1
|
Pignanelli C, Robertson AA, Handy RM, Bommarito JC, Cheung CP, Thompson KMA, Grigore MM, Lydiate GC, Turetskiy K, More M, McCrone JC, Hinks A, Power GA, Burr JF. Electrical Muscle Stimulation With or Without Blood Flow Restriction Does Not Prevent the Impairment in Glycemic Control After 1 Week of Physical Inactivity. Scand J Med Sci Sports 2025; 35:e70056. [PMID: 40259490 DOI: 10.1111/sms.70056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 02/12/2025] [Accepted: 04/03/2025] [Indexed: 04/23/2025]
Abstract
Physical inactivity depresses glycemic control, an impairment that can be prevented with exercise. We investigated whether electrical muscle stimulation (EMS) with blood flow restriction (BFR) could similarly prevent the impairments in glycemic control associated with physical inactivity and whether this was effective for attenuating the loss of physical function after inactivity. Thirty-two participants underwent 1 week of step reduction (≤ 3000 steps/day) randomized to either no intervention (Control), twice daily EMS, or twice daily EMS with BFR (EMS + BFR). Oral glucose tolerance and tests of physical function (neuromuscular function, and cardiorespiratory fitness) were assessed before and after step reduction. Blood glucose incremental area under the curve (iAUC) during the oral glucose tolerance test increased after step reduction (Control: ∆71 ± 133 mM⋅min, EMS: ∆56 ± 65 mM⋅min, EMS + BFR: ∆103 ± 78 mM⋅min, p = 0.0002), as was the insulin iAUC (Control: ∆3580 ± 3245μIU⋅min/mL, EMS: ∆2266 ± 5043μIU⋅min/mL, EMS + BFR: ∆1534 ± 1246μIU⋅min/mL, p = 0.001). A relationship between the change in blood glucose and insulin response was observed after Control (r2 = 0.71, p = 0.002), but not after EMS + BFR (r2 < 0.01, p = 0.93), despite all groups demonstrating a reduction in whole-body insulin sensitivity (Matsuda index; Control: ∆-1.4 ± 2.5, EMS: ∆-1.3 ± 1.5, EMS + BFR: ∆-1.5 ± 1.5, p < 0.0001). Maximal oxygen uptake was not reduced after 1 week of inactivity; however, maximal isometric force production and exercise thresholds were reduced across groups. In summary, EMS + BFR did not prevent the decrease in insulin sensitivity nor attenuate measurements of physical function with 1 week of physical inactivity. The relevance of the dissociated insulin and glucose response with EMS + BFR remains to be determined.
Collapse
Affiliation(s)
- Christopher Pignanelli
- Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Alexa A Robertson
- Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Rachel M Handy
- Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Julian C Bommarito
- Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Christian P Cheung
- Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Kyle M A Thompson
- Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Monica M Grigore
- Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Gavin C Lydiate
- Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Katrin Turetskiy
- Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Melissa More
- Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Jenna C McCrone
- Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Avery Hinks
- Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Geoffrey A Power
- Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Jamie F Burr
- Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
2
|
Guo X, Zhou Y, Li X, Mu J. Resistance exercise training improves disuse-induced skeletal muscle atrophy in humans: a meta-analysis of randomized controlled trials. BMC Musculoskelet Disord 2025; 26:134. [PMID: 39920735 PMCID: PMC11806896 DOI: 10.1186/s12891-025-08384-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 01/31/2025] [Indexed: 02/09/2025] Open
Abstract
BACKGROUND This meta-analysis aimed to determine whether resistance exercise training (RET) can attenuate the loss of muscle volume and function in anti-gravitational muscles, especially quadriceps and calf muscles, during immobilization/disuse conditions. METHODS A comprehensive literature search was conducted to identify randomized controlled trials comparing RET vs. no exercise during immobilization/disuse. Searches were conducted in databases including Web of Science, PubMed, EBOSCO, and Cochrane Library, without imposing a time limit until 20 March, 2023. Studies reporting outcomes related to muscle volume, MVC, peak power, concentric peak force, eccentric peak force, isometric MVC torque of knee extension, isometric MVC torque of knee flexion were included. Data were pooled using random-effects models. RESULTS Eleven randomized controlled trials were finally included. RET elicited substantial benefits for preserving quadriceps muscle volume (n = 5, MD = 252.56, 95% CI = 151.92, 353.21, p < 0.001). RET demonstrated a statistically significant preventive effect on the reduction of MVC in both quadriceps (n = 4, MD = 338.59, 95% CI = 247.49, 429.69, p < 0.001) and calf muscles (n = 3, MD = 478.59, 95% CI = 160.42, 796.77, p < 0.01). Peak power of quadriceps muscles (n = 4, MD = 166.08, 95% CI = 28.44, 303.73, p < 0.05) and calf muscles (n = 2, MD = 176.58, 95% CI = 102.36, 250.79, p < 0.001) were elevated after RET intervention. RET significantly ameliorated the weakening of both concentric and eccentric peak force in quadriceps (concentric: n = 2, MD = 470.95, 95% CI = 355.45, 586.44, p < 0.001; eccentric: n = 1, MD = 351.51, 95% CI = 254.43, 448.58, p < 0.001) and calf muscles (concentric: n = 2, MD = 867.52, 95% CI = 548.18, 1186.86, p < 0.001; eccentric: n = 1, MD = 899.86, 95% CI = 558.17, 1241.55, p < 0.001). Additionally, the diminishing of isometric MVC torques of knee extension (n = 6, MD = 41.85, 95% CI = 20.93, 62.77, p < 0.001) and knee flexion (n = 4, MD = 13.20, 95% CI = 8.12, 18.77, p < 0.001) were enhanced significantly after RET intervention. CONCLUSIONS RET effectively minimized deterioration of muscle volume and muscle function during immobilization/disuse, particularly in anti-gravitational muscles. RET should be recommended to maintain muscle and neuromuscular health for spaceflight, bed rest, immobilization/disuse conditions. Further research is needed to explore the effects of RET in more diverse populations and under various disuse conditions. More high-quality research will be required to demonstrate the aforementioned benefits conclusively.
Collapse
Affiliation(s)
- Xian Guo
- Sport Science School, Beijing Sport University, Beijing, 100084, China.
- Beijing Sports Nutrition Engineering Research Center, Beijing, 100084, China.
| | - Yanbing Zhou
- Department of Kinesiology and Health Education, University of Texas at Austin, Austin, TX, 78712, USA
| | - Xinxin Li
- Sport Science School, Beijing Sport University, Beijing, 100084, China
| | - Jinhao Mu
- Sport Science School, Beijing Sport University, Beijing, 100084, China
| |
Collapse
|
3
|
Aussieker T, Fuchs CJ, Zorenc AH, Verdijk LB, van Loon LJC, Snijders T. Daily blood flow restriction does not affect muscle fiber capillarization and satellite cell content during 2 wk of bed rest in healthy young men. J Appl Physiol (1985) 2025; 138:89-98. [PMID: 39625459 DOI: 10.1152/japplphysiol.00461.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 01/03/2025] Open
Abstract
The present study assessed whether single-leg daily blood flow restriction (BFR) treatment attenuates the decline in muscle fiber size, capillarization, and satellite cell (SC) content during 2 wk of bed rest in healthy, young men. Twelve healthy, young men (age: 24 ± 3 yr; BMI: 23.7 ± 3.1 kg/m2) were subjected to 2 wk of bed rest, during which one leg was exposed to three times daily 5 min of BFR, whereas the contralateral leg received sham treatment [control (CON)]. Muscle biopsies were obtained from the m. vastus lateralis from both the BFR and CON legs before and immediately after 2 wk of bed rest. Types I and II muscle fiber size, myonuclear content, capillarization, and SC content were assessed by immunohistochemistry. No significant decline in either type I or type II muscle fiber size was observed following bed rest, with no differences between the CON and BFR legs (P > 0.05). Type I muscle fiber capillary density increased in response to bed rest in both legs (P < 0.05), whereas other muscle fiber capillarization measures remained unaltered. SC content decreased in both type I (from 7.4 ± 3.2 to 5.9 ± 2.7 per 100 fibers) and type II (from 7.2 ± 3.4 to 6.5 ± 3.2 per 100 fibers) muscle fibers (main effect of time P = 0.018), with no significant differences between the BFR and CON legs (P > 0.05). In conclusion, 2 wk of bed rest has no effect on muscle capillarization and decreases the SC content, and daily BFR treatment does not affect skeletal muscle fiber size and SC content in healthy, young men.NEW & NOTEWORTHY We recently reported that the application of daily blood flow restriction (BFR) treatment does not preserve muscle mass or strength and does not modulate daily muscle protein synthesis rates during 2 wk of bed rest. Here, we show that 2 wk of bed rest resulted in a decrease in satellite cell (SC) content. In addition, the BFR treatment did not affect muscle fiber size, capillarization, and SC content during 2 wk of bed rest.
Collapse
Affiliation(s)
- Thorben Aussieker
- Department of Human Biology, NUTRIM, Institute for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Cas J Fuchs
- Department of Human Biology, NUTRIM, Institute for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Antoine H Zorenc
- Department of Human Biology, NUTRIM, Institute for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Lex B Verdijk
- Department of Human Biology, NUTRIM, Institute for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Luc J C van Loon
- Department of Human Biology, NUTRIM, Institute for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Tim Snijders
- Department of Human Biology, NUTRIM, Institute for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
4
|
Wang Y, Li X, Li N, Du J, Qin X, Sun X, Wang Y, Li C. Integrated Proteomic and Metabolomic Analysis of Muscle Atrophy Induced by Hindlimb Unloading. Biomolecules 2024; 15:14. [PMID: 39858409 PMCID: PMC11764416 DOI: 10.3390/biom15010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 01/27/2025] Open
Abstract
Skeletal muscle atrophy, which is induced by factors such as disuse, spaceflight, certain medications, neurological disorders, and malnutrition, is a global health issue that lacks effective treatment. Hindlimb unloading is a commonly used model of muscle atrophy. However, the underlying mechanism of muscle atrophy induced by hindlimb unloading remains unclear, particularly from the perspective of the myocyte proteome and metabolism. We first used mass spectrometry for proteomic sequencing and untargeted metabolomics to analyze soleus muscle changes in rats with hindlimb unloading. The study found 1052 proteins and 377 metabolites (with the MS2 name) that were differentially expressed between the hindlimb unloading group and the control group. Proteins like ACTN3, MYH4, MYBPC2, and MYOZ1, typically found in fast-twitch muscles, were upregulated, along with metabolism-related proteins GLUL, GSTM4, and NDUFS4. Metabolites arachidylcarnitine and 7,8-dihydrobiopterin, as well as pathways like histidine, taurine, and hypotaurine metabolism, were linked to muscle atrophy. Protein and metabolism joint analyses revealed that some pathways, such as glutathione metabolism, ferroptosis, and lysosome pathways, were likely to be involved in soleus atrophy. In this study, we have applied integrated deep proteomic and metabolomic analyses. The upregulation of proteins that are expressed in fast-twitch fibers indicates the conversion of slow-twitch fibers to fast-twitch fibers under hindlimb unloading. In addition, some differentially abundant metabolites and pathways revealed the important role of metabolism in muscle atrophy of the soleus. As shown in the graphical abstract, our study provides insights into the pathogenesis and treatment of muscle atrophy that results from unloading by integrating proteomics and metabolomics of the soleus muscles.
Collapse
Affiliation(s)
- Yuan Wang
- Department of Aerospace Medical Training, School of Aerospace Medicine, Fourth Military Medical University, Xi’an 710032, China; (Y.W.); (X.L.); (N.L.); (X.S.)
| | - Xi Li
- Department of Aerospace Medical Training, School of Aerospace Medicine, Fourth Military Medical University, Xi’an 710032, China; (Y.W.); (X.L.); (N.L.); (X.S.)
| | - Na Li
- Department of Aerospace Medical Training, School of Aerospace Medicine, Fourth Military Medical University, Xi’an 710032, China; (Y.W.); (X.L.); (N.L.); (X.S.)
| | - Jiawei Du
- Key Laboratory of Sports and Physical Fitness of the Ministry of Education, Beijing Sport University, Beijing 100084, China;
| | - Xiaodong Qin
- Department of Aerospace Medical Training, School of Aerospace Medicine, Fourth Military Medical University, Xi’an 710032, China; (Y.W.); (X.L.); (N.L.); (X.S.)
| | - Xiqing Sun
- Department of Aerospace Medical Training, School of Aerospace Medicine, Fourth Military Medical University, Xi’an 710032, China; (Y.W.); (X.L.); (N.L.); (X.S.)
| | - Yongchun Wang
- Department of Aerospace Medical Training, School of Aerospace Medicine, Fourth Military Medical University, Xi’an 710032, China; (Y.W.); (X.L.); (N.L.); (X.S.)
| | - Chengfei Li
- Department of Aerospace Medical Training, School of Aerospace Medicine, Fourth Military Medical University, Xi’an 710032, China; (Y.W.); (X.L.); (N.L.); (X.S.)
| |
Collapse
|
5
|
Dang K, Cao M, Wang H, Yang H, Kong Y, Gao Y, Qian A. O-GlcNAcylation of SERCA protects skeletal muscle in hibernating Spermophilus dauricus from disuse atrophy. Comp Biochem Physiol B Biochem Mol Biol 2024; 275:111009. [PMID: 39151664 DOI: 10.1016/j.cbpb.2024.111009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 07/06/2024] [Accepted: 07/29/2024] [Indexed: 08/19/2024]
Abstract
Long-term inactivity of skeletal muscle results in muscular disuse atrophy; however, hibernating animals do not experience muscular disuse atrophy during the hibernation period. The molecular mechanism underlining the anti-atrophy effect in these animals is unclear. O-linked N acetyl-β-D-glucosaminylation (O-GlcNAcylation) and its effect on cell signaling pathways are important mechanisms underlying muscular disuse atrophy; thus, in this study, we investigated O-GlcNAcylation changes during hibernation in Spermophilus dauricus to explore the role of O-GlcNAcylation in the muscle disuse atrophy resistance of hibernating animals. The results showed that during hibernation, the muscle fiber cross-sectional area and ratio of muscle fiber did not change, and the morphological structure of the muscle remained intact, with normal contractile function. The level of O-GlcNAcylation decreased during hibernation, but quickly returned to normal in the periodic arousal stage. The O-GlcNAcylation level of sarcoplasmic/endoplasmic reticulum calcium ATPase 1 (SERCA1) decreased, whereas its activity increased. The decrease in O-GlcNAcylation of SERCA could result in the decreased binding of phospholamban to SERCA1, thus decreasing its inhibition to SERCA1 activity. This in turn can inhibit muscle cell calcium overload, maintain muscle cell calcium homeostasis, and stabilize the calpain proteolytic pathway, ultimately inhibiting skeletal muscle atrophy. Our results demonstrate that periodic arousal along with returning O-GlcNAcylation level to normal are important mechanisms in preventing disuse atrophy of skeletal muscle during hibernation.
Collapse
Affiliation(s)
- Kai Dang
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China; Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China; NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Mengru Cao
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China; Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China; NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Huiping Wang
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Huajian Yang
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Yong Kong
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Yuan Gao
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China; Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China; NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Airong Qian
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China; Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China; NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.
| |
Collapse
|
6
|
Barzaghi L, Paoletti M, Monforte M, Bortolani S, Bonizzoni C, Thorsten F, Bergsland N, Santini F, Deligianni X, Tasca G, Ballante E, Figini S, Ricci E, Pichiecchio A. Muscle diffusion tensor imaging in facioscapulohumeral muscular dystrophy. Muscle Nerve 2024; 70:248-256. [PMID: 38873946 DOI: 10.1002/mus.28179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 05/16/2024] [Accepted: 05/26/2024] [Indexed: 06/15/2024]
Abstract
INTRODUCTION/AIMS Muscle diffusion tensor imaging has not yet been explored in facioscapulohumeral muscular dystrophy (FSHD). We assessed diffusivity parameters in FSHD subjects compared with healthy controls (HCs), with regard to their ability to precede any fat replacement or edema. METHODS Fat fraction (FF), water T2 (wT2), mean, radial, axial diffusivity (MD, RD, AD), and fractional anisotropy (FA) of thigh muscles were calculated in 10 FSHD subjects and 15 HCs. All parameters were compared between FSHD and controls, also exploring their gradient along the main axis of the muscle. Diffusivity parameters were tested in a subgroup analysis as predictors of disease involvement in muscle compartments with different degrees of FF and wT2 and were also correlated with clinical severity scores. RESULTS We found that MD, RD, and AD were significantly lower in FSHD subjects than in controls, whereas we failed to find a difference for FA. In contrast, we found a significant positive correlation between FF and FA and a negative correlation between MD, RD, and AD and FF. No correlation was found with wT2. In our subgroup analysis we found that muscle compartments with no significant fat replacement or edema (FF < 10% and wT2 < 41 ms) showed a reduced AD and FA compared with controls. Less involved compartments showed different diffusivity parameters than more involved compartments. DISCUSSION Our exploratory study was able to demonstrate diffusivity parameter abnormalities even in muscles with no significant fat replacement or edema. Larger cohorts are needed to confirm these preliminary findings.
