1
|
Liu Z, Villareal L, Goodla L, Kim H, Falcon DM, Haneef M, Martin DR, Zhang L, Lee HJ, Kremer D, Lyssiotis CA, Shah YM, Lin HC, Lin HK, Xue X. Iron promotes glycolysis to drive colon tumorigenesis. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166846. [PMID: 37579983 PMCID: PMC10530594 DOI: 10.1016/j.bbadis.2023.166846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 07/28/2023] [Accepted: 08/07/2023] [Indexed: 08/16/2023]
Abstract
Colorectal cancer (CRC) is the third most common cancer and is also the third leading cause of cancer-related death in the USA. Understanding the mechanisms of growth and progression of CRC is essential to improve treatment. Macronutrients such as glucose are energy source for a cell. Many tumor cells exhibit increased aerobic glycolysis. Increased tissue micronutrient iron levels in both mice and humans are also associated with increased colon tumorigenesis. However, if iron drives colon carcinogenesis via affecting glucose metabolism is still not clear. Here we found the intracellular glucose levels in tumor colonoids were significantly increased after iron treatment. 13C-labeled glucose flux analysis indicated that the levels of several labeled glycolytic products were significantly increased, whereas several tricarboxylic acid cycle intermediates were significantly decreased in colonoids after iron treatment. Mechanistic studies showed that iron upregulated the expression of glucose transporter 1 (GLUT1) and mediated an inhibition of the pyruvate dehydrogenase (PDH) complex function via directly binding with tankyrase and/or pyruvate dehydrogenase kinase (PDHK) 3. Pharmacological inhibition of GLUT1 or PDHK reactivated PDH complex function and reduced high iron diet-enhanced tumor formation. In conclusion, excess iron promotes glycolysis and colon tumor growth at least partly through the inhibition of the PDH complex function.
Collapse
Affiliation(s)
- Zhaoli Liu
- Department of Biochemistry and Molecular Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Luke Villareal
- Department of Biochemistry and Molecular Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Lavanya Goodla
- Department of Biochemistry and Molecular Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Hyeoncheol Kim
- Department of Biochemistry and Molecular Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Daniel M Falcon
- Department of Biochemistry and Molecular Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Mohammad Haneef
- Department of Biochemistry and Molecular Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - David R Martin
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Li Zhang
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ho-Joon Lee
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Daniel Kremer
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Costas A Lyssiotis
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yatrik M Shah
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Henry C Lin
- Section of Gastroenterology, Medicine Service, New Mexico VA Health Care System, Albuquerque, NM 87108, USA; Division of Gastroenterology and Hepatology, Department of Medicine, the University of New Mexico, Albuquerque, NM, 87131, USA
| | - Hui-Kuan Lin
- Department of Pathology, Duke University, Durham, NC 27710, USA
| | - Xiang Xue
- Department of Biochemistry and Molecular Biology, University of New Mexico, Albuquerque, NM 87131, USA.
| |
Collapse
|
2
|
Yang L, Chen X, Chen D, Yu B, He J, Luo Y, Zheng P, Chen H, Yan H, Huang Z. Effects of protocatechuic acid on antioxidant capacity, mitochondrial biogenesis and skeletal muscle fiber transformation. J Nutr Biochem 2023; 116:109327. [PMID: 36958419 DOI: 10.1016/j.jnutbio.2023.109327] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/26/2023] [Accepted: 03/17/2023] [Indexed: 03/25/2023]
Abstract
In skeletal muscle, the increased proportion of type I muscle fibers has the potential to improve muscle atrophy and prevent human metabolic diseases. Protocatechuic acid (PCA), as a kind of anthocyanin metabolite, has antioxidant and anti-inflammatory physiological activities. The purpose of this experiment was to use mice and C2C12 myotubes to examine if PCA can induce the transformation of muscle fiber and the mechanisms involved. We found that PCA significantly increased the expression of slow myosin heavy chain (MyHC), and markedly decreased the expression of fast MyHC in gastrocnemius muscle of mice and C2C12 myotubes. In addition, PCA also enhanced the antioxidant capacity and promoted mitochondrial biogenesis in mice. Importantly, the AMP-activated protein kinase (AMPK) signaling pathway was activated and AMPK inhibitor compound C attenuated the positive effect of PCA on myofiber conversion. To sum up, we revealed that PCA was able to promote the conversion of skeletal muscle fiber from type II to type I through the AMPK signaling pathway.
Collapse
Affiliation(s)
- Li Yang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P. R. China
| | - Xiaoling Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P. R. China
| | - Daiwen Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P. R. China
| | - Bing Yu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P. R. China
| | - Jun He
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P. R. China
| | - Yuheng Luo
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P. R. China
| | - Ping Zheng
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P. R. China
| | - Hong Chen
- College of Food Science, Sichuan Agricultural University, Yaan, Sichuan, 625014, P. R. China
| | - Hui Yan
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P. R. China
| | - Zhiqing Huang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P. R. China.
| |
Collapse
|
3
|
Wang W, Ma Y, He T, Mooney E, Guo C, Wang XY, Fang X. Histopathological Diagnosis of Nonalcoholic Steatohepatitis (NASH). Methods Mol Biol 2022; 2455:49-62. [PMID: 35212985 DOI: 10.1007/978-1-0716-2128-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Fatty acid beta oxidation (FAO) is a predominant bioenergetic pathway in mammals. Substantial investigations have demonstrated that FAO activity is dysregulated in many pathophysiological conditions including nonalcoholic steatohepatitis (NASH). Convenient and quantitative assays of FAO activities are important for studies of cell metabolism and the biological relevance of FAO to health and diseases. However, most current FAO assays are based on non-physiological culture conditions, measure FAO activity indirectly or lack adequate quantification. We herein describe details of practical protocols for measurement of basal and genetically or pharmacologically regulated FAO activities in the mammalian system. We also discuss the advantages and disadvantages of these assays in the context of experimental purposes.
Collapse
Affiliation(s)
- Wei Wang
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
| | - Yibao Ma
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
- Alliance Pharma Inc, Malvern, PA, USA
| | - Tianhai He
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
| | - Erin Mooney
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | - Chunqing Guo
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | - Xiang-Yang Wang
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Xianjun Fang
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA.
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
4
|
Miller SG, Hafen PS, Law AS, Springer CB, Logsdon DL, O'Connell TM, Witczak CA, Brault JJ. AMP deamination is sufficient to replicate an atrophy-like metabolic phenotype in skeletal muscle. Metabolism 2021; 123:154864. [PMID: 34400216 PMCID: PMC8453098 DOI: 10.1016/j.metabol.2021.154864] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/22/2021] [Accepted: 08/10/2021] [Indexed: 02/01/2023]
Abstract
BACKGROUND Skeletal muscle atrophy, whether caused by chronic disease, acute critical illness, disuse or aging, is characterized by tissue-specific decrease in oxidative capacity and broad alterations in metabolism that contribute to functional decline. However, the underlying mechanisms responsible for these metabolic changes are largely unknown. One of the most highly upregulated genes in atrophic muscle is AMP deaminase 3 (AMPD3: AMP → IMP + NH3), which controls the content of intracellular adenine nucleotides (AdN; ATP + ADP + AMP). Given the central role of AdN in signaling mitochondrial gene expression and directly regulating metabolism, we hypothesized that overexpressing AMPD3 in muscle cells would be sufficient to alter their metabolic phenotype similar to that of atrophic muscle. METHODS AMPD3 and GFP (control) were overexpressed in mouse tibialis anterior (TA) muscles via plasmid electroporation and in C2C12 myotubes using adenovirus vectors. TA muscles were excised one week later, and AdN were quantified by UPLC. In myotubes, targeted measures of AdN, AMPK/PGC-1α/mitochondrial protein synthesis rates, unbiased metabolomics, and transcriptomics by RNA sequencing were measured after 24 h of AMPD3 overexpression. Media metabolites were measured as an indicator of net metabolic flux. At 48 h, the AMPK/PGC-1α/mitochondrial protein synthesis rates, and myotube respiratory function/capacity were measured. RESULTS TA muscles overexpressing AMPD3 had significantly less ATP than contralateral controls (-25%). In myotubes, increasing AMPD3 expression for 24 h was sufficient to significantly decrease ATP concentrations (-16%), increase IMP, and increase efflux of IMP catabolites into the culture media, without decreasing the ATP/ADP or ATP/AMP ratios. When myotubes were treated with dinitrophenol (mitochondrial uncoupler), AMPD3 overexpression blunted decreases in ATP/ADP and ATP/AMP ratios but exacerbated AdN degradation. As such, pAMPK/AMPK, pACC/ACC, and phosphorylation of AMPK substrates, were unchanged by AMPD3 at this timepoint. AMPD3 significantly altered 191 out of 639 detected intracellular metabolites, but only 30 transcripts, none of which encoded metabolic enzymes. The most altered metabolites were those within purine nucleotide, BCAA, glycolysis, and ceramide metabolic pathways. After 48 h, AMPD3 overexpression significantly reduced pAMPK/AMPK (-24%), phosphorylation of AMPK substrates (-14%), and PGC-1α protein (-22%). Moreover, AMPD3 significantly reduced myotube mitochondrial protein synthesis rates (-55%), basal ATP synthase-dependent (-13%), and maximal uncoupled oxygen consumption (-15%). CONCLUSIONS Increased expression of AMPD3 significantly decreased mitochondrial protein synthesis rates and broadly altered cellular metabolites in a manner similar to that of atrophic muscle. Importantly, the changes in metabolites occurred prior to reductions in AMPK signaling, gene expression, and mitochondrial protein synthesis, suggesting metabolism is not dependent on reductions in oxidative capacity, but may be consequence of increased AMP deamination. Therefore, AMP deamination in skeletal muscle may be a mechanism that alters the metabolic phenotype of skeletal muscle during atrophy and could be a target to improve muscle function during muscle wasting.
Collapse
Affiliation(s)
- Spencer G Miller
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Kinesiology, East Carolina University, Greenville, NC, USA
| | - Paul S Hafen
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Andrew S Law
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - David L Logsdon
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Thomas M O'Connell
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Carol A Witczak
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jeffrey J Brault
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
5
|
Daussin FN, Cuillerier A, Touron J, Bensaid S, Melo B, Al Rewashdy A, Vasam G, Menzies KJ, Harper ME, Heyman E, Burelle Y. Dietary Cocoa Flavanols Enhance Mitochondrial Function in Skeletal Muscle and Modify Whole-Body Metabolism in Healthy Mice. Nutrients 2021; 13:nu13103466. [PMID: 34684467 PMCID: PMC8538722 DOI: 10.3390/nu13103466] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/22/2021] [Accepted: 09/28/2021] [Indexed: 01/18/2023] Open
Abstract
Mitochondrial dysfunction is widely reported in various diseases and contributes to their pathogenesis. We assessed the effect of cocoa flavanols supplementation on mitochondrial function and whole metabolism, and we explored whether the mitochondrial deacetylase sirtuin-3 (Sirt3) is involved or not. We explored the effects of 15 days of CF supplementation in wild type and Sirt3-/- mice. Whole-body metabolism was assessed by indirect calorimetry, and an oral glucose tolerance test was performed to assess glucose metabolism. Mitochondrial respiratory function was assessed in permeabilised fibres and the pyridine nucleotides content (NAD+ and NADH) were quantified. In the wild type, CF supplementation significantly modified whole-body metabolism by promoting carbohydrate use and improved glucose tolerance. CF supplementation induced a significant increase of mitochondrial mass, while significant qualitative adaptation occurred to maintain H2O2 production and cellular oxidative stress. CF supplementation induced a significant increase in NAD+ and NADH content. All the effects mentioned above were blunted in Sirt3-/- mice. Collectively, CF supplementation boosted the NAD metabolism that stimulates sirtuins metabolism and improved mitochondrial function, which likely contributed to the observed whole-body metabolism adaptation, with a greater ability to use carbohydrates, at least partially through Sirt3.
Collapse
Affiliation(s)
- Frédéric Nicolas Daussin
- ULR 7369—URePSSS—Unité de Recherche Pluridisciplinaire Sport Santé Société, University Lille, University Artois, University Littoral Côte d’Opale, F-59000 Lille, France; (S.B.); (E.H.)
- Correspondence: ; Tel.: +33-(0)3-20-00-73-69
| | - Alexane Cuillerier
- Interdisciplinary School of Health Sciences and Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (A.C.); (A.A.R.); (G.V.); (K.J.M.); (Y.B.)
| | - Julianne Touron
- INRAE, UMR1019, Unité de Nutrition Humaine (UNH), Équipe ASMS, Université Clermont Auvergne, 63001 Clermont-Ferrand, France;
| | - Samir Bensaid
- ULR 7369—URePSSS—Unité de Recherche Pluridisciplinaire Sport Santé Société, University Lille, University Artois, University Littoral Côte d’Opale, F-59000 Lille, France; (S.B.); (E.H.)
| | - Bruno Melo
- Department of Physical Education, Exercise Physiology Laboratory, Federal University of Minas Gerais, Belo Horizonte, MG 31270-901, Brazil;
| | - Ali Al Rewashdy
- Interdisciplinary School of Health Sciences and Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (A.C.); (A.A.R.); (G.V.); (K.J.M.); (Y.B.)
| | - Goutham Vasam
- Interdisciplinary School of Health Sciences and Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (A.C.); (A.A.R.); (G.V.); (K.J.M.); (Y.B.)
| | - Keir J. Menzies
- Interdisciplinary School of Health Sciences and Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (A.C.); (A.A.R.); (G.V.); (K.J.M.); (Y.B.)
