1
|
Frigoli GF, Quadreli DH, Santos DPD, Costa IRD, Ferreira ARO, Peres MNC, Ribeiro MVG, Ceravolo GS, Mathias PC, Palma-Rigo K, Fernandes GSA. Low protein uptake during peripuberty impairs the testis, epididymis, and spermatozoa in pubertal and adult Wistar rats. J Dev Orig Health Dis 2024; 15:e23. [PMID: 39444313 DOI: 10.1017/s2040174424000308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Protein malnutrition during critical periods poses significant risks to reproductive health. Thus, this study aims to evaluate the immediate and delayed effects of a 30-day low-protein diet on the postnatal development of the male reproductive system. For so, male rats were fed a protein-deficient diet from postnatal day 30-60, followed by evaluations of testis, epididymis, and spermatozoa both at the end of the diet and after a 60-day recovery period. Testicular and epididymal weight was lowered in pubertal animals. Several histological alterations were found in the testis, such as acidophilic cells and vacuoles in the seminiferous epithelium, and sperm production was compromised. In the epididymis, the luminal compartment was diminished, and the stroma was enlarged both in the caput and cauda; in the cauda, the epithelial compartment was enlarged; the transit time of spermatozoa through this organ was diminished. Testosterone production was lowered. Spermatozoa's motility, mitochondrial activation, and acrosomal integrity were impaired, and several alterations in morphology were observed. After the recovery period, testicular and epididymal weight was restored. Tissue remodulation was observed in the epididymis, but the spermatozoa's transit time in this organ was not altered. Sperm and testosterone production, spermatozoa motility, mitochondrial activation, and acrosomal integrity were also restored. However, testicular histological alterations and spermatic morphological abnormalities were maintained in protein-restricted animals. Protein restriction during peripuberty impairs the reproductive maturation of pubertal Wistar rats, impairing testicular and epididymal function, with lasting effects even after dietary correction.
Collapse
Affiliation(s)
- Giovanna Fachetti Frigoli
- Laboratory of Toxicology and Metabolic Disturbs of Reproduction, General Biology Department, Biological Sciences Center, State University of Londrina, Londrina, Brazil
| | - Débora Hipólito Quadreli
- Laboratory of Toxicology and Metabolic Disturbs of Reproduction, General Biology Department, Biological Sciences Center, State University of Londrina, Londrina, Brazil
| | - Dayane Priscila Dos Santos
- Laboratory of Toxicology and Metabolic Disturbs of Reproduction, General Biology Department, Biological Sciences Center, State University of Londrina, Londrina, Brazil
| | - Ivana Regina da Costa
- Laboratory of Toxicology and Metabolic Disturbs of Reproduction, General Biology Department, Biological Sciences Center, State University of Londrina, Londrina, Brazil
| | - Anna Rebeka Oliveira Ferreira
- Laboratory of Secretion Cell Biology, Department of Cell Biology and Genetics, Center of Biological Sciences, State University of Maringá, Maringá, Brazil
| | - Maria Natália Chimirri Peres
- Laboratory of Secretion Cell Biology, Department of Cell Biology and Genetics, Center of Biological Sciences, State University of Maringá, Maringá, Brazil
| | - Maiara Vanusa Guedes Ribeiro
- Laboratory of Secretion Cell Biology, Department of Cell Biology and Genetics, Center of Biological Sciences, State University of Maringá, Maringá, Brazil
| | - Graziela Scalianti Ceravolo
- Laboratory of Vascular Pharmacology, Department of Physiological Sciences, Biological Sciences Center, State University of Londrina, Londrina, Brazil
| | - Paulo Cezar Mathias
- Laboratory of Secretion Cell Biology, Department of Cell Biology and Genetics, Center of Biological Sciences, State University of Maringá, Maringá, Brazil
| | - Kesia Palma-Rigo
- Laboratory of Secretion Cell Biology, Department of Cell Biology and Genetics, Center of Biological Sciences, State University of Maringá, Maringá, Brazil
| | - Glaura Scantamburlo Alves Fernandes
- Laboratory of Toxicology and Metabolic Disturbs of Reproduction, General Biology Department, Biological Sciences Center, State University of Londrina, Londrina, Brazil
| |
Collapse
|
2
|
Menezes ACF, Wunderlich ALM, Luiz KG, Frigoli GF, Costa IRD, Stopa LRDS, Souza CF, Guergolette RP, Shishido PK, Aquino ABO, Forcato S, Gerardin DCC, Zaia CTBV, Uchoa ET, Fernandes GSA. Neonatal undernutrition induced by litter size expansion alters testicular parameters in adult Wistar rats. Br J Nutr 2024:1-12. [PMID: 39391932 DOI: 10.1017/s0007114524002149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Several models of maternal undernutrition reveal impairment of testicular development and compromise spermatogenesis in male offspring. The expansion of the litter size model, valuable for studying the impact of undernutrition on early development, has not yet been used to evaluate the consequences of early undernutrition in the adult male reproductive system. For this purpose, pups were raised in either normal litter (ten pups/dam) or large litter (LL; sixteen pups/dam). On postnatal day 90, sexual behaviour was evaluated or blood, adipose and reproductive tissues were collected for biochemical, histological and morphological analysis. Adult LL animals were lighter and thinner than controls. They showed increased food intake, but decrease of retroperitoneal white adipose tissue weight, glycaemia after oral glucose overload and plasma concentration of cholesterol. Reproductive organ weights were not altered by undernutrition, but histopathological analysis revealed an increased number of abnormal seminiferous tubules and number of immature spermatids in the tubular lumen of LL animals. These animals also showed reduction in total spermatic reserve and daily sperm production in the testes. Undernutrition decreased the number of Sertoli cells, and testosterone production was increased in the LL group. Mitochondrial activity of spermatozoa remained unchanged between experimental groups, suggesting no significant impact on the energy-related processes associated with sperm function. All animals from both experimental groups were considered sexually competent, with no significant difference in the parameters of sexual behaviour. We conclude that neonatal undernutrition induces histological and physiological testicular changes, without altering sperm quality and sexual behaviour of animals.
Collapse
Affiliation(s)
- Ana Camila Ferreira Menezes
- State University of Londrina, Biological Sciences Centre, Department of General Biology, Laboratory of Toxicology and Metabolic Disorders of Reproduction, Londrina, Brazil
| | | | - Karen Gomes Luiz
- State University of Londrina, Biological Sciences Centre, Department of General Biology, Laboratory of Toxicology and Metabolic Disorders of Reproduction, Londrina, Brazil
| | - Giovanna Fachetti Frigoli
- State University of Londrina, Biological Sciences Centre, Department of General Biology, Laboratory of Toxicology and Metabolic Disorders of Reproduction, Londrina, Brazil
| | - Ivana Regina D Costa
- State University of Londrina, Biological Sciences Centre, Department of General Biology, Laboratory of Toxicology and Metabolic Disorders of Reproduction, Londrina, Brazil
| | | | - Camila Franciele Souza
- Multicentre Postgraduate Program in Physiological Sciences, State University of Londrina, Londrina, Brazil
| | | | - Polyana Keiko Shishido
- Postgraduate Program in Physiological Sciences, State University of Londrina, Londrina, Brazil
| | | | - Simone Forcato
- Multicentre Postgraduate Program in Physiological Sciences, State University of Londrina, Londrina, Brazil
| | - Daniela Cristina Ceccatto Gerardin
- Postgraduate Program in Physiological Sciences, State University of Londrina, Londrina, Brazil
- Multicentre Postgraduate Program in Physiological Sciences, State University of Londrina, Londrina, Brazil
- Department of Physiological Sciences, State University of Londrina, Londrina, Brazil
| | - Cássia Thaïs Bussamra Vieira Zaia
- Postgraduate Program in Physiological Sciences, State University of Londrina, Londrina, Brazil
- Multicentre Postgraduate Program in Physiological Sciences, State University of Londrina, Londrina, Brazil
- Department of Physiological Sciences, State University of Londrina, Londrina, Brazil
| | - Ernane Torres Uchoa
- Postgraduate Program in Physiological Sciences, State University of Londrina, Londrina, Brazil
- Multicentre Postgraduate Program in Physiological Sciences, State University of Londrina, Londrina, Brazil
- Department of Physiological Sciences, State University of Londrina, Londrina, Brazil
| | - Glaura Scantamburlo Alves Fernandes
- State University of Londrina, Biological Sciences Centre, Department of General Biology, Laboratory of Toxicology and Metabolic Disorders of Reproduction, Londrina, Brazil
- Postgraduate Program in Physiological Sciences, State University of Londrina, Londrina, Brazil
| |
Collapse
|
3
|
Ribeiro IT, Fioretto MN, Dos Santos SAA, Colombelli KT, Portela LMF, Niz Alvarez MV, de Magalhães Padilha P, Delgado AQ, Marques MVLSG, Bosqueiro JR, Seiva FRF, Barbisan LF, de Andrade Paes AM, Zambrano E, Justulin LA. Maternal protein restriction combined with postnatal sugar consumption alters liver proteomic profile and metabolic pathways in adult male offspring rats. Mol Cell Endocrinol 2024; 592:112316. [PMID: 38880278 DOI: 10.1016/j.mce.2024.112316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/18/2024]
Abstract
This study investigated the impact of maternal protein restriction (MPR) and early postnatal sugar consumption (SUG) on the liver health of adult male descendant rats. Male offspring of mothers fed a normal protein diet (NPD) or a low protein diet (LPD) were divided into four groups: Control (CTR), Sugar Control (CTR + SUG), LPD during gestation and lactation (GLLP), and LPD with sugar (GLLP + SUG). Sugar consumption (10% glucose diluted in water) began after weaning on day 21 (PND 21), and at 90 days (PND 90), rats were sacrificed for analysis. Sugar intake reduced food intake and increased water consumption in CTR + SUG and GLLP + SUG compared to CTR and GLLP. GLLP and GLLP + SUG groups showed lower body weight and total and retroperitoneal fat compared to CTR and CTR + SUG. CTR + SUG and GLLP + SUG groups exhibited hepatocyte vacuolization associated with increased hepatic glycogen content compared to CTR and GLLP. Hepatic catalase activity increased in GLLP compared to CTR. Proteomic analysis identified 223 differentially expressed proteins (DEPs) among experimental groups. While in the GLLP group, the DEPs enriched molecular pathways related to cellular stress, glycogen metabolic pathways were enriched in the GLLP + SUG and CTR + SUG groups. The association of sugar consumption amplifies the effects of MPR, deregulating molecular mechanisms related to metabolism and the antioxidant system.
Collapse
Affiliation(s)
- Isabelle Tenori Ribeiro
- UNESP- Sao Paulo State University, Department of Structural and Functional Biology, Institute of Biosciences, Botucatu, SP, Brazil
| | - Matheus Naia Fioretto
- UNESP- Sao Paulo State University, Department of Structural and Functional Biology, Institute of Biosciences, Botucatu, SP, Brazil
| | - Sérgio Alexandre Alcantara Dos Santos
- UNESP- Sao Paulo State University, Department of Structural and Functional Biology, Institute of Biosciences, Botucatu, SP, Brazil; Cancer Signaling and Epigenetics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Ketlin Thassiani Colombelli
- UNESP- Sao Paulo State University, Department of Structural and Functional Biology, Institute of Biosciences, Botucatu, SP, Brazil
| | - Luiz Marcos Frediani Portela
- UNESP- Sao Paulo State University, Department of Structural and Functional Biology, Institute of Biosciences, Botucatu, SP, Brazil
| | | | - Pedro de Magalhães Padilha
- Department of Chemical and Biological Sciences, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil
| | - Aislan Quintiliano Delgado
- Department of Physical Education, Institute of Biosciences, Sao Paulo State University, Bauru, SP, Brazil
| | | | - José Roberto Bosqueiro
- Department of Physical Education, Institute of Biosciences, Sao Paulo State University, Bauru, SP, Brazil
| | - Fábio Rodrigues Ferreira Seiva
- Department of Chemical and Biological Sciences, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil
| | - Luís Fernando Barbisan
- UNESP- Sao Paulo State University, Department of Structural and Functional Biology, Institute of Biosciences, Botucatu, SP, Brazil
| | | | - Elena Zambrano
- Department Reproductive Biology, Salvador Zubirán National Institute of Medical Sciences and Nutrition, Mexico City, Mexico; Facultad de Química, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
| | - Luis Antonio Justulin
- UNESP- Sao Paulo State University, Department of Structural and Functional Biology, Institute of Biosciences, Botucatu, SP, Brazil.
| |
Collapse
|
4
|
Alameddine M, Altinpinar AE, Ersoy U, Kanakis I, Myrtziou I, Ozanne SE, Goljanek-Whysall K, Vasilaki A. Effect of Lactational Low-Protein Diet on Skeletal Muscle during Adulthood and Ageing in Male and Female Mouse Offspring. Nutrients 2024; 16:2926. [PMID: 39275242 PMCID: PMC11397042 DOI: 10.3390/nu16172926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/16/2024] Open
Abstract
Sarcopenia is characterised by the loss of skeletal muscle mass and function, which leads to a high risk of increased morbidity and mortality. Maternal malnutrition has been linked to impaired development of skeletal muscle of the offspring; however, there are limited studies that report the long-term effect of a maternal low-protein diet during lactation on the ageing of skeletal muscles. This study aimed to examine how a maternal low-protein diet (LPD) during lactation affects skeletal muscle ageing in the offspring. Pups born from control mothers were lactated by mothers fed with an LPD. Post-weaning, mice were either maintained on an LPD or switched to a control, normal-protein diet (NPD). In males, an LPD mainly affected the size of the myofibres without a major effect on fibre number and led to reduced grip strength in ageing mice (24 months). Female mice from mothers on an LPD had a lower body and muscle weight at weaning but caught up with control mice at 3 months. During ageing, the muscle weight, myofibre number and survival rate of female pups were significantly affected. These findings highlight the effect of an LPD during lactation on skeletal muscle ageing, the lifespan of offspring and the importance of sexual dimorphism in response to dietary challenges.
Collapse
Affiliation(s)
- Moussira Alameddine
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences (ILCaMS), University of Liverpool, Liverpool L7 8TX, UK
- Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Atilla Emre Altinpinar
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences (ILCaMS), University of Liverpool, Liverpool L7 8TX, UK
| | - Ufuk Ersoy
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences (ILCaMS), University of Liverpool, Liverpool L7 8TX, UK
| | - Ioannis Kanakis
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences (ILCaMS), University of Liverpool, Liverpool L7 8TX, UK
- Chester Medical School, Faculty of Health, Medicine and Society, University of Chester, Chester CH1 4BJ, UK
| | - Ioanna Myrtziou
- Chester Medical School, Faculty of Health, Medicine and Society, University of Chester, Chester CH1 4BJ, UK
| | - Susan E Ozanne
- MRC Metabolic Diseases Unit, Welcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, University of Cambridge Metabolic Research Laboratories, Cambridge CB2 0QQ, UK
| | - Katarzyna Goljanek-Whysall
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences (ILCaMS), University of Liverpool, Liverpool L7 8TX, UK
- Department of Physiology, School of Medicine and REMEDI, CMNHS, University of Galway, H91 TK33 Galway, Ireland
| | - Aphrodite Vasilaki
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences (ILCaMS), University of Liverpool, Liverpool L7 8TX, UK
| |
Collapse
|
5
|
Gu LJ, Li L, Li QN, Xu K, Yue W, Qiao JY, Meng TG, Dong MZ, Lei WL, Guo JN, Wang ZB, Sun QY. The transgenerational effects of maternal low-protein diet during lactation on offspring. J Genet Genomics 2024; 51:824-835. [PMID: 38657948 DOI: 10.1016/j.jgg.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/26/2024]
Abstract
Environmental factors such as diet and lifestyle can influence the health of both mothers and offspring. However, its transgenerational transmission and underlying mechanisms remain largely unknown. Here, using a maternal lactation-period low-protein diet (LPD) mouse model, we show that maternal LPD during lactation causes decreased survival and stunted growth, significantly reduces ovulation and litter size, and alters the gut microbiome in the female LPD-F1 offspring. The transcriptome of LPD-F1 metaphase II (MII) oocytes shows that differentially expressed genes are enriched in female pregnancy and multiple metabolic processes. Moreover, maternal LPD causes early stunted growth and impairs metabolic health, which is transmitted over two generations. The methylome alteration of LPD-F1 oocytes can be partly transmitted to the F2 oocytes. Together, our results reveal that LPD during lactation transgenerationally affects offspring health, probably via oocyte epigenetic changes.
