1
|
Ge D, Luo T, Sun Y, Liu M, Lyu Y, Yin W, Li R, Zhang Y, Yue H, Liu N. Natural diterpenoid EKO activates deubiqutinase ATXN3 to preserve vascular endothelial integrity and alleviate diabetic retinopathy through c-fos/focal adhesion axis. Int J Biol Macromol 2024; 260:129341. [PMID: 38218272 DOI: 10.1016/j.ijbiomac.2024.129341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/26/2023] [Accepted: 01/07/2024] [Indexed: 01/15/2024]
Abstract
Diabetic retinopathy (DR) is one of the most prevalent severe diabetic microvascular complications caused by hyperglycemia. Deciphering the underlying mechanism of vascular injury and finding ways to alleviate hyperglycemia induced microvascular complications is of great necessity. In this study, we identified that a compound ent-9α-hydroxy-15-oxo-16-kauren-19-oic acid (EKO), the diterpenoid isolated and purified from Pteris semipinnata L., exhibited good protective roles against vascular endothelial injury associated with diabetic retinopathy in vitro and in vivo. To further uncover the underlying mechanism, we used unbiased transcriptome sequencing analysis and showed substantial impairment in the focal adhesion pathway upon high glucose and IL-1β stimulation. EKO could effectively improve endothelial focal adhesion pathway by enhancing the expression of two focal adhesion proteins Vinculin and ITGA11. We found that c-fos protein was involved in regulating the expression of Vinculin and ITGA11, a transcription factor component that was downregulated by high glucose and IL-1β stimulation and recovered by EKO. Mechanically, EKO facilitated the binding of deubiquitylation enzyme ATXN3 to c-fos protein and promoted its deubiquitylation, thereby elevating its protein level to enhance the expression of Vinculin and ITGA11. Besides, EKO effectively suppressed ROS production and restored mitochondrial function. In vivo studies, we confirmed EKO could alleviate some of the indicators of diabetic mice. In addition, protein levels of ATXN3 and focal adhesion Vinculin molecule were also verified in vivo. Collectively, our findings addressed the endothelial protective role of natural diterpenoid EKO, with emphasize of mechanism on ATXN3/c-fos/focal adhesion signaling pathway as well as oxygen stress suppression, implicating its therapeutic potential in alleviating vascular endothelium injury and diabetic retinopathy.
Collapse
Affiliation(s)
- Di Ge
- School of Biological Science and Technology, University of Jinan, Jinan 250024, China
| | - Tingting Luo
- School of Biological Science and Technology, University of Jinan, Jinan 250024, China
| | - Yajie Sun
- School of Biological Science and Technology, University of Jinan, Jinan 250024, China
| | - Mengjia Liu
- School of Biological Science and Technology, University of Jinan, Jinan 250024, China
| | - Yuzhu Lyu
- School of Biological Science and Technology, University of Jinan, Jinan 250024, China
| | - Wenying Yin
- School of Biological Science and Technology, University of Jinan, Jinan 250024, China
| | - Rongxian Li
- School of Biological Science and Technology, University of Jinan, Jinan 250024, China
| | - Yongqi Zhang
- School of Biological Science and Technology, University of Jinan, Jinan 250024, China
| | - Hongwei Yue
- Department of Emergency Medicine, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital, Shandong University, Jinan, China.
| | - Na Liu
- School of Biological Science and Technology, University of Jinan, Jinan 250024, China.
| |
Collapse
|
2
|
Ayata C, Kim H, Morrison L, Liao JK, Gutierrez J, Lopez-Toledano M, Carrazana E, Rabinowicz AL, Awad IA. Role of Rho-Associated Kinase in the Pathophysiology of Cerebral Cavernous Malformations. Neurol Genet 2024; 10:e200121. [PMID: 38179414 PMCID: PMC10766084 DOI: 10.1212/nxg.0000000000200121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/20/2023] [Indexed: 01/06/2024]
Abstract
Cerebral cavernous malformations (CCMs) are vascular lesions characterized by a porous endothelium. The lack of a sufficient endothelial barrier can result in microbleeds and frank intracerebral hemorrhage. A primary mechanism for lesion development is a sequence variant in at least 1 of the 3 CCM genes (CCM1, CCM2, and CCM3), which influence various signaling pathways that lead to the CCM phenotype. A common downstream process associated with CCM gene loss of function involves overactivation of RhoA and its effector Rho-associated kinase (ROCK). In this study, we review RhoA/ROCK-related mechanisms involved in CCM pathophysiology as potential therapeutic targets. Literature searches were conducted in PubMed using combinations of search terms related to RhoA/ROCK and CCMs. In endothelial cells, CCM1, CCM2, and CCM3 proteins normally associate to form the CCM protein complex, which regulates the functions of a wide variety of protein targets (e.g., MAP3K3, SMURF1, SOK-1, and ICAP-1) that directly or indirectly increase RhoA/ROCK activity. Loss of CCM complex function and increased RhoA/ROCK activity can lead to the formation of stress fibers that contribute to endothelial junction instability. Other RhoA/ROCK-mediated pathophysiologic outcomes include a shift to a senescence-associated secretory phenotype (primarily mediated by ROCK2), which is characterized by endothelial cell migration, cell cycle arrest, extracellular matrix degradation, leukocyte chemotaxis, and inflammation. ROCK represents a potential therapeutic target, and direct (fasudil, NRL-1049) and indirect (statins) ROCK inhibitors have demonstrated various levels of efficacy in reducing lesion burden in preclinical models of CCM. Current (atorvastatin) and planned (NRL-1049) clinical studies will determine the efficacy of ROCK inhibitors for CCM in humans, for which no US Food and Drug Administration-approved or EU-approved pharmacologic treatment exists.
Collapse
Affiliation(s)
- Cenk Ayata
- From the Neurovascular Research Unit (C.A.), Department of Radiology; Stroke Service, Department of Neurology (C.A.), Massachusetts General Hospital, Harvard Medical School, Boston; Center for Cerebrovascular Research (H.K.), Department of Anesthesia and Perioperative Care, University of California, San Francisco; University of New Mexico Health Sciences Center (L.M.), Albuquerque; University of Arizona (J.K.L.), College of Medicine, Tucson; Neurelis, Inc. (J.G., M.L.-T., E.C., A.L.R.), San Diego, CA; University of Hawaii John A. Burns School of Medicine (E.C.), Honolulu, HI; and University of Chicago Medicine and Biological Sciences (I.A.A.), Chicago, IL
| | - Helen Kim
- From the Neurovascular Research Unit (C.A.), Department of Radiology; Stroke Service, Department of Neurology (C.A.), Massachusetts General Hospital, Harvard Medical School, Boston; Center for Cerebrovascular Research (H.K.), Department of Anesthesia and Perioperative Care, University of California, San Francisco; University of New Mexico Health Sciences Center (L.M.), Albuquerque; University of Arizona (J.K.L.), College of Medicine, Tucson; Neurelis, Inc. (J.G., M.L.-T., E.C., A.L.R.), San Diego, CA; University of Hawaii John A. Burns School of Medicine (E.C.), Honolulu, HI; and University of Chicago Medicine and Biological Sciences (I.A.A.), Chicago, IL
| | - Leslie Morrison
- From the Neurovascular Research Unit (C.A.), Department of Radiology; Stroke Service, Department of Neurology (C.A.), Massachusetts General Hospital, Harvard Medical School, Boston; Center for Cerebrovascular Research (H.K.), Department of Anesthesia and Perioperative Care, University of California, San Francisco; University of New Mexico Health Sciences Center (L.M.), Albuquerque; University of Arizona (J.K.L.), College of Medicine, Tucson; Neurelis, Inc. (J.G., M.L.-T., E.C., A.L.R.), San Diego, CA; University of Hawaii John A. Burns School of Medicine (E.C.), Honolulu, HI; and University of Chicago Medicine and Biological Sciences (I.A.A.), Chicago, IL
| | - James K Liao
- From the Neurovascular Research Unit (C.A.), Department of Radiology; Stroke Service, Department of Neurology (C.A.), Massachusetts General Hospital, Harvard Medical School, Boston; Center for Cerebrovascular Research (H.K.), Department of Anesthesia and Perioperative Care, University of California, San Francisco; University of New Mexico Health Sciences Center (L.M.), Albuquerque; University of Arizona (J.K.L.), College of Medicine, Tucson; Neurelis, Inc. (J.G., M.L.-T., E.C., A.L.R.), San Diego, CA; University of Hawaii John A. Burns School of Medicine (E.C.), Honolulu, HI; and University of Chicago Medicine and Biological Sciences (I.A.A.), Chicago, IL
| | - Juan Gutierrez
- From the Neurovascular Research Unit (C.A.), Department of Radiology; Stroke Service, Department of Neurology (C.A.), Massachusetts General Hospital, Harvard Medical School, Boston; Center for Cerebrovascular Research (H.K.), Department of Anesthesia and Perioperative Care, University of California, San Francisco; University of New Mexico Health Sciences Center (L.M.), Albuquerque; University of Arizona (J.K.L.), College of Medicine, Tucson; Neurelis, Inc. (J.G., M.L.-T., E.C., A.L.R.), San Diego, CA; University of Hawaii John A. Burns School of Medicine (E.C.), Honolulu, HI; and University of Chicago Medicine and Biological Sciences (I.A.A.), Chicago, IL
| | - Miguel Lopez-Toledano
- From the Neurovascular Research Unit (C.A.), Department of Radiology; Stroke Service, Department of Neurology (C.A.), Massachusetts General Hospital, Harvard Medical School, Boston; Center for Cerebrovascular Research (H.K.), Department of Anesthesia and Perioperative Care, University of California, San Francisco; University of New Mexico Health Sciences Center (L.M.), Albuquerque; University of Arizona (J.K.L.), College of Medicine, Tucson; Neurelis, Inc. (J.G., M.L.-T., E.C., A.L.R.), San Diego, CA; University of Hawaii John A. Burns School of Medicine (E.C.), Honolulu, HI; and University of Chicago Medicine and Biological Sciences (I.A.A.), Chicago, IL
| | - Enrique Carrazana
- From the Neurovascular Research Unit (C.A.), Department of Radiology; Stroke Service, Department of Neurology (C.A.), Massachusetts General Hospital, Harvard Medical School, Boston; Center for Cerebrovascular Research (H.K.), Department of Anesthesia and Perioperative Care, University of California, San Francisco; University of New Mexico Health Sciences Center (L.M.), Albuquerque; University of Arizona (J.K.L.), College of Medicine, Tucson; Neurelis, Inc. (J.G., M.L.-T., E.C., A.L.R.), San Diego, CA; University of Hawaii John A. Burns School of Medicine (E.C.), Honolulu, HI; and University of Chicago Medicine and Biological Sciences (I.A.A.), Chicago, IL
| | - Adrian L Rabinowicz
- From the Neurovascular Research Unit (C.A.), Department of Radiology; Stroke Service, Department of Neurology (C.A.), Massachusetts General Hospital, Harvard Medical School, Boston; Center for Cerebrovascular Research (H.K.), Department of Anesthesia and Perioperative Care, University of California, San Francisco; University of New Mexico Health Sciences Center (L.M.), Albuquerque; University of Arizona (J.K.L.), College of Medicine, Tucson; Neurelis, Inc. (J.G., M.L.-T., E.C., A.L.R.), San Diego, CA; University of Hawaii John A. Burns School of Medicine (E.C.), Honolulu, HI; and University of Chicago Medicine and Biological Sciences (I.A.A.), Chicago, IL
| | - Issam A Awad
- From the Neurovascular Research Unit (C.A.), Department of Radiology; Stroke Service, Department of Neurology (C.A.), Massachusetts General Hospital, Harvard Medical School, Boston; Center for Cerebrovascular Research (H.K.), Department of Anesthesia and Perioperative Care, University of California, San Francisco; University of New Mexico Health Sciences Center (L.M.), Albuquerque; University of Arizona (J.K.L.), College of Medicine, Tucson; Neurelis, Inc. (J.G., M.L.-T., E.C., A.L.R.), San Diego, CA; University of Hawaii John A. Burns School of Medicine (E.C.), Honolulu, HI; and University of Chicago Medicine and Biological Sciences (I.A.A.), Chicago, IL
| |
Collapse
|
3
|
Luo S, Ye D, Wang Y, Liu X, Wang X, Xie L, Ji Y. Roles of Protein S-Nitrosylation in Endothelial Homeostasis and Dysfunction. Antioxid Redox Signal 2024; 40:186-205. [PMID: 37742108 DOI: 10.1089/ars.2023.0406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/25/2023]
Abstract
Significance: Nitric oxide (NO) plays several distinct roles in endothelial homeostasis. Except for activating the guanylyl cyclase enzyme-dependent cyclic guanosine monophosphate signaling pathway, NO can bind reactive cysteine residues in target proteins, a process known as S-nitrosylation (SNO). SNO is proposed to explain the multiple biological functions of NO in the endothelium. Investigating the targets and mechanism of protein SNO in endothelial cells (ECs) can provide new strategies for treating endothelial dysfunction-related diseases. Recent Advances: In response to different environments, proteomics has identified multiple SNO targets in ECs. Functional studies confirm that SNO regulates NO bioavailability, inflammation, permeability, oxidative stress, mitochondrial function, and insulin sensitivity in ECs. It also influences EC proliferation, migration, apoptosis, and transdifferentiation. Critical Issues: Single-cell transcriptomic analysis of ECs isolated from different mouse tissues showed heterogeneous gene signatures. However, litter research focuses on the heterogeneous properties of SNO proteins in ECs derived from different tissues. Although metabolism reprogramming plays a vital role in endothelial functions, little is known about how protein SNO regulates metabolism reprogramming in ECs. Future Directions: Precisely deciphering the effects of protein SNO in ECs isolated from different tissues under different conditions is necessary to further characterize the relationship between protein SNO and endothelial dysfunction-related diseases. In addition, identifying SNO targets that can influence endothelial metabolic reprogramming and the underlying mechanism can offer new views on the crosstalk between metabolism and post-translational protein modification. Antioxid. Redox Signal. 40, 186-205.