- Department of Biochemistry Microbiology and Immunology, Faculty of Medicine, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada;
| | - Mary-Ellen Harper
- Department of Biochemistry Microbiology and Immunology, Faculty of Medicine, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada;
| | - Elsa Heyman
- ULR 7369—URePSSS—Unité de Recherche Pluridisciplinaire Sport Santé Société, University Lille, University Artois, University Littoral Côte d’Opale, F-59000 Lille, France; (S.B.); (E.H.)
| | - Yan Burelle
- Interdisciplinary School of Health Sciences and Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (A.C.); (A.A.R.); (G.V.); (K.J.M.); (Y.B.)
| |
Collapse
|
6
|
Mukherjee S, Haubner J, Chakraborty A. Targeting the Inositol Pyrophosphate Biosynthetic Enzymes in Metabolic Diseases. Molecules 2020; 25:molecules25061403. [PMID: 32204420 PMCID: PMC7144392 DOI: 10.3390/molecules25061403] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 12/12/2022] Open
Abstract
In mammals, a family of three inositol hexakisphosphate kinases (IP6Ks) synthesizes the inositol pyrophosphate 5-IP7 from IP6. Genetic deletion of Ip6k1 protects mice from high fat diet induced obesity, insulin resistance and fatty liver. IP6K1 generated 5-IP7 promotes insulin secretion from pancreatic β-cells, whereas it reduces insulin signaling in metabolic tissues by inhibiting the protein kinase Akt. Thus, IP6K1 promotes high fat diet induced hyperinsulinemia and insulin resistance in mice while its deletion has the opposite effects. IP6K1 also promotes fat accumulation in the adipose tissue by inhibiting the protein kinase AMPK mediated energy expenditure. Genetic deletion of Ip6k3 protects mice from age induced fat accumulation and insulin resistance. Accordingly, the pan IP6K inhibitor TNP [N2-(m-trifluorobenzyl), N6-(p-nitrobenzyl)purine] ameliorates obesity, insulin resistance and fatty liver in diet induced obese mice by improving Akt and AMPK mediated insulin sensitivity and energy expenditure. TNP also protects mice from bone loss, myocardial infarction and ischemia reperfusion injury. Thus, the IP6K pathway is a potential target in obesity and other metabolic diseases. Here, we summarize the studies that established IP6Ks as a potential target in metabolic diseases. Further studies will reveal whether inhibition of this pathway has similar pleiotropic benefits on metabolic health of humans.
Collapse
|
7
|
Ma Y, Wang W, Devarakonda T, Zhou H, Wang XY, Salloum FN, Spiegel S, Fang X. Functional analysis of molecular and pharmacological modulators of mitochondrial fatty acid oxidation. Sci Rep 2020; 10:1450. [PMID: 31996743 PMCID: PMC6989517 DOI: 10.1038/s41598-020-58334-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 01/13/2020] [Indexed: 01/02/2023] Open
Abstract
Fatty acid oxidation (FAO) is a key bioenergetic pathway often dysregulated in diseases. The current knowledge on FAO regulators in mammalian cells is limited and sometimes controversial. Previous FAO analyses involve nonphysiological culture conditions or lack adequate quantification. We herein described a convenient and quantitative assay to monitor dynamic FAO activities of mammalian cells in physiologically relevant settings. The method enabled us to assess various molecular and pharmacological modulators of the FAO pathway in established cell lines, primary cells and mice. Surprisingly, many previously proposed FAO inhibitors such as ranolazine and trimetazidine lacked FAO-interfering activity. In comparison, etomoxir at low micromolar concentrations was sufficient to saturate its target proteins and to block cellular FAO function. Oxfenicine, on the other hand, acted as a partial inhibitor of FAO. As another class of FAO inhibitors that transcriptionally repress FAO genes, antagonists of peroxisome proliferator-activated receptors (PPARs), particularly that of PPARα, significantly decreased cellular FAO activity. Our assay also had sufficient sensitivity to monitor upregulation of FAO in response to environmental glucose depletion and other energy-demanding cues. Altogether this study provided a reliable FAO assay and a clear picture of biological properties of potential FAO modulators in the mammalian system.
Collapse
Affiliation(s)
- Yibao Ma
- Departments of Biochemistry & Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, 23298, USA
| | - Wei Wang
- Departments of Biochemistry & Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, 23298, USA
| | - Teja Devarakonda
- Internal Medicine/Cardiology Pauley Heart Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, 23298, USA
| | - Huiping Zhou
- Microbiology & Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, 23298, USA
| | - Xiang-Yang Wang
- Human & Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, Virginia, 23298, USA
| | - Fadi N Salloum
- Internal Medicine/Cardiology Pauley Heart Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, 23298, USA
| | - Sarah Spiegel
- Departments of Biochemistry & Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, 23298, USA
| | - Xianjun Fang
- Departments of Biochemistry & Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, 23298, USA.
| |
Collapse
|
8
|
11-β-hydroxysterols as possible endogenous stimulators of mitochondrial biogenesis as inferred from epicatechin molecular mimicry. Pharmacol Res 2020; 151:104540. [DOI: 10.1016/j.phrs.2019.104540] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 11/05/2019] [Accepted: 11/09/2019] [Indexed: 11/20/2022]
|
9
|
Auger C, Knuth CM, Abdullahi A, Samadi O, Parousis A, Jeschke MG. Metformin prevents the pathological browning of subcutaneous white adipose tissue. Mol Metab 2019; 29:12-23. [PMID: 31668383 PMCID: PMC6728757 DOI: 10.1016/j.molmet.2019.08.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/02/2019] [Accepted: 08/12/2019] [Indexed: 12/13/2022] Open
Abstract
Objective Browning, the conversion of white adipose tissue (WAT) to a beige phenotype, has gained interest as a strategy to induce weight loss and improve insulin resistance in metabolic disorders. However, for hypermetabolic conditions stemming from burn trauma or cancer cachexia, browning is thought to contribute to energy wasting and supraphysiological nutritional requirements. Metformin's impact on this phenomenon and underlying mechanisms have not been explored. Methods We used both a murine burn model and human ex vivo adipose explants to assess metformin and 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR)'s effects on the development of subcutaneous beige adipose. Enzymes involved in fat homeostasis and browning, as well as mitochondrial dynamics, were assessed to determine metformin's effects. Results Treatment with the biguanide metformin lowers lipolysis in beige fat by inducing protein phosphatase 2A (PP2A) independently of adenosine monophosphate kinase (AMPK) activation. Increased PP2A activity catalyzes the dephosphorylation of acetyl-CoA carboxylase (Ser 79) and hormone sensitive lipase (Ser 660), thus promoting fat storage and the “whitening” of otherwise lipolytic beige adipocytes. Moreover, co-incubation of metformin with the PP2A inhibitor okadaic acid countered the anti-lipolytic effects of this biguanide in human adipose. Additionally, we show that metformin does not activate this pathway in the WAT of control mice and that AICAR sustains the browning of white adipose, offering further evidence that metformin acts independently of this cellular energy sensor. Conclusions This work provides novel insights into the mechanistic underpinnings of metformin's therapeutic benefits and potential as an agent to reduce the lipotoxicity associated with hypermetabolism and adipose browning. Metformin prevents the catabolism of murine iWAT tissue post-burn injury. Mitochondrial respiration and uncoupling in adipose are decreased by metformin. Metformin, independently of AMPK, reduces adipose lipolysis and β-oxidation via PP2A. AICAR treatment activates AMPK in peripheral adipose leading to sustained browning. PP2A is directly induced by metformin in scWAT, lowering ACC/HSL phosphorylation.
Collapse
Affiliation(s)
- Christopher Auger
- Ross Tilley Burn Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, M4N 3M5, Canada
| | - Carly M Knuth
- University of Toronto, Toronto, Ontario, M5S 1A1, Canada
| | | | - Osai Samadi
- University of Toronto, Toronto, Ontario, M5S 1A1, Canada
| | - Alexandra Parousis
- Ross Tilley Burn Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, M4N 3M5, Canada
| | - Marc G Jeschke
- Ross Tilley Burn Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, M4N 3M5, Canada; University of Toronto, Toronto, Ontario, M5S 1A1, Canada.
| |
Collapse
|
10
|
Le DDT, Jung S, Quynh NTN, Sandag Z, Lee BS, Kim S, Lee H, Lee H, Lee MS. Inhibitory role of AMP‑activated protein kinase in necroptosis of HCT116 colon cancer cells with p53 null mutation under nutrient starvation. Int J Oncol 2018; 54:702-712. [PMID: 30431068 DOI: 10.3892/ijo.2018.4634] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 10/12/2018] [Indexed: 11/06/2022] Open
Abstract
Simultaneous induction of other types of programmed cell death, alongside apoptosis, in cancer cells may be considered an attractive strategy for the development of more effective anticancer therapies. The present study aimed to investigate the role of AMP‑activated protein kinase (AMPK) in nutrient/serum starvation‑induced necroptosis, which is a programmed form of necrosis, in the presence or absence of p53. The present study detected higher cell proliferation and lower cell death rates in the HCT116 human colon cancer cell line containing a p53 null mutation (HCT116 p53‑/‑) compared with in HCT116 cells harboring wild‑type p53 (HCT116 p53+/+), as determined using a cell viability assay. Notably, western blot analysis revealed a relatively lower level of necroptosis in HCT116 p53‑/‑ cells compared with in HCT116 p53+/+ cells. Investigating the mechanism, it was revealed that necroptosis may be induced in HCT116 p53+/+ cells by significantly increasing reactive oxygen species (ROS) and decreasing mitochondrial membrane potential (MMP), whereas little alterations were detected in HCT116 p53‑/‑ cells. Unexpectedly, a much lower level of ATP was detected in HCT116 p53‑/‑ cells compared with in HCT116 p53+/+ cells. Accordingly, AMPK phosphorylation on the Thr172 residue was markedly increased in HCT116 p53‑/‑ cells. Furthermore, western blot analysis and ROS measurements indicated that AMPK inhibition, using dorsomorphin dihydrochloride, accelerated necroptosis by increasing ROS generation in HCT116 p53‑/‑ cells. However, AMPK activation by AICAR did not suppress necroptosis in HCT116 p53+/+ cells. In conclusion, these data strongly suggested that AMPK activation may be enhanced in HCT116 p53‑/‑ cells under serum‑depleted conditions via a drop in cellular ATP levels. In addition, activated AMPK may be at least partially responsible for the inhibition of necroptosis in HCT116 p53‑/‑ cells, but not in HCT116 p53+/+cells.
Collapse
Affiliation(s)
- Dan-Diem Thi Le
- Department of Biological Science, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Samil Jung
- Department of Biological Science, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Nguyen Thi Ngoc Quynh
- Department of Biological Science, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Zolzaya Sandag
- Department of Biological Science, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Beom Suk Lee
- Department of Biological Science, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Subeen Kim
- Department of Biological Science, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Hyegyeong Lee
- Department of Biological Science, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Hyojeong Lee
- Department of Biological Science, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Myeong-Sok Lee
- Department of Biological Science, Sookmyung Women's University, Seoul 04310, Republic of Korea
| |
Collapse
|
11
|
Kjøbsted R, Hingst JR, Fentz J, Foretz M, Sanz MN, Pehmøller C, Shum M, Marette A, Mounier R, Treebak JT, Wojtaszewski JFP, Viollet B, Lantier L. AMPK in skeletal muscle function and metabolism. FASEB J 2018; 32:1741-1777. [PMID: 29242278 PMCID: PMC5945561 DOI: 10.1096/fj.201700442r] [Citation(s) in RCA: 275] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Skeletal muscle possesses a remarkable ability to adapt to various physiologic conditions. AMPK is a sensor of intracellular energy status that maintains energy stores by fine-tuning anabolic and catabolic pathways. AMPK’s role as an energy sensor is particularly critical in tissues displaying highly changeable energy turnover. Due to the drastic changes in energy demand that occur between the resting and exercising state, skeletal muscle is one such tissue. Here, we review the complex regulation of AMPK in skeletal muscle and its consequences on metabolism (e.g., substrate uptake, oxidation, and storage as well as mitochondrial function of skeletal muscle fibers). We focus on the role of AMPK in skeletal muscle during exercise and in exercise recovery. We also address adaptations to exercise training, including skeletal muscle plasticity, highlighting novel concepts and future perspectives that need to be investigated. Furthermore, we discuss the possible role of AMPK as a therapeutic target as well as different AMPK activators and their potential for future drug development.—Kjøbsted, R., Hingst, J. R., Fentz, J., Foretz, M., Sanz, M.-N., Pehmøller, C., Shum, M., Marette, A., Mounier, R., Treebak, J. T., Wojtaszewski, J. F. P., Viollet, B., Lantier, L. AMPK in skeletal muscle function and metabolism.
Collapse
Affiliation(s)
- Rasmus Kjøbsted
- Section of Molecular Physiology, Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Janne R Hingst
- Section of Molecular Physiology, Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Joachim Fentz
- Section of Molecular Physiology, Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Marc Foretz
- INSERM, Unité 1016, Institut Cochin, Paris, France.,Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Maria-Nieves Sanz
- Department of Cardiovascular Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland, and.,Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Christian Pehmøller
- Internal Medicine Research Unit, Pfizer Global Research and Development, Cambridge, Massachusetts, USA
| | - Michael Shum
- Axe Cardiologie, Quebec Heart and Lung Research Institute, Laval University, Québec, Canada.,Institute for Nutrition and Functional Foods, Laval University, Québec, Canada
| | - André Marette
- Axe Cardiologie, Quebec Heart and Lung Research Institute, Laval University, Québec, Canada.,Institute for Nutrition and Functional Foods, Laval University, Québec, Canada
| | - Remi Mounier
- Institute NeuroMyoGène, Université Claude Bernard Lyon 1, INSERM Unité 1217, CNRS UMR, Villeurbanne, France
| | - Jonas T Treebak
- Section of Integrative Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jørgen F P Wojtaszewski
- Section of Molecular Physiology, Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Benoit Viollet
- INSERM, Unité 1016, Institut Cochin, Paris, France.,Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Louise Lantier
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA.,Mouse Metabolic Phenotyping Center, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
12
|
Crisóstomo L, Alves MG, Gorga A, Sousa M, Riera MF, Galardo MN, Meroni SB, Oliveira PF. Molecular Mechanisms and Signaling Pathways Involved in the Nutritional Support of Spermatogenesis by Sertoli Cells. Methods Mol Biol 2018; 1748:129-155. [PMID: 29453570 DOI: 10.1007/978-1-4939-7698-0_11] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Sertoli cells play a central role in spermatogenesis. They maintain the blood-testis barrier, an essential feature of seminiferous tubules which creates the proper environment for the occurrence of the spermatogenesis. However, this confinement renders germ cells almost exclusively dependent on Sertoli cells' nursing function and support. Throughout spermatogenesis, differentiating sperm cells become more specialized, and their biochemical machinery is insufficient to meet their metabolic demands. Although the needs are not the same at all differentiation stages, Sertoli cells are able to satisfy their needs. In order to maintain the seminiferous tubule energetic homeostasis, Sertoli cells react in response to several metabolic stimuli, through signaling cascades. The AMP-activated kinase, sensitive to the global energetic status; the hypoxia-inducible factors, sensitive to oxygen concentration; and the peroxisome proliferator-activated receptors, sensitive to fatty acid availability, are pathways already described in Sertoli cells. These cells' metabolism also reflects the whole-body metabolic dynamics. Metabolic diseases, including obesity and type II diabetes mellitus, induce changes that, both directly and indirectly, affect Sertoli cell function and, ultimately, (dys)function in male reproductive health. Insulin resistance, increased estrogen synthesis, vascular disease, and pubic fat accumulation are examples of metabolic-related conditions that affect male fertility potential. On the other hand, malnutrition can also induce negative effects on male sexual function. In this chapter, we review the molecular mechanisms associated with the nutritional state and male sexual (dys)function and the central role played by the Sertoli cells.
