1
|
Perera N, De Blasio MJ, Febbraio MA. Harnessing the therapeutic potential of exercise in extracellular vesicle-based therapy in metabolic disease associated cardiovascular complications. Free Radic Biol Med 2025; 226:230-236. [PMID: 39549882 DOI: 10.1016/j.freeradbiomed.2024.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 10/10/2024] [Accepted: 11/13/2024] [Indexed: 11/18/2024]
Abstract
Cardiovascular disease (CVD) is a leading cause of mortality, affecting ∼18 million individuals each year. Obesity and type 2 diabetes mellitus in particular, both chronic metabolic disorders, are risk factors for CVD. The salutary effects of physical activity in preventing and ameliorating CVD have long been acknowledged, as it improves glucose and lipid homeostasis, alongside attenuating oxidative damage, increasing mitochondrial function, and ultimately improving cardiac function. Exercise serves as a catalyst for the secretion of extracellular vesicles (EVs), facilitating inter-tissue communication, by which tissues can deliver important signals from one tissue to another. In recent years, an increasing number of studies have focused on the cargo encapsulated within exercise-derived EVs, as well as the orchestration of inter-tissue crosstalk aimed at modulating metabolism and tissue function in CVDs. The precise mechanisms underpinning the cardioprotective properties of exercise-derived EVs, however, remains only partially elucidated. This review explores novel EV based therapeutic options in CVD and, in particular, EVs derived from models of exercise to alter metabolism and enhance cardiovascular outcomes.
Collapse
Affiliation(s)
- Nimna Perera
- Monash Institute of Pharmaceutical Sciences, Parkville, Melbourne, Australia
| | - Miles J De Blasio
- Monash Institute of Pharmaceutical Sciences, Parkville, Melbourne, Australia
| | - Mark A Febbraio
- Monash Institute of Pharmaceutical Sciences, Parkville, Melbourne, Australia.
| |
Collapse
|
2
|
Bellissimo CA, Gandhi S, Castellani LN, Murugathasan M, Delfinis LJ, Thuhan A, Garibotti MC, Seo Y, Rebalka IA, Hsu HH, Sweeney G, Hawke TJ, Abdul-Sater AA, Perry CGR. The slow-release adiponectin analog ALY688-SR modifies early-stage disease development in the D2. mdx mouse model of Duchenne muscular dystrophy. Am J Physiol Cell Physiol 2024; 326:C1011-C1026. [PMID: 38145301 DOI: 10.1152/ajpcell.00638.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 12/26/2023]
Abstract
Fibrosis is associated with respiratory and limb muscle atrophy in Duchenne muscular dystrophy (DMD). Current standard of care partially delays the progression of this myopathy but there remains an unmet need to develop additional therapies. Adiponectin receptor agonism has emerged as a possible therapeutic target to lower inflammation and improve metabolism in mdx mouse models of DMD but the degree to which fibrosis and atrophy are prevented remain unknown. Here, we demonstrate that the recently developed slow-release peptidomimetic adiponectin analog, ALY688-SR, remodels the diaphragm of murine model of DMD on DBA background (D2.mdx) mice treated from days 7-28 of age during early stages of disease. ALY688-SR also lowered interleukin-6 (IL-6) mRNA but increased IL-6 and transforming growth factor-β1 (TGF-β1) protein contents in diaphragm, suggesting dynamic inflammatory remodeling. ALY688-SR alleviated mitochondrial redox stress by decreasing complex I-stimulated H2O2 emission. Treatment also attenuated fibrosis, fiber type-specific atrophy, and in vitro diaphragm force production in diaphragm suggesting a complex relationship between adiponectin receptor activity, muscle remodeling, and force-generating properties during the very early stages of disease progression in murine model of DMD on DBA background (D2.mdx) mice. In tibialis anterior, the modest fibrosis at this young age was not altered by treatment, and atrophy was not apparent at this young age. These results demonstrate that short-term treatment of ALY688-SR in young D2.mdx mice partially prevents fibrosis and fiber type-specific atrophy and lowers force production in the more disease-apparent diaphragm in relation to lower mitochondrial redox stress and heterogeneous responses in certain inflammatory markers. These diverse muscle responses to adiponectin receptor agonism in early stages of DMD serve as a foundation for further mechanistic investigations.NEW & NOTEWORTHY There are limited therapies for the treatment of Duchenne muscular dystrophy. As fibrosis involves an accumulation of collagen that replaces muscle fibers, antifibrotics may help preserve muscle function. We report that the novel adiponectin receptor agonist ALY688-SR prevents fibrosis in the diaphragm of D2.mdx mice with short-term treatment early in disease progression. These responses were related to altered inflammation and mitochondrial functions and serve as a foundation for the development of this class of therapy.