Collapse
Affiliation(s)
- Shanshan Luo
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing, China
| | - Danyu Ye
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing, China
| | - Yu Wang
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing, China
| | - Xingeng Liu
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing, China
| | - Xiaoqian Wang
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing, China
| | - Liping Xie
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing, China
| | - Yong Ji
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing, China
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy, Key Laboratory of Cardiovascular Medicine Research and Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, NHC Key Laboratory of Cell Transplantation, the Central Laboratory of the First Affiliated Hospital, Harbin Medical University, Heilongjiang, China
| |
Collapse
|
4
|
Ruperti F, Becher I, Stokkermans A, Wang L, Marschlich N, Potel C, Maus E, Stein F, Drotleff B, Schippers K, Nickel M, Prevedel R, Musser JM, Savitski MM, Arendt D. Molecular profiling of sponge deflation reveals an ancient relaxant-inflammatory response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.02.551666. [PMID: 37577507 PMCID: PMC10418225 DOI: 10.1101/2023.08.02.551666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
A hallmark of animals is the coordination of whole-body movement. Neurons and muscles are central to this, yet coordinated movements also exist in sponges that lack these cell types. Sponges are sessile animals with a complex canal system for filter-feeding. They undergo whole-body movements resembling "contractions" that lead to canal closure and water expulsion. Here, we combine 3D optical coherence microscopy, pharmacology, and functional proteomics to elucidate anatomy, molecular physiology, and control of these movements. We find them driven by the relaxation of actomyosin stress fibers in epithelial canal cells, which leads to whole-body deflation via collapse of the incurrent and expansion of the excurrent system, controlled by an Akt/NO/PKG/A pathway. A concomitant increase in reactive oxygen species and secretion of proteinases and cytokines indicate an inflammation-like state reminiscent of vascular endothelial cells experiencing oscillatory shear stress. This suggests an ancient relaxant-inflammatory response of perturbed fluid-carrying systems in animals.
Collapse
Affiliation(s)
- Fabian Ruperti
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
- Collaboration for joint Ph.D. degree between EMBL and Heidelberg University, Faculty of Biosciences 69117 Heidelberg, Germany
| | - Isabelle Becher
- Genome Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | | | - Ling Wang
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Nick Marschlich
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
- Centre for Organismal Studies (COS), University of Heidelberg, 69120 Heidelberg, Germany
| | - Clement Potel
- Genome Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Emanuel Maus
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Frank Stein
- Proteomics Core Facility, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Bernhard Drotleff
- Metabolomics Core Facility, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Klaske Schippers
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Michael Nickel
- Bionic Consulting Dr. Michael Nickel, 71686 Remseck am Neckar, Germany
| | - Robert Prevedel
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Jacob M Musser
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | - Mikhail M Savitski
- Genome Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
- Proteomics Core Facility, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Detlev Arendt
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
- Centre for Organismal Studies (COS), University of Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
5
|
Ariyasinghe NR, de Souza Santos R, Gross A, Aghamaleky-Sarvestany A, Kreimer S, Escopete S, Parker SJ, Sareen D. Proteomics of novel induced pluripotent stem cell-derived vascular endothelial cells reveal extensive similarity with an immortalized human endothelial cell line. Physiol Genomics 2023; 55:324-337. [PMID: 37306406 PMCID: PMC10396221 DOI: 10.1152/physiolgenomics.00166.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 05/23/2023] [Accepted: 05/27/2023] [Indexed: 06/13/2023] Open
Abstract
The vascular endothelium constitutes the inner lining of the blood vessel, and malfunction and injuries of the endothelium can cause cardiovascular diseases as well as other diseases including stroke, tumor growth, and chronic kidney failure. Generation of effective sources to replace injured endothelial cells (ECs) could have significant clinical impact, and somatic cell sources like peripheral or cord blood cannot credibly supply enough endothelial cell progenitors for multitude of treatments. Pluripotent stem cells are a promising source for a reliable EC supply, which have the potential to restore tissue function and treat vascular diseases. We have developed methods to differentiate induced pluripotent stem cells (iPSCs) efficiently and robustly across multiple iPSC lines into nontissue-specific pan vascular ECs (iECs) with high purity. These iECs present with canonical endothelial cell markers and exhibit measures of endothelial cell functionality with the uptake of Dil fluorescent dye-labeled acetylated low-density lipoprotein (Dil-Ac-LDL) and tube formation. Using proteomic analysis, we revealed that the iECs are more proteomically similar to established human umbilical vein ECs (HUVECs) than to iPSCs. Posttranslational modifications (PTMs) were most shared between HUVECs and iECs, and potential targets for increasing the proteomic similarity of iECs to HUVECs were identified. Here we demonstrate an efficient robust method to differentiate iPSCs into functional ECs, and for the first time provide a comprehensive protein expression profile of iECs, which indicates their similarities with a widely used immortalized HUVECs, allowing for further mechanistic studies of EC development, signaling, and metabolism for future regenerative applications.NEW & NOTEWORTHY We have developed methods to differentiate induced pluripotent stem cells (iPSCs) across multiple iPSC lines into nontissue-specific pan vascular ECs (iECs) and demonstrated the proteomic similarity of these cells to a widely used endothelial cell line (HUVECs). We also identified posttranslational modifications and targets for increasing the proteomic similarity of iECs to HUVECs. In the future, iECs can be used to study EC development, signaling, and metabolism for future regenerative applications.
Collapse
Affiliation(s)
- Nethika R Ariyasinghe
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
- Board of Governors Innovation Center, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Roberta de Souza Santos
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
- Cedars-Sinai Biomanufacturing Center, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Andrew Gross
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
- Cedars-Sinai Biomanufacturing Center, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Arwin Aghamaleky-Sarvestany
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
- Cedars-Sinai Biomanufacturing Center, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Simion Kreimer
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
- Board of Governors Innovation Center, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Sean Escopete
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Sarah J Parker
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
- Board of Governors Innovation Center, Cedars-Sinai Medical Center, Los Angeles, California, United States
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Dhruv Sareen
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
- Cedars-Sinai Biomanufacturing Center, Cedars-Sinai Medical Center, Los Angeles, California, United States
- iPSC Core, Cedars-Sinai Medical Center, Los Angeles, California, United States
- Board of Governors Innovation Center, Cedars-Sinai Medical Center, Los Angeles, California, United States
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, United States
| |
Collapse
|
6
|
Calcium-dependent cAMP mediates the mechanoresponsive behaviour of endothelial cells to high-frequency nanomechanostimulation. Biomaterials 2023; 292:121866. [PMID: 36526351 DOI: 10.1016/j.biomaterials.2022.121866] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/10/2022] [Accepted: 10/18/2022] [Indexed: 12/15/2022]
Abstract
The endothelial junction plays a central role in regulating intravascular and interstitial tissue permeability. The ability to manipulate its integrity therefore not only facilitates an improved understanding of its underlying molecular mechanisms but also provides insight into potential therapeutic solutions. Herein, we explore the effects of short-duration nanometer-amplitude MHz-order mechanostimulation on interendothelial junction stability and hence the barrier capacity of endothelial monolayers. Following an initial transient in which the endothelial barrier is permeabilised due to Rho-ROCK-activated actin stress fibre formation and junction disruption typical of a cell's response to insults, we observe, quite uniquely, the integrity of the endothelial barrier to not only spontaneously recover but also to be enhanced considerably-without the need for additional stimuli or intervention. Central to this peculiar biphasic response, which has not been observed with other stimuli to date, is the role of second messenger calcium and cyclic adenosine monophosphate (cAMP) signalling. We show that intracellular Ca2+, modulated by the high frequency excitation, is responsible for activating reorganisation of the actin cytoskeleton in the barrier recovery phase, in which circumferential actin bundles are formed to stabilise the adherens junctions via a cAMP-mediated Epac1-Rap1 pathway. Despite the short-duration stimulation (8 min), the approximate 4-fold enhancement in the transendothelial electrical resistance (TEER) of endothelial cells from different tissue sources, and the corresponding reduction in paracellular permeability, was found to persist over hours. The effect can further be extended through multiple treatments without resulting in hyperpermeabilisation of the barrier, as found with prolonged use of chemical stimuli, through which only 1.1- to 1.2-fold improvement in TEER has been reported. Such an ability to regulate and enhance endothelial barrier capacity is particularly useful in the development of in vitro barrier models that more closely resemble their in vivo counterparts.
Collapse
|
7
|
Human mini-blood-brain barrier models for biomedical neuroscience research: a review. Biomater Res 2022; 26:82. [PMID: 36527159 PMCID: PMC9756735 DOI: 10.1186/s40824-022-00332-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
The human blood-brain barrier (BBB) is a unique multicellular structure that is in critical demand for fundamental neuroscience studies and therapeutic evaluation. Despite substantial achievements in creating in vitro human BBB platforms, challenges in generating specifics of physiopathological relevance are viewed as impediments to the establishment of in vitro models. In this review, we provide insight into the development and deployment of in vitro BBB models that allow investigation of the physiology and pathology of neurological therapeutic avenues. First, we highlight the critical components, including cell sources, biomaterial glue collections, and engineering techniques to reconstruct a miniaturized human BBB. Second, we describe recent breakthroughs in human mini-BBBs for investigating biological mechanisms in neurology. Finally, we discuss the application of human mini-BBBs to medical approaches. This review provides strategies for understanding neurological diseases, a validation model for drug discovery, and a potential approach for generating personalized medicine.
Collapse
|
8
|
Nuthikattu S, Milenkovic D, Norman JE, Rutledge J, Villablanca A. High Glycemia and Soluble Epoxide Hydrolase in Females: Differential Multiomics in Murine Brain Microvasculature. Int J Mol Sci 2022; 23:13044. [PMID: 36361847 PMCID: PMC9655872 DOI: 10.3390/ijms232113044] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/22/2022] [Accepted: 10/25/2022] [Indexed: 12/02/2023] Open
Abstract
The effect of a high glycemic diet (HGD) on brain microvasculature is a crucial, yet understudied research topic, especially in females. This study aimed to determine the transcriptomic changes in female brain hippocampal microvasculature induced by a HGD and characterize the response to a soluble epoxide hydrolase inhibitor (sEHI) as a mechanism for increased epoxyeicosatrienoic acids (EETs) levels shown to be protective in prior models of brain injury. We fed mice a HGD or a low glycemic diet (LGD), with/without the sEHI (t-AUCB), for 12 weeks. Using microarray, we assessed differentially expressed protein-coding and noncoding genes, functional pathways, and transcription factors from laser-captured hippocampal microvessels. We demonstrated for the first time in females that the HGD had an opposite gene expression profile compared to the LGD and differentially expressed 506 genes, primarily downregulated, with functions related to cell signaling, cell adhesion, cellular metabolism, and neurodegenerative diseases. The sEHI modified the transcriptome of female mice consuming the LGD more than the HGD by modulating genes involved in metabolic pathways that synthesize neuroprotective EETs and associated with a higher EETs/dihydroxyeicosatrienoic acids (DHETs) ratio. Our findings have implications for sEHIs as promising therapeutic targets for the microvascular dysfunction that accompanies vascular dementia.