Collapse
Affiliation(s)
- Luís Crisóstomo
- Unit for Multidisciplinary Research in Biomedicine (UMIB), Laboratory of Cell Biology, Department of Microscopy, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
- Department of Genetics, Faculty of Medicine (FMUP), University of Porto, Porto, Portugal
- i3S-Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
| | - Marco G Alves
- Unit for Multidisciplinary Research in Biomedicine (UMIB), Laboratory of Cell Biology, Department of Microscopy, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Agostina Gorga
- CONICET-FEI-División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Centro de Investigaciones Endocrinológicas "Dr César Bergadá", Ciudad Autónoma de Buenos Aires, Argentina
| | - Mário Sousa
- Unit for Multidisciplinary Research in Biomedicine (UMIB), Laboratory of Cell Biology, Department of Microscopy, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
- Centre for Reproductive Genetics Prof. Alberto Barros, Porto, Portugal
| | - María F Riera
- CONICET-FEI-División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Centro de Investigaciones Endocrinológicas "Dr César Bergadá", Ciudad Autónoma de Buenos Aires, Argentina
| | - María N Galardo
- CONICET-FEI-División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Centro de Investigaciones Endocrinológicas "Dr César Bergadá", Ciudad Autónoma de Buenos Aires, Argentina
| | - Silvina B Meroni
- CONICET-FEI-División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Centro de Investigaciones Endocrinológicas "Dr César Bergadá", Ciudad Autónoma de Buenos Aires, Argentina.
| | - Pedro F Oliveira
- Department of Microscopy, Laboratory of Cell Biology and Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal.
- Department of Genetics, Faculty of Medicine, University of Porto, Porto, Portugal.
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal.
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Bari, Italy.
| |
Collapse
|
13
|
Dong S, Baranwal S, Garcia A, Serrano-Gomez SJ, Eastlack S, Iwakuma T, Mercante D, Mauvais-Jarvis F, Alahari SK. Nischarin inhibition alters energy metabolism by activating AMP-activated protein kinase. J Biol Chem 2017; 292:16833-16846. [PMID: 28842496 DOI: 10.1074/jbc.m117.784256] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 08/22/2017] [Indexed: 11/06/2022] Open
Abstract
Nischarin (Nisch) is a key protein functioning as a molecular scaffold and thereby hosting interactions with several protein partners. To explore the physiological importance of Nisch, here we generated Nisch loss-of-function mutant mice and analyzed their metabolic phenotype. Nisch-mutant embryos exhibited delayed development, characterized by small size and attenuated weight gain. We uncovered the reason for this phenotype by showing that Nisch binds to and inhibits the activity of AMP-activated protein kinase (AMPK), which regulates energy homeostasis by suppressing anabolic and activating catabolic processes. The Nisch mutations enhanced AMPK activation and inhibited mechanistic target of rapamycin signaling in mouse embryonic fibroblasts as well as in muscle and liver tissues of mutant mice. Nisch-mutant mice also exhibited increased rates of glucose oxidation with increased energy expenditure, despite reduced overall food intake. Moreover, the Nisch-mutant mice had reduced expression of liver markers of gluconeogenesis associated with increased glucose tolerance. As a result, these mice displayed decreased growth and body weight. Taken together, our results indicate that Nisch is an important AMPK inhibitor and a critical regulator of energy homeostasis, including lipid and glucose metabolism.
Collapse
Affiliation(s)
- Shengli Dong
- From the Department of Biochemistry and Molecular Biology, School of Medicine, and
| | - Somesh Baranwal
- From the Department of Biochemistry and Molecular Biology, School of Medicine, and.,the Center for Biochemistry and Microbial Sciences, Central University of Punjab, City Campus Mansa Rd., Bathinda-151001, India
| | - Anapatricia Garcia
- the Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia 30322
| | - Silvia J Serrano-Gomez
- From the Department of Biochemistry and Molecular Biology, School of Medicine, and.,the Pontificia Universidad Javeriana, 11001000 Bogotá, Colombia
| | - Steven Eastlack
- From the Department of Biochemistry and Molecular Biology, School of Medicine, and
| | - Tomoo Iwakuma
- the Department of Cancer Biology, Kansas University Medical Center, Kansas City, Kansas 66160, and
| | - Donald Mercante
- Department of Biostatistics, School of Public Health, Louisiana State University Health Science Center, New Orleans, Louisiana 70112
| | - Franck Mauvais-Jarvis
- the Division of Endocrinology, Tulane University School of Medicine, New Orleans, Louisiana 70112
| | - Suresh K Alahari
- From the Department of Biochemistry and Molecular Biology, School of Medicine, and
| |
Collapse
|
14
|
Wong JKY, Kwok WH, Chan GHM, Choi TLS, Ho ENM, Jaubert M, Bailly-Chouriberry L, Bonnaire Y, Cawley A, Ming Williams H, Keledjian J, Brooks L, Chambers A, Lin Y, Wan TSM. Doping control study of AICAR in post-race urine and plasma samples from horses. Drug Test Anal 2017; 9:1363-1371. [PMID: 28407446 DOI: 10.1002/dta.2205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 03/31/2017] [Accepted: 04/06/2017] [Indexed: 11/06/2022]
Abstract
Acadesine, 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside, commonly known as AICAR, is a naturally occurring adenosine monophosphate-activated protein kinase (AMPK) activator in many mammals, including humans and horses. AICAR has attracted considerable attention recently in the field of doping control because of a study showing the enhancement of endurance performance in unexercised or untrained mice, resulting in the term 'exercise pill'. Its use has been classified as gene doping by the World Anti-Doping Agency (WADA), and since it is endogenous, it may only be possible to control deliberate administration of AICAR to racehorses after establishment of an appropriate threshold. Herein we report our studies of AICAR in post-race equine urine and plasma samples including statistical studies of AICAR concentrations determined from 1,470 urine samples collected from thoroughbreds and standardbreds and analyzed in Australia, France, and Hong Kong. Quantification methods in equine urine and plasma using liquid chromatography-mass spectrometry were developed by the laboratories in each country. An exchange of spiked urine and plasma samples between the three countries was conducted, confirming no significant differences in the methods. However, the concentration of AICAR in plasma was found to increase upon haemolysis of whole blood samples, impeding the establishment of a suitable threshold in equine plasma. A possible urine screening cut-off at 600 ng/mL for the control of AICAR in racehorses could be considered for adoption. Application of the proposed screening cut-off to urine samples collected after intravenous administration of a small dose (2 g) of AICAR to a mare yielded a short detection time of approximately 4.5 h. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Jenny K Y Wong
- Racing Laboratory, The Hong Kong Jockey Club, Sha Tin Racecourse, Sha Tin, N.T, Hong Kong, China
| | - Wai Him Kwok
- Racing Laboratory, The Hong Kong Jockey Club, Sha Tin Racecourse, Sha Tin, N.T, Hong Kong, China
| | - George H M Chan
- Racing Laboratory, The Hong Kong Jockey Club, Sha Tin Racecourse, Sha Tin, N.T, Hong Kong, China
| | - Timmy L S Choi
- Racing Laboratory, The Hong Kong Jockey Club, Sha Tin Racecourse, Sha Tin, N.T, Hong Kong, China
| | - Emmie N M Ho
- Racing Laboratory, The Hong Kong Jockey Club, Sha Tin Racecourse, Sha Tin, N.T, Hong Kong, China
| | - Murielle Jaubert
- Laboratoire des Courses Hippiques, 15 rue de Paradis, 91370, Verrieres le Buisson, France
| | | | - Yves Bonnaire
- Laboratoire des Courses Hippiques, 15 rue de Paradis, 91370, Verrieres le Buisson, France
| | - Adam Cawley
- Australian Racing Forensic Laboratory, Racing NSW, Sydney, NSW, 2000, Australia
| | - H Ming Williams
- Australian Racing Forensic Laboratory, Racing NSW, Sydney, NSW, 2000, Australia
| | - John Keledjian
- Australian Racing Forensic Laboratory, Racing NSW, Sydney, NSW, 2000, Australia
| | - Lydia Brooks
- Canadian Pari-Mutuel Agency, 1130 Morrison Dr. Suite 101, Ottawa, Ontario, K2H 9N6, Canada
| | - Adam Chambers
- Equine Drug Evaluation Centre, Canadian Pari-Mutuel Agency, 115 Sunnyridge, RR#1, Jerseyville, Ontario, L0R 1R0, Canada
| | - Yuanyuan Lin
- Department of Statistics, The Chinese University of Hong Kong, Sha Tin, N.T, Hong Kong, China
| | - Terence S M Wan
- Racing Laboratory, The Hong Kong Jockey Club, Sha Tin Racecourse, Sha Tin, N.T, Hong Kong, China
| |
Collapse
|
15
|
Zhu Q, Ghoshal S, Tyagi R, Chakraborty A. Global IP6K1 deletion enhances temperature modulated energy expenditure which reduces carbohydrate and fat induced weight gain. Mol Metab 2016; 6:73-85. [PMID: 28123939 PMCID: PMC5220553 DOI: 10.1016/j.molmet.2016.11.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 11/15/2016] [Accepted: 11/23/2016] [Indexed: 01/27/2023] Open
Abstract
OBJECTIVE IP6 kinases (IP6Ks) regulate cell metabolism and survival. Mice with global (IP6K1-KO) or adipocyte-specific (AdKO) deletion of IP6K1 are protected from diet induced obesity (DIO) at ambient (23 °C) temperature. AdKO mice are lean primarily due to increased AMPK mediated thermogenic energy expenditure (EE). Thus, at thermoneutral (30 °C) temperature, high fat diet (HFD)-fed AdKO mice expend energy and gain body weight, similar to control mice. IP6K1 is ubiquitously expressed; thus, it is critical to determine to what extent the lean phenotype of global IP6K1-KO mice depends on environmental temperature. Furthermore, it is not known whether IP6K1 regulates AMPK mediated EE in cells, which do not express UCP1. METHODS Q-NMR, GTT, food intake, EE, QRT-PCR, histology, mitochondrial oxygen consumption rate (OCR), fatty acid metabolism assays, and immunoblot studies were conducted in IP6K1-KO and WT mice or cells. RESULTS Global IP6K1 deletion mediated enhancement in EE is impaired albeit not abolished at 30 °C. As a result, IP6K1-KO mice are protected from DIO, insulin resistance, and fatty liver even at 30 °C. Like AdKO, IP6K1-KO mice display enhanced adipose tissue browning. However, unlike AdKO mice, thermoneutrality only partly abolishes browning in IP6K1-KO mice. Cold (5 °C) exposure enhances carbohydrate expenditure, whereas 23 °C and 30 °C promote fat oxidation in HFD-KO mice. Furthermore, IP6K1 deletion diminishes cellular fat accumulation via activation of the AMPK signaling pathway. CONCLUSIONS Global deletion of IP6K1 ameliorates obesity and insulin resistance irrespective of the environmental temperature conditions, which strengthens its validity as an anti-obesity target.
Collapse
Affiliation(s)
- Qingzhang Zhu
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Sarbani Ghoshal
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Richa Tyagi
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Anutosh Chakraborty
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, FL, 33458, USA.
| |
Collapse
|
16
|
Zhu Q, Ghoshal S, Rodrigues A, Gao S, Asterian A, Kamenecka TM, Barrow JC, Chakraborty A. Adipocyte-specific deletion of Ip6k1 reduces diet-induced obesity by enhancing AMPK-mediated thermogenesis. J Clin Invest 2016; 126:4273-4288. [PMID: 27701146 DOI: 10.1172/jci85510] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 08/29/2016] [Indexed: 12/15/2022] Open
Abstract
Enhancing energy expenditure (EE) is an attractive strategy to combat obesity and diabetes. Global deletion of Ip6k1 protects mice from diet-induced obesity (DIO) and insulin resistance, but the tissue-specific mechanism by which IP6K1 regulates body weight is unknown. Here, we have demonstrated that IP6K1 regulates fat accumulation by modulating AMPK-mediated adipocyte energy metabolism. Cold exposure led to downregulation of Ip6k1 in murine inguinal and retroperitoneal white adipose tissue (IWAT and RWAT) depots. Adipocyte-specific deletion of Ip6k1 (AdKO) enhanced thermogenic EE, which protected mice from high-fat diet-induced weight gain at ambient temperature (23°C), but not at thermoneutral temperature (30°C). AdKO-induced increases in thermogenesis also protected mice from cold-induced decreases in body temperature. UCP1, PGC1α, and other markers of browning and thermogenesis were elevated in IWAT and RWAT of AdKO mice. Cold-induced activation of sympathetic signaling was unaltered, whereas AMPK was enhanced, in AdKO IWAT. Moreover, beige adipocytes from AdKO IWAT displayed enhanced browning, which was diminished by AMPK depletion. Furthermore, we determined that IP6 and IP6K1 differentially regulate upstream kinase-mediated AMPK stimulatory phosphorylation in vitro. Finally, treating mildly obese mice with the IP6K inhibitor TNP enhanced thermogenesis and inhibited progression of DIO. Thus, IP6K1 regulates energy metabolism via a mechanism that could potentially be targeted in obesity.