Collapse
MESH Headings
- Animals
- Mice
- Mice, Inbred mdx
- Muscular Dystrophy, Duchenne/drug therapy
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/pathology
- Adiponectin/genetics
- Disease Models, Animal
- Interleukin-6/metabolism
- Mice, Inbred C57BL
- Hydrogen Peroxide/metabolism
- Receptors, Adiponectin/genetics
- Receptors, Adiponectin/metabolism
- Mice, Inbred DBA
- Muscle, Skeletal/metabolism
- Diaphragm/metabolism
- Fibrosis
- Inflammation/metabolism
- Disease Progression
- Atrophy/metabolism
- Atrophy/pathology
Collapse
Affiliation(s)
- Catherine A Bellissimo
- School of Kinesiology & Health Science, Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Shivam Gandhi
- School of Kinesiology & Health Science, Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Laura N Castellani
- School of Kinesiology & Health Science, Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Mayoorey Murugathasan
- School of Kinesiology & Health Science, Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Luca J Delfinis
- School of Kinesiology & Health Science, Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Arshdeep Thuhan
- School of Kinesiology & Health Science, Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Madison C Garibotti
- School of Kinesiology & Health Science, Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Yeji Seo
- School of Kinesiology & Health Science, Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Irena A Rebalka
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Henry H Hsu
- Allysta Pharmaceuticals Inc, Bellevue, Washington, United States
| | - Gary Sweeney
- Department of Biology, Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Thomas J Hawke
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Ali A Abdul-Sater
- School of Kinesiology & Health Science, Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Christopher G R Perry
- School of Kinesiology & Health Science, Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Aimaretti E, Chimienti G, Rubeo C, Di Lorenzo R, Trisolini L, Dal Bello F, Moradi A, Collino M, Lezza AMS, Aragno M, Pesce V. Different Effects of High-Fat/High-Sucrose and High-Fructose Diets on Advanced Glycation End-Product Accumulation and on Mitochondrial Involvement in Heart and Skeletal Muscle in Mice. Nutrients 2023; 15:4874. [PMID: 38068732 PMCID: PMC10708161 DOI: 10.3390/nu15234874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/10/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
Diets with an elevated content of fat, sucrose, or fructose are recognized models of diet-induced metabolic alterations, since they induce metabolic derangements, oxidative stress, and chronic low-grade inflammation associated with local and systemic accumulation of advanced glycation end-products (AGEs). This study used four-week-old C57BL/6 male mice, randomly assigned to three experimental dietary regimens: standard diet (SD), high-fat high-sucrose diet (HFHS), or high fructose diet (HFr), administered for 12 weeks. Plasma, heart, and tibialis anterior (TA) skeletal muscle were assayed for markers of metabolic conditions, inflammation, presence of AGEs, and mitochondrial involvement. The HFHS diet induced a tissue-specific differential response featuring (1) a remarkable adaptation of the heart to HFHS-induced heavy oxidative stress, demonstrated by an increased presence of AGEs and reduced mitochondrial biogenesis, and efficaciously counteracted by a conspicuous increase in mitochondrial fission and PRXIII expression; (2) the absence of TA adaptation to HFHS, revealed by a heavy reduction in mitochondrial biogenesis, not counteracted by an increase in fission and PRXIII expression. HFr-induced mild oxidative stress elicited tissue-specific responses, featuring (1) a decrease in mitochondrial biogenesis in the heart, likely counteracted by a tendency for increased fission and (2) a mild reduction in mitochondrial biogenesis in TA, likely counteracted by a tendency for increased fusion, showing the adaptability of both tissues to the diet.
Collapse
Affiliation(s)
- Eleonora Aimaretti
- Unit of Experimental Medicine & Clinical Pathology, Department of Clinical and Biological Science, University of Turin, 10125 Turin, Italy; (E.A.); (C.R.); (A.M.); (M.A.)
| | - Guglielmina Chimienti
- Department of Biosciences Biotechnologies and Environment, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy; (G.C.); (R.D.L.)
| | - Chiara Rubeo
- Unit of Experimental Medicine & Clinical Pathology, Department of Clinical and Biological Science, University of Turin, 10125 Turin, Italy; (E.A.); (C.R.); (A.M.); (M.A.)
| | - Rosa Di Lorenzo
- Department of Biosciences Biotechnologies and Environment, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy; (G.C.); (R.D.L.)
| | - Lucia Trisolini
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, CNR, 70125 Bari, Italy;
| | - Federica Dal Bello
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10125 Turin, Italy;
| | - Atefeh Moradi
- Unit of Experimental Medicine & Clinical Pathology, Department of Clinical and Biological Science, University of Turin, 10125 Turin, Italy; (E.A.); (C.R.); (A.M.); (M.A.)
| | - Massimo Collino
- Department of Neuroscience “Rita Levi Montalcini”, University of Turin, 10125 Turin, Italy;
| | - Angela Maria Serena Lezza
- Department of Biosciences Biotechnologies and Environment, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy; (G.C.); (R.D.L.)
| | - Manuela Aragno
- Unit of Experimental Medicine & Clinical Pathology, Department of Clinical and Biological Science, University of Turin, 10125 Turin, Italy; (E.A.); (C.R.); (A.M.); (M.A.)
| | - Vito Pesce
- Department of Biosciences Biotechnologies and Environment, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy; (G.C.); (R.D.L.)
| |
Collapse
|
4
|
Vasileiadou O, Nastos GG, Chatzinikolaou PN, Papoutsis D, Vrampa DI, Methenitis S, Margaritelis NV. Redox Profile of Skeletal Muscles: Implications for Research Design and Interpretation. Antioxidants (Basel) 2023; 12:1738. [PMID: 37760040 PMCID: PMC10525275 DOI: 10.3390/antiox12091738] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/30/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Mammalian skeletal muscles contain varying proportions of Type I and II fibers, which feature different structural, metabolic and functional properties. According to these properties, skeletal muscles are labeled as 'red' or 'white', 'oxidative' or 'glycolytic', 'slow-twitch' or 'fast-twitch', respectively. Redox processes (i.e., redox signaling and oxidative stress) are increasingly recognized as a fundamental part of skeletal muscle metabolism at rest, during and after exercise. The aim of the present review was to investigate the potential redox differences between slow- (composed mainly of Type I fibers) and fast-twitch (composed mainly of Type IIa and IIb fibers) muscles at rest and after a training protocol. Slow-twitch muscles were almost exclusively represented in the literature by the soleus muscle, whereas a wide variety of fast-twitch muscles were used. Based on our analysis, we argue that slow-twitch muscles exhibit higher antioxidant enzyme activity compared to fast-twitch muscles in both pre- and post-exercise training. This is also the case between heads or regions of fast-twitch muscles that belong to different subcategories, namely Type IIa (oxidative) versus Type IIb (glycolytic), in favor of the former. No safe conclusion could be drawn regarding the mRNA levels of antioxidant enzymes either pre- or post-training. Moreover, slow-twitch skeletal muscles presented higher glutathione and thiol content as well as higher lipid peroxidation levels compared to fast-twitch. Finally, mitochondrial hydrogen peroxide production was higher in fast-twitch muscles compared to slow-twitch muscles at rest. This redox heterogeneity between different muscle types may have ramifications in the analysis of muscle function and health and should be taken into account when designing exercise studies using specific muscle groups (e.g., on an isokinetic dynamometer) or isolated muscle fibers (e.g., electrical stimulation) and may deliver a plausible explanation for the conflicting results about the ergogenic potential of antioxidant supplements.
