1
|
Santucci L, Bernardi S, Vivarelli R, Santorelli FM, Marchese M. Glucose metabolism impairment as a hallmark of progressive myoclonus epilepsies: a focus on neuronal ceroid lipofuscinoses. Front Cell Neurosci 2024; 18:1445003. [PMID: 39364042 PMCID: PMC11447523 DOI: 10.3389/fncel.2024.1445003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/12/2024] [Indexed: 10/05/2024] Open
Abstract
Glucose is the brain's main fuel source, used in both energy and molecular production. Impaired glucose metabolism is associated with adult and pediatric neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), GLUT1 deficiency syndrome, and progressive myoclonus epilepsies (PMEs). PMEs, a group of neurological disorders typical of childhood and adolescence, account for 1% of all epileptic diseases in this population worldwide. Diffuse glucose hypometabolism is observed in the brains of patients affected by PMEs such as Lafora disease (LD), dentatorubral-pallidoluysian (DRPLA) atrophy, Unverricht-Lundborg disease (ULD), and myoclonus epilepsy with ragged red fibers (MERRFs). PMEs also include neuronal ceroid lipofuscinoses (NCLs), a subgroup in which lysosomal and autophagy dysfunction leads to progressive loss of vision, brain atrophy, and cognitive decline. We examine the role of impaired glucose metabolism in neurodegenerative diseases, particularly in the NCLs. Our literature review, which includes findings from case reports and animal studies, reveals that glucose hypometabolism is still poorly characterized both in vitro and in vivo in the different NCLs. Better identification of the glucose metabolism pathway impaired in the NCLs may open new avenues for evaluating the therapeutic potential of anti-diabetic agents in this population and thus raise the prospect of a therapeutic approach able to delay or even halt disease progression.
Collapse
Affiliation(s)
- Lorenzo Santucci
- Neurobiology and Molecular Medicine Unit, IRCCS Fondazione Stella Maris, Calambrone, Italy
| | - Sara Bernardi
- Neurobiology and Molecular Medicine Unit, IRCCS Fondazione Stella Maris, Calambrone, Italy
- Department of Biology, University of Pisa, Pisa, Italy
| | - Rachele Vivarelli
- Neurobiology and Molecular Medicine Unit, IRCCS Fondazione Stella Maris, Calambrone, Italy
| | | | - Maria Marchese
- Neurobiology and Molecular Medicine Unit, IRCCS Fondazione Stella Maris, Calambrone, Italy
| |
Collapse
|
2
|
Vaglio-Garro A, Halasz A, Nováková E, Gasser AS, Zavadskis S, Weidinger A, Kozlov AV. Interplay between Energy Supply and Glutamate Toxicity in the Primary Cortical Culture. Biomolecules 2024; 14:543. [PMID: 38785950 PMCID: PMC11118065 DOI: 10.3390/biom14050543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
Limited substrate availability because of the blood-brain barrier (BBB) has made the brain develop specific molecular mechanisms to survive, using lactate synthesized by astrocytes as a source of energy in neurons. To understand if lactate improves cellular viability and susceptibility to glutamate toxicity, primary cortical cells were incubated in glucose- or lactate-containing media and toxic concentrations of glutamate for 24 h. Cell death was determined by immunostaining and lactate dehydrogenase (LDH) release. Mitochondrial membrane potential and nitric oxide (NO) levels were measured using Tetramethylrhodamine, methyl ester (TMRM) and 4-Amino-5-Methylamino-2',7'-Difluorofluorescein Diacetate (DAF-FM) live staining, respectively. LDH activity was quantified in single cells in the presence of lactate (LDH substrate) and oxamate (LDH inhibitor). Nuclei of cells were stained with DAPI and neurons with MAP2. Based on the distance between neurons and glial cells, they were classified as linked (<10 µm) and non-linked (>10 µm) neurons. Lactate increased cell death rate and the mean value of endogenous NO levels compared to glucose incubations. Mitochondrial membrane potential was lower in the cells cultured with lactate, but this effect was reversed when glutamate was added to the lactate medium. LDH activity was higher in linked neurons compared to non-linked neurons, supporting the hypothesis of the existence of the lactate shuttle between astrocytes and at least a portion of neurons. In conclusion, glucose or lactate can equally preserve primary cortical neurons, but those neurons having a low level of LDH activity and incubated with lactate cannot cover high energetic demand solely with lactate and become more susceptible to glutamate toxicity.
Collapse
Affiliation(s)
- Annette Vaglio-Garro
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria; (A.V.-G.); (A.H.); (E.N.); (A.S.G.); (S.Z.); (A.W.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Andrea Halasz
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria; (A.V.-G.); (A.H.); (E.N.); (A.S.G.); (S.Z.); (A.W.)
| | - Ema Nováková
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria; (A.V.-G.); (A.H.); (E.N.); (A.S.G.); (S.Z.); (A.W.)
| | - Andreas Sebastian Gasser
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria; (A.V.-G.); (A.H.); (E.N.); (A.S.G.); (S.Z.); (A.W.)
| | - Sergejs Zavadskis
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria; (A.V.-G.); (A.H.); (E.N.); (A.S.G.); (S.Z.); (A.W.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Adelheid Weidinger
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria; (A.V.-G.); (A.H.); (E.N.); (A.S.G.); (S.Z.); (A.W.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Andrey V. Kozlov
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria; (A.V.-G.); (A.H.); (E.N.); (A.S.G.); (S.Z.); (A.W.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| |
Collapse
|
3
|
Chegodaev DA, Pavlova PA. High lactic acid levels in the brain contribute to the generation of focal slowing on the electroencephalogram. Front Neurol 2024; 15:1393274. [PMID: 38694777 PMCID: PMC11061411 DOI: 10.3389/fneur.2024.1393274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/09/2024] [Indexed: 05/04/2024] Open
Abstract
Focal slowing on the EEG is often associated with structural pathology of the brain. Despite the clinical significance of focal slowing, the actual electrochemical mechanisms underlying this EEG phenomenon are still poorly understood. This paper briefly reviews the role of lactate in the pathogenesis of brain disorders that are primarily related to focal EEG slowing. An attempt is made to trace the hypothetical link between this EEG pattern and focal cerebral tissue lactacidosis.
Collapse
Affiliation(s)
- Dmitry Alexandrovich Chegodaev
- Laboratory for Brain and Neurocognitive Development, Ural Institute of Humanities, Ural Federal University named after the First President of Russia B. N. Yeltsin, Yekaterinburg, Russia
| | | |
Collapse
|
4
|
Hagihara H, Shoji H, Hattori S, Sala G, Takamiya Y, Tanaka M, Ihara M, Shibutani M, Hatada I, Hori K, Hoshino M, Nakao A, Mori Y, Okabe S, Matsushita M, Urbach A, Katayama Y, Matsumoto A, Nakayama KI, Katori S, Sato T, Iwasato T, Nakamura H, Goshima Y, Raveau M, Tatsukawa T, Yamakawa K, Takahashi N, Kasai H, Inazawa J, Nobuhisa I, Kagawa T, Taga T, Darwish M, Nishizono H, Takao K, Sapkota K, Nakazawa K, Takagi T, Fujisawa H, Sugimura Y, Yamanishi K, Rajagopal L, Hannah ND, Meltzer HY, Yamamoto T, Wakatsuki S, Araki T, Tabuchi K, Numakawa T, Kunugi H, Huang FL, Hayata-Takano A, Hashimoto H, Tamada K, Takumi T, Kasahara T, Kato T, Graef IA, Crabtree GR, Asaoka N, Hatakama H, Kaneko S, Kohno T, Hattori M, Hoshiba Y, Miyake R, Obi-Nagata K, Hayashi-Takagi A, Becker LJ, Yalcin I, Hagino Y, Kotajima-Murakami H, Moriya Y, Ikeda K, Kim H, Kaang BK, Otabi H, Yoshida Y, Toyoda A, Komiyama NH, Grant SGN, Ida-Eto M, Narita M, Matsumoto KI, Okuda-Ashitaka E, Ohmori I, Shimada T, Yamagata K, Ageta H, Tsuchida K, Inokuchi K, Sassa T, Kihara A, Fukasawa M, Usuda N, Katano T, Tanaka T, Yoshihara Y, Igarashi M, Hayashi T, Ishikawa K, Yamamoto S, Nishimura N, Nakada K, Hirotsune S, Egawa K, Higashisaka K, Tsutsumi Y, Nishihara S, Sugo N, Yagi T, Ueno N, Yamamoto T, Kubo Y, Ohashi R, Shiina N, Shimizu K, Higo-Yamamoto S, Oishi K, Mori H, Furuse T, Tamura M, Shirakawa H, Sato DX, Inoue YU, Inoue T, Komine Y, Yamamori T, Sakimura K, Miyakawa T. Large-scale animal model study uncovers altered brain pH and lactate levels as a transdiagnostic endophenotype of neuropsychiatric disorders involving cognitive impairment. eLife 2024; 12:RP89376. [PMID: 38529532 PMCID: PMC10965225 DOI: 10.7554/elife.89376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024] Open
Abstract
Increased levels of lactate, an end-product of glycolysis, have been proposed as a potential surrogate marker for metabolic changes during neuronal excitation. These changes in lactate levels can result in decreased brain pH, which has been implicated in patients with various neuropsychiatric disorders. We previously demonstrated that such alterations are commonly observed in five mouse models of schizophrenia, bipolar disorder, and autism, suggesting a shared endophenotype among these disorders rather than mere artifacts due to medications or agonal state. However, there is still limited research on this phenomenon in animal models, leaving its generality across other disease animal models uncertain. Moreover, the association between changes in brain lactate levels and specific behavioral abnormalities remains unclear. To address these gaps, the International Brain pH Project Consortium investigated brain pH and lactate levels in 109 strains/conditions of 2294 animals with genetic and other experimental manipulations relevant to neuropsychiatric disorders. Systematic analysis revealed that decreased brain pH and increased lactate levels were common features observed in multiple models of depression, epilepsy, Alzheimer's disease, and some additional schizophrenia models. While certain autism models also exhibited decreased pH and increased lactate levels, others showed the opposite pattern, potentially reflecting subpopulations within the autism spectrum. Furthermore, utilizing large-scale behavioral test battery, a multivariate cross-validated prediction analysis demonstrated that poor working memory performance was predominantly associated with increased brain lactate levels. Importantly, this association was confirmed in an independent cohort of animal models. Collectively, these findings suggest that altered brain pH and lactate levels, which could be attributed to dysregulated excitation/inhibition balance, may serve as transdiagnostic endophenotypes of debilitating neuropsychiatric disorders characterized by cognitive impairment, irrespective of their beneficial or detrimental nature.