Collapse
Affiliation(s)
- Leonardo Barzaghi
- Department of Mathematics, University of Pavia, Pavia, Italy
- Advanced Imaging and Artificial Intelligence Center, Neuroradiology Department, IRCCS Mondino Foundation, Pavia, Italy
- INFN, Group of Pavia, Pavia, Italy
| | - Matteo Paoletti
- Advanced Imaging and Artificial Intelligence Center, Neuroradiology Department, IRCCS Mondino Foundation, Pavia, Italy
| | - Mauro Monforte
- UOC di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Sara Bortolani
- UOC di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Chiara Bonizzoni
- Advanced Imaging and Artificial Intelligence Center, Neuroradiology Department, IRCCS Mondino Foundation, Pavia, Italy
| | | | - Niels Bergsland
- Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, Buffalo Neuroimaging Analysis Center, University of Buffalo, The State University of New York, Buffalo, New York, USA
- IRCCS, Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| | - Francesco Santini
- Department of Radiology, University Hospital Basel, Basel, Switzerland
- Basel Muscle MRI, Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Xeni Deligianni
- Department of Radiology, University Hospital Basel, Basel, Switzerland
- Basel Muscle MRI, Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Giorgio Tasca
- UOC di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trusts, Newcastle upon Tyne, UK
| | - Elena Ballante
- Department of Political and Social Sciences, University of Pavia, Pavia, Italy
- BioData Science Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Silvia Figini
- Department of Political and Social Sciences, University of Pavia, Pavia, Italy
- BioData Science Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Enzo Ricci
- UOC di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Anna Pichiecchio
- Advanced Imaging and Artificial Intelligence Center, Neuroradiology Department, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
7
|
Casuso RA, Huertas JR, Aragón‐Vela J. The role of muscle disuse in muscular and cardiovascular fitness: A systematic review and meta-regression. Eur J Sport Sci 2024; 24:812-823. [PMID: 38874988 PMCID: PMC11235952 DOI: 10.1002/ejsc.12093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/06/2024] [Accepted: 02/12/2024] [Indexed: 06/15/2024]
Abstract
We aimed to assess the effects of muscle disuse on muscle strength (MS), muscle mass (MM) and cardiovascular fitness. Databases were scrutinized to identify human studies assessing the effects of muscle disuse on both (1) MM and (2) maximal oxygen uptake (VO2max) and/or MS. Random-effects meta-analysis and meta-regression with initial physical fitness and length of the protocol as a priori determined moderators were performed. We quantitatively analyzed 51 different studies, and the level of significance was set at p < 0.05. Data from the participants in 14 studies showed a decline in both VO2max (SMD: -0.93; 95% CI: -1.27 to -0.58) and MM (SMD: -0.34; 95% CI: -0.57 to -0.10). Data from 47 studies showed a decline in strength (-0.88; 95% CI: -1.04 to -0.73) and mass (SMD: -0.47; 95% CI: -0.58 to -0.36). MS loss was twice as high as MM loss, but differences existed between anatomical regions. Notably, meta-regression analysis revealed that initial MS was inversely associated with MS decline. VO2max and MS decline to a higher extent than MM during muscle disuse. We reported a more profound strength loss in subjects with high muscular strength. This is physiologically relevant for athletes because their required muscular strength can profoundly decline during a period of muscle disuse. It should however be noted that a period of muscle disuse can have devastating consequences in old subjects with low muscular strength.
Collapse
Affiliation(s)
- Rafael A. Casuso
- Department of Health SciencesUniversidad Loyola AndalucíaCórdobaSpain
| | - Jesús R. Huertas
- Department of PhysiologyInstitute of Nutrition and Food TechnologyUniversity of GranadaGranadaSpain
| | | |
Collapse
|
8
|
Trappe TA, Minchev K, Perkins RK, Lavin KM, Jemiolo B, Ratchford SM, Claiborne A, Lee GA, Finch WH, Ryder JW, Ploutz-Snyder L, Trappe SW. NASA SPRINT exercise program efficacy for vastus lateralis and soleus skeletal muscle health during 70 days of simulated microgravity. J Appl Physiol (1985) 2024; 136:1015-1039. [PMID: 38328821 PMCID: PMC11365553 DOI: 10.1152/japplphysiol.00489.2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/21/2023] [Accepted: 02/05/2024] [Indexed: 02/09/2024] Open
Abstract
The efficacy of the NASA SPRINT exercise countermeasures program for quadriceps (vastus lateralis) and triceps surae (soleus) skeletal muscle health was investigated during 70 days of simulated microgravity. Individuals completed 6° head-down-tilt bedrest (BR, n = 9), bedrest with resistance and aerobic exercise (BRE, n = 9), or bedrest with resistance and aerobic exercise and low-dose testosterone (BRE + T, n = 8). All groups were periodically tested for muscle (n = 9 times) and aerobic (n = 4 times) power during bedrest. In BR, surprisingly, the typical bedrest-induced decrements in vastus lateralis myofiber size and power were either blunted (myosin heavy chain, MHC I) or eliminated (MHC IIa), along with no change (P > 0.05) in %MHC distribution and blunted quadriceps atrophy. In BRE, MHC I (vastus lateralis and soleus) and IIa (vastus lateralis) contractile performance was maintained (P > 0.05) or increased (P < 0.05). Vastus lateralis hybrid fiber percentage was reduced (P < 0.05) and energy metabolism enzymes and capillarization were generally maintained (P > 0.05), while not all of these positive responses were observed in the soleus. Exercise offsets 100% of quadriceps and approximately two-thirds of soleus whole muscle mass loss. Testosterone (BRE + T) did not provide any benefit over exercise alone for either muscle and for some myocellular parameters appeared detrimental. In summary, the periodic testing likely provided a partial exercise countermeasure for the quadriceps in the bedrest group, which is a novel finding given the extremely low exercise dose. The SPRINT exercise program appears to be viable for the quadriceps; however, refinement is needed to completely protect triceps surae myocellular and whole muscle health for astronauts on long-duration spaceflights.NEW & NOTEWORTHY This study provides unique exercise countermeasures development information for astronauts on long-duration spaceflights. The NASA SPRINT program was protective for quadriceps myocellular and whole muscle health, whereas the triceps surae (soleus) was only partially protected as has been shown with other programs. The bedrest control group data may provide beneficial information for overall exercise dose and targeting fast-twitch muscle fibers. Other unique approaches for the triceps surae are needed to supplement existing exercise programs.
Collapse
Affiliation(s)
- Todd A Trappe
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Kiril Minchev
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Ryan K Perkins
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Kaleen M Lavin
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Bozena Jemiolo
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Stephen M Ratchford
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Alex Claiborne
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Gary A Lee
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - W Holmes Finch
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Jeffrey W Ryder
- Universities Space Research Association, NASA Johnson Space Center, Houston, Texas, United States
| | - Lori Ploutz-Snyder
- Universities Space Research Association, NASA Johnson Space Center, Houston, Texas, United States
| | - Scott W Trappe
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| |
Collapse
|
9
|
Voss AC, Chambers TL, Gries KJ, Jemiolo B, Raue U, Minchev K, Begue G, Lee GA, Trappe TA, Trappe SW. Exercise microdosing for skeletal muscle health applications to spaceflight. J Appl Physiol (1985) 2024; 136:1040-1052. [PMID: 38205550 PMCID: PMC11365549 DOI: 10.1152/japplphysiol.00491.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/21/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024] Open
Abstract
Findings from a recent 70-day bedrest investigation suggested intermittent exercise testing in the control group may have served as a partial countermeasure for skeletal muscle size, function, and fiber-type shifts. The purpose of the current study was to investigate the metabolic and skeletal muscle molecular responses to the testing protocols. Eight males (29 ± 2 yr) completed muscle power (6 × 4 s; peak muscle power: 1,369 ± 86 W) and V̇o2max (13 ± 1 min; 3.2 ± 0.2 L/min) tests on specially designed supine cycle ergometers during two separate trials. Blood catecholamines and lactate were measured pre-, immediately post-, and 4-h postexercise. Muscle homogenate and muscle fiber-type-specific [myosin heavy chain (MHC) I and MHC IIa] mRNA levels of exercise markers (myostatin, IκBα, myogenin, MuRF-1, ABRA, RRAD, Fn14, PDK4) and MHC I, IIa, and IIx were measured from vastus lateralis muscle biopsies obtained pre- and 4-h postexercise. The muscle power test altered (P ≤ 0.05) norepinephrine (+124%), epinephrine (+145%), lactate (+300%), and muscle homogenate mRNA (IκBα, myogenin, MuRF-1, RRAD, Fn14). The V̇o2max test altered (P ≤ 0.05) norepinephrine (+1,394%), epinephrine (+1,412%), lactate (+736%), and muscle homogenate mRNA (myostatin, IκBα, myogenin, MuRF-1, ABRA, RRAD, Fn14, PDK4). In general, both tests influenced MHC IIa muscle fibers more than MHC I with respect to the number of genes that responded and the magnitude of response. Both tests also influenced MHC mRNA expression in a muscle fiber-type-specific manner. These findings provide unique insights into the adaptive response of skeletal muscle to small doses of exercise and could help shape exercise dosing for astronauts and Earth-based individuals.NEW & NOTEWORTHY Declines in skeletal muscle health are a concern for astronauts on long-duration spaceflights. The current findings add to the growing body of exercise countermeasures data, suggesting that small doses of specific exercise can be beneficial for certain aspects of skeletal muscle health. This information can be used in conjunction with other components of existing exercise programs for astronauts and might translate to other areas focused on skeletal muscle health (e.g., sports medicine, rehabilitation, aging).
Collapse
Affiliation(s)
- Adam C Voss
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Toby L Chambers
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Kevin J Gries
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Bozena Jemiolo
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Ulrika Raue
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Kiril Minchev
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Gwenaelle Begue
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Gary A Lee
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Todd A Trappe
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Scott W Trappe
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| |
Collapse
|
10
|
Cowburn J, Serrancolí G, Colyer S, Cazzola D. Optimal fibre length and maximum isometric force are the most influential parameters when modelling muscular adaptations to unloading using Hill-type muscle models. Front Physiol 2024; 15:1347089. [PMID: 38694205 PMCID: PMC11061504 DOI: 10.3389/fphys.2024.1347089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/25/2024] [Indexed: 05/04/2024] Open
Abstract
Introduction: Spaceflight is associated with severe muscular adaptations with substantial inter-individual variability. A Hill-type muscle model is a common method to replicate muscle physiology in musculoskeletal simulations, but little is known about how the underlying parameters should be adjusted to model adaptations to unloading. The aim of this study was to determine how Hill-type muscle model parameters should be adjusted to model disuse muscular adaptations. Methods: Isokinetic dynamometer data were taken from a bed rest campaign and used to perform tracking simulations at two knee extension angular velocities (30°·s-1 and 180°·s-1). The activation and contraction dynamics were solved using an optimal control approach and direct collocation method. A Monte Carlo sampling technique was used to perturb muscle model parameters within physiological boundaries to create a range of theoretical and feasible parameters to model muscle adaptations. Results: Optimal fibre length could not be shortened by more than 67% and 61% for the knee flexors and non-knee muscles, respectively. Discussion: The Hill-type muscle model successfully replicated muscular adaptations due to unloading, and recreated salient features of muscle behaviour associated with spaceflight, such as altered force-length behaviour. Future researchers should carefully adjust the optimal fibre lengths of their muscle-models when trying to model adaptations to unloading, particularly muscles that primarily operate on the ascending and descending limbs of the force-length relationship.
Collapse
Affiliation(s)
- James Cowburn
- Department for Health, University of Bath, Bath, United Kingdom
- Centre for the Analysis of Motion, Entertainment Research and Applications, University of Bath, Bath, United Kingdom
| | - Gil Serrancolí
- Department of Mechanical Engineering, Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Steffi Colyer
- Department for Health, University of Bath, Bath, United Kingdom
- Centre for the Analysis of Motion, Entertainment Research and Applications, University of Bath, Bath, United Kingdom
| | - Dario Cazzola
- Department for Health, University of Bath, Bath, United Kingdom
- Centre for the Analysis of Motion, Entertainment Research and Applications, University of Bath, Bath, United Kingdom
| |
Collapse
|
11
|
Raue U, Begue G, Minchev K, Jemiolo B, Gries KJ, Chambers T, Rubenstein A, Zaslavsky E, Sealfon SC, Trappe T, Trappe S. Fast and slow muscle fiber transcriptome dynamics with lifelong endurance exercise. J Appl Physiol (1985) 2024; 136:244-261. [PMID: 38095016 PMCID: PMC11219013 DOI: 10.1152/japplphysiol.00442.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/24/2023] [Accepted: 12/05/2023] [Indexed: 01/26/2024] Open
Abstract
We investigated fast and slow muscle fiber transcriptome exercise dynamics among three groups of men: lifelong exercisers (LLE, n = 8, 74 ± 1 yr), old healthy nonexercisers (OH, n = 9, 75 ± 1 yr), and young exercisers (YE, n = 8, 25 ± 1 yr). On average, LLE had exercised ∼4 day·wk-1 for ∼8 h·wk-1 over 53 ± 2 years. Muscle biopsies were obtained pre- and 4 h postresistance exercise (3 × 10 knee extensions at 70% 1-RM). Fast and slow fiber size and function were assessed preexercise with fast and slow RNA-seq profiles examined pre- and postexercise. LLE fast fiber size was similar to OH, which was ∼30% smaller than YE (P < 0.05) with contractile function variables among groups, resulting in lower power in LLE (P < 0.05). LLE slow fibers were ∼30% larger and more powerful compared with YE and OH (P < 0.05). At the transcriptome level, fast fibers were more responsive to resistance exercise compared with slow fibers among all three cohorts (P < 0.05). Exercise induced a comprehensive biological response in fast fibers (P < 0.05) including transcription, signaling, skeletal muscle cell differentiation, and metabolism with vast differences among the groups. Fast fibers from YE exhibited a growth and metabolic signature, with LLE being primarily metabolic, and OH showing a strong stress-related response. In slow fibers, only LLE exhibited a biological response to exercise (P < 0.05), which was related to ketone and lipid metabolism. The divergent exercise transcriptome signatures provide novel insight into the molecular regulation in fast and slow fibers with age and exercise and suggest that the ∼5% weekly exercise time commitment of the lifelong exercisers provided a powerful investment for fast and slow muscle fiber metabolic health at the molecular level.NEW & NOTEWORTHY This study provides the first insights into fast and slow muscle fiber transcriptome dynamics with lifelong endurance exercise. The fast fibers were more responsive to exercise with divergent transcriptome signatures among young exercisers (growth and metabolic), lifelong exercisers (metabolic), and old healthy nonexercisers (stress). Only lifelong exercisers had a biological response in slow fibers (metabolic). These data provide novel insights into fast and slow muscle fiber health at the molecular level with age and exercise.