Collapse
Affiliation(s)
- Olga Vasileiadou
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, 62100 Serres, Greece; (O.V.); (G.G.N.); (P.N.C.); (D.P.)
| | - George G. Nastos
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, 62100 Serres, Greece; (O.V.); (G.G.N.); (P.N.C.); (D.P.)
| | - Panagiotis N. Chatzinikolaou
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, 62100 Serres, Greece; (O.V.); (G.G.N.); (P.N.C.); (D.P.)
| | - Dimitrios Papoutsis
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, 62100 Serres, Greece; (O.V.); (G.G.N.); (P.N.C.); (D.P.)
| | - Dimitra I. Vrampa
- Department of Nutrition Sciences and Dietetics, Faculty of Health Sciences, International Hellenic University, 57001 Thessaloniki, Greece;
| | - Spyridon Methenitis
- School of Physical Education and Sports Science, National and Kapodistrian University of Athens, 15772 Athens, Greece;
| | - Nikos V. Margaritelis
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, 62100 Serres, Greece; (O.V.); (G.G.N.); (P.N.C.); (D.P.)
| |
Collapse
|
5
|
Jiang J, Ni L, Zhang X, Gokulnath P, Vulugundam G, Li G, Wang H, Xiao J. Moderate-Intensity Exercise Maintains Redox Homeostasis for Cardiovascular Health. Adv Biol (Weinh) 2023; 7:e2200204. [PMID: 36683183 DOI: 10.1002/adbi.202200204] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/27/2022] [Indexed: 01/24/2023]
Abstract
It is well known that exercise is beneficial for cardiovascular health. Oxidative stress is the common pathological basis of many cardiovascular diseases. The overproduction of free radicals, both reactive oxygen species and reactive nitrogen species, can lead to redox imbalance and exacerbate oxidative damage to the cardiovascular system. Maintaining redox homeostasis and enhancing anti-oxidative capacity are critical mechanisms by which exercise protects against cardiovascular diseases. Moderate-intensity exercise is an effective means to maintain cardiovascular redox homeostasis. Moderate-intensity exercise reduces the risk of cardiovascular disease by improving mitochondrial function and anti-oxidative capacity. It also attenuates adverse cardiac remodeling and enhances cardiac function. This paper reviews the primary mechanisms of moderate-intensity exercise-mediated redox homeostasis in the cardiovascular system. Exploring the role of exercise-mediated redox homeostasis in the cardiovascular system is of great significance to the prevention and treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Jizong Jiang
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China.,Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, 200444, China
| | - Lingyan Ni
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China.,Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, 200444, China
| | - Xinxin Zhang
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China.,Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, 200444, China
| | - Priyanka Gokulnath
- Cardiovascular Division, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | | | - Guoping Li
- Cardiovascular Division, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Hongyun Wang
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China.,Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, 200444, China
| | - Junjie Xiao
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China.,Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
6
|
Seyydi SM, Tofighi A, Rahmati M, Tolouei Azar J. Exercise and Urtica Dioica extract ameliorate mitochondrial function and the expression of cardiac muscle Nuclear Respiratory Factor 2 and Peroxisome proliferator-activated receptor Gamma Coactivator 1-alpha in STZ-induced diabetic rats. Gene 2022; 822:146351. [PMID: 35189251 DOI: 10.1016/j.gene.2022.146351] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/30/2022] [Accepted: 02/15/2022] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Diabetes mellitus can affect and disrupt the levels of PGC1α and NRF2 proteins in the mitochondrial biogenesis pathway. Considering the anti-diabetic properties of Urtica Dioica extract and exercise, this study aimed to investigate the beneficial effects of Urtica Dioica extract and endurance activity on PGC1α and NRF2 protein levels in the streptozotocin-induced diabetic rat heart tissue. MATERIALS AND METHODS 58 male Wistar rats were divided into five groups (N = 12) including: healthy control (HC), diabetes control (DC), diabetes Urtica Dioica (D-UD), diabetes exercise training (DT), and diabetes exercise training Urtica Dioica (DT-UD). Diabetes was induced intraperitoneally by STZ (45 mg/kg) injection. Two weeks after the induction of diabetes, the rats were stimulated to carry out the exercise (moderate intensity/5day/week) and the gavage of UD extract (50 mg/kg/day) was administered to the rats for six weeks. In this study, the western blotting method was used to measure the levels of PGC1α and NRF2 proteins. Moreover, cardiography was used to evaluate the functional parameters of the heart (ejection fraction & fractional shortening). Finally, the bioluminescence and ELISA methods were used to determine the content of adenosine triphosphate and citrate synthase. RESULTS The cardiac function parameters, the mitochondrial ATP and the CS content in DC group mice were impaired in comparison with the other study groups and showed a decreasing trend (P < 0.001). The treatment with EX + UD extract was able to minimize the rate of these disorders and acted as a protector of mitochondrial function. There were significant differences in the expression levels of NRF2 (F = 17.7, P = 0.001) and PGC-1α (F = 43.7, P = 0.001) mitochondrial proteins among the different groups. The levels of these proteins were significantly reduced in the DC group in comparison with the HC group (P < 0.001). The treatment with EX or UD extract increased the expression of PGC-1α and NRF2 proteins in the heart muscle of animals in the DT and D-UD groups in comparison with the DC group (P < 0.05). Moreover, the expression of these proteins was more pronounced in the DT-UD group. There was not a significant difference between the DT-UD group and the HC group regarding the expression of these proteins (P > 0.05). CONCLUSIONS The results of this study showed that treatment with EX and UD extract could treat the disorders which were caused by diabetes in the parameters of cardiac function. Moreover, it was able to improve the expression of the levels of proteins which were involved in mitochondrial biogenesis and its function. Finally, this kind of treatment could attract more attention to the roles of EX and UD extract in the prevention of cardiovascular complications in future studies.