Collapse
|
17
|
Long-term treatment with nicotinamide induces glucose intolerance and skeletal muscle lipotoxicity in normal chow-fed mice: compared to diet-induced obesity. J Nutr Biochem 2016; 36:31-41. [PMID: 27567590 DOI: 10.1016/j.jnutbio.2016.07.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 05/06/2016] [Accepted: 07/05/2016] [Indexed: 12/11/2022]
Abstract
Nicotinamide (NAM), or vitamin B3, is an essential coenzyme for ATP synthesis and an inhibitor of sirtuin 1. Recently, conflicting results were reported regarding the treatment of NAM in type 2 diabetes and obesity. The aim of this study was to determine whether and how long-term treatment with NAM at lower dose would affect insulin sensitivity in mice fed chow diet. We treated mice with NAM (100 mg/kg/day) and normal chow for 8 weeks. Strikingly, NAM induced glucose intolerance and skeletal muscle lipid accumulation in nonobese mice. NAM impaired mitochondrial respiration capacity and energy production in skeletal muscle, in combination with increased expression of the mediators for mitophagy (p62, PINK1, PARK2 and NIX) and autophagy (FOXO3, Bnip3, CTSL, Beclin1 and LC-3b). Next, we treated mice with high-fat diet (HFD) and resveratrol (RSV; 100 mg/kg/day) for 8 weeks. RSV protected against HFD-induced insulin resistance and obesity. HFD increased skeletal muscle lipid content as well as NAM, but this increase was attenuated by RSV. In contrast to NAM, HFD enhanced fatty acid oxidative capacity. Muscle transcript levels of genes for mitophagy and autophagy were largely suppressed by HFD, whereas RSV did not rescue these effects. These differences suggest that skeletal muscle autophagy may represent adaptive response to NAM-induced lipotoxicity, whereas reduced autophagy in skeletal muscle may promote HFD-induced lipotoxicity. Our results demonstrate that chronic NAM supplementation in healthy individuals, although at lower dose than previously reported, is still detrimental to glucose homeostasis and skeletal muscle lipid metabolism.
Collapse
|
18
|
Gudiksen A, Schwartz CL, Bertholdt L, Joensen E, Knudsen JG, Pilegaard H. Lack of Skeletal Muscle IL-6 Affects Pyruvate Dehydrogenase Activity at Rest and during Prolonged Exercise. PLoS One 2016; 11:e0156460. [PMID: 27327080 PMCID: PMC4915712 DOI: 10.1371/journal.pone.0156460] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 05/13/2016] [Indexed: 12/12/2022] Open
Abstract
Pyruvate dehydrogenase (PDH) plays a key role in the regulation of skeletal muscle substrate utilization. IL-6 is produced in skeletal muscle during exercise in a duration dependent manner and has been reported to increase whole body fatty acid oxidation, muscle glucose uptake and decrease PDHa activity in skeletal muscle of fed mice. The aim of the present study was to examine whether muscle IL-6 contributes to exercise-induced PDH regulation in skeletal muscle. Skeletal muscle-specific IL-6 knockout (IL-6 MKO) mice and floxed littermate controls (control) completed a single bout of treadmill exercise for 10, 60 or 120 min, with rested mice of each genotype serving as basal controls. The respiratory exchange ratio (RER) was overall higher (P<0.05) in IL-6 MKO than control mice during the 120 min of treadmill exercise, while RER decreased during exercise independent of genotype. AMPK and ACC phosphorylation also increased with exercise independent of genotype. PDHa activity was in control mice higher (P<0.05) at 10 and 60 min of exercise than at rest but remained unchanged in IL-6 MKO mice. In addition, PDHa activity was higher (P<0.05) in IL-6 MKO than control mice at rest and 60 min of exercise. Neither PDH phosphorylation nor acetylation could explain the genotype differences in PDHa activity. Together, this provides evidence that skeletal muscle IL-6 contributes to the regulation of PDH at rest and during prolonged exercise and suggests that muscle IL-6 normally dampens carbohydrate utilization during prolonged exercise via effects on PDH.
Collapse
Affiliation(s)
- Anders Gudiksen
- Section for cell biology and physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- * E-mail:
| | - Camilla Lindgren Schwartz
- Section for cell biology and physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Lærke Bertholdt
- Section for cell biology and physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Ella Joensen
- Section for cell biology and physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Jakob G. Knudsen
- Section for cell biology and physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Henriette Pilegaard
- Section for cell biology and physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
19
|
Lin Y, Chen J, Sun Z. Antiaging Gene Klotho Deficiency Promoted High-Fat Diet-Induced Arterial Stiffening via Inactivation of AMP-Activated Protein Kinase. Hypertension 2016; 67:564-73. [PMID: 26781278 DOI: 10.1161/hypertensionaha.115.06825] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 12/24/2015] [Indexed: 12/21/2022]
Abstract
Klotho was originally discovered as an aging-suppressor gene. The objective of this study is to investigate whether klotho gene deficiency affects high-fat diet (HFD)-induced arterial stiffening. Heterozygous Klotho-deficient (KL(+/-)) mice and WT littermates were fed on HFD or normal diet. HFD increased pulse wave velocity within 5 weeks in KL(+/-) mice but not in wild-type mice, indicating that klotho deficiency accelerates and exacerbates HFD-induced arterial stiffening. A greater increase in blood pressure was found in KL(+/-) mice fed on HFD. Protein expressions of phosphorylated AMP-activated protein kinase-α (AMPKα), phosphorylated endothelial nitric oxide synthase (eNOS), and manganese-dependent superoxide dismutase (Mn-SOD) were decreased, whereas protein expressions of collagen I, transforming growth factor-β1, and Runx2 were increased in aortas of KL(+/-) mice fed on HFD. Interestingly, daily injections of an AMPKα activator, 5-aminoimidazole-4-carboxamide-3-ribonucleoside, abolished the increases in pulse wave velocity, blood pressure, and blood glucose in KL(+/-) mice fed on HFD. Treatment with 5-aminoimidazole-4-carboxamide-3-ribonucleoside for 2 weeks not only abolished the downregulation of phosphorylated AMPKα, phosphorylated eNOS, and Mn-SOD levels but also attenuated the increased levels of collagen I, transforming growth factor-β1, Runx2, superoxide, elastic lamellae breaks, and calcification in aortas of KL(+/-) mice fed on HFD. In cultured mouse aortic smooth muscle cells, cholesterol plus KL-deficient serum decreased phosphorylation levels of AMPKα and LKB1 (an important upstream regulator of AMPKα activity) but increased collagen I synthesis, which can be eliminated by activation of AMPKα by 5-aminoimidazole-4-carboxamide-3-ribonucleoside. In conclusions, Klotho deficiency promoted HFD-induced arterial stiffening and hypertension via downregulation of AMPKα activity.
Collapse
Affiliation(s)
- Yi Lin
- From the Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center
| | - Jianglei Chen
- From the Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center
| | - Zhongjie Sun
- From the Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center.
| |
Collapse
|
20
|
Zeng HL, Huang SL, Xie FC, Zeng LM, Hu YH, Leng Y. Yhhu981, a novel compound, stimulates fatty acid oxidation via the activation of AMPK and ameliorates lipid metabolism disorder in ob/ob mice. Acta Pharmacol Sin 2015; 36:343-52. [PMID: 25732571 DOI: 10.1038/aps.2014.147] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 12/08/2014] [Indexed: 02/07/2023] Open
Abstract
AIM Defects in fatty acid metabolism contribute to the pathogenesis of insulin resistance and obesity. In this study, we investigated the effects of a novel compound yhhu981 on fatty acid metabolism in vitro and in vivo. METHODS The capacity to stimulate fatty acid oxidation was assessed in C2C12 myotubes. The fatty acid synthesis was studied in HepG2 cells using isotope tracing. The phosphorylation of AMPK and acetyl-CoA carboxylase (ACC) was examined with Western blot analysis. For in vivo experiments, ob/ob mice were orally treated with yhhu981 acutely (300 mg/kg) or chronically (150 or 300 mg·kg(-1)·d(-1) for 22 d). On the last day of treatment, serum and tissue samples were collected for analysis. RESULTS Yhhu981 (12.5-25 μmol/L) significantly increased fatty acid oxidation and the expression of related genes (Sirt1, Pgc1α and Mcad) in C2C12 myotubes, and inhibited fatty acid synthesis in HepG2 cells. Furthermore, yhhu981 dose-dependently increased the phosphorylation of AMPK and ACC in both C2C12 myotubes and HepG2 cells. Compound C, an AMPK inhibitor, blocked fatty acid oxidation in yhhu981-treated C2C12 myotubes and fatty acid synthesis decrease in yhhu981-treated HepG2 cells. Acute administration of yhhu981 decreased the respiratory exchange ratio in ob/ob mice, whereas chronic treatment with yhhu981 ameliorated the lipid abnormalities and ectopic lipid deposition in skeletal muscle and liver of ob/ob mice. CONCLUSION Yhhu981 is a potent compound that stimulates fatty acid oxidation, and exerts pleiotropic effects on lipid metabolism by activating AMPK.
Collapse
|
21
|
Baumgarner BL, Nagle AM, Quinn MR, Farmer AE, Kinsey ST. Dietary supplementation of β-guanidinopropionic acid (βGPA) reduces whole-body and skeletal muscle growth in young CD-1 mice. Mol Cell Biochem 2015; 403:277-85. [PMID: 25701355 DOI: 10.1007/s11010-015-2357-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 02/14/2015] [Indexed: 12/25/2022]
Abstract
Increased AMP-activated protein kinase (AMPK) activity leads to enhanced fatty acid utilization, while also promoting increased ubiquitin-dependent proteolysis (UDP) in mammalian skeletal muscle. β-guanidinopropionic acid (βGPA) is a commercially available dietary supplement that has been shown to promote an AMPK-dependent increase in fatty acid utilization and aerobic capacity in mammals by compromising creatine kinase function. However, it remains unknown if continuous βGPA supplementation can negatively impact skeletal muscle growth in a rapidly growing juvenile. The current study was conducted to examine the effect of βGPA supplementation on whole-body and skeletal muscle growth in juvenile and young adult mice. Three-week old, post weanling CD-1 mice were fed a standard rodent chow that was supplemented with either 2% (w/w) α-cellulose (control) or βGPA. Control and βGPA-fed mice (n = 6) were sampled after 2, 4, and 8 weeks. Whole-body and hindlimb muscle masses were significantly (P < 0.05) reduced in βGPA-fed mice by 2 weeks. The level of AMPK (T172) phosphorylation increased significantly (P < 0.05) in the gastrocnemius of βGPA-fed versus control mice at 2 weeks, but was not significantly different at the 4- and 8-week time points. Further analysis revealed a significant (P < 0.05) increase in the skeletal muscle-specific ubiquitin ligase MAFbx/Atrogin-1 protein and total protein ubiquitination in the gastrocnemius of βGPA versus control mice at the 8-week time point. Our data indicate that feeding juvenile mice a βGPA-supplemented diet significantly reduced whole-body and skeletal muscle growth that was due, at least in part, to an AMPK-independent increase in UDP.
Collapse
Affiliation(s)
- Bradley L Baumgarner
- Division of Natural Sciences and Engineering, University of South Carolina Upstate, 800 University Way, Spartanburg, SC, 29316, USA,
| | | | | | | | | |
Collapse
|
22
|
Bolsoni-Lopes A, Festuccia WT, Chimin P, Farias TSM, Torres-Leal FL, Cruz MM, Andrade PB, Hirabara SM, Lima FB, Alonso-Vale MIC. Palmitoleic acid (n-7) increases white adipocytes GLUT4 content and glucose uptake in association with AMPK activation. Lipids Health Dis 2014; 13:199. [PMID: 25528561 PMCID: PMC4364637 DOI: 10.1186/1476-511x-13-199] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 12/11/2014] [Indexed: 12/24/2022] Open
Abstract
Background Palmitoleic acid was previously shown to improve glucose homeostasis by reducing hepatic glucose production and by enhancing insulin-stimulated glucose uptake in skeletal muscle. Herein we tested the hypothesis that palmitoleic acid positively modulates glucose uptake and metabolism in adipocytes. Methods For this, both differentiated 3 T3-L1 cells treated with either palmitoleic acid (16:1n7, 200 μM) or palmitic acid (16:0, 200 μM) for 24 h and primary adipocytes from mice treated with 16:1n7 (300 mg/kg/day) or oleic acid (18:1n9, 300 mg/kg/day) by gavage for 10 days were evaluated for glucose uptake, oxidation, conversion to lactate and incorporation into fatty acids and glycerol components of TAG along with the activity and expression of lipogenic enzymes. Results Treatment of adipocytes with palmitoleic, but not oleic (in vivo) or palmitic (in vitro) acids, increased basal and insulin-stimulated glucose uptake and GLUT4 mRNA levels and protein content. Along with uptake, palmitoleic acid enhanced glucose oxidation (aerobic glycolysis), conversion to lactate (anaerobic glycolysis) and incorporation into glycerol-TAG, but reduced de novo fatty acid synthesis from glucose and acetate and the activity of lipogenic enzymes glucose 6-phosphate dehydrogenase and ATP-citrate lyase. Importantly, palmitoleic acid induction of adipocyte glucose uptake and metabolism were associated with AMPK activation as evidenced by the increased protein content of phospho(p)Thr172AMPKα, but no changes in pSer473Akt and pThr308Akt. Importantly, such increase in GLUT4 content induced by 16:1n7, was prevented by pharmacological inhibition of AMPK with compound C. Conclusions In conclusion, palmitoleic acid increases glucose uptake and the GLUT4 content in association with AMPK activation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Maria Isabel C Alonso-Vale
- Department of Biological Sciences, Institute of Environmental Sciences, Chemical and Pharmaceutical, Federal University of Sao Paulo, 210, Sao Nicolau St,, Diadema 09913-030, Brazil.
| |
Collapse
|
23
|
Maher AC, McFarlan J, Lally J, Snook LA, Bonen A. TBC1D1 reduces palmitate oxidation by inhibiting β-HAD activity in skeletal muscle. Am J Physiol Regul Integr Comp Physiol 2014; 307:R1115-23. [PMID: 25163918 DOI: 10.1152/ajpregu.00014.2014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In skeletal muscle the Rab-GTPase-activating protein TBC1D1 has been implicated in the regulation of fatty acid oxidation by an unknown mechanism. We determined whether TBC1D1 altered fatty acid utilization via changes in protein-mediated fatty acid transport and/or selected enzymes regulating mitochondrial fatty acid oxidation. We also determined the effects of TBC1D1 on glucose transport and oxidation. Electrotransfection of mouse soleus muscles with TBC1D1 cDNA increased TBC1D1 protein after 2 wk (P<0.05), without altering its paralog AS160. TBC1D1 overexpression decreased basal palmitate oxidation (-22%) while blunting 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR)-stimulated palmitate oxidation (-18%). There was a tendency to increase fatty acid esterification (+10 nmol·g(-1)·60 min(-1), P=0.07), which reflected the reduction in fatty acid oxidation (-12 nmol·g(-1)·60 min(-1)). Concomitantly, basal (+21%) and AICAR-stimulated glucose oxidation (+8%) were increased in TBC1D1-transfected muscles relative to their respective controls (P<0.05), independent of changes in GLUT4 and glucose transport. The reductions in TBC1D1-mediated fatty acid oxidation could not be attributed to changes in the transporter FAT/CD36, muscle mitochondrial content, CPT1 expression or the expression and phosphorylation of AS160, acetyl-CoA carboxylase, or AMPK. However, TBC1D1 overexpression reduced β-HAD enzyme activity (-18%, P<0.05). In conclusion, TBC1D1-mediated reduction of muscle fatty acid oxidation appears to occur via inhibition of β-HAD activity.