Collapse
Affiliation(s)
- Ulrika Raue
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Gwenaelle Begue
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Kiril Minchev
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Bozena Jemiolo
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Kevin J Gries
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Toby Chambers
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Aliza Rubenstein
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Elena Zaslavsky
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Stuart C Sealfon
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Todd Trappe
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Scott Trappe
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| |
Collapse
|
12
|
Serrano N, Hyatt JPK, Houmard JA, Murgia M, Katsanos CS. Muscle fiber phenotype: a culprit of abnormal metabolism and function in skeletal muscle of humans with obesity. Am J Physiol Endocrinol Metab 2023; 325:E723-E733. [PMID: 37877797 PMCID: PMC10864022 DOI: 10.1152/ajpendo.00190.2023] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/23/2023] [Accepted: 10/23/2023] [Indexed: 10/26/2023]
Abstract
The proportion of the different types of fibers in a given skeletal muscle contributes to its overall metabolic and functional characteristics. Greater proportion of type I muscle fibers is associated with favorable oxidative metabolism and function of the muscle. Humans with obesity have a lower proportion of type I muscle fibers. We discuss how lower proportion of type I fibers in skeletal muscle of humans with obesity may explain metabolic and functional abnormalities reported in these individuals. These include lower muscle glucose disposal rate, mitochondrial content, protein synthesis, and quality/contractile function, as well as increased risk for heart disease, lower levels of physical activity, and propensity for weight gain/resistance to weight loss. We delineate future research directions and the need to examine hybrid muscle fiber populations, which are indicative of a transitory state of fiber phenotype within skeletal muscle. We also describe methodologies for precisely characterizing muscle fibers and gene expression at the single muscle fiber level to enhance our understanding of the regulation of muscle fiber phenotype in obesity. By contextualizing research in the field of muscle fiber type in obesity, we lay a foundation for future advancements and pave the way for translation of this knowledge to address impaired metabolism and function in obesity.
Collapse
Affiliation(s)
- Nathan Serrano
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States
| | - Jon-Philippe K Hyatt
- College of Integrative Sciences and Arts, Arizona State University, Tempe, Arizona, United States
| | - Joseph A Houmard
- Department of Kinesiology, Human Performance Laboratory, East Carolina University, Greenville, North Carolina, United States
| | - Marta Murgia
- Department of Biomedical Sciences, University of Padova, Padua, Italy
- Department of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Christos S Katsanos
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic-Arizona, Phoenix, Arizona, United States
| |
Collapse
|
13
|
Schütze K, Schopp M, Fairchild TJ, Needham M. Old muscle, new tricks: a clinician perspective on sarcopenia and where to next. Curr Opin Neurol 2023; 36:441-449. [PMID: 37501556 PMCID: PMC10487352 DOI: 10.1097/wco.0000000000001185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
PURPOSE OF REVIEW This review offers a contemporary clinical approach to the recognition, prevention and management of sarcopenia, and discusses recent clinically relevant advances in the aetiopathogenesis of muscle ageing that may lead to future therapeutic targets. RECENT FINDINGS The key recent directions for sarcopenia are in the diagnosis, understanding molecular mechanisms and management. Regarding the recognition of the condition, it has become increasingly clear that different definitions hamper progress in understanding. Therefore, the Global Leadership in Sarcopenia has been established in 2022 to develop a universally accepted definition. Moreover, substantial work is occurring to understand the various roles and contribution of inflammation, oxidative stress, mitochondrial dysfunction and metabolic dysregulation on skeletal muscle function and ageing. Finally, the role of resistance-based exercise regimes has been continually emphasised. However, the role of protein supplementation and hormone replacement therapy (HRT) are still under debate, and current clinical trials are underway. SUMMARY With the global ageing of our population, there is increasing emphasis on maintaining good health. Maintenance of skeletal muscle strength and function are key to preventing frailty, morbidity and death.
Collapse
Affiliation(s)
- Katie Schütze
- School of Medicine, The University of Notre Dame Australia, Fremantle
| | - Madeline Schopp
- School of Medicine, The University of Notre Dame Australia, Fremantle
| | - Timothy J. Fairchild
- Centre for Molecular Medicine & Innovative Therapeutics
- School of Allied Health, Murdoch University
| | - Merrilee Needham
- School of Medicine, The University of Notre Dame Australia, Fremantle
- Centre for Molecular Medicine & Innovative Therapeutics
- Perron Institute of Neurological and Translational Sciences, Nedlands
- Department of Neurology, Fiona Stanley Hospital, Murdoch, Western Australia, Australia
| |
Collapse
|
14
|
Pinto AJ, Bergouignan A, Dempsey PC, Roschel H, Owen N, Gualano B, Dunstan DW. Physiology of sedentary behavior. Physiol Rev 2023; 103:2561-2622. [PMID: 37326297 PMCID: PMC10625842 DOI: 10.1152/physrev.00022.2022] [Citation(s) in RCA: 103] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 05/10/2023] [Accepted: 06/14/2023] [Indexed: 06/17/2023] Open
Abstract
Sedentary behaviors (SB) are characterized by low energy expenditure while in a sitting or reclining posture. Evidence relevant to understanding the physiology of SB can be derived from studies employing several experimental models: bed rest, immobilization, reduced step count, and reducing/interrupting prolonged SB. We examine the relevant physiological evidence relating to body weight and energy balance, intermediary metabolism, cardiovascular and respiratory systems, the musculoskeletal system, the central nervous system, and immunity and inflammatory responses. Excessive and prolonged SB can lead to insulin resistance, vascular dysfunction, shift in substrate use toward carbohydrate oxidation, shift in muscle fiber from oxidative to glycolytic type, reduced cardiorespiratory fitness, loss of muscle mass and strength and bone mass, and increased total body fat mass and visceral fat depot, blood lipid concentrations, and inflammation. Despite marked differences across individual studies, longer term interventions aimed at reducing/interrupting SB have resulted in small, albeit marginally clinically meaningful, benefits on body weight, waist circumference, percent body fat, fasting glucose, insulin, HbA1c and HDL concentrations, systolic blood pressure, and vascular function in adults and older adults. There is more limited evidence for other health-related outcomes and physiological systems and for children and adolescents. Future research should focus on the investigation of molecular and cellular mechanisms underpinning adaptations to increasing and reducing/interrupting SB and the necessary changes in SB and physical activity to impact physiological systems and overall health in diverse population groups.
Collapse
Affiliation(s)
- Ana J Pinto
- Division of Endocrinology, Metabolism, and Diabetes, Anschutz Health and Wellness Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Applied Physiology & Nutrition Research Group, Center of Lifestyle Medicine, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Audrey Bergouignan
- Division of Endocrinology, Metabolism, and Diabetes, Anschutz Health and Wellness Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Institut Pluridisciplinaire Hubert Curien, Centre National de la Recherche Scientifique, Université de Strasbourg, Strasbourg, France
| | - Paddy C Dempsey
- Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Diabetes Research Centre, College of Life Sciences, University of Leicester, Leicester, United Kingdom
| | - Hamilton Roschel
- Applied Physiology & Nutrition Research Group, Center of Lifestyle Medicine, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Neville Owen
- Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia
- Centre for Urban Transitions, Swinburne University of Technology, Melbourne, Victoria, Australia
| | - Bruno Gualano
- Applied Physiology & Nutrition Research Group, Center of Lifestyle Medicine, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
- Food Research Center, University of Sao Paulo, Sao Paulo, Brazil
| | - David W Dunstan
- Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| |
Collapse
|
15
|
Chambers TL, Stroh AM, Chavez C, Brandt AR, Claiborne A, Fountain WA, Gries KJ, Jones AM, Kuszmaul DJ, Lee GA, Lester BE, Lynch CE, Minchev K, Montenegro CF, Naruse M, Raue U, Trappe TA, Trappe S. Multitissue responses to exercise: a MoTrPAC feasibility study. J Appl Physiol (1985) 2023; 135:302-315. [PMID: 37318985 PMCID: PMC10393343 DOI: 10.1152/japplphysiol.00210.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/05/2023] [Accepted: 06/12/2023] [Indexed: 06/17/2023] Open
Abstract
We assessed the feasibility of the Molecular Transducers of Physical Activity Consortium (MoTrPAC) human adult clinical exercise protocols, while also documenting select cardiovascular, metabolic, and molecular responses to these protocols. After phenotyping and familiarization sessions, 20 subjects (25 ± 2 yr, 12 M, 8 W) completed an endurance exercise bout (n = 8, 40 min cycling at 70% V̇o2max), a resistance exercise bout (n = 6, ∼45 min, 3 sets of ∼10 repetition maximum, 8 exercises), or a resting control period (n = 6, 40 min rest). Blood samples were taken before, during, and after (10 min, 2 h, and 3.5 h) exercise or rest for levels of catecholamines, cortisol, glucagon, insulin, glucose, free fatty acids, and lactate. Heart rate was recorded throughout exercise (or rest). Skeletal muscle (vastus lateralis) and adipose (periumbilical) biopsies were taken before and ∼4 h following exercise or rest for mRNA levels of genes related to energy metabolism, growth, angiogenesis, and circadian processes. Coordination of the timing of procedural components (e.g., local anesthetic delivery, biopsy incisions, tumescent delivery, intravenous line flushes, sample collection and processing, exercise transitions, and team dynamics) was reasonable to orchestrate while considering subject burden and scientific objectives. The cardiovascular and metabolic alterations reflected a dynamic and unique response to endurance and resistance exercise, whereas skeletal muscle was transcriptionally more responsive than adipose 4 h postexercise. In summary, the current report provides the first evidence of protocol execution and feasibility of key components of the MoTrPAC human adult clinical exercise protocols. Scientists should consider designing exercise studies in various populations to interface with the MoTrPAC protocols and DataHub.NEW & NOTEWORTHY This study highlights the feasibility of key aspects of the MoTrPAC adult human clinical protocols. This initial preview of what can be expected from acute exercise trial data from MoTrPAC provides an impetus for scientists to design exercise studies to interlace with the rich phenotypic and -omics data that will populate the MoTrPAC DataHub at the completion of the parent protocol.
Collapse
Affiliation(s)
- Toby L Chambers
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Andrew M Stroh
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Clarisa Chavez
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Anna R Brandt
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Alex Claiborne
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - William A Fountain
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Kevin J Gries
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Andrew M Jones
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Dillon J Kuszmaul
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Gary A Lee
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Bridget E Lester
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Colleen E Lynch
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Kiril Minchev
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | | | - Masatoshi Naruse
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Ulrika Raue
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Todd A Trappe
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Scott Trappe
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| |
Collapse
|
16
|
Naruse M, Vincenty CS, Konopka AR, Trappe SW, Harber MP, Trappe TA. Cycle exercise training and muscle mass: A preliminary investigation of 17 lower limb muscles in older men. Physiol Rep 2023; 11:e15781. [PMID: 37606179 PMCID: PMC10442866 DOI: 10.14814/phy2.15781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 08/23/2023] Open
Abstract
Cycling exercise in older individuals is beneficial for the cardiovascular system and quadriceps muscles, including partially reversing the age-related loss of quadriceps muscle mass. However, the effect of cycling exercise on the numerous other lower limb muscles is unknown. Six older men (74 ± 8 years) underwent MRI before and after 12-weeks of progressive aerobic cycle exercise training (3-4 days/week, 60-180 min/week, 60%-80% heart rate reserve, VO2 max: +13%) for upper (rectus femoris, vastii, adductor longus, adductor magnus, gracilis, sartorius, biceps femoris long head, biceps femoris short head, semimembranosus, semitendinosus) and lower (anterior tibial, posterior tibialis, peroneals, flexor digitorum longus, lateral gastrocnemius, medial gastrocnemius, soleus) leg muscle volumes. In the upper leg, cycle exercise training induced hypertrophy (p ≤ 0.05) in the vastii (+7%) and sartorius (+6%), with a trend to increase biceps femoris short head (+5%, p = 0.1). Additionally, there was a trend to decrease muscle volume in the adductor longus (-6%, p = 0.1) and biceps femoris long head (-5%, p = 0.09). In the lower leg, all 7 muscle volumes assessed were unaltered pre- to post-training (-2% to -3%, p > 0.05). This new evidence related to cycle exercise training in older individuals clarifies the specific upper leg muscles that are highly impacted, while revealing all the lower leg muscles do not appear responsive, in the context of muscle mass and sarcopenia. This study provides information for exercise program development in older individuals, suggesting other specific exercises are needed for the rectus femoris and adductors, certain hamstrings, and the anterior and posterior lower leg muscles to augment the beneficial effects of cycling exercise for older adults.
Collapse
Affiliation(s)
- Masatoshi Naruse
- Human Performance LaboratoryBall State UniversityMuncieIndianaUSA
| | | | - Adam R. Konopka
- Human Performance LaboratoryBall State UniversityMuncieIndianaUSA
| | - Scott W. Trappe
- Human Performance LaboratoryBall State UniversityMuncieIndianaUSA
| | | | - Todd A. Trappe
- Human Performance LaboratoryBall State UniversityMuncieIndianaUSA
| |
Collapse
|
17
|
Jang DK, Park M, Kim YH. Sociodemographic, Behavioural, and Health Factors Associated with Sedentary Behaviour in Community-Dwelling Older Adults: A Nationwide Cross-Sectional Study. J Clin Med 2023; 12:5005. [PMID: 37568405 PMCID: PMC10419473 DOI: 10.3390/jcm12155005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/08/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Few studies have focused on factors associated with sedentary behaviour among older Asian adults. This study aimed to identify factors independently associated with prolonged sedentary times in Korean older adults. We included 8273 community-dwelling older adults aged ≥65 years who participated in the Korean National Health and Nutrition Examination Survey. Self-reported sedentary times were assessed via the Global Physical Activity Questionnaire, and sedentary times of ≥420 min/day were considered 'long'. Complex-sample multivariable-adjusted logistic regression analyses were conducted to investigate the factors associated with long sedentary times. Among the participants, 4610 (55.72%) had long sedentary times that were associated with advanced age (odds ratio [OR], 2.49; 95% confidence interval [CI], 2.05-3.01), female sex (OR, 1.32; 95% CI, 1.11-1.57), unemployment (OR, 1.23; 95% CI, 1.09-1.38), living alone (OR, 1.24; 95% CI, 1.08-1.43), urban residence (OR, 1.35; 95% CI, 1.14-1.61), and insufficient aerobic exercise (OR, 1.80; 95% CI, 1.60-2.02). Among health factors, obesity (OR, 1.27; 95% CI, 1.12-1.45), diabetes (OR, 1.17; 95% CI, 1.04-1.32), cardiovascular diseases (OR, 1.30; 95% CI, 1.11-1.52), and arthritis (OR, 1.26; 95% CI, 1.11-1.43) had positive associations with long sedentary times. A tailored approach that considered various sociodemographic, behavioural, and health factors is needed to reduce sedentary behaviour in this population.
Collapse
Affiliation(s)
- Dong Kee Jang
- Department of Internal Medicine, Seoul Metropolitan Government Boramae Medical Center, Seoul National University College of Medicine, Seoul 07061, Republic of Korea;
| | - Mina Park
- Department of Rehabilitation Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea;
| | - Yeo Hyung Kim
- Department of Rehabilitation Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea;
| |
Collapse
|
18
|
Naruse M, Trappe S, Trappe TA. Human skeletal muscle-specific atrophy with aging: a comprehensive review. J Appl Physiol (1985) 2023; 134:900-914. [PMID: 36825643 PMCID: PMC10069966 DOI: 10.1152/japplphysiol.00768.2022] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/10/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Age-related skeletal muscle atrophy appears to be a muscle group-specific process, yet only a few specific muscles have been investigated and our understanding in this area is limited. This review provides a comprehensive summary of the available information on age-related skeletal muscle atrophy in a muscle-specific manner, nearly half of which comes from the quadriceps. Decline in muscle-specific size over ∼50 yr of aging was determined from 47 cross-sectional studies of 982 young (∼25 yr) and 1,003 old (∼75 yr) individuals and nine muscle groups: elbow extensors (-20%, -0.39%/yr), elbow flexors (-19%, -0.38%/yr), paraspinals (-24%, -0.47%/yr), psoas (-29%, -0.58%/yr), hip adductors (-13%, -0.27%/yr), hamstrings (-19%, -0.39%/yr), quadriceps (-27%, -0.53%/yr), dorsiflexors (-9%, -0.19%/yr), and triceps surae (-14%, -0.28%/yr). Muscle-specific atrophy rate was also determined for each of the subcomponent muscles in the hamstrings, quadriceps, and triceps surae. Of all the muscles included in this review, there was more than a fivefold difference between the least (-6%, -0.13%/yr, soleus) to the most (-33%, -0.66%/yr, rectus femoris) atrophying muscles. Muscle activity level, muscle fiber type, sex, and timeline of the aging process all appeared to have some influence on muscle-specific atrophy. Given the large range of muscle-specific atrophy and the large number of muscles that have not been investigated, more muscle-specific information could expand our understanding of functional deficits that develop with aging and help guide muscle-specific interventions to improve the quality of life of aging women and men.