Collapse
Affiliation(s)
- Hideo Hagihara
- Division of Systems Medical Science, Center for Medical Science, Fujita Health UniversityToyoakeJapan
| | - Hirotaka Shoji
- Division of Systems Medical Science, Center for Medical Science, Fujita Health UniversityToyoakeJapan
| | - Satoko Hattori
- Division of Systems Medical Science, Center for Medical Science, Fujita Health UniversityToyoakeJapan
| | - Giovanni Sala
- Division of Systems Medical Science, Center for Medical Science, Fujita Health UniversityToyoakeJapan
| | - Yoshihiro Takamiya
- Division of Systems Medical Science, Center for Medical Science, Fujita Health UniversityToyoakeJapan
| | - Mika Tanaka
- Division of Systems Medical Science, Center for Medical Science, Fujita Health UniversityToyoakeJapan
| | - Masafumi Ihara
- Department of Neurology, National Cerebral and Cardiovascular CenterSuitaJapan
| | - Mihiro Shibutani
- Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma UniversityMaebashiJapan
| | - Izuho Hatada
- Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma UniversityMaebashiJapan
| | - Kei Hori
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and PsychiatryKodairaJapan
| | - Mikio Hoshino
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and PsychiatryKodairaJapan
| | - Akito Nakao
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto UniversityKyotoJapan
| | - Yasuo Mori
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto UniversityKyotoJapan
| | - Shigeo Okabe
- Department of Cellular Neurobiology, Graduate School of Medicine, The University of TokyoTokyoJapan
| | - Masayuki Matsushita
- Department of Molecular Cellular Physiology, Graduate School of Medicine, University of the RyukyusNishiharaJapan
| | - Anja Urbach
- Department of Neurology, Jena University HospitalJenaGermany
| | - Yuta Katayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu UniversityFukuokaJapan
| | - Akinobu Matsumoto
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu UniversityFukuokaJapan
| | - Keiichi I Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu UniversityFukuokaJapan
| | - Shota Katori
- Laboratory of Mammalian Neural Circuits, National Institute of GeneticsMishimaJapan
| | - Takuya Sato
- Laboratory of Mammalian Neural Circuits, National Institute of GeneticsMishimaJapan
| | - Takuji Iwasato
- Laboratory of Mammalian Neural Circuits, National Institute of GeneticsMishimaJapan
| | - Haruko Nakamura
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of MedicineYokohamaJapan
| | - Yoshio Goshima
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of MedicineYokohamaJapan
| | - Matthieu Raveau
- Laboratory for Neurogenetics, RIKEN Center for Brain ScienceWakoJapan
| | - Tetsuya Tatsukawa
- Laboratory for Neurogenetics, RIKEN Center for Brain ScienceWakoJapan
| | - Kazuhiro Yamakawa
- Laboratory for Neurogenetics, RIKEN Center for Brain ScienceWakoJapan
- Department of Neurodevelopmental Disorder Genetics, Institute of Brain Sciences, Nagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Noriko Takahashi
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of TokyoTokyoJapan
- Department of Physiology, Kitasato University School of MedicineSagamiharaJapan
| | - Haruo Kasai
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of TokyoTokyoJapan
- International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of TokyoTokyoJapan
| | - Johji Inazawa
- Research Core, Tokyo Medical and Dental UniversityTokyoJapan
| | - Ikuo Nobuhisa
- Department of Stem Cell Regulation, Medical Research Institute, Tokyo Medical and Dental UniversityTokyoJapan
| | - Tetsushi Kagawa
- Department of Stem Cell Regulation, Medical Research Institute, Tokyo Medical and Dental UniversityTokyoJapan
| | - Tetsuya Taga
- Department of Stem Cell Regulation, Medical Research Institute, Tokyo Medical and Dental UniversityTokyoJapan
| | - Mohamed Darwish
- Department of Biochemistry, Faculty of Pharmacy, Cairo UniversityCairoEgypt
- Department of Behavioral Physiology, Graduate School of Innovative Life Science, University of ToyamaToyamaJapan
| | | | - Keizo Takao
- Department of Behavioral Physiology, Graduate School of Innovative Life Science, University of ToyamaToyamaJapan
- Department of Behavioral Physiology, Faculty of Medicine, University of ToyamaToyamaJapan
| | - Kiran Sapkota
- Department of Neuroscience, Southern ResearchBirminghamUnited States
| | | | - Tsuyoshi Takagi
- Institute for Developmental Research, Aichi Developmental Disability CenterKasugaiJapan
| | - Haruki Fujisawa
- Department of Endocrinology, Diabetes and Metabolism, School of Medicine, Fujita Health UniversityToyoakeJapan
| | - Yoshihisa Sugimura
- Department of Endocrinology, Diabetes and Metabolism, School of Medicine, Fujita Health UniversityToyoakeJapan
| | - Kyosuke Yamanishi
- Department of Neuropsychiatry, Hyogo Medical University School of MedicineNishinomiyaJapan
| | - Lakshmi Rajagopal
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of MedicineChicagoUnited States
| | - Nanette Deneen Hannah
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of MedicineChicagoUnited States
| | - Herbert Y Meltzer
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of MedicineChicagoUnited States
| | - Tohru Yamamoto
- Department of Molecular Neurobiology, Faculty of Medicine, Kagawa UniversityKita-gunJapan
| | - Shuji Wakatsuki
- Department of Peripheral Nervous System Research, National Institute of Neuroscience, National Center of Neurology and PsychiatryTokyoJapan
| | - Toshiyuki Araki
- Department of Peripheral Nervous System Research, National Institute of Neuroscience, National Center of Neurology and PsychiatryTokyoJapan
| | - Katsuhiko Tabuchi
- Department of Molecular & Cellular Physiology, Shinshu University School of MedicineMatsumotoJapan
| | - Tadahiro Numakawa
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and PsychiatryKodairaJapan
| | - Hiroshi Kunugi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and PsychiatryKodairaJapan
- Department of Psychiatry, Teikyo University School of MedicineTokyoJapan
| | - Freesia L Huang
- Program of Developmental Neurobiology, National Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| | - Atsuko Hayata-Takano
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka UniversitySuitaJapan
- Department of Pharmacology, Graduate School of Dentistry, Osaka UniversitySuitaJapan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of FukuiSuitaJapan
| | - Hitoshi Hashimoto
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka UniversitySuitaJapan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of FukuiSuitaJapan
- Division of Bioscience, Institute for Datability Science, Osaka UniversitySuitaJapan
- Transdimensional Life Imaging Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka UniversitySuitaJapan
- Department of Molecular Pharmaceutical Science, Graduate School of Medicine, Osaka UniversitySuitaJapan
| | - Kota Tamada
- RIKEN Brain Science InstituteWakoJapan
- Department of Physiology and Cell Biology, Kobe University School of MedicineKobeJapan
| | - Toru Takumi
- RIKEN Brain Science InstituteWakoJapan
- Department of Physiology and Cell Biology, Kobe University School of MedicineKobeJapan
| | - Takaoki Kasahara
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Center for Brain ScienceWakoJapan
- Institute of Biology and Environmental Sciences, Carl von Ossietzky University of OldenburgOldenburgGermany
| | - Tadafumi Kato
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Center for Brain ScienceWakoJapan
- Department of Psychiatry and Behavioral Science, Juntendo University Graduate School of MedicineTokyoJapan
| | - Isabella A Graef
- Department of Pathology, Stanford University School of MedicineStanfordUnited States
| | - Gerald R Crabtree
- Department of Pathology, Stanford University School of MedicineStanfordUnited States
| | - Nozomi Asaoka
- Department of Pharmacology, Kyoto Prefectural University of MedicineKyotoJapan
| | - Hikari Hatakama
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto UniversityKyotoJapan
| | - Shuji Kaneko
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto UniversityKyotoJapan
| | - Takao Kohno
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City UniversityNagoyaJapan
| | - Mitsuharu Hattori
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City UniversityNagoyaJapan
| | - Yoshio Hoshiba
- Laboratory of Medical Neuroscience, Institute for Molecular and Cellular Regulation, Gunma UniversityMaebashiJapan
| | - Ryuhei Miyake
- Laboratory for Multi-scale Biological Psychiatry, RIKEN Center for Brain ScienceWakoJapan
| | - Kisho Obi-Nagata
- Laboratory for Multi-scale Biological Psychiatry, RIKEN Center for Brain ScienceWakoJapan
| | - Akiko Hayashi-Takagi
- Laboratory of Medical Neuroscience, Institute for Molecular and Cellular Regulation, Gunma UniversityMaebashiJapan
- Laboratory for Multi-scale Biological Psychiatry, RIKEN Center for Brain ScienceWakoJapan
| | - Léa J Becker
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Université de StrasbourgStrasbourgFrance
| | - Ipek Yalcin
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Université de StrasbourgStrasbourgFrance
| | - Yoko Hagino
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical ScienceTokyoJapan
| | | | - Yuki Moriya
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical ScienceTokyoJapan
| | - Kazutaka Ikeda
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical ScienceTokyoJapan
| | - Hyopil Kim
- Department of Biological Sciences, College of Natural Sciences, Seoul National UniversitySeoulRepublic of Korea
- Department of Biomedical Engineering, Johns Hopkins School of MedicineBaltimoreUnited States
| | - Bong-Kiun Kaang
- Department of Biological Sciences, College of Natural Sciences, Seoul National UniversitySeoulRepublic of Korea
- Center for Cognition and Sociality, Institute for Basic Science (IBS)DaejeonRepublic of Korea
| | - Hikari Otabi
- College of Agriculture, Ibaraki UniversityAmiJapan
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and TechnologyFuchuJapan
| | - Yuta Yoshida
- College of Agriculture, Ibaraki UniversityAmiJapan
| | - Atsushi Toyoda
- College of Agriculture, Ibaraki UniversityAmiJapan
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and TechnologyFuchuJapan
- Ibaraki University Cooperation between Agriculture and Medical Science (IUCAM)IbarakiJapan
| | - Noboru H Komiyama
- Genes to Cognition Program, Centre for Clinical Brain Sciences, University of EdinburghEdinburghUnited Kingdom
- Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of EdinburghEdinburghUnited Kingdom
| | - Seth GN Grant
- Genes to Cognition Program, Centre for Clinical Brain Sciences, University of EdinburghEdinburghUnited Kingdom
- Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of EdinburghEdinburghUnited Kingdom
| | - Michiru Ida-Eto
- Department of Developmental and Regenerative Medicine, Mie University, Graduate School of MedicineTsuJapan
| | - Masaaki Narita
- Department of Developmental and Regenerative Medicine, Mie University, Graduate School of MedicineTsuJapan
| | - Ken-ichi Matsumoto
- Department of Biosignaling and Radioisotope Experiment, Interdisciplinary Center for Science Research, Organization for Research and Academic Information, Shimane UniversityIzumoJapan
| | | | - Iori Ohmori
- Department of Physiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Tadayuki Shimada
- Child Brain Project, Tokyo Metropolitan Institute of Medical ScienceTokyoJapan
| | - Kanato Yamagata
- Child Brain Project, Tokyo Metropolitan Institute of Medical ScienceTokyoJapan
| | - Hiroshi Ageta
- Division for Therapies Against Intractable Diseases, Center for Medical Science, Fujita Health UniversityToyoakeJapan
| | - Kunihiro Tsuchida
- Division for Therapies Against Intractable Diseases, Center for Medical Science, Fujita Health UniversityToyoakeJapan
| | - Kaoru Inokuchi
- Research Center for Idling Brain Science, University of ToyamaToyamaJapan
- Department of Biochemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of ToyamaToyamaJapan
- Core Research for Evolutionary Science and Technology (CREST), Japan Science and Technology Agency (JST), University of ToyamaToyamaJapan
| | - Takayuki Sassa
- Faculty of Pharmaceutical Sciences, Hokkaido UniversitySapporoJapan
| | - Akio Kihara
- Faculty of Pharmaceutical Sciences, Hokkaido UniversitySapporoJapan
| | - Motoaki Fukasawa
- Department of Anatomy II, Fujita Health University School of MedicineToyoakeJapan
| | - Nobuteru Usuda
- Department of Anatomy II, Fujita Health University School of MedicineToyoakeJapan
| | - Tayo Katano
- Department of Medical Chemistry, Kansai Medical UniversityHirakataJapan
| | - Teruyuki Tanaka
- Department of Developmental Medical Sciences, Graduate School of Medicine, The University of TokyoTokyoJapan
| | - Yoshihiro Yoshihara
- Laboratory for Systems Molecular Ethology, RIKEN Center for Brain ScienceWakoJapan
| | - Michihiro Igarashi
- Department of Neurochemistry and Molecular Cell Biology, School of Medicine, and Graduate School of Medical and Dental Sciences, Niigata UniversityNiigataJapan
- Transdiciplinary Research Program, Niigata UniversityNiigataJapan
| | - Takashi Hayashi
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan
| | - Kaori Ishikawa
- Institute of Life and Environmental Sciences, University of TsukubaTsukubaJapan
- Graduate School of Science and Technology, University of TsukubaTsukubaJapan
| | - Satoshi Yamamoto
- Integrated Technology Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company, LtdFujisawaJapan
| | - Naoya Nishimura
- Integrated Technology Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company, LtdFujisawaJapan
| | - Kazuto Nakada
- Institute of Life and Environmental Sciences, University of TsukubaTsukubaJapan
- Graduate School of Science and Technology, University of TsukubaTsukubaJapan
| | - Shinji Hirotsune
- Department of Genetic Disease Research, Osaka City University Graduate School of MedicineOsakaJapan
| | - Kiyoshi Egawa
- Department of Pediatrics, Hokkaido University Graduate School of MedicineSapporoJapan
| | - Kazuma Higashisaka
- Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka UniversitySuitaJapan
| | - Yasuo Tsutsumi
- Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka UniversitySuitaJapan
| | - Shoko Nishihara
- Glycan & Life Systems Integration Center (GaLSIC), Soka UniversityTokyoJapan
| | - Noriyuki Sugo
- Graduate School of Frontier Biosciences, Osaka UniversitySuitaJapan
| | - Takeshi Yagi
- Graduate School of Frontier Biosciences, Osaka UniversitySuitaJapan
| | - Naoto Ueno
- Laboratory of Morphogenesis, National Institute for Basic BiologyOkazakiJapan
| | - Tomomi Yamamoto
- Division of Biophysics and Neurobiology, National Institute for Physiological SciencesOkazakiJapan
| | - Yoshihiro Kubo
- Division of Biophysics and Neurobiology, National Institute for Physiological SciencesOkazakiJapan
| | - Rie Ohashi
- Laboratory of Neuronal Cell Biology, National Institute for Basic BiologyOkazakiJapan
- Department of Basic Biology, SOKENDAI (Graduate University for Advanced Studies)OkazakiJapan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural SciencesOkazakiJapan
| | - Nobuyuki Shiina
- Laboratory of Neuronal Cell Biology, National Institute for Basic BiologyOkazakiJapan
- Department of Basic Biology, SOKENDAI (Graduate University for Advanced Studies)OkazakiJapan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural SciencesOkazakiJapan
| | - Kimiko Shimizu
- Department of Biological Sciences, School of Science, The University of TokyoTokyoJapan
| | - Sayaka Higo-Yamamoto
- Healthy Food Science Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan
| | - Katsutaka Oishi
- Healthy Food Science Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan
- Department of Applied Biological Science, Graduate School of Science and Technology, Tokyo University of ScienceNodaJapan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of TokyoKashiwaJapan
- School of Integrative and Global Majors (SIGMA), University of TsukubaTsukubaJapan
| | - Hisashi Mori
- Department of Molecular Neuroscience, Graduate School of Medicine and Pharmaceutical Sciences, University of ToyamaToyamaJapan
| | - Tamio Furuse
- Mouse Phenotype Analysis Division, Japan Mouse Clinic, RIKEN BioResource Research Center (BRC)TsukubaJapan
| | - Masaru Tamura
- Mouse Phenotype Analysis Division, Japan Mouse Clinic, RIKEN BioResource Research Center (BRC)TsukubaJapan
| | - Hisashi Shirakawa
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto UniversityKyotoJapan
| | - Daiki X Sato
- Division of Systems Medical Science, Center for Medical Science, Fujita Health UniversityToyoakeJapan
- Graduate School of Life Sciences, Tohoku UniversitySendaiJapan
| | - Yukiko U Inoue
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and PsychiatryKodairaJapan
| | - Takayoshi Inoue
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and PsychiatryKodairaJapan
| | - Yuriko Komine
- Young Researcher Support Group, Research Enhancement Strategy Office, National Institute for Basic Biology, National Institute of Natural SciencesOkazakiJapan
- Division of Brain Biology, National Institute for Basic BiologyOkazakiJapan
| | - Tetsuo Yamamori
- Division of Brain Biology, National Institute for Basic BiologyOkazakiJapan
- Laboratory for Molecular Analysis of Higher Brain Function, RIKEN Center for Brain ScienceWakoJapan
| | - Kenji Sakimura
- Department of Cellular Neurobiology, Brain Research Institute, Niigata UniversityNiigataJapan
- Department of Animal Model Development, Brain Research Institute, Niigata UniversityNiigataJapan
| | - Tsuyoshi Miyakawa
- Division of Systems Medical Science, Center for Medical Science, Fujita Health UniversityToyoakeJapan
| |
Collapse
|
5
|
Singh U, Das B, Khanra S, Roy C. Resting state and activated brain glutamate-glutamine, brain lactate, cognition, and psychopathology among males with schizophrenia: A 3 Tesla proton magnetic resonance spectroscopic (1H-MRS) study. Indian J Psychiatry 2024; 66:82-89. [PMID: 38419937 PMCID: PMC10898519 DOI: 10.4103/indianjpsychiatry.indianjpsychiatry_621_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/09/2023] [Accepted: 12/25/2023] [Indexed: 03/02/2024] Open
Abstract
Background Research on glutamate (Glu) in schizophrenia has so far been inconclusive. Based on preclinical studies on Glu lactate interaction, researchers have now focused on brain lactate level as a sign of major pathology, including cognitive dysfunctions in the brain. Our study aimed to examine changes at resting and activated states in brain lactate and Glu-glutamine (Glx) at the anterior cingulate cortex (ACC) in schizophrenia. Methods A hospital-based prospective study was conducted with twenty-two male cases of schizophrenia and matched healthy controls (HCs). Positive and Negative Syndrome Scale (PANSS), Montreal Cognitive Assessment (MoCA), and Stroop tasks were administered among patients. Brain lactate and Glx at ACC were measured at resting state and during the Stroop test with proton magnetic resonance spectroscopy (1H-MRS) both at baseline and at remission and once among HC. Result Though MoCA scores improved significantly (P < 0.001) at remission from baseline among cases, repeated-measures analysis of variance (RM-ANOVA) did not find a significant time effect for Glx (P = 0.82) and lactate (P = 0.30) among cases from baseline to remission. Glx and lactate changed differently from baseline to remission. Conclusion Our study did not find significant differences in Glx and lactate between schizophrenia patients and HC. No significant time effect on Glx and lactate was observed from baseline to remission among schizophrenia cases. Different changes observed in Glx and lactate from baseline to remission require replication in future studies with larger sample size, longer follow-up period, and multivoxel MR assessment.