Collapse
Affiliation(s)
- Seyyedeh Masoumeh Seyydi
- Department of Exercise Physiology and Corrective Movements, Faculty of Sports Sciences, Urmia University, Urmia, Iran
| | - Asghar Tofighi
- Department of Exercise Physiology and Corrective Movements, Faculty of Sports Sciences, Urmia University, Urmia, Iran.
| | - Masoud Rahmati
- Department of Physical Education and Sport Sciences, Faculty of Literature and Human Sciences, Lorestan University, Khorramabad, Iran
| | - Javad Tolouei Azar
- Department of Exercise Physiology and Corrective Movements, Faculty of Sports Sciences, Urmia University, Urmia, Iran
| |
Collapse
|
7
|
Gansemer ER, Rutkowski DT. Pathways Linking Nicotinamide Adenine Dinucleotide Phosphate Production to Endoplasmic Reticulum Protein Oxidation and Stress. Front Mol Biosci 2022; 9:858142. [PMID: 35601828 PMCID: PMC9114485 DOI: 10.3389/fmolb.2022.858142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
The endoplasmic reticulum (ER) lumen is highly oxidizing compared to other subcellular compartments, and maintaining the appropriate levels of oxidizing and reducing equivalents is essential to ER function. Both protein oxidation itself and other essential ER processes, such as the degradation of misfolded proteins and the sequestration of cellular calcium, are tuned to the ER redox state. Simultaneously, nutrients are oxidized in the cytosol and mitochondria to power ATP generation, reductive biosynthesis, and defense against reactive oxygen species. These parallel needs for protein oxidation in the ER and nutrient oxidation in the cytosol and mitochondria raise the possibility that the two processes compete for electron acceptors, even though they occur in separate cellular compartments. A key molecule central to both processes is NADPH, which is produced by reduction of NADP+ during nutrient catabolism and which in turn drives the reduction of components such as glutathione and thioredoxin that influence the redox potential in the ER lumen. For this reason, NADPH might serve as a mediator linking metabolic activity to ER homeostasis and stress, and represent a novel form of mitochondria-to-ER communication. In this review, we discuss oxidative protein folding in the ER, NADPH generation by the major pathways that mediate it, and ER-localized systems that can link the two processes to connect ER function to metabolic activity.
Collapse
Affiliation(s)
- Erica R. Gansemer
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - D. Thomas Rutkowski
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
8
|
Physical-Exercise-Induced Antioxidant Effects on the Brain and Skeletal Muscle. Antioxidants (Basel) 2022; 11:antiox11050826. [PMID: 35624690 PMCID: PMC9138070 DOI: 10.3390/antiox11050826] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 02/06/2023] Open
Abstract
Erythroid-related nuclear factor 2 (NRF2) and the antioxidant-responsive-elements (ARE) signaling pathway are the master regulators of cell antioxidant defenses, playing a key role in maintaining cellular homeostasis, a scenario in which proper mitochondrial function is essential. Increasing evidence indicates that the regular practice of physical exercise increases cellular antioxidant defenses by activating NRF2 signaling. This manuscript reviewed classic and ongoing research on the beneficial effects of exercise on the antioxidant system in both the brain and skeletal muscle.
Collapse
|
9
|
Ayer A, Fazakerley DJ, James DE, Stocker R. The role of mitochondrial reactive oxygen species in insulin resistance. Free Radic Biol Med 2022; 179:339-362. [PMID: 34775001 DOI: 10.1016/j.freeradbiomed.2021.11.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/31/2021] [Accepted: 11/06/2021] [Indexed: 12/21/2022]
Abstract
Insulin resistance is one of the earliest pathological features of a suite of diseases including type 2 diabetes collectively referred to as metabolic syndrome. There is a growing body of evidence from both pre-clinical studies and human cohorts indicating that reactive oxygen species, such as the superoxide radical anion and hydrogen peroxide are key players in the development of insulin resistance. Here we review the evidence linking mitochondrial reactive oxygen species generated within mitochondria with insulin resistance in adipose tissue and skeletal muscle, two major insulin sensitive tissues. We outline the relevant mitochondria-derived reactive species, how the mitochondrial redox state is regulated, and methodologies available to measure mitochondrial reactive oxygen species. Importantly, we highlight key experimental issues to be considered when studying the role of mitochondrial reactive oxygen species in insulin resistance. Evaluating the available literature on both mitochondrial reactive oxygen species/redox state and insulin resistance in a variety of biological systems, we conclude that the weight of evidence suggests a likely role for mitochondrial reactive oxygen species in the etiology of insulin resistance in adipose tissue and skeletal muscle. However, major limitations in the methods used to study reactive oxygen species in insulin resistance as well as the lack of data linking mitochondrial reactive oxygen species and cytosolic insulin signaling pathways are significant obstacles in proving the mechanistic link between these two processes. We provide a framework to guide future studies to provide stronger mechanistic information on the link between mitochondrial reactive oxygen species and insulin resistance as understanding the source, localization, nature, and quantity of mitochondrial reactive oxygen species, their targets and downstream signaling pathways may pave the way for important new therapeutic strategies.