Collapse
Affiliation(s)
- Lin-Jian Gu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Li
- Institute of Laboratory Animal Sciences, CAMS & PUMC, Beijing 100021, China
| | - Qian-Nan Li
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510317, China
| | - Ke Xu
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510317, China
| | - Wei Yue
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jing-Yi Qiao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tie-Gang Meng
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510317, China
| | - Ming-Zhe Dong
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wen-Long Lei
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jia-Ni Guo
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen-Bo Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qing-Yuan Sun
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510317, China.
| |
Collapse
|
6
|
Camargo AC, Constantino FB, Santos SA, Colombelli KT, Portela LM, Fioretto MN, Barata LA, Valente GT, Moreno CS, Justulin LA. Deregulation of ABCG1 early in life contributes to prostate carcinogenesis in maternally malnourished offspring rats. Mol Cell Endocrinol 2024; 580:112102. [PMID: 37972683 DOI: 10.1016/j.mce.2023.112102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/12/2023] [Accepted: 10/24/2023] [Indexed: 11/19/2023]
Abstract
AIMS The developmental Origins of Health and Disease (DOHaD) concept has provided the framework to assess how early life experiences can shape health and disease throughout the life course. Using a model of maternal exposure to a low protein diet (LPD; 6% protein) during the gestational and lactational periods, we demonstrated changes in the ventral prostate (VP) transcriptomic landscape in young rats exposed to maternal malnutrition. Male offspring Sprague Dawley rats were submitted to maternal malnutrition during gestation and lactation, and they were weighed, and distance anogenital was measured, followed were euthanized by an overdose of anesthesia at 21 postnatal days. Next, the blood and the ventral prostate (VP) were collected and processed by morphological analysis, biochemical and molecular analyses. RNA-seq analysis identified 411 differentially expressed genes (DEGs) in the VP of maternally malnourished offspring compared to the control group. The molecular pathways enriched by these DEGs are related to cellular development, differentiation, and tissue morphogenesis, all of them involved in both normal prostate development and carcinogenesis. Abcg1 was commonly deregulated in young and old maternally malnourished offspring rats, as well in rodent models of prostate cancer (PCa) and in PCa patients. Our results described ABCG1 as a potential DOHaD gene associated with perturbation of prostate developmental biology with long-lasting effects on carcinogenesis in old offspring rats. A better understanding of these mechanisms may help with the discussion of preventive strategies against early life origins of non-communicable chronic diseases.
Collapse
Affiliation(s)
- Ana Cl Camargo
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu, SP, Brazil; Laboratory of Human Genetics, Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Flávia B Constantino
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Sergio Aa Santos
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu, SP, Brazil; Cancer Signaling and Epigenetics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Ketlin T Colombelli
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Luiz Mf Portela
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Matheus N Fioretto
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Luísa A Barata
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Guilherme T Valente
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Carlos S Moreno
- Department of Pathology and Laboratory Medicine and Department of Biomedical Informatics, Emory University School of Medicine, USA
| | - Luis A Justulin
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu, SP, Brazil.
| |
Collapse
|
7
|
Payne-Sturges D, De Saram S, Cory-Slechta DA. Cumulative Risk Evaluation of Phthalates Under TSCA. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:6403-6414. [PMID: 37043345 DOI: 10.1021/acs.est.2c08364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The U.S. Environmental Protection Agency (EPA) is currently conducting separate Toxic Substances Control Act (TSCA) risk evaluations for seven phthalates: dibutyl phthalate (DBP), butyl benzyl phthalate (BBP), di(2-ethylhexyl) phthalate (DEHP), diisobutyl phthalate (DIBP), dicyclohexyl phthalate (DCHP), di-isodecyl phthalate (DIDP), and diisononyl phthalate (DINP). Phthalates are highly abundant plastic additives used primarily to soften materials and make them flexible, and biomonitoring shows widespread human exposure to a mixture of phthalates. Evidence supports biological additivity of phthalate mixture exposures, including the enhancement of toxicity affecting common biological targets. Risk estimates based on individual phthalate exposure may not be protective of public health. Thus, a cumulative risk approach is warranted. While EPA initially did not signal that it would incorporate cumulative risk assessment (CRA) as part of its current risk evaluation for the seven phthalates, the agency recently announced that it is reconsidering if CRA for phthalates would be appropriate. Based on our review of existing chemical mixtures risk assessment guidance, current TSCA scoping documents for the seven phthalates, and pertinent peer-reviewed literature, we delineate a CRA approach that EPA can easily implement for phthalates. The strategy for using CRA to inform TSCA risk evaluation for existing chemicals is based upon integrative physiology and a common adverse health outcome algorithm for identifying and grouping relevant nonchemical and chemical stressors. We recommend adjustments for how hazard indices (HIs) or margins of exposure (MOEs) based on CRA are interpreted for determining "unreasonable risk" under TSCA.
Collapse
Affiliation(s)
- Devon Payne-Sturges
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, 255 Valley Drive, College Park, Maryland 20742, United States
| | - Sulakkhana De Saram
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, 255 Valley Drive, College Park, Maryland 20742, United States
| | - Deborah A Cory-Slechta
- University of Rochester School of Medicine, Box EHSC, Rochester, New York 14642, United States
| |
Collapse
|
8
|
Zambrano E, Reyes-Castro LA, Rodríguez-González GL, Chavira R, Lomas-Soria C, Gerow KG, Nathanielsz PW. Developmental Programming-Aging Interactions Have Sex-Specific and Developmental Stage of Exposure Outcomes on Life Course Circulating Corticosterone and Dehydroepiandrosterone (DHEA) Concentrations in Rats Exposed to Maternal Protein-Restricted Diets. Nutrients 2023; 15:nu15051239. [PMID: 36904238 PMCID: PMC10005360 DOI: 10.3390/nu15051239] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 03/05/2023] Open
Abstract
The steroids corticosterone and dehydroepiandrosterone (DHEA) perform multiple life course functions. Rodent life-course circulating corticosterone and DHEA trajectories are unknown. We studied life course basal corticosterone and DHEA in offspring of rats fed protein-restricted (10% protein, R) or control (20% protein, C), pregnancy diet first letter, and/or lactation second letter, producing four offspring groups-CC, RR, CR, and RC. We hypothesize that 1. maternal diet programs are sexually dimorphic, offspring life course steroid concentrations, and 2. an aging-related steroid will fall. Both changes differ with the plastic developmental period offspring experienced R, fetal life or postnatally, pre-weaning. Corticosterone was measured by radioimmunoassay and DHEA by ELISA. Steroid trajectories were evaluated by quadratic analysis. Female corticosterone was higher than male in all groups. Male and female corticosterone were highest in RR, peaked at 450 days, and fell thereafter. DHEA declined with aging in all-male groups. DHEA: corticosterone fell in three male groups but increased in all-female groups with age. In conclusion, life course and sexually dimorphic steroid developmental programming-aging interactions may explain differences in steroid studies at different life stages and between colonies experiencing different early-life programming. These data support our hypotheses of sex and programming influences and aging-related fall in rat life course serum steroids. Life course studies should address developmental programming-aging interactions.
Collapse
Affiliation(s)
- Elena Zambrano
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Luis A. Reyes-Castro
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Guadalupe L. Rodríguez-González
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Roberto Chavira
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Consuelo Lomas-Soria
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
- CONACyT-Cátedras, Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición SZ, Mexico City 14080, Mexico
| | - Kenneth G. Gerow
- Department of Statistics, University of Wyoming, Laramie, WY 82071, USA
| | - Peter W. Nathanielsz
- Wyoming Center for Pregnancy and Life Course Health Research, Department of Animal Science, University of Wyoming, Laramie, WY 82071, USA
- Correspondence:
| |
Collapse
|
9
|
Abedi B, Tayefi-Nasrabadi H, Kianifard D, Basaki M, Shahbazfar AA, Piri A, Dolatyarieslami M. The effect of co-administration of artemisinin and N-acetyl cysteine on antioxidant status, spermatological parameters and histopathology of testis in adult male mice. Horm Mol Biol Clin Investig 2023:hmbci-2022-0050. [PMID: 36749578 DOI: 10.1515/hmbci-2022-0050] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 01/22/2023] [Indexed: 02/08/2023]
Abstract
OBJECTIVES This in vivo study aimed to evaluate the effect of various concentrations of artemisinin (Art) alone or together with N-acetyl cysteine (NAC) on spermatological indices, antioxidant status, and histopathological parameters of testicular tissue in adult male mice. METHODS Six groups of five healthy male mice (25-30 g) were randomly assigned to different experimental groups. These groups received DMSO and corn oil (0.1%) as an Art solvent (Control), 50 mg kg-1 Art (Art-50), 250 mg kg-1 Art (Art-250), 50 mg kg-1 Art + 150 mg kg-1 NAC (Art-50+NAC-150), 250 mg kg-1 Art + 150 mg kg-1 NAC (Art-250+NAC-150) and 150 mg kg-1 NAC (NAC-150) for a period of 7 days. Testes and epididymis were prepared to evaluate the malondialdehyde (MDA), glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), peroxidase (POX), spermatological indices, and histological parameters. RESULTS We showed that the high dose of Art (Art-250) significantly reduced the sperm count, motility, viability, and the activity of CAT and increased the levels of MDA compared to the control group. Also, the overdose of Art caused adverse changes in testicular tissue. Co-administration of NAC with Art (Art-250+NAC-150) corrected the adverse effects of Art. CONCLUSIONS The current study reports that a high dose of Art affects, spermatological parameters, antioxidant/stress oxidative status of the male reproductive system, and NAC is capable neutralize all adverse effects caused by Art.
Collapse
Affiliation(s)
- Behnaz Abedi
- Department of Basic sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Hossein Tayefi-Nasrabadi
- Department of Basic sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Davoud Kianifard
- Department of Basic sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Mehdi Basaki
- Department of Basic sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Amir Ali Shahbazfar
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Aiyoub Piri
- Department of Basic sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Mahdi Dolatyarieslami
- Department of Basic sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| |
Collapse
|
10
|
Developmental Programming in Animal Models: Critical Evidence of Current Environmental Negative Changes. Reprod Sci 2023; 30:442-463. [PMID: 35697921 PMCID: PMC9191883 DOI: 10.1007/s43032-022-00999-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/02/2022] [Indexed: 11/23/2022]
Abstract
The Developmental Origins of Health and Disease (DOHaD) approach answers questions surrounding the early events suffered by the mother during reproductive stages that can either partially or permanently influence the developmental programming of children, predisposing them to be either healthy or exhibit negative health outcomes in adulthood. Globally, vulnerable populations tend to present high obesity rates, including among school-age children and women of reproductive age. In addition, adults suffer from high rates of diabetes, hypertension, cardiovascular, and other metabolic diseases. The increase in metabolic outcomes has been associated with the combination of maternal womb conditions and adult lifestyle-related factors such as malnutrition and obesity, smoking habits, and alcoholism. However, to date, "new environmental changes" have recently been considered negative factors of development, such as maternal sedentary lifestyle, lack of maternal attachment during lactation, overcrowding, smog, overurbanization, industrialization, noise pollution, and psychosocial stress experienced during the current SARS-CoV-2 pandemic. Therefore, it is important to recognize how all these factors impact offspring development during pregnancy and lactation, a period in which the subject cannot protect itself from these mechanisms. This review aims to introduce the importance of studying DOHaD, discuss classical programming studies, and address the importance of studying new emerging programming mechanisms, known as actual lifestyle factors, during pregnancy and lactation.
Collapse
|
11
|
Santos SAA, Portela LMF, Camargo ACL, Constantino FB, Colombelli KT, Fioretto MN, Mattos R, de Almeida Fantinatti BE, Denti MA, Piazza S, Felisbino SL, Zambrano E, Justulin LA. miR-18a-5p Is Involved in the Developmental Origin of Prostate Cancer in Maternally Malnourished Offspring Rats: A DOHaD Approach. Int J Mol Sci 2022; 23:14855. [PMID: 36499183 PMCID: PMC9739077 DOI: 10.3390/ijms232314855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 12/02/2022] Open
Abstract
The Developmental Origins of Health and Disease (DOHaD) concept correlates early life exposure to stressor conditions with the increased incidence of non-communicable chronic diseases, including prostate cancer (PCa), throughout the life span. However, the molecular mechanisms involved in this process remain poorly understood. In this study, the deregulation of two miRNAs (rno-miR-18a-5p and rno-miR-345-3p) was described in the ventral prostate VP of old rats born to dams fed with a low protein diet (LPD) (6% protein in the diet) during gestational and lactational periods. Integrative analysis of the (VP) transcriptomic and proteomic data revealed changes in the expression profile of 14 identified predicted targets of these two DE miRNAs, which enriched terms related to post-translational protein modification, metabolism of proteins, protein processing in endoplasmic reticulum, phosphonate and phosphinate metabolism, the calnexin/calreticulin cycle, metabolic pathways, N-glycan trimming in the ER and the calnexin/calreticulin cycle, hedgehog ligand biogenesis, the ER-phagosome pathway, detoxification of reactive oxygen species, antigenprocessing-cross presentation, RAB geranylgeranylation, collagen formation, glutathione metabolism, the metabolism of xenobiotics by cytochrome P450, and platinum drug resistance. RT-qPCR validated the deregulation of the miR-18a-5p/P4HB (prolyl 4-hydroxylase subunit beta) network in the VP of older offspring as well as in the PNT-2 cells transfected with mimic miR-18a-5p. Functional in vitro studies revealed a potential modulation of estrogen receptor α (ESR1) by miR-18a-5p in PNT-2 cells, which was also confirmed in the VP of older offspring. An imbalance of the testosterone/estrogen ratio was also observed in the offspring rats born to dams fed with an LPD. In conclusion, deregulation of the miR-18a-5p/P4HB network can contribute to the developmental origins of prostate cancer in maternally malnourished offspring, highlighting the need for improving maternal healthcare during critical windows of vulnerability early in life.