Collapse
Affiliation(s)
- Ujjwal Singh
- Department of Psychiatry, Central Institute of Psychiatry, Ranchi, Jharkhand, India
| | - Basudeb Das
- Department of Psychiatry, Central Institute of Psychiatry, Ranchi, Jharkhand, India
| | - Sourav Khanra
- Department of Psychiatry, Central Institute of Psychiatry, Ranchi, Jharkhand, India
| | - Chandramouli Roy
- Department of Psychiatry, Central Institute of Psychiatry, Ranchi, Jharkhand, India
| |
Collapse
|
6
|
Lambers H, Wachsmuth L, Thomas D, Boumezbeur F, Hoesker V, Pradier B, Faber C. Fiber-based lactate recordings with fluorescence resonance energy transfer sensors by applying an magnetic resonance-informed correction of hemodynamic artifacts. NEUROPHOTONICS 2022; 9:032212. [PMID: 35558647 PMCID: PMC9084224 DOI: 10.1117/1.nph.9.3.032212] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/06/2022] [Indexed: 06/15/2023]
Abstract
Significance: Fluorescence resonance energy transfer (FRET) sensors offer enormous benefits when studying neurophysiology through confocal microscopy. Yet, their use for fiber-based in vivo recordings is hampered by massive confounding effects and has therefore been scarcely reported. Aim: We aim to investigate whether in vivo fiber-based lactate recordings in the rodent brain are feasible with FRET sensors and implement a correction algorithm for the predominant hemodynamic artifact. Approach: We performed fiber-based FRET recordings of lactate (Laconic) and calcium (Twitch-2B) simultaneously with functional MRI and pharmacological MRI. MR-derived parameters were applied to correct hemodynamic artifacts. Results of FRET measurements were validated by local field potential, magnetic resonance spectroscopy, and blood analysis. Results: Hemodynamic artifacts dominated fiber-based in vivo FRET measurements with both Laconic and Twitch-2B. Our MR-based correction algorithm enabled to remove the artifacts and detect lactate and calcium changes during sensory stimulation or intravenous lactate injections. Conclusions: In vivo fiber-based lactate recordings are feasible using FRET-based sensors. However, signal corrections are required. MR-derived hemodynamic parameters can successfully be applied for artifact correction.
Collapse
Affiliation(s)
- Henriette Lambers
- University Hospital Münster, Translational Research Imaging Center (TRIC), Clinic for Radiology, Münster, Germany
| | - Lydia Wachsmuth
- University Hospital Münster, Translational Research Imaging Center (TRIC), Clinic for Radiology, Münster, Germany
| | - Dominik Thomas
- University Hospital Münster, Translational Research Imaging Center (TRIC), Clinic for Radiology, Münster, Germany
| | - Fawzi Boumezbeur
- NeuroSpin, CEA, CNRS, Paris-Saclay University, Gif-Sur-Yvette, France
| | - Vanessa Hoesker
- University Hospital Münster, Translational Research Imaging Center (TRIC), Clinic for Radiology, Münster, Germany
| | - Bruno Pradier
- University Hospital Münster, Translational Research Imaging Center (TRIC), Clinic for Radiology, Münster, Germany
| | - Cornelius Faber
- University Hospital Münster, Translational Research Imaging Center (TRIC), Clinic for Radiology, Münster, Germany
| |
Collapse
|
7
|
Teplyashina EA, Gorina YV, Khilazheva ED, Boytsova EB, Mosyagina AI, Malinovskaya NA, Komleva YK, Morgun AV, Uspenskaya YA, Shuvaev AN, Salmina AB. Cells of Cerebrovascular Endothelium and Perivascular Astroglia in the Regulation of Neurogenesis. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022030097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Shin NR, Bose S, Choi Y, Kim YM, Chin YW, Song EJ, Nam YD, Kim H. Anti-Obesity Effect of Fermented Panax notoginseng Is Mediated Via Modulation of Appetite and Gut Microbial Population. Front Pharmacol 2021; 12:665881. [PMID: 34381356 PMCID: PMC8350340 DOI: 10.3389/fphar.2021.665881] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 07/12/2021] [Indexed: 12/14/2022] Open
Abstract
Panax notoginseng (PN) is a traditional herbal medicine containing several active compounds such as saponins and ginsenosides with many therapeutic applications including anti-obesity activity. Fermentation by lactic acid bacteria has the potential to metabolize ginsenosides to more active forms. This study examined whether fermentation has any benefits on the protective effects of a PN extract against obesity using a high-fat diet (HFD)-fed mouse model. PN was fermented with Lactobacillus plantarum which exhibited high β-glucosidase activity. Upon fermentation, the PN extract exhibited an altered ginsenoside profile, a dramatic increase in the lactate level. Treatment of the HFD group with fermented PN (FPN), but not PN, decreased both the food and calorie intake significantly, which was consistent with the more potent suppressing effects of FPN than PN on the signaling pathways involved in appetite and energy intake. The PN treatment also modulated the gut microbial composition. The PN and FPN treatment groups showed clear differences in the population of gut microbiota. The relative abundance of Bacteroidetes, Erysipelotrichaceae, Coprococus, and Dehalobacterium were significantly higher in the FPN group then the normal, HFD, and XEN groups. Furthermore, the relative abundances of Akkermansia, Dehalobacterium, Erysipeliotrichaceae and parpabacteroides were significantly higher in the FPN group than the PN group, but the relative abundances of Allobaculum, Erysipelotrichi and Erysipelotrichale were significantly lower. The relative abundance of Bacteroides and Lactococcus was significantly higher and lower, respectively in the PN and FPN groups than the HFD group. In conclusion, the altered ginsenoside and organic acid's profile, and altered gut microbial composition are believed to be the major factors contributing to the anti-obesity properties of FPN.
Collapse
Affiliation(s)
- Na Rae Shin
- Department of Rehabilitation Medicine of Korean Medicine, Dongguk University, Goyang, South Korea
| | - Shambhunath Bose
- Department of Rehabilitation Medicine of Korean Medicine, Dongguk University, Goyang, South Korea
| | - Yura Choi
- Department of Rehabilitation Medicine of Korean Medicine, Dongguk University, Goyang, South Korea
| | - Young-Mi Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| | - Young-Won Chin
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| | - Eun-Ji Song
- Research Group of Healthcare, Korea Food Research Institute, Wanju-gun, South Korea
| | - Young-Do Nam
- Research Group of Healthcare, Korea Food Research Institute, Wanju-gun, South Korea
| | - Hojun Kim
- Department of Rehabilitation Medicine of Korean Medicine, Dongguk University, Goyang, South Korea
| |
Collapse
|
9
|
Just N. Proton functional magnetic resonance spectroscopy in rodents. NMR IN BIOMEDICINE 2021; 34:e4254. [PMID: 31967711 DOI: 10.1002/nbm.4254] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 12/04/2019] [Accepted: 12/16/2019] [Indexed: 06/10/2023]
Abstract
Proton functional magnetic resonance spectroscopy (1 H-fMRS) in the human brain is able to assess and quantify the metabolic response due to localized brain activity. Currently, 1 H-fMRS of the human brain is complementary to functional magnetic resonance imaging (fMRI) and a recommended technique at high field strengths (>7 T) for the investigation of neurometabolic couplings, thereby providing insight into the mechanisms underlying brain activity and brain connectivity. Understanding typical healthy brain metabolism during a task is expected to provide a baseline from which to detect and characterize neurochemical alterations associated with various neurological or psychiatric disorders and diseases. It is of paramount importance to resolve fundamental questions related to the regulation of neurometabolic processes. New techniques such as optogenetics may be coupled to fMRI and fMRS to bring more specificity to investigations of brain cell populations during cerebral activation thus enabling a higher link to molecular changes and therapeutic advances. These rather novel techniques are mainly available for rodent applications and trigger renewed interest in animal fMRS. However, rodent fMRS remains fairly confidential due to its inherent low signal-to-noise ratio and its dependence on anesthesia. For instance, the accurate determination of metabolic concentration changes during stimulation requires robust knowledge of the physiological environment of the measured region of interest linked to anesthesia in most cases. These factors may also have a strong influence on B0 homogeneity. Therefore, a degree of calibration of the stimulus strength and duration may be needed for increased knowledge of the underpinnings of cerebral activity. Here, we propose an early review of the current status of 1 H-fMRS in rodents and summarize current difficulties and future perspectives.
Collapse
Affiliation(s)
- Nathalie Just
- Department of Clinical Radiology, University Hospital Münster, Germany
- INRAE, Centre, Tours Val de Loire, France
| |
Collapse
|
10
|
Gonzalez-Riano C, Tapia-González S, Perea G, González-Arias C, DeFelipe J, Barbas C. Metabolic Changes in Brain Slices over Time: a Multiplatform Metabolomics Approach. Mol Neurobiol 2021; 58:3224-3237. [PMID: 33651263 DOI: 10.1007/s12035-020-02264-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/15/2020] [Indexed: 01/01/2023]
Abstract
Brain slice preparations are widely used for research in neuroscience. However, a high-quality preparation is essential and there is no consensus regarding stable parameters that can be used to define the status of the brain slice preparation after its collection at different time points. Thus, it is critical to fully characterize the experimental conditions for ex vivo studies using brain slices for electrophysiological recording. In this study, we used a multiplatform (LC-MS and GC-MS) untargeted metabolomics-based approach to shed light on the metabolome and lipidome changes taking place at different time intervals during the brain slice preparation process. We have found significant modifications in the levels of 300 compounds, including several lipid classes and their derivatives, as well as metabolites involved in the GABAergic pathway and the TCA cycle. All these preparation-dependent changes in the brain biochemistry related to the time interval should be taken into consideration for future studies to facilitate non-biased interpretations of the experimental results.
Collapse
Affiliation(s)
- Carolina Gonzalez-Riano
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660, Boadilla del Monte, Spain
| | - Silvia Tapia-González
- Laboratorio Cajal de Circuitos Corticales (CTB), Universidad Politécnica de Madrid, Madrid, Spain
- Instituto Cajal (CSIC), Avenida Doctor Arce 37, 28002, Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain
| | - Gertrudis Perea
- Instituto Cajal (CSIC), Avenida Doctor Arce 37, 28002, Madrid, Spain
| | | | - Javier DeFelipe
- Laboratorio Cajal de Circuitos Corticales (CTB), Universidad Politécnica de Madrid, Madrid, Spain
- Instituto Cajal (CSIC), Avenida Doctor Arce 37, 28002, Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain
| | - Coral Barbas
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660, Boadilla del Monte, Spain.
| |
Collapse
|
11
|
Bingul D, Kalra K, Murata EM, Belser A, Dash MB. Persistent changes in extracellular lactate dynamics following synaptic potentiation. Neurobiol Learn Mem 2020; 175:107314. [PMID: 32961277 PMCID: PMC7655607 DOI: 10.1016/j.nlm.2020.107314] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/27/2020] [Accepted: 09/14/2020] [Indexed: 12/19/2022]
Abstract
A diverse array of neurometabolic coupling mechanisms exist within the brain to ensure that sufficient metabolite availability is present to meet both acute and chronic energetic demands. Excitatory synaptic activity, which produces the majority of the brain's energetic demands, triggers a rapid metabolic response including a characteristic shift towards aerobic glycolysis. Herein, astrocytically derived lactate appears to serve as an important metabolite to meet the extensive metabolic needs of activated neurons. Despite a wealth of literature characterizing lactate's role in mediating these acute metabolic needs, the extent to which lactate supports chronic energetic demands of neurons remains unclear. We hypothesized that synaptic potentiation, a ubiquitous brain phenomenon that can produce chronic alterations in synaptic activity, could necessitate persistent alterations in brain energetics. In freely-behaving rats, we induced long-term potentiation (LTP) of synapses within the dentate gyrus through high-frequency electrical stimulation (HFS) of the medial perforant pathway. Before, during, and after LTP induction, we continuously recorded extracellular lactate concentrations within the dentate gyrus to assess how changes in synaptic strength alter local glycolytic activity. Synaptic potentiation 1) altered the acute response of extracellular lactate to transient neuronal activation as evident by a larger initial dip and subsequent overshoot and 2) chronically increased local lactate availability. Although synapses were potentiated immediately following HFS, observed changes in lactate dynamics were only evident beginning ~24 h later. Once observed, however, both synaptic potentiation and altered lactate dynamics persisted for the duration of the experiment (~72 h). Persistent alterations in synaptic strength, therefore, appear to be associated with metabolic plasticity in the form of persistent augmentation of glycolytic activity.
Collapse
Affiliation(s)
- D Bingul
- Program in Neuroscience, Middlebury College, Middlebury, VT 05753, United States
| | - K Kalra
- Program in Neuroscience, Middlebury College, Middlebury, VT 05753, United States
| | - E M Murata
- Program in Neuroscience, Middlebury College, Middlebury, VT 05753, United States
| | - A Belser
- Program in Neuroscience, Middlebury College, Middlebury, VT 05753, United States
| | - M B Dash
- Program in Neuroscience, Middlebury College, Middlebury, VT 05753, United States; Department of Psychology, Middlebury College, Middlebury, VT 05753, United States.
| |
Collapse
|
12
|
Glucose transporters in brain in health and disease. Pflugers Arch 2020; 472:1299-1343. [PMID: 32789766 PMCID: PMC7462931 DOI: 10.1007/s00424-020-02441-x] [Citation(s) in RCA: 219] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/20/2020] [Accepted: 07/24/2020] [Indexed: 12/15/2022]
Abstract
Energy demand of neurons in brain that is covered by glucose supply from the blood is ensured by glucose transporters in capillaries and brain cells. In brain, the facilitative diffusion glucose transporters GLUT1-6 and GLUT8, and the Na+-d-glucose cotransporters SGLT1 are expressed. The glucose transporters mediate uptake of d-glucose across the blood-brain barrier and delivery of d-glucose to astrocytes and neurons. They are critically involved in regulatory adaptations to varying energy demands in response to differing neuronal activities and glucose supply. In this review, a comprehensive overview about verified and proposed roles of cerebral glucose transporters during health and diseases is presented. Our current knowledge is mainly based on experiments performed in rodents. First, the functional properties of human glucose transporters expressed in brain and their cerebral locations are described. Thereafter, proposed physiological functions of GLUT1, GLUT2, GLUT3, GLUT4, and SGLT1 for energy supply to neurons, glucose sensing, central regulation of glucohomeostasis, and feeding behavior are compiled, and their roles in learning and memory formation are discussed. In addition, diseases are described in which functional changes of cerebral glucose transporters are relevant. These are GLUT1 deficiency syndrome (GLUT1-SD), diabetes mellitus, Alzheimer’s disease (AD), stroke, and traumatic brain injury (TBI). GLUT1-SD is caused by defect mutations in GLUT1. Diabetes and AD are associated with changed expression of glucose transporters in brain, and transporter-related energy deficiency of neurons may contribute to pathogenesis of AD. Stroke and TBI are associated with changes of glucose transporter expression that influence clinical outcome.