Collapse
Affiliation(s)
- A C Maher
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - J McFarlan
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - J Lally
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - L A Snook
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - A Bonen
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
24
|
Turner N, Cooney GJ, Kraegen EW, Bruce CR. Fatty acid metabolism, energy expenditure and insulin resistance in muscle. J Endocrinol 2014; 220:T61-79. [PMID: 24323910 DOI: 10.1530/joe-13-0397] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Fatty acids (FAs) are essential elements of all cells and have significant roles as energy substrates, components of cellular structure and signalling molecules. The storage of excess energy intake as fat in adipose tissue is an evolutionary advantage aimed at protecting against starvation, but in much of today's world, humans are faced with an unlimited availability of food, and the excessive accumulation of fat is now a major risk for human health, especially the development of type 2 diabetes (T2D). Since the first recognition of the association between fat accumulation, reduced insulin action and increased risk of T2D, several mechanisms have been proposed to link excess FA availability to reduced insulin action, with some of them being competing or contradictory. This review summarises the evidence for these mechanisms in the context of excess dietary FAs generating insulin resistance in muscle, the major tissue involved in insulin-stimulated disposal of blood glucose. It also outlines potential problems with models and measurements that may hinder as well as help improve our understanding of the links between FAs and insulin action.
Collapse
Affiliation(s)
- Nigel Turner
- Department of Pharmacology School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia Diabetes and Obesity Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, New South Wales 2010, Australia St Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia Department of Physiology, Monash University, Clayton, Victoria 3800, Australia
| | | | | | | |
Collapse
|
25
|
Miura S, Tadaishi M, Kamei Y, Ezaki O. Mechanisms of exercise- and training-induced fatty acid oxidation in skeletal muscle. THE JOURNAL OF PHYSICAL FITNESS AND SPORTS MEDICINE 2014. [DOI: 10.7600/jpfsm.3.43] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
26
|
Jenkins Y, Sun TQ, Markovtsov V, Foretz M, Li W, Nguyen H, Li Y, Pan A, Uy G, Gross L, Baltgalvis K, Yung SL, Gururaja T, Kinoshita T, Owyang A, Smith IJ, McCaughey K, White K, Godinez G, Alcantara R, Choy C, Ren H, Basile R, Sweeny DJ, Xu X, Issakani SD, Carroll DC, Goff DA, Shaw SJ, Singh R, Boros LG, Laplante MA, Marcotte B, Kohen R, Viollet B, Marette A, Payan DG, Kinsella TM, Hitoshi Y. AMPK activation through mitochondrial regulation results in increased substrate oxidation and improved metabolic parameters in models of diabetes. PLoS One 2013; 8:e81870. [PMID: 24339975 PMCID: PMC3855387 DOI: 10.1371/journal.pone.0081870] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 10/19/2013] [Indexed: 12/28/2022] Open
Abstract
Modulation of mitochondrial function through inhibiting respiratory complex I activates a key sensor of cellular energy status, the 5'-AMP-activated protein kinase (AMPK). Activation of AMPK results in the mobilization of nutrient uptake and catabolism for mitochondrial ATP generation to restore energy homeostasis. How these nutrient pathways are affected in the presence of a potent modulator of mitochondrial function and the role of AMPK activation in these effects remain unclear. We have identified a molecule, named R419, that activates AMPK in vitro via complex I inhibition at much lower concentrations than metformin (IC50 100 nM vs 27 mM, respectively). R419 potently increased myocyte glucose uptake that was dependent on AMPK activation, while its ability to suppress hepatic glucose production in vitro was not. In addition, R419 treatment of mouse primary hepatocytes increased fatty acid oxidation and inhibited lipogenesis in an AMPK-dependent fashion. We have performed an extensive metabolic characterization of its effects in the db/db mouse diabetes model. In vivo metabolite profiling of R419-treated db/db mice showed a clear upregulation of fatty acid oxidation and catabolism of branched chain amino acids. Additionally, analyses performed using both 13C-palmitate and 13C-glucose tracers revealed that R419 induces complete oxidation of both glucose and palmitate to CO2 in skeletal muscle, liver, and adipose tissue, confirming that the compound increases mitochondrial function in vivo. Taken together, our results show that R419 is a potent inhibitor of complex I and modulates mitochondrial function in vitro and in diabetic animals in vivo. R419 may serve as a valuable molecular tool for investigating the impact of modulating mitochondrial function on nutrient metabolism in multiple tissues and on glucose and lipid homeostasis in diabetic animal models.
Collapse
Affiliation(s)
- Yonchu Jenkins
- Rigel Pharmaceuticals, Inc., South San Francisco, California, United States of America
| | - Tian-Qiang Sun
- Rigel Pharmaceuticals, Inc., South San Francisco, California, United States of America
| | - Vadim Markovtsov
- Rigel Pharmaceuticals, Inc., South San Francisco, California, United States of America
| | - Marc Foretz
- Inserm, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris cité, Paris, France
| | - Wei Li
- Rigel Pharmaceuticals, Inc., South San Francisco, California, United States of America
| | - Henry Nguyen
- Rigel Pharmaceuticals, Inc., South San Francisco, California, United States of America
| | - Yingwu Li
- Rigel Pharmaceuticals, Inc., South San Francisco, California, United States of America
| | - Alison Pan
- Rigel Pharmaceuticals, Inc., South San Francisco, California, United States of America
| | - Gerald Uy
- Rigel Pharmaceuticals, Inc., South San Francisco, California, United States of America
| | - Lisa Gross
- Rigel Pharmaceuticals, Inc., South San Francisco, California, United States of America
| | - Kristen Baltgalvis
- Rigel Pharmaceuticals, Inc., South San Francisco, California, United States of America
| | - Stephanie L. Yung
- Rigel Pharmaceuticals, Inc., South San Francisco, California, United States of America
| | - Tarikere Gururaja
- Rigel Pharmaceuticals, Inc., South San Francisco, California, United States of America
| | - Taisei Kinoshita
- Rigel Pharmaceuticals, Inc., South San Francisco, California, United States of America
| | - Alexander Owyang
- Rigel Pharmaceuticals, Inc., South San Francisco, California, United States of America
| | - Ira J. Smith
- Rigel Pharmaceuticals, Inc., South San Francisco, California, United States of America
| | - Kelly McCaughey
- Rigel Pharmaceuticals, Inc., South San Francisco, California, United States of America
| | - Kathy White
- Rigel Pharmaceuticals, Inc., South San Francisco, California, United States of America
| | - Guillermo Godinez
- Rigel Pharmaceuticals, Inc., South San Francisco, California, United States of America
| | - Raniel Alcantara
- Rigel Pharmaceuticals, Inc., South San Francisco, California, United States of America
| | - Carmen Choy
- Rigel Pharmaceuticals, Inc., South San Francisco, California, United States of America
| | - Hong Ren
- Rigel Pharmaceuticals, Inc., South San Francisco, California, United States of America
| | - Rachel Basile
- Rigel Pharmaceuticals, Inc., South San Francisco, California, United States of America
| | - David J. Sweeny
- Rigel Pharmaceuticals, Inc., South San Francisco, California, United States of America
| | - Xiang Xu
- Rigel Pharmaceuticals, Inc., South San Francisco, California, United States of America
| | - Sarkiz D. Issakani
- Rigel Pharmaceuticals, Inc., South San Francisco, California, United States of America
| | - David C. Carroll
- Rigel Pharmaceuticals, Inc., South San Francisco, California, United States of America
| | - Dane A. Goff
- Rigel Pharmaceuticals, Inc., South San Francisco, California, United States of America
| | - Simon J. Shaw
- Rigel Pharmaceuticals, Inc., South San Francisco, California, United States of America
| | - Rajinder Singh
- Rigel Pharmaceuticals, Inc., South San Francisco, California, United States of America
| | - Laszlo G. Boros
- SiDMAP, LLC, Los Angeles, California, United States of America
- Department of Pediatrics, Los Angeles Biomedical Research Institute (LABIOMED) at the Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - Marc-André Laplante
- Department of Medicine, Faculty of Medicine, Cardiology Axis of the Institut Universitaire de Cardiologie et de Pneumologie de Québec (Hôpital Laval), Québec, Québec, Canada
| | - Bruno Marcotte
- Department of Medicine, Faculty of Medicine, Cardiology Axis of the Institut Universitaire de Cardiologie et de Pneumologie de Québec (Hôpital Laval), Québec, Québec, Canada
| | - Rita Kohen
- Department of Medicine, Faculty of Medicine, Cardiology Axis of the Institut Universitaire de Cardiologie et de Pneumologie de Québec (Hôpital Laval), Québec, Québec, Canada
| | - Benoit Viollet
- Inserm, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris cité, Paris, France
| | - André Marette
- Department of Medicine, Faculty of Medicine, Cardiology Axis of the Institut Universitaire de Cardiologie et de Pneumologie de Québec (Hôpital Laval), Québec, Québec, Canada
| | - Donald G. Payan
- Rigel Pharmaceuticals, Inc., South San Francisco, California, United States of America
| | - Todd M. Kinsella
- Rigel Pharmaceuticals, Inc., South San Francisco, California, United States of America
| | - Yasumichi Hitoshi
- Rigel Pharmaceuticals, Inc., South San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
27
|
Biensø RS, Knudsen JG, Brandt N, Pedersen PA, Pilegaard H. Effects of IL-6 on pyruvate dehydrogenase regulation in mouse skeletal muscle. Pflugers Arch 2013; 466:1647-57. [PMID: 24221357 PMCID: PMC4092239 DOI: 10.1007/s00424-013-1399-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 10/28/2013] [Accepted: 10/29/2013] [Indexed: 12/28/2022]
Abstract
Skeletal muscle regulates substrate choice according to demand and availability and pyruvate dehydrogenase (PDH) is central in this regulation. Circulating interleukin (IL)-6 increases during exercise and IL-6 has been suggested to increase whole body fat oxidation. Furthermore, IL-6 has been reported to increase AMP-activated protein kinase (AMPK) phosphorylation and AMPK suggested to regulate PDHa activity. Together, this suggests that IL-6 may be involved in regulating PDH. The aim of this study was to investigate the effect of a single injection of IL-6 on PDH regulation in skeletal muscle in fed and fasted mice. Fed and 16-18 h fasted mice were injected with either 3 ng · g(-1) recombinant mouse IL-6 or PBS as control. Fasting markedly reduced plasma glucose, muscle glycogen, muscle PDHa activity, as well as increased PDK4 mRNA and protein content in skeletal muscle. IL-6 injection did not affect plasma glucose or muscle glycogen, but increased AMPK and ACC phosphorylation and tended to decrease p38 protein content in skeletal muscle in fasted mice. In addition IL-6 injection reduced PDHa activity in fed mice and increased PDHa activity in fasted mice without significant changes in PDH-E1α phosphorylation or PDP1 and PDK4 mRNA and protein content. The present findings suggest that IL-6 contributes to regulating the PDHa activity and hence carbohydrate oxidation, but the metabolic state of the muscle seems to determine the outcome of this regulation. In addition, AMPK and p38 may contribute to the IL-6-mediated PDH regulation in the fasted state.