Collapse
Affiliation(s)
- Masatoshi Naruse
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Scott Trappe
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Todd A Trappe
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| |
Collapse
|
19
|
Human and African ape myosin heavy chain content and the evolution of hominin skeletal muscle. Comp Biochem Physiol A Mol Integr Physiol 2023; 281:111415. [PMID: 36931425 DOI: 10.1016/j.cbpa.2023.111415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/13/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023]
Abstract
Humans are unique among terrestrial mammals in our manner of walking and running, reflecting 7 to 8 Ma of musculoskeletal evolution since diverging with the genus Pan. One component of this is a shift in our skeletal muscle biology towards a predominance of myosin heavy chain (MyHC) I isoforms (i.e. slow fibers) across our pelvis and lower limbs, which distinguishes us from chimpanzees. Here, new MyHC data from 35 pelvis and hind limb muscles of a Western gorilla (Gorilla gorilla) are presented. These data are combined with a similar chimpanzee dataset to assess the MyHC I content of humans in comparison to African apes (chimpanzees and gorillas) and other terrestrial mammals. The responsiveness of human skeletal muscle to behavioral interventions is also compared to the human-African ape differential. Humans are distinct from African apes and among a small group of terrestrial mammals whose pelvis and hind/lower limb muscle is slow fiber dominant, on average. Behavioral interventions, including immobilization, bed rest, spaceflight and exercise, can induce modest decreases and increases in human MyHC I content (i.e. -9.3% to 2.3%, n = 2033 subjects), but these shifts are much smaller than the mean human-African ape differential (i.e. 31%). Taken together, these results indicate muscle fiber content is likely an evolvable trait under selection in the hominin lineage. As such, we highlight potential targets of selection in the genome (e.g. regions that regulate MyHC content) that may play an important role in hominin skeletal muscle evolution.
Collapse
|
20
|
Hamada Y, Okubo Y, Hattori H, Nazuka T, Kikuchi Y, Akasaka K. Relationship between Isokinetic Trunk Muscle Strength and Return to Sports Competition after Conservative Therapy in Fresh Cases of Lumbar Spondylolysis: A Retrospective Observational Study. Healthcare (Basel) 2023; 11:healthcare11040625. [PMID: 36833159 PMCID: PMC9957178 DOI: 10.3390/healthcare11040625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/11/2023] [Accepted: 02/18/2023] [Indexed: 02/22/2023] Open
Abstract
This study aimed to clarify the relationship between isokinetic trunk muscle strength and return to sporting activities in fresh cases of lumbar spondylolysis treated with conservative therapy. Patients included a total of ten men (age: 13.5 ± 1.7) who were instructed by their attending physicians to stop exercising and who met the eligibility criteria. Isokinetic trunk muscle strength was measured immediately after exercising for the first time (First) and one month (1M). Flexion and extension and maximum torque/body weight ratio were significantly lower First compared to 1M at all angular velocities (p < 0.05). Maximum torque generation time was significantly lower for First at 120°/s and 180°/s than at 1M (p < 0.05). Correlations with the number of days to return to sports competition were detected at 60°/s for maximum torque generation time (p < 0.05, r = 0.65). Following conservative treatment for lumbar spondylolysis, it was considered necessary to focus on trunk flexion and extension muscle strength and contraction speed of trunk flexors at the beginning of the exercise period. It was suggested that trunk extension muscle strength in the extension range might be one of the critical factors for returning to sports.
Collapse
Affiliation(s)
- Yuji Hamada
- Graduate School of Medicine, Saitama Medical University, 981 Kawakado, Moroyama 350-0495, Japan
- Department of Rehabilitation, Kawagoe Clinic, Saitama Medical University, 7-21 Wakitahontyo, Moroyama 350-0495, Japan
| | - Yu Okubo
- Graduate School of Medicine, Saitama Medical University, 981 Kawakado, Moroyama 350-0495, Japan
- School of Physical Therapy, Saitama Medical University, 981 Kawakado, Moroyama 350-0495, Japan
| | - Hiroshi Hattori
- Graduate School of Medicine, Saitama Medical University, 981 Kawakado, Moroyama 350-0495, Japan
- School of Physical Therapy, Saitama Medical University, 981 Kawakado, Moroyama 350-0495, Japan
| | - Takeshi Nazuka
- Department of Rehabilitation, Kawagoe Clinic, Saitama Medical University, 7-21 Wakitahontyo, Moroyama 350-0495, Japan
| | - Yuto Kikuchi
- Graduate School of Medicine, Saitama Medical University, 981 Kawakado, Moroyama 350-0495, Japan
- Department of Rehabilitation, Kawagoe Clinic, Saitama Medical University, 7-21 Wakitahontyo, Moroyama 350-0495, Japan
| | - Kiyokazu Akasaka
- Graduate School of Medicine, Saitama Medical University, 981 Kawakado, Moroyama 350-0495, Japan
- School of Physical Therapy, Saitama Medical University, 981 Kawakado, Moroyama 350-0495, Japan
- Correspondence: ; Tel.: +81-49-295-1001
| |
Collapse
|
21
|
Saveko A, Bekreneva M, Ponomarev I, Zelenskaya I, Riabova A, Shigueva T, Kitov V, Abu Sheli N, Nosikova I, Rukavishnikov I, Sayenko D, Tomilovskaya E. Impact of different ground-based microgravity models on human sensorimotor system. Front Physiol 2023; 14:1085545. [PMID: 36875039 PMCID: PMC9974674 DOI: 10.3389/fphys.2023.1085545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/30/2023] [Indexed: 02/17/2023] Open
Abstract
This review includes current and updated information about various ground-based microgravity models and their impact on the human sensorimotor system. All known models of microgravity are imperfect in a simulation of the physiological effects of microgravity but have their advantages and disadvantages. This review points out that understanding the role of gravity in motion control requires consideration of data from different environments and in various contexts. The compiled information can be helpful to researchers to effectively plan experiments using ground-based models of the effects of space flight, depending on the problem posed.
Collapse
Affiliation(s)
- Alina Saveko
- Russian Federation State Scientific Center—Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Brandenberger KJ, Rawdon CL, Armstrong E, Lonowski J, Cooper L. A non-volitional skeletal muscle endurance test measures functional changes associated with impaired blood flow. J Rehabil Assist Technol Eng 2023; 10:20556683231164339. [PMID: 37035543 PMCID: PMC10074637 DOI: 10.1177/20556683231164339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 03/02/2023] [Indexed: 04/11/2023] Open
Abstract
Introduction: An electrically stimulated intermittent fatigue test using mechanomyography was recently proposed as a possible tool for detecting clinically relevant changes in muscle function. This study was designed to determine whether the proposed test can detect additional fatigue when it should be present. Methods: Subjects (n = 10) underwent two trials each (occluded and normal blood flow) with a standardized fatigue protocol on the Ankle Dorsiflexors (AD) and Wrist Extensors (WE) using a clinical electrical stimulator. Results: Mean normalized twitch acceleration was strongly predictive of mean normalized torque (R 2 = 0.828). The WE experienced lower twitch magnitudes throughout the tourniquet trial (10.81 ± 1.25 m/s2) compared to normal blood flow (18.05 ± 1.06 m/s2). The AD twitches were overall reduced in the tourniquet trial (3.87 ± 0.48 m/s2) compared with the control trial (8.57 ± 0.91 m/s2). Conclusion: Occluding blood flow to a muscle should cause greater muscle fatigue. The ability to detect reduced contraction magnitudes during an electrically stimulated fatigue protocol resulting from low blood flow suggests the proposed test may be capable of detecting clinically relevant muscle deficits.
Collapse
Affiliation(s)
- Kyle J Brandenberger
- Departments of Respiratory Therapy &
Physical Therapy, Georgia State University, Atlanta, GA, USA
| | - Chris L Rawdon
- Department of Exercise Science, Mercer University, Macon, GA, USA
- Chris L Rawdon, Department of Exercise Science,
Mercer University, Macon, GA 31207, USA.
| | - Erica Armstrong
- Departments of Respiratory Therapy &
Physical Therapy, Georgia State University, Atlanta, GA, USA
| | - Jacob Lonowski
- Departments of Respiratory Therapy &
Physical Therapy, Georgia State University, Atlanta, GA, USA
| | - Lakee’dra Cooper
- Departments of Respiratory Therapy &
Physical Therapy, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
23
|
Yoshihara T, Dobashi S, Takaragawa M, Naito H. Effect of losartan treatment on Smad signaling and recovery from hindlimb unloading-induced soleus muscle atrophy in female rats. Eur J Pharmacol 2022; 931:175223. [PMID: 35988789 DOI: 10.1016/j.ejphar.2022.175223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/08/2022] [Accepted: 08/16/2022] [Indexed: 11/29/2022]
Abstract
Losartan, an angiotensin II type 1 receptor blocker, exerts protective effect on soleus muscle atrophy in female rats. Thus, we aimed to examine the effect of losartan treatment on the recovery of atrophied soleus muscles. Female Wistar rats were subjected to hindlimb unloading for 7 d and then reloading for 7 d with either phosphate-buffered saline (PBS; n = 9) or losartan (40 mg/kg/day; n = 9). The soleus muscles were removed at rest (sedentary control [SED]; n = 9), after 7 d of hindlimb unloading (HU; n = 9), and after 7 d of reloading (HUR-PBS or HUR-LOS; n = 9 each). The absolute and relative weights, and fiber cross-sectional area (CSA) of the soleus muscles of rats in the HU group were significantly reduced as compared to those of the rats in the SED group at 7 d post-hindlimb unloading. Seven days of reloading significantly increased the muscle weights of rats in the HUR-PBS and HUR-LOS groups, with the recovery rate of the absolute muscle weight and type I fiber CSA being significantly higher in the HUR-LOS group (6.1% and 10.1%, respectively) than in the HUR-PBS group (4.7% and 5.2%, respectively) (p < 0.05). Moreover, the absolute and relative muscle weight in HUR-PBS were lower than SED; however, no significant difference was observed between the SED and HUR-LOS groups. CSAs of type I and IIa fiber were significantly higher in the HUR-LOS group than in the HU group. Losartan administration during reloading resulted in increased Smad1/5/8 and mTOR signaling and decreased Smad2/3 signaling and protein ubiquitination, facilitating the recovery of atrophied soleus muscle. Therefore, losartan administration-induced muscle recovery may partially be attributed to enhanced Smad1/5/8 and mTOR signaling activation, and reduced activation of canonical TGF-β signaling (Smad2/3) in the soleus muscle.
Collapse
Affiliation(s)
- Toshinori Yoshihara
- Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan.
| | - Shohei Dobashi
- Institute of Health and Sports Science & Medicine, Juntendo University, Chiba, Japan
| | - Mizuki Takaragawa
- Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan; Institute of Health and Sports Science & Medicine, Juntendo University, Chiba, Japan
| | - Hisashi Naito
- Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan; Institute of Health and Sports Science & Medicine, Juntendo University, Chiba, Japan
| |
Collapse
|
24
|
Hedge ET, Patterson CA, Mastrandrea CJ, Sonjak V, Hajj-Boutros G, Faust A, Morais JA, Hughson RL. Implementation of exercise countermeasures during spaceflight and microgravity analogue studies: Developing countermeasure protocols for bedrest in older adults (BROA). Front Physiol 2022; 13:928313. [PMID: 36017336 PMCID: PMC9395735 DOI: 10.3389/fphys.2022.928313] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/27/2022] [Indexed: 12/18/2022] Open
Abstract
Significant progress has been made in the development of countermeasures to attenuate the negative consequences of prolonged exposure to microgravity on astronauts’ bodies. Deconditioning of several organ systems during flight includes losses to cardiorespiratory fitness, muscle mass, bone density and strength. Similar deconditioning also occurs during prolonged bedrest; any protracted time immobile or inactive, especially for unwell older adults (e.g., confined to hospital beds), can lead to similar detrimental health consequences. Due to limitations in physiological research in space, the six-degree head-down tilt bedrest protocol was developed as ground-based analogue to spaceflight. A variety of exercise countermeasures have been tested as interventions to limit detrimental changes and physiological deconditioning of the musculoskeletal and cardiovascular systems. The Canadian Institutes of Health Research and the Canadian Space Agency recently provided funding for research focused on Understanding the Health Impact of Inactivity to study the efficacy of exercise countermeasures in a 14-day randomized clinical trial of six-degree head-down tilt bedrest study in older adults aged 55–65 years old (BROA). Here we will describe the development of a multi-modality countermeasure protocol for the BROA campaign that includes upper- and lower-body resistance exercise and head-down tilt cycle ergometry (high-intensity interval and continuous aerobic exercise training). We provide reasoning for the choice of these modalities following review of the latest available information on exercise as a countermeasure for inactivity and spaceflight-related deconditioning. In summary, this paper sets out to review up-to-date exercise countermeasure research from spaceflight and head-down bedrest studies, whilst providing support for the proposed research countermeasure protocols developed for the bedrest study in older adults.
Collapse
Affiliation(s)
- Eric T. Hedge
- Schlegel-University of Waterloo Research Institute for Aging, Waterloo, ON, Canada
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, ON, Canada
| | | | | | - Vita Sonjak
- Research Institute of McGill University Health Centre, McGill University, Montréal, QC, Canada
| | - Guy Hajj-Boutros
- Research Institute of McGill University Health Centre, McGill University, Montréal, QC, Canada
| | - Andréa Faust
- Research Institute of McGill University Health Centre, McGill University, Montréal, QC, Canada
| | - José A. Morais
- Research Institute of McGill University Health Centre, McGill University, Montréal, QC, Canada
- Division of Geriatric Medicine, McGill University Health Centre, McGill University, Montréal, QC, Canada
| | - Richard L. Hughson
- Schlegel-University of Waterloo Research Institute for Aging, Waterloo, ON, Canada
- *Correspondence: Richard L. Hughson,
| |
Collapse
|
25
|
Responses of neuromuscular properties to unloading and potential countermeasures during space exploration missions. Neurosci Biobehav Rev 2022; 136:104617. [PMID: 35283170 DOI: 10.1016/j.neubiorev.2022.104617] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 03/02/2022] [Accepted: 03/08/2022] [Indexed: 11/21/2022]
Abstract
We reviewed the responses of the neuromuscular properties of mainly the soleus and possible mechanisms. Sensory nervous activity in response to passive shortening and/or active contraction, associated with plantar-flexion or dorsi-flexion of the ankle joints, may play an essential role in the regulation of muscle properties. Passive shortening of the muscle fibers and sarcomeres inhibits the development of tension, electromyogram (EMG), and afferent neurogram. Remodeling of the sarcomeres, which decreases the total sarcomere number in a single muscle fiber causing recovery of the length in each sarcomere, is induced in the soleus following chronic unloading. Although EMG activity and tension development in each sarcomere are increased, the total tension produced by the whole muscle is still less owing to the lower sarcomere number. Therefore, muscle atrophy continues to progress. Moreover, walking or slow running by rear-foot strike landing with the application of greater ground reaction force, which stimulates soleus mobilization, could be an effective countermeasure. Periodic, but not chronic, passive stretching of the soleus may also be effective.
Collapse
|
26
|
Naruse M, Trappe SW, Trappe TA. Human skeletal muscle size with ultrasound imaging: a comprehensive review. J Appl Physiol (1985) 2022; 132:1267-1279. [PMID: 35358402 PMCID: PMC9126220 DOI: 10.1152/japplphysiol.00041.2022] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Skeletal muscle size is an important factor in assessing adaptation to exercise training and detraining, athletic performance, age-associated atrophy and mobility decline, clinical conditions associated with cachexia, and overall skeletal muscle health. Magnetic resonance (MR) imaging and computed tomography (CT) are widely accepted as the gold standard methods for skeletal muscle size quantification. However, it is not always feasible to use these methods (e.g., field studies, bedside studies, large cohort studies). Ultrasound has been available for skeletal muscle examination for more than 50 years and the development, utility, and validity of ultrasound imaging are underappreciated. It is now possible to use ultrasound in situations where MR and CT imaging are not suitable. This review provides a comprehensive summary of ultrasound imaging and human skeletal muscle size assessment. Since the first study in 1968, more than 600 articles have used ultrasound to examine the cross-sectional area and/or volume of 107 different skeletal muscles in more than 27,500 subjects of various ages, health status, and fitness conditions. Data from these studies, supported by decades of technological developments, collectively show that ultrasonography is a valid tool for skeletal muscle size quantification. Considering the wide-ranging connections between human health and function and skeletal muscle mass, the utility of ultrasound imaging will allow it to be employed in research investigations and clinical practice in ways not previously appreciated or considered.