Collapse
|
13
|
Hollnagel JO, Cesetti T, Schneider J, Vazetdinova A, Valiullina-Rakhmatullina F, Lewen A, Rozov A, Kann O. Lactate Attenuates Synaptic Transmission and Affects Brain Rhythms Featuring High Energy Expenditure. iScience 2020; 23:101316. [PMID: 32653807 PMCID: PMC7350153 DOI: 10.1016/j.isci.2020.101316] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/09/2020] [Accepted: 06/23/2020] [Indexed: 01/29/2023] Open
Abstract
Lactate shuttled from blood, astrocytes, and/or oligodendrocytes may serve as the major glucose alternative in brain energy metabolism. However, its effectiveness in fueling neuronal information processing underlying complex cortex functions like perception and memory is unclear. We show that sole lactate disturbs electrical gamma and theta-gamma oscillations in hippocampal networks by either attenuation or neural bursts. Bursting is suppressed by elevating the glucose fraction in substrate supply. By contrast, lactate does not affect electrical sharp wave-ripple activity featuring lower energy use. Lactate increases the oxygen consumption during the network states, reflecting enhanced oxidative ATP synthesis in mitochondria. Finally, lactate attenuates synaptic transmission in excitatory pyramidal cells and fast-spiking, inhibitory interneurons by reduced neurotransmitter release from presynaptic terminals, whereas action potential generation in the axon is regular. In conclusion, sole lactate is less effective and potentially harmful during gamma-band rhythms by omitting obligatory ATP delivery through fast glycolysis at the synapse. Lactate fuels network oscillations featuring low energy expenditure Lactate can disturb the neuronal excitation-inhibition balance Lactate attenuates neurotransmission at glutamatergic and GABAergic synapses Lactate increases oxygen consumption, whereas neural activity can even decrease
Collapse
Affiliation(s)
- Jan-Oliver Hollnagel
- Institute of Physiology and Pathophysiology, University of Heidelberg, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| | - Tiziana Cesetti
- Institute of Physiology and Pathophysiology, University of Heidelberg, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| | - Justus Schneider
- Institute of Physiology and Pathophysiology, University of Heidelberg, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| | - Alina Vazetdinova
- OpenLab of Neurobiology, Kazan Federal University, 420008 Kazan, Russia
| | | | - Andrea Lewen
- Institute of Physiology and Pathophysiology, University of Heidelberg, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| | - Andrei Rozov
- Institute of Physiology and Pathophysiology, University of Heidelberg, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany; OpenLab of Neurobiology, Kazan Federal University, 420008 Kazan, Russia
| | - Oliver Kann
- Institute of Physiology and Pathophysiology, University of Heidelberg, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany; Interdisciplinary Center for Neurosciences, University of Heidelberg, 69120 Heidelberg, Germany.
| |
Collapse
|
14
|
Liu X, Liu L, Wang J, Cui H, Chu H, Bi H, Zhao G, Wen J. Genome-Wide Association Study of Muscle Glycogen in Jingxing Yellow Chicken. Genes (Basel) 2020; 11:genes11050497. [PMID: 32366026 PMCID: PMC7290304 DOI: 10.3390/genes11050497] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/14/2020] [Accepted: 04/14/2020] [Indexed: 01/13/2023] Open
Abstract
Glucose metabolism plays an important role in many normal and pathological physiological processes in the body. The breakdown and synthesis of muscle glycogen provides ATP for muscle activities. A genome-wide association study for muscle glycogen was performed in 473 Jingxing yellow chickens to identify significant single nucleotide polymorphisms (SNPs) and insertions and deletions (INDELs) involved in muscle glycogen metabolism. A total of nine SNPs (p < 1/699341) and three INDELs (p < 1/755733) reached a significant level of potential association. The following results were obtained through a series of analyses, including additive effects and gene function annotation. Two significant SNPs were found in introns 12 and 13 of copine 4 (CPNE4) on chromosome 2. The wild-type and mutant individuals had significant differences in glycogen metabolism at two loci (p < 0.01 for both). Individuals carrying two mutations had increased muscle glycogen content. According to the gene annotation of chromosome 11, there is a significant INDEL in intron 6 of naked cuticle homolog 1 (NKD1). After the INDEL mutation, the glycogen content increased significantly. There was a significant difference between wild-type and mutant individuals (p < 0.01). These mutations likely affecting two genes (CPNE4 and NKD1) may affect glycogen storage in a pleiotropic manner. Gene annotation indicates that CPNE4 and NKD1 may affect the process of glucose metabolism. Our findings contribute to understanding the genetic regulation of muscle glycogen metabolism and provide theoretical support.
Collapse
Affiliation(s)
- Xiaojing Liu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.L.); (L.L.); (J.W.); (H.C.); (G.Z.)
| | - Lu Liu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.L.); (L.L.); (J.W.); (H.C.); (G.Z.)
| | - Jie Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.L.); (L.L.); (J.W.); (H.C.); (G.Z.)
| | - Huanxian Cui
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.L.); (L.L.); (J.W.); (H.C.); (G.Z.)
| | - Huanhuan Chu
- Yantai Dadi Animal Husbrandry Co., Ltd., Yantai 1265100, China; (H.C.); (H.B)
| | - Huijuan Bi
- Yantai Dadi Animal Husbrandry Co., Ltd., Yantai 1265100, China; (H.C.); (H.B)
| | - Guiping Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.L.); (L.L.); (J.W.); (H.C.); (G.Z.)
| | - Jie Wen
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.L.); (L.L.); (J.W.); (H.C.); (G.Z.)
- Correspondence:
| |
Collapse
|
15
|
Choi Y, Bose S, Shin NR, Song EJ, Nam YD, Kim H. Lactate-Fortified Puerariae Radix Fermented by Bifidobacterium breve Improved Diet-Induced Metabolic Dysregulation via Alteration of Gut Microbial Communities. Nutrients 2020; 12:E276. [PMID: 31973042 PMCID: PMC7070547 DOI: 10.3390/nu12020276] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/15/2020] [Accepted: 01/19/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Puerariae Radix (PR), the dried root of Pueraria lobata, is reported to possess therapeutic efficacies against various diseases including obesity, diabetes, and hypertension. Fermentation-driven bioactivation of herbal medicines can result in improved therapeutic potencies and efficacies. METHODS C57BL/6J mice were fed a high-fat diet and fructose in water with PR (400 mg/kg) or PR fermented by Bifidobacterium breve (400 mg/kg) for 10 weeks. Histological staining, qPCR, Western blot, and 16s rRNA sequencing were used to determine the protective effects of PR and fermented PR (fPR) against metabolic dysfunction. RESULTS Treatment with both PR and fPR for 10 weeks resulted in a reduction in body weight gain with a more significant reduction in the latter group. Lactate, important for energy metabolism and homeostasis, was increased during fermentation. Both PR and fPR caused significant down-regulation of the intestinal expression of the MCP-1, IL-6, and TNF-α genes. However, for the IL-6 and TNF-α gene expressions, the inhibitory effect of fPR was more pronounced (p < 0.01) than that of PR (p < 0.05). Oral glucose tolerance test results showed that both PR and fPR treatments improved glucose homeostasis. In addition, there was a significant reduction in the expression of hepatic gene PPARγ, a key regulator of lipid and glucose metabolism, following fPR but not PR treatment. Activation of hepatic AMPK phosphorylation was significantly enhanced by both PR and fPR treatment. In addition, both PR and fPR reduced adipocyte size in highly significant manners (p < 0.001). Treatment by fPR but not PR significantly reduced the expression of PPARγ and low-density lipoproteins in adipose tissue. CONCLUSION Treatment with fPR appears to be more potent than that of PR in improving the pathways related to glucose and lipid metabolism in high-fat diet (HFD)+fructose-fed animals. The results revealed that the process of fermentation of PR enhanced lactate and facilitated the enrichment of certain microbial communities that contribute to anti-obesity and anti-inflammatory activities.
Collapse
Affiliation(s)
- Yura Choi
- Department of Rehabilitation Medicine of Korean Medicine, Dongguk University, 27 Donggukro, Ilsan-donggu, Goyang 10326, Korea; (Y.C.); (N.R.S.)
| | | | - Na Rae Shin
- Department of Rehabilitation Medicine of Korean Medicine, Dongguk University, 27 Donggukro, Ilsan-donggu, Goyang 10326, Korea; (Y.C.); (N.R.S.)
| | - Eun-Ji Song
- Research Group of Gut Microbiome, Korea Food Research Institute, Wanju-gun 24 55365, Korea; (E.-J.S.); (Y.-D.N.)
- Department of Food Biotechnology, Korea University of Science and Technology, Wanju-gun 34113, Korea
| | - Young-Do Nam
- Research Group of Gut Microbiome, Korea Food Research Institute, Wanju-gun 24 55365, Korea; (E.-J.S.); (Y.-D.N.)
- Department of Food Biotechnology, Korea University of Science and Technology, Wanju-gun 34113, Korea
| | - Hojun Kim
- Department of Rehabilitation Medicine of Korean Medicine, Dongguk University, 27 Donggukro, Ilsan-donggu, Goyang 10326, Korea; (Y.C.); (N.R.S.)
| |
Collapse
|
16
|
Wang Q, Hu Y, Wan J, Dong B, Sun J. Lactate: A Novel Signaling Molecule in Synaptic Plasticity and Drug Addiction. Bioessays 2019; 41:e1900008. [PMID: 31270822 DOI: 10.1002/bies.201900008] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 05/20/2019] [Indexed: 12/21/2022]
Abstract
l-Lactate is emerging as a crucial regulatory nexus for energy metabolism in the brain and signaling transduction in synaptic plasticity, memory processes, and drug addiction instead of being merely a waste by-product of anaerobic glycolysis. In this review, the role of lactate in various memory processes, synapse plasticity and drug addiction on the basis of recent studies is summarized and discussed. To this end, three main parts are presented: first, lactate as an energy substrate in energy metabolism of the brain is described; second, lactate as a novel signaling molecule in synaptic plasticity, neural circuits, memory, and drug addiction is described; and third, in light of the above descriptions, it is plausible to speculate that lactate is predominantly a signaling molecule in specific memory processes and partly acts as an energy substrate. The future perspective in lactate signaling involving microglia and associated precise signaling pathways in the brain is highlighted.
Collapse
Affiliation(s)
- Qiuting Wang
- Key Laboratory for Experimental Teratology of the Ministry of Education, Department of Anatomy, School of Basic Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Ying Hu
- Department of Paediatrics, Jinan Zhangqiu District Hospital of TCM, Jinan, Shandong, 250200, China
| | - Jiale Wan
- Key Laboratory for Experimental Teratology of the Ministry of Education, Department of Anatomy, School of Basic Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Bo Dong
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, China.,Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, China
| | - Jinhao Sun
- Key Laboratory for Experimental Teratology of the Ministry of Education, Department of Anatomy, School of Basic Medicine, Shandong University, Jinan, Shandong, 250012, China
| |
Collapse
|
17
|
Crémillieux Y, Dumont U, Mazuel L, Salvati R, Zhendre V, Rizzitelli S, Blanc J, Roumes H, Pinaud N, Bouzier-Sore AK. Online Quantification of Lactate Concentration in Microdialysate During Cerebral Activation Using 1H-MRS and Sensitive NMR Microcoil. Front Cell Neurosci 2019; 13:89. [PMID: 30941014 PMCID: PMC6433703 DOI: 10.3389/fncel.2019.00089] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 02/21/2019] [Indexed: 11/22/2022] Open
Abstract
The dynamic in vivo profiling of lactate is of uppermost importance in both neuroenergetics and neuroprotection fields, considering its central suspected role as a metabolic and signaling molecule. For this purpose, we implemented proton magnetic resonance spectroscopy (1H-MRS) directly on brain microdialysate to monitor online the fluctuation of lactate contents during neuronal stimulation. Brain activation was obtained by right whisker stimulation of rats, which leads to the activation of the left barrel cortex area in which the microdialysis probe was implanted. The experimental protocol relies on the use of dedicated and sensitive home-made NMR microcoil able to perform lactate NMR profiling at submillimolar concentration. The MRS measurements of extracellular lactate concentration were performed inside a pre-clinical MRI scanner allowing simultaneous visualization of the correct location of the microprobe by MRI and detection of metabolites contained in the microdialysis by MRS. A 40% increase in lactate concentration was measured during whisker stimulation in the corresponding barrel cortex. This combination of microdialysis with online MRS/MRI provides a new approach to follow in vivo lactate fluctuations, and can be further implemented in physio-pathological conditions to get new insights on the role of lactate in brain metabolism and signaling.
Collapse
Affiliation(s)
- Yannick Crémillieux
- Université de Bordeaux, Bordeaux, France.,UMR5255 Institut des Sciences Moléculaires (ISM), Talence, France
| | - Ursule Dumont
- Université de Bordeaux, Bordeaux, France.,UMR5255 Institut des Sciences Moléculaires (ISM), Talence, France
| | - Leslie Mazuel
- Université de Bordeaux, Bordeaux, France.,UMR5536 Centre de Résonance Magnétique des Systèmes Biologiques (CRMSB), Bordeaux, France
| | - Roberto Salvati
- Université de Bordeaux, Bordeaux, France.,UMR5255 Institut des Sciences Moléculaires (ISM), Talence, France
| | - Vanessa Zhendre
- Université de Bordeaux, Bordeaux, France.,UMR5255 Institut des Sciences Moléculaires (ISM), Talence, France
| | - Silvia Rizzitelli
- Université de Bordeaux, Bordeaux, France.,UMR5255 Institut des Sciences Moléculaires (ISM), Talence, France
| | - Jordy Blanc
- Université de Bordeaux, Bordeaux, France.,UMR5536 Centre de Résonance Magnétique des Systèmes Biologiques (CRMSB), Bordeaux, France
| | - Hélène Roumes
- Université de Bordeaux, Bordeaux, France.,UMR5536 Centre de Résonance Magnétique des Systèmes Biologiques (CRMSB), Bordeaux, France
| | - Noël Pinaud
- Université de Bordeaux, Bordeaux, France.,UMR5255 Institut des Sciences Moléculaires (ISM), Talence, France
| | - Anne-Karine Bouzier-Sore
- Université de Bordeaux, Bordeaux, France.,UMR5536 Centre de Résonance Magnétique des Systèmes Biologiques (CRMSB), Bordeaux, France
| |
Collapse
|
18
|
Abstract
Glucose is the long-established, obligatory fuel for brain that fulfills many critical functions, including ATP production, oxidative stress management, and synthesis of neurotransmitters, neuromodulators, and structural components. Neuronal glucose oxidation exceeds that in astrocytes, but both rates increase in direct proportion to excitatory neurotransmission; signaling and metabolism are closely coupled at the local level. Exact details of neuron-astrocyte glutamate-glutamine cycling remain to be established, and the specific roles of glucose and lactate in the cellular energetics of these processes are debated. Glycolysis is preferentially upregulated during brain activation even though oxygen availability is sufficient (aerobic glycolysis). Three major pathways, glycolysis, pentose phosphate shunt, and glycogen turnover, contribute to utilization of glucose in excess of oxygen, and adrenergic regulation of aerobic glycolysis draws attention to astrocytic metabolism, particularly glycogen turnover, which has a high impact on the oxygen-carbohydrate mismatch. Aerobic glycolysis is proposed to be predominant in young children and specific brain regions, but re-evaluation of data is necessary. Shuttling of glucose- and glycogen-derived lactate from astrocytes to neurons during activation, neurotransmission, and memory consolidation are controversial topics for which alternative mechanisms are proposed. Nutritional therapy and vagus nerve stimulation are translational bridges from metabolism to clinical treatment of diverse brain disorders.