Collapse
Affiliation(s)
| | - Dragan Milenkovic
- Department of Nutrition, University of California, Davis, CA 95616, USA
| | - Jennifer E. Norman
- Division of Cardiovascular Medicine, University of California, Davis, CA 95616, USA
| | - John Rutledge
- Division of Cardiovascular Medicine, University of California, Davis, CA 95616, USA
| | - Amparo Villablanca
- Division of Cardiovascular Medicine, University of California, Davis, CA 95616, USA
| |
Collapse
|
9
|
Paudel SS, deWeever A, Sayner S, Stevens T, Tambe DT. Substrate stiffness modulates migration and local intercellular membrane motion in pulmonary endothelial cell monolayers. Am J Physiol Cell Physiol 2022; 323:C936-C949. [PMID: 35912996 PMCID: PMC9467474 DOI: 10.1152/ajpcell.00339.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 07/22/2022] [Accepted: 07/22/2022] [Indexed: 11/22/2022]
Abstract
The pulmonary artery endothelium forms a semipermeable barrier that limits macromolecular flux through intercellular junctions. This barrier is maintained by an intrinsic forward protrusion of the interacting membranes between adjacent cells. However, the dynamic interactions of these membranes have been incompletely quantified. Here, we present a novel technique to quantify the motion of the peripheral membrane of the cells, called paracellular morphological fluctuations (PMFs), and to assess the impact of substrate stiffness on PMFs. Substrate stiffness impacted large-length scale morphological changes such as cell size and motion. Cell size was larger on stiffer substrates, whereas the speed of cell movement was decreased on hydrogels with stiffness either larger or smaller than 1.25 kPa, consistent with cells approaching a jammed state. Pulmonary artery endothelial cells moved fastest on 1.25 kPa hydrogel, a stiffness consistent with a healthy pulmonary artery. Unlike these large-length scale morphological changes, the baseline of PMFs was largely insensitive to the substrate stiffness on which the cells were cultured. Activation of store-operated calcium channels using thapsigargin treatment triggered a transient increase in PMFs beyond the control treatment. However, in hypocalcemic conditions, such an increase in PMFs was absent on 1.25 kPa hydrogel but was present on 30 kPa hydrogel-a stiffness consistent with that of a hypertensive pulmonary artery. These findings indicate that 1) PMFs occur in cultured endothelial cell clusters, irrespective of the substrate stiffness; 2) PMFs increase in response to calcium influx through store-operated calcium entry channels; and 3) stiffer substrate promotes PMFs through a mechanism that does not require calcium influx.
Collapse
Affiliation(s)
- Sunita Subedi Paudel
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama
- Department of Mechanical Aerospace and Biomedical Engineering, University of South Alabama, Mobile, Alabama
- Center for Lung Biology, University of South Alabama, Mobile, Alabama
| | - Althea deWeever
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama
- Center for Lung Biology, University of South Alabama, Mobile, Alabama
| | - Sarah Sayner
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama
- Center for Lung Biology, University of South Alabama, Mobile, Alabama
| | - Troy Stevens
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama
- Department of Internal Medicine, University of South Alabama, Mobile, Alabama
- Department of Mechanical Aerospace and Biomedical Engineering, University of South Alabama, Mobile, Alabama
| | - Dhananjay T Tambe
- Department of Mechanical Aerospace and Biomedical Engineering, University of South Alabama, Mobile, Alabama
- Department of Pharmacology, University of South Alabama, Mobile, Alabama
- Center for Lung Biology, University of South Alabama, Mobile, Alabama
| |
Collapse
|
10
|
Pillay LM, Yano JJ, Davis AE, Butler MG, Ezeude MO, Park JS, Barnes KA, Reyes VL, Castranova D, Gore AV, Swift MR, Iben JR, Kenton MI, Stratman AN, Weinstein BM. In vivo dissection of Rhoa function in vascular development using zebrafish. Angiogenesis 2022; 25:411-434. [PMID: 35320450 DOI: 10.1007/s10456-022-09834-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 02/22/2022] [Indexed: 12/27/2022]
Abstract
The small monomeric GTPase RHOA acts as a master regulator of signal transduction cascades by activating effectors of cellular signaling, including the Rho-associated protein kinases ROCK1/2. Previous in vitro cell culture studies suggest that RHOA can regulate many critical aspects of vascular endothelial cell (EC) biology, including focal adhesion, stress fiber formation, and angiogenesis. However, the specific in vivo roles of RHOA during vascular development and homeostasis are still not well understood. In this study, we examine the in vivo functions of RHOA in regulating vascular development and integrity in zebrafish. We use zebrafish RHOA-ortholog (rhoaa) mutants, transgenic embryos expressing wild type, dominant negative, or constitutively active forms of rhoaa in ECs, pharmacological inhibitors of RHOA and ROCK1/2, and Rock1 and Rock2a/b dgRNP-injected zebrafish embryos to study the in vivo consequences of RHOA gain- and loss-of-function in the vascular endothelium. Our findings document roles for RHOA in vascular integrity, developmental angiogenesis, and vascular morphogenesis in vivo, showing that either too much or too little RHOA activity leads to vascular dysfunction.
Collapse
Affiliation(s)
- Laura M Pillay
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, 6 Center Dr. Bethesda, Bethesda, MD, 20892, USA
| | - Joseph J Yano
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, 6 Center Dr. Bethesda, Bethesda, MD, 20892, USA
- Department of Cell and Molecular Biology, University of Pennsylvania, 440 Curie Blvd, Philadelphia, PA, 19104, USA
| | - Andrew E Davis
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, 6 Center Dr. Bethesda, Bethesda, MD, 20892, USA
| | - Matthew G Butler
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, 6 Center Dr. Bethesda, Bethesda, MD, 20892, USA
| | - Megan O Ezeude
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, 6 Center Dr. Bethesda, Bethesda, MD, 20892, USA
| | - Jong S Park
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, 6 Center Dr. Bethesda, Bethesda, MD, 20892, USA
| | - Keith A Barnes
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, 6 Center Dr. Bethesda, Bethesda, MD, 20892, USA
| | - Vanessa L Reyes
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, 6 Center Dr. Bethesda, Bethesda, MD, 20892, USA
| | - Daniel Castranova
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, 6 Center Dr. Bethesda, Bethesda, MD, 20892, USA
| | - Aniket V Gore
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, 6 Center Dr. Bethesda, Bethesda, MD, 20892, USA
| | - Matthew R Swift
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, 6 Center Dr. Bethesda, Bethesda, MD, 20892, USA
| | - James R Iben
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, 6 Center Dr. Bethesda, Bethesda, MD, 20892, USA
| | - Madeleine I Kenton
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, 6 Center Dr. Bethesda, Bethesda, MD, 20892, USA
| | - Amber N Stratman
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, 6 Center Dr. Bethesda, Bethesda, MD, 20892, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Brant M Weinstein
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, 6 Center Dr. Bethesda, Bethesda, MD, 20892, USA.
| |
Collapse
|
11
|
Ciszewski WM, Wawro ME, Sacewicz-Hofman I, Sobierajska K. Cytoskeleton Reorganization in EndMT-The Role in Cancer and Fibrotic Diseases. Int J Mol Sci 2021; 22:ijms222111607. [PMID: 34769036 PMCID: PMC8583721 DOI: 10.3390/ijms222111607] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 12/11/2022] Open
Abstract
Chronic inflammation promotes endothelial plasticity, leading to the development of several diseases, including fibrosis and cancer in numerous organs. The basis of those processes is a phenomenon called the endothelial–mesenchymal transition (EndMT), which results in the delamination of tightly connected endothelial cells that acquire a mesenchymal phenotype. EndMT-derived cells, known as the myofibroblasts or cancer-associated fibroblasts (CAFs), are characterized by the loss of cell–cell junctions, loss of endothelial markers, and gain in mesenchymal ones. As a result, the endothelium ceases its primary ability to maintain patent and functional capillaries and induce new blood vessels. At the same time, it acquires the migration and invasion potential typical of mesenchymal cells. The observed modulation of cell shape, increasedcell movement, and invasion abilities are connected with cytoskeleton reorganization. This paper focuses on the review of current knowledge about the molecular pathways involved in the modulation of each cytoskeleton element (microfilaments, microtubule, and intermediate filaments) during EndMT and their role as the potential targets for cancer and fibrosis treatment.
Collapse
|
12
|
MAGI1, a Scaffold Protein with Tumor Suppressive and Vascular Functions. Cells 2021; 10:cells10061494. [PMID: 34198584 PMCID: PMC8231924 DOI: 10.3390/cells10061494] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/04/2021] [Accepted: 06/08/2021] [Indexed: 12/13/2022] Open
Abstract
MAGI1 is a cytoplasmic scaffolding protein initially identified as a component of cell-to-cell contacts stabilizing cadherin-mediated cell–cell adhesion in epithelial and endothelial cells. Clinical-pathological and experimental evidence indicates that MAGI1 expression is decreased in some inflammatory diseases, and also in several cancers, including hepatocellular carcinoma, colorectal, cervical, breast, brain, and gastric cancers and appears to act as a tumor suppressor, modulating the activity of oncogenic pathways such as the PI3K/AKT and the Wnt/β-catenin pathways. Genomic mutations and other mechanisms such as mechanical stress or inflammation have been described to regulate MAGI1 expression. Intriguingly, in breast and colorectal cancers, MAGI1 expression is induced by non-steroidal anti-inflammatory drugs (NSAIDs), suggesting a role in mediating the tumor suppressive activity of NSAIDs. More recently, MAGI1 was found to localize at mature focal adhesion and to regulate integrin-mediated adhesion and signaling in endothelial cells. Here, we review MAGI1′s role as scaffolding protein, recent developments in the understanding of MAGI1 function as tumor suppressor gene, its role in endothelial cells and its implication in cancer and vascular biology. We also discuss outstanding questions about its regulation and potential translational implications in oncology.
Collapse
|
13
|
Alday-Parejo B, Ghimire K, Coquoz O, Albisetti GW, Tamò L, Zaric J, Stalin J, Rüegg C. MAGI1 localizes to mature focal adhesion and modulates endothelial cell adhesion, migration and angiogenesis. Cell Adh Migr 2021; 15:126-139. [PMID: 33823745 PMCID: PMC8115569 DOI: 10.1080/19336918.2021.1911472] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
MAGI1 is an intracellular adaptor protein that stabilizes cell junctions and regulates epithelial and endothelial integrity. Here, we report that that in endothelial cells MAGI1 colocalizes with paxillin, β3-integrin, talin 1, tensin 3 and α-4-actinin at mature focal adhesions and actin stress fibers, and regulates their dynamics. Downregulation of MAGI1 reduces focal adhesion formation and maturation, cell spreading, actin stress fiber formation and RhoA/Rac1 activation. MAGI1 silencing increases phosphorylation of paxillin at Y118, an indicator of focal adhesion turnover. MAGI1 promotes integrin-dependent endothelial cells adhesion to ECM, reduces invasion and tubulogenesisin vitro and suppresses angiogenesis in vivo. Our results identify MAGI1 as anovel component of focal adhesions, and regulator of focal adhesion dynamics, cell adhesion, invasion and angiogenesis.
Collapse
Affiliation(s)
- Begoña Alday-Parejo
- Laboratory of Experimental and Translational Oncology, Pathology, Department of Oncology, Microbiology and Immunology, Faculty of Sciences and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Kedar Ghimire
- Laboratory of Experimental and Translational Oncology, Pathology, Department of Oncology, Microbiology and Immunology, Faculty of Sciences and Medicine, University of Fribourg, Fribourg, Switzerland.,Westmead Institute for Medical Research, University of Sydney, Sydney, Australia
| | - Oriana Coquoz
- Laboratory of Experimental and Translational Oncology, Pathology, Department of Oncology, Microbiology and Immunology, Faculty of Sciences and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Gioele W Albisetti
- Laboratory of Experimental and Translational Oncology, Pathology, Department of Oncology, Microbiology and Immunology, Faculty of Sciences and Medicine, University of Fribourg, Fribourg, Switzerland.,Institute of Pharmacology and Toxicology, Section of Neuropharmacology, University of Zürich, Zürich, Switzerland
| | - Luca Tamò
- Laboratory of Experimental and Translational Oncology, Pathology, Department of Oncology, Microbiology and Immunology, Faculty of Sciences and Medicine, University of Fribourg, Fribourg, Switzerland.,Clinical Trials Unit, University of Bern, Bern, Switzerland
| | - Jelena Zaric
- Laboratory of Experimental and Translational Oncology, Pathology, Department of Oncology, Microbiology and Immunology, Faculty of Sciences and Medicine, University of Fribourg, Fribourg, Switzerland.,Swiss Institute for Experimental Cancer Research, Ecole Polytechnique Fédérale De Lausanne, Lausanne, Switzerland
| | - Jimmy Stalin
- Laboratory of Experimental and Translational Oncology, Pathology, Department of Oncology, Microbiology and Immunology, Faculty of Sciences and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Curzio Rüegg
- Laboratory of Experimental and Translational Oncology, Pathology, Department of Oncology, Microbiology and Immunology, Faculty of Sciences and Medicine, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
14
|
Ma Y, Yang X, Chatterjee V, Wu MH, Yuan SY. The Gut-Lung Axis in Systemic Inflammation. Role of Mesenteric Lymph as a Conduit. Am J Respir Cell Mol Biol 2021; 64:19-28. [PMID: 32877613 DOI: 10.1165/rcmb.2020-0196tr] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Emerging evidence shows that after injury or infection, the mesenteric lymph acts as a conduit for gut-derived toxic factors to enter the blood circulation, causing systemic inflammation and acute lung injury. Neither the cellular and molecular identity of lymph factors nor their mechanisms of action have been well understood and thus have become a timely topic of investigation. This review will first provide a summary of background knowledge on gut barrier and mesenteric lymphatics, followed by a discussion focusing on the current understanding of potential injurious factors in the lymph and their mechanistic contributions to lung injury. We also examine lymph factors with antiinflammatory properties as well as the bidirectional nature of the gut-lung axis in inflammation.