Collapse
Affiliation(s)
- Sergio Alexandre Alcantara Santos
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Unesp Botucatu, Botucatu 18618-689, SP, Brazil
- Cancer Signaling and Epigenetics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Luiz Marcos Frediani Portela
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Unesp Botucatu, Botucatu 18618-689, SP, Brazil
| | - Ana Carolina Lima Camargo
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Unesp Botucatu, Botucatu 18618-689, SP, Brazil
| | - Flavia Bessi Constantino
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Unesp Botucatu, Botucatu 18618-689, SP, Brazil
| | - Ketlin Thassiani Colombelli
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Unesp Botucatu, Botucatu 18618-689, SP, Brazil
| | - Matheus Naia Fioretto
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Unesp Botucatu, Botucatu 18618-689, SP, Brazil
| | - Renato Mattos
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Unesp Botucatu, Botucatu 18618-689, SP, Brazil
| | - Bruno Evaristo de Almeida Fantinatti
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Unesp Botucatu, Botucatu 18618-689, SP, Brazil
| | - Michela Alessandra Denti
- Department of Cellular, Computational and Integrative Biology—CIBIO, University of Trento, 38123 Trento, Italy
| | - Silvano Piazza
- Department of Cellular, Computational and Integrative Biology—CIBIO, University of Trento, 38123 Trento, Italy
| | - Sérgio Luis Felisbino
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Unesp Botucatu, Botucatu 18618-689, SP, Brazil
| | - Elena Zambrano
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición, Salvador Zubirán, Mexico City 14080, Mexico
| | - Luis Antonio Justulin
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Unesp Botucatu, Botucatu 18618-689, SP, Brazil
| |
Collapse
|
12
|
A maternal low-protein diet during gestation induces hepatic autophagy-related gene expression in a sex-specific manner in Sprague-Dawley rats. Br J Nutr 2022; 128:592-603. [PMID: 34511147 PMCID: PMC9346618 DOI: 10.1017/s0007114521003639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This study investigates the mechanism by which maternal protein restriction induces hepatic autophagy-related gene expression in the offspring of rats. Pregnant Sprague-Dawley rats were fed either a control diet (C, 18 % energy from protein) or a low-protein diet (LP, 8·5 % energy from protein) during gestation, followed by the control diet during lactation and post-weaning. Liver tissue was collected from the offspring at postnatal day 38 and divided into four groups according to sex and maternal diet (F-C, F-LP, M-C and M-LP) for further analysis. Autophagy-related mRNA and protein levels were determined by real-time PCR and Western blotting, respectively. In addition, chromatin immunoprecipitation (ChIP) was performed to investigate the interactions between transcription factors and autophagy-related genes. Protein levels of p- eukaryotic translation initiation factor 2a and activating transcription factor 4 (ATF4) were increased only in the female offspring born to dams fed the LP diet. Correlatively, the mRNA expression of hepatic autophagy-related genes including Map1lc3b, P62/Sqstm1, Becn1, Atg3, Atg7 and Atg10 was significantly greater in the F-LP group than in the F-C group. Furthermore, ChIP results showed greater ATF4 and C/EBP homology protein (CHOP) binding at the regions of a set of autophagy-related genes in the F-LP group than in the F-C group. Our data demonstrated that a maternal LP diet transcriptionally programmed hepatic autophagy-related gene expression only in female rat offspring. This transcriptional programme involved the activation of the eIF2α/ATF4 pathway and intricate regulation by transcription factors ATF4 and CHOP.
Collapse
|
13
|
Chavira-Suárez E, Reyes-Castro LA, López-Tenorio II, Vargas-Hernández L, Rodríguez-González GL, Chavira R, Zárate-Segura P, Domínguez-López A, Vadillo-Ortega F, Zambrano E. Sex-differential RXRα gene methylation effects on mRNA and protein expression in umbilical cord of the offspring rat exposed to maternal obesity. Front Cell Dev Biol 2022; 10:892315. [PMID: 36072345 PMCID: PMC9442673 DOI: 10.3389/fcell.2022.892315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
Maternal obesity (MO) induces negative consequences in the offspring development. Adiposity phenotype is associated with maternal diet at early pregnancy and DNA methylation marks in the RXRα promotor at birth. Glucocorticoids play an important role in the regulation of metabolism through the activation of nuclear hormone receptors such as the RXRα protein. The aim of the study was to analyze steroid hormone changes at the end of pregnancy in the obese mother and RXRα gene methylation in the umbilical cord. For this purpose, in a well-established MO model, female Wistar rats were fed either standard chow (controls: C) or high-fat obesogenic diet (MO) before and during pregnancy to evaluate at 19 days of gestation (19 dG): 1) maternal concentration of circulating steroid hormones in MO and C groups, 2) maternal and fetal weights, 3) analysis of correlation between hormones concentration and maternal and fetal weights, 4) DNA methylation status of a single locus of RXRα gene near the early growth response (EGR-1) protein DNA binding site, and 5) RXRα mRNA and protein expressions in umbilical cords. Our results demonstrate that at 19 dG, MO body weight before and during pregnancy was higher than C; MO progesterone and corticosterone serum concentrations were higher and estradiol lower than C. There were not differences in fetal weight between male and female per group, therefore averaged data was used; MO fetal weight was lower than C. Positive correlations were found between progesterone and corticosterone with maternal weight, and estradiol with fetal weight, while negative correlation was observed between corticosterone and fetal weight. Additionally, male umbilical cords from MO were hypermethylated in RXRα gene compared to male C group, without differences in the female groups; mRNA and protein expression of RXRα were decreased in F1 male but not in female MO compared to C. In conclusion, MO results in dysregulation of circulating steroid hormones of the obese mothers and low fetal weight in the F1, modifying DNA methylation of RXRα gene as well as RXRα mRNA and protein expression in the umbilical cord in a sex-dependent manner.
Collapse
Affiliation(s)
- Erika Chavira-Suárez
- Unidad de Vinculación Científica de la Facultad de Medicina, Universidad Nacional Autónoma de México en el Instituto Nacional de Medicina Genómica, Mexico City, México
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de Mexico, Mexico City, México
| | - Luis Antonio Reyes-Castro
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, México
| | - Itzel Ivonn López-Tenorio
- Unidad de Vinculación Científica de la Facultad de Medicina, Universidad Nacional Autónoma de México en el Instituto Nacional de Medicina Genómica, Mexico City, México
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, México
| | - Lilia Vargas-Hernández
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, México
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, México
- Instituto Mexicano del Seguro Social, Hospital de Ginecología y Obstetricia No. 4 Luis Castelazo Ayala, Mexico City, México
| | - Guadalupe L. Rodríguez-González
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, México
| | - Roberto Chavira
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, México
| | - Paola Zárate-Segura
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, México
| | | | - Felipe Vadillo-Ortega
- Unidad de Vinculación Científica de la Facultad de Medicina, Universidad Nacional Autónoma de México en el Instituto Nacional de Medicina Genómica, Mexico City, México
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de Mexico, Mexico City, México
| | - Elena Zambrano
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, México
- *Correspondence: Elena Zambrano,
| |
Collapse
|
14
|
Bertasso IM, de Moura EG, Pietrobon CB, Cabral SS, Kluck GEG, Atella GC, Manhães AC, Lisboa PC. Low protein diet during lactation programs hepatic metabolism in adult male and female rats. J Nutr Biochem 2022; 108:109096. [PMID: 35779796 DOI: 10.1016/j.jnutbio.2022.109096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 02/28/2022] [Accepted: 06/08/2022] [Indexed: 10/17/2022]
Abstract
The liver is an essential regulator of energy metabolism, and its function can be disrupted by nutritional alterations. Since liver development continues during breastfeeding nutritional challenges during this period predispose patients to diseases throughout life. A maternal protein-restricted (PR) diet during lactation promotes reductions in the body weight, adiposity, and plasma glucose and insulin, leptin resistance and an increase in corticosterone and catecholamines in adult male rat offspring. Here, we investigated hepatic metabolism in the offspring (both sexes) of PR (8% protein diet during lactation) and control (23% protein diet) dams. Both male and female offspring were evaluated at 6 months of age. PR males had no liver steatosis and manifested a reduction in lipids in hepatocytes adjacent to the vasculature. These animals had lower levels of esterified cholesterol in hepatocytes, suggesting higher biliary excretion, unchanged glycolysis and gluconeogenesis, and lower contents of the markers of mitochondrial redox balance and endoplasmic reticulum (ER) stress response and estrogen receptor alpha. PR females showed normal hepatic morphology associated with higher uptake of cholesterol esters, normal glycolysis and gluconeogenesis, and lower ER stress parameters without changes in the key markers of the redox balance. Additionally, these animals had lower content of estrogen receptor alpha and higher content of androgen receptor. The maternal PR diet during lactation did not program hepatic lipid accumulation in the adult progeny. However, several repair homeostasis pathways were altered in males and females, possibly compromising maintenance of normal liver function.
Collapse
Affiliation(s)
- Iala Milene Bertasso
- Laboratory of Endocrine Physiology, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Egberto Gaspar de Moura
- Laboratory of Endocrine Physiology, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carla Bruna Pietrobon
- Laboratory of Endocrine Physiology, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Suelen Silva Cabral
- Laboratory of Lipids and Lipoprotein Biochemistry, Biochemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - George Eduardo Gabriel Kluck
- Laboratory of Lipids and Lipoprotein Biochemistry, Biochemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Georgia Correa Atella
- Laboratory of Lipids and Lipoprotein Biochemistry, Biochemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alex Christian Manhães
- Laboratory of Neurophysiology, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patrícia Cristina Lisboa
- Laboratory of Endocrine Physiology, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
15
|
Olojede SO, Lawal SK, Faborode OS, Dare A, Aladeyelu OS, Moodley R, Rennie CO, Naidu EC, Azu OO. Testicular ultrastructure and hormonal changes following administration of tenofovir disoproxil fumarate-loaded silver nanoparticle in type-2 diabetic rats. Sci Rep 2022; 12:9633. [PMID: 35688844 PMCID: PMC9187647 DOI: 10.1038/s41598-022-13321-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/23/2022] [Indexed: 11/10/2022] Open
Abstract
Reproductive dysfunctions (RDs) characterized by impairment in testicular parameters, and metabolic disorders such as insulin resistance and type 2 diabetes mellitus (T2DM) are on the rise among human immunodeficiency virus (HIV) patients under tenofovir disoproxil fumarate (TDF) and highly active antiretroviral therapy (HAART). These adverse effects require a nanoparticle delivery system to circumvent biological barriers and ensure adequate ARVDs to viral reservoir sites like testis. This study aimed to investigate the effect of TDF-loaded silver nanoparticles (AgNPs), TDF-AgNPs on sperm quality, hormonal profile, insulin-like growth factor 1 (IGF-1), and testicular ultrastructure in diabetic rats, a result of which could cater for the neglected reproductive and metabolic dysfunctions in HIV therapeutic modality. Thirty-six adult Sprague–Dawley rats were assigned to diabetic and non-diabetic (n = 18). T2DM was induced by fructose-streptozotocin (Frt-STZ) rat model. Subsequently, the rats in both groups were subdivided into three groups each (n = 6) and administered distilled water, TDF, and TDF-AgNP. In this study, administration of TDF-AgNP to diabetic rats significantly reduced (p < 0.05) blood glucose level (268.7 ± 10.8 mg/dL) from 429 ± 16.9 mg/dL in diabetic control and prevented a drastic reduction in sperm count and viability. More so, TDF-AgNP significantly increased (p < 0.05) Gonadotropin-Releasing Hormone (1114.3 ± 112.6 µg), Follicle Stimulating Hormone (13.2 ± 1.5 IU/L), Luteinizing Hormone (140.7 ± 15.2 IU/L), testosterone (0.2 ± 0.02 ng/L), and IGF-1 (1564.0 ± 81.6 ng/mL) compared to their respective diabetic controls (383.4 ± 63.3, 6.1 ± 1.2, 76.1 ± 9.1, 0.1 ± 0.01, 769.4 ± 83.7). Also, TDF-AgNP treated diabetic rats presented an improved testicular architecture marked with the thickened basement membrane, degenerated Sertoli cells, spermatogenic cells, and axoneme. This study has demonstrated that administration of TDF-AgNPs restored the function of hypothalamic-pituitary–gonadal axis, normalized the hormonal profile, enhanced testicular function and structure to alleviate reproductive dysfunctions in diabetic rats. This is the first study to conjugate TDF with AgNPs and examined its effects on reproductive indices, local gonadal factor and testicular ultrastructure in male diabetic rats with the potential to cater for neglected reproductive dysfunction in HIV therapeutic modality.
Collapse
Affiliation(s)
- Samuel Oluwaseun Olojede
- Discipline of Clinical Anatomy, School of Laboratory Medicine & Medical Sciences, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, 719 Umbilo Road, Durban, South Africa.
| | - Sodiq Kolawole Lawal
- Discipline of Clinical Anatomy, School of Laboratory Medicine & Medical Sciences, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, 719 Umbilo Road, Durban, South Africa
| | - Oluwaseun Samuel Faborode
- Discipline of Physiology, School of Laboratory Medicine & Medical Sciences, College of Health Sciences, Westville Campus, University of KwaZulu-Natal, Durban, South Africa.,Department of Physiology, Faculty of Basic Medical Sciences, Bingham University, Karu, Nasarawa State, Nigeria
| | - Ayobami Dare
- Discipline of Physiology, School of Laboratory Medicine & Medical Sciences, College of Health Sciences, Westville Campus, University of KwaZulu-Natal, Durban, South Africa
| | - Okikioluwa Stephen Aladeyelu
- Discipline of Clinical Anatomy, School of Laboratory Medicine & Medical Sciences, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, 719 Umbilo Road, Durban, South Africa
| | - Roshila Moodley
- The Department of Chemistry, The University of Manchester, Manchester, UK
| | - Carmen Olivia Rennie
- Discipline of Clinical Anatomy, School of Laboratory Medicine & Medical Sciences, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, 719 Umbilo Road, Durban, South Africa
| | - Edwin Coleridge Naidu
- Discipline of Clinical Anatomy, School of Laboratory Medicine & Medical Sciences, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, 719 Umbilo Road, Durban, South Africa
| | - Onyemaechi Okpara Azu
- Department of Human, Biological & Translational Medical Sciences, School of Medicine, University of Namibia, Hage Geingob Campus, Private Bag 13301, Windhoek, Namibia
| |
Collapse
|
16
|
Cavariani MM, de Mello Santos T, Chuffa LGDA, Pinheiro PFF, Scarano WR, Domeniconi RF. Maternal Protein Restriction Alters the Expression of Proteins Related to the Structure and Functioning of the Rat Offspring Epididymis in an Age-Dependent Manner. Front Cell Dev Biol 2022; 10:816637. [PMID: 35517501 PMCID: PMC9061959 DOI: 10.3389/fcell.2022.816637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 04/05/2022] [Indexed: 11/16/2022] Open
Abstract
Nutrition is an environmental factor able to activate physiological interactions between fetus and mother. Maternal protein restriction is able to alter sperm parameters associated with epididymal functions. Since correct development and functioning of the epididymides are fundamental for mammalian reproductive success, this study investigated the effects of maternal protein restriction on epididymal morphology and morphometry in rat offspring as well as on the expression of Src, Cldn-1, AR, ER, aromatase p450, and 5α-reductase in different stages of postnatal epididymal development. For this purpose, pregnant females were allocated to normal-protein (NP—17% protein) and low-protein (LP—6% protein) groups that received specific diets during gestation and lactation. After weaning, male offspring was provided only normal-protein diet until the ages of 21, 44, and 120 days, when they were euthanized and their epididymides collected. Maternal protein restriction decreased genital organs weight as well as crown-rump length and anogenital distance at all ages. Although the low-protein diet did not change the integrity of the epididymal epithelium, we observed decreases in tubular diameter, epithelial height and luminal diameter of the epididymal duct in 21-day-old LP animals. The maternal low-protein diet changed AR, ERα, ERβ, Src 416, and Src 527 expression in offspring epididymides in an age-dependent manner. Finally, maternal protein restriction increased Cldn-1 expression throughout the epididymides at all analyzed ages. Although some of these changes did not remain until adulthood, the insufficient supply of proteins in early life altered the structure and functioning of the epididymis in important periods of postnatal development.