Collapse
Affiliation(s)
- Anita Ayer
- Heart Research Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Daniel J Fazakerley
- Metabolic Research Laboratory, Wellcome-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - David E James
- Charles Perkins Centre, Sydney Medical School, The University of Sydney, Sydney, Australia; School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| | - Roland Stocker
- Heart Research Institute, The University of Sydney, Sydney, New South Wales, Australia; School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia.
| |
Collapse
|
10
|
Nishimura A, Tanaka T, Kato Y, Nishiyama K, Nishida M. Cardiac robustness regulated by reactive sulfur species. J Clin Biochem Nutr 2022; 70:1-6. [PMID: 35068674 PMCID: PMC8764107 DOI: 10.3164/jcbn.21-84] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/17/2021] [Indexed: 11/22/2022] Open
Abstract
The human myocardium contains robust cells that constantly beat from birth to death without being replaced, even when exposed to various environmental stresses. Myocardial robustness is thought to depend primarily on the strength of the reducing power to protect the heart from oxidative stress. Myocardial antioxidant systems are controlled by redox reactions, primarily via the redox reaction of Cys sulfhydryl groups, such as found in thioredoxin and glutathione. However, the specific molecular entities that regulate myocardial reducing power have long been debated. Recently, reactive sulfide species, with excellent electron transfer ability, consisting of a series of multiple sulfur atoms, i.e., Cys persulfide and Cys polysulfides, have been found to play an essential role in maintaining mitochondrial quality and function, as well as myocardial robustness. This review presents the latest findings on the molecular mechanisms underlying mitochondrial energy metabolism and the maintenance of quality control by reactive sulfide species and provides a new insight for the prevention of chronic heart failure.
Collapse
Affiliation(s)
- Akiyuki Nishimura
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences
| | - Tomohiro Tanaka
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences
| | - Yuri Kato
- Department of Physiology, Graduate School of Pharmaceutical Sciences, Kyushu University
| | - Kazuhiro Nishiyama
- Department of Physiology, Graduate School of Pharmaceutical Sciences, Kyushu University
| | - Motohiro Nishida
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences
| |
Collapse
|
11
|
Kelley RC, Betancourt L, Noriega AM, Brinson SC, Curbelo-Bermudez N, Hahn D, Kumar RA, Balazic E, Muscato DR, Ryan TE, van der Pijl RJ, Shen S, Ottenheijm CAC, Ferreira LF. Skeletal myopathy in a rat model of postmenopausal heart failure with preserved ejection fraction. J Appl Physiol (1985) 2022; 132:106-125. [PMID: 34792407 PMCID: PMC8742741 DOI: 10.1152/japplphysiol.00170.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 11/01/2021] [Accepted: 11/11/2021] [Indexed: 01/03/2023] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) accounts for ∼50% of all patients with heart failure and frequently affects postmenopausal women. The HFpEF condition is phenotype-specific, with skeletal myopathy that is crucial for disease development and progression. However, most of the current preclinical models of HFpEF have not addressed the postmenopausal phenotype. We sought to advance a rodent model of postmenopausal HFpEF and examine skeletal muscle abnormalities therein. Female, ovariectomized, spontaneously hypertensive rats (SHRs) were fed a high-fat, high-sucrose diet to induce HFpEF. Controls were female sham-operated Wistar-Kyoto rats on a lean diet. In a complementary, longer-term cohort, controls were female sham-operated SHRs on a lean diet to evaluate the effect of strain difference in the model. Our model developed key features of HFpEF that included increased body weight, glucose intolerance, hypertension, cardiac hypertrophy, diastolic dysfunction, exercise intolerance, and elevated plasma cytokines. In limb skeletal muscle, HFpEF decreased specific force by 15%-30% (P < 0.05) and maximal mitochondrial respiration by 40%-55% (P < 0.05), increased oxidized glutathione by approximately twofold (P < 0.05), and tended to increase mitochondrial H2O2 emission (P = 0.10). Muscle fiber cross-sectional area, markers of mitochondrial content, and indices of capillarity were not different between control and HFpEF in our short-term cohort. Overall, our preclinical model of postmenopausal HFpEF recapitulates several key features of the disease. This new model reveals contractile and mitochondrial dysfunction and redox imbalance that are potential contributors to abnormal metabolism, exercise intolerance, and diminished quality of life in patients with postmenopausal HFpEF.NEW & NOTEWORTHY Heart failure with preserved ejection fraction (HFpEF) is a condition with phenotype-specific features highly prevalent in postmenopausal women and skeletal myopathy contributing to disease development and progression. We advanced a rat model of postmenopausal HFpEF with key cardiovascular and systemic features of the disease. Our study shows that the skeletal myopathy of postmenopausal HFpEF includes loss of limb muscle-specific force independent of atrophy, mitochondrial dysfunction, and oxidized shift in redox balance.
Collapse
Affiliation(s)
- Rachel C Kelley
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Lauren Betancourt
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Andrea M Noriega
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Suzanne C Brinson
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Nuria Curbelo-Bermudez
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Dongwoo Hahn
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Ravi A Kumar
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Eliza Balazic
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Derek R Muscato
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Terence E Ryan
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Robbert J van der Pijl
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona
- Department of Physiology, Amsterdam UMC, Amsterdam, The Netherlands
| | - Shengyi Shen
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona
| | - Coen A C Ottenheijm
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona
- Department of Physiology, Amsterdam UMC, Amsterdam, The Netherlands
| | - Leonardo F Ferreira
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| |
Collapse
|
12
|
Joardar N, Bhattacharya R, Halder S, Sen A, Biswas SR, Jana K, Babu SPS. Filarial thioredoxin reductase exerts anti-inflammatory effects upon lipopolysaccharide induced inflammation in macrophages. Int J Biol Macromol 2021; 193:1379-1390. [PMID: 34774593 DOI: 10.1016/j.ijbiomac.2021.10.200] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/19/2021] [Accepted: 10/27/2021] [Indexed: 01/12/2023]
Abstract
Lymphatic filariasis and its associated health hazards have taken enormous tolls especially in the tropical and sub-tropical countries round the globe. Our present work contemplates the immunomodulatory role of filarial Thioredoxin reductase (TrxR) for the survival of the parasite inside the human host. For this, the protein TrxR was purified from the filarial parasite Setaria cervi and further substantiated through specific anti-TrxR antibody raised in mice. Both commercially available anti-TrxR antibody and laboratory raised antibody produced a single band with a molecular mass of ~80 kDa on western blot. The protein is optimally active at pH 7.0 and at temperature 37 °C. This protein contains both alpha helix and beta pleated sheet with selenocysteine at its active site. The Km was found to be 2.75 ± 0.49 mM. TrxR was found to downregulate lipopolysaccharide (LPS)-induced inflammation in macrophages due to inhibition of TLR4-NF-κB pathway. The result was further supported by the downregulation of inflammasome pathway and activation of alternatively activated macrophages upon TrxR treatment. Hence this study projects insights into the importance of filarial TrxR in host-parasite interface as well as it illustrates novel therapeutic strategy towards anti-filarial drug development.