Collapse
Affiliation(s)
- Yonggang Ma
- Department of Molecular Pharmacology and Physiology, and
| | - Xiaoyuan Yang
- Department of Molecular Pharmacology and Physiology, and
| | | | - Mack H Wu
- Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, Florida
| | - Sarah Y Yuan
- Department of Molecular Pharmacology and Physiology, and.,Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, Florida
| |
Collapse
|
15
|
Schwefel K, Spiegler S, Kirchmaier BC, Dellweg PKE, Much CD, Pané-Farré J, Strom TM, Riedel K, Felbor U, Rath M. Fibronectin rescues aberrant phenotype of endothelial cells lacking either CCM1, CCM2 or CCM3. FASEB J 2020; 34:9018-9033. [PMID: 32515053 DOI: 10.1096/fj.201902888r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 03/17/2020] [Accepted: 04/08/2020] [Indexed: 12/16/2022]
Abstract
Loss-of-function variants in CCM1/KRIT1, CCM2, and CCM3/PDCD10 are associated with autosomal dominant cerebral cavernous malformations (CCMs). CRISPR/Cas9-mediated CCM3 inactivation in human endothelial cells (ECs) has been shown to induce profound defects in cell-cell interaction as well as actin cytoskeleton organization. We here show that CCM3 inactivation impairs fibronectin expression and consequently leads to reduced fibers in the extracellular matrix. Despite the complexity and high molecular weight of fibronectin fibrils, our in vitro model allowed us to reveal that fibronectin supplementation restored aberrant spheroid formation as well as altered EC morphology, and suppressed actin stress fiber formation. Yet, fibronectin replacement neither enhanced the stability of tube-like structures nor inhibited the survival advantage of CCM3-/- ECs. Importantly, CRISPR/Cas9-mediated introduction of biallelic loss-of-function variants into either CCM1 or CCM2 demonstrated that the impaired production of a functional fibronectin matrix is a common feature of CCM1-, CCM2-, and CCM3-deficient ECs.
Collapse
Affiliation(s)
- Konrad Schwefel
- Department of Human Genetics, University Medicine Greifswald, Greifswald, Germany.,Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Stefanie Spiegler
- Department of Human Genetics, University Medicine Greifswald, Greifswald, Germany.,Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Bettina C Kirchmaier
- Institute of Cell Biology and Neuroscience, University of Frankfurt, Frankfurt am Main, Germany.,Buchmann Institute for Molecular Life Sciences, University of Frankfurt, Frankfurt am Main, Germany
| | - Patricia K E Dellweg
- Department of Human Genetics, University Medicine Greifswald, Greifswald, Germany.,Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Christiane D Much
- Department of Human Genetics, University Medicine Greifswald, Greifswald, Germany.,Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Jan Pané-Farré
- Department of Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Tim M Strom
- Institute of Human Genetics, Technische Universität München, Munich, Germany.,Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Katharina Riedel
- Department of Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Ute Felbor
- Department of Human Genetics, University Medicine Greifswald, Greifswald, Germany.,Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Matthias Rath
- Department of Human Genetics, University Medicine Greifswald, Greifswald, Germany.,Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| |
Collapse
|
16
|
Guo X, Eitnier RA, Beard RS, Meegan JE, Yang X, Aponte AM, Wang F, Nelson PR, Wu MH. Focal adhesion kinase and Src mediate microvascular hyperpermeability caused by fibrinogen- γC- terminal fragments. PLoS One 2020; 15:e0231739. [PMID: 32352989 PMCID: PMC7192500 DOI: 10.1371/journal.pone.0231739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 03/30/2020] [Indexed: 12/31/2022] Open
Abstract
Objectives We previously reported microvascular leakage resulting from fibrinogen-γ chain C-terminal products (γC) occurred via a RhoA-dependent mechanism. The objective of this study was to further elucidate the signaling mechanism by which γC induces endothelial hyperpermeability. Since it is known that γC binds and activates endothelial αvβ3, a transmembrane integrin receptor involved in intracellular signaling mediated by the tyrosine kinases FAK and Src, we hypothesized that γC alters endothelial barrier function by activating the FAK-Src pathway leading to junction dissociation and RhoA driven cytoskeletal stress-fiber formation. Methods and results Using intravital microscopy of rat mesenteric microvessels, we show increased extravasation of plasma protein (albumin) resulting from γC administration. In addition, capillary fluid filtration coefficient (Kfc) indicated γC-induced elevated lung vascular permeability. Furthermore, γC decreased transendothelial barrier resistance in a time-dependent and dose-related fashion in cultured rat lung microvascular endothelial cells (RLMVECs), accompanied by increased FAK/Src phosphorylation detection by western blot. Experiments with pharmacological inhibition or gene silencing of FAK showed significantly reduced γC-induced albumin and fluid leakage across microvessels, stress-fiber formation, VE-cadherin tyrosine phosphorylation, and improved γC-induced endothelial barrier dysfunction, indicating the involvement of FAK in γC mediated hyperpermeability. Comparable results were found when Src was targeted in a similar manner, however inhibition of FAK prevented Src activation, suggesting that FAK is upstream of Src in γC-mediated hyperpermeability. In addition, γC-induced cytoskeletal stress-fiber formation was attenuated during inhibition or silencing of these tyrosine kinases, concomitantly with RhoA inhibition. Conclusion The FAK-Src pathway contributes to γC-induced microvascular barrier dysfunction, junction protein phosphorylation and disorganization in a manner that involves RhoA and stress-fiber formation.
Collapse
Affiliation(s)
- Xiaohua Guo
- Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, FL, United States of America
| | - Rebecca A. Eitnier
- Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, FL, United States of America
| | - Richard S. Beard
- Department of Biomolecular Research, Boise State University, Boise, ID, United States of America
| | - Jamie E. Meegan
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, FL, United States of America
| | - Xiaoyuan Yang
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, FL, United States of America
| | - Alexandra M. Aponte
- Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, FL, United States of America
| | - Fang Wang
- Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, FL, United States of America
| | - Peter R. Nelson
- Department of Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
| | - Mack H. Wu
- Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, FL, United States of America
- * E-mail:
| |
Collapse
|
17
|
Fu P, Ramchandran R, Shaaya M, Huang L, Ebenezer DL, Jiang Y, Komarova Y, Vogel SM, Malik AB, Minshall RD, Du G, Tonks NK, Natarajan V. Phospholipase D2 restores endothelial barrier function by promoting PTPN14-mediated VE-cadherin dephosphorylation. J Biol Chem 2020; 295:7669-7685. [PMID: 32327488 DOI: 10.1074/jbc.ra119.011801] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 04/03/2020] [Indexed: 11/06/2022] Open
Abstract
Increased permeability of vascular lung tissues is a hallmark of acute lung injury and is often caused by edemagenic insults resulting in inflammation. Vascular endothelial (VE)-cadherin undergoes internalization in response to inflammatory stimuli and is recycled at cell adhesion junctions during endothelial barrier re-establishment. Here, we hypothesized that phospholipase D (PLD)-generated phosphatidic acid (PA) signaling regulates VE-cadherin recycling and promotes endothelial barrier recovery by dephosphorylating VE-cadherin. Genetic deletion of PLD2 impaired recovery from protease-activated receptor-1-activating peptide (PAR-1-AP)-induced lung vascular permeability and potentiated inflammation in vivo In human lung microvascular endothelial cells (HLMVECs), inhibition or deletion of PLD2, but not of PLD1, delayed endothelial barrier recovery after thrombin stimulation. Thrombin stimulation of HLMVECs increased co-localization of PLD2-generated PA and VE-cadherin at cell-cell adhesion junctions. Inhibition of PLD2 activity resulted in prolonged phosphorylation of Tyr-658 in VE-cadherin during the recovery phase 3 h post-thrombin challenge. Immunoprecipitation experiments revealed that after HLMVECs are thrombin stimulated, PLD2, VE-cadherin, and protein-tyrosine phosphatase nonreceptor type 14 (PTPN14), a PLD2-dependent protein-tyrosine phosphatase, strongly associate with each other. PTPN14 depletion delayed VE-cadherin dephosphorylation, reannealing of adherens junctions, and barrier function recovery. PLD2 inhibition attenuated PTPN14 activity and reversed PTPN14-dependent VE-cadherin dephosphorylation after thrombin stimulation. Our findings indicate that PLD2 promotes PTPN14-mediated dephosphorylation of VE-cadherin and that redistribution of VE-cadherin at adherens junctions is essential for recovery of endothelial barrier function after an edemagenic insult.
Collapse
Affiliation(s)
- Panfeng Fu
- Department of Pharmacology, University of Illinois, Chicago, Illinois.,The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
| | | | - Mark Shaaya
- Department of Pharmacology, University of Illinois, Chicago, Illinois
| | - Longshuang Huang
- Department of Pharmacology, University of Illinois, Chicago, Illinois
| | - David L Ebenezer
- Department of Pharmacology, University of Illinois, Chicago, Illinois
| | - Ying Jiang
- Department of Anesthesiology, University of Illinois, Chicago, Illinois
| | - Yulia Komarova
- Department of Pharmacology, University of Illinois, Chicago, Illinois
| | - Stephen M Vogel
- Department of Pharmacology, University of Illinois, Chicago, Illinois
| | - Asrar B Malik
- Department of Pharmacology, University of Illinois, Chicago, Illinois
| | - Richard D Minshall
- Department of Pharmacology, University of Illinois, Chicago, Illinois.,Department of Anesthesiology, University of Illinois, Chicago, Illinois
| | - Guangwei Du
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas
| | | | - Viswanathan Natarajan
- Department of Pharmacology, University of Illinois, Chicago, Illinois .,Department of Medicine, University of Illinois, Chicago, Illinois
| |
Collapse
|
18
|
Weinstein N, Mendoza L, Álvarez-Buylla ER. A Computational Model of the Endothelial to Mesenchymal Transition. Front Genet 2020; 11:40. [PMID: 32226439 PMCID: PMC7080988 DOI: 10.3389/fgene.2020.00040] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 01/14/2020] [Indexed: 12/13/2022] Open
Abstract
Endothelial cells (ECs) form the lining of lymph and blood vessels. Changes in tissue requirements or wounds may cause ECs to behave as tip or stalk cells. Alternatively, they may differentiate into mesenchymal cells (MCs). These processes are known as EC activation and endothelial-to-mesenchymal transition (EndMT), respectively. EndMT, Tip, and Stalk EC behaviors all require SNAI1, SNAI2, and Matrix metallopeptidase (MMP) function. However, only EndMT inhibits the expression of VE-cadherin, PECAM1, and VEGFR2, and also leads to EC detachment. Physiologically, EndMT is involved in heart valve development, while a defective EndMT regulation is involved in the physiopathology of cardiovascular malformations, congenital heart disease, systemic and organ fibrosis, pulmonary arterial hypertension, and atherosclerosis. Therefore, the control of EndMT has many promising potential applications in regenerative medicine. Despite the fact that many molecular components involved in EC activation and EndMT have been characterized, the system-level molecular mechanisms involved in this process have not been elucidated. Toward this end, hereby we present Boolean network model of the molecular involved in the regulation of EC activation and EndMT. The simulated dynamic behavior of our model reaches fixed and cyclic patterns of activation that correspond to the expected EC and MC cell types and behaviors, recovering most of the specific effects of simple gain and loss-of-function mutations as well as the conditions associated with the progression of several diseases. Therefore, our model constitutes a theoretical framework that can be used to generate hypotheses and guide experimental inquiry to comprehend the regulatory mechanisms behind EndMT. Our main findings include that both the extracellular microevironment and the pattern of molecular activity within the cell regulate EndMT. EndMT requires a lack of VEGFA and sufficient oxygen in the extracellular microenvironment as well as no FLI1 and GATA2 activity within the cell. Additionally Tip cells cannot undergo EndMT directly. Furthermore, the specific conditions that are sufficient to trigger EndMT depend on the specific pattern of molecular activation within the cell.