Collapse
|
17
|
Studies on testicular ultrastructural and hormonal changes in type-2 diabetic rats treated with highly active antiretroviral therapy conjugated silver nanoparticles. Life Sci 2022; 298:120498. [PMID: 35341824 DOI: 10.1016/j.lfs.2022.120498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 03/14/2022] [Accepted: 03/20/2022] [Indexed: 11/24/2022]
Abstract
AIM This study investigated the impact of highly active antiretroviral therapy (HAART) loaded silver nanoparticles (AgNPs) as HAART-AgNPs on the sperm count, viability, serum hormonal profile, insulin-like growth factor I (IGF-1), and testicular ultrastructure. METHODS Thirty-six adult male Sprague-Dawley rats were allocated into diabetic and non-diabetic groups (n = 18). The rats in the diabetic group were induced experimental type 2 diabetes using fructose and streptozotocin (frt-STZ). Animals in both groups were subdivided into three groups each, A-C and DF (n = 6), and received distilled water, HAART, and HAART-AgNP, respectively. FINDINGS Treatment with HAART-AgNP displayed a significant increase (p < 0.05) in serum gonadotropin-releasing hormone (GnRH), follicle-stimulating hormone (FSH), luteinizing hormone (LH), and testicular IGF-1 in diabetic rats. Also, electron microscopy revealed ameliorated testicular ultrastructure upon administration of HAART-AgNP in diabetic rats that were previously marked with architectural and cellular alterations. In addition, treatment with HAART-AgNP significantly reduced (p < 0.05) the blood glucose levels of diabetic rats. In contrast, the treatment of non-diabetic rats with HAART caused a significant decrease (p < 0.05) in the sperm count, serum GnRH, and testicular IGF-1, however, this treatment induced ultrastructural changes and a significant increase (p < 0.05) in serum testosterone levels in diabetic and non-diabetic rats. SIGNIFICANCE This study has demonstrated the beneficial impact of HAART-AgNP on the hypothalamic-pituitary-gonadal axis, IGF-1, and testicular architecture in male frt-STZ induced diabetic rats. This nanoconjugate could be a potential nano-drug candidate to cater for testicular dysfunction and metabolic derangements while managing HIV-infected male individuals.
Collapse
|
18
|
Vipin VA, Blesson CS, Yallampalli C. Maternal low protein diet and fetal programming of lean type 2 diabetes. World J Diabetes 2022; 13:185-202. [PMID: 35432755 PMCID: PMC8984567 DOI: 10.4239/wjd.v13.i3.185] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/30/2021] [Accepted: 02/10/2022] [Indexed: 02/06/2023] Open
Abstract
Maternal nutrition is found to be the key factor that determines fetal health in utero and metabolic health during adulthood. Metabolic diseases have been primarily attributed to impaired maternal nutrition during pregnancy, and impaired nutrition has been an immense issue across the globe. In recent years, type 2 diabetes (T2D) has reached epidemic proportion and is a severe public health problem in many countries. Although plenty of research has already been conducted to tackle T2D which is associated with obesity, little is known regarding the etiology and pathophysiology of lean T2D, a variant of T2D. Recent studies have focused on the effects of epigenetic variation on the contribution of in utero origins of lean T2D, although other mechanisms might also contribute to the pathology. Observational studies in humans and experiments in animals strongly suggest an association between maternal low protein diet and lean T2D phenotype. In addition, clear sex-specific disease prevalence was observed in different studies. Consequently, more research is essential for the understanding of the etiology and pathophysiology of lean T2D, which might help to develop better disease prevention and treatment strategies. This review examines the role of protein insufficiency in the maternal diet as the central driver of the developmental programming of lean T2D.
Collapse
Affiliation(s)
- Vidyadharan Alukkal Vipin
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, United States
| | - Chellakkan Selvanesan Blesson
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, United States
- Family Fertility Center, Texas Children's Hospital, Houston, TX 77030, United States
| | - Chandra Yallampalli
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, United States
| |
Collapse
|
19
|
Fujisawa Y, Ono H, Konno A, Yao I, Itoh H, Baba T, Morohashi K, Katoh-Fukui Y, Miyado M, Fukami M, Ogata T. Intrauterine hyponutrition reduces fetal testosterone production and postnatal sperm count in the mouse. J Endocr Soc 2022; 6:bvac022. [PMID: 35265782 PMCID: PMC8901363 DOI: 10.1210/jendso/bvac022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Indexed: 11/19/2022] Open
Abstract
Abstract
Although intrauterine hyponutrition is regarded as a risk factor for the development of "testicular dysgenesis syndrome" (TDS) in the human, underlying mechanism(s) remain largely unknown. To clarify the underlying mechanism(s), we fed vaginal plug-positive C57BL/6N female mice with regular food ad libitum throughout the pregnant course (control females) (C-females) or with 50% of the mean daily intake of the C-females from 6.5 dpc (calorie-restricted females) (R-females), and compared male reproductive findings between 17.5-dpc-old male mice delivered from C-females (C-fetuses) and those delivered from R-females (R-fetuses) and between 6-week-old male mice born to C-females (C-offspring) and those born to R-females (R-offspring). Compared with the C-fetuses, the R-fetuses had (1) morphologically normal external genitalia with significantly reduced anogenital distance index, (2) normal numbers of testicular component cells, and (3) significantly low intratesticular testosterone, in association with significantly reduced expressions of steroidogenic genes. Furthermore, compared with the C-offspring, the R-offspring had (1) significantly increased TUNEL-positive cells and normal numbers of other testicular component cells, (2) normal intratesticular testosterone, in association with normal expressions of steroidogenic genes, (3) significantly reduced sperm count, and normal testis weight and sperm motility, and (4) significantly altered expressions of oxidation stress-related, apoptosis-related, and spermatogenesis-related genes. The results, together with the previous data including the association between testosterone deprivation and oxidative stress-evoked apoptotic activation, imply that reduced fetal testosterone production is the primary underlying factor for the development of TDS in intrauterine hyponutrition, and that TDS is included in the clinical spectrum of Developmental Origins of Health and Disease.
Collapse
Affiliation(s)
- Yasuko Fujisawa
- Departments of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hiroyuki Ono
- Departments of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Aru Konno
- Departments of Medical Spectroscopy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Ikuko Yao
- Departments of Optical Imaging, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hiroaki Itoh
- Departments of Obstetrics and Gynecology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Takashi Baba
- Department of Molecular Biology, Kyushu University, Fukuoka, Japan
| | | | - Yuko Katoh-Fukui
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Mami Miyado
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Maki Fukami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Tsutomu Ogata
- Departments of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
- Departments of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan
- Department of Pediatrics, Hamamatsu Medical Center, Hamamatsu, Japan
| |
Collapse
|
20
|
Muranishi Y, Parry L, Vachette-Dit-Martin M, Saez F, Coudy-Gandilhon C, Sauvanet P, Volle DH, Tournayre J, Bottari S, Carpentiero F, Martinez G, Muroňová J, Escoffier J, Bruhat A, Maurin AC, Averous J, Arnoult C, Fafournoux P, Jousse C. When idiopathic male infertility is rooted in maternal malnutrition during the perinatal period in mice. Biol Reprod 2021; 106:463-476. [PMID: 34875016 DOI: 10.1093/biolre/ioab222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/18/2021] [Accepted: 12/02/2021] [Indexed: 11/14/2022] Open
Abstract
Infertility represents a growing burden worldwide, with one in seven couples presenting difficulties conceiving. Amongst these, 10-15% of the men have idiopathic infertility that does not correlate with any defect in the classical sperm parameters measured. In the present study, we used a mouse model to investigate the effects of maternal undernutrition on fertility in male progeny. Our results indicate that mothers fed on a low protein diet during gestation and lactation produce male offspring with normal sperm morphology, concentration and motility but exhibiting an overall decrease of fertility when they reach adulthood. Particularly, in contrast to control, sperm from these offspring show a remarkable lower capacity to fertilize oocytes when copulation occurs early in the estrus cycle relative to ovulation, due to an altered sperm capacitation. Our data demonstrate for the first time that maternal nutritional stress can have long-term consequences on the reproductive health of male progeny by affecting sperm physiology, especially capacitation, with no observable impact on spermatogenesis and classical quantitative and qualitative sperm parameters. Moreover, our experimental model could be of major interest to study, explain, and ultimately treat certain categories of infertilities.
Collapse
Affiliation(s)
- Yuki Muranishi
- Unité de Nutrition Humaine, INRAE, Université Clermont Auvergne, UMR1019, F-63000 Clermont-Ferrand, France.,Department of Life and Food Sciences, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Laurent Parry
- Unité de Nutrition Humaine, INRAE, Université Clermont Auvergne, UMR1019, F-63000 Clermont-Ferrand, France
| | | | - Fabrice Saez
- GReD Institute, Université Clermont Auvergne, Inserm, CNRS, Clermont-Ferrand, France
| | - Cécile Coudy-Gandilhon
- Unité de Nutrition Humaine, INRAE, Université Clermont Auvergne, UMR1019, F-63000 Clermont-Ferrand, France
| | - Pierre Sauvanet
- UMR 1071 Inserm/Université Clermont Auvergne; USC-INRA 2018, Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte (M2iSH), Clermont-Ferrand, France.,Service de chirurgie et hépatobiliaire, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - David H Volle
- Inserm U1103, CNRS UMR6293-Université Clermont Auvergne, Institute Genetic, Reproduction and Development, Team "Environment, Metabolism, Spermatogenesis and Pathophysiology & Inheritance", Clermont-Ferrand, France
| | - Jérémy Tournayre
- Unité de Nutrition Humaine, INRAE, Université Clermont Auvergne, UMR1019, F-63000 Clermont-Ferrand, France
| | | | - Francesca Carpentiero
- Université Grenoble Alpes, Grenoble, France.,Institute for Advanced Biosciences INSERM U1209, CNRS UMR5309, Grenoble, France
| | - Guillaume Martinez
- Université Grenoble Alpes, Grenoble, France.,Institute for Advanced Biosciences INSERM U1209, CNRS UMR5309, Grenoble, France.,Hôpital Couple-Enfant, Centre Hospitalier Universitaire de Grenoble, UM de Génétique Chromosomique, Grenoble, France
| | - Jana Muroňová
- Université Grenoble Alpes, Grenoble, France.,Institute for Advanced Biosciences INSERM U1209, CNRS UMR5309, Grenoble, France
| | - Jessica Escoffier
- Université Grenoble Alpes, Grenoble, France.,Institute for Advanced Biosciences INSERM U1209, CNRS UMR5309, Grenoble, France
| | - Alain Bruhat
- Unité de Nutrition Humaine, INRAE, Université Clermont Auvergne, UMR1019, F-63000 Clermont-Ferrand, France
| | - Anne-Catherine Maurin
- Unité de Nutrition Humaine, INRAE, Université Clermont Auvergne, UMR1019, F-63000 Clermont-Ferrand, France
| | - Julien Averous
- Unité de Nutrition Humaine, INRAE, Université Clermont Auvergne, UMR1019, F-63000 Clermont-Ferrand, France
| | - Christophe Arnoult
- Université Grenoble Alpes, Grenoble, France.,Institute for Advanced Biosciences INSERM U1209, CNRS UMR5309, Grenoble, France
| | - Pierre Fafournoux
- Unité de Nutrition Humaine, INRAE, Université Clermont Auvergne, UMR1019, F-63000 Clermont-Ferrand, France
| | - Céline Jousse
- Unité de Nutrition Humaine, INRAE, Université Clermont Auvergne, UMR1019, F-63000 Clermont-Ferrand, France
| |
Collapse
|
21
|
Zambrano E, Nathanielsz PW, Rodríguez-González GL. Developmental programming and ageing of male reproductive function. Eur J Clin Invest 2021; 51:e13637. [PMID: 34107063 DOI: 10.1111/eci.13637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/25/2021] [Accepted: 06/08/2021] [Indexed: 12/22/2022]
Abstract
Developmental programming predisposes offspring to metabolic, behavioural and reproductive dysfunction in adult life. Evidence is accumulating that ageing phenotype and longevity are in part developmentally programmed in each individual. Unfortunately, there are few studies addressing the effects of developmental programming by maternal nutrition on the rate of ageing of the male reproductive system. This review will discuss effects of foetal exposure to maternal environmental challenges on male offspring fertility and normal ageing of the male reproductive system. We focus on several key factors involved in reproductive ageing such as decreased hormone production, DNA fragmentation, oxidative stress, telomere shortening, epigenetics, maternal lifestyle and nutrition. There is compelling evidence that ageing of the male reproductive system is developmentally programmed. Both maternal over- or undernutrition accelerate ageing of male offspring reproductive function through similar mechanisms such as decreased serum testosterone levels, increase in oxidative stress biomarkers in both the testes and sperm and changes in sperm quality. Importantly, even in adult life, exercise in male offspring of obese mothers improves adverse effects of programming on reproductive function. Maternal consumption of a low-protein diet causes transgenerational effects in progeny via the paternal line. The seminal fluid has effects on the intrauterine environment. Programming by male factors may involve more than just the sperm. Improving knowledge on developmental programming ageing interactions will improve not only male health and life span but also the health of future generations by reducing programming via the paternal line.
Collapse
Affiliation(s)
- Elena Zambrano
- Reproductive Biology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, México
| | | | - Guadalupe L Rodríguez-González
- Reproductive Biology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, México
| |
Collapse
|
22
|
Zambrano E, Lomas-Soria C, Nathanielsz PW. Rodent studies of developmental programming and ageing mechanisms: Special issue: In utero and early life programming of ageing and disease. Eur J Clin Invest 2021; 51:e13631. [PMID: 34061987 DOI: 10.1111/eci.13631] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/30/2021] [Accepted: 05/30/2021] [Indexed: 12/31/2022]
Abstract
Compelling evidence exists indicating that developmental programming influences ageing. Programming alters life-course phenotype in multiple organs, predisposing to diseases such as diabetes, obesity and cardiovascular disease that shorten lifespan. This review describes studies in rodents, the most commonly studied species, addressing interactions of programming challenges with ageing. We first consider ageing and programming of insulin function that has been clearly shown to decrease with age. It is important to evaluate ageing in pancreatic islets isolated from other systems. Studies discussed show premature pancreatic islet ageing resulting from both maternal under- and overnutrition. New ways to determine programming of adipose tissue and effects on fat storage are explored. Oxidative stress is a major factor that regulates ageing in tissues. Oxidative stress is discussed in relation to reproductive and cardiovascular ageing. Premature ageing is associated with both low and high glucocorticoid function. Both over and undernutrition have offspring sex-specific programming effects on life-course glucocorticoid concentrations. Evidence is provided that maternal age at conception affects offspring endocrine and metabolism ageing. Finally, the importance of matching foetal nutrition and energy availability with composition and energy content in the post-weaning diet is demonstrated. This mismatch can lead to a greatly shortened lifespan. General principles are discussed throughout. For example, sexual dimorphism of age-related outcomes can be marked. Accelerated ageing occurs early in life. Improving knowledge on programming ageing interactions will improve health span as well as lifespan. Finally, there are considerable similarities in outcomes programmed by maternal undernutrition and overnutrition.
