MbetaCD treatment decreased NHE3 basal activity. The LR pool is necessary for multiple kinetic aspects of normal NHE3 activity, including V(max) and K'(H+)(i), and also for multiple aspects of NHE3 trafficking, including at least basal endocytosis and phosphatidylinositol 3-kinase-dependent basal exocytosis. Because the C-terminal domain of NHE3 is necessary for its regulation and because the changes in NHE3 kinetics with MbetaCD resemble those with second messenger regulation of NHE3, these results suggest that the NHE3 C terminus may be involved in the MbetaCD sensitivity of NHE3.
Collapse
Affiliation(s)
- Rakhilya Murtazina
- Departments of Physiology and Medicine, Division of Gastroenterology, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
49
|
Cha B, Tse M, Yun C, Kovbasnjuk O, Mohan S, Hubbard A, Arpin M, Donowitz M. The NHE3 juxtamembrane cytoplasmic domain directly binds ezrin: dual role in NHE3 trafficking and mobility in the brush border. Mol Biol Cell 2006; 17:2661-73. [PMID: 16540524 PMCID: PMC1474801 DOI: 10.1091/mbc.e05-09-0843] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Based on physiological studies, the epithelial brush-border (BB) Na+/H+ antiporter3 (NHE3) seems to associate with the actin cytoskeleton both by binding to and independently of the PDZ domain containing proteins NHERF1 and NHERF2. We now show that NHE3 directly binds ezrin at a site in its C terminus between aa 475-589, which is separate from the PSD95/dlg/zonular occludens-1 (PDZ) interacting domain. This is an area predicted to be alpha-helical, with a positive aa cluster on one side (K516, R520, and R527). Point mutations of these positively charged aa reduced (NHE3 double mutant [R520F, R527F]) or abolished (NHE3 triple mutant [K516Q, R520F, R 527F]) ezrin binding. Functional consequences of these NHE3 point mutants included the following. 1) A marked decrease in surface amount with a greater decrease in NHE3 activity. 2) Decreased surface expression due to decreased rates of exocytosis and plasma membrane delivery of newly synthesized NHE3, with normal total expression levels and slightly reduced endocytosis rates. 3) A longer plasma membrane half-life of mutant NHE3 with normal total half-life. 4) Decreased BB mobile fraction of NHE3 double mutant. These results show that NHE3 binds ezrin directly as well as indirectly and suggest that the former is related to 1) the exocytic trafficking of and plasma membrane delivery of newly synthesized NHE3, which determines the amount of plasma membrane NHE3 and partially determines NHE3 activity, and 2) BB mobility of NHE3, which may increase its delivery from microvilli to the intervillus clefts, perhaps for NHE3-regulated endocytosis.
Collapse
Affiliation(s)
- Boyoung Cha
- *Departments of Physiology and Medicine, Gastroenterology Division and
| | - Ming Tse
- *Departments of Physiology and Medicine, Gastroenterology Division and
| | - Chris Yun
- *Departments of Physiology and Medicine, Gastroenterology Division and
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322
| | - Olga Kovbasnjuk
- *Departments of Physiology and Medicine, Gastroenterology Division and
| | - Sachin Mohan
- *Departments of Physiology and Medicine, Gastroenterology Division and
| | - Ann Hubbard
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Monique Arpin
- Unite Mixte de Recherche 144, Centre National de la Recherche Scientifique/Institut Curie, 75248 Paris, France
| | - Mark Donowitz
- *Departments of Physiology and Medicine, Gastroenterology Division and
| |
Collapse
|
50
|
Oweis S, Wu L, Kiela PR, Zhao H, Malhotra D, Ghishan FK, Xie Z, Shapiro JI, Liu J. Cardiac glycoside downregulates NHE3 activity and expression in LLC-PK1 cells. Am J Physiol Renal Physiol 2005; 290:F997-1008. [PMID: 16352745 DOI: 10.1152/ajprenal.00322.2005] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Ouabain, a cardiotonic steroid and a specific inhibitor of the Na(+)-K(+)-ATPase, has been shown to significantly inhibit transcellular Na(+) transport without altering the intracellular Na(+) concentration ([Na(+)](i)) in the epithelial cells derived from the renal proximal tubules. We therefore studied whether ouabain affects the activity and expression of Na(+)/H(+) exchanger isoform 3 (NHE3) representing the major route of apical Na(+) reabsorption in LLC-PK(1) cells. Chronic basolateral, but not apical, exposure to low-concentration ouabain (50 and 100 nM) did not change [Na(+)](i) but significantly reduced NHE3 activity, NHE3 protein, and mRNA expression. Inhibition of c-Src or phosphoinositide 3-kinase (PI3K) with PP2 or wortmannin, respectively, abolished ouabain-induced downregulation of NHE3 activity and mRNA expression. In caveolin-1 knockdown LLC-PK(1) cells, ouabain failed to downregulate NHE3 mRNA expression and NHE3 promoter activity. Ouabain response elements were mapped to a region between -450 and -1,194 nt, where decreased binding of thyroid hormone receptor (TR) and Sp1 to their cognate cis-elements was documented in vitro and in vivo by protein/DNA array analysis, EMSA, supershift, and chromatin immunoprecipitation. These data suggest that, in LLC-PK(1) cells, ouabain-induced signaling through the Na(+)-K(+)-ATPase-Src pathway results in decreased Sp1 and TR DNA binding activity and consequently in decreased expression and activity of NHE3. These novel findings may represent the underlying mechanism of cardiotonic steroid-mediated renal compensatory response to volume expansion and/or hypertension.
Collapse
Affiliation(s)
- Shadi Oweis
- Dept. of Medicine, Medical Univ. of Ohio, 3120 Glendale Ave., Toledo, OH 43614-5089, USA
| | | | | | | | | | | | | | | | | |
Collapse
|