Collapse
Affiliation(s)
- Nathan Weinstein
- Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Luis Mendoza
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Elena R Álvarez-Buylla
- Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
19
|
Gao S, Wake H, Gao Y, Wang D, Mori S, Liu K, Teshigawara K, Takahashi H, Nishibori M. Histidine-rich glycoprotein ameliorates endothelial barrier dysfunction through regulation of NF-κB and MAPK signal pathway. Br J Pharmacol 2019; 176:2808-2824. [PMID: 31093964 PMCID: PMC6609555 DOI: 10.1111/bph.14711] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/19/2019] [Accepted: 04/19/2019] [Indexed: 12/23/2022] Open
Abstract
Background and Purpose Microvascular barrier breakdown is a hallmark of sepsis that is associated with sepsis‐induced multiorgan failure. Histidine‐rich glycoprotein (HRG) is a 75‐kDa plasma protein that was demonstrated to improve the survival of septic mice through regulation of cell shape, spontaneous ROS production in neutrophils, and adhesion of neutrophils to vascular endothelial cells. We investigated HRG's role in the LPS/TNF‐α‐induced barrier dysfunction of endothelial cells in vitro and in vivo and the possible mechanism, to clarify the definitive roles of HRG in sepsis. Experimental Approach EA.hy 926 endothelial cells were pretreated with HRG or human serum albumin before stimulation with LPS/TNF‐α. A variety of biochemical assays were applied to explore the underlying molecular mechanisms on how HRG protected the barrier function of vascular endothelium. Key Results Immunostaining results showed that HRG maintains the endothelial monolayer integrity by inhibiting cytoskeleton reorganization, losses of VE‐cadherin and β‐catenin, focal adhesion kinase degradation, and cell detachment induced by LPS/TNF‐α. HRG also inhibited the cytokine secretion from endothelial cells induced by LPS/TNF‐α, which was associated with reduced NF‐κB activation. Moreover, HRG effectively prevented the LPS/TNF‐α‐induced increase in capillary permeability in vitro and in vivo. Finally, Western blot results demonstrated that HRG prevented the phosphorylation of MAPK family and RhoA activation, which are involved mainly in the regulation of cytoskeleton reorganization and barrier permeability. Conclusions and Implications Taken together, our results demonstrate that HRG has protective effects on vascular barrier function in vitro and in vivo, which may be due to the inhibition of MAPK family and Rho activation.
Collapse
Affiliation(s)
- Shangze Gao
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hidenori Wake
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yuan Gao
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Dengli Wang
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shuji Mori
- Department of Pharmacology, School of Pharmacy, Shujitsu University, Okayama, Japan
| | - Keyue Liu
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kiyoshi Teshigawara
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hideo Takahashi
- Department of Pharmacology, Faculty of Medicine, Kindai University, Osakasayama, Japan
| | - Masahiro Nishibori
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
20
|
Ma Y, Yang X, Chatterjee V, Meegan JE, Beard Jr. RS, Yuan SY. Role of Neutrophil Extracellular Traps and Vesicles in Regulating Vascular Endothelial Permeability. Front Immunol 2019; 10:1037. [PMID: 31143182 PMCID: PMC6520655 DOI: 10.3389/fimmu.2019.01037] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 04/23/2019] [Indexed: 12/22/2022] Open
Abstract
The microvascular endothelium serves as the major barrier that controls the transport of blood constituents across the vessel wall. Barrier leakage occurs during infection or sterile inflammation, allowing plasma fluid and cells to extravasate and accumulate in surrounding tissues, an important pathology underlying a variety of infectious diseases and immune disorders. The leak process is triggered and regulated by bidirectional communications between circulating cells and vascular cells at the blood-vessel interface. While the molecular mechanisms underlying this complex process remain incompletely understood, emerging evidence supports the roles of neutrophil-endothelium interaction and neutrophil-derived products, including neutrophil extracellular traps and vesicles, in the pathogenesis of vascular barrier injury. In this review, we summarize the current knowledge on neutrophil-induced changes in endothelial barrier structures, with a detailed presentation of recently characterized molecular pathways involved in the production and effects of neutrophil extracellular traps and extracellular vesicles. Additionally, we discuss the therapeutic implications of altering neutrophil interactions with the endothelial barrier in treating inflammatory diseases.
Collapse
Affiliation(s)
- Yonggang Ma
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Xiaoyuan Yang
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Victor Chatterjee
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Jamie E. Meegan
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Richard S. Beard Jr.
- Department of Biological Sciences, Biomolecular Research Center, Boise State University, Boise, ID, United States
| | - Sarah Y. Yuan
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| |
Collapse
|
21
|
Kelly GT, Faraj R, Zhang Y, Maltepe E, Fineman JR, Black SM, Wang T. Pulmonary Endothelial Mechanical Sensing and Signaling, a Story of Focal Adhesions and Integrins in Ventilator Induced Lung Injury. Front Physiol 2019; 10:511. [PMID: 31105595 PMCID: PMC6498899 DOI: 10.3389/fphys.2019.00511] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 04/11/2019] [Indexed: 12/17/2022] Open
Abstract
Patients with critical illness such as acute lung injury often undergo mechanical ventilation in the intensive care unit. Though lifesaving in many instances, mechanical ventilation often results in ventilator induced lung injury (VILI), characterized by overdistension of lung tissue leading to release of edemagenic agents, which further damage the lung and contribute to the mortality and progression of pulmonary inflammation. The endothelium is particularly sensitive, as VILI associated mechanical stress results in endothelial cytoskeletal rearrangement, stress fiber formation, and integrity loss. At the heart of these changes are integrin tethered focal adhesions (FAs) which participate in mechanosensing, structure, and signaling. Here, we present the known roles of FA proteins including c-Src, talin, FAK, paxillin, vinculin, and integrins in the sensing and response to cyclic stretch and VILI associated stress. Attention is given to how stretch is propagated from the extracellular matrix through integrins to talin and other FA proteins, as well as signaling cascades that include FA proteins, leading to stress fiber formation and other cellular responses. This unifying picture of FAs aids our understanding in an effort to prevent and treat VILI.
Collapse
Affiliation(s)
- Gabriel T Kelly
- Department of Internal Medicine, College of Medicine Phoenix, The University of Arizona, Phoenix, AZ, United States
| | - Reem Faraj
- Department of Internal Medicine, College of Medicine Phoenix, The University of Arizona, Phoenix, AZ, United States
| | - Yao Zhang
- Department of Internal Medicine, College of Medicine Phoenix, The University of Arizona, Phoenix, AZ, United States
| | - Emin Maltepe
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, United States
| | - Jeffrey R Fineman
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, United States
| | - Stephen M Black
- Department of Medicine, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Ting Wang
- Department of Internal Medicine, College of Medicine Phoenix, The University of Arizona, Phoenix, AZ, United States
| |
Collapse
|
22
|
Mulens-Arias V, Balfourier A, Nicolás-Boluda A, Carn F, Gazeau F. Disturbance of adhesomes by gold nanoparticles reveals a size- and cell type-bias. Biomater Sci 2019; 7:389-408. [PMID: 30484789 DOI: 10.1039/c8bm01267a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Gold nanoparticles (AuNP) have been thoroughly studied as multifunctional theranosis agents for cell imaging and cancer therapy as well as sensors due to their tunable physical and chemical properties. Although AuNP have proved to be safe in a wide concentration range, yet other important biological effects can arise in the sublethal window of treatment. This is especially pivotal to understand how AuNP can affect cell biology when labeling steps are needed for cell tracking in vivo, as nanoparticle loading can affect cell migratory/invasion ability, a function mediated by filamentous actin-rich nanometric structures collectively called adhesomes. It is noteworthy that, although numerous research studies have addressed the cell response to AuNP loading, yet none of them focuses on adhesome dynamics as a target of intracellular pathways affected by AuNP. We intend to study the collective dynamics of adhesive F-actin rich structures upon AuNP treatment as an approach to understand the complex AuNP-triggered modulation of migration/invasion related cellular functions. We demonstrated that citrate-coated spherical AuNP of different sizes (3, 11, 16, 30 and 40 nm) disturbed podosome-forming rosettes and the resulting extracellular matrix (ECM) degradation in a murine macrophage model depending on core size. This phenomenon was accompanied by a reduction in metalloproteinase MMP2 and an increment in metalloproteinase inhibitors, TIMP-1/2 and SerpinE1. We also found that AuNP treatment has opposite effects on focal adhesions (FA) in endothelial and mesenchymal stem cells. While endothelial cells reduced their mature FA number and ECM degradation rate upon AuNP treatment, mouse mesenchymal stem cells increased the number and size of mature FA and, therefore, the ECM degradation rate. Overall, AuNP appear to disturb adhesive structures and therefore migratory/invasive cell functions measured as ECM degradation ability, providing new insights into AuNP-cell interaction depending on cell type.
Collapse
Affiliation(s)
- Vladimir Mulens-Arias
- Laboratoire Matière et Systèmes Complexes (MSC), UMR 7075, CNRS and Université Paris Diderot, Université Sorbonne Paris Cité (USPC), 10 Rue Alice Domon et Léonie Duquet, 75205 Paris Cedex 13, France.
| | | | | | | | | |
Collapse
|
23
|
S-nitrosylation and its role in breast cancer angiogenesis and metastasis. Nitric Oxide 2019; 87:52-59. [PMID: 30862477 DOI: 10.1016/j.niox.2019.03.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 01/23/2019] [Accepted: 03/06/2019] [Indexed: 12/24/2022]
Abstract
S-nitrosylation, the modification by nitric oxide of free sulfhydryl groups in cysteines, has become an important regulatory mechanism in carcinogenesis and metastasis. S-nitrosylation of targets in tumor cells contributes to metastasis regulating epithelial to mesenchymal transition, migration and invasion. In the tumor environment, the role of S-nitrosylation in endothelium has not been addressed; however, the evidence points out that S-nitrosylation of endothelial proteins may regulate angiogenesis, adhesion of tumor cells to the endothelium, intra and extravasation of tumor cells and contribute to metastasis.
Collapse
|
24
|
Podocalyxin is required for maintaining blood-brain barrier function during acute inflammation. Proc Natl Acad Sci U S A 2019; 116:4518-4527. [PMID: 30787191 DOI: 10.1073/pnas.1814766116] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Podocalyxin (Podxl) is broadly expressed on the luminal face of most blood vessels in adult vertebrates, yet its function on these cells is poorly defined. In the present study, we identified specific functions for Podxl in maintaining endothelial barrier function. Using electrical cell substrate impedance sensing and live imaging, we found that, in the absence of Podxl, human umbilical vein endothelial cells fail to form an efficient barrier when plated on several extracellular matrix substrates. In addition, these monolayers lack adherens junctions and focal adhesions and display a disorganized cortical actin cytoskeleton. Thus, Podxl has a key role in promoting the appropriate endothelial morphogenesis required to form functional barriers. This conclusion is further supported by analyses of mutant mice in which we conditionally deleted a floxed allele of Podxl in vascular endothelial cells (vECs) using Tie2Cre mice (Podxl ΔTie2Cre). Although we did not detect substantially altered permeability in naïve mice, systemic priming with lipopolysaccharide (LPS) selectively disrupted the blood-brain barrier (BBB) in Podxl ΔTie2Cre mice. To study the potential consequence of this BBB breach, we used a selective agonist (TFLLR-NH2) of the protease-activated receptor-1 (PAR-1), a thrombin receptor expressed by vECs, neuronal cells, and glial cells. In response to systemic administration of TFLLR-NH2, LPS-primed Podxl ΔTie2Cre mice become completely immobilized for a 5-min period, coinciding with severely dampened neuroelectric activity. We conclude that Podxl expression by CNS tissue vECs is essential for BBB maintenance under inflammatory conditions.
Collapse
|
25
|
Abstract
The pulmonary endothelial cell forms a critical semi-permeable barrier between the vascular and interstitial space. As part of the blood-gas barrier in the lung, the endothelium plays a key role in normal physiologic function and pathologic disease. Changes in endothelial cell shape, defined by its plasma membrane, determine barrier integrity. A number of key cytoskeletal regulatory and effector proteins including non-muscle myosin light chain kinase, cortactin, and Arp 2/3 mediate actin rearrangements to form cortical and membrane associated structures in response to barrier enhancing stimuli. These actin formations support and interact with junctional complexes and exert forces to protrude the lipid membrane to and close gaps between individual cells. The current knowledge of these cytoskeletal processes and regulatory proteins are the subject of this review. In addition, we explore novel advancements in cellular imaging that are poised to shed light on the complex nature of pulmonary endothelial permeability.
Collapse
|
26
|
Endothelial Protrusions in Junctional Integrity and Barrier Function. CURRENT TOPICS IN MEMBRANES 2018; 82:93-140. [PMID: 30360784 DOI: 10.1016/bs.ctm.2018.08.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Endothelial cells of the microcirculation form a semi-permeable diffusion barrier between the blood and tissues. This permeability of the endothelium, particularly in the capillaries and postcapillary venules, is a normal physiological function needed for blood-tissue exchange in the microcirculation. During inflammation, microvascular permeability increases dramatically and can lead to tissue edema, which in turn can lead to dysfunction of tissues and organs. The molecular mechanisms that control the barrier function of endothelial cells have been under investigation for several decades and remain an important topic due to the potential for discovery of novel therapeutic strategies to reduce edema. This review highlights current knowledge of the cellular and molecular mechanisms that lead to endothelial hyperpermeability during inflammatory conditions associated with injury and disease. This includes a discussion of recent findings demonstrating temporal protrusions by endothelial cells that may contribute to intercellular junction integrity between endothelial cells and affect the diffusion distance for solutes via the paracellular pathway.