Collapse
Affiliation(s)
- Elena Zambrano
- Reproductive Biology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, México
| | - Consuelo Lomas-Soria
- Reproductive Biology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, México.,Reproductive Biology Department, CONACyT-Cátedras, Instituto Nacional de Ciencias Médicas y Nutrición SZ, Mexico City, México
| | - Peter W Nathanielsz
- Department of Animal Science, Texas Pregnancy and Life-course Health Center, University of Wyoming, Laramie, WY, USA
| |
Collapse
|
23
|
Methods and Challenges in Investigating Sex-Specific Consequences of Social Stressors in Adolescence in Rats: Is It the Stress or the Social or the Stage of Development? Curr Top Behav Neurosci 2021; 54:23-58. [PMID: 34455576 DOI: 10.1007/7854_2021_245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Adolescence is a time of social learning and social restructuring that is accompanied by changes in both the hypothalamic-pituitary-gonadal axis and the hypothalamic-pituitary-adrenal (HPA) axis. The activation of these axes by puberty and stressors, respectively, shapes adolescent development. Models of social stress in rats are used to understand the consequences of perturbations of the social environment for ongoing brain development. This paper reviews the challenges in investigating the sex-specific consequences of social stressors, sex differences in the models of social stress used in rats and the sex-specific effects on behaviour and provides an overview of sex differences in HPA responding to stressors, the variability in pubertal development and in strains of rats that require consideration in conducting such research, and directions for future research.
Collapse
|
24
|
Torres PJ, Luque EM, Di Giorgio NP, Ramírez ND, Ponzio MF, Cantarelli V, Carlini VP, Lux-Lantos V, Martini AC. Fetal Programming Effects of a Mild Food Restriction During Pregnancy in Mice: How Does It Compare to Intragestational Ghrelin Administration? Reprod Sci 2021; 28:3547-3561. [PMID: 33856666 DOI: 10.1007/s43032-021-00574-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/02/2021] [Indexed: 12/19/2022]
Abstract
To explore in mice if a 15% food restriction protocol during pregnancy programs the offspring postnatal development, with emphasis on reproductive function, and to assess if ghrelin (Ghrl) administration to mouse dams exerts effects that mimic those obtained under mild caloric restriction. Mice were 15% food-restricted, injected with 4 nmol/animal/day of Ghrl, or injected with the vehicle (control) thorough pregnancy. After birth, the pups did not receive further treatment. Pups born from food-restricted dams (FR pups) were lighter than Ghrl pups at birth, but reached normal weight at adulthood. Ghrl pups were heavier at birth and gained more weight than control pups (C pups). This effect was not associated with plasma IGF-1. FR pups showed a delay in pinna detachment and eye opening, while an advance was observed in Ghrl pups. FR pups showed also impairment in the surface-righting reflex. In both female FR and Ghrl pups, there was an advance in vaginal opening and, in adulthood, FR pups showed a significant decrease in their own litter size and plasma progesterone, and an increase in embryo loss. A delay in testicular descent was evident in male Ghrl pups. Changes in puberty onset were not associated with differences in the expression of Kiss1 in hypothalamic nuclei. Finally, in adulthood, FR pups showed a significant decrease in sperm quality. In conclusion, a mild food restriction thorough gestation exerted programming effects on the offspring, affecting also their reproductive function in adulthood. These effects were not similar to those of intragestational Ghrl administration.
Collapse
Affiliation(s)
- Pedro Javier Torres
- Instituto de Fisiología, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, e Instituto de Investigaciones en Ciencias de la Salud (INICSA; CONICET-UNC), Santa Rosa 1085, X5000ESU, Córdoba, Argentina
| | - Eugenia Mercedes Luque
- Instituto de Fisiología, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, e Instituto de Investigaciones en Ciencias de la Salud (INICSA; CONICET-UNC), Santa Rosa 1085, X5000ESU, Córdoba, Argentina
| | - Noelia Paula Di Giorgio
- Laboratorio de Neuroendocrinología, Instituto de Biología y Medicina Experimental, (IBYME; CONICET), Vuelta de Obligado 2490, Buenos Aires, C1428ADN, Argentina
| | - Nicolás David Ramírez
- Instituto de Fisiología, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, e Instituto de Investigaciones en Ciencias de la Salud (INICSA; CONICET-UNC), Santa Rosa 1085, X5000ESU, Córdoba, Argentina
| | - Marina Flavia Ponzio
- Instituto de Fisiología, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, e Instituto de Investigaciones en Ciencias de la Salud (INICSA; CONICET-UNC), Santa Rosa 1085, X5000ESU, Córdoba, Argentina
| | - Verónica Cantarelli
- Instituto de Fisiología, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, e Instituto de Investigaciones en Ciencias de la Salud (INICSA; CONICET-UNC), Santa Rosa 1085, X5000ESU, Córdoba, Argentina
| | - Valeria Paola Carlini
- Instituto de Fisiología, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, e Instituto de Investigaciones en Ciencias de la Salud (INICSA; CONICET-UNC), Santa Rosa 1085, X5000ESU, Córdoba, Argentina
| | - Victoria Lux-Lantos
- Laboratorio de Neuroendocrinología, Instituto de Biología y Medicina Experimental, (IBYME; CONICET), Vuelta de Obligado 2490, Buenos Aires, C1428ADN, Argentina
| | - Ana Carolina Martini
- Instituto de Fisiología, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, e Instituto de Investigaciones en Ciencias de la Salud (INICSA; CONICET-UNC), Santa Rosa 1085, X5000ESU, Córdoba, Argentina.
| |
Collapse
|
25
|
Aeeni M, Razi M, Alizadeh A, Alizadeh A. The molecular mechanism behind insulin protective effects on testicular tissue of hyperglycemic rats. Life Sci 2021; 277:119394. [PMID: 33785345 DOI: 10.1016/j.lfs.2021.119394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 02/21/2021] [Accepted: 03/18/2021] [Indexed: 10/21/2022]
Abstract
AIMS The present study assessed the possible mechanisms by which the insulin regulates the heat shock (HSPs) and transitional proteins expression and consequently ameliorates the oxidative stress-induced damages in germ and sperm cells DNA contents. MAIN METHODS Mature male Wistar rats were distributed into control, Hyperglycemia-induced (HG) and insulin-treated HG-induced (HG-I) groups. Following 8 weeks from HG induction, testicular total antioxidant capacity (TAC), immunoreactivity of 8-oxodG, germ cells mRNA damage, Hsp70-2a, Hsp90, transitional proteins 1 and 2 (TP-1 and -2) mRNA and protein expressions were analyzed. Moreover, the sperm chromatin condensation was assessed by aniline-blue staining, and DNA integrity of germ and sperm cells were analyzed by TUNEL and acrdine-orange staining techniques. KEY FINDINGS The HG animals exhibited significant (p < 0.05) reduction in TAC, HSp70-2a, TP-1 and TP-2 expression levels, and increment in 8-oxodG immunoreactivity, mRNA damage, and Hsp90 expression. However, insulin treatment resulted in (p < 0.05) enhanced TAC level, Hsp70-2a, Hsp90, TP-1 and TP-2 expressions, besides reduced 8-oxodG immunoreactivity and mRNA damage compared to the HG group (p < 0.05). The chromatin condensation and the germ and sperm cells DNA fragmentation were decreased in HG-I group. SIGNIFICANCE Insulin treatment amplifies the testicular TAC level, improves the Hsp70-2a, TP-1, and TP-2 expressions, and boosts the Hsp90-mediated role in DNA repairment process. Consequently, altogether could maintain the HG-induced DNA integrity in the testicular and sperm cells.
Collapse
Affiliation(s)
- Mahsa Aeeni
- Division of Histology & Embryology, Department of Basic Science, Faculty of Veterinary Medicine, P.O.BOX: 1177, Urmia University, Urmia, Iran
| | - Mazdak Razi
- Division of Histology & Embryology, Department of Basic Science, Faculty of Veterinary Medicine, P.O.BOX: 1177, Urmia University, Urmia, Iran.
| | - Alireza Alizadeh
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Arash Alizadeh
- Division of Pharmacology and Toxicology, Department of Basic Science, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| |
Collapse
|
26
|
Pourheydar M, Hasanzadeh S, Razi M, Pourheydar B, Najafi G. Effects of liraglutide on sperm characteristics and fertilization potential following experimentally induced diabetes in mice. VETERINARY RESEARCH FORUM : AN INTERNATIONAL QUARTERLY JOURNAL 2021; 12:109-116. [PMID: 33953881 PMCID: PMC8094147 DOI: 10.30466/vrf.2019.96822.2315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 06/01/2019] [Indexed: 11/18/2022]
Abstract
The current study was conducted to analyze the dose-dependent effects of liraglutide against the diabetes-induced detrimental impact on sperm parameters and fertilization potential. For this purpose, 42 adult male mice were randomly divided into control (with no intervention) and experimental groups. Next, the experimental group was subdivided into diabetic, 1.20 mg kg-1 liraglutide-received diabetic, 1.80 mg kg-1 liraglutide-received diabetic, 1.20 mg kg-1 liraglutide-received non-diabetic and 1.80 mg kg-1 liraglutide-received non-diabetic groups. All chemicals were administrated subcutaneously. Following 42 days, the animals were euthanized, and sperm samples were collected. The sperm count, motility, viability, DNA integrity, and maturity were analyzed and compared between groups. Moreover, the sperm fertilization potential was investigated by in vitro fertilization (IVF). For this purpose, the preimplantation embryo development at 2-cell, 4-cell, morula, and blastocyst stages was investigated and compared. Observations revealed that diabetes significantly diminished sperm count, motility, viability, chromatin condensation, and DNA integrity percentages versus a control group. On the other hand, 1.20 mg kg-1 and 1.80 mg kg-1 of liraglutide did not improve sperm motility and viability, while ameliorated sperm count and chromatin condensation and DNA integrity in diabetic animals. The diabetic animals represented diminished preimplantation embryo development, which was not altered in liraglutide-received groups. In conclusion, at least in administrated doses, liraglutide could not improve the sperm viability and motility and, via this mechanism, could not induce an appropriate/beneficial effect on IVF outcome.
Collapse
Affiliation(s)
- Maryam Pourheydar
- Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Shapour Hasanzadeh
- Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Mazdak Razi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Bagher Pourheydar
- Department of Anatomical Sciences, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Gholamreza Najafi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| |
Collapse
|
27
|
Portela LM, Santos SA, Constantino FB, Camargo AC, Colombelli KT, Fioretto MN, Barquilha CN, Périco LL, Hiruma-Lima CA, Scarano WR, Zambrano E, Justulin LA. Increased oxidative stress and cancer biomarkers in the ventral prostate of older rats submitted to maternal malnutrition. Mol Cell Endocrinol 2021; 523:111148. [PMID: 33387600 DOI: 10.1016/j.mce.2020.111148] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/05/2020] [Accepted: 12/27/2020] [Indexed: 02/07/2023]
Abstract
The concept of Developmental Origins of Health and Disease (DOHaD) states that exposure to malnutrition early in life increase the incidence of non-communicable chronic diseases throughout the lifespan. In this study, a reduction in serum testosterone and an increase in estrogen levels were shown in older rats born to protein malnourished dams (6% protein in the diet) during gestation and lactation. Intraprostatic levels of reduced glutathione were decreased, while tissue expression of glutathione S-transferase pi and sulfiredoxin-1 were increased in these animals. Strong immunostaining for alfametilacil CoA racemase (AMACR), vascular endothelial growth factor-A (VEGF-A), and aquaporin-1 (AQP1) was also observed. In silico analysis confirmed commonly deregulated proteins in the ventral prostate of old rats and patients with prostate cancer. In conclusion, the increase in oxidative stress associated with an imbalance of sex hormones may contribute to prostate carcinogenesis in offspring, highlighting early-life malnutrition as a key risk factor for this malignance.
Collapse
Affiliation(s)
- Luiz Mf Portela
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil
| | - Sérgio Aa Santos
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil
| | - Flavia B Constantino
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil
| | - Ana Cl Camargo
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil
| | - Ketlin T Colombelli
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil
| | - Matheus N Fioretto
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil
| | - Caroline N Barquilha
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil
| | - Larissa L Périco
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil; Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Clélia A Hiruma-Lima
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil
| | - Wellerson R Scarano
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil
| | - Elena Zambrano
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Luís A Justulin
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil.
| |
Collapse
|
28
|
Nathanielsz PW, Huber HF, Li C, Clarke GD, Kuo AH, Zambrano E. The nonhuman primate hypothalamo-pituitary-adrenal axis is an orchestrator of programming-aging interactions: role of nutrition. Nutr Rev 2020; 78:48-61. [PMID: 33196092 PMCID: PMC7667468 DOI: 10.1093/nutrit/nuaa018] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Developmental programming alters life-course multi-organ function and significantly affects life-course health. Recently, interest has developed in how programming may influence the rate of aging. This review describes interactions of nutrition and programming-aging interactions in hypothalamo-pituitary-adrenal (HPA) development and function from fetal development to old age. A full picture of these interactions requires data on levels of HPA activity relating to the hypothalamic, adrenal cortical, circulating blood, and peripheral cortisol metabolism. Data are provided from studies on our baboon, nonhuman primate model both across the normal life course and in offspring of maternal baboons who were moderately undernourished by a global 30% diet reduction during pregnancy and lactation. Sex differences in offspring outcomes in response to similar challenges are described. The data clearly show programming of increased HPA axis activity by moderate maternal undernutrition. Increased postnatal circulating cortisol concentrations are related to accelerated aging of the brain and cardiovascular systems. Future studies should address peripheral cortisol production and the influence of aging advantage in females. These data support the view that the HPA is an orchestrator of interactions of programming-aging mechanisms.