Collapse
Affiliation(s)
- Masatoshi Naruse
- Human Performance Laboratory, Ball State University, Muncie, IN, United States
| | - Scott W Trappe
- Human Performance Laboratory, Ball State University, Muncie, IN, United States
| | - Todd A Trappe
- Human Performance Laboratory, Ball State University, Muncie, IN, United States
| |
Collapse
|
27
|
Lavin KM, Coen PM, Baptista LC, Bell MB, Drummer D, Harper SA, Lixandrão ME, McAdam JS, O’Bryan SM, Ramos S, Roberts LM, Vega RB, Goodpaster BH, Bamman MM, Buford TW. State of Knowledge on Molecular Adaptations to Exercise in Humans: Historical Perspectives and Future Directions. Compr Physiol 2022; 12:3193-3279. [PMID: 35578962 PMCID: PMC9186317 DOI: 10.1002/cphy.c200033] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
For centuries, regular exercise has been acknowledged as a potent stimulus to promote, maintain, and restore healthy functioning of nearly every physiological system of the human body. With advancing understanding of the complexity of human physiology, continually evolving methodological possibilities, and an increasingly dire public health situation, the study of exercise as a preventative or therapeutic treatment has never been more interdisciplinary, or more impactful. During the early stages of the NIH Common Fund Molecular Transducers of Physical Activity Consortium (MoTrPAC) Initiative, the field is well-positioned to build substantially upon the existing understanding of the mechanisms underlying benefits associated with exercise. Thus, we present a comprehensive body of the knowledge detailing the current literature basis surrounding the molecular adaptations to exercise in humans to provide a view of the state of the field at this critical juncture, as well as a resource for scientists bringing external expertise to the field of exercise physiology. In reviewing current literature related to molecular and cellular processes underlying exercise-induced benefits and adaptations, we also draw attention to existing knowledge gaps warranting continued research effort. © 2021 American Physiological Society. Compr Physiol 12:3193-3279, 2022.
Collapse
Affiliation(s)
- Kaleen M. Lavin
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Center for Human Health, Resilience, and Performance, Institute for Human and Machine Cognition, Pensacola, Florida, USA
| | - Paul M. Coen
- Translational Research Institute for Metabolism and Diabetes, Advent Health, Orlando, Florida, USA
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Liliana C. Baptista
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Medicine, Division of Gerontology, Geriatrics and Palliative Care, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Margaret B. Bell
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Devin Drummer
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sara A. Harper
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Medicine, Division of Gerontology, Geriatrics and Palliative Care, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Manoel E. Lixandrão
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jeremy S. McAdam
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Samia M. O’Bryan
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sofhia Ramos
- Translational Research Institute for Metabolism and Diabetes, Advent Health, Orlando, Florida, USA
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Lisa M. Roberts
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Medicine, Division of Gerontology, Geriatrics and Palliative Care, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Rick B. Vega
- Translational Research Institute for Metabolism and Diabetes, Advent Health, Orlando, Florida, USA
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Bret H. Goodpaster
- Translational Research Institute for Metabolism and Diabetes, Advent Health, Orlando, Florida, USA
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Marcas M. Bamman
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Center for Human Health, Resilience, and Performance, Institute for Human and Machine Cognition, Pensacola, Florida, USA
| | - Thomas W. Buford
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Medicine, Division of Gerontology, Geriatrics and Palliative Care, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
28
|
Yoshihara T, Takaragawa M, Dobashi S, Naito H. Losartan treatment attenuates hindlimb unloading-induced atrophy in the soleus muscle of female rats via canonical TGF-β signaling. J Physiol Sci 2022; 72:6. [PMID: 35264097 PMCID: PMC10717208 DOI: 10.1186/s12576-022-00830-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 02/23/2022] [Indexed: 12/23/2022]
Abstract
We investigated the protective effect of losartan, an angiotensin II type 1 receptor blocker, on soleus muscle atrophy. Age-matched male and female Wistar rats were subjected to hindlimb unloading, and the soleus muscle was removed on days 1 and 7 for analysis. Females showed greater reductions in relative weight and myofiber cross-sectional area of the soleus muscle than males on day 7 post-hindlimb unloading. Losartan partially protected females against muscle atrophy. Activation of the canonical TGF-β signaling pathway, assessed via Smad2/3 phosphorylation, was lower in females following losartan treatment and associated with lower levels of protein ubiquitination after 1 (myofibril) and 7 (cytosol) days of unloading. However, no effect was observed in non-canonical TGF-β signaling (p44/p42 and p38 MAPK phosphorylation) in males or females during unloading. Our results suggest that losartan provides partial protection against hindlimb unloading-induced soleus muscle atrophy in female rats, possibly associated with decreased canonical TGF-β signaling.
Collapse
Affiliation(s)
- Toshinori Yoshihara
- Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan.
| | - Mizuki Takaragawa
- Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan
- Institute of Health and Sports Science & Medicine, Juntendo University, Chiba, Japan
| | - Shohei Dobashi
- Institute of Health and Sports Science & Medicine, Juntendo University, Chiba, Japan
| | - Hisashi Naito
- Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan
- Institute of Health and Sports Science & Medicine, Juntendo University, Chiba, Japan
| |
Collapse
|
29
|
Le Roux E, De Jong NP, Blanc S, Simon C, Bessesen DH, Bergouignan A. Physiology of physical inactivity, sedentary behaviours and non-exercise activity: insights from the space bedrest model. J Physiol 2022; 600:1037-1051. [PMID: 33501660 PMCID: PMC10895929 DOI: 10.1113/jp281064] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 01/08/2021] [Indexed: 01/08/2023] Open
Abstract
Physical inactivity, i.e. not reaching the recommended level of physical activity (PA), and sedentary behaviours (SB), i.e. sitting time, have been associated with increased risk for common metabolic diseases. Recent epidemiological data suggest that high volumes of SB are detrimental to metabolic health, even in the presence of regular exercise, i.e. moderate/vigorous PA. This suggests that the health effects of SB are independent from those of exercise. However, experimentally testing this hypothesis is complicated because of the difficulty in disassociating SB from PA. Bedrest studies, a traditional space science model, can offer new insights. In some bedrest studies, an exercise training protocol has been used to counteract the harmful effects of inactivity. While bedrest induces an inactive and sedentary state, exercise with bedrest represents a unique model of sedentary yet physically active people. Here, we review bedrest studies with and without exercise training. Although exercise training prevents the loss of muscle mass and function, even large volumes of exercise are not sufficient to fully counteract the negative metabolic adaptations triggered by inactivity. This observation supports the existence of independent adverse health effects of SB, but also the potential benefits of non-exercise activity, i.e. daily living light PA. We gathered available data to examine the complex relationships between exercise, non-exercise activity, SB and health outcomes. Given the large amount of SB in modern societies, the sole promotion of exercise, i.e. moderate/vigorous PA may be insufficient, and promotion of light PA may be a complimentary approach to improve health.
Collapse
Affiliation(s)
- Elisa Le Roux
- CNRS, IPHC UMR 7178, Université de Strasbourg, Strasbourg, France
| | - Nathan P De Jong
- Division of Endocrinology, Metabolism and Diabetes, Anschutz Health & Wellness Center, Anschutz Medical Campus, University of Colorado, Aurora, CO, USA
| | - Stéphane Blanc
- CNRS, IPHC UMR 7178, Université de Strasbourg, Strasbourg, France
| | - Chantal Simon
- CarMen Laboratory, INSERM 1060, INRA 1397, University of Lyon, Oullins, France
- Human Nutrition Research Centre of Rhône-Alpes, Hospices Civils de Lyon, Lyon, France
| | - Daniel H Bessesen
- Division of Endocrinology, Metabolism and Diabetes, Anschutz Health & Wellness Center, Anschutz Medical Campus, University of Colorado, Aurora, CO, USA
| | - Audrey Bergouignan
- CNRS, IPHC UMR 7178, Université de Strasbourg, Strasbourg, France
- Division of Endocrinology, Metabolism and Diabetes, Anschutz Health & Wellness Center, Anschutz Medical Campus, University of Colorado, Aurora, CO, USA
| |
Collapse
|
30
|
Padilha CS, Figueiredo C, Deminice R, Krüger K, Seelaender M, Rosa‐Neto JC, Lira FS. Costly immunometabolic remodelling in disused muscle buildup through physical exercise. Acta Physiol (Oxf) 2022; 234:e13782. [PMID: 34990078 DOI: 10.1111/apha.13782] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/12/2021] [Accepted: 01/01/2022] [Indexed: 11/28/2022]
Abstract
The mechanisms underlying the immunometabolic disturbances during skeletal muscle atrophy caused by a plethora of circumstances ranging from hospitalization to spaceflight missions remain unknown. Here, we outline the possible pathways that might be dysregulated in such conditions and assess the potential of physical exercise to mitigate and promote the recovery of muscle morphology, metabolism and function after intervals of disuse. Studies applying exercise to attenuate disuse-induced muscle atrophy have shown a pivotal role of circulating myokines in the activation of anabolic signalling pathways. These muscle-derived factors induce accretion of contractile proteins in the myofibers, and at the same time decrease protein breakdown and loss. Regular exercise plays a crucial role in re-establishing adequate immunometabolism and increasing the migration and presence in the muscle of macrophages with an anti-inflammatory phenotype (M2) and T regulatory cells (Tregs) after disease-induced muscle loss. Additionally, the switch in metabolic pathways (glycolysis to oxidative phosphorylation [OXPHOS]) is important for achieving rapid metabolic homeostasis during muscle regeneration. In this review, we discuss the molecular aspects of the immunometabolic response elicited by exercise during skeletal muscle regeneration. There is not, nevertheless, consensus on a single optimal intensity of exercise required to improve muscle strength, mass and functional capacity owing to the wide range of exercise protocols studied so far. Despite the absence of agreement on the specific strategy, physical exercise appears as a powerful complementary strategy to attenuate the harmful effects of muscle disuse in different scenarios.
Collapse
Affiliation(s)
- Camila S. Padilha
- Exercise and Immunometabolism Research Group Post‐graduation Program in Movement Sciences Department of Physical Education Universidade Estadual Paulista (UNESP) Presidente Prudente Brazil
| | - Caique Figueiredo
- Exercise and Immunometabolism Research Group Post‐graduation Program in Movement Sciences Department of Physical Education Universidade Estadual Paulista (UNESP) Presidente Prudente Brazil
| | - Rafael Deminice
- Laboratory of Biochemistry Exercise Department of Physical Education Faculty of Physical Education and Sport State University of Londrina Londrina Brazil
| | - Karsten Krüger
- Institute of Sports Science Department of Exercise Physiology and Sports Therapy University of Giessen Giessen Germany
| | - Marília Seelaender
- Cancer Metabolism Research Group Department of Surgery LIM26‐HC Medical School University of São Paulo São Paulo Brazil
| | - José Cesar Rosa‐Neto
- Department of Cell and Developmental Biology University of São Paulo São Paulo Brazil
| | - Fabio S. Lira
- Exercise and Immunometabolism Research Group Post‐graduation Program in Movement Sciences Department of Physical Education Universidade Estadual Paulista (UNESP) Presidente Prudente Brazil
| |
Collapse
|
31
|
Sharlo K, Lvova I, Turtikova O, Tyganov S, Kalashnikov V, Shenkman B. Plantar stimulation prevents the decrease in fatigue resistance in rat soleus muscle under one week of hindlimb suspension. Arch Biochem Biophys 2022; 718:109150. [DOI: 10.1016/j.abb.2022.109150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 11/15/2022]
|
32
|
Lee PHU, Chung M, Ren Z, Mair DB, Kim DH. Factors mediating spaceflight-induced skeletal muscle atrophy. Am J Physiol Cell Physiol 2022; 322:C567-C580. [PMID: 35171699 DOI: 10.1152/ajpcell.00203.2021] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Skeletal muscle atrophy is a well-known consequence of spaceflight. Because of the potential significant impact of muscle atrophy and muscle dysfunction on astronauts and to their mission, a thorough understanding of the mechanisms of this atrophy and the development of effective countermeasures is critical. Spaceflight-induced muscle atrophy is similar to atrophy seen in many terrestrial conditions, and therefore our understanding of this form of atrophy may also contribute to the treatment of atrophy in humans on Earth. The unique environmental features humans encounter in space include the weightlessness of microgravity, space radiation, and the distinctive aspects of living in a spacecraft. The disuse and unloading of muscles in microgravity are likely the most significant factors that mediate spaceflight-induced muscle atrophy, and have been extensively studied and reviewed. However, there are numerous other direct and indirect effects on skeletal muscle that may be contributing factors to the muscle atrophy and dysfunction seen as a result of spaceflight. This review offers a novel perspective on the issue of muscle atrophy in space by providing a comprehensive overview of the unique aspects of the spaceflight environment and the various ways in which they can lead to muscle atrophy. We systematically review the potential contributions of these different mechanisms of spaceflight-induced atrophy and include findings from both actual spaceflight and ground-based models of spaceflight in humans, animals, and in vitro studies.
Collapse
Affiliation(s)
- Peter H U Lee
- Department of Cardiothoracic Surgery, Southcoast Health, Fall River, MA, United States.,Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, United States
| | | | - Zhanping Ren
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Devin B Mair
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Deok-Ho Kim
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
33
|
Abstract
The Exercise Boom of the 1970's resulted in the adoption of habitual exercise in a significant portion of the population. Many of these individuals are defying the cultural norms by remaining physically active and competing at a high level in their later years. The juxtaposition between masters athletes and non-exercisers demonstrate the importance of remaining physically active throughout the lifespan on physiological systems related to healthspan (years of healthy living). This includes ~50% improved maximal aerobic capacity (VO2max) and enhanced skeletal muscle health (size, function, as well as metabolic and communicative properties) compared to non-exercisers at a similar age. By taking a reductionist approach to VO2max and skeletal muscle health, we can gain insight into how aging and habitual exercise affects the aging process. Collectively, this review provides a physiological basis for the elite performances seen in masters athletes, as well as the health implications of lifelong exercise with a focus on VO2max, skeletal muscle metabolic fitness, whole muscle size and function, single muscle fiber physiology, and communicative properties of skeletal muscle. This review has significant public health implications due to the potent health benefits of habitual exercise across the lifespan.
Collapse
Affiliation(s)
- Kevin J Gries
- Exercise and Sports Science, Marian University, Indianapolis, United States
| | - S W Trappe
- Human Performance Laboratory, Ball State University, Muncie, United States
| |
Collapse
|
34
|
Sharlo K, Tyganov SA, Tomilovskaya E, Popov DV, Saveko AA, Shenkman BS. Effects of Various Muscle Disuse States and Countermeasures on Muscle Molecular Signaling. Int J Mol Sci 2021; 23:ijms23010468. [PMID: 35008893 PMCID: PMC8745071 DOI: 10.3390/ijms23010468] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/24/2021] [Accepted: 12/30/2021] [Indexed: 12/17/2022] Open
Abstract
Skeletal muscle is capable of changing its structural parameters, metabolic rate and functional characteristics within a wide range when adapting to various loading regimens and states of the organism. Prolonged muscle inactivation leads to serious negative consequences that affect the quality of life and work capacity of people. This review examines various conditions that lead to decreased levels of muscle loading and activity and describes the key molecular mechanisms of muscle responses to these conditions. It also details the theoretical foundations of various methods preventing adverse muscle changes caused by decreased motor activity and describes these methods. A number of recent studies presented in this review make it possible to determine the molecular basis of the countermeasure methods used in rehabilitation and space medicine for many years, as well as to identify promising new approaches to rehabilitation and to form a holistic understanding of the mechanisms of gravity force control over the muscular system.