Collapse
Affiliation(s)
- Rasmus S. Biensø
- Centre of Inflammation and Metabolism and The August Krogh Centre, University of Copenhagen, Copenhagen, Denmark
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Jakob G. Knudsen
- Centre of Inflammation and Metabolism and The August Krogh Centre, University of Copenhagen, Copenhagen, Denmark
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Nina Brandt
- Centre of Inflammation and Metabolism and The August Krogh Centre, University of Copenhagen, Copenhagen, Denmark
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Present Address: Exercise and Metabolic Disease Research Laboratory, Translational Sciences Section, School of Nursing, University of California, Los Angeles, CA USA
| | - Per A. Pedersen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Henriette Pilegaard
- Centre of Inflammation and Metabolism and The August Krogh Centre, University of Copenhagen, Copenhagen, Denmark
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Universitesparken 13, 2100 Copenhagen Ø, Denmark
| |
Collapse
|
28
|
Lee CG, Schwartz AV, Yaffe K, Hillier TA, LeBlanc ES, Cawthon PM. Changes in physical performance in older women according to presence and treatment of diabetes mellitus. J Am Geriatr Soc 2013; 61:1872-8. [PMID: 24219188 DOI: 10.1111/jgs.12502] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
OBJECTIVES To determine whether older women with diabetes mellitus have a greater longitudinal decline in physical performance than those without and whether any decline differs according to insulin sensitizer use. DESIGN Prospective cohort study. SETTING Baltimore, Maryland; Minneapolis, Minnesota; Portland, Oregon; and the Monongahela, Pennsylvania. PARTICIPANTS Community-dwelling women (mean age 78.5 ± 3.6) enrolled in the Study of Osteoporotic Fractures in 1997-98 and restudied 4.9 ± 0.6 years later (N = 2,864). MEASUREMENTS Women were categorized as having no diabetes mellitus (n = 2,680) or having diabetes mellitus (n = 184). A prescription medication inventory was used to determine use of insulin sensitizers (metformin and thiazolidinedione). The outcomes were longitudinal changes in physical performance measures, including grip strength, usual walk speed, and rapid walk speed. RESULTS Estimates from fully adjusted models showed that women with diabetes mellitus had greater declines in usual walk speed (-0.16 m/s, 95% confidence interval (CI) = -0.19 to -0.14) and rapid walk speed (-0.21 m/s, 95% CI = -0.24 to -0.17) than those without (usual walk speed -0.11 m/s, 95% CI = -0.12 to -0.11, P < .001; rapid walk speed -0.15 m/s, 95% CI = -0.16 to -0.14; P = .005). Women with diabetes mellitus taking insulin sensitizers had less decline in usual walk speed than those not taking insulin sensitizers (P < .001). Declines in grip strength did not differ significantly by diabetes mellitus status or insulin sensitizer use. CONCLUSION Older women with diabetes mellitus have a greater decline in walk speed, but not grip strength, than older women without diabetes mellitus. Clinical studies in older adults to determine whether diabetes mellitus treatments such as insulin sensitizers can prevent loss in walk speed and mobility are needed.
Collapse
Affiliation(s)
- Christine G Lee
- Research Service, Veterans Affairs Medical Center, Portland, Oregon; Department of Medicine, Oregon Health & Science University, Portland, Oregon; Center for Health Research, Kaiser Permanente Northwest, Portland, Oregon
| | | | | | | | | | | | | |
Collapse
|
29
|
Stockebrand M, Sauter K, Neu A, Isbrandt D, Choe CU. Differential regulation of AMPK activation in leptin- and creatine-deficient mice. FASEB J 2013; 27:4147-56. [PMID: 23825223 DOI: 10.1096/fj.12-225136] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
AMP-activated protein kinase (AMPK) is a key sensor and regulator of energy homeostasis. Previously, we demonstrated that intracellular energy depletion by L-arginine:glycine amidinotransferase (AGAT) deficiency resulted in AMPK activation and protected from metabolic syndrome. In the present study, we show tissue-specific leptin dependence of AMPK activation by energy depletion. We investigated leptin-dependent AMPK regulation in AGAT- and leptin-deficient (d/d ob/ob) mice. Like ob/ob mice, but unlike d/d mice, d/d ob/ob mice were obese and glucose intolerant. Therefore, leptin is a prerequisite for resistance to metabolic syndrome in AGAT-deficient mice. Quantitative Western blots revealed a 4-fold increase in AMPK activation in skeletal muscle of d/d ob/ob mice (P<0.001). However, AMPK activation was absent in white adipose tissue (WAT) and liver. Compared with blood glucose levels in ob/ob mice, fasting levels were still reduced and therefore did not show leptin dependence (wild-type, 79.4±3.9 mg/dl; d/d, 68.4±3.2 mg/dl; P<0.05). In ob/ob mice and wild-type mice, 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR), in combination with leptin, augmented glucose tolerance compared with AICAR alone, whereas no improvement was found under conditions of high-fat-diet feeding. These findings reveal a previously unknown synergistic AMPK activation by leptin and intracellular energy depletion, suggesting that AMPK activation can be therapeutically effective in metabolic syndrome only if leptin sensitivity is preserved.
Collapse
Affiliation(s)
- Malte Stockebrand
- 1Experimental Neuropediatrics, Center for Molecular Neurobiology and Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany.
| | | | | | | | | |
Collapse
|
30
|
O'Neill HM, Holloway GP, Steinberg GR. AMPK regulation of fatty acid metabolism and mitochondrial biogenesis: implications for obesity. Mol Cell Endocrinol 2013; 366:135-51. [PMID: 22750049 DOI: 10.1016/j.mce.2012.06.019] [Citation(s) in RCA: 241] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Revised: 03/13/2012] [Accepted: 06/21/2012] [Indexed: 12/25/2022]
Abstract
Skeletal muscle plays an important role in regulating whole-body energy expenditure given it is a major site for glucose and lipid oxidation. Obesity and type 2 diabetes are causally linked through their association with skeletal muscle insulin resistance, while conversely exercise is known to improve whole body glucose homeostasis simultaneously with muscle insulin sensitivity. Exercise activates skeletal muscle AMP-activated protein kinase (AMPK). AMPK plays a role in regulating exercise capacity, skeletal muscle mitochondrial content and contraction-stimulated glucose uptake. Skeletal muscle AMPK is also thought to be important for regulating fatty acid metabolism; however, direct genetic evidence in this area is currently lacking. This review will discuss the current paradigms regarding the influence of AMPK in regulating skeletal muscle fatty acid metabolism and mitochondrial biogenesis at rest and during exercise, and highlight the potential implications in the development of insulin resistance.
Collapse
Affiliation(s)
- Hayley M O'Neill
- University of Melbourne, Department of Medicine, St. Vincent's Institute of Medical Research, Melbourne, Victoria, Australia.
| | | | | |
Collapse
|
31
|
Turcotte LP, Abbott MJ. Contraction-induced signaling: evidence of convergent cascades in the regulation of muscle fatty acid metabolism. Can J Physiol Pharmacol 2012. [PMID: 23181271 DOI: 10.1139/y2012-124] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The regulation of fatty acid utilization during muscle contraction and exercise remains to be fully elucidated. Evidence suggests that the metabolic responses of skeletal muscle induced by the contraction-induced changes in energy demand are mediated by the activation of a multitude of intracellular signaling cascades. This review addresses the roles played by 3 intracellular signaling cascades of interest in the regulation of fatty acid uptake and oxidation in contracting skeletal muscle; namely, the AMP-activated protein kinase (AMPK), calcium/calmodulin-dependent protein kinases (CaMKs), and the extracellular signal-regulated kinase 1 and 2 (ERK1/2) signaling cascades. Data delineating the potential role of AMPK in cross-talk with CaMKII, CaMK kinase (CaMKK), and ERK1/2 are presented. Collectively, data show that in perfused rodent muscle, regulation of fatty acid uptake and oxidation occurs via (i) CaMKII signaling via both AMPK-dependent and -independent cascades, (ii) CaMKK signaling via both AMPK-dependent and -independent cascades, (iii) AMPK signaling in a time- and intensity-dependent manner, and (iv) ERK1/2 signaling in an intensity-dependent manner.
Collapse
Affiliation(s)
- Lorraine P Turcotte
- Department of Biological Sciences, Dana and David Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA 90089-0652, USA.
| | | |
Collapse
|
32
|
Xi L, Matsey G, Odle J. The effect of 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) on fatty acid oxidation in hepatocytes isolated from neonatal piglets. J Anim Sci Biotechnol 2012; 3:30. [PMID: 23072465 PMCID: PMC3551711 DOI: 10.1186/2049-1891-3-30] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 09/17/2012] [Indexed: 01/10/2023] Open
Abstract
In the present study, the effect of 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) on long-chain fatty acid oxidation by hepatocytes isolated from suckled neonatal pig liver (a low ketogenic and lipogenic tissue) was tested. Incubation of hepatocytes with AICAR (0.5 mM) in the presence of 1 mM of carnitine and 10 mM of glucose for 1 hour at 37°C had no significant effect on total [1-14C]-palmitate (0.5 mM) oxidation (14CO2 and 14C-Acid soluble products (ASP)). Consistent with the fatty acid oxidation, carnitine palmitoyltransferase I activity and inhibition of its activity by malonyl-CoA (10 μM) assayed in cell homogenate also remained constant. However, addition of AICAR to the hepatocytes decreased 14CO2 production by 18% compared to control (p < 0.06). The reduction of labeled carboxylic carbon accumulated in CO2 caused a significant difference in distribution of oxidative products between 14CO2 and 14C-ASP (p < 0.03) compared with the control. It was also noticed that acetyl-CoA carboxylase (ACC) was increased by AICAR (p < 0.03), indicating that ACC might drive acetyl-CoA toward fatty acid synthesis pathway and induce an increase in distribution of fatty acid carbon to 14C-ASP. Addition of insulin to hepatocyte incubations with AICAR did not change the oxidative product distribution between CO2 and ASP, but further promoted ACC activity. The increased ACC activity was 70% higher than in the control group when citrate was absent in the reaction medium and was 30% higher when citrate was present in the medium. Our results suggest that AICAR may affect the distribution of metabolic products from fatty acid oxidation by changing ACC activity in hepatocyte isolated from suckled neonatal piglets; however, the basis for the increase in ACC activity elicited by AICAR is not apparent.
Collapse
Affiliation(s)
- Lin Xi
- Laboratory of Developmental Nutrition, Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA.
| | | | | |
Collapse
|
33
|
Gaidhu MP, Frontini A, Hung S, Pistor K, Cinti S, Ceddia RB. Chronic AMP-kinase activation with AICAR reduces adiposity by remodeling adipocyte metabolism and increasing leptin sensitivity. J Lipid Res 2011; 52:1702-11. [PMID: 21737753 DOI: 10.1194/jlr.m015354] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
This study investigated the effect of chronic AMP-kinase (AMPK) activation with 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR) on white adipose tissue (WAT) metabolism and the implications for visceral (VC) and subcutaneous (SC) adiposity, whole body-energy homeostasis, and hypothalamic leptin sensitivity. Male Wistar rats received daily single intraperitoneal injections of either saline or AICAR (0.7g/kg body weight) for 4 and 8 weeks and were pair-fed throughout the study. AICAR-treated rats had reduced adiposity with increased mitochondrial density in VC and SC fat pads, which was accompanied by reduced circulating leptin and time-dependent and depot-specific regulation of AMPK phosphorylation and FA oxidation. Interestingly, the anorectic effect to exogenous leptin was more pronounced in AICAR-treated animals than controls. This corresponded to reductions in hypothalamic AMPK phosphorylation and suppressor of cytokine signaling 3 content, whereas signal transducer and activator of transcription 3 phosphorylation was either unchanged or increased at 4 and 8 weeks in AICAR-treated rats. Ambulatory activity and whole-body energy expenditure (EE) were also increased with AICAR treatment. Altogether, chronic AICAR-induced AMPK activation increased WAT oxidative machinery, whole-body EE, and hypothalamic leptin sensitivity. This led to significant reductions in VC and SC adiposity without inducing energy-sparing mechanisms that oppose long-term fat loss.
Collapse
Affiliation(s)
- Mandeep P Gaidhu
- Muscle Health Research Centre-School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| | | | | | | | | | | |
Collapse
|
34
|
Thrush AB, Harasim E, Chabowski A, Gulli R, Stefanyk L, Dyck DJ. A single prior bout of exercise protects against palmitate-induced insulin resistance despite an increase in total ceramide content. Am J Physiol Regul Integr Comp Physiol 2011; 300:R1200-8. [PMID: 21325642 DOI: 10.1152/ajpregu.00091.2010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Ceramide accumulation has been implicated in the impairment of insulin-stimulated glucose transport in skeletal muscle following saturated fatty acid (FA) exposure. Importantly, a single bout of exercise can protect against acute lipid-induced insulin resistance. The mechanism by which exercise protects against lipid-induced insulin resistance is not completely known but may occur through a redirection of FA toward triacylglycerol (TAG) and away from ceramide and diacylglycerol (DAG). Therefore, in the current study, an in vitro preparation was used to examine whether a prior bout of exercise could confer protection against palmitate-induced insulin resistance and whether the pharmacological [50 μM fumonisin B(1) (FB1)] inhibition of ceramide synthesis in the presence of palmitate could mimic the protective effect of exercise. Soleus muscle of sedentary (SED), exercised (EX), and SED in the presence of FB1 (SED+FB1) were incubated with or without 2 mM palmitate for 4 h. This 2-mM palmitate exposure impaired insulin-stimulated glucose transport (-28%, P < 0.01) and significantly increased ceramide, DAG, and TAG accumulation in the SED group (P < 0.05). A single prior bout of exercise prevented the detrimental effects of palmitate on insulin signaling and caused a partial redistribution of FA toward TAG (P < 0.05). However, the net increase in ceramide content in response to palmitate exposure in the EX group was not different compared with SED, despite the maintenance of insulin sensitivity. The incubation of soleus from SED rats with FB1 (SED+FB1) prevented the detrimental effects of palmitate and caused a redirection of FA toward TAG accumulation (P < 0.05). Therefore, this research suggests that although inhibiting ceramide accumulation can prevent the detrimental effects of palmitate, a single prior bout of exercise appears to protect against palmitate-induced insulin resistance, which may be independent of changes in ceramide content.