Collapse
Affiliation(s)
- Peter W Nathanielsz
- Texas Pregnancy & Life-course Health Center, University of Wyoming, Laramie, Wyoming, USA
- Southwest National Primate Research Center, San Antonio, Texas, USA
| | - Hillary F Huber
- Texas Pregnancy & Life-course Health Center, University of Wyoming, Laramie, Wyoming, USA
| | - Cun Li
- Texas Pregnancy & Life-course Health Center, University of Wyoming, Laramie, Wyoming, USA
- Southwest National Primate Research Center, San Antonio, Texas, USA
| | - Geoffrey D Clarke
- Southwest National Primate Research Center, San Antonio, Texas, USA
- Department of Radiology, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Anderson H Kuo
- Department of Radiology, University of Texas Health Science Center, San Antonio, Texas, USA
- Department of Radiology, Brigham and Women’s Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Elena Zambrano
- Instituto Nacional de Ciencias Médicas y Nutrición, Salvador Zubirán
| |
Collapse
|
29
|
Abdullah AZ, Fitri SA, Muniroh M, Agustini TW. Patin (Pangasius hypophthalmus) fish protein concentrate alters insulin-like growth factor (IGF)-1 and igf binding protein (IGFBP)-3 level of sprague dawley neonate rats-induced malnutrition. POTRAVINARSTVO 2020. [DOI: 10.5219/1394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Malnutrition is caused by inadequate protein intake and affects growth factor. High protein from patin (Pangasius hypophthalmus) fish is a well-known protein source. This study aims to investigate the effect of patin fish protein concentrate (PFPC) in the IGF-1 and IGFBP-3 level of Sprague Dawley (SD) neonate rats-induced malnutrition. Thirty male SD neonate rats were divided randomly into five groups, namely normal control (K1), malnutrition control (K2), malnutrition with PFPC 13.26 mg.g-1 body weight (BW)/day (X1), malnutrition with PFPC 19.89 mg.g-1 BW/d (X2), and malnutrition with casein supplement 13.26 mg.g-1 BW/d (X3). K1 received a standard diet, while the others received a low 8% protein diet (L8PD) since those were born until 21 days. The standard diet was refed for all groups during the intervention (14 days). IGF-1 and IGFBP-3 levels were measured by ELISA. Normal data were analyzed by using One-way ANOVA which then was followed by post-hoc Bonferroni. Meanwhile, the others were analyzed by Kruskal Wallis and followed by Mann-Whitney U-test. Spearman test was used for correlation. PFPC contained 81.07% of protein, 4.08% of fat, 7.24% of moisture, 2.77% of ash, and 4.83% of carbohydrate. These contents had affected the growth factor. As a result, in the PFPC intervention, IGF-1, and IGFBP-3 levels (p <0.05) were decreased, while the controls were increased. The decreased values were shown in IGFBP-3 levels (p <0.05) while the increase was shown in both controls. On the other hand, the increase in body weight was shown in all groups, including control ones. A strong correlation was found between IGF-1 and IGFBP-3. PFPC has additional value on repairing malnutrition that is the best dose in effecting IGF-1 dan IGFBP3 levels is 13.26 mg.g-1 BW/d.
Collapse
|
30
|
Sadeghi A, Farokhi F, Shalizar-Jalali A, Najafi G. Protective effect of vitamin E on sperm quality and in vitro fertilizing potential and testosterone concentration in polyvinyl chloride treated male rats. VETERINARY RESEARCH FORUM : AN INTERNATIONAL QUARTERLY JOURNAL 2020; 11:257-263. [PMID: 33133463 PMCID: PMC7597789 DOI: 10.30466/vrf.2019.91184.2206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 03/05/2019] [Indexed: 11/26/2022]
Abstract
Polyvinyl chloride (PVC) has toxic effects through the induction of oxidative stress in the body and testicles. Vitamin E (Vit E) is a dietary compound that functions as an antioxidant scavenging toxic free radicals. The present study aimed to probe the protective effect of Vit E against PVC-induced reprotoxicity in male rats. In this experimental study, 24 male rats were randomly divided into four groups (n=6) including control, Vit E (150 mg kg-1 per day; orally), PVC (1000 mg kg-1 per day; orally) and PVC + Vit E. After 40 days, rats were euthanized and epididymal sperms characteristics, embryo development and malondialdehyde (MDA) and testosterone levels were examined. The PVC decreased sperm count, motility and viability as well as testosterone level and increased sperms with damaged chromatin in comparison with controls. Also, the percentages of fertilization, two-cell embryos and blastocysts as well as MDA levels were decreased in PVC-treated rats. However, Vit E improved PVC-induced alterations in aforesaid parameters. The results indicated that PVC can reduce fertility potential in male rats probably through androgen and sperm quality and quantity reductions, while Vit E can exert protective effects in PVC-related reproductive toxicities.
Collapse
Affiliation(s)
- Abbas Sadeghi
- Department of Biology, Faculty of Science, Urmia University, Urmia, Iran
| | - Farah Farokhi
- Department of Biology, Faculty of Science, Urmia University, Urmia, Iran
| | - Ali Shalizar-Jalali
- Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Gholamreza Najafi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| |
Collapse
|
31
|
Ajuogu PK, Al-Aqbi MAK, Hart RA, McFarlane JR, Smart NA. A low protein maternal diet during gestation has negative effects on male fertility markers in rats - A Systematic Review and Meta-analysis. J Anim Physiol Anim Nutr (Berl) 2020; 105:157-166. [PMID: 32654274 DOI: 10.1111/jpn.13411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 02/20/2020] [Accepted: 04/08/2020] [Indexed: 12/11/2022]
Abstract
Research indicates that some adult diseases including reproductive pathologies are programmed in utero during foetal development. In particular, maternal low dietary protein, during the most critical developmental periods of male foetal development, may have a detrimental impact on male fertility through direct and epigenetic mechanisms. The aim of our study was to evaluate the impact of a gestational low protein diet on fertility markers in male offspring in rats through a systematic review and meta-analysis. A systematic search using PubMed, and EMBASE databases was performed and two investigators independently screened the 1,703 prospective articles. Eleven articles met the eligibility criteria. Outcome measures were pooled using random-effects models and expressed as mean differences (MDs) at 95% CIs for each study. The results reveal significant reduction in testis weight (MD (mean difference) -0.08 g; -0.12, -0.42; p = .0001), epididymal sperm count (MD -35.34 × 106 cells; -52.15, -18.53; p = .0001), number of Sertoli cells (MD -7.27 × 106 (-13.92, -0.62; p = .03), testosterone (T) concentration (MD -0.29 ng/ml; -0.48, -0.09; p = .004) and luteinising hormone (LH) concentration (MD of -0.24 ng/ml; -0.45, 0.04; p = .02) in comparison with controls. In contrast, follicle-stimulating hormone (FSH) concentration (MD of 0.07 ng/ml; -0.16, 0.29; p = .56) was not significantly different from controls. We conclude that low gestational dietary protein maternal intake potentially negatively impacts fertility in male progeny later in life. The mechanisms of action responsible for these phenomena remain unclear.
Collapse
Affiliation(s)
- Peter K Ajuogu
- School of Science and Technology, University of New England, Armidale, NSW, Australia
| | - Mohammed A K Al-Aqbi
- School of Science and Technology, University of New England, Armidale, NSW, Australia.,College of Agriculture, Wasit University, Wasit, Iraq
| | - Robert A Hart
- School of Science and Technology, University of New England, Armidale, NSW, Australia
| | - James R McFarlane
- Centre for Bioactive Discovery in Heath and Ageing, University of New England, Armidale, NSW, Australia
| | - Neil A Smart
- School of Science and Technology, University of New England, Armidale, NSW, Australia
| |
Collapse
|
32
|
Ruiz D, Padmanabhan V, Sargis RM. Stress, Sex, and Sugar: Glucocorticoids and Sex-Steroid Crosstalk in the Sex-Specific Misprogramming of Metabolism. J Endocr Soc 2020; 4:bvaa087. [PMID: 32734132 PMCID: PMC7382384 DOI: 10.1210/jendso/bvaa087] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 06/26/2020] [Indexed: 12/11/2022] Open
Abstract
Early-life exposures to environmental insults can misprogram development and increase metabolic disease risk in a sex-dependent manner by mechanisms that remain poorly characterized. Modifiable factors of increasing public health relevance, such as diet, psychological stress, and endocrine-disrupting chemicals, can affect glucocorticoid receptor signaling during gestation and lead to sex-specific postnatal metabolic derangements. Evidence from humans and animal studies indicate that glucocorticoids crosstalk with sex steroids by several mechanisms in multiple tissues and can affect sex-steroid-dependent developmental processes. Nonetheless, glucocorticoid sex-steroid crosstalk has not been considered in the glucocorticoid-induced misprogramming of metabolism. Herein we review what is known about the mechanisms by which glucocorticoids crosstalk with estrogen, androgen, and progestogen action. We propose that glucocorticoid sex-steroid crosstalk is an understudied mechanism of action that requires consideration when examining the developmental misprogramming of metabolism, especially when assessing sex-specific outcomes.
Collapse
Affiliation(s)
- Daniel Ruiz
- Committee on Molecular Metabolism and Nutrition, University of Chicago, Chicago, Illinois.,Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia
| | | | - Robert M Sargis
- Division of Endocrinology, Diabetes, and Metabolism; Department of Medicine; University of Illinois at Chicago, Chicago, Illinois.,Chicago Center for Health and Environment, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
33
|
Abstract
Abstract
Lactation is a critical period during which maternal nutritional and environmental challenges affect milk composition and, therefore, organ differentiation, structure, and function in offspring during the early postnatal period. Evidence to date shows that lactation is a vulnerable time during which transient insults can have lasting effects, resulting in altered health outcomes in offspring in adult life. Despite the importance of the developmental programming that occurs during this plastic period of neonatal life, there are few comprehensive reviews of the multiple challenges—especially to the dam—during lactation. This review presents milk data from rodent studies involving maternal nutritional challenges and offspring outcome data from studies involving maternal manipulations during lactation. Among the topics addressed are maternal nutritional challenges and the effects of litter size and artificial rearing on offspring metabolism and neural and endocrine outcomes. The lactation period is an opportunity to correct certain functional deficits resulting from prenatal challenges to the fetus, but, if not personalized, can also lead to undesirable outcomes related to catch up-growth and overnutrition.
Collapse
|
34
|
Azarniad R, Razi M, Hasanzadeh S, Malekinejad H. Experimental diabetes negatively affects the spermatogonial stem cells' self-renewal by suppressing GDNF network interactions. Andrologia 2020; 52:e13710. [PMID: 32539191 DOI: 10.1111/and.13710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/03/2020] [Accepted: 05/15/2020] [Indexed: 01/09/2023] Open
Abstract
The present study was done to analyse the time-dependent effects of diabetes on Sertoli cells-spermatogonial stem cells' (SSCs) network interaction by focusing on glial cell line-derived neurotrophic factor (GDNF) and its special receptors, gfrα1 and c-RET as well as the Bcl-6b. In total, 40 Wistar rats were considered in; control, 20, 45 and 60 days diabetes-induced groups. An experimental diabetes was induced by STZ. The GDNF, gfrα1, c-RET and Bcl-6b expressions were evaluated. The serum level of testosterone, tubular repopulation (RI) and spermiogenesis (SPI) indices, general histological alterations, germ cells, mRNA damage, sperm count and viability were assessed. The diabetes, in a time-dependent manner, diminished mRNA and protein levels of GDNF, gfrα1, c-RET and Bcl-6b versus control group (p < .05), enhanced percentage of seminiferous tubules with negative RI, SPI, and diminished Leydig and Sertoli cells distribution, serum levels of testosterone, sperm count and viability. Finally, the number, percentage of cells and seminiferous tubules with normal mRNA content were significantly (p < .05) diminished. In conclusion, as a new data, we showed that the diabetes by inducing severe mRNA damage and suppressing GDNF, gfrα1, c-RET and Bcl-6b expressions, potentially affects the Sertoli-SSCs' network and consequently inhibits the SSCs' self-renewal process.
Collapse
Affiliation(s)
- Rozita Azarniad
- Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Mazdak Razi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Shapour Hasanzadeh
- Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Hassan Malekinejad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran.,Food and Beverages Safety Research Center, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
35
|
Torreggiani M, Fois A, D’Alessandro C, Colucci M, Orozco Guillén AO, Cupisti A, Piccoli GB. Of Mice and Men: The Effect of Maternal Protein Restriction on Offspring's Kidney Health. Are Studies on Rodents Applicable to Chronic Kidney Disease Patients? A Narrative Review. Nutrients 2020; 12:E1614. [PMID: 32486266 PMCID: PMC7352514 DOI: 10.3390/nu12061614] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/19/2020] [Accepted: 05/28/2020] [Indexed: 12/20/2022] Open
Abstract
In the almost 30 years that have passed since the postulation of the "Developmental Origins of Health and Disease" theory, it has been clearly demonstrated that a mother's dietary habits during pregnancy have potential consequences for her offspring that go far beyond in utero development. Protein malnutrition during pregnancy, for instance, can cause severe alterations ranging from intrauterine growth retardation to organ damage and increased susceptibility to hypertension, diabetes mellitus, cardiovascular diseases and chronic kidney disease (CKD) later in life both in experimental animals and humans. Conversely, a balanced mild protein restriction in patients affected by CKD has been shown to mitigate the biochemical derangements associated with kidney disease and even slow its progression. The first reports on the management of pregnant CKD women with a moderately protein-restricted plant-based diet appeared in the literature a few years ago. Today, this approach is still being debated, as is the optimal source of protein during gestation in CKD. The aim of this report is to critically review the available literature on the topic, focusing on the similarities and differences between animal and clinical studies.
Collapse
Affiliation(s)
- Massimo Torreggiani
- Nephrology and Dialysis, Centre Hospitalier Le Mans, Avenue Roubillard 194, 72000 Le Mans, France; (A.F.); (G.B.P.)
| | - Antioco Fois
- Nephrology and Dialysis, Centre Hospitalier Le Mans, Avenue Roubillard 194, 72000 Le Mans, France; (A.F.); (G.B.P.)
| | - Claudia D’Alessandro
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (C.D.); (A.C.)
| | - Marco Colucci
- Unit of Nephrology and Dialysis, ICS Maugeri S.p.A. SB, Via S. Maugeri 10, 27100 Pavia, Italy;
| | | | - Adamasco Cupisti
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (C.D.); (A.C.)
| | - Giorgina Barbara Piccoli
- Nephrology and Dialysis, Centre Hospitalier Le Mans, Avenue Roubillard 194, 72000 Le Mans, France; (A.F.); (G.B.P.)
- Dipartimento di Scienze Cliniche e Biologiche, Università di Torino, 10100 Torino, Italy
| |
Collapse
|
36
|
Maternal undernutrition during pregnancy and lactation affects testicular morphology, the stages of spermatogenic cycle, and the testicular IGF-I system in adult offspring. J Dev Orig Health Dis 2020; 11:473-483. [PMID: 32340648 DOI: 10.1017/s2040174420000306] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Maternal undernutrition decreases sperm production in male offspring, possibly through insulin-like growth factor (IGF-I). To test this hypothesis, we fed pregnant Wistar rats ad libitum with a standard diet (CONTROL) or fed 50% of CONTROL intake, either throughout pregnancy (UNP), lactation (UNL, or both (UNPL). After weaning, male offspring (n = 10 per treatment) were fed a standard diet until postnatal day 160, when testes process for histological and molecular analyses. IGF-I immunostaining area and intensity in the testis were greater (P = 0.003) in the UNPL group compared to CONTROL, but lower in the UNP group (P < 0.0001). Levels of IGF-I receptor transcript were lower in the UNPL and UNL groups, compared to CONTROL. There were more Ki-67-positive germ and Sertoli cells, in all underfed groups than in CONTROL. Compared to CONTROL, frequency of spermatogenic cycle stage VII was lower in all underfed groups, and seminiferous tubule diameter was smaller in UNP and UNPL. Plasma FSH concentrations were greater in UNP male offspring compared to all groups (P = 0.05), whereas inhibin B concentrations were greater in UNP (P = 0.01) and UNL (P = 0.003) than in CONTROL or UNPL. Thus, prenatal undernutrition leads to a decrease in testicular IGF-I levels, whereas of pre- and postnatal undernutrition increased testicular IGF-I levels and decreased amounts of IGF-I receptor mRNA in adult offspring. We conclude that maternal undernutrition during pregnancy and lactation leads to long-lasting effects on adult male offspring testicular morphology, spermatogenesis, and IGF-I testicular system.