Collapse
|
27
|
Wang L, Mehta S, Ahmed Y, Wallace S, Pape MC, Gill SE. Differential Mechanisms of Septic Human Pulmonary Microvascular Endothelial Cell Barrier Dysfunction Depending on the Presence of Neutrophils. Front Immunol 2018; 9:1743. [PMID: 30116240 PMCID: PMC6082932 DOI: 10.3389/fimmu.2018.01743] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 07/16/2018] [Indexed: 01/06/2023] Open
Abstract
Sepsis is characterized by injury of pulmonary microvascular endothelial cells (PMVEC) leading to barrier dysfunction. Multiple mechanisms promote septic PMVEC barrier dysfunction, including interaction with circulating leukocytes and PMVEC apoptotic death. Our previous work demonstrated a strong correlation between septic neutrophil (PMN)-dependent PMVEC apoptosis and pulmonary microvascular albumin leak in septic mice in vivo; however, this remains uncertain in human PMVEC. Thus, we hypothesize that human PMVEC apoptosis is required for loss of PMVEC barrier function under septic conditions in vitro. To assess this hypothesis, human PMVECs cultured alone or in coculture with PMN were stimulated with PBS or cytomix (equimolar interferon γ, tumor necrosis factor α, and interleukin 1β) in the absence or presence of a pan-caspase inhibitor, Q-VD, or specific caspase inhibitors. PMVEC barrier function was assessed by transendothelial electrical resistance (TEER), as well as fluoroisothiocyanate-labeled dextran and Evans blue-labeled albumin flux across PMVEC monolayers. PMVEC apoptosis was identified by (1) loss of cell membrane polarity (Annexin V), (2) caspase activation (FLICA), and (3) DNA fragmentation [terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)]. Septic stimulation of human PMVECs cultured alone resulted in loss of barrier function (decreased TEER and increased macromolecular flux) associated with increased apoptosis (increased Annexin V, FLICA, and TUNEL staining). In addition, treatment of septic PMVEC cultured alone with Q-VD decreased PMVEC apoptosis and prevented septic PMVEC barrier dysfunction. In septic PMN-PMVEC cocultures, there was greater trans-PMVEC macromolecular flux (both dextran and albumin) vs. PMVEC cultured alone. PMN presence also augmented septic PMVEC caspase activation (FLICA staining) vs. PMVEC cultured alone but did not affect septic PMVEC apoptosis. Importantly, pan-caspase inhibition (Q-VD treatment) completely attenuated septic PMN-dependent PMVEC barrier dysfunction. Moreover, inhibition of caspase 3, 8, or 9 in PMN-PMVEC cocultures also reduced septic PMVEC barrier dysfunction whereas inhibition of caspase 1 had no effect. Our data demonstrate that human PMVEC barrier dysfunction under septic conditions in vitro (cytomix stimulation) is clearly caspase-dependent, but the mechanism differs depending on the presence of PMN. In isolated PMVEC, apoptosis contributes to septic barrier dysfunction, whereas PMN presence enhances caspase-dependent septic PMVEC barrier dysfunction independently of PMVEC apoptosis.
Collapse
Affiliation(s)
- Lefeng Wang
- Centre for Critical Illness Research, Lawson Health Research Institute, London, ON, Canada.,Department of Medicine, Western University, London, ON, Canada
| | - Sanjay Mehta
- Centre for Critical Illness Research, Lawson Health Research Institute, London, ON, Canada.,Department of Medicine, Western University, London, ON, Canada.,Division of Respirology, Western University, London, ON, Canada
| | - Yousuf Ahmed
- Centre for Critical Illness Research, Lawson Health Research Institute, London, ON, Canada.,Department of Medicine, Western University, London, ON, Canada
| | - Shelby Wallace
- Department of Physiology and Pharmacology, Western University, London, ON, Canada
| | - M Cynthia Pape
- Centre for Critical Illness Research, Lawson Health Research Institute, London, ON, Canada.,Department of Medicine, Western University, London, ON, Canada
| | - Sean E Gill
- Centre for Critical Illness Research, Lawson Health Research Institute, London, ON, Canada.,Department of Medicine, Western University, London, ON, Canada.,Division of Respirology, Western University, London, ON, Canada.,Department of Physiology and Pharmacology, Western University, London, ON, Canada
| |
Collapse
|
28
|
Desu HR, Thoma LA, Wood GC. Nebulization of Cyclic Arginine-Glycine-(D)-Aspartic Acid-Peptide Grafted and Drug Encapsulated Liposomes for Inhibition of Acute Lung Injury. Pharm Res 2018. [PMID: 29536186 DOI: 10.1007/s11095-018-2366-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
PURPOSE Acute lung injury (ALI) is a fatal syndrome in critically ill patients. It is characterized by lung edema and inflammation. Numerous pro-inflammatory mediators are released into alveoli. Among them, interleukin-1beta (IL-1β) causes an increase in solute permeability across the alveolar-capillary barrier leading to edema. It activates key effector cells (alveolar epithelial and endothelial cells) releasing inflammatory chemokines and cytokines. The purpose of the study was to demonstrate that nebulized liposomes inhibit ALI in vivo. METHODS In vivo ALI model was simulated through intra-tracheal instillation of IL-1β solution (100 μg/mL in PBS, pH 7.2, 200 μL) in male Sprague-Dawley rats. Various formulations were tested in ALI induced rats. These formulations include plain liposomes (PL), methylprednisolone sodium succinate solution (MPS solution), cRGD-peptide grafted liposomes (LcRGD) and methylprednisolone sodium succinate encapsulated and cRGD-peptide grafted liposomes (MPS-LcRGD). Formulations were nebulized in vivo in rats using micro-pump nebulizer. RESULTS Liposome formulations exhibited higher levels of drug concentration in lungs. The physicochemical parameters demonstrated that the liposome formulations were stable. On the basis of aerodynamic droplet-size, nebulized formulations were estimated to deposit in different regions of respiratory tract, especially alveolar region, Among the formulations, MPS-LcRGD caused significant reduction of edema, neutrophil infiltration and inflammation biochemical marker levels. CONCLUSION From the results, it can be inferred that nebulization of targeted liposomes had facilitated spatial and temporal modulation of drug delivery resulting in alleviation of ALI.
Collapse
Affiliation(s)
- Hari R Desu
- Intera Healthcare, IKP Knowledge Park, Genome Valley, Shameerpet, Hyderabad, TS, 500101, India.
| | - Laura A Thoma
- Plough Center for Sterile Drug Delivery Systems, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - George C Wood
- Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| |
Collapse
|
29
|
Abstract
Edema is typically presented as a secondary effect from injury, illness, disease, or medication, and its impact on patient wellness is nested within the underlying etiology. Therefore, it is often thought of more as an amplifier to current preexisting conditions. Edema, however, can be an independent risk factor for patient deterioration. Improper management of edema is costly not only to the patient, but also to treatment and care facilities, as mismanagement of edema results in increased lengths of hospital stay. Direct tissue trauma, disease, or inappropriate resuscitation and/or ventilation strategies result in edema formation through physical disruption and chemical messenger-based structural modifications of the microvascular barrier. Derangements in microvascular barrier function limit tissue oxygenation, nutrient flow, and cellular waste removal. Recent studies have sought to elucidate cellular signaling and structural alterations that result in vascular hyperpermeability in a variety of critical care conditions to include hemorrhage, burn trauma, and sepsis. These studies and many others have highlighted how multiple mechanisms alter paracellular and/or transcellular pathways promoting hyperpermeability. Roles for endothelial glycocalyx, extracellular matrix and basement membrane, vesiculo-vacuolar organelles, cellular junction and cytoskeletal proteins, and vascular pericytes have been described, demonstrating the complexity of microvascular barrier regulation. Understanding these basic mechanisms inside and out of microvessels aid in developing better treatment strategies to mitigate the harmful effects of excessive edema formation.
Collapse
|
30
|
Lu Q, Gottlieb E, Rounds S. Effects of cigarette smoke on pulmonary endothelial cells. Am J Physiol Lung Cell Mol Physiol 2018; 314:L743-L756. [PMID: 29351435 DOI: 10.1152/ajplung.00373.2017] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Cigarette smoking is the leading cause of preventable disease and death in the United States. Cardiovascular comorbidities associated with both active and secondhand cigarette smoking indicate the vascular toxicity of smoke exposure. Growing evidence supports the injurious effect of cigarette smoke on pulmonary endothelial cells and the roles of endothelial cell injury in development of acute respiratory distress syndrome (ARDS), emphysema, and pulmonary hypertension. This review summarizes results from studies of humans, preclinical animal models, and cultured endothelial cells that document toxicities of cigarette smoke exposure on pulmonary endothelial cell functions, including barrier dysfunction, endothelial activation and inflammation, apoptosis, and vasoactive mediator production. The discussion is focused on effects of cigarette smoke-induced endothelial injury in the development of ARDS, emphysema, and vascular remodeling in chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Qing Lu
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center , Providence, Rhode Island.,Department of Medicine, Alpert Medical School of Brown University , Providence, Rhode Island
| | - Eric Gottlieb
- Department of Medicine, Alpert Medical School of Brown University , Providence, Rhode Island
| | - Sharon Rounds
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center , Providence, Rhode Island.,Department of Medicine, Alpert Medical School of Brown University , Providence, Rhode Island
| |
Collapse
|
31
|
Zamorano P, Marín N, Córdova F, Aguilar A, Meininger C, Boric MP, Golenhofen N, Contreras JE, Sarmiento J, Durán WN, Sánchez FA. S-nitrosylation of VASP at cysteine 64 mediates the inflammation-stimulated increase in microvascular permeability. Am J Physiol Heart Circ Physiol 2017; 313:H66-H71. [PMID: 28526707 DOI: 10.1152/ajpheart.00135.2017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 04/24/2017] [Accepted: 04/25/2017] [Indexed: 01/08/2023]
Abstract
We tested the hypothesis that platelet-activating factor (PAF) induces S-nitrosylation of vasodilator-stimulated phosphoprotein (VASP) as a mechanism to reduce microvascular endothelial barrier integrity and stimulate hyperpermeability. PAF elevated S-nitrosylation of VASP above baseline levels in different endothelial cells and caused hyperpermeability. To ascertain the importance of endothelial nitric oxide synthase (eNOS) subcellular location in this process, we used ECV-304 cells transfected with cytosolic eNOS (GFPeNOSG2A) and plasma membrane eNOS (GFPeNOSCAAX). PAF induced S-nitrosylation of VASP in cells with cytosolic eNOS but not in cells wherein eNOS is anchored to the cell membrane. Reconstitution of VASP knockout myocardial endothelial cells with cysteine mutants of VASP demonstrated that S-nitrosylation of cysteine 64 is associated with PAF-induced hyperpermeability. We propose that regulation of VASP contributes to endothelial cell barrier integrity and to the onset of hyperpermeability. S-nitrosylation of VASP inhibits its function in barrier integrity and leads to endothelial monolayer hyperpermeability in response to PAF, a representative proinflammatory agonist.NEW & NOTEWORTHY Here, we demonstrate that S-nitrosylation of vasodilator-stimulated phosphoprotein (VASP) on C64 is a mechanism for the onset of platelet-activating factor-induced hyperpermeability. Our results reveal a dual role of VASP in endothelial permeability. In addition to its well-documented function in barrier integrity, we show that S-nitrosylation of VASP contributes to the onset of endothelial permeability.