Collapse
|
35
|
Tran V, De Martino E, Hides J, Cable G, Elliott JM, Hoggarth M, Zange J, Lindsay K, Debuse D, Winnard A, Beard D, Cook JA, Salomoni SE, Weber T, Scott J, Hodges PW, Caplan N. Gluteal Muscle Atrophy and Increased Intramuscular Lipid Concentration Are Not Mitigated by Daily Artificial Gravity Following 60-Day Head-Down Tilt Bed Rest. Front Physiol 2021; 12:745811. [PMID: 34867450 PMCID: PMC8634875 DOI: 10.3389/fphys.2021.745811] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/13/2021] [Indexed: 11/27/2022] Open
Abstract
Exposure to spaceflight and head-down tilt (HDT) bed rest leads to decreases in the mass of the gluteal muscle. Preliminary results have suggested that interventions, such as artificial gravity (AG), can partially mitigate some of the physiological adaptations induced by HDT bed rest. However, its effect on the gluteal muscles is currently unknown. This study investigated the effects of daily AG on the gluteal muscles during 60-day HDT bed rest. Twenty-four healthy individuals participated in the study: eight received 30 min of continuous AG; eight received 6 × 5 min of AG, interspersed with rest periods; eight belonged to a control group. T1-weighted Dixon magnetic resonance imaging of the hip region was conducted at baseline and day 59 of HDT bed rest to establish changes in volumes and intramuscular lipid concentration (ILC). Results showed that, across groups, muscle volumes decreased by 9.2% for gluteus maximus (GMAX), 8.0% for gluteus medius (GMED), and 10.5% for gluteus minimus after 59-day HDT bed rest (all p < 0.005). The ILC increased by 1.3% for GMAX and 0.5% for GMED (both p < 0.05). Neither of the AG protocols mitigated deconditioning of the gluteal muscles. Whereas all gluteal muscles atrophied, the ratio of lipids to intramuscular water increased only in GMAX and GMED muscles. These changes could impair the function of the hip joint and increased the risk of falls. The deconditioning of the gluteal muscles in space may negatively impact the hip joint stability of astronauts when reexpose to terrestrial gravity.
Collapse
Affiliation(s)
- Vienna Tran
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Enrico De Martino
- Aerospace Medicine and Rehabilitation Laboratory, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Julie Hides
- School of Health Sciences and Social Work, Griffith University, Brisbane, QLD, Australia
| | - Gordon Cable
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- School of Medicine, University of Tasmania, Hobart, TAS, Australia
| | - James M. Elliott
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Faculty of Medicine and Health, The Kolling Research Institute Sydney, Northern Sydney Local Health District, The University of Sydney, Sydney, NSW, Australia
| | - Mark Hoggarth
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, United States
| | - Jochen Zange
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Kirsty Lindsay
- Aerospace Medicine and Rehabilitation Laboratory, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Dorothée Debuse
- Aerospace Medicine and Rehabilitation Laboratory, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Andrew Winnard
- Aerospace Medicine and Rehabilitation Laboratory, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - David Beard
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Jonathan A. Cook
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Centre for Statistics in Medicine, University of Oxford, Oxford, United Kingdom
| | - Sauro E. Salomoni
- NHMRC Centre for Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Tobias Weber
- Space Medicine Team (HRE-OM), European Astronaut Centre, Cologne, Germany
- KBR GmbH, Cologne, Germany
| | - Jonathan Scott
- Space Medicine Team (HRE-OM), European Astronaut Centre, Cologne, Germany
- KBR GmbH, Cologne, Germany
| | - Paul W. Hodges
- NHMRC Centre for Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Nick Caplan
- Aerospace Medicine and Rehabilitation Laboratory, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
36
|
Kalakoutis M, Di Giulio I, Douiri A, Ochala J, Harridge SDR, Woledge RC. Methodological considerations in measuring specific force in human single skinned muscle fibres. Acta Physiol (Oxf) 2021; 233:e13719. [PMID: 34286921 DOI: 10.1111/apha.13719] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 02/02/2023]
Abstract
Chemically skinned fibres allow the study of human muscle contractile function in vitro. A particularly important parameter is specific force (SF), that is, maximal isometric force divided by cross-sectional area, representing contractile quality. Although SF varies substantially between studies, the magnitude and cause of this variability remains puzzling. Here, we aimed to summarize and explore the cause of variability in SF between studies. A systematic search was conducted in Medline, Embase and Web of Science databases in June 2020, yielding 137 data sets from 61 publications which studied healthy, young adults. Five-fold differences in mean SF data were observed. Adjustments to the reported data for key methodological differences allowed between-study comparisons to be made. However, adjustment for fibre shape, swelling and sarcomere length failed to significantly reduce SF variance (I2 = 96%). Interestingly, grouping papers based on shared authorship did reveal consistency within research groups. In addition, lower SF was found to be associated with higher phosphocreatine concentrations in the fibre activating solution and with Triton X-100 being used as a skinning agent. Although the analysis showed variance across the literature, the ratio of SF in single fibres containing myosin heavy chain isoforms IIA or I was found to be consistent across research groups. In conclusion, whilst the skinned fibre technique is reliable for studying in vitro force generation of single fibres, the composition of the solution used to activate fibres, which differs between research groups, is likely to heavily influence SF values.
Collapse
Affiliation(s)
- Michaeljohn Kalakoutis
- Centre for Human and Applied Physiological Sciences Faculty of Life Sciences & Medicine King’s College London London UK
| | - Irene Di Giulio
- Centre for Human and Applied Physiological Sciences Faculty of Life Sciences & Medicine King’s College London London UK
| | - Abdel Douiri
- School of Population Health and Environmental Sciences King’s College London London UK
| | - Julien Ochala
- Centre for Human and Applied Physiological Sciences Faculty of Life Sciences & Medicine King’s College London London UK
- Department of Biomedical Sciences Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Stephen D. R. Harridge
- Centre for Human and Applied Physiological Sciences Faculty of Life Sciences & Medicine King’s College London London UK
| | - Roger C. Woledge
- Centre for Human and Applied Physiological Sciences Faculty of Life Sciences & Medicine King’s College London London UK
| |
Collapse
|
37
|
Impact of Lockdown during COVID-19 Pandemic on Central Activation, Muscle Activity, Contractile Function, and Spasticity in People with Multiple Sclerosis. BIOMED RESEARCH INTERNATIONAL 2021; 2021:2624860. [PMID: 34692828 PMCID: PMC8531768 DOI: 10.1155/2021/2624860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/23/2021] [Accepted: 10/04/2021] [Indexed: 11/24/2022]
Abstract
Background People with multiple sclerosis (MS) suffer from symptoms related to neural control, such as reduced central activation, lower muscle activity, and accentuated spasticity. A forced 9-week home confinement related to COVID-19 in Spain may have worsened these symptoms. However, no study has demonstrated the impact of home confinement on neuromuscular mechanisms in the MS population. This study was aimed at analyzing the effects of a 9-week home confinement on central activation, muscle activity, contractile function, and spasticity in MS patients. Methods Eighteen participants were enrolled in the study. Left and right knee extensor maximum voluntary isometric contraction (MVIC), maximal neural drive via peak surface electromyography (EMG) of the vastus lateralis, central activation ratio (CAR), and muscle contractile function via electrical stimulation of the knee extensor muscles, as well as spasticity using the pendulum test, were measured immediately before and after home confinement. Results Seventeen participants completed the study. CAR significantly decreased after lockdown (ES = 1.271, p < 0.001). Regarding spasticity, there was a trend to decrease in the number of oscillations (ES = 0.511, p = 0.059) and a significant decrease in the duration of oscillations (ES = 0.568, p = 0.038). Furthermore, in the left leg, there was a significant decrease in the first swing excursion (ES = 0.612, p = 0.027) and in the relaxation index (ES = 0.992, p = 0.001). Muscle contractile properties, MVIC, and EMG variables were not modified after confinement. Conclusions The results suggest that a home confinement period of 9 weeks may lead to an increase in lower limb spasticity and a greater deficit in voluntary activation of the knee extensors.
Collapse
|
38
|
Avitabile CM, Saavedra S, Sivakumar N, Goldmuntz E, Paridon SM, Zemel BS. Marked skeletal muscle deficits are associated with 6-minute walk distance in paediatric pulmonary hypertension. Cardiol Young 2021; 31:1426-1433. [PMID: 33568240 DOI: 10.1017/s1047951121000342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Poor growth is common in children with pulmonary hypertension; however, skeletal muscle deficits have not been described and the association between muscle deficits and functional status is unknown. METHODS Patients aged 8-18 years with pulmonary hypertension (diagnostic Groups 1, 2, or 3) and World Health Organization functional class I or II underwent dual-energy absorptiometry to measure leg lean mass Z-score (a surrogate for skeletal muscle). Muscle strength was assessed using dynamometry. Physical activity questionnaires were administered. Clinical data, including 6-minute walk distance, were reviewed. Relationships between skeletal muscle, physical activity score, and 6-minute walk distance were assessed by correlations and linear regression. RESULTS Sixteen patients (12.1 ± 3.2 years, 50% female, 56% Group 1, 56% functional class II) were enrolled. Leg lean mass Z-score was significantly less than reference data (-1.40 ± 1.12 versus 0.0 ± 0.9, p < 0.001) and worse in those with functional class II versus I (-2.10 ± 0.83 versus -0.50 ± 0.73, p < 0.01). Leg lean mass Z-score was positively associated with right ventricular systolic function by tricuspid annular plane systolic Z-score (r = 0.54, p = 0.03) and negatively associated with indexed pulmonary vascular resistance (r = -0.78, p < 0.001). Leg lean mass Z-score and forearm strength were positively associated with physical activity score. When physical activity score was held constant, leg lean mass Z-score independently predicted 6-minute walk distance (R2 = 0.39, p = 0.03). CONCLUSIONS Youth with pulmonary hypertension demonstrate marked skeletal muscle deficits in association with exercise intolerance. Future studies should investigate whether low leg lean mass is a marker of disease severity or an independent target that can be improved.
Collapse
Affiliation(s)
- Catherine M Avitabile
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Division of Cardiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Sofia Saavedra
- Division of Cardiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Nithya Sivakumar
- Division of Cardiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Elizabeth Goldmuntz
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Division of Cardiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Stephen M Paridon
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Division of Cardiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Babette S Zemel
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
39
|
Cussonneau L, Boyer C, Brun C, Deval C, Loizon E, Meugnier E, Gueret E, Dubois E, Taillandier D, Polge C, Béchet D, Gauquelin-Koch G, Evans AL, Arnemo JM, Swenson JE, Blanc S, Simon C, Lefai E, Bertile F, Combaret L. Concurrent BMP Signaling Maintenance and TGF-β Signaling Inhibition Is a Hallmark of Natural Resistance to Muscle Atrophy in the Hibernating Bear. Cells 2021; 10:cells10081873. [PMID: 34440643 PMCID: PMC8393865 DOI: 10.3390/cells10081873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/14/2021] [Accepted: 07/20/2021] [Indexed: 12/17/2022] Open
Abstract
Muscle atrophy arises from a multiplicity of physio-pathological situations and has very detrimental consequences for the whole body. Although knowledge of muscle atrophy mechanisms keeps growing, there is still no proven treatment to date. This study aimed at identifying new drivers for muscle atrophy resistance. We selected an innovative approach that compares muscle transcriptome between an original model of natural resistance to muscle atrophy, the hibernating brown bear, and a classical model of induced atrophy, the unloaded mouse. Using RNA sequencing, we identified 4415 differentially expressed genes, including 1746 up- and 2369 down-regulated genes, in bear muscles between the active versus hibernating period. We focused on the Transforming Growth Factor (TGF)-β and the Bone Morphogenetic Protein (BMP) pathways, respectively, involved in muscle mass loss and maintenance. TGF-β- and BMP-related genes were overall down- and up-regulated in the non-atrophied muscles of the hibernating bear, respectively, and the opposite occurred for the atrophied muscles of the unloaded mouse. This was further substantiated at the protein level. Our data suggest TGF-β/BMP balance is crucial for muscle mass maintenance during long-term physical inactivity in the hibernating bear. Thus, concurrent activation of the BMP pathway may potentiate TGF-β inhibiting therapies already targeted to prevent muscle atrophy.
Collapse
Affiliation(s)
- Laura Cussonneau
- INRAE, Unité de Nutrition Humaine, Université Clermont Auvergne, UMR 1019, F-63000 Clermont-Ferrand, France; (C.B.); (C.D.); (D.T.); (C.P.); (D.B.); (E.L.)
- Correspondence: (L.C.); (L.C.); Tel.: +(33)4-7362-4824 (Lydie Combaret)
| | - Christian Boyer
- INRAE, Unité de Nutrition Humaine, Université Clermont Auvergne, UMR 1019, F-63000 Clermont-Ferrand, France; (C.B.); (C.D.); (D.T.); (C.P.); (D.B.); (E.L.)
| | - Charlotte Brun
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France; (C.B.); (S.B.); (F.B.)
| | - Christiane Deval
- INRAE, Unité de Nutrition Humaine, Université Clermont Auvergne, UMR 1019, F-63000 Clermont-Ferrand, France; (C.B.); (C.D.); (D.T.); (C.P.); (D.B.); (E.L.)
| | - Emmanuelle Loizon
- CarMen Laboratory, INSERM 1060, INRAE 1397, University of Lyon, F-69600 Oullins, France; (E.L.); (E.M.); (C.S.)
| | - Emmanuelle Meugnier
- CarMen Laboratory, INSERM 1060, INRAE 1397, University of Lyon, F-69600 Oullins, France; (E.L.); (E.M.); (C.S.)
| | - Elise Gueret
- Institut de Génomique Fonctionnelle (IGF), University Montpellier, CNRS, INSERM, 34094 Montpellier, France; (E.G.); (E.D.)
- Montpellier GenomiX, France Génomique, 34095 Montpellier, France
| | - Emeric Dubois
- Institut de Génomique Fonctionnelle (IGF), University Montpellier, CNRS, INSERM, 34094 Montpellier, France; (E.G.); (E.D.)
- Montpellier GenomiX, France Génomique, 34095 Montpellier, France
| | - Daniel Taillandier
- INRAE, Unité de Nutrition Humaine, Université Clermont Auvergne, UMR 1019, F-63000 Clermont-Ferrand, France; (C.B.); (C.D.); (D.T.); (C.P.); (D.B.); (E.L.)
| | - Cécile Polge
- INRAE, Unité de Nutrition Humaine, Université Clermont Auvergne, UMR 1019, F-63000 Clermont-Ferrand, France; (C.B.); (C.D.); (D.T.); (C.P.); (D.B.); (E.L.)
| | - Daniel Béchet
- INRAE, Unité de Nutrition Humaine, Université Clermont Auvergne, UMR 1019, F-63000 Clermont-Ferrand, France; (C.B.); (C.D.); (D.T.); (C.P.); (D.B.); (E.L.)
| | | | - Alina L. Evans
- Department of Forestry and Wildlife Management, Inland Norway University of Applied Sciences, Campus Evenstad, NO-2480 Koppang, Norway; (A.L.E.); (J.M.A.)
| | - Jon M. Arnemo
- Department of Forestry and Wildlife Management, Inland Norway University of Applied Sciences, Campus Evenstad, NO-2480 Koppang, Norway; (A.L.E.); (J.M.A.)
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden
| | - Jon E. Swenson
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, NO-1432 Ås, Norway;
| | - Stéphane Blanc
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France; (C.B.); (S.B.); (F.B.)
| | - Chantal Simon
- CarMen Laboratory, INSERM 1060, INRAE 1397, University of Lyon, F-69600 Oullins, France; (E.L.); (E.M.); (C.S.)
| | - Etienne Lefai
- INRAE, Unité de Nutrition Humaine, Université Clermont Auvergne, UMR 1019, F-63000 Clermont-Ferrand, France; (C.B.); (C.D.); (D.T.); (C.P.); (D.B.); (E.L.)
| | - Fabrice Bertile
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France; (C.B.); (S.B.); (F.B.)
| | - Lydie Combaret
- INRAE, Unité de Nutrition Humaine, Université Clermont Auvergne, UMR 1019, F-63000 Clermont-Ferrand, France; (C.B.); (C.D.); (D.T.); (C.P.); (D.B.); (E.L.)
- Correspondence: (L.C.); (L.C.); Tel.: +(33)4-7362-4824 (Lydie Combaret)
| |
Collapse
|
40
|
Monti E, Reggiani C, Franchi MV, Toniolo L, Sandri M, Armani A, Zampieri S, Giacomello E, Sarto F, Sirago G, Murgia M, Nogara L, Marcucci L, Ciciliot S, Šimunic B, Pišot R, Narici MV. Neuromuscular junction instability and altered intracellular calcium handling as early determinants of force loss during unloading in humans. J Physiol 2021; 599:3037-3061. [PMID: 33881176 PMCID: PMC8359852 DOI: 10.1113/jp281365] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/30/2021] [Indexed: 01/18/2023] Open
Abstract
Key points Few days of unloading are sufficient to induce a decline of skeletal muscle mass and function; notably, contractile force is lost at a faster rate than muscle mass. The reasons behind this disproportionate loss of muscle force are still poorly understood. We provide strong evidence of two mechanisms only hypothesized until now for the rapid muscle force loss in only 10 days of bed rest. Our results show that an initial neuromuscular junction instability, accompanied by alterations in the innervation status and impairment of single fibre sarcoplasmic reticulum function contribute to the loss of contractile force in front of a preserved myofibrillar function and central activation capacity. Early onset of neuromuscular junction instability and impairment in calcium dynamics involved in excitation–contraction coupling are proposed as eligible determinants to the greater decline in muscle force than in muscle size during unloading.