Collapse
|
37
|
Ajuogu PK, Wolden M, McFarlane JR, Hart RA, Carlson DJ, Van der Touw T, Smart NA. Effect of low- and high-protein maternal diets during gestation on reproductive outcomes in the rat: a systematic review and meta-analysis. J Anim Sci 2020; 98:5680668. [PMID: 31853549 DOI: 10.1093/jas/skz380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 12/17/2019] [Indexed: 01/17/2023] Open
Abstract
Studies with animal models have consistently demonstrated adverse health outcomes in offspring born following nutritional manipulation during gestation. However, the effects of gestational dietary protein modification on reproductive outcomes at birth are less clear. We, therefore, conducted a systematic review and meta-analysis of controlled trials to determine whether high- or low-protein diets are associated with altered reproductive outcomes in a commonly studied species, the rat. Included studies were identified through a systematic search using electronic databases and manual literature review to identify randomized studies published between June 1972 and March 2019. Thirty-two studies were identified and used to analyze the effects of low- and high-protein gestational diets on litter size, litter weight, gestational weight gain, and gestational feed intake. The results indicate that low-protein diets significantly reduced litter weight (P < 0.00001) and gestational weight gain (P < 0.0006), but did not influence litter size (P = 0.62) or gestational feed intake (P = 0.25). In contrast, high-protein diets were found to reduce gestational feed intake (P = 0.004) but did not influence litter size (P = 0.56), litter weight (P = 0.22), or gestational weight gain (P = 0.35). The results suggest that low but not high-protein gestational diets alter reproductive outcomes at birth in rats.
Collapse
Affiliation(s)
- Peter K Ajuogu
- School of Science and Technology, University of New England, Armidale, NSW, Australia
| | - Mitchell Wolden
- Physical Therapy Program, University of Jamestown, Fargo, ND
| | - James R McFarlane
- Centre for Bioactive Discovery in Health and Ageing, University of New England, Armidale, NSW, Australia
| | - Robert A Hart
- School of Science and Technology, University of New England, Armidale, NSW, Australia
| | - Debra J Carlson
- School of Health, Medical and Applied Sciences, Central Queensland University Australia, North Rockhampton, QLD, Australia
| | - Tom Van der Touw
- School of Science and Technology, University of New England, Armidale, NSW, Australia
| | - Neil A Smart
- School of Science and Technology, University of New England, Armidale, NSW, Australia
| |
Collapse
|
38
|
Promoting DOHaD in Latin America. J Dev Orig Health Dis 2020; 11:105-107. [PMID: 31937388 DOI: 10.1017/s2040174419000928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
39
|
Harada N, Yotsumoto Y, Katsuki T, Yoda Y, Masuda T, Nomura M, Shiraki N, Inui H, Yamaji R. Fetal androgen signaling defects affect pancreatic β-cell mass and function, leading to glucose intolerance in high-fat diet-fed male rats. Am J Physiol Endocrinol Metab 2019; 317:E731-E741. [PMID: 31287713 DOI: 10.1152/ajpendo.00173.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We previously demonstrated that androgen signaling expands pancreatic β-cell mass in the sexual maturation period (Am J Physiol Endocrinol Metab 314: E274-E286, 2018). The aim of this study was to elucidate whether fetal androgen signaling plays important roles in β-cell mass development and β-cell function in adulthood, defects of which are associated with type 2 diabetes mellitus. In the pancreas of male fetuses, androgen receptor (AR) was strongly expressed in the cytoplasm and at the cell membrane of Nkx6.1-positive β-cell precursor cells but was markedly reduced in insulin-positive β-cells. Administration of the anti-androgen flutamide to pregnant dams during late gestation reduced β-cell mass and Ki67-positive proliferating β-cells at birth in a male-specific manner without affecting body weight. The decrease of β-cell mass in flutamide-exposed male rats was not recovered when rats were fed a standard diet, whereas it was fully recovered when rats were fed a high-fat diet (HFD), at 6 and 12 wk of age. Flutamide exposure in utero led to the development of glucose intolerance in male rats due to a decrease in insulin secretion when fed HFD but not standard diet. Insulin sensitivity did not differ between the two groups irrespective of diet. These results indicated that the action of fetal androgen contributed to β-cell mass expansion in a sex-specific manner at birth and to the development of glucose intolerance by decreasing the secretion of insulin in HFD-fed male rats. Our data demonstrated the involvement of fetal androgen signaling in hypothesized sex differences in the developmental origins of health and disease by affecting pancreatic β-cell function.
Collapse
Affiliation(s)
- Naoki Harada
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan
| | - Yusuke Yotsumoto
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan
| | - Takahiro Katsuki
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan
| | - Yasuhiro Yoda
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan
| | - Tatsuya Masuda
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan
| | - Masayuki Nomura
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan
| | - Nobuaki Shiraki
- Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Hiroshi Inui
- Division of Clinical Nutrition, Department of Clinical Nutrition, Graduate School of Comprehensive Rehabilitation, Osaka Prefecture University, Habikino, Osaka, Japan
| | - Ryoichi Yamaji
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan
| |
Collapse
|
40
|
Rezaei-Agdam H, Moshari S, Nahari E, Minas A, Daliri Z, Hallaj M, Razi M. Zeta and hyaluronic acid assessments, novel sperm selection procedures, in animal model for male infertility. Andrologia 2019; 51:e13447. [PMID: 31617612 DOI: 10.1111/and.13447] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/18/2019] [Accepted: 08/26/2019] [Indexed: 12/16/2022] Open
Abstract
Considering varicocele (VCL)-induced severe, progressive DNA damage, histone-protamine anomalies and low sperm production, in the current study, the experimental VCL was induced and the efficiency of hyaluronic acid (HA)-binding method (HABM) and zeta preparation procedure (ZPP) in selection of appropriate spermatozoa was compared with those spermatozoa from intact animals. Following 2 and 4 months, the histological alterations in testicular tissue, sperm count and viability were assessed to prove the VCL condition. The spermatozoa were undergone simple wash, HABM and ZPP. The chromatin condensation, active caspase-3 expression, DNA fragmentation and apoptosis index were analysed after applying selection techniques and compared with the spermatozoa from intact and VCL-induced animals, which were undergone a simple wash. Observations showed that both HABM and ZPP effectively prepared the spermatozoa with higher chromatin condensation and lower DNA damage. Meanwhile, the ZPP exerted a more preferable effect by preparing the spermatozoa with higher chromatin condensation, and lower caspase-3 expression, and DNA disintegrity versus the HABM, especially after 4 months. In conclusion, ZPP seems to exert much more reliable efficiency in selecting appropriate spermatozoa for ICSI processes, while more studies are needed to find out which one is more useful in the clinical assisted reproductive technique (ART) process.
Collapse
Affiliation(s)
- Hamed Rezaei-Agdam
- Molecular and Genetic Division, Rasta Diagnostic and Research Center, Urmia, Iran
| | - Sana Moshari
- Division of Histology and Embryology, Department of Basic Science, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Elaheh Nahari
- Molecular and Genetic Division, Rasta Diagnostic and Research Center, Urmia, Iran
| | - Aram Minas
- Division of Histology and Embryology, Department of Basic Science, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Zeynab Daliri
- Department of Biology, Faculty of Sciences, Islamic AZAD University, Science and Research Branch, Tehran, Iran
| | - Mahsa Hallaj
- Division of Histology and Embryology, Department of Basic Science, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Mazdak Razi
- Division of Histology and Embryology, Department of Basic Science, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| |
Collapse
|
41
|
García-Ortuño LE, Barrera-Chimal J, Pérez-Villalva R, Ortega-Trejo JA, Luna-Bolaños E, Lima-Posada I, Sánchez-Navarro A, Reyes-Castro L, Gamba G, Zambrano E, Bobadilla NA. Resilience to acute kidney injury in offspring of maternal protein restriction. Am J Physiol Renal Physiol 2019; 317:F1637-F1648. [PMID: 31608674 DOI: 10.1152/ajprenal.00356.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Protein restriction (PR) during pregnancy induces morphofunctional alterations related to deficient nephrogenesis. We studied the renal functional and morphological significance of PR during pregnancy and/or lactation in adult male rat offspring and the repercussions on acute kidney injury (AKI) severity. Female rats were randomly assigned to the following groups: control diet during pregnancy and lactation (CC), control diet during pregnancy and PR diet during lactation (CR), PR during pregnancy and control diet during lactation (RC), and PR during pregnancy and lactation (RR). Three months after birth, at least 12 male offspring of each group randomly underwent either bilateral renal ischemia for 45 min [ischemia-reperfusion (IR)] or sham surgery. Thus, eight groups were studied 24 h after reperfusion: CC, CC + IR, CR, CR + IR, RC, RC + IR, RR, and RR + IR. Under basal conditions, the CR, RC, and RR groups exhibited a significant reduction in nephron number that was associated with a reduction in renal blood flow. Glomerular hyperfiltration was present as a compensatory mechanism to maintain normal renal function. mRNA levels of several vasoactive, antioxidant, and anti-inflammatory molecules were decreased. After IR, renal function was similarly reduced in all of the studied groups. Although all of the offspring from maternal PR exhibited renal injury, the magnitude was lower in the RC and RR groups, which were associated with faster renal blood flow recovery, differential vasoactive factors, and hypoxia-inducible factor-1α signaling. Our results show that the offspring from maternal PR are resilient to AKI induced by IR that was associated with reduced tubular injury and a differential hemodynamic response.
Collapse
Affiliation(s)
- Luis Enrique García-Ortuño
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Department of Nephrology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.,Department of Pathology, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Jonatan Barrera-Chimal
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Translational Medicine Unit, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Rosalba Pérez-Villalva
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Department of Nephrology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Juan Antonio Ortega-Trejo
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Department of Nephrology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Emma Luna-Bolaños
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Department of Nephrology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Ixchel Lima-Posada
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Department of Nephrology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Andrea Sánchez-Navarro
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Department of Nephrology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Luis Reyes-Castro
- Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Gerardo Gamba
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Department of Nephrology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.,Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, New Lion, Mexico
| | - Elena Zambrano
- Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Norma A Bobadilla
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Department of Nephrology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| |
Collapse
|
42
|
de Mello Santos T, Cavariani MM, Pereira DN, Schimming BC, Chuffa LGDA, Domeniconi RF. Maternal Protein Restriction Modulates Angiogenesis and AQP9 Expression Leading to a Delay in Postnatal Epididymal Development in Rat. Cells 2019; 8:cells8091094. [PMID: 31533210 PMCID: PMC6770568 DOI: 10.3390/cells8091094] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/15/2019] [Accepted: 09/02/2019] [Indexed: 12/17/2022] Open
Abstract
The maternal nutritional status is essential to the health and well-being of the fetus. Maternal protein restriction during the perinatal stage causes sperm alterations in the offspring that are associated with epididymal dysfunctions. Vascular endothelial growth factor (VEGF) and its receptor, VEGFr-2, as well as aquaporins (AQPs) are important regulators of angiogenesis and the epididymal microenvironment and are associated with male fertility. We investigated the effects of maternal protein restriction on epididymal angiogenesis and AQP expression in the early stages of postnatal epididymal development. Pregnant rats were divided into two experimental groups that received either a normoprotein (17% protein) or low-protein diet (6% protein) during gestation and lactation. At postnatal day (PND)7 and PND14, male offspring were euthanized, the epididymides were subjected to morphometric and microvascular density analyses and to VEGF-A, VEGF-r2, AQP1 and AQP9 expression analyses. The maternal low-protein diet decreased AQP9 and VEGFr-2 expression, decreased epididymal microvascularity and altered the morphometric features of the epididymal epithelium; no changes in AQP1 expression were observed at the beginning of postnatal epididymal development. Maternal protein restriction alters microvascularization and affects molecules involved in the epidydimal microenvironment, resulting in morphometric alterations related to a delay in the beginning of epididymis postnatal development.
Collapse
Affiliation(s)
- Talita de Mello Santos
- Department of Anatomy, Institute of Biosciences, São Paulo State University-UNESP, Botucatu 18618-970, SP, Brazil.
| | - Marilia Martins Cavariani
- Department of Anatomy, Institute of Biosciences, São Paulo State University-UNESP, Botucatu 18618-970, SP, Brazil.
| | - Dhrielly Natália Pereira
- Department of Anatomy, Institute of Biosciences, São Paulo State University-UNESP, Botucatu 18618-970, SP, Brazil.
| | - Bruno César Schimming
- Department of Anatomy, Institute of Biosciences, São Paulo State University-UNESP, Botucatu 18618-970, SP, Brazil.
| | | | - Raquel Fantin Domeniconi
- Department of Anatomy, Institute of Biosciences, São Paulo State University-UNESP, Botucatu 18618-970, SP, Brazil.
| |
Collapse
|
43
|
Lin Y, Li L, Li Y, Wang K, Wei D, Xu S, Feng B, Che L, Fang Z, Li J, Zhuo Y, Wu D. Interpretation of Fiber Supplementation on Offspring Testicular Development in a Pregnant Sow Model from a Proteomics Perspective. Int J Mol Sci 2019; 20:ijms20184549. [PMID: 31540305 PMCID: PMC6770271 DOI: 10.3390/ijms20184549] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/06/2019] [Accepted: 09/10/2019] [Indexed: 12/13/2022] Open
Abstract
To study the effects of maternal fiber supplementation during pregnancy on the testicular development of male offspring and its possible mechanisms, 36 sows (Landrace × Yorkshire) were allocated to either a control diet (n = 18) or a fiber diet (the control diet supplemented with 22.60 g/kg inulin and 181.60 g/kg cellulosic; n = 18) during pregnancy. The body and testes weight of the offspring, 7-day-old piglets, was recorded. Testes were collected for further analyses. Results showed that the testicular organ index and the number of spermatogonia in single seminiferous tubule were higher in piglets from the fiber group than from the control group (p < 0.05). In addition, a significant increase in the concentration of glucose, lactate, and lipids in the testes was found in the fiber group (p < 0.05). Proteomic analysis suggested that there were notable differences in glucolipid transport and metabolism, oxidation, and male reproduction-related proteins expression between the two groups (p < 0.05). Results revealed that the most enriched signaling pathways in the fiber group testes included starch and sucrose metabolism, fatty acid metabolism, glutathione metabolism, and the renin-angiotensin system. mRNA expression analyzes further confirmed the importance of some signaling pathways in maternal fiber nutrition regulating offspring testicular development. Our results shed new light on the underlying molecular mechanisms of maternal fiber nutrition on offspring testicular development and provided a valuable insight for future explorations of the effect of maternal fiber nutrition on man reproduction.
Collapse
Affiliation(s)
- Yan Lin
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, Sichuan Agricultural University, Chengdu 611130, China; (L.L.); (Y.L.); (S.X.); (B.F.); (Y.Z.)
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Wenjiang 611130, China
- Correspondence: (Y.L.); (D.W.)
| | - Lujie Li
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, Sichuan Agricultural University, Chengdu 611130, China; (L.L.); (Y.L.); (S.X.); (B.F.); (Y.Z.)