Collapse
Affiliation(s)
- Gerald A Dienel
- Department of Neurology, University of Arkansas for Medical Sciences , Little Rock, Arkansas ; and Department of Cell Biology and Physiology, University of New Mexico , Albuquerque, New Mexico
| |
Collapse
|
19
|
Béland-Millar A, Messier C. Fluctuations of extracellular glucose and lactate in the mouse primary visual cortex during visual stimulation. Behav Brain Res 2018; 344:91-102. [PMID: 29458067 DOI: 10.1016/j.bbr.2018.02.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 02/12/2018] [Accepted: 02/14/2018] [Indexed: 12/20/2022]
Abstract
We measured the extracellular glucose and lactate in the primary visual cortex in the CD-1 mouse using electrochemical electrodes. To gain some additional information on brain metabolism, we examined the impact of systemic injections of lactate and fructose on the brain extracellular glucose and lactate changes observed during visual stimulation. We found that simple stimulation using a flashlight produced a decrease in visual cortex extracellular glucose and an increase in extracellular lactate. Similar results were observed following visual stimulation with an animated movie without soundtrack or the presentation of a novel object. Specificity of these observations was confirmed by the absence of extracellular glucose and lactate changes when the mice were presented a second time with the same object. Previous experiments have shown that systemic injections of fructose and lactate lead to an increase in blood lactate but no change in blood glucose while they both increase brain extracellular glucose but they do not increase brain extracellular lactate. When mice were visually stimulated after they had received these injections, we found that lactate, and to a slightly lesser degree fructose, both reduced the amplitude of the changes in extracellular glucose and lactate that accompanied visual stimulation. Thus, neural activation leads to an increase in extracellular lactate and a decrease in extracellular glucose. Novelty, attentional resources and availability of metabolic fuels modulate these fluctuations. The observations are consistent with a modified view of brain metabolism that takes into account the blood and brain glucose availability.
Collapse
|
20
|
Crémillieux Y, Salvati R, Dumont U, Pinaud N, Bouchaud V, Sanchez S, Glöggler S, Wong A. Online 1 H-MRS measurements of time-varying lactate production in an animal model of glioma during administration of an anti-tumoral drug. NMR IN BIOMEDICINE 2018; 31:e3861. [PMID: 29193406 DOI: 10.1002/nbm.3861] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 10/15/2017] [Accepted: 10/16/2017] [Indexed: 06/07/2023]
Abstract
The aims of this study were to implement a magnetic resonance spectroscopy (MRS) protocol for the online profiling of subnanomolar quantities of metabolites sampled from the extracellular fluid using implanted microdialysis and to apply this protocol in glioma-bearing rats for the quantification of lactate concentration and the measurement of time-varying lactate concentration during drug administration. MRS acquisitions on the brain microdialysate were performed using a home-built, proton-tuned, microsolenoid with an active volume of 2 μL. The microcoil was placed at the outlet of the microdialysis probe inside a preclinical magnetic resonance imaging (MRI) scanner. C6-bearing rats were implanted with microdialysis probes perfused with artificial cerebrospinal fluid solution and the lactate dehydrogenase (LDH) inhibitor oxamate. Microcoil magnetic resonance spectra were continuously updated using a single-pulse sequence. Localized in vivo spectra and high-resolution spectra on the dialysate were also acquired. The limit of detection and limit of quantification per unit time of the lactate methyl peak were determined as 0.37 nmol/√min and 1.23 nmol/√min, respectively. Signal-to-noise ratios (SNRs) of the lactate methyl peak above 120 were obtained from brain tumor microdialysate in an acquisition time of 4 min. On average, the lactate methyl peak amplitude measured in vivo using the nuclear magnetic resonance (NMR) microcoil was 193 ± 46% higher in tumor dialysate relative to healthy brain dialysate. A similar ratio was obtained from high-resolution NMR spectra performed on the collected dialysate. Following oxamate addition in the perfusate, a monotonic decrease in the lactate peaks was observed in all animals with an average time constant of 4.6 min. In the absence of overlapping NMR peaks, robust profiling of extracellular lactate can be obtained online using a dedicated sensitive NMR microcoil. MRS measurements of the dynamic changes in lactate production induced by anti-tumoral drugs can be assessed accurately with temporal resolutions on the order of minutes. The MRS protocol can be readily transferred to the clinical environment with the use of suitable clinical microdialysis probes.
Collapse
Affiliation(s)
- Yannick Crémillieux
- Institut des Sciences Moléculaires, Université de Bordeaux, Bordeaux, France
| | - Roberto Salvati
- Institut des Sciences Moléculaires, Université de Bordeaux, Bordeaux, France
| | - Ursule Dumont
- Institut des Sciences Moléculaires, Université de Bordeaux, Bordeaux, France
| | - Noël Pinaud
- Institut des Sciences Moléculaires, Université de Bordeaux, Bordeaux, France
| | - Véronique Bouchaud
- Centre de Résonance Magnétique des Systèmes Biologiques, Université de Bordeaux, Bordeaux, France
| | - Stéphane Sanchez
- Centre de Résonance Magnétique des Systèmes Biologiques, Université de Bordeaux, Bordeaux, France
| | - Stefan Glöggler
- Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany
| | - Alan Wong
- NIMBE, CEA-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
21
|
Abstract
Astrocytes are neural cells of ectodermal, neuroepithelial origin that provide for homeostasis and defense of the central nervous system (CNS). Astrocytes are highly heterogeneous in morphological appearance; they express a multitude of receptors, channels, and membrane transporters. This complement underlies their remarkable adaptive plasticity that defines the functional maintenance of the CNS in development and aging. Astrocytes are tightly integrated into neural networks and act within the context of neural tissue; astrocytes control homeostasis of the CNS at all levels of organization from molecular to the whole organ.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| | - Maiken Nedergaard
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| |
Collapse
|
22
|
Verkhratsky A, Nedergaard M. Physiology of Astroglia. Physiol Rev 2018; 98:239-389. [PMID: 29351512 PMCID: PMC6050349 DOI: 10.1152/physrev.00042.2016] [Citation(s) in RCA: 961] [Impact Index Per Article: 160.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/22/2017] [Accepted: 04/27/2017] [Indexed: 02/07/2023] Open
Abstract
Astrocytes are neural cells of ectodermal, neuroepithelial origin that provide for homeostasis and defense of the central nervous system (CNS). Astrocytes are highly heterogeneous in morphological appearance; they express a multitude of receptors, channels, and membrane transporters. This complement underlies their remarkable adaptive plasticity that defines the functional maintenance of the CNS in development and aging. Astrocytes are tightly integrated into neural networks and act within the context of neural tissue; astrocytes control homeostasis of the CNS at all levels of organization from molecular to the whole organ.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| | - Maiken Nedergaard
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| |
Collapse
|
23
|
Dienel GA, Behar KL, Rothman DL. Cellular Origin of [ 18F]FDG-PET Imaging Signals During Ceftriaxone-Stimulated Glutamate Uptake: Astrocytes and Neurons. Neuroscientist 2017; 24:316-328. [PMID: 29276856 DOI: 10.1177/1073858417749375] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Ceftriaxone stimulates astrocytic uptake of the excitatory neurotransmitter glutamate, and it is used to treat glutamatergic excitotoxicity that becomes manifest during many brain diseases. Ceftriaxone-stimulated glutamate transport was reported to drive signals underlying [18F]fluorodeoxyglucose-positron emission tomographic ([18F]FDG-PET) metabolic images of brain glucose utilization and interpreted as supportive of the notion of lactate shuttling from astrocytes to neurons. This study draws attention to critical roles of astrocytes in the energetics and imaging of brain activity, but the results are provocative because (1) the method does not have cellular resolution or provide information about downstream pathways of glucose metabolism, (2) neuronal and astrocytic [18F]FDG uptake were not separately measured, and (3) strong evidence against lactate shuttling was not discussed. Evaluation of potential metabolic responses to ceftriaxone suggests lack of astrocytic specificity and significant contributions by pre- and postsynaptic neuronal compartments. Indeed, astrocytic glycolysis may not make a strong contribution to the [18F]FDG-PET signal because partial or complete oxidation of one glutamate molecule on its uptake generates enough ATP to fuel uptake of 3 to 10 more glutamate molecules, diminishing reliance on glycolysis. The influence of ceftriaxone on energetics of glutamate-glutamine cycling must be determined in astrocytes and neurons to elucidate its roles in excitotoxicity treatment.
Collapse
Affiliation(s)
- Gerald A Dienel
- 1 Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR, USA.,2 Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, NM, USA
| | - Kevin L Behar
- 3 Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Douglas L Rothman
- 4 Departments of Radiology and Biomedical Engineering, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
24
|
Freeman RD, Li B. Neural-metabolic coupling in the central visual pathway. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0357. [PMID: 27574310 DOI: 10.1098/rstb.2015.0357] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2016] [Indexed: 01/19/2023] Open
Abstract
Studies are described which are intended to improve our understanding of the primary measurements made in non-invasive neural imaging. The blood oxygenation level-dependent signal used in functional magnetic resonance imaging (fMRI) reflects changes in deoxygenated haemoglobin. Tissue oxygen concentration, along with blood flow, changes during neural activation. Therefore, measurements of tissue oxygen together with the use of a neural sensor can provide direct estimates of neural-metabolic interactions. We have used this relationship in a series of studies in which a neural microelectrode is combined with an oxygen micro-sensor to make simultaneous co-localized measurements in the central visual pathway. Oxygen responses are typically biphasic with small initial dips followed by large secondary peaks during neural activation. By the use of established visual response characteristics, we have determined that the oxygen initial dip provides a better estimate of local neural function than the positive peak. This contrasts sharply with fMRI for which the initial dip is unreliable. To extend these studies, we have examined the relationship between the primary metabolic agents, glucose and lactate, and associated neural activity. For this work, we also use a Doppler technique to measure cerebral blood flow (CBF) together with neural activity. Results show consistent synchronously timed changes such that increases in neural activity are accompanied by decreases in glucose and simultaneous increases in lactate. Measurements of CBF show clear delays with respect to neural response. This is consistent with a slight delay in blood flow with respect to oxygen delivery during neural activation.This article is part of the themed issue 'Interpreting BOLD: a dialogue between cognitive and cellular neuroscience'.
Collapse
Affiliation(s)
- Ralph D Freeman
- Group in Vision Science, School of Optometry, Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720-2020, USA
| | - Baowang Li
- Group in Vision Science, School of Optometry, Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720-2020, USA
| |
Collapse
|
25
|
Coles JA, Myburgh E, Brewer JM, McMenamin PG. Where are we? The anatomy of the murine cortical meninges revisited for intravital imaging, immunology, and clearance of waste from the brain. Prog Neurobiol 2017; 156:107-148. [PMID: 28552391 DOI: 10.1016/j.pneurobio.2017.05.002] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 04/25/2017] [Accepted: 05/08/2017] [Indexed: 12/15/2022]
Abstract
Rapid progress is being made in understanding the roles of the cerebral meninges in the maintenance of normal brain function, in immune surveillance, and as a site of disease. Most basic research on the meninges and the neural brain is now done on mice, major attractions being the availability of reporter mice with fluorescent cells, and of a huge range of antibodies useful for immunocytochemistry and the characterization of isolated cells. In addition, two-photon microscopy through the unperforated calvaria allows intravital imaging of the undisturbed meninges with sub-micron resolution. The anatomy of the dorsal meninges of the mouse (and, indeed, of all mammals) differs considerably from that shown in many published diagrams: over cortical convexities, the outer layer, the dura, is usually thicker than the inner layer, the leptomeninx, and both layers are richly vascularized and innervated, and communicate with the lymphatic system. A membrane barrier separates them and, in disease, inflammation can be localized to one layer or the other, so experimentalists must be able to identify the compartment they are studying. Here, we present current knowledge of the functional anatomy of the meninges, particularly as it appears in intravital imaging, and review their role as a gateway between the brain, blood, and lymphatics, drawing on information that is scattered among works on different pathologies.
Collapse
Affiliation(s)
- Jonathan A Coles
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Sir Graeme Davis Building, University of Glasgow, Glasgow, G12 8TA, United Kingdom.