Abstract Unloading induces rapid skeletal muscle atrophy and functional decline. Importantly, force is lost at a much higher rate than muscle mass. We aimed to investigate the early determinants of the disproportionate loss of force compared to that of muscle mass in response to unloading. Ten young participants underwent 10 days of bed rest (BR). At baseline (BR0) and at 10 days (BR10), quadriceps femoris (QF) volume (VOL) and isometric maximum voluntary contraction (MVC) were assessed. At BR0 and BR10 blood samples and biopsies of vastus lateralis (VL) muscle were collected. Neuromuscular junction (NMJ) stability and myofibre innervation status were assessed, together with single fibre mechanical properties and sarcoplasmic reticulum (SR) calcium handling. From BR0 to BR10, QFVOL and MVC decreased by 5.2% (P = 0.003) and 14.3% (P < 0.001), respectively. Initial and partial denervation was detected from increased neural cell adhesion molecule (NCAM)‐positive myofibres at BR10 compared with BR0 (+3.4%, P = 0.016). NMJ instability was further inferred from increased C‐terminal agrin fragment concentration in serum (+19.2% at BR10, P = 0.031). Fast fibre cross‐sectional area (CSA) showed a trend to decrease by 15% (P = 0.055) at BR10, while single fibre maximal tension (force/CSA) was unchanged. However, at BR10 SR Ca2+ release in response to caffeine decreased by 35.1% (P < 0.002) and 30.2% (P < 0.001) in fast and slow fibres, respectively, pointing to an impaired excitation–contraction coupling. These findings support the view that the early onset of NMJ instability and impairment in SR function are eligible mechanisms contributing to the greater decline in muscle force than in muscle size during unloading. Few days of unloading are sufficient to induce a decline of skeletal muscle mass and function; notably, contractile force is lost at a faster rate than muscle mass. The reasons behind this disproportionate loss of muscle force are still poorly understood. We provide strong evidence of two mechanisms only hypothesized until now for the rapid muscle force loss in only 10 days of bed rest. Our results show that an initial neuromuscular junction instability, accompanied by alterations in the innervation status and impairment of single fibre sarcoplasmic reticulum function contribute to the loss of contractile force in front of a preserved myofibrillar function and central activation capacity. Early onset of neuromuscular junction instability and impairment in calcium dynamics involved in excitation–contraction coupling are proposed as eligible determinants to the greater decline in muscle force than in muscle size during unloading.
Collapse
Affiliation(s)
- Elena Monti
- Department of Biomedical Sciences, University of Padova, Padova, 35131, Italy
| | - Carlo Reggiani
- Department of Biomedical Sciences, University of Padova, Padova, 35131, Italy.,Science and Research Center Koper, Institute for Kinesiology Research, Koper, 6000, Slovenia
| | - Martino V Franchi
- Department of Biomedical Sciences, University of Padova, Padova, 35131, Italy
| | - Luana Toniolo
- Department of Biomedical Sciences, University of Padova, Padova, 35131, Italy
| | - Marco Sandri
- Department of Biomedical Sciences, University of Padova, Padova, 35131, Italy.,Department of Biomedical Sciences, Venetian Institute of Molecular Medicine, University of Padova, Via Orus 2, Padova, 35129, Italy
| | - Andrea Armani
- Department of Biomedical Sciences, University of Padova, Padova, 35131, Italy.,Department of Biomedical Sciences, Venetian Institute of Molecular Medicine, University of Padova, Via Orus 2, Padova, 35129, Italy
| | - Sandra Zampieri
- Department of Biomedical Sciences, University of Padova, Padova, 35131, Italy.,Department of Surgery, Oncology, and Gastroenterology, University of Padova, Padova, 35124, Italy
| | - Emiliana Giacomello
- Clinical Department of Medical, Surgical and Health Sciences, Strada di Fiume, 447, Trieste, 34149, Italy
| | - Fabio Sarto
- Department of Biomedical Sciences, University of Padova, Padova, 35131, Italy
| | - Giuseppe Sirago
- Department of Biomedical Sciences, University of Padova, Padova, 35131, Italy
| | - Marta Murgia
- Department of Biomedical Sciences, University of Padova, Padova, 35131, Italy.,Department of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry Am Klopferspitz 18, Martinsried, 82152, Germany
| | - Leonardo Nogara
- Department of Biomedical Sciences, University of Padova, Padova, 35131, Italy
| | - Lorenzo Marcucci
- Department of Biomedical Sciences, University of Padova, Padova, 35131, Italy
| | - Stefano Ciciliot
- Department of Biomedical Sciences, University of Padova, Padova, 35131, Italy.,Department of Biomedical Sciences, Venetian Institute of Molecular Medicine, University of Padova, Via Orus 2, Padova, 35129, Italy
| | - Boštjan Šimunic
- Science and Research Center Koper, Institute for Kinesiology Research, Koper, 6000, Slovenia
| | - Rado Pišot
- Science and Research Center Koper, Institute for Kinesiology Research, Koper, 6000, Slovenia
| | - Marco V Narici
- Department of Biomedical Sciences, University of Padova, Padova, 35131, Italy.,Science and Research Center Koper, Institute for Kinesiology Research, Koper, 6000, Slovenia.,CIR-MYO Myology Center, University of Padova, Padova, 35131, Italy
| |
Collapse
|
41
|
Memme JM, Slavin M, Moradi N, Hood DA. Mitochondrial Bioenergetics and Turnover during Chronic Muscle Disuse. Int J Mol Sci 2021; 22:ijms22105179. [PMID: 34068411 PMCID: PMC8153634 DOI: 10.3390/ijms22105179] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 12/15/2022] Open
Abstract
Periods of muscle disuse promote marked mitochondrial alterations that contribute to the impaired metabolic health and degree of atrophy in the muscle. Thus, understanding the molecular underpinnings of muscle mitochondrial decline with prolonged inactivity is of considerable interest. There are translational applications to patients subjected to limb immobilization following injury, illness-induced bed rest, neuropathies, and even microgravity. Studies in these patients, as well as on various pre-clinical rodent models have elucidated the pathways involved in mitochondrial quality control, such as mitochondrial biogenesis, mitophagy, fission and fusion, and the corresponding mitochondrial derangements that underlie the muscle atrophy that ensues from inactivity. Defective organelles display altered respiratory function concurrent with increased accumulation of reactive oxygen species, which exacerbate myofiber atrophy via degradative pathways. The preservation of muscle quality and function is critical for maintaining mobility throughout the lifespan, and for the prevention of inactivity-related diseases. Exercise training is effective in preserving muscle mass by promoting favourable mitochondrial adaptations that offset the mitochondrial dysfunction, which contributes to the declines in muscle and whole-body metabolic health. This highlights the need for further investigation of the mechanisms in which mitochondria contribute to disuse-induced atrophy, as well as the specific molecular targets that can be exploited therapeutically.
Collapse
Affiliation(s)
| | | | | | - David A. Hood
- Correspondence: ; Tel.: +1-(416)-736-2100 (ext. 66640)
| |
Collapse
|
42
|
The Role of GSK-3β in the Regulation of Protein Turnover, Myosin Phenotype, and Oxidative Capacity in Skeletal Muscle under Disuse Conditions. Int J Mol Sci 2021; 22:ijms22105081. [PMID: 34064895 PMCID: PMC8151958 DOI: 10.3390/ijms22105081] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/03/2021] [Accepted: 05/10/2021] [Indexed: 12/12/2022] Open
Abstract
Skeletal muscles, being one of the most abundant tissues in the body, are involved in many vital processes, such as locomotion, posture maintenance, respiration, glucose homeostasis, etc. Hence, the maintenance of skeletal muscle mass is crucial for overall health, prevention of various diseases, and contributes to an individual’s quality of life. Prolonged muscle inactivity/disuse (due to limb immobilization, mechanical ventilation, bedrest, spaceflight) represents one of the typical causes, leading to the loss of muscle mass and function. This disuse-induced muscle loss primarily results from repressed protein synthesis and increased proteolysis. Further, prolonged disuse results in slow-to-fast fiber-type transition, mitochondrial dysfunction and reduced oxidative capacity. Glycogen synthase kinase 3β (GSK-3β) is a key enzyme standing at the crossroads of various signaling pathways regulating a wide range of cellular processes. This review discusses various important roles of GSK-3β in the regulation of protein turnover, myosin phenotype, and oxidative capacity in skeletal muscles under disuse/unloading conditions and subsequent recovery. According to its vital functions, GSK-3β may represent a perspective therapeutic target in the treatment of muscle wasting induced by chronic disuse, aging, and a number of diseases.
Collapse
|
43
|
Graham ZA, Lavin KM, O'Bryan SM, Thalacker-Mercer AE, Buford TW, Ford KM, Broderick TJ, Bamman MM. Mechanisms of exercise as a preventative measure to muscle wasting. Am J Physiol Cell Physiol 2021; 321:C40-C57. [PMID: 33950699 DOI: 10.1152/ajpcell.00056.2021] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Skeletal muscle is the most abundant tissue in healthy individuals and it has important roles in health beyond voluntary movement. The overall mass and energy requirements of skeletal muscle require it to be metabolically active and flexible to multiple energy substrates. The tissue has evolved to be largely load dependent and it readily adapts in a number of positive ways to repetitive overload, such as various forms of exercise training. However, unloading from extended bed rest and/or metabolic derangements in response to trauma, acute illness, or severe pathology, commonly results in rapid muscle wasting. Decline in muscle mass contributes to multimorbidity, reduces function, and exerts a substantial, negative impact on the quality of life. The principal mechanisms controlling muscle mass have been well described and these cellular processes are intricately regulated by exercise. Accordingly, exercise has shown great promise and efficacy in preventing or slowing muscle wasting through changes in molecular physiology, organelle function, cell signaling pathways, and epigenetic regulation. In this review, we focus on the role of exercise in altering the molecular landscape of skeletal muscle in a manner that improves or maintains its health and function in the presence of unloading or disease.epigenetics; exercise; muscle wasting; resistance training; skeletal muscle.
Collapse
Affiliation(s)
- Zachary A Graham
- Birmingham VA Medical Center, Birmingham, Alabama.,Florida Institute for Human and Machine Cognition, Pensacola, Florida.,Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama.,UAB Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Kaleen M Lavin
- Florida Institute for Human and Machine Cognition, Pensacola, Florida.,Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama.,UAB Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Samia M O'Bryan
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama.,UAB Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Anna E Thalacker-Mercer
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama.,UAB Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Thomas W Buford
- UAB Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama.,Division of Gerontology, Geriatrics and Palliative Care, Department of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama.,Nathan Shock Center, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Kenneth M Ford
- Florida Institute for Human and Machine Cognition, Pensacola, Florida
| | | | - Marcas M Bamman
- Florida Institute for Human and Machine Cognition, Pensacola, Florida.,Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama.,UAB Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama.,Division of Gerontology, Geriatrics and Palliative Care, Department of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
44
|
Kramer A, Venegas-Carro M, Zange J, Sies W, Maffiuletti NA, Gruber M, Degens H, Moreno-Villanueva M, Mulder E. Daily 30-min exposure to artificial gravity during 60 days of bed rest does not maintain aerobic exercise capacity but mitigates some deteriorations of muscle function: results from the AGBRESA RCT. Eur J Appl Physiol 2021; 121:2015-2026. [PMID: 33811556 PMCID: PMC8192329 DOI: 10.1007/s00421-021-04673-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 03/28/2021] [Indexed: 11/29/2022]
Abstract
PURPOSE Spaceflight impairs physical capacity. Here we assessed the protective effect of artificial gravity (AG) on aerobic exercise capacity and muscle function during bed rest, a spaceflight analogue. METHODS 24 participants (33 ± 9 years, 175 ± 9 cm, 74 ± 10 kg, 8 women) were randomly allocated to one of three groups: continuous AG (cAG), intermittent AG (iAG) or control (CTRL). All participants were subjected to 60 days of six-degree head-down tilt bed rest, and subjects of the intervention groups completed 30 min of centrifugation per day: cAG continuously and iAG for 6 × 5 min, with an acceleration of 1g at the center of mass. Physical capacity was assessed before and after bed rest via maximal voluntary contractions, cycling spiroergometry, and countermovement jumps. RESULTS AG had no significant effect on aerobic exercise capacity, flexor muscle function and isometric knee extension strength or rate of force development (RFD). However, AG mitigated the effects of bed rest on jumping power (group * time interaction of the rmANOVA p < 0.001; iAG - 25%, cAG - 26%, CTRL - 33%), plantar flexion strength (group * time p = 0.003; iAG - 35%, cAG - 31%, CTRL - 48%) and plantar flexion RFD (group * time p = 0.020; iAG - 28%, cAG - 12%, CTRL - 40%). Women showed more pronounced losses than men in jumping power (p < 0.001) and knee extension strength (p = 0.010). CONCLUSION The AG protocols were not suitable to maintain aerobic exercise capacity, probably due to the very low cardiorespiratory demand of this intervention. However, they mitigated some losses in muscle function, potentially due to the low-intensity muscle contractions during centrifugation used to avoid presyncope.
Collapse
Affiliation(s)
- Andreas Kramer
- Human Performance Research Centre, Department of Sport Science, University of Konstanz, 78457, Konstanz, Germany.
| | - María Venegas-Carro
- Human Performance Research Centre, Department of Sport Science, University of Konstanz, 78457, Konstanz, Germany
| | - Jochen Zange
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Wolfram Sies
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | | | - Markus Gruber
- Human Performance Research Centre, Department of Sport Science, University of Konstanz, 78457, Konstanz, Germany
| | - Hans Degens
- Department of Life Sciences, Manchester Metropolitan University, Manchester, UK.,Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - María Moreno-Villanueva
- Human Performance Research Centre, Department of Sport Science, University of Konstanz, 78457, Konstanz, Germany
| | - Edwin Mulder
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| |
Collapse
|
45
|
Marusic U, Narici M, Simunic B, Pisot R, Ritzmann R. Nonuniform loss of muscle strength and atrophy during bed rest: a systematic review. J Appl Physiol (1985) 2021; 131:194-206. [PMID: 33703945 DOI: 10.1152/japplphysiol.00363.2020] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Muscle atrophy and decline in muscle strength appear very rapidly with prolonged disuse or mechanical unloading after acute hospitalization or experimental bed rest. The current study analyzed data from short-, medium-, and long-term bed rest (5-120 days) in a pooled sample of 318 healthy adults and modeled the mathematical relationship between muscle strength decline and atrophy. The results show a logarithmic disuse-induced loss of strength and muscle atrophy of the weight-bearing knee extensor muscles. The greatest rate of muscle strength decline and atrophy occurred in the earliest stages of bed rest, plateauing later, and likely contributed to the rapid neuromuscular loss of function in the early period. In addition, during the first 2 wk of bed rest, muscle strength decline is much faster than muscle atrophy: on day 5, the ratio of muscle atrophy to strength decline as a function of bed rest duration is 4.2, falls to 2.4 on day 14, and stabilizes to a value of 1.9 after ∼35 days of bed rest. Positive regression revealed that ∼79% of the muscle strength loss may be explained by muscle atrophy, while the remaining is most likely due to alterations in single fiber mechanical properties, excitation-contraction coupling, fiber architecture, tendon stiffness, muscle denervation, neuromuscular junction damage, and supraspinal changes. Future studies should focus on neural factors as well as muscular factors independent of atrophy (single fiber excitability and mechanical properties, architectural factors) and on the role of extracellular matrix changes. Bed rest results in nonuniform loss of isometric muscle strength and atrophy over time, where the magnitude of change was greater for muscle strength than for atrophy. Future research should focus on the loss of muscle function and the underlying mechanisms, which will aid in the development of countermeasures to mitigate or prevent the decline in neuromuscular efficiency.NEW & NOTEWORTHY Our study contributes to the characterization of muscle loss and weakness processes reflected by a logarithmic decline in muscle strength induced by chronic bed rest. Acute short-term hospitalization (≤5 days) associated with periods of disuse/immobilization/prolonged time in the supine position in the hospital bed is sufficient to significantly decrease muscle mass and size and induce functional changes related to weakness in maximal muscle strength. By bringing together integrated evaluation of muscle structure and function, this work identifies that 79% of the loss in muscle strength can be explained by muscle atrophy, leaving 21% of the functional loss unexplained. The outcomes of this study should be considered in the development of daily countermeasures for preserving neuromuscular integrity as well as preconditioning interventions to be implemented before clinical bed rest or chronic gravitational unloading (e.g., spaceflights).