Collapse
Affiliation(s)
- Nikhilesh Joardar
- Parasitology Laboratory, Department of Zoology, Siksha Bhavana, Visva-Bharati, Santiniketan 731235, India
| | - Rajarshi Bhattacharya
- Molecular Food Microbiology Laboratory, Department of Botany, Siksha Bhavana, Visva-Bharati, Santiniketan 731235, India
| | - Satyajit Halder
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Road, Scheme VIIM, Kankurgachi, Kolkata 700054, India
| | - Animesh Sen
- Applied Phycology Laboratory, Department of Botany, Siksha-Bhavana, Visva-Bharati, Santiniketan 731235, West Bengal, India
| | - Swadesh Ranjan Biswas
- Molecular Food Microbiology Laboratory, Department of Botany, Siksha Bhavana, Visva-Bharati, Santiniketan 731235, India
| | - Kuladip Jana
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Road, Scheme VIIM, Kankurgachi, Kolkata 700054, India.
| | - Santi Prasad Sinha Babu
- Parasitology Laboratory, Department of Zoology, Siksha Bhavana, Visva-Bharati, Santiniketan 731235, India.
| |
Collapse
|
13
|
Mattox TA, Psaltis C, Weihbrecht K, Robidoux J, Kilburg‐Basnyat B, Murphy MP, Gowdy KM, Anderson EJ. Prohibitin-1 Is a Dynamically Regulated Blood Protein With Cardioprotective Effects in Sepsis. J Am Heart Assoc 2021; 10:e019877. [PMID: 34219469 PMCID: PMC8483490 DOI: 10.1161/jaha.120.019877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 05/14/2021] [Indexed: 11/25/2022]
Abstract
Background In sepsis, circulating cytokines and lipopolysaccharide elicit mitochondrial dysfunction and cardiomyopathy, a major cause of morbidity and mortality with this condition. Emerging research places the PHB1 (lipid raft protein prohibitin-1) at the nexus of inflammation, metabolism, and oxidative stress. PHB1 has also been reported in circulation, though its function in this compartment is completely unknown. Methods and Results Using a wide-ranging approach across multiple in vitro and in vivo models, we interrogated the functional role of intracellular and circulating PHB1 in the heart during sepsis, and elucidated some of the mechanisms involved. Upon endotoxin challenge or sepsis induction in rodent models, PHB1 translocates from mitochondria to nucleus in cardiomyocytes and is secreted into the circulation from the liver in a manner dependent on nuclear factor (erythroid-derived 2)-like 2, a key transcriptional regulator of the antioxidant response. Overexpression or treatment with recombinant human PHB1 enhances the antioxidant/anti-inflammatory response and protects HL-1 cardiomyocytes from mitochondrial dysfunction and toxicity from cytokine stress. Importantly, administration of recombinant human PHB1 blunted inflammation and restored cardiac contractility and ATP production in mice following lipopolysaccharide challenge. This cardioprotective, anti-inflammatory effect of recombinant human PHB1 was determined to be independent of nuclear factor (erythroid-derived 2)-like 2, but partially dependent on PI3K/AKT signaling in the heart. Conclusions These findings reveal a previously unknown cardioprotective effect of PHB1 during sepsis, and illustrate a pro-survival, protective role for PHB1 in the circulation. Exploitation of circulating PHB1 as a biomarker and/or therapeutic could have widespread benefit in the clinical management of sepsis and other severe inflammatory disorders.