| | - Elmarie Myburgh
- Centre for Immunology and Infection Department of Biology, University of York, Wentworth Way, Heslington, York YO10 5DD, United Kingdom
| | - James M Brewer
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Sir Graeme Davis Building, University of Glasgow, Glasgow, G12 8TA, United Kingdom
| | - Paul G McMenamin
- Department of Anatomy & Developmental Biology, School of Biomedical and Psychological Sciences and Monash Biomedical Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, 10 Chancellor's Walk, Clayton, Victoria, 3800, Australia
| |
Collapse
|
26
|
Dienel GA. Lack of appropriate stoichiometry: Strong evidence against an energetically important astrocyte-neuron lactate shuttle in brain. J Neurosci Res 2017; 95:2103-2125. [PMID: 28151548 DOI: 10.1002/jnr.24015] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 11/28/2016] [Accepted: 12/16/2016] [Indexed: 12/22/2022]
Abstract
Glutamate-stimulated aerobic glycolysis in astrocytes coupled with lactate shuttling to neurons where it can be oxidized was proposed as a mechanism to couple excitatory neuronal activity with glucose utilization (CMRglc ) during brain activation. From the outset, this model was not viable because it did not fulfill critical stoichiometric requirements: (i) Calculated glycolytic rates and measured lactate release rates were discordant in cultured astrocytes. (ii) Lactate oxidation requires oxygen consumption, but the oxygen-glucose index (OGI, calculated as CMRO2 /CMRglc ) fell during activation in human brain, and the small rise in CMRO2 could not fully support oxidation of lactate produced by disproportionate increases in CMRglc . (iii) Labeled products of glucose metabolism are not retained in activated rat brain, indicating rapid release of a highly labeled, diffusible metabolite identified as lactate, thereby explaining the CMRglc -CMRO2 mismatch. Additional independent lines of evidence against lactate shuttling include the following: astrocytic oxidation of glutamate after its uptake can help "pay" for its uptake without stimulating glycolysis; blockade of glutamate receptors during activation in vivo prevents upregulation of metabolism and lactate release without impairing glutamate uptake; blockade of β-adrenergic receptors prevents the fall in OGI in activated human and rat brain while allowing glutamate uptake; and neurons upregulate glucose utilization in vivo and in vitro under many stimulatory conditions. Studies in immature cultured cells are not appropriate models for lactate shuttling in adult brain because of their incomplete development of metabolic capability and astrocyte-neuron interactions. Astrocyte-neuron lactate shuttling does not make large, metabolically significant contributions to energetics of brain activation. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Gerald A Dienel
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, and Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, New Mexico
| |
Collapse
|
27
|
Patel AB, Lai JCK, Chowdhury GIM, Rothman DL, Behar KL. Comparison of Glutamate Turnover in Nerve Terminals and Brain Tissue During [1,6- 13C 2]Glucose Metabolism in Anesthetized Rats. Neurochem Res 2016; 42:173-190. [PMID: 28025798 DOI: 10.1007/s11064-016-2103-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 11/06/2016] [Accepted: 11/08/2016] [Indexed: 01/05/2023]
Abstract
The 13C turnover of neurotransmitter amino acids (glutamate, GABA and aspartate) were determined from extracts of forebrain nerve terminals and brain homogenate, and fronto-parietal cortex from anesthetized rats undergoing timed infusions of [1,6-13C2]glucose or [2-13C]acetate. Nerve terminal 13C fractional labeling of glutamate and aspartate was lower than those in whole cortical tissue at all times measured (up to 120 min), suggesting either the presence of a constant dilution flux from an unlabeled substrate or an unlabeled (effectively non-communicating on the measurement timescale) glutamate pool in the nerve terminals. Half times of 13C labeling from [1,6-13C2]glucose, as estimated by least squares exponential fitting to the time course data, were longer for nerve terminals (GluC4, 21.8 min; GABAC2 21.0 min) compared to cortical tissue (GluC4, 12.4 min; GABAC2, 14.5 min), except for AspC3, which was similar (26.5 vs. 27.0 min). The slower turnover of glutamate in the nerve terminals (but not GABA) compared to the cortex may reflect selective effects of anesthesia on activity-dependent glucose use, which might be more pronounced in the terminals. The 13C labeling ratio for glutamate-C4 from [2-13C]acetate over that of 13C-glucose was twice as large in nerve terminals compared to cortex, suggesting that astroglial glutamine under the 13C glucose infusion was the likely source of much of the nerve terminal dilution. The net replenishment of most of the nerve terminal amino acid pools occurs directly via trafficking of astroglial glutamine.
Collapse
Affiliation(s)
- Anant B Patel
- Department of Diagnostic Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, CT, 06520, USA. .,CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007, India.
| | - James C K Lai
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Idaho State University, Pocatello, ID, 83209, USA
| | - Golam I M Chowdhury
- Department of Psychiatry, Magnetic Resonance Research Center, Yale University School of Medicine, 300 Cedar Street, PO Box 208043, New Haven, CT, 06520, USA
| | - Douglas L Rothman
- Department of Diagnostic Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Kevin L Behar
- Department of Psychiatry, Magnetic Resonance Research Center, Yale University School of Medicine, 300 Cedar Street, PO Box 208043, New Haven, CT, 06520, USA.
| |
Collapse
|
28
|
Lactate, a Neglected Factor for Diabetes and Cancer Interaction. Mediators Inflamm 2016; 2016:6456018. [PMID: 28077918 PMCID: PMC5203906 DOI: 10.1155/2016/6456018] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 11/17/2016] [Accepted: 11/23/2016] [Indexed: 12/23/2022] Open
Abstract
Increasing body of evidence suggests that there exists a connection between diabetes and cancer. Nevertheless, to date, the potential reasons for this association are still poorly understood and currently there is no clinical evidence available to direct the proper management of patients presenting with these two diseases concomitantly. Both cancer and diabetes have been associated with abnormal lactate metabolism and high level of lactate production is the key biological property of these diseases. Conversely, high lactate contribute to a higher insulin resistant status and a more malignant phenotype of cancer cells, promoting diabetes and cancer development and progression. In view of associations between diabetes and cancers, the role of high lactate production in diabetes and cancer interaction should not be neglected. Here, we review the available evidence of lactate's role in different biological characteristics of diabetes and cancer and interactive relationship between them. Understanding the molecular mechanisms behind metabolic remodeling of diabetes- and cancer-related signaling would endow novel preventive and therapeutic approaches for diabetes and cancer treatment.
Collapse
|
29
|
Proia P, Di Liegro CM, Schiera G, Fricano A, Di Liegro I. Lactate as a Metabolite and a Regulator in the Central Nervous System. Int J Mol Sci 2016; 17:E1450. [PMID: 27598136 PMCID: PMC5037729 DOI: 10.3390/ijms17091450] [Citation(s) in RCA: 162] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 08/22/2016] [Accepted: 08/25/2016] [Indexed: 12/21/2022] Open
Abstract
More than two hundred years after its discovery, lactate still remains an intriguing molecule. Considered for a long time as a waste product of metabolism and the culprit behind muscular fatigue, it was then recognized as an important fuel for many cells. In particular, in the nervous system, it has been proposed that lactate, released by astrocytes in response to neuronal activation, is taken up by neurons, oxidized to pyruvate and used for synthesizing acetyl-CoA to be used for the tricarboxylic acid cycle. More recently, in addition to this metabolic role, the discovery of a specific receptor prompted a reconsideration of its role, and lactate is now seen as a sort of hormone, even involved in processes as complex as memory formation and neuroprotection. As a matter of fact, exercise offers many benefits for our organisms, and seems to delay brain aging and neurodegeneration. Now, exercise induces the production and release of lactate into the blood which can reach the liver, the heart, and also the brain. Can lactate be a beneficial molecule produced during exercise, and offer neuroprotection? In this review, we summarize what we have known on lactate, discussing the roles that have been attributed to this molecule over time.
Collapse
Affiliation(s)
- Patrizia Proia
- Department of Psychological, Pedagogical and Educational Sciences, Sport and Exercise Sciences Research Unit, University of Palermo, Palermo I-90128, Italy.
| | - Carlo Maria Di Liegro
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo (UNIPA), Palermo I-90128, Italy.
| | - Gabriella Schiera
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo (UNIPA), Palermo I-90128, Italy.
| | - Anna Fricano
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo (UNIPA), Palermo I-90128, Italy.
| | - Italia Di Liegro
- Department of Experimental Biomedicine and Clinical Neurosciences (BIONEC), University of Palermo, Palermo I-90127, Italy.
| |
Collapse
|
30
|
Dienel GA, Cruz NF. Aerobic glycolysis during brain activation: adrenergic regulation and influence of norepinephrine on astrocytic metabolism. J Neurochem 2016; 138:14-52. [DOI: 10.1111/jnc.13630] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 03/24/2016] [Accepted: 03/31/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Gerald A. Dienel
- Department of Cell Biology and Physiology; University of New Mexico; Albuquerque; New Mexico USA
- Department of Neurology; University of Arkansas for Medical Sciences; Little Rock Arkansas USA
| | - Nancy F. Cruz
- Department of Neurology; University of Arkansas for Medical Sciences; Little Rock Arkansas USA
| |
Collapse
|
31
|
Manchester LC, Lee V, Schmithorst V, Kochanek PM, Panigrahy A, Fink EL. Global and Regional Derangements of Cerebral Blood Flow and Diffusion Magnetic Resonance Imaging after Pediatric Cardiac Arrest. J Pediatr 2016; 169:28-35.e1. [PMID: 26561380 PMCID: PMC4729616 DOI: 10.1016/j.jpeds.2015.10.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 08/19/2015] [Accepted: 10/01/2015] [Indexed: 01/06/2023]
Abstract
OBJECTIVE To quantify and examine the relationship between global and regional cerebral blood flow (CBF) and water diffusion on brain magnetic resonance imaging (MRI) in children after cardiac arrest. STUDY DESIGN Children admitted to a tertiary care children's hospital from July 2011 to April 2013 who received a brain MRI within 2 weeks after cardiac arrest that included arterial spin labeling and apparent diffusion coefficient (ADC) sequences were studied. CBF and ADC values were calculated globally and in 19 regions of interest. Outcome variables included survival and favorable neurologic outcome, which was defined as Pediatric Cerebral Performance Category ≤3 at 6 months. We examined global and regional relationships between CBF and ADC and their association with outcome. RESULTS This sample included 14 pediatric patients (mean time to MRI 6 ± 4 days), 9 of whom survived and 6 who survived with favorable outcome. Global ADC was significantly decreased in patients with unfavorable outcome (P = .02). Increased CBF and decreased ADC often were colocalized in the same region, especially in children who had unfavorable outcomes. CONCLUSIONS In this exploratory study, global restricted water diffusion on ADC after pediatric cardiac arrest was associated with unfavorable outcome. MRI assessments of perfusion and diffusion may have prognostic value after pediatric cardiac arrest.
Collapse
Affiliation(s)
| | - Vince Lee
- Department of Radiology, Children’s Hospital of Pittsburgh
| | | | | | | | | |
Collapse
|
32
|
Covarrubias-Pinto A, Moll P, Solís-Maldonado M, Acuña AI, Riveros A, Miró MP, Papic E, Beltrán FA, Cepeda C, Concha II, Brauchi S, Castro MA. Beyond the redox imbalance: Oxidative stress contributes to an impaired GLUT3 modulation in Huntington's disease. Free Radic Biol Med 2015; 89:1085-96. [PMID: 26456058 PMCID: PMC4840472 DOI: 10.1016/j.freeradbiomed.2015.09.024] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 08/31/2015] [Accepted: 09/01/2015] [Indexed: 11/29/2022]
Abstract
Failure in energy metabolism and oxidative damage are associated with Huntington's disease (HD). Ascorbic acid released during synaptic activity inhibits use of neuronal glucose, favouring lactate uptake to sustain brain activity. Here, we observe a decreased expression of GLUT3 in STHdhQ111 cells (HD cells) and R6/2 mice (HD mice). Localisation of GLUT3 is decreased at the plasma membrane in HD cells affecting the modulation of glucose uptake by ascorbic acid. An ascorbic acid analogue without antioxidant activity is able to inhibit glucose uptake in HD cells. The impaired modulation of glucose uptake by ascorbic acid is directly related to ROS levels indicating that oxidative stress sequesters the ability of ascorbic acid to modulate glucose utilisation. Therefore, in HD, a decrease in GLUT3 localisation at the plasma membrane would contribute to an altered neuronal glucose uptake during resting periods while redox imbalance should contribute to metabolic failure during synaptic activity.
Collapse
Affiliation(s)
- Adriana Covarrubias-Pinto
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile; Center for Interdisciplinary Studies on the Nervous system (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Pablo Moll
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile; Center for Interdisciplinary Studies on the Nervous system (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Macarena Solís-Maldonado
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile; Center for Interdisciplinary Studies on the Nervous system (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Aníbal I Acuña
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile; Center for Interdisciplinary Studies on the Nervous system (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Andrea Riveros
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile; Center for Interdisciplinary Studies on the Nervous system (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - María Paz Miró
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile; Center for Interdisciplinary Studies on the Nervous system (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Eduardo Papic
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile; Center for Interdisciplinary Studies on the Nervous system (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Felipe A Beltrán
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile; Center for Interdisciplinary Studies on the Nervous system (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Carlos Cepeda
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, Brain Research Institute, The David Geffen School of Medicine, UCLA, Los Angeles, USA and
| | - Ilona I Concha
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Sebastián Brauchi
- Center for Interdisciplinary Studies on the Nervous system (CISNe), Universidad Austral de Chile, Valdivia, Chile; Instituto de Fisiología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Maite A Castro
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile; Center for Interdisciplinary Studies on the Nervous system (CISNe), Universidad Austral de Chile, Valdivia, Chile.
| |
Collapse
|
33
|
Falkowska A, Gutowska I, Goschorska M, Nowacki P, Chlubek D, Baranowska-Bosiacka I. Energy Metabolism of the Brain, Including the Cooperation between Astrocytes and Neurons, Especially in the Context of Glycogen Metabolism. Int J Mol Sci 2015; 16:25959-81. [PMID: 26528968 PMCID: PMC4661798 DOI: 10.3390/ijms161125939] [Citation(s) in RCA: 177] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 09/27/2015] [Accepted: 10/16/2015] [Indexed: 01/15/2023] Open
Abstract
Glycogen metabolism has important implications for the functioning of the brain, especially the cooperation between astrocytes and neurons. According to various research data, in a glycogen deficiency (for example during hypoglycemia) glycogen supplies are used to generate lactate, which is then transported to neighboring neurons. Likewise, during periods of intense activity of the nervous system, when the energy demand exceeds supply, astrocyte glycogen is immediately converted to lactate, some of which is transported to the neurons. Thus, glycogen from astrocytes functions as a kind of protection against hypoglycemia, ensuring preservation of neuronal function. The neuroprotective effect of lactate during hypoglycemia or cerebral ischemia has been reported in literature. This review goes on to emphasize that while neurons and astrocytes differ in metabolic profile, they interact to form a common metabolic cooperation.
Collapse
Affiliation(s)
- Anna Falkowska
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland.
| | - Izabela Gutowska
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University, Broniewskiego 24, 71-460 Szczecin, Poland.
| | - Marta Goschorska
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland.
| | - Przemysław Nowacki
- Department of Neurology, Pomeranian Medical University, Unii Lubelskiej 1, 71-225 Szczecin, Poland.
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland.
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland.
| |
Collapse
|
34
|
Contreras L. Role of AGC1/aralar in the metabolic synergies between neuron and glia. Neurochem Int 2015; 88:38-46. [DOI: 10.1016/j.neuint.2015.04.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 03/30/2015] [Accepted: 04/07/2015] [Indexed: 10/23/2022]
|
35
|
Ayata C, Lauritzen M. Spreading Depression, Spreading Depolarizations, and the Cerebral Vasculature. Physiol Rev 2015; 95:953-93. [PMID: 26133935 DOI: 10.1152/physrev.00027.2014] [Citation(s) in RCA: 367] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Spreading depression (SD) is a transient wave of near-complete neuronal and glial depolarization associated with massive transmembrane ionic and water shifts. It is evolutionarily conserved in the central nervous systems of a wide variety of species from locust to human. The depolarization spreads slowly at a rate of only millimeters per minute by way of grey matter contiguity, irrespective of functional or vascular divisions, and lasts up to a minute in otherwise normal tissue. As such, SD is a radically different breed of electrophysiological activity compared with everyday neural activity, such as action potentials and synaptic transmission. Seventy years after its discovery by Leão, the mechanisms of SD and its profound metabolic and hemodynamic effects are still debated. What we did learn of consequence, however, is that SD plays a central role in the pathophysiology of a number of diseases including migraine, ischemic stroke, intracranial hemorrhage, and traumatic brain injury. An intriguing overlap among them is that they are all neurovascular disorders. Therefore, the interplay between neurons and vascular elements is critical for our understanding of the impact of this homeostatic breakdown in patients. The challenges of translating experimental data into human pathophysiology notwithstanding, this review provides a detailed account of bidirectional interactions between brain parenchyma and the cerebral vasculature during SD and puts this in the context of neurovascular diseases.