Collapse
Affiliation(s)
- A Brianne Thrush
- Dept. of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
35
|
Bogachus LD, Turcotte LP. Genetic downregulation of AMPK-alpha isoforms uncovers the mechanism by which metformin decreases FA uptake and oxidation in skeletal muscle cells. Am J Physiol Cell Physiol 2010; 299:C1549-61. [PMID: 20844250 DOI: 10.1152/ajpcell.00279.2010] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Metformin is known to improve insulin sensitivity in part via a rise in AMP-activated protein kinase (AMPK) activity and alterations in muscle metabolism. However, a full understanding of how metformin alters AMPK-α(1) vs. AMPK-α(2) activation remains unknown. To study this question, L6 skeletal muscle cells were treated with or without RNAi oligonucleotide sequences to downregulate AMPK-α(1) or AMPK-α(2) protein expression and incubated with or without 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR) or metformin and/or insulin. In contrast to AICAR, which preferentially activated AMPK-α(2), metformin preferentially activated AMPK-α(1) in a dose- and time-dependent manner. Metformin increased (P < 0.05) glucose uptake and plasma membrane (PM) Glut4 in a dose- and time-dependent manner. Metformin significantly reduced palmitate uptake (P < 0.05) and oxidation (P < 0.05), and this was accompanied by a similar decrease (P < 0.05) in PM CD36 content but with no change in acetyl-CoA carboxylase (ACC) phosphorylation (P > 0.05). AICAR and metformin similarly increased (P < 0.05) nuclear silent mating-type information regulator 2 homolog 1 (SIRT1) activity. Downregulation of AMPK-α(1) completely prevented the metformin-induced reduction in palmitate uptake and oxidation but only partially reduced the metformin-induced increase in glucose uptake. Downregulation of AMPK-α(2) had no effect on metformin-induced glucose uptake, palmitate uptake, and oxidation. The increase in SIRT1 activity induced by metformin was not affected by downregulation of either AMPK-α(1) or AMPK-α(2). Our data indicate that, in muscle cells, the inhibitory effects of metformin on fatty acid metabolism occur via preferential phosphorylation of AMPK-α(1), and the data indicate that cross talk between AMPK and SIRT1 does not favor either AMPK isozyme.
Collapse
Affiliation(s)
- Lindsey D Bogachus
- Department of Biological Sciences, College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California 90089-0652, USA
| | | |
Collapse
|
36
|
Glatz JFC, Luiken JJFP, Bonen A. Membrane Fatty Acid Transporters as Regulators of Lipid Metabolism: Implications for Metabolic Disease. Physiol Rev 2010; 90:367-417. [DOI: 10.1152/physrev.00003.2009] [Citation(s) in RCA: 515] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Long-chain fatty acids and lipids serve a wide variety of functions in mammalian homeostasis, particularly in the formation and dynamic properties of biological membranes and as fuels for energy production in tissues such as heart and skeletal muscle. On the other hand, long-chain fatty acid metabolites may exert toxic effects on cellular functions and cause cell injury. Therefore, fatty acid uptake into the cell and intracellular handling need to be carefully controlled. In the last few years, our knowledge of the regulation of cellular fatty acid uptake has dramatically increased. Notably, fatty acid uptake was found to occur by a mechanism that resembles that of cellular glucose uptake. Thus, following an acute stimulus, particularly insulin or muscle contraction, specific fatty acid transporters translocate from intracellular stores to the plasma membrane to facilitate fatty acid uptake, just as these same stimuli recruit glucose transporters to increase glucose uptake. This regulatory mechanism is important to clear lipids from the circulation postprandially and to rapidly facilitate substrate provision when the metabolic demands of heart and muscle are increased by contractile activity. Studies in both humans and animal models have implicated fatty acid transporters in the pathogenesis of diseases such as the progression of obesity to insulin resistance and type 2 diabetes. As a result, membrane fatty acid transporters are now being regarded as a promising therapeutic target to redirect lipid fluxes in the body in an organ-specific fashion.
Collapse
Affiliation(s)
- Jan F. C. Glatz
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands; and Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Canada
| | - Joost J. F. P. Luiken
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands; and Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Canada
| | - Arend Bonen
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands; and Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Canada
| |
Collapse
|
37
|
Fan Y, Dickman KG, Zong WX. Akt and c-Myc differentially activate cellular metabolic programs and prime cells to bioenergetic inhibition. J Biol Chem 2009; 285:7324-33. [PMID: 20018866 DOI: 10.1074/jbc.m109.035584] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The high glucose consumption of tumor cells even in an oxygen-rich environment, referred to as the Warburg effect, has been noted as a nearly universal biochemical characteristic of cancer cells. Targeting the glycolysis pathway has been explored as an anti-cancer therapeutic strategy to eradicate cancer based on this fundamental biochemical property of cancer cells. Oncoproteins such as Akt and c-Myc regulate cell metabolism. Accumulating studies have uncovered various molecular mechanisms by which oncoproteins affect cellular metabolism, raising a concern as to whether targeting glycolysis will be equally effective in treating cancers arising from different oncogenic activities. Here, we established a dual-regulatable FL5.12 pre-B cell line in which myristoylated Akt is expressed under the control of doxycycline, and c-Myc, fused to the hormone-binding domain of the human estrogen receptor, is activated by 4-hydroxytamoxifen. Using this system, we directly compared the effect of these oncoproteins on cell metabolism in an isogenic background. Activation of either Akt or c-Myc leads to the Warburg effect as indicated by increased cellular glucose uptake, glycolysis, and lactate generation. When cells are treated with glycolysis inhibitors, Akt sensitizes cells to apoptosis, whereas c-Myc does not. In contrast, c-Myc but not Akt sensitizes cells to the inhibition of mitochondrial function. This is correlated with enhanced mitochondrial activities in c-Myc cells. Hence, although both Akt and c-Myc promote aerobic glycolysis, they differentially affect mitochondrial functions and render cells susceptible to the perturbation of cellular metabolic programs.
Collapse
Affiliation(s)
- Yongjun Fan
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York 11794, USA
| | | | | |
Collapse
|
38
|
Alkhateeb H, Chabowski A, Glatz JFC, Gurd B, Luiken JJFP, Bonen A. Restoring AS160 phosphorylation rescues skeletal muscle insulin resistance and fatty acid oxidation while not reducing intramuscular lipids. Am J Physiol Endocrinol Metab 2009; 297:E1056-66. [PMID: 19724017 DOI: 10.1152/ajpendo.90908.2008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We examined whether AICAR or leptin rapidly rescued skeletal muscle insulin resistance via increased palmitate oxidation, reductions in intramuscular lipids, and/or restoration of insulin-stimulated AS60 phosphorylation. Incubation with palmitate (2 mM, 0-18 h) induced insulin resistance in soleus muscle. From 12-18 h, palmitate was removed or AICAR or leptin was provided while 2 mM palmitate was maintained. Palmitate oxidation, intramuscular triacylglycerol, diacylglycerol, ceramide, AMPK phosphorylation, basal and insulin-stimulated glucose transport, plasmalemmal GLUT4, and Akt and AS160 phosphorylation were examined at 0, 6, 12, and 18 h. Palmitate treatment (12 h) increased intramuscular lipids (triacylglycerol +54%, diacylglycerol +11%, total ceramide +18%, C16:0 ceramide +60%) and AMPK phosphorylation (+118%), whereas it reduced fatty acid oxidation (-60%) and insulin-stimulated glucose transport (-70%), GLUT4 translocation (-50%), and AS160 phosphorylation (-40%). Palmitate removal did not rescue insulin resistance or associated parameters. The AICAR and leptin treatments did not consistently reduce intramuscular lipids, but they did rescue palmitate oxidation and insulin-stimulated glucose transport, GLUT4 translocation, and AS160 phosphorylation. Increased AMPK phosphorylation was associated with these improvements only when AICAR and leptin were present. Hence, across all experiments, AMPK phosphorylation did not correlate with any parameters. In contrast, palmitate oxidation and insulin-stimulated AS160 phosphorylation were highly correlated (r = 0.83). We speculate that AICAR and leptin activate both of these processes concomitantly, involving activation of unknown kinases in addition to AMPK. In conclusion, despite the maintenance of high concentrations of palmitate (2 mM), as well as increased concentrations of intramuscular lipids (triacylglycerol, diacylglycerol, and ceramide), the rapid AICAR- and leptin-mediated rescue of palmitate-induced insulin resistance is attributable to the restoration of insulin-stimulated AS160 phosphorylation and GLUT4 translocation.
Collapse
Affiliation(s)
- Hakam Alkhateeb
- Dept. of Human Health and Nutritional Sciences, Univ. of Guelph, Guelph, ON, N1G 2W1, Canada
| | | | | | | | | | | |
Collapse
|
39
|
Dyck DJ. Adipokines as regulators of muscle metabolism and insulin sensitivity. Appl Physiol Nutr Metab 2009; 34:396-402. [PMID: 19448705 DOI: 10.1139/h09-037] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Skeletal muscle is the largest tissue responsible for the insulin-stimulated disposal of glucose. However, identifying the link between excess body fat and impaired insulin sensitivity in skeletal muscle has been difficult. Several adipose-derived cytokines (adipokines) have been implicated in the impairment of insulin sensitivity, while adipokines such as leptin and adiponectin exert an insulin-sensitizing effect. Leptin and adiponectin have each been shown to increase fatty acid (FA) oxidation and decrease triglyceride storage in muscle, which may explain, in part, the insulin-sensitizing effect of these cytokines. Recent evidence strongly implicates an increased localization of the FA transporters to the plasma membrane (PM) as an important factor in the accumulation of intramuscular lipids with high-fat diets and obesity. Perhaps surprisingly, relatively little attention has been paid to the ability of insulin-sensitizing compounds, such as leptin and adiponectin, to decrease the abundance of FA transporters in the PM, thereby decreasing lipid accumulation. In the case of both adipokines, there is also evidence that a resistance to their ability to stimulate FA oxidation in skeletal muscle develops during obesity. One of our recent studies indicates that this development can be very rapid (i.e., within days), and precedes the increase in lipid uptake and accumulation that leads to insulin resistance. It is noteworthy that leptin resistance can be modulated by both diet and training in rodents. Further studies examining the underlying mechanisms of the development of leptin and adiponectin resistance are warranted.
Collapse
Affiliation(s)
- David J Dyck
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada.
| |
Collapse
|
40
|
Abstract
AMP-activated protein kinase (AMPK) has emerged as a key regulator of skeletal muscle fat metabolism. Because abnormalities in skeletal muscle metabolism contribute to a variety of clinical diseases and disorders, understanding AMPK's role in the muscle is important. It was originally shown to stimulate fatty acid (FA) oxidation decades ago, and since then much research has been accomplished describing this role. In this brief review, we summarize much of these data, particularly in relation to changes in FA oxidation that occur during skeletal muscle exercise. Potential roles for AMPK exist in regulating FA transport into the mitochondria via interactions with acetyl-CoA carboxylase, malonyl-CoA decarboxylase, and perhaps FA transporter/CD36 (FAT/CD36). Likewise, AMPK may regulate transport of FAs into the cell through FAT/CD36. AMPK may also regulate capacity for FA oxidation by phosphorylation of transcription factors such as CREB or coactivators such as PGC-1alpha.
Collapse
Affiliation(s)
- D M Thomson
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA.
| | | |
Collapse
|
41
|
|
42
|
Junkin KA, Dyck DJ, Mullen KL, Chabowski A, Thrush AB. Resistin acutely impairs insulin-stimulated glucose transport in rodent muscle in the presence, but not absence, of palmitate. Am J Physiol Regul Integr Comp Physiol 2009; 296:R944-51. [PMID: 19193939 DOI: 10.1152/ajpregu.90971.2008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Resistin is a cytokine implicated in the development of insulin resistance. However, there has been little investigation of the effects of resistin on fatty acid (FA) metabolism and insulin response in skeletal muscle, a key tissue for glucose disposal. The purpose of the present study was to examine the role of altered FA metabolism as a cause of resistin's inhibition of insulin-stimulated glucose transport in muscle. Isolated rat soleus muscles were incubated acutely (2 h) in the presence or absence of 600 ng/ml resistin, with or without 2 mM palmitate. Resistin acutely impaired insulin-stimulated glucose transport and Akt phosphorylation, but only in the presence of palmitate, implicating a role for altered FA metabolism. This impairment of glucose transport induced by resistin plus palmitate could be pharmacologically rescued by the inclusion of aimidazole carboxamide ribonucleotide, a stimulator of AMP-activated protein kinase and FA oxidation, as well as inhibitors of ceramide synthesis (myriocin, fumonisin). However, to our surprise, resistin actually blunted the palmitate-induced increase in muscle ceramide content; as expected, ceramide content was significantly lowered by fumonisin. In summary, the acute impairment of insulin response by resistin was manifested only in the presence of high palmitate and was alleviated when FA metabolism was manipulated (increased oxidation, inhibited ceramide synthesis). Resistin's acute impairment of insulin response does not appear to require an absolute increase in ceramide content; however, reducing ceramide content alleviated the impairment in glucose transport and insulin signaling.
Collapse
Affiliation(s)
- Kathryn A Junkin
- Department of Human Health and Nutritional Sciences, University of Guelph, Ontario, Canada N1G 2W1
| | | | | | | | | |
Collapse
|
43
|
Mullen KL, Pritchard J, Ritchie I, Snook LA, Chabowski A, Bonen A, Wright D, Dyck DJ. Adiponectin resistance precedes the accumulation of skeletal muscle lipids and insulin resistance in high-fat-fed rats. Am J Physiol Regul Integr Comp Physiol 2009; 296:R243-51. [DOI: 10.1152/ajpregu.90774.2008] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
High-fat (HF) diets can induce insulin resistance (IR) by altering skeletal muscle lipid metabolism. An imbalance between fatty acid (FA) uptake and oxidation results in intramuscular lipid accumulation, which can impair the insulin-signaling cascade. Adiponectin (Ad) is an insulin-sensitizing adipokine known to stimulate skeletal muscle FA oxidation and reduce lipid accumulation. Evidence of Ad resistance has been shown in obesity and following chronic HF feeding and may contribute to lipid accumulation observed in these conditions. Whether Ad resistance precedes and is associated with the development of IR is unknown. We conducted a time course HF feeding trial for 3 days, 2 wk, or 4 wk to determine the onset of Ad resistance and identify the ensuing changes in lipid metabolism and insulin signaling leading to IR in skeletal muscle. Ad stimulated FA oxidation (+28%, P ≤ 0.05) and acetyl-CoA carboxylase phosphorylation (+34%, P ≤ 0.05) in control animals but failed to do so in any HF-fed group (i.e., as early as 3 days). By 2 wk, plasma membrane FA transporters and intramuscular diacylglycerol (DAG) and ceramide were increased, and insulin-stimulated phosphorylation of both protein kinase B and protein kinase B substrate 160 was blunted compared with control animals. After 4 wk of HF feeding, maximal insulin-stimulated glucose transport was impaired compared with control. Taken together, our results demonstrate that an early loss of Ad's stimulatory effect on FA oxidation precedes an increase in plasmalemmal FA transporters and the accumulation of intramuscular DAG and ceramide, blunted insulin signaling, and ultimately impaired maximal insulin-stimulated glucose transport in skeletal muscle induced by HF diets.