Collapse
Affiliation(s)
- Patricia Zamorano
- Instituto de Inmunología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Natalie Marín
- Instituto de Inmunología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Francisco Córdova
- Instituto de Inmunología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Alejandra Aguilar
- Instituto de Inmunología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Cynthia Meininger
- Department of Medical Physiology, Texas A&M Health Science Center, Temple, Texas
| | - Mauricio P Boric
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nikola Golenhofen
- Institute of Anatomy and Cell Biology, University of Ulm, Ulm, Germany; and
| | - Jorge E Contreras
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey
| | - José Sarmiento
- Instituto de Fisiología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Walter N Durán
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey
| | - Fabiola A Sánchez
- Instituto de Inmunología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile;
| |
Collapse
|
32
|
Choi HJ, Kwon I, Kim NE, Kim J, An S, Kang S, Hong SY, Nam HS, Heo JH. Fc-saxatilin suppresses hypoxia-induced vascular leakage by regulating endothelial occludin expression. Thromb Haemost 2017; 117:595-605. [PMID: 28004056 DOI: 10.1160/th16-06-0469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 11/26/2016] [Indexed: 11/05/2022]
Abstract
Vascular leakage due to compromised integrity of the endothelial barrier is closely associated with brain damage in several neurological disorders, including ischaemic stroke. Saxatilin, a snake venom disintegrin containing the Arg-Gly-Asp (RGD) motif, exerts thrombolytic and antiplatelet effects by interacting with multiple integrins on platelets. Integrin signalling is indispensable for regulation of endothelial permeability. Saxatilin may play a role in vascular leakage after ischaemia because it has high affinity for endothelial integrins. Here, we determined whether Fc-saxatilin, an Fc-fusion protein of saxatilin, could prevent vascular leakage under hypoxic or ischaemic conditions. In mouse brain microvascular endothelial cells, hypoxia increased the permeability to FITC-dextran, and this effect was attenuated by Fc-saxatilin treatment. Fc-saxatilin also blocked vascular leakage of Evans Blue in the ischaemic brain induced by middle cerebral artery occlusion in mice. Furthermore, the expression of occludin, a tight junction protein, was reduced by hypoxia in endothelial cells. This downregulation of occludin was attenuated by Fc-saxatilin treatment. We also determined the activity of matrix metalloproteinases (MMPs) 2 and 9 because they are implicated in the degradation of occludin and of the microvascular basal lamina. Hypoxia increased MMP-9 activity, and this increase was attenuated by Fc-saxatilin treatment. Fc-saxatilin specifically bound to integrin αvβ3 of the endothelial cells and inhibited hypoxia-induced activation of FAK, a downstream signalling molecule in integrin-dependent signal transduction. Taken together, these results provide new insights into the mechanism via which Fc-saxatilin, as an integrin antagonist, prevents vascular leakage under ischemic conditions by regulating occludin expression in endothelial tight junctions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ji Hoe Heo
- Ji Hoe Heo, MD, PhD, Department of Neurology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, Republic of Korea, Tel.: +82 2 2228 1605, Fax: +82 2 2227 7906, E-mail:
| |
Collapse
|
33
|
Inhibition of Murine Pulmonary Microvascular Endothelial Cell Apoptosis Promotes Recovery of Barrier Function under Septic Conditions. Mediators Inflamm 2017; 2017:3415380. [PMID: 28250575 PMCID: PMC5303866 DOI: 10.1155/2017/3415380] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 10/25/2016] [Accepted: 12/20/2016] [Indexed: 12/13/2022] Open
Abstract
Sepsis is characterized by injury of the pulmonary microvasculature and the pulmonary microvascular endothelial cells (PMVEC), leading to barrier dysfunction and acute respiratory distress syndrome (ARDS). Our recent work identified a strong correlation between PMVEC apoptosis and microvascular leak in septic mice in vivo, but the specific role of apoptosis in septic PMVEC barrier dysfunction remains unclear. Thus, we hypothesize that PMVEC apoptosis is likely required for PMVEC barrier dysfunction under septic conditions in vitro. Septic stimulation (mixture of tumour necrosis factor α, interleukin 1β, and interferon γ [cytomix]) of isolated murine PMVEC resulted in a significant loss of barrier function as early as 4 h after stimulation, which persisted until 24 h. PMVEC apoptosis, as reflected by caspase activation, DNA fragmentation, and loss of membrane polarity, was first apparent at 8 h after cytomix. Pretreatment of PMVEC with the pan-caspase inhibitor Q-VD significantly decreased septic PMVEC apoptosis and was associated with reestablishment of PMVEC barrier function at 16 and 24 h after stimulation but had no effect on septic PMVEC barrier dysfunction over the first 8 h. Collectively, our data suggest that early septic murine PMVEC barrier dysfunction driven by proinflammatory cytokines is not mediated through apoptosis, but PMVEC apoptosis contributes to late septic PMVEC barrier dysfunction.
Collapse
|
34
|
Regulation of endothelial migration and proliferation by ephrin-A1. Cell Signal 2016; 29:84-95. [PMID: 27742560 DOI: 10.1016/j.cellsig.2016.10.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 10/09/2016] [Accepted: 10/10/2016] [Indexed: 11/21/2022]
Abstract
Endothelial migration and proliferation are fundamental processes in angiogenesis and wound healing of injured or inflamed vessels. The present study aimed to investigate the regulation of the Eph/ephrin-system during endothelial proliferation and the impact of the ligand ephrin-A1 on proliferation and migration of human umbilical venous (HUVEC) and arterial endothelial cells (HUAEC). Endothelial cells that underwent contact inhibition showed a massive induction of ephrin-A1. In contrast, an injury to a confluent endothelial layer, associated with induction of migration and proliferation, showed reduced ephrin-A1 levels. In addition, reducing ephrin-A1 expression by siRNA led to increased proliferation, whereas the overexpression of ephrin-A1 led to decreased proliferative activity. Due to the fact that wound healing is a combination of proliferation and migration, migration was investigated in detail. First, classical wound-healing assays showed increased wound closure in both ephrin-A1 silenced and overexpressing cells. Live-cell imaging enlightened the underlying differences. Silencing of ephrin-A1 led to a faster but more disorientated migration. In contrast, ephrin-A1 overexpression did not influence velocity of the cells, but the migration was more directed in comparison to the controls. Additional analysis of EphA2-silenced cells showed similar results in terms of proliferation and migration compared to ephrin-A1 silenced cells. Detailed analysis of EphA2 phosphorylation on ligand-dependent phospho-site (Y588) and autonomous activation site (S897) revealed a distinct phosphorylation pattern. Furthermore, the endothelial cells ceased to migrate when they came in contact with an ephrin-A1 coated surface. Using a baculoviral-mediated expression system, ephrin-A1 silencing and overexpression was shown to modulate the formation of focal adhesions. This implicates that ephrin-A1 is involved in changes of the actin cytoskeleton which explains the alterations in migratory actions, at least in part. In conclusion, ephrin-A1 expression is regulated by cellular density and is itself a critical determinant of endothelial proliferation. According to current knowledge, ephrin-A1 seems to be remarkably involved in elementary processes of endothelial migration like cellular polarization, migratory direction and speed. These data support the notion that ephrin-A1 plays a pivotal role in basal mechanisms of re-endothelialization.
Collapse
|
35
|
Carter C. The barrier, airway particle clearance, placental and detoxification functions of autism susceptibility genes. Neurochem Int 2016; 99:42-51. [DOI: 10.1016/j.neuint.2016.06.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 05/11/2016] [Accepted: 06/07/2016] [Indexed: 02/08/2023]
|
36
|
Barabutis N, Verin A, Catravas JD. Regulation of pulmonary endothelial barrier function by kinases. Am J Physiol Lung Cell Mol Physiol 2016; 311:L832-L845. [PMID: 27663990 DOI: 10.1152/ajplung.00233.2016] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 09/15/2016] [Indexed: 12/15/2022] Open
Abstract
The pulmonary endothelium is the target of continuous physiological and pathological stimuli that affect its crucial barrier function. The regulation, defense, and repair of endothelial barrier function require complex biochemical processes. This review examines the role of endothelial phosphorylating enzymes, kinases, a class with profound, interdigitating influences on endothelial permeability and lung function.
Collapse
Affiliation(s)
- Nektarios Barabutis
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, Virginia
| | - Alexander Verin
- Vascular Biology Center, Augusta University, Augusta, Georgia; and
| | - John D Catravas
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, Virginia, .,School of Medical Diagnostic and Translational Sciences, College of Health Sciences, Old Dominion University, Norfolk, Virginia
| |
Collapse
|
37
|
Kang D, Kim JH, Jeong YH, Kwak JY, Yoon S, Jin S. Endothelial monolayers on collagen-coated nanofibrous membranes: cell–cell and cell–ECM interactions. Biofabrication 2016; 8:025008. [DOI: 10.1088/1758-5090/8/2/025008] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
38
|
Kapasi A, Schneider JA. Vascular contributions to cognitive impairment, clinical Alzheimer's disease, and dementia in older persons. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1862:878-86. [PMID: 26769363 PMCID: PMC11062590 DOI: 10.1016/j.bbadis.2015.12.023] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 12/29/2015] [Accepted: 12/29/2015] [Indexed: 12/27/2022]
Abstract
There is growing evidence suggesting that vascular pathologies and dysfunction play a critical role in cognitive impairment, clinical Alzheimer's disease, and dementia. Vascular pathologies such as macroinfarcts, microinfarcts, microbleeds, small and large vessel cerebrovascular disease, and white matter disease are common especially in the brains of older persons where they contribute to cognitive impairment and lower the dementia threshold. Vascular dysfunction resulting in decreased cerebral blood flow, and abnormalities in the blood brain barrier may also contribute to the Alzheimer's disease (AD) pathophysiologic process and AD dementia. This review provides a clinical-pathological perspective on the role of vessel disease, vascular brain injury, alterations of the neurovascular unit, and mixed pathologies in the Alzheimer's disease pathophysiologic process and Alzheimer's dementia. This article is part of a Special Issue entitled: Vascular Contributions to Cognitive Impairment and Dementia edited by M. Paul Murphy, Roderick A. Corriveau and Donna M. Wilcock.
Collapse
Affiliation(s)
- A Kapasi
- Rush Alzheimer's Disease Center, Rush University Medical Center, 600 S. Paulina Street, IL 60612, Chicago, USA.
| | - J A Schneider
- Rush Alzheimer's Disease Center, Rush University Medical Center, 600 S. Paulina Street, IL 60612, Chicago, USA.
| |
Collapse
|
39
|
Ye S, Song Z, Li J, Li C, Yang J, Chang B. Early Intervention of Didang Decoction on MLCK Signaling Pathways in Vascular Endothelial Cells of Type 2 Diabetic Rats. Int J Endocrinol 2016; 2016:6704851. [PMID: 27703477 PMCID: PMC5040811 DOI: 10.1155/2016/6704851] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/16/2016] [Accepted: 08/10/2016] [Indexed: 11/21/2022] Open
Abstract
In the study, type 2 diabetic rat model was established using streptozotocin (STZ) combined with a high-fat diet, and the rats were divided into control and diabetic groups. Diabetic groups were further divided into nonintervening, simvastatin, Didang Decoction (DDD) early-phase intervening, DDD mid-phase intervening, and DDD late-phase intervening groups. The expression level of MLCK was detected using Western Blot analysis, and the levels of cyclic adenosine monophosphate (cAMP), protein kinase C (PKC), and protein kinase A (PKA) were examined using Real Time PCR. Under the electron microscope, the cells in the early-DDD-intervention group and the simvastatin group were significantly more continuous and compact than those in the diabetic group. Compared with the control group, the expression of cAMP-1 and PKA was decreased in all diabetic groups, whereas the expression of MLCK and PKC was increased in early- and mid-phase DDD-intervening groups (P < 0.05); compared with the late-phase DDD-intervening group, the expression of cAMP-1 and PKA was higher, but the level of MLCK and PKC was lower in early-phase DDD-intervening group (P < 0.05). In conclusion, the early use of DDD improves the permeability of vascular endothelial cells by regulating the MLCK signaling pathway.
Collapse
Affiliation(s)
- Shoujiao Ye
- Endocrinology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Key Laboratory of Hormones and Development (Ministry of Health), Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, No. 66, Tongan Road, Heping District, Tianjin 300070, China
- Endocrinology, Nanyang TCM Hospital, No. 939, Qiyi Road, Wolong District, Nanyang, Henan 473000, China
- Clinical Medicine Combined with Chinese Traditional Medicine and Western Medicine, Tianjin Chinese Medical University, No. 88, Yuquan Road, Nankai District, Tianjin 300193, China
| | - Zhenqiang Song
- Endocrinology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Key Laboratory of Hormones and Development (Ministry of Health), Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, No. 66, Tongan Road, Heping District, Tianjin 300070, China
| | - Jing Li
- Endocrinology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Key Laboratory of Hormones and Development (Ministry of Health), Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, No. 66, Tongan Road, Heping District, Tianjin 300070, China
| | - Chunshen Li
- Clinical Medicine Combined with Chinese Traditional Medicine and Western Medicine, Tianjin Chinese Medical University, No. 88, Yuquan Road, Nankai District, Tianjin 300193, China
| | - Juhong Yang
- Endocrinology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Key Laboratory of Hormones and Development (Ministry of Health), Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, No. 66, Tongan Road, Heping District, Tianjin 300070, China
| | - Bai Chang
- Endocrinology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Key Laboratory of Hormones and Development (Ministry of Health), Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, No. 66, Tongan Road, Heping District, Tianjin 300070, China
- *Bai Chang:
| |
Collapse
|
40
|
Desu HR, Wood GC, Thoma LA. Non-Invasive Detection of Lung Inflammation by Near-Infrared Fluorescence Imaging Using Bimodal Liposomes. J Fluoresc 2015; 26:241-53. [PMID: 26527222 DOI: 10.1007/s10895-015-1706-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/20/2015] [Indexed: 01/11/2023]
Abstract
Acute lung injury (ALI) and its more severe form, acute respiratory distress syndrome results in respiratory obstruction and severe lung inflammation. Critical characteristics of ALI are alveolar edema, infiltration of leukocytes (neutrophils and monocytes), release of pro-inflammatory cytokines and chemokines into broncho-alveolar lavage fluid, and activation of integrin receptors. The purpose of the study was to demonstrate non-invasive detection of lung inflammation using integrin receptor targeted fluorescence liposomes. An inflammation similar to that observed in ALI was elicited in rodents by intra-tracheal instillation of interleukin-1beta (IL-1beta). Cyclic arginine glycine-(D)-aspartic acid-peptide (cRGD-peptide) grafted fluorescence liposomes were administered to ALI induced male Sprague-Dawley rats for targeting lung integrin receptors. Near-infrared fluorescence imaging (NIRFI) was applied for visualization and quantitation of lung inflammation. NIRFI signals were correlated with inflammatory cellular and biochemical markers of lungs. A positive correlation was observed between NIRF signals and lung inflammation markers. Compared to control group, an intense NIRF signal was observed in ALI induced rats in the window 6-24 h post-IL-1beta instillation. Interaction of integrin receptors with targeted liposomes was assumed to contribute to intense NIRF signal. RT-PCR studies showed an elevated lung expression of alphavbeta5 integrin receptors, 12 h post-IL-1beta instillation. In vitro studies demonstrated integrin receptor specificity of targeted liposomes. These targeted liposomes showed binding to alphavbeta5 integrin receptors expressed on alveolar cells. Non-invasive detection of lung inflammation was demonstrated using a combination of integrin receptor targeting and NIRFI.