Collapse
Affiliation(s)
- Uros Marusic
- Institute for Kinesiology Research, Science and Research Centre Koper, Koper, Slovenia.,Department of Health Sciences, Alma Mater Europaea-European Center of Maribor, Maribor, Slovenia
| | - Marco Narici
- Institute for Kinesiology Research, Science and Research Centre Koper, Koper, Slovenia.,Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Bostjan Simunic
- Institute for Kinesiology Research, Science and Research Centre Koper, Koper, Slovenia
| | - Rado Pisot
- Institute for Kinesiology Research, Science and Research Centre Koper, Koper, Slovenia
| | | |
Collapse
|
46
|
Bass JJ, Hardy EJO, Inns TB, Wilkinson DJ, Piasecki M, Morris RH, Spicer A, Sale C, Smith K, Atherton PJ, Phillips BE. Atrophy Resistant vs. Atrophy Susceptible Skeletal Muscles: "aRaS" as a Novel Experimental Paradigm to Study the Mechanisms of Human Disuse Atrophy. Front Physiol 2021; 12:653060. [PMID: 34017264 PMCID: PMC8129522 DOI: 10.3389/fphys.2021.653060] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/01/2021] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE Disuse atrophy (DA) describes inactivity-induced skeletal muscle loss, through incompletely defined mechanisms. An intriguing observation is that individual muscles exhibit differing degrees of atrophy, despite exhibiting similar anatomical function/locations. We aimed to develop an innovative experimental paradigm to investigate Atrophy Resistant tibialis anterior (TA) and Atrophy Susceptible medial gastrocnemius (MG) muscles (aRaS) with a future view of uncovering central mechanisms. METHOD Seven healthy young men (22 ± 1 year) underwent 15 days unilateral leg immobilisation (ULI). Participants had a single leg immobilised using a knee brace and air-boot to fix the leg (75° knee flexion) and ankle in place. Dual-energy X-ray absorptiometry (DXA), MRI and ultrasound scans of the lower leg were taken before and after the immobilisation period to determine changes in muscle mass. Techniques were developed for conchotome and microneedle TA/MG muscle biopsies following immobilisation (both limbs), and preliminary fibre typing analyses was conducted. RESULTS TA/MG muscles displayed comparable fibre type distribution of predominantly type I fibres (TA 67 ± 7%, MG 63 ± 5%). Following 15 days immobilisation, MG muscle volume (-2.8 ± 1.4%, p < 0.05) and muscle thickness decreased (-12.9 ± 1.6%, p < 0.01), with a positive correlation between changes in muscle volume and thickness (R2 = 0.31, p = 0.038). Importantly, both TA muscle volume and thickness remained unchanged. CONCLUSION The use of this unique "aRaS" paradigm provides an effective and convenient means by which to study the mechanistic basis of divergent DA susceptibility in humans, which may facilitate new mechanistic insights, and by extension, mitigation of skeletal muscle atrophy during human DA.
Collapse
Affiliation(s)
- Joseph J. Bass
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and National Institute for Health Research (NIHR), Nottingham Biomedical Research Centre (BRC), University of Nottingham, Nottingham, United Kingdom
| | - Edward J. O. Hardy
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and National Institute for Health Research (NIHR), Nottingham Biomedical Research Centre (BRC), University of Nottingham, Nottingham, United Kingdom
- Department of Surgery and Anaesthetics, Royal Derby Hospital, Derby, United Kingdom
| | - Thomas B. Inns
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and National Institute for Health Research (NIHR), Nottingham Biomedical Research Centre (BRC), University of Nottingham, Nottingham, United Kingdom
| | - Daniel J. Wilkinson
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and National Institute for Health Research (NIHR), Nottingham Biomedical Research Centre (BRC), University of Nottingham, Nottingham, United Kingdom
| | - Mathew Piasecki
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and National Institute for Health Research (NIHR), Nottingham Biomedical Research Centre (BRC), University of Nottingham, Nottingham, United Kingdom
| | - Robert H. Morris
- School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Abi Spicer
- School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Craig Sale
- Musculoskeletal Physiology Research Group, Sport, Health and Performance Enhancement Research Centre, Nottingham Trent University, Nottingham, United Kingdom
| | - Ken Smith
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and National Institute for Health Research (NIHR), Nottingham Biomedical Research Centre (BRC), University of Nottingham, Nottingham, United Kingdom
| | - Philip J. Atherton
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and National Institute for Health Research (NIHR), Nottingham Biomedical Research Centre (BRC), University of Nottingham, Nottingham, United Kingdom
- Philip J. Atherton,
| | - Bethan E. Phillips
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and National Institute for Health Research (NIHR), Nottingham Biomedical Research Centre (BRC), University of Nottingham, Nottingham, United Kingdom
- *Correspondence: Bethan E. Phillips,
| |
Collapse
|
47
|
Bollinger LM, Brantley JT, Tarlton JK, Baker PA, Seay RF, Abel MG. Construct Validity, Test-Retest Reliability, and Repeatability of Performance Variables Using a Flywheel Resistance Training Device. J Strength Cond Res 2020; 34:3149-3156. [PMID: 33105365 DOI: 10.1519/jsc.0000000000002647] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Bollinger, LM, Brantley, JT, Tarlton, JK, Baker, PA, Seay, RF, and Abel, MG. Construct validity, test-retest reliability, and repeatability of performance variables using a flywheel resistance training device. J Strength Cond Res 34(11): 3149-3156, 2020-Power production is highly associated with physical performance; however, the ability to quantitatively measure power output during resistance exercise is lacking. The purpose of this study was to determine the validity and test-retest reliability of flywheel-based performance testing. Twelve young, resistance trained subjects completed 2 bouts of resistance exercise using a flywheel resistance training device (Exxentric kbox 4 Pro). Each session consisted of 3 sets of 3 exercise (bent-over row, Romanian deadlift, and biceps curl) with varying moments of inertia (0.050, 0.075, and 0.100 kg·m, respectively) in random order. Each set consisted of 5 maximal effort repetitions with 3-minute recovery between sets. Average power, peak concentric and eccentric power, average force, average speed, and total work for each set were recorded. Regression analysis revealed a near-perfect relationship between measured and predicted power, force, and work at given workloads. Pearson's r between trials 1 and 2 revealed good (≥0.70) to excellent (≥0.90) test-retest reliability for all outcomes with the exception of peak eccentric power for biceps curls (r = 0.69), which narrowly missed the cutoff for acceptable reliability. Bland-Altman plots revealed small (approximately 5-15%), but statistically significant bias between the 2 trials for some measures. Coefficient of repeatability for all outcomes was relatively high, indicating poor repeatability. Flywheel-based performance testing provides valid data. However, reliability varies between individual lifts and specific outcomes. Given the poor repeatability between trials, it is likely that subjects who are unaccustomed to this modality may require multiple testing sessions or a thorough familiarization period to ensure accurate measures of power, force, speed, and work during flywheel-based performance testing.
Collapse
Affiliation(s)
- Lance M Bollinger
- Department of Kinesiology and Health Promotion, University of Kentucky, Lexington, Kentucky
| | | | | | | | | | | |
Collapse
|
48
|
Henkelmann R, Palke L, Schneider S, Müller D, Karich B, Mende M, Josten C, Böhme J. Impact of anti-gravity treadmill rehabilitation therapy on the clinical outcomes after fixation of lower limb fractures: A randomized clinical trial. Clin Rehabil 2020; 35:356-366. [PMID: 33106057 DOI: 10.1177/0269215520966857] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To compare the effects of anti-gravity treadmill rehabilitation with those of standard rehabilitation on surgically treated ankle and tibial plateau fractures. DESIGN Open-label prospective randomized multicenter study. SETTING Three level 1 trauma centers. SUBJECTS Patients with tibial plateau or ankle fractures who underwent postoperative partial weight-bearing were randomized into the intervention (anti-gravity treadmill use) or control (standard rehabilitation protocol) groups. MAIN MEASURES The primary endpoint was the change in the Foot and Ankle Outcome Score for ankle fractures and total Knee injury and Osteoarthritis Outcome Score for tibial plateau fractures (0-100 points) from baseline (T1) to six weeks after operation (T4) in both groups. Leg circumference of both legs was measured to assess thigh muscle atrophy in the operated leg. RESULTS Thirty-seven patients constituted the intervention and 36 the control group, respectively; 14 patients dropped out during the follow-up period. Among the 59 remaining patients (mean age 42 [range, 19-65] years), no difference was noted in the Foot and Ankle Outcome Score (54.2 ± 16.1 vs. 56.0 ± 16.6) or Knee injury and Osteoarthritis Outcome Score (52.8 ± 18.3 vs 47.6 ± 17.7) between the intervention and control groups 6 weeks after operation. The change in the leg circumference from T1 to T4 was greater by 4.6 cm in the intervention group (95% confidence interval: 1.2-8.0, P = 0.005). No adverse event associated with anti-gravity treadmill rehabilitation was observed. CONCLUSION No significant difference was noted in patient-reported outcomes between the two groups. Significant differences in muscular atrophy of the thigh were observed six weeks after operation.
Collapse
Affiliation(s)
- Ralf Henkelmann
- Department of Orthopedics, Trauma and Plastic Surgery, University of Leipzig, Leipzig, Germany
| | - Lisa Palke
- Department of Orthopedics, Trauma and Plastic Surgery, University of Leipzig, Leipzig, Germany
| | - Sebastian Schneider
- Clinic of Trauma, Orthopedic and Septic Surgery, Hospital St. Georg gGmbH, Leipzig, Germany
| | - Daniel Müller
- Ambulantes Reha Centrum Leipzig GmbH, Leipzig, Germany
| | - Bernhard Karich
- Department of Trauma and Physical Medicine, Heinrich-Braun-Klinikum Gemeinnützige GmbH, Zwickau, Germany
| | - Meinhard Mende
- Coordinating Centre for Clinical Trials and Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
| | - Christoph Josten
- Department of Orthopedics, Trauma and Plastic Surgery, University of Leipzig, Leipzig, Germany
| | - Jörg Böhme
- Clinic of Trauma, Orthopedic and Septic Surgery, Hospital St. Georg gGmbH, Leipzig, Germany
| |
Collapse
|
49
|
Intensive Care Unit-Acquired Weakness: Not just Another Muscle Atrophying Condition. Int J Mol Sci 2020; 21:ijms21217840. [PMID: 33105809 PMCID: PMC7660068 DOI: 10.3390/ijms21217840] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/18/2020] [Accepted: 10/19/2020] [Indexed: 02/07/2023] Open
Abstract
Intensive care unit-acquired weakness (ICUAW) occurs in critically ill patients stemming from the critical illness itself, and results in sustained disability long after the ICU stay. Weakness can be attributed to muscle wasting, impaired contractility, neuropathy, and major pathways associated with muscle protein degradation such as the ubiquitin proteasome system and dysregulated autophagy. Furthermore, it is characterized by the preferential loss of myosin, a distinct feature of the condition. While many risk factors for ICUAW have been identified, effective interventions to offset these changes remain elusive. In addition, our understanding of the mechanisms underlying the long-term, sustained weakness observed in a subset of patients after discharge is minimal. Herein, we discuss the various proposed pathways involved in the pathophysiology of ICUAW, with a focus on the mechanisms underpinning skeletal muscle wasting and impaired contractility, and the animal models used to study them. Furthermore, we will explore the contributions of inflammation, steroid use, and paralysis to the development of ICUAW and how it pertains to those with the corona virus disease of 2019 (COVID-19). We then elaborate on interventions tested as a means to offset these decrements in muscle function that occur as a result of critical illness, and we propose new strategies to explore the molecular mechanisms of ICUAW, including serum-related biomarkers and 3D human skeletal muscle culture models.
Collapse
|
50
|
Stokes KA, Jones B, Bennett M, Close GL, Gill N, Hull JH, Kasper AM, Kemp SP, Mellalieu SD, Peirce N, Stewart B, Wall BT, West SW, Cross M. Returning to Play after Prolonged Training Restrictions in Professional Collision Sports. Int J Sports Med 2020; 41:895-911. [PMID: 32483768 PMCID: PMC7799169 DOI: 10.1055/a-1180-3692] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 05/14/2020] [Indexed: 02/06/2023]
Abstract
The COVID-19 pandemic in 2020 has resulted in widespread training disruption in many sports. Some athletes have access to facilities and equipment, while others have limited or no access, severely limiting their training practices. A primary concern is that the maintenance of key physical qualities (e. g. strength, power, high-speed running ability, acceleration, deceleration and change of direction), game-specific contact skills (e. g. tackling) and decision-making ability, are challenged, impacting performance and injury risk on resumption of training and competition. In extended periods of reduced training, without targeted intervention, changes in body composition and function can be profound. However, there are strategies that can dramatically mitigate potential losses, including resistance training to failure with lighter loads, plyometric training, exposure to high-speed running to ensure appropriate hamstring conditioning, and nutritional intervention. Athletes may require psychological support given the challenges associated with isolation and a change in regular training routine. While training restrictions may result in a decrease in some physical and psychological qualities, athletes can return in a positive state following an enforced period of rest and recovery. On return to training, the focus should be on progression of all aspects of training, taking into account the status of individual athletes.
Collapse
Affiliation(s)
- Keith A. Stokes
- Department for Health, University of Bath, Bath, United Kingdom of Great
Britain and Northern Ireland
- Medical Services, Rugby Football Union, Twickenham, United Kingdom of Great
Britain and Northern Ireland
| | - Ben Jones
- Carnegie Applied Rugby Research (CARR) Centre, Leeds Beckett University
Carnegie Faculty, Leeds, United Kingdom of Great Britain and Northern
Ireland
- Leeds Rhinos Rugby League Club, Leeds, United Kingdom of Great Britain and
Northern Ireland
- England Performance Unit, Rugby Football League Ltd, Leeds, United Kingdom
of Great Britain and Northern Ireland
- Division of Exercise Science and Sports Medicine, University of Cape Town,
Faculty of Health Sciences, Cape Town, South Africa
| | - Mark Bennett
- Rugby Union of Russia, Moscow, Russian Federation
- Applied Sport Technology Exercise and Medicine Research Centre (A-STEM),
Swansea University College of Engineering, Swansea, United Kingdom of Great Britain
and Northern Ireland
| | - Graeme L. Close
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores
University, Liverpool, United Kingdom of Great Britain and Northern
Irelan
- Professional Rugby Department, Rugby Football Union, Twickenham, United
Kingdom of Great Britain and Northern Ireland
| | - Nicholas Gill
- New Zealand Rugby Union, Wellington, New Zealand
- Te HuatakiWaiora School of Health, University of Waikato, Hamilton, New
Zealand
| | - James H. Hull
- Department of Respiratory Medicine, Royal Brompton Hospital, London, United
Kingdom of Great Britain and Northern Ireland
| | - Andreas M. Kasper
- Professional Rugby Department, Rugby Football Union, Twickenham, United
Kingdom of Great Britain and Northern Ireland
| | - Simon P.T. Kemp
- Medical Services, Rugby Football Union, Twickenham, United Kingdom of Great
Britain and Northern Ireland
| | - Stephen D. Mellalieu
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan
University, Cardiff, United Kingdom of Great Britain and Northern
Ireland
| | - Nicholas Peirce
- Sport Science & Medicine, England and Wales Cricket Board,
Loughborough, United Kingdom of Great Britain and Northern Ireland
| | - Bob Stewart
- Medical Services, Rugby Football Union, Twickenham, United Kingdom of Great
Britain and Northern Ireland
| | - Benjamin T. Wall
- School of Sport and Health Sciences, University of Exeter, Exeter, United
Kingdom of Great Britain and Northern Ireland
| | - Stephen W. West
- Department for Health, University of Bath, Bath, United Kingdom of Great
Britain and Northern Ireland
| | - Matthew Cross
- Department for Health, University of Bath, Bath, United Kingdom of Great
Britain and Northern Ireland
- Professional Rugby Department, Rugby Football Union, Twickenham, United
Kingdom of Great Britain and Northern Ireland
| |
Collapse
|