Collapse
|
44
|
Jellinek M. The need for a multi-level biochemical approach to defeat cancer that will also support the host. Med Hypotheses 2008; 71:515-26. [PMID: 18752905 DOI: 10.1016/j.mehy.2008.05.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Revised: 05/16/2008] [Accepted: 05/19/2008] [Indexed: 10/21/2022]
Abstract
Cited research papers support the main hypothesis that selected publications supply sufficient information for a combined multi-level treatment strategy against cancer that will also strengthen the host. The three major elements of the proposal are: (A) metastasis being separate from tumor growth requires specific antimetastatic treatments. For this, manipulation of the composition of phospholipids will alter cellular charge characteristics which are instrumental in adhesion. (B) Formate metabolism is at the center of many activities that are controlling tumor growth. The rational and consequences of this are as follows. Supply of formate depends mainly on serine, and consumption on conversion to CO2 yielding needed NADPH. The remainder is used to complete IMP configuration with 5-aminoimidazole-4-carboxamide ribonucleotide (ZMP). At homeostasis residual ZMP activates AMP-activated protein kinase (AMPK) to curb growth promoting phosphatidylinositol-3-kinase (PI3PK). Residual ZMP also activates the oxidation of choline to betaine supplying methyl groups needed for global methylation of DNA while increased oxidation of choline also alters cellular phospholipid composition (refer to metastasis). At low formate level, increased accumulated ZMP becomes pyrophosporylated to ZTP. AMPK activation shifts to PI3PK activity for insulin action restoring formate supplied by serine derived from glycolysis. Increased NADPH-generating glucose-6-phosphate dehydrogenase is diminishing NADP+ required for dehydrogenation of formate. This is restoring the formate balance while lowering ZMP levels to that of homeostasis. Evidence suggests that transformed cells exceed up-regulation of formate thus suppressing all ZMP accumulations resulting in limited AMPK activation, cessation of choline oxidation to betaine and loss of global methylation of DNA. This scenario appears to be tied to tumor survival, a state that could be altered by metabolic interventions using mild agents as described in the research reports cited. (C) Because of a preponderance of pyrimidines in cancer supporting UTP requiring immune evasion, exogenous IMP may offset this imbalance and thus hinder tumor anti-immune activities while strengthen host immune functions. For studies to confirm the proposal, the overall expected result is that a combined administration of all these agents cited here will outperform any single agent considered so far for anticancer treatment.
Collapse
Affiliation(s)
- Max Jellinek
- The Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University, 1402 South Grand Boulevard, St. Louis, MO 63104, United States.
| |
Collapse
|
45
|
Nakatsu Y, Kotake Y, Hino A, Ohta S. Activation of AMP-activated protein kinase by tributyltin induces neuronal cell death. Toxicol Appl Pharmacol 2008; 230:358-63. [PMID: 18511093 DOI: 10.1016/j.taap.2008.03.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2007] [Revised: 02/29/2008] [Accepted: 03/13/2008] [Indexed: 10/22/2022]
Abstract
AMP-activated protein kinase (AMPK), a member of the metabolite-sensing protein kinase family, is activated by energy deficiency and is abundantly expressed in neurons. The environmental pollutant, tributyltin chloride (TBT), is a neurotoxin, and has been reported to decrease cellular ATP in some types of cells. Therefore, we investigated whether TBT activates AMPK, and whether its activation contributes to neuronal cell death, using primary cultures of cortical neurons. Cellular ATP levels were decreased 0.5 h after exposure to 500 nM TBT, and the reduction was time-dependent. It was confirmed that most neurons in our culture system express AMPK, and that TBT induced phosphorylation of AMPK. Compound C, an AMPK inhibitor, reduced the neurotoxicity of TBT, suggesting that AMPK is involved in TBT-induced cell death. Next, the downstream target of AMPK activation was investigated. Nitric oxide synthase, p38 phosphorylation and Akt dephosphorylation were not downstream of TBT-induced AMPK activation because these factors were not affected by compound C, but glutamate release was suggested to be controlled by AMPK. Our results suggest that activation of AMPK by TBT causes neuronal death through mediating glutamate release.
Collapse
Affiliation(s)
- Yusuke Nakatsu
- Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | | | | | | |
Collapse
|
46
|
Thrush AB, Heigenhauser GJ, Mullen KL, Wright DC, Dyck DJ. Palmitate acutely induces insulin resistance in isolated muscle from obese but not lean humans. Am J Physiol Regul Integr Comp Physiol 2008; 294:R1205-12. [DOI: 10.1152/ajpregu.00909.2007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Exposure to high fatty acids (FAs) induces whole body and skeletal muscle insulin resistance. The globular form of the adipokine, adiponectin (gAd), stimulates FA oxidation and improves insulin sensitivity; however, its ability to prevent lipid-induced insulin resistance in humans has not been tested. The purpose of this study was to determine 1) whether acute (4 h) exposure to 2 mM palmitate would impair insulin signaling and glucose transport in isolated human skeletal muscle, 2) whether muscle from obese humans is more susceptible to the effects of palmitate, and 3) whether the presence of 2 mM palmitate + 2.5 μg/ml gAd (P+gAd) could prevent the effects of palmitate. Insulin-stimulated (10 mU/ml) glucose transport was not different, relative to control, following exposure to palmitate (−10%) or P+gAd (−3%) in lean muscle. In obese muscle, the absolute increase in glucose transport from basal to insulin-stimulated conditions was significantly decreased following palmitate (−55%) and P+gAd (−36%) exposure (control vs. palmitate; control vs. P+gAd, P < 0.05). There was no difference in the absolute increase in glucose transport between palmitate and P+gAd, indicating that in the presence of palmitate, gAd did not improve glucose transport. The palmitate-induced reduction in insulin-stimulated glucose transport in muscle from obese individuals may have been due to reduced Ser Akt (control vs. palmitate; P+gAd, P < 0.05) and Akt substrate 160 (AS160) phosphorylation (control vs. palmitate; P+gAd, P < 0.05). FA oxidation was significantly increased in muscle of lean and obese individuals in the presence of gAd ( P < 0.05), suggesting that the stimulatory effects of gAd on FA oxidation may not be sufficient to entirely prevent palmitate-induced insulin resistance in obese muscle.
Collapse
|
47
|
Xu J, Zhou L, Persson XM, Balagopal P, Jensen MD, Guo Z. Oxidation of Intracellular and Extracellular Fatty Acids in Skeletal Muscle: Application of kinetic modeling, stable isotopes and liquid chromatography/electrospray ionization ion-trap tandem mass spectrometry technology. EUR J LIPID SCI TECH 2008; 110:5-15. [PMID: 23616729 DOI: 10.1002/ejlt.200600267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Fatty acids are a major fuel for many tissues and abnormal utilization is implicated in diseases. However, tissue fatty acid oxidation has not been determined reliably in vivo. Furthermore, fatty acid oxidation has not been partitioned into intracellular and extracellular components. In this report, a one-pool model is described that enables direct quantitation of fluxes of intracellular and plasma fatty acids to mitochondria in skeletal muscle using dual stable isotopes and liquid chromatography/electrospray ionization ion-trap tandem mass spectrometry (LC/ESI-itMS2) technology. It is validated by the determination of palmitate oxidation by skeletal muscle in lean and obese rats and the regulation by insulin. Resting postabsorptive intramyocellular and plasma palmitate oxidation by gastrocnemius muscle was determined to be 3.47±0.8 and 2.06±0.5 nmol/g min in lean and 6.96±1.8 and 1.34±0.2 nmol/g min in obese rats, respectively. In obese rats, hyperinsulinemia (1 nmol/l) suppressed intramyocellular (by 59±5% to 2.88±0.3 nmol/g min P<0.05) but not plasma (1.41±0.14 nmol/g min, P>0.05) palmitate oxidation. The fractional turnover rate of palmitoylcarnitine (0.34±0.1/min vs. 0.83±0.2/min, P<0.05) was also suppressed by insulin. In obese and lean rats, there are 83% and 51%, respectively (P=0.08), of plasma fatty acids traverse triglyceride pool before being oxidized. The results demonstrated that the methodology is feasible and sensitive to metabolic alterations and thus can be used to study fatty acid utilization at tissue level in a compartmentalized manner for the firs time.
Collapse
Affiliation(s)
- J Xu
- Endocrine Research Unit, Mayo Foundation, Rochester, MN, USA
| | | | | | | | | | | |
Collapse
|
48
|
Danaher RN, Loomes KM, Leonard BL, Whiting L, Hay DL, Xu LY, Kraegen EW, Phillips ARJ, Cooper GJS. Evidence that alpha-calcitonin gene-related peptide is a neurohormone that controls systemic lipid availability and utilization. Endocrinology 2008; 149:154-60. [PMID: 17932220 DOI: 10.1210/en.2007-0583] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Alpha-calcitonin gene-related peptide (alphaCGRP) is released mainly from sensory and motor nerves in response to physiological stimuli. Despite well-documented pharmacological effects, its primary physiological role has thus far remained obscure. Increased lipid content, particularly in skeletal muscle and liver, is strongly implicated in the pathogenesis of insulin resistance, but the physiological regulation of organ lipid is imperfectly understood. Here we report our systematic investigations of the effects of alphaCGRP on in vitro and in vivo indices of lipid metabolism. In rodents, levels of alphaCGRP similar to those in the blood markedly stimulated fatty acid beta-oxidation and evoked concomitant mobilization of muscle lipid via receptor-mediated activation of muscle lipolysis. alphaCGRP exerted potent in vivo effects on lipid metabolism in muscle, liver, and the blood via receptor-mediated pathways. Studies with receptor antagonists were consistent with tonic regulation of lipid metabolism by an endogenous CGRP agonist. These data reveal that alphaCGRP is a newly recognized regulator of lipid availability and utilization in key tissues and that it may elevate the availability of intramyocellular free fatty acids to meet muscle energy requirements generated by contraction by evoking their release from endogenous triglyceride.
Collapse
Affiliation(s)
- Rachel N Danaher
- School of Biological Sciences, University of Auckland, Private Bag 92 019, Auckland, New Zealand
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Thomson DM, Brown JD, Fillmore N, Condon BM, Kim HJ, Barrow JR, Winder WW. LKB1 and the regulation of malonyl-CoA and fatty acid oxidation in muscle. Am J Physiol Endocrinol Metab 2007; 293:E1572-9. [PMID: 17925454 DOI: 10.1152/ajpendo.00371.2007] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
5'-AMP-activated protein kinase (AMPK), by way of its inhibition of acetyl-CoA carboxylase (ACC), plays an important role in regulating malonyl-CoA levels and the rate of fatty acid oxidation in skeletal and cardiac muscle. In these tissues, LKB1 is the major AMPK kinase and is therefore critical for AMPK activation. The purpose of this study was to determine how the lack of muscle LKB1 would affect malonyl-CoA levels and/or fatty-acid oxidation. Comparing wild-type (WT) and skeletal/cardiac muscle-specific LKB1 knockout (KO) mice, we found that the 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (AICAR)-stimulated decrease in malonyl-CoA levels in WT heart and quadriceps muscles was entirely dependent on the presence of LKB1, as was the AICAR-induced increase in fatty-acid oxidation in EDL muscles in vitro, since these responses were not observed in KO mice. Likewise, the decrease in malonyl-CoA levels after muscle contraction was attenuated in KO gastrocnemius muscles, suggesting that LKB1 plays an important role in promoting the inhibition of ACC, likely by activation of AMPK. However, since ACC phosphorylation still increased and malonyl-CoA levels decreased in KO muscles (albeit not to the levels observed in WT mice), whereas AMPK phosphorylation was entirely unresponsive, LKB1/AMPK signaling cannot be considered the sole mechanism for inhibiting ACC during and after muscle activity. Regardless, our results suggest that LKB1 is an important regulator of malonyl-CoA levels and fatty acid oxidation in skeletal muscle.
Collapse
Affiliation(s)
- D M Thomson
- Dept. of Physiology and Developmental Biology, Brigham Young Univ., Provo, UT 84602, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Rantzau C, Christopher M, Alford FP. Contrasting effects of exercise, AICAR, and increased fatty acid supply on in vivo and skeletal muscle glucose metabolism. J Appl Physiol (1985) 2007; 104:363-70. [PMID: 18032581 DOI: 10.1152/japplphysiol.00500.2007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The increased energy required for acute moderate exercise by skeletal muscle (SkM) is derived equally from enhanced fatty acid (FA) oxidation and glucose oxidation. Availability of FA also influences contracting SkM metabolic responses. Whole body glucose turnover and SkM glucose metabolic responses were determined in paired dog studies during 1) a 30-min moderate exercise (maximal oxygen consumption of approximately 60%) test vs. a 60-min low-dose 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (AICAR) infusion, 2) a 150-min AICAR infusion vs. modest elevation of FA induced by a 150-min combined intralipid-heparin (IL/hep) infusion, and 3) an acute exercise test performed with vs. without IL/hep. The exercise responses differed from those observed with AICAR: plasma FA and glycerol rose sharply with exercise, whereas FA fell and glycerol was unchanged with AICAR; glucose turnover and glycolytic flux doubled with exercise but rose only by 50% with AICAR; SkM glucose-6-phosphate rose and glycogen content decreased with exercise, whereas no changes occurred with AICAR. The metabolic responses to AICAR vs. IL/hep differed: glycolytic flux was stimulated by AICAR but suppressed by IL/hep, and no changes in glucose turnover occurred with IL/hep. Glucose turnover responses to exercise were similar in the IL/hep and non-IL/hep, but SkM lactate and glycogen concentrations rose with IL/hep vs. that shown with exercise alone. In conclusion, the metabolic responses to acute exercise are not mimicked by a single dose of AICAR or altered by short-term enhancement of fatty acid supply.
Collapse
Affiliation(s)
- C Rantzau
- Dept. of Endocrinology and Diabetes, 4th Floor Daly Wing, St Vincent's Health, 35 Victoria St., Fitzroy Victoria 3065, Australia
| | | | | |
Collapse
|