Collapse
Affiliation(s)
- Hari R Desu
- Pharmaceutical Consultancy Services, Hyderabad, India.
| | - George C Wood
- Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, Memphis, TN, USA.
| | - Laura A Thoma
- College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
41
|
Zhang P, Feng S, Bai H, Zeng P, Chen F, Wu C, Peng Y, Zhang Q, Zhang Q, Ye Q, Xue Q, Xu X, Song E, Song Y. Polychlorinated biphenyl quinone induces endothelial barrier dysregulation by setting the cross talk between VE-cadherin, focal adhesion, and MAPK signaling. Am J Physiol Heart Circ Physiol 2015; 308:H1205-14. [PMID: 25770237 DOI: 10.1152/ajpheart.00005.2015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 03/09/2015] [Indexed: 12/12/2022]
Abstract
Environmental hazardous material polychlorinated biphenyl (PCB) exposure is associated with vascular endothelial dysfunction, which may increase the risk of cardiovascular diseases and cancer metastasis. Our previous studies illustrated the cytotoxic, antiproliferative, and genotoxic effects of a synthetic, quinone-type, highly reactive metabolite of PCB, 2,3,5-trichloro-6-phenyl-[1,4]benzoquinone (PCB29-pQ). Here, we used it as the model compound to investigate its effects on vascular endothelial integrity and permeability. We demonstrated that noncytotoxic doses of PCB29-pQ induced vascular endothelial (VE)-cadherin junction disassembly by increasing the phosphorylation of VE-cadherin at Y658. We also found that focal adhesion assembly was required for PCB29-pQ-induced junction breakdown. Focal adhesion site-associated actin stress fibers may serve as holding points for cytoskeletal tension to regulate the cellular contractility. PCB29-pQ exposure promoted the association of actin stress fibers with paxillin-containing focal adhesion sites and enlarged the size/number of focal adhesions. In addition, PCB29-pQ treatment induced phosphorylation of paxillin at Y118. By using pharmacological inhibition, we further demonstrated that p38 activation was necessary for paxillin phosphorylation, whereas extracellular signal-regulated kinases-1/2 activation regulated VE-cadherin phosphorylation. In conclusion, these results indicated that PCB29-pQ stimulates endothelial hyperpermeability by mediating VE-cadherin disassembly, junction breakdown, and focal adhesion formation. Intervention strategies targeting focal adhesion and MAPK signaling could be used as therapeutic approaches for preventing adverse cardiovascular health effects induced by environmental toxicants such as PCBs.
Collapse
Affiliation(s)
- Pu Zhang
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, China; and Department of Bioengineering, Pennsylvania State University, University Park, Pennsylvania
| | - Shan Feng
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, China; and
| | - Huiyuan Bai
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, China; and
| | - Panying Zeng
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, China; and
| | - Feng Chen
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, China; and
| | - Chengxiang Wu
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, China; and
| | - Yi Peng
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, China; and
| | - Qin Zhang
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, China; and
| | - Qiuyao Zhang
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, China; and
| | - Qichao Ye
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, China; and
| | - Qiang Xue
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, China; and
| | - Xiaoyu Xu
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, China; and
| | - Erqun Song
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, China; and
| | - Yang Song
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, China; and
| |
Collapse
|
42
|
RacGAP1-driven focal adhesion formation promotes melanoma transendothelial migration through mediating adherens junction disassembly. Biochem Biophys Res Commun 2015; 459:1-9. [DOI: 10.1016/j.bbrc.2014.11.088] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 11/21/2014] [Indexed: 01/29/2023]
|
43
|
Rees MD, Thomas SR. Using cell-substrate impedance and live cell imaging to measure real-time changes in cellular adhesion and de-adhesion induced by matrix modification. J Vis Exp 2015. [PMID: 25742053 DOI: 10.3791/52423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Cell-matrix adhesion plays a key role in controlling cell morphology and signaling. Stimuli that disrupt cell-matrix adhesion (e.g., myeloperoxidase and other matrix-modifying oxidants/enzymes released during inflammation) are implicated in triggering pathological changes in cellular function, phenotype and viability in a number of diseases. Here, we describe how cell-substrate impedance and live cell imaging approaches can be readily employed to accurately quantify real-time changes in cell adhesion and de-adhesion induced by matrix modification (using endothelial cells and myeloperoxidase as a pathophysiological matrix-modifying stimulus) with high temporal resolution and in a non-invasive manner. The xCELLigence cell-substrate impedance system continuously quantifies the area of cell-matrix adhesion by measuring the electrical impedance at the cell-substrate interface in cells grown on gold microelectrode arrays. Image analysis of time-lapse differential interference contrast movies quantifies changes in the projected area of individual cells over time, representing changes in the area of cell-matrix contact. Both techniques accurately quantify rapid changes to cellular adhesion and de-adhesion processes. Cell-substrate impedance on microelectrode biosensor arrays provides a platform for robust, high-throughput measurements. Live cell imaging analyses provide additional detail regarding the nature and dynamics of the morphological changes quantified by cell-substrate impedance measurements. These complementary approaches provide valuable new insights into how myeloperoxidase-catalyzed oxidative modification of subcellular extracellular matrix components triggers rapid changes in cell adhesion, morphology and signaling in endothelial cells. These approaches are also applicable for studying cellular adhesion dynamics in response to other matrix-modifying stimuli and in related adherent cells (e.g., epithelial cells).
Collapse
Affiliation(s)
- Martin D Rees
- Centre for Vascular Research, University of New South Wales;
| | - Shane R Thomas
- Centre for Vascular Research, University of New South Wales; School of Medical Sciences, University of New South Wales;
| |
Collapse
|
44
|
Xu X. Plant Polysaccharides and Their Effects on Cell Adhesion. POLYSACCHARIDES 2015. [DOI: 10.1007/978-3-319-16298-0_67] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
45
|
Patibandla PK, Rogers AJ, Giridharan GA, Pallero MA, Murphy-Ullrich JE, Sethu P. Hyperglycemic Arterial Disturbed Flow Niche as an In Vitro Model of Atherosclerosis. Anal Chem 2014; 86:10948-54. [DOI: 10.1021/ac503294p] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Phani K. Patibandla
- Division
of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
- Department
of Biomedical Engineering, School of Engineering, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Aaron J. Rogers
- Division
of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
- Department
of Biomedical Engineering, School of Engineering, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Guruprasad A. Giridharan
- Department
of Bioengineering, Speed School of Engineering, University of Louisville, Louisville, Kentucky 40292, United States
| | - Manuel A. Pallero
- Departments
of Pathology and Cell Biology, University of Alabama at Birmingham, Birmingham, Alabama 35233, United States
| | - Joanne E. Murphy-Ullrich
- Departments
of Pathology and Cell Biology, University of Alabama at Birmingham, Birmingham, Alabama 35233, United States
| | - Palaniappan Sethu
- Division
of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
- Department
of Biomedical Engineering, School of Engineering, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| |
Collapse
|
46
|
A2A Adenosine Receptor Regulates the Human Blood-Brain Barrier Permeability. Mol Neurobiol 2014; 52:664-78. [PMID: 25262373 DOI: 10.1007/s12035-014-8879-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 08/25/2014] [Indexed: 01/05/2023]
Abstract
The blood-brain barrier (BBB) symbolically represents the gateway to the central nervous system. It is a single layer of specialized endothelial cells that coats the central nervous system (CNS) vasculature and physically separates the brain environment from the blood constituents to maintain the homeostasis of the CNS. However, this protective measure is a hindrance to the delivery of therapeutics to treat neurological diseases. Here, we show that activation of A2A adenosine receptor (AR) with an FDA-approved agonist potently permeabilizes an in vitro primary human BBB (hBBB) to the passage of chemotherapeutic drugs and T cells. T cell migration under AR signaling occurs primarily by paracellular transendothelial route. Permeabilization of the hBBB is rapid, time-dependent, and reversible and is mediated by morphological changes in actin-cytoskeletal reorganization induced by RhoA signaling and a potent downregulation of claudin-5 and VE-cadherin. Moreover, the kinetics of BBB permeability in mice closely overlaps with the permeability kinetics of the hBBB. These data suggest that activation of A2A AR is an endogenous mechanism that may be used for CNS drug delivery in human.
Collapse
|
47
|
Uehara K, Uehara A. Integrin αvβ5 in endothelial cells of rat splenic sinus: an immunohistochemical and ultrastructural study. Cell Tissue Res 2014; 356:183-93. [PMID: 24556923 DOI: 10.1007/s00441-014-1796-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 01/08/2014] [Indexed: 11/28/2022]
Abstract
Localization of integrins β1-8, α1, α2, α3, α5, α6 and αv in sinus endothelial cells of the rat spleen was examined by immunofluorescence microscopy. Labeling for anti-integrin β5 and integrin αv was detected and colocalized in the entire circumference of endothelial cells. Labeling for integrin β5, vinculin and actin filaments demonstrated that they lay close to each other in the basal part of the endothelial cells. Although the other integrin βs, including integrin β1 and integrins α1, α2, α3, α5 and α6 in combination with integrin β1, were localized in leukocytes, slightly large cells, megakaryocytes and/or platelets in the sinus lumen and splenic cords, they were not detected in endothelial cells. Labeling for vitronectin, a component of the extracellular-matrix-binding integrin αvβ5, was strongly stained in the periphery of the wall of sinuses, as was collagen IV and, in addition, was localized in the cytoplasm of endothelial cells. Ultrastructural localization of integrin β5, vitronectin and clathrin was examined by immunogold electron microscopy to elucidate the involvement of integrin αvβ5 in the endocytosis of vitronectin in sinus endothelial cells. Electron microscopy with detergent extraction revealed abundant coated pits and coated vesicles in endothelial cells. Immunogold labeling for vitronectin was present in pits, vesicles and the stacked endoplasmic reticulum. Double-labeling for integrin β5 or integrin αv and clathrin revealed that they were colocalized in some vesicles in close proximity to the apical and lateral plasma membrane of the endothelial cells. The possible functional roles of integrin αvβ5 in endothelial cells of the splenic sinus are discussed.
Collapse
Affiliation(s)
- Kiyoko Uehara
- Department of Cell Biology, Fukuoka University School of Medicine, Jonan-ku, Fukuoka, 814-0180, Japan,
| | | |
Collapse
|
48
|
Plant polysaccharides and their effects on cell adhesion. POLYSACCHARIDES 2014. [DOI: 10.1007/978-3-319-03751-6_67-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
49
|
Astragalus Polysaccharide Suppresses the Expression of Adhesion Molecules through the Regulation of the p38 MAPK Signaling Pathway in Human Cardiac Microvascular Endothelial Cells after Ischemia-Reperfusion Injury. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:280493. [PMID: 24302961 PMCID: PMC3835432 DOI: 10.1155/2013/280493] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 09/04/2013] [Accepted: 09/17/2013] [Indexed: 12/25/2022]
Abstract
Astragalus polysaccharide is a major component of radix astragali, a vital qi-reinforcing herb medicine with favorable immune-regulating effects. In a previous animal experiment, we demonstrated that astragalus polysaccharide effectively alleviates ischemia-reperfusion injury (IRI) of cardiac muscle through the regulation of the inflammatory reactions. However, the relationship between this herb and the cohesion molecules on the cell surface remains controversial. In this study, human cardiac microvascular endothelial cells (HCMECs) were used to validate the protective effects of astragalus under an IRI scheme simulated through hypoxia/reoxygenation in vitro. The results indicated that astragalus polysaccharide inhibited the cohesion between HCMECs and polymorphonuclear leukocyte (PMN) during IRI through the downregulation of p38 MAPK signaling and the reduction of cohesive molecule expression in HCMECs.
Collapse
|
50
|
Arnold KM, Goeckeler ZM, Wysolmerski RB. Loss of Focal Adhesion Kinase Enhances Endothelial Barrier Function and Increases Focal Adhesions. Microcirculation 2013; 20:637-49. [DOI: 10.1111/micc.12063] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 04/16/2013] [Indexed: 12/30/2022]
|