Collapse
Affiliation(s)
- Taylor A. Mattox
- Department of Pharmacology & ToxicologyBrody School of MedicineEast Carolina UniversityGreenvilleNC
| | - Christine Psaltis
- Department of Pharmacology & ToxicologyBrody School of MedicineEast Carolina UniversityGreenvilleNC
| | - Katie Weihbrecht
- Fraternal Order of Eagles Diabetes Research CenterUniversity of IowaIowa CityIA
| | - Jacques Robidoux
- Department of Pharmacology & ToxicologyBrody School of MedicineEast Carolina UniversityGreenvilleNC
| | - Brita Kilburg‐Basnyat
- Department of Pharmacology & ToxicologyBrody School of MedicineEast Carolina UniversityGreenvilleNC
| | - Michael P. Murphy
- Medical Research Council Mitochondrial Biology UnitUniversity of CambridgeUnited Kingdom
| | - Kymberly M. Gowdy
- Department of Pharmacology & ToxicologyBrody School of MedicineEast Carolina UniversityGreenvilleNC
| | - Ethan J. Anderson
- Department of Pharmaceutical Sciences & Experimental TherapeuticsCollege of PharmacyIowa CityIA
- Fraternal Order of Eagles Diabetes Research CenterUniversity of IowaIowa CityIA
| |
Collapse
|
14
|
Chelko SP, Keceli G, Carpi A, Doti N, Agrimi J, Asimaki A, Beti CB, Miyamoto M, Amat-Codina N, Bedja D, Wei AC, Murray B, Tichnell C, Kwon C, Calkins H, James CA, O'Rourke B, Halushka MK, Melloni E, Saffitz JE, Judge DP, Ruvo M, Kitsis RN, Andersen P, Di Lisa F, Paolocci N. Exercise triggers CAPN1-mediated AIF truncation, inducing myocyte cell death in arrhythmogenic cardiomyopathy. Sci Transl Med 2021; 13:13/581/eabf0891. [PMID: 33597260 DOI: 10.1126/scitranslmed.abf0891] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/27/2021] [Indexed: 12/15/2022]
Abstract
Myocyte death occurs in many inherited and acquired cardiomyopathies, including arrhythmogenic cardiomyopathy (ACM), a genetic heart disease plagued by the prevalence of sudden cardiac death. Individuals with ACM and harboring pathogenic desmosomal variants, such as desmoglein-2 (DSG2), often show myocyte necrosis with progression to exercise-associated heart failure. Here, we showed that homozygous Dsg2 mutant mice (Dsg2 mut/mut), a model of ACM, die prematurely during swimming and display myocardial dysfunction and necrosis. We detected calcium (Ca2+) overload in Dsg2 mut/mut hearts, which induced calpain-1 (CAPN1) activation, association of CAPN1 with mitochondria, and CAPN1-induced cleavage of mitochondrial-bound apoptosis-inducing factor (AIF). Cleaved AIF translocated to the myocyte nucleus triggering large-scale DNA fragmentation and cell death, an effect potentiated by mitochondrial-driven AIF oxidation. Posttranslational oxidation of AIF cysteine residues was due, in part, to a depleted mitochondrial thioredoxin-2 redox system. Hearts from exercised Dsg2 mut/mut mice were depleted of calpastatin (CAST), an endogenous CAPN1 inhibitor, and overexpressing CAST in myocytes protected against Ca2+ overload-induced necrosis. When cardiomyocytes differentiated from Dsg2 mut/mut embryonic stem cells (ES-CMs) were challenged with β-adrenergic stimulation, CAPN1 inhibition attenuated CAPN1-induced AIF truncation. In addition, pretreatment of Dsg2 mut/mut ES-CMs with an AIF-mimetic peptide, mirroring the cyclophilin-A (PPIA) binding site of AIF, blocked PPIA-mediated AIF-nuclear translocation, and reduced both apoptosis and necrosis. Thus, preventing CAPN1-induced AIF-truncation or barring binding of AIF to the nuclear chaperone, PPIA, may avert myocyte death and, ultimately, disease progression to heart failure in ACM and likely other forms of cardiomyopathies.
Collapse
Affiliation(s)
- Stephen P Chelko
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306, USA. .,Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Gizem Keceli
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Andrea Carpi
- Department of Biomedical Sciences, University of Padova, Padova 35122, Italy
| | - Nunzianna Doti
- Institute of Biostructures and Bioimaging, CNR, Naples 80134, Italy
| | - Jacopo Agrimi
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Angeliki Asimaki
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, London WC1E 6BS, UK
| | - Carlos Bueno Beti
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, London WC1E 6BS, UK
| | - Matthew Miyamoto
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Nuria Amat-Codina
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Djahida Bedja
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.,Australian School of Advanced Medicine, Macquarie University, Sydney, NSW 2109, Australia
| | - An-Chi Wei
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Brittney Murray
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Crystal Tichnell
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Chulan Kwon
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Hugh Calkins
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Cynthia A James
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Brian O'Rourke
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Marc K Halushka
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Edon Melloni
- Department of Medicine, University of Genova, Genova 16126, Italy
| | - Jeffrey E Saffitz
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA 20115, USA
| | - Daniel P Judge
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.,Medical University of South Carolina, Charleston, SC 29425, USA
| | - Menotti Ruvo
- Institute of Biostructures and Bioimaging, CNR, Naples 80134, Italy
| | - Richard N Kitsis
- Departments of Medicine and Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Peter Andersen
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Fabio Di Lisa
- Department of Biomedical Sciences, University of Padova, Padova 35122, Italy
| | - Nazareno Paolocci
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA. .,Department of Biomedical Sciences, University of Padova, Padova 35122, Italy
| |
Collapse
|
15
|
Ramos SV, Hughes MC, Delfinis LJ, Bellissimo CA, Perry CGR. Mitochondrial bioenergetic dysfunction in the D2.mdx model of Duchenne muscular dystrophy is associated with microtubule disorganization in skeletal muscle. PLoS One 2020; 15:e0237138. [PMID: 33002037 PMCID: PMC7529311 DOI: 10.1371/journal.pone.0237138] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 07/21/2020] [Indexed: 11/25/2022] Open
Abstract
In Duchenne muscular dystrophy, a lack of dystrophin leads to extensive muscle weakness and atrophy that is linked to cellular metabolic dysfunction and oxidative stress. This dystrophinopathy results in a loss of tethering between microtubules and the sarcolemma. Microtubules are also believed to regulate mitochondrial bioenergetics potentially by binding the outer mitochondrial membrane voltage dependent anion channel (VDAC) and influencing permeability to ADP/ATP cycling. The objective of this investigation was to determine if a lack of dystrophin causes microtubule disorganization concurrent with mitochondrial dysfunction in skeletal muscle, and whether this relationship is linked to altered binding of tubulin to VDAC. In extensor digitorum longus (EDL) muscle from 4-week old D2.mdx mice, microtubule disorganization was observed when probing for α-tubulin. This cytoskeletal disorder was associated with a reduced ability of ADP to stimulate respiration and attenuate H2O2 emission relative to wildtype controls. However, this was not associated with altered α-tubulin-VDAC2 interactions. These findings reveal that microtubule disorganization in dystrophin-deficient EDL is associated with impaired ADP control of mitochondrial bioenergetics, and suggests that mechanisms alternative to α-tubulin’s regulation of VDAC2 should be examined to understand how cytoskeletal disruption in the absence of dystrophin may cause metabolic dysfunctions in skeletal muscle.