Collapse
Affiliation(s)
- Cenk Ayata
- Neurovascular Research Laboratory, Department of Radiology, and Stroke Service and Neuroscience Intensive Care Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Department of Neuroscience and Pharmacology and Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark; and Department of Clinical Neurophysiology, Glostrup Hospital, Glostrup, Denmark
| | - Martin Lauritzen
- Neurovascular Research Laboratory, Department of Radiology, and Stroke Service and Neuroscience Intensive Care Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Department of Neuroscience and Pharmacology and Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark; and Department of Clinical Neurophysiology, Glostrup Hospital, Glostrup, Denmark
| |
Collapse
|
36
|
Abstract
Neuroglia, the "glue" that fills the space between neurons in the central nervous system, takes active part in nerve cell signaling. Neuroglial cells, astroglia, oligodendroglia, and microglia, are together about as numerous as neurons in the brain as a whole, and in the cerebral cortex grey matter, but the proportion varies widely among brain regions. Glial volume, however, is less than one-fifth of the tissue volume in grey matter. When stimulated by neurons or other cells, neuroglial cells release gliotransmitters by exocytosis, similar to neurotransmitter release from nerve endings, or by carrier-mediated transport or channel flux through the plasma membrane. Gliotransmitters include the common neurotransmitters glutamate and GABA, the nonstandard amino acid d-serine, the high-energy phosphate ATP, and l-lactate. The latter molecule is a "buffer" between glycolytic and oxidative metabolism as well as a signaling substance recently shown to act on specific lactate receptors in the brain. Complementing neurotransmission at a synapse, neuroglial transmission often implies diffusion of the transmitter over a longer distance and concurs with the concept of volume transmission. Transmission from glia modulates synaptic neurotransmission based on energetic and other local conditions in a volume of tissue surrounding the individual synapse. Neuroglial transmission appears to contribute significantly to brain functions such as memory, as well as to prevalent neuropathologies.
Collapse
Affiliation(s)
- Vidar Gundersen
- SN-Lab, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, and CMBN/SERTA/Healthy Brain Ageing Centre, University of Oslo, Oslo, Norway; Department of Neurology, Oslo University Hospital-Rikshospitalet, Oslo, Norway; Center for Healthy Aging, Department of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; and Brain and Muscle Energy Group, Department of Oral Biology and Division of Anatomy, Department of Molecular Medicine, University of Oslo, Oslo, Norway
| | - Jon Storm-Mathisen
- SN-Lab, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, and CMBN/SERTA/Healthy Brain Ageing Centre, University of Oslo, Oslo, Norway; Department of Neurology, Oslo University Hospital-Rikshospitalet, Oslo, Norway; Center for Healthy Aging, Department of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; and Brain and Muscle Energy Group, Department of Oral Biology and Division of Anatomy, Department of Molecular Medicine, University of Oslo, Oslo, Norway
| | - Linda Hildegard Bergersen
- SN-Lab, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, and CMBN/SERTA/Healthy Brain Ageing Centre, University of Oslo, Oslo, Norway; Department of Neurology, Oslo University Hospital-Rikshospitalet, Oslo, Norway; Center for Healthy Aging, Department of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; and Brain and Muscle Energy Group, Department of Oral Biology and Division of Anatomy, Department of Molecular Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
37
|
Fluctuations in Cytosolic Calcium Regulate the Neuronal Malate-Aspartate NADH Shuttle: Implications for Neuronal Energy Metabolism. Neurochem Res 2015; 40:2425-30. [PMID: 26138554 DOI: 10.1007/s11064-015-1652-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 05/15/2015] [Accepted: 06/23/2015] [Indexed: 12/21/2022]
Abstract
The malate-aspartate NADH shuttle (MAS) operates in neurons and other cells to translocate reducing equivalents from the cytosol to the mitochondrial matrix, thus allowing a continued flux through the glycolytic pathway and metabolism of extracellular lactate. Recent discoveries have taught us that MAS is regulated by fluctuations in cytosolic Ca(2+) levels, and that this regulation is required to maintain a tight coupling between neuronal activity and mitochondrial respiration and oxidative phosphorylation. At cytosolic Ca(2+) fluctuations below the threshold of the mitochondrial calcium uniporter, there is a positive correlation between Ca(2+) and MAS activity; however, if cytosolic Ca(2+) increases above the threshold, MAS activity is thought to be reduced by an intricate mechanism. The latter forces the neurons to partly rely on anaerobic glycolysis producing lactate that may be metabolized subsequently, by neurons or other cells. In this review, we will discuss the evidence for Ca(2+)-mediated regulation of MAS that have been uncovered over the last decade or so, together with the need for further verification, and examine the metabolic ramifications for neurons.
Collapse
|
38
|
Hurley JB, Lindsay KJ, Du J. Glucose, lactate, and shuttling of metabolites in vertebrate retinas. J Neurosci Res 2015; 93:1079-92. [PMID: 25801286 PMCID: PMC4720126 DOI: 10.1002/jnr.23583] [Citation(s) in RCA: 175] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 02/11/2015] [Accepted: 02/12/2015] [Indexed: 02/06/2023]
Abstract
The vertebrate retina has specific functions and structures that give it a unique set of constraints on the way in which it can produce and use metabolic energy. The retina's response to illumination influences its energy requirements, and the retina's laminated structure influences the extent to which neurons and glia can access metabolic fuels. There are fundamental differences between energy metabolism in retina and that in brain. The retina relies on aerobic glycolysis much more than the brain does, and morphological differences between retina and brain limit the types of metabolic relationships that are possible between neurons and glia. This Mini-Review summarizes the unique metabolic features of the retina with a focus on the role of lactate shuttling.
Collapse
Affiliation(s)
- James B. Hurley
- Departments of Biochemistry and Ophthalmology, University of Washington, Seattle, Washington
| | - Kenneth J. Lindsay
- Departments of Biochemistry and Ophthalmology, University of Washington, Seattle, Washington
| | - Jianhai Du
- Departments of Biochemistry and Ophthalmology, University of Washington, Seattle, Washington
| |
Collapse
|
39
|
Li B, Freeman RD. Neurometabolic coupling between neural activity, glucose, and lactate in activated visual cortex. J Neurochem 2015; 135:742-54. [PMID: 25930947 DOI: 10.1111/jnc.13143] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 03/20/2015] [Accepted: 04/08/2015] [Indexed: 01/14/2023]
Abstract
Neural activity is closely coupled with energy metabolism but details of the association remain to be identified. One basic area involves the relationships between neural activity and the main supportive substrates of glucose and lactate. This is of fundamental significance for the interpretation of non-invasive neural imaging. Here, we use microelectrodes with high spatial and temporal resolution to determine simultaneous co-localized changes in glucose, lactate, and neural activity during visual activation of the cerebral cortex in the cat. Tissue glucose and lactate concentration levels are measured with electrochemical microelectrodes while neural spiking activity and local field potentials are sampled by a microelectrode. These measurements are performed simultaneously while neurons are activated by visual stimuli of different contrast levels, orientations, and sizes. We find immediate decreases in tissue glucose concentration and simultaneous increases in lactate during neural activation. Both glucose and lactate signals return to their baseline levels instantly as neurons cease firing. No sustained changes or initial dips in glucose or lactate signals are elicited by visual stimulation. However, co-localized measurements of cerebral blood flow and neural activity demonstrate a clear delay in the cerebral blood flow signal such that it does not correlate temporally with the neural response. These results provide direct real-time evidence regarding the coupling between co-localized energy metabolism and neural activity during physiological stimulation. They are also relevant to a current question regarding the role of lactate in energy metabolism in the brain during neural activation. Dynamic changes in energy metabolites can be measured directly with high spatial and temporal resolution by use of enzyme-based microelectrodes. Here, to examine neuro-metabolic coupling during brain activation, we use combined microelectrodes to simultaneously measure extracellular glucose, lactate, and neural responses in the primary visual cortex to visual stimulation. We demonstrate rapid decreases in glucose and increases in lactate during neural activation. Changes in glucose and lactate signals are transient and closely coupled with neuronal firing.
Collapse
Affiliation(s)
- Baowang Li
- Group in Vision Science, School of Optometry, Helen Wills Neuroscience Institute, University of California, Berkeley, California, USA
| | - Ralph D Freeman
- Group in Vision Science, School of Optometry, Helen Wills Neuroscience Institute, University of California, Berkeley, California, USA
| |
Collapse
|
40
|
Morland C, Lauritzen KH, Puchades M, Holm-Hansen S, Andersson K, Gjedde A, Attramadal H, Storm-Mathisen J, Bergersen LH. The lactate receptor, G-protein-coupled receptor 81/hydroxycarboxylic acid receptor 1: Expression and action in brain. J Neurosci Res 2015; 93:1045-55. [DOI: 10.1002/jnr.23593] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 03/21/2015] [Accepted: 03/23/2015] [Indexed: 12/14/2022]
Affiliation(s)
- Cecilie Morland
- The Brain and Muscle Energy Group; Department of Anatomy; Institute of Basic Medical Sciences, University of Oslo; Oslo Norway
- The Brain and Muscle Energy Group; Department of Oral Biology; University of Oslo; Oslo Norway
| | - Knut Husø Lauritzen
- The Brain and Muscle Energy Group; Department of Anatomy; Institute of Basic Medical Sciences, University of Oslo; Oslo Norway
| | - Maja Puchades
- The Brain and Muscle Energy Group; Department of Anatomy; Institute of Basic Medical Sciences, University of Oslo; Oslo Norway
| | - Signe Holm-Hansen
- Department of Neuroscience and Pharmacology; University of Copenhagen; Copenhagen Denmark
| | - Krister Andersson
- The Brain and Muscle Energy Group; Department of Anatomy; Institute of Basic Medical Sciences, University of Oslo; Oslo Norway
| | - Albert Gjedde
- Department of Neuroscience and Pharmacology; University of Copenhagen; Copenhagen Denmark
| | - Håvard Attramadal
- Institute for Surgical Research, Oslo University Hospital; Oslo Norway
- Center for Heart Failure Research, University of Oslo; Oslo Norway
| | - Jon Storm-Mathisen
- The Brain and Muscle Energy Group; Department of Anatomy; Institute of Basic Medical Sciences, University of Oslo; Oslo Norway
| | - Linda Hildegard Bergersen
- The Brain and Muscle Energy Group; Department of Anatomy; Institute of Basic Medical Sciences, University of Oslo; Oslo Norway
- Department of Neuroscience and Pharmacology; University of Copenhagen; Copenhagen Denmark
- Center for Healthy Aging; Faculty of Health Sciences; University of Copenhagen; Copenhagen Denmark
| |
Collapse
|
41
|
Dienel GA. The metabolic trinity, glucose-glycogen-lactate, links astrocytes and neurons in brain energetics, signaling, memory, and gene expression. Neurosci Lett 2015; 637:18-25. [PMID: 25725168 DOI: 10.1016/j.neulet.2015.02.052] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 02/23/2015] [Indexed: 10/23/2022]
Abstract
Glucose, glycogen, and lactate are traditionally identified with brain energetics, ATP turnover, and pathophysiology. However, recent studies extend their roles to include involvement in astrocytic signaling, memory consolidation, and gene expression. Emerging roles for these brain fuels and a readily-diffusible by-product are linked to differential fluxes in glycolytic and oxidative pathways, astrocytic glycogen dynamics, redox shifts, neuron-astrocyte interactions, and regulation of astrocytic activities by noradrenaline released from the locus coeruleus. Disproportionate utilization of carbohydrate compared with oxygen during brain activation is influenced by catecholamines, but its physiological basis is not understood and its magnitude may be affected by technical aspects of metabolite assays. Memory consolidation and gene expression are impaired by glycogenolysis blockade, and prevention of these deficits by injection of abnormally-high concentrations of lactate was interpreted as a requirement for astrocyte-to-neuron lactate shuttling in memory and gene expression. However, lactate transport was not measured and evidence for presumed shuttling is not compelling. In fact, high levels of lactate used to preserve memory consolidation and induce gene expression are sufficient to shut down neuronal firing via the HCAR1 receptor. In contrast, low lactate levels activate a receptor in locus coeruleus that stimulates noradrenaline release that may activate astrocytes throughout brain. Physiological relevance of exogenous concentrations of lactate used to mimic and evaluate metabolic, molecular, and behavioral effects of lactate requires close correspondence with the normal lactate levels, the biochemical and cellular sources and sinks, and specificity of lactate delivery to target cells.
Collapse
Affiliation(s)
- Gerald A Dienel
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
42
|
Bergersen LH. Lactate transport and signaling in the brain: potential therapeutic targets and roles in body-brain interaction. J Cereb Blood Flow Metab 2015; 35:176-85. [PMID: 25425080 PMCID: PMC4426752 DOI: 10.1038/jcbfm.2014.206] [Citation(s) in RCA: 159] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 09/30/2014] [Accepted: 10/24/2014] [Indexed: 12/26/2022]
Abstract
Lactate acts as a 'buffer' between glycolysis and oxidative metabolism. In addition to being exchanged as a fuel by the monocarboxylate transporters (MCTs) between cells and tissues with different glycolytic and oxidative rates, lactate may be a 'volume transmitter' of brain signals. According to some, lactate is a preferred fuel for brain metabolism. Immediately after brain activation, the rate of glycolysis exceeds oxidation, leading to net production of lactate. At physical rest, there is a net efflux of lactate from the brain into the blood stream. But when blood lactate levels rise, such as in physical exercise, there is net influx of lactate from blood to brain, where the lactate is used for energy production and myelin formation. Lactate binds to the lactate receptor GPR81 aka hydroxycarboxylic acid receptor (HCAR1) on brain cells and cerebral blood vessels, and regulates the levels of cAMP. The localization and function of HCAR1 and the three MCTs (MCT1, MCT2, and MCT4) expressed in brain constitute the focus of this review. They are possible targets for new therapeutic drugs and interventions. The author proposes that lactate actions in the brain through MCTs and the lactate receptor underlie part of the favorable effects on the brain resulting from physical exercise.