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Wenjiang 611130, China
| | - Yang Li
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, Sichuan Agricultural University, Chengdu 611130, China; (L.L.); (Y.L.); (S.X.); (B.F.); (Y.Z.)
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Wenjiang 611130, China
| | - Ke Wang
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, Sichuan Agricultural University, Chengdu 611130, China; (L.L.); (Y.L.); (S.X.); (B.F.); (Y.Z.)
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Wenjiang 611130, China
| | - Dongqin Wei
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, Sichuan Agricultural University, Chengdu 611130, China; (L.L.); (Y.L.); (S.X.); (B.F.); (Y.Z.)
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Wenjiang 611130, China
| | - Shengyu Xu
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, Sichuan Agricultural University, Chengdu 611130, China; (L.L.); (Y.L.); (S.X.); (B.F.); (Y.Z.)
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Wenjiang 611130, China
| | - Bin Feng
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, Sichuan Agricultural University, Chengdu 611130, China; (L.L.); (Y.L.); (S.X.); (B.F.); (Y.Z.)
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Wenjiang 611130, China
| | - Lianqiang Che
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, Sichuan Agricultural University, Chengdu 611130, China; (L.L.); (Y.L.); (S.X.); (B.F.); (Y.Z.)
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Wenjiang 611130, China
| | - Zhengfeng Fang
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, Sichuan Agricultural University, Chengdu 611130, China; (L.L.); (Y.L.); (S.X.); (B.F.); (Y.Z.)
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Wenjiang 611130, China
| | - Jian Li
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, Sichuan Agricultural University, Chengdu 611130, China; (L.L.); (Y.L.); (S.X.); (B.F.); (Y.Z.)
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Wenjiang 611130, China
| | - Yong Zhuo
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, Sichuan Agricultural University, Chengdu 611130, China; (L.L.); (Y.L.); (S.X.); (B.F.); (Y.Z.)
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Wenjiang 611130, China
| | - De Wu
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, Sichuan Agricultural University, Chengdu 611130, China; (L.L.); (Y.L.); (S.X.); (B.F.); (Y.Z.)
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Wenjiang 611130, China
- Correspondence: (Y.L.); (D.W.)
| |
Collapse
|
44
|
Jazwiec PA, Sloboda DM. Nutritional adversity, sex and reproduction: 30 years of DOHaD and what have we learned? J Endocrinol 2019; 242:T51-T68. [PMID: 31013473 DOI: 10.1530/joe-19-0048] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 03/25/2019] [Indexed: 12/12/2022]
Abstract
It is well established that early life environmental signals, including nutrition, set the stage for long-term health and disease risk - effects that span multiple generations. This relationship begins early, in the periconceptional period and extends into embryonic, fetal and early infant phases of life. Now known as the Developmental Origins of Health and Disease (DOHaD), this concept describes the adaptations that a developing organism makes in response to early life cues, resulting in adjustments in homeostatic systems that may prove maladaptive in postnatal life, leading to an increased risk of chronic disease and/or the inheritance of risk factors across generations. Reproductive maturation and function is similarly influenced by early life events. This should not be surprising, since primordial germ cells are established early in life and thus vulnerable to early life adversity. A multitude of 'modifying' cues inducing developmental adaptations have been identified that result in changes in reproductive development and impairments in reproductive function. Many types of nutritional challenges including caloric restriction, macronutrient excess and micronutrient insufficiencies have been shown to induce early life adaptations that produce long-term reproductive dysfunction. Many pathways have been suggested to underpin these associations, including epigenetic reprogramming of germ cells. While the mechanisms still remain to be fully investigated, it is clear that a lifecourse approach to understanding lifetime reproductive function is necessary. Furthermore, investigations of the impacts of early life adversity must be extended to include the paternal environment, especially in epidemiological and clinical studies of offspring reproductive function.
Collapse
Affiliation(s)
- Patrycja A Jazwiec
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
- The Farncombe Family Digestive Diseases Research Institute, McMaster University, Hamilton, Canada
| | - Deborah M Sloboda
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
- The Farncombe Family Digestive Diseases Research Institute, McMaster University, Hamilton, Canada
- Department of Pediatrics and Obstetrics and Gynecology, McMaster University, Hamilton, Canada
| |
Collapse
|
45
|
ŞENER EH. The effects of mint tea (Mentha spicata labiatae) consumed during pregnancy on postnatal morphometric development. MEHMET AKIF ERSOY ÜNIVERSITESI SAĞLIK BILIMLERI ENSTITÜSÜ DERGISI 2019. [DOI: 10.24998/maeusabed.543364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
46
|
Van Cann J, Koskela E, Mappes T, Sims A, Watts PC. Intergenerational fitness effects of the early life environment in a wild rodent. J Anim Ecol 2019; 88:1355-1365. [PMID: 31162628 DOI: 10.1111/1365-2656.13039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 05/16/2019] [Indexed: 12/01/2022]
Abstract
The early life environment can have profound, long-lasting effects on an individual's fitness. For example, early life quality might (a) positively associate with fitness (a silver spoon effect), (b) stimulate a predictive adaptive response (by adjusting the phenotype to the quality of the environment to maximize fitness) or (c) be obscured by subsequent plasticity. Potentially, the effects of the early life environment can persist beyond one generation, though the intergenerational plasticity on fitness traits of a subsequent generation is unclear. To study both intra- and intergenerational effects of the early life environment, we exposed a first generation of bank voles to two early life stimuli (variation in food and social environment) in a controlled environment. To assess possible intra-generational effects, the reproductive success of female individuals was investigated by placing them in large outdoor enclosures in two different, ecologically relevant environments (population densities). Resulting offspring were raised in the same population densities where they were conceived and their growth was recorded. When adult, half of the offspring were transferred to opposite population densities to evaluate their winter survival, a crucial fitness trait for bank voles. Our setup allowed us to assess: (a) do early life population density cues elicit an intra-generational adaptive response, that is a higher reproductive success when the density matches the early life cues and (b) can early life stimuli of one generation elicit an intergenerational adaptive response in their offspring, that is a higher growth and winter survival when the density matches the early life cues of their mother. Our results show that the early life environment directly affects the phenotype and reproductive success of the focal generation, but adaptive responses are only evident in the offspring. Growth of the offspring is maintained only when the environment matches their mother's early life environment. Furthermore, winter survival of offspring also tended to be higher in high population densities if their mothers experienced an competitive early life. These results show that the early life environment can contribute to maintain high fitness in challenging environments, but not necessarily in the generation experiencing the early life cues.
Collapse
Affiliation(s)
- Joannes Van Cann
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Esa Koskela
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Tapio Mappes
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Angela Sims
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Phillip C Watts
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland.,Ecology and Genetics, University of Oulu, Oulu, Finland
| |
Collapse
|
47
|
Liu N, Dai Z, Zhang Y, Jia H, Chen J, Sun S, Wu G, Wu Z. Maternal L-proline supplementation during gestation alters amino acid and polyamine metabolism in the first generation female offspring of C57BL/6J mice. Amino Acids 2019; 51:805-811. [PMID: 30879150 DOI: 10.1007/s00726-019-02717-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 02/28/2019] [Indexed: 01/29/2023]
Abstract
We recently reported that dietary supplementation with L-proline (proline) during gestation improved embryonic survival in C57BL/6J mice. The objective of the present study was to test the hypothesis that the effect of maternal proline supplementation on embryonic survival can be carried forward to the first generation female offspring. In the F0 generation, pregnant dams were fed a purified diet supplemented with 0 (control) or 5 g proline/kg diet. The F1 female adult offsprings were bred to fertile males. Fetal survival at embryonic day (E)12.5 and reproductive outcomes at term birth were recorded. The concentrations of amino acids, ammonia, and urea in plasma and amniotic fluid, as well as concentrations of polyamines in placental tissues and amniotic fluid at E12.5 were determined. Results showed that the F1 generation female offspring from proline-supplemented dams had higher (P < 0.05) concentrations of glutamate and taurine in plasma; of putrescine and spermidine in placental tissues; and of glycine, taurine, and spermidine in amniotic fluid at E12.5, as compared with F1 generation female offsprings from dams without proline supplementation. Concentration of proline in the plasma of offspring mice from proline-supplemented dams were lower (P < 0.05), as compared with the control group. No differences in fetal survival, reproductive outcomes, or concentrations of ammonia and urea in plasma and amniotic fluid were observed between the two groups of F1 female offspring. Collectively, our results indicate that the benefits of maternal proline supplementation during gestation on improving embryonic survival and fetal growth in F0 females are not transmitted to their F1 generation females.
Collapse
Affiliation(s)
- Ning Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, 100193, China.,Department of Animal Nutrition and Feed Science, State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, China
| | - Zhaolai Dai
- Department of Animal Nutrition and Feed Science, State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, China
| | - Yunchang Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, 100193, China
| | - Hai Jia
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, 100193, China
| | - Jiangqing Chen
- Department of Animal Nutrition and Feed Science, State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, China
| | - Shiqiang Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, 100193, China
| | - Guoyao Wu
- Department of Animal Nutrition and Feed Science, State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, China.,Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - Zhenlong Wu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, 100193, China. .,Department of Animal Nutrition and Feed Science, State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
48
|
Ferguson DP, Monroe TO, Heredia CP, Fleischmann R, Rodney GG, Taffet GE, Fiorotto ML. Postnatal undernutrition alters adult female mouse cardiac structure and function leading to limited exercise capacity. J Physiol 2019; 597:1855-1872. [PMID: 30730556 DOI: 10.1113/jp277637] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 02/01/2019] [Indexed: 12/11/2022] Open
Abstract
KEY POINTS Impaired growth during fetal life can reprogramme heart development and increase the risk for long-term cardiovascular dysfunction. It is uncertain if the developmental window during which the heart is vulnerable to reprogramming as a result of inadequate nutrition extends into the postnatal period. We found that adult female mice that had been undernourished only from birth to 3 weeks of age had disproportionately smaller hearts compared to males, with thinner ventricle walls and more mononucleated cardiomyocytes. In females, but not males, cardiac diastolic function, and heart rate responsiveness to adrenergic stimulation were limited and maximal exercise capacity was compromised. These data suggest that the developmental window during which the heart is vulnerable to reprogramming by inadequacies in nutrient intake may extend into postnatal life and such individuals could be at increased risk for a cardiac event as a result of strenuous exercise. ABSTRACT Adults who experienced undernutrition during critical windows of development are at increased risk for cardiovascular disease. The contribution of cardiac function to this increased disease risk is uncertain. We evaluated the effect of a short episode of postnatal undernutrition on cardiovascular function in mice at the whole animal, organ, and cellular levels. Pups born to control mouse dams were suckled from birth to postnatal day (PN) 21 on dams fed either a control (20% protein) or a low protein (8% protein) isocaloric diet. After PN21 offspring were fed the same control diet until adulthood. At PN70 V ̇ O 2 , max was measured by treadmill test. At PN80 cardiac function was evaluated by echocardiography and Doppler analysis at rest and following β-adrenergic stimulation. Isolated cardiomyocyte nucleation and Ca2+ transients (with and without β-adrenergic stimulation) were measured at PN90. Female mice that were undernourished and then refed (PUN), unlike male mice, had disproportionately smaller hearts and their exercise capacity, cardiac diastolic function, and heart rate responsiveness to adrenergic stimulation were limited. A reduced left ventricular end diastolic volume, impaired early filling, and decreased stored energy at the beginning of diastole contributed to these impairments. Female PUN mice had more mononucleated cardiomyocytes; under resting conditions binucleated cells had a functional profile suggestive of increased basal adrenergic activation. Thus, a brief episode of early postnatal undernutrition in the mouse can produce persistent changes to cardiac structure and function that limit exercise/functional capacity and thereby increase the risk for the development of a wide variety of cardiovascular morbidities.
Collapse
Affiliation(s)
- David P Ferguson
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA.,Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA.,Department of Kinesiology, Michigan State University, East Lansing, MI, 48824, USA
| | - Tanner O Monroe
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Celia Pena Heredia
- Section of Geriatrics, Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Ryan Fleischmann
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - George G Rodney
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - George E Taffet
- Section of Geriatrics, Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Marta L Fiorotto
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA.,Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA
| |
Collapse
|
49
|
Maternal protein restriction differentially alters the expression of AQP1, AQP9 and VEGFr-2 in the epididymis of rat offspring. Int J Mol Sci 2019; 20:ijms20030469. [PMID: 30678254 PMCID: PMC6387270 DOI: 10.3390/ijms20030469] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/16/2019] [Accepted: 01/18/2019] [Indexed: 01/13/2023] Open
Abstract
Background: Maternal protein restriction causes sperm alterations in the offspring, most of which are associated with epididymal functions. Because fluid reabsorption/secretion dynamics in the epididymal environment play important roles in the process of sperm maturation and concentration, we investigated the effects of maternal protein restriction on the expression of aquaporins (AQP1 and AQP9), vascular endothelial growth factor (VEGFa), and its receptor VEGFr-2 in different stages of postnatal epididymal development. Methods: Pregnant rats were divided into groups that received normoprotein (17% protein) and low-protein diets (6% protein) during gestation and lactation. After weaning, male rats only received the standard diet and were euthanized at the predetermined ages of 21, 44 and 120 days. Results: Maternal protein restriction decreased AQP1 and AQP9 expression in the initial segment and caput epididymis compared to the increased expression of these proteins observed in the corpus and cauda at all ages. Although protein restriction reduced the microvasculature density (MVD) on postnatal day (PND) 21 and 44, the MVD was unaltered on PND 120. Conclusions: Maternal protein restriction changed the structure or function of the offspring’s epididymis, specifically by affecting fluid dynamics and vasculogenesis in important stages of epididymis development.
Collapse
|
50
|
Bonyadi F, Hasanzadeh S, Malekinejad H, Najafi G. Cyclopiazonic acid decreases sperm quality and in vitro fertilisation rate in mice. WORLD MYCOTOXIN J 2018. [DOI: 10.3920/wmj2018.2337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The presence of cyclopiazonic acid (CPA) as a mycotoxin has been reported in feed and foodstuffs. The aim of this investigation was to determine the effects of CPA on reproductive functions of male mice. In this experiment, 40 mature male mice were randomly assigned into five groups (n=8): control, control-sham, CPA (0.03 mg/kg, body weight (BW)), CPA (0.06 mg/kg, BW) and CPA (0.12 mg/kg, BW). Following 28 days exposure to CPA, sperm quality parameters, in vitro fertilisation (IVF) capacity of sperms, serum testosterone level, Leydig cells number and serum total antioxidant capacity (TAC) were analysed. The results revealed a significant (P<0.05) reduction in sperm count, sperm viability, sperm motility, chromatin quality of sperm, sperms with intact DNA, IVF rate, testosterone level, Leydig cell distribution and TAC in comparison to the control group. The most prominent detrimental effects of CPA were found at the highest given dose level. Our results suggest that CPA at higher dose levels exerts detrimental effects on the male reproductive system. Moreover, these descriptive warrant further investigations into the specific mechanisms of action and the effects of CPA on spermatogenesis.
Collapse
Affiliation(s)
- F. Bonyadi
- Department of Basic Science, Histology section, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - S. Hasanzadeh
- Department of Basic Science, Histology section, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - H. Malekinejad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - G. Najafi
- Department of Basic Science, Anatomy and Embryology section, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| |
Collapse
|