Collapse
Affiliation(s)
- Linda Hildegard Bergersen
- 1] The Brain and Muscle Energy Group, SN-Lab, Department of Anatomy, Institute of Basic Medical Sciences, Healthy Brain Ageing Centre, University of Oslo, Oslo, Norway [2] Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark [3] Center for Healthy Aging, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark [4] The Brain and Muscle Energy Group, Department of Oral Biology, University of Oslo, Oslo, Norway
| |
Collapse
|
43
|
Kalinchuk AV, Porkka-Heiskanen T, McCarley RW, Basheer R. Cholinergic neurons of the basal forebrain mediate biochemical and electrophysiological mechanisms underlying sleep homeostasis. Eur J Neurosci 2015; 41:182-95. [PMID: 25369989 PMCID: PMC4460789 DOI: 10.1111/ejn.12766] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 09/26/2014] [Accepted: 09/30/2014] [Indexed: 12/13/2022]
Abstract
The tight coordination of biochemical and electrophysiological mechanisms underlies the homeostatic sleep pressure (HSP) produced by sleep deprivation (SD). We have reported that during SD the levels of inducible nitric oxide synthase (iNOS), extracellular nitric oxide (NO), adenosine [AD]ex , lactate [Lac]ex and pyruvate [Pyr]ex increase in the basal forebrain (BF). However, it is not clear whether all of them contribute to HSP leading to increased electroencephalogram (EEG) delta activity during non-rapid eye movement (NREM) recovery sleep (RS) following SD. Previously, we showed that NREM delta increase evident during RS depends on the presence of BF cholinergic (ChBF) neurons. Here, we investigated the role of ChBF cells in coordination of biochemical and EEG changes seen during SD and RS in the rat. Increases in low-theta power (5-7 Hz), but not high-theta (7-9 Hz), during SD correlated with the increase in NREM delta power during RS, and with the changes in nitrate/nitrite [NOx ]ex and [AD]ex . Lesions of ChBF cells using IgG 192-saporin prevented increases in [NOx ]ex , [AD]ex and low-theta activity, during SD, but did not prevent increases in [Lac]ex and [Pyr]ex . Infusion of NO donor DETA NONOate into the saporin-treated BF failed to increase NREM RS and delta power, suggesting ChBF cells are important for mediating NO homeostatic effects. Finally, SD-induced iNOS was mostly expressed in ChBF cells, and the intensity of iNOS induction correlated with the increase in low-theta activity. Together, our data indicate ChBF cells are important in regulating the biochemical and EEG mechanisms that contribute to HSP.
Collapse
Affiliation(s)
- Anna V. Kalinchuk
- VA Boston Healthcare System and Harvard Medical School, 1400 V.F.W. Parkway, West Roxbury MA 02067
| | | | - Robert W. McCarley
- VA Boston Healthcare System and Harvard Medical School, 1400 V.F.W. Parkway, West Roxbury MA 02067
| | - Radhika Basheer
- VA Boston Healthcare System and Harvard Medical School, 1400 V.F.W. Parkway, West Roxbury MA 02067
| |
Collapse
|
44
|
Argente-Arizón P, Freire-Regatillo A, Argente J, Chowen JA. Role of non-neuronal cells in body weight and appetite control. Front Endocrinol (Lausanne) 2015; 6:42. [PMID: 25859240 PMCID: PMC4374626 DOI: 10.3389/fendo.2015.00042] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 03/11/2015] [Indexed: 12/14/2022] Open
Abstract
The brain is composed of neurons and non-neuronal cells, with the latter encompassing glial, ependymal and endothelial cells, as well as pericytes and progenitor cells. Studies aimed at understanding how the brain operates have traditionally focused on neurons, but the importance of non-neuronal cells has become increasingly evident. Once relegated to supporting roles, it is now indubitable that these diverse cell types are fundamental for brain development and function, including that of metabolic circuits, and they may play a significant role in obesity onset and complications. They participate in processes of neurogenesis, synaptogenesis, and synaptic plasticity of metabolic circuits both during development and in adulthood. Some glial cells, such as tanycytes and astrocytes, transport circulating nutrients and metabolic factors that are fundamental for neuronal viability and activity into and within the hypothalamus. All of these cell types express receptors for a variety of metabolic factors and hormones, suggesting that they participate in metabolic function. They are the first line of defense against any assault to neurons. Indeed, microglia and astrocytes participate in the hypothalamic inflammatory response to high fat diet (HFD)-induced obesity, with this process contributing to inflammatory-related insulin and leptin resistance. Moreover, HFD-induced obesity and hyperleptinemia modify hypothalamic astroglial morphology, which is associated with changes in the synaptic inputs to neuronal metabolic circuits. Astrocytic contact with the microvasculature is increased by HFD intake and this could modify nutrient/hormonal uptake into the brain. In addition, progenitor cells in the hypothalamus are now known to have the capacity to renew metabolic circuits, and this can be affected by HFD intake and obesity. Here, we discuss our current understanding of how non-neuronal cells participate in physiological and physiopathological metabolic control.
Collapse
Affiliation(s)
- Pilar Argente-Arizón
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain
- Fisiopatología de la Obesidad y Nutrición (CIBERobn), Centros de Investigación Biomédica en Red, Instituto de Salud Carlos III, Madrid, Spain
| | - Alejandra Freire-Regatillo
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain
- Fisiopatología de la Obesidad y Nutrición (CIBERobn), Centros de Investigación Biomédica en Red, Instituto de Salud Carlos III, Madrid, Spain
| | - Jesús Argente
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain
- Fisiopatología de la Obesidad y Nutrición (CIBERobn), Centros de Investigación Biomédica en Red, Instituto de Salud Carlos III, Madrid, Spain
| | - Julie A. Chowen
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Fisiopatología de la Obesidad y Nutrición (CIBERobn), Centros de Investigación Biomédica en Red, Instituto de Salud Carlos III, Madrid, Spain
- *Correspondence: Julie A. Chowen, Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Avda. Menéndez Pelayo, 65, Madrid E-28009, Spain e-mail: ;
| |
Collapse
|
45
|
|
46
|
Karki P, Smith K, Johnson J, Aschner M, Lee E. Role of transcription factor yin yang 1 in manganese-induced reduction of astrocytic glutamate transporters: Putative mechanism for manganese-induced neurotoxicity. Neurochem Int 2014; 88:53-9. [PMID: 25128239 DOI: 10.1016/j.neuint.2014.08.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 07/31/2014] [Accepted: 08/05/2014] [Indexed: 10/24/2022]
Abstract
Astrocytes are the most abundant non-neuronal glial cells in the brain. Once relegated to a mere supportive role for neurons, contemporary dogmas ascribe multiple active roles for these cells in central nervous system (CNS) function, including maintenance of optimal glutamate levels in synapses. Regulation of glutamate levels in the synaptic cleft is crucial for preventing excitotoxic neuronal injury. Glutamate levels are regulated predominantly by two astrocytic glutamate transporters, glutamate transporter 1 (GLT-1) and glutamate aspartate transporter (GLAST). Indeed, the dysregulation of these transporters has been linked to several neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD) and Parkinson's disease (PD), as well as manganism, which is caused by overexposure to the trace metal, manganese (Mn). Although Mn is an essential trace element, its excessive accumulation in the brain as a result of chronic occupational or environmental exposures induces a neurological disorder referred to as manganism, which shares common pathological features with Parkinsonism. Mn decreases the expression and function of both GLAST and GLT-1. Astrocytes are commonly targeted by Mn, and thus reduction in astrocytic glutamate transporter function represents a critical mechanism of Mn-induced neurotoxicity. In this review, we will discuss the role of astrocytic glutamate transporters in neurodegenerative diseases and Mn-induced neurotoxicity.
Collapse
Affiliation(s)
- Pratap Karki
- Department of Physiology, Meharry Medical College, Nashville, TN 37208, United States
| | - Keisha Smith
- Department of Physiology, Meharry Medical College, Nashville, TN 37208, United States
| | - James Johnson
- Department of Physiology, Meharry Medical College, Nashville, TN 37208, United States
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | - Eunsook Lee
- Department of Physiology, Meharry Medical College, Nashville, TN 37208, United States.
| |
Collapse
|
47
|
Wang X, Zhang M, Feng R, Li WB, Ren SQ, Zhang J, Zhang F. Physical exercise training and neurovascular unit in ischemic stroke. Neuroscience 2014; 271:99-107. [PMID: 24780769 DOI: 10.1016/j.neuroscience.2014.04.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 03/16/2014] [Accepted: 04/09/2014] [Indexed: 10/25/2022]
Abstract
Physical exercise could exert a neuroprotective effect in both clinical studies and animal experiments. A series of related studies have indicated that physical exercise could reduce infarct volume, alleviate neurological deficits, decrease blood-brain barrier dysfunction, promote angiogenesis in cerebral vascular system and increase the survival rate after ischemic stroke. In this review, we summarized the protective effects of physical exercise on neurovascular unit (NVU), including neurons, astrocytes, pericytes and the extracellular matrix. Furthermore, it was demonstrated that exercise training could decrease the blood-brain barrier dysfunction and promote angiogenesis in cerebral vascular system. An awareness of the exercise intervention benefits pre- and post stroke may lead more stroke patients and people with high-risk factors to accept exercise therapy for the prevention and treatment of stroke.
Collapse
Affiliation(s)
- X Wang
- Department of Neurology, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - M Zhang
- Department of Pathophysiology, Hebei Medical University, Shijiazhuang 050017, PR China
| | - R Feng
- Department of Neurology, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - W B Li
- Department of Pathophysiology, Hebei Medical University, Shijiazhuang 050017, PR China
| | - S Q Ren
- Department of Neurology, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - J Zhang
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - F Zhang
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China; Hebei Provincial Orthopedic Biomechanics Key Laboratory, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China.
| |
Collapse
|
48
|
Direct evidence for activity-dependent glucose phosphorylation in neurons with implications for the astrocyte-to-neuron lactate shuttle. Proc Natl Acad Sci U S A 2014; 111:5385-90. [PMID: 24706914 DOI: 10.1073/pnas.1403576111] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Previous (13)C magnetic resonance spectroscopy experiments have shown that over a wide range of neuronal activity, approximately one molecule of glucose is oxidized for every molecule of glutamate released by neurons and recycled through astrocytic glutamine. The measured kinetics were shown to agree with the stoichiometry of a hypothetical astrocyte-to-neuron lactate shuttle model, which predicted negligible functional neuronal uptake of glucose. To test this model, we measured the uptake and phosphorylation of glucose in nerve terminals isolated from rats infused with the glucose analog, 2-fluoro-2-deoxy-D-glucose (FDG) in vivo. The concentrations of phosphorylated FDG (FDG6P), normalized with respect to known neuronal metabolites, were compared in nerve terminals, homogenate, and cortex of anesthetized rats with and without bicuculline-induced seizures. The increase in FDG6P in nerve terminals agreed well with the increase in cortical neuronal glucose oxidation measured previously under the same conditions in vivo, indicating that direct uptake and oxidation of glucose in nerve terminals is substantial under resting and activated conditions. These results suggest that neuronal glucose-derived pyruvate is the major oxidative fuel for activated neurons, not lactate-derived from astrocytes, contradicting predictions of the original astrocyte-to-neuron lactate shuttle model under the range of study conditions.
Collapse
|
49
|
Astrocytic energetics during excitatory neurotransmission: What are contributions of glutamate oxidation and glycolysis? Neurochem Int 2013; 63:244-58. [PMID: 23838211 DOI: 10.1016/j.neuint.2013.06.015] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 06/19/2013] [Accepted: 06/24/2013] [Indexed: 12/23/2022]
Abstract
Astrocytic energetics of excitatory neurotransmission is controversial due to discrepant findings in different experimental systems in vitro and in vivo. The energy requirements of glutamate uptake are believed by some researchers to be satisfied by glycolysis coupled with shuttling of lactate to neurons for oxidation. However, astrocytes increase glycogenolysis and oxidative metabolism during sensory stimulation in vivo, indicating that other sources of energy are used by astrocytes during brain activation. Furthermore, glutamate uptake into cultured astrocytes stimulates glutamate oxidation and oxygen consumption, and glutamate maintains respiration as well as glucose. The neurotransmitter pool of glutamate is associated with the faster component of total glutamate turnover in vivo, and use of neurotransmitter glutamate to fuel its own uptake by oxidation-competent perisynaptic processes has two advantages, substrate is supplied concomitant with demand, and glutamate spares glucose for use by neurons and astrocytes. Some, but not all, perisynaptic processes of astrocytes in adult rodent brain contain mitochondria, and oxidation of only a small fraction of the neurotransmitter glutamate taken up into these structures would be sufficient to supply the ATP required for sodium extrusion and conversion of glutamate to glutamine. Glycolysis would, however, be required in perisynaptic processes lacking oxidative capacity. Three lines of evidence indicate that critical cornerstones of the astrocyte-to-neuron lactate shuttle model are not established and normal brain does not need lactate as supplemental fuel: (i) rapid onset of hemodynamic responses to activation delivers oxygen and glucose in excess of demand, (ii) total glucose utilization greatly exceeds glucose oxidation in awake rodents during activation, indicating that the lactate generated is released, not locally oxidized, and (iii) glutamate-induced glycolysis is not a robust phenotype of all astrocyte cultures. Various metabolic pathways, including glutamate oxidation and glycolysis with lactate release, contribute to cellular energy demands of excitatory neurotransmission.
Collapse
|
50
|
Sampol D, Ostrofet E, Jobin ML, Raffard G, Sanchez S, Bouchaud V, Franconi JM, Bonvento G, Bouzier-Sore AK. Glucose and lactate metabolism in the awake and stimulated rat: a (13)C-NMR study. FRONTIERS IN NEUROENERGETICS 2013; 5:5. [PMID: 23755012 PMCID: PMC3668265 DOI: 10.3389/fnene.2013.00005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 05/13/2013] [Indexed: 11/13/2022]
Abstract
Glucose is the major energetic substrate for the brain but evidence has accumulated during the last 20 years that lactate produced by astrocytes could be an additional substrate for neurons. However, little information exists about this lactate shuttle in vivo in activated and awake animals. We designed an experiment in which the cortical barrel field (S1BF) was unilaterally activated during infusion of both glucose and lactate (alternatively labeled with 13C) in rats. At the end of stimulation (1 h) both S1BF areas were removed and analyzed by HR-MAS NMR spectroscopy to compare glucose and lactate metabolism in the activated area vs. the non-activated one. In combination with microwave irradiation HR-MAS spectroscopy is a powerful technical approach to study brain lactate metabolism in vivo. Using in vivo14C-2-deoxyglucose and autoradiography we confirmed that whisker stimulation was effective since we observed a 40% increase in glucose uptake in the activated S1BF area compared to the ipsilateral one. We first determined that lactate observed on spectra of biopsies did not arise from post-mortem metabolism. 1H-NMR data indicated that during brain activation there was an average 2.4-fold increase in lactate content in the activated area. When [1-13C]glucose + lactate were infused 13C-NMR data showed an increase in 13C-labeled lactate during brain activation as well as an increase in lactate C3-specific enrichment. This result demonstrates that the increase in lactate observed on 1H-NMR spectra originates from newly synthesized lactate from the labeled precursor ([1-13C]glucose). It also shows that this additional lactate does not arise from an increase in blood lactate uptake since it would otherwise be unlabeled. These results are in favor of intracerebral lactate production during brain activation in vivo which could be a supplementary fuel for neurons.
Collapse
Affiliation(s)
- Denys Sampol
- Centre de Résonance Magnétique des Systèmes Biologiques, CNRS-Université Bordeaux Segalen UMR 5536 Bordeaux, France
| | | | | | | | | | | | | | | | | |
Collapse
|