Collapse
Affiliation(s)
- Sofhia V. Ramos
- School of Kinesiology and Health Sciences, Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Meghan C. Hughes
- School of Kinesiology and Health Sciences, Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Luca J. Delfinis
- School of Kinesiology and Health Sciences, Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Catherine A. Bellissimo
- School of Kinesiology and Health Sciences, Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Christopher G. R. Perry
- School of Kinesiology and Health Sciences, Muscle Health Research Centre, York University, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
16
|
Belosludtsev KN, Belosludtseva NV, Dubinin MV. Diabetes Mellitus, Mitochondrial Dysfunction and Ca 2+-Dependent Permeability Transition Pore. Int J Mol Sci 2020; 21:ijms21186559. [PMID: 32911736 PMCID: PMC7555889 DOI: 10.3390/ijms21186559] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 12/14/2022] Open
Abstract
Diabetes mellitus is one of the most common metabolic diseases in the developed world, and is associated either with the impaired secretion of insulin or with the resistance of cells to the actions of this hormone (type I and type II diabetes, respectively). In both cases, a common pathological change is an increase in blood glucose—hyperglycemia, which eventually can lead to serious damage to the organs and tissues of the organism. Mitochondria are one of the main targets of diabetes at the intracellular level. This review is dedicated to the analysis of recent data regarding the role of mitochondrial dysfunction in the development of diabetes mellitus. Specific areas of focus include the involvement of mitochondrial calcium transport systems and a pathophysiological phenomenon called the permeability transition pore in the pathogenesis of diabetes mellitus. The important contribution of these systems and their potential relevance as therapeutic targets in the pathology are discussed.
Collapse
Affiliation(s)
- Konstantin N. Belosludtsev
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, 424001 Yoshkar-Ola, Mari El, Russia; (N.V.B.); (M.V.D.)
- Laboratory of Mitochondrial Transport, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Moscow Region, Russia
- Correspondence: ; Tel.: +7-929-913-8910
| | - Natalia V. Belosludtseva
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, 424001 Yoshkar-Ola, Mari El, Russia; (N.V.B.); (M.V.D.)
- Laboratory of Mitochondrial Transport, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Moscow Region, Russia
| | - Mikhail V. Dubinin
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, 424001 Yoshkar-Ola, Mari El, Russia; (N.V.B.); (M.V.D.)
| |
Collapse
|
17
|
Makrecka‐Kuka M, Liepinsh E, Murray AJ, Lemieux H, Dambrova M, Tepp K, Puurand M, Käämbre T, Han WH, Goede P, O'Brien KA, Turan B, Tuncay E, Olgar Y, Rolo AP, Palmeira CM, Boardman NT, Wüst RCI, Larsen TS. Altered mitochondrial metabolism in the insulin-resistant heart. Acta Physiol (Oxf) 2020; 228:e13430. [PMID: 31840389 DOI: 10.1111/apha.13430] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 12/12/2022]
Abstract
Obesity-induced insulin resistance and type 2 diabetes mellitus can ultimately result in various complications, including diabetic cardiomyopathy. In this case, cardiac dysfunction is characterized by metabolic disturbances such as impaired glucose oxidation and an increased reliance on fatty acid (FA) oxidation. Mitochondrial dysfunction has often been associated with the altered metabolic function in the diabetic heart, and may result from FA-induced lipotoxicity and uncoupling of oxidative phosphorylation. In this review, we address the metabolic changes in the diabetic heart, focusing on the loss of metabolic flexibility and cardiac mitochondrial function. We consider the alterations observed in mitochondrial substrate utilization, bioenergetics and dynamics, and highlight new areas of research which may improve our understanding of the cause and effect of cardiac mitochondrial dysfunction in diabetes. Finally, we explore how lifestyle (nutrition and exercise) and pharmacological interventions can prevent and treat metabolic and mitochondrial dysfunction in diabetes.
Collapse
Affiliation(s)
| | | | - Andrew J. Murray
- Department of Physiology, Development and Neuroscience University of Cambridge Cambridge UK
| | - Hélène Lemieux
- Department of Medicine Faculty Saint‐Jean, Women and Children's Health Research Institute University of Alberta Edmonton AB Canada
| | | | - Kersti Tepp
- National Institute of Chemical Physics and Biophysics Tallinn Estonia
| | - Marju Puurand
- National Institute of Chemical Physics and Biophysics Tallinn Estonia
| | - Tuuli Käämbre
- National Institute of Chemical Physics and Biophysics Tallinn Estonia
| | - Woo H. Han
- Faculty Saint‐Jean University of Alberta Edmonton AB Canada
| | - Paul Goede
- Laboratory of Endocrinology Amsterdam Gastroenterology & Metabolism Amsterdam University Medical Center University of Amsterdam Amsterdam The Netherlands
| | - Katie A. O'Brien
- Department of Physiology, Development and Neuroscience University of Cambridge Cambridge UK
| | - Belma Turan
- Laboratory of Endocrinology Amsterdam Gastroenterology & Metabolism Amsterdam University Medical Center University of Amsterdam Amsterdam The Netherlands
| | - Erkan Tuncay
- Department of Biophysics Faculty of Medicine Ankara University Ankara Turkey
| | - Yusuf Olgar
- Department of Biophysics Faculty of Medicine Ankara University Ankara Turkey
| | - Anabela P. Rolo
- Department of Life Sciences University of Coimbra and Center for Neurosciences and Cell Biology University of Coimbra Coimbra Portugal
| | - Carlos M. Palmeira
- Department of Life Sciences University of Coimbra and Center for Neurosciences and Cell Biology University of Coimbra Coimbra Portugal
| | - Neoma T. Boardman
- Cardiovascular Research Group Department of Medical Biology UiT the Arctic University of Norway Tromso Norway
| | - Rob C. I. Wüst
- Laboratory for Myology Department of Human Movement Sciences Faculty of Behavioural and Movement Sciences Amsterdam Movement Sciences Vrije Universiteit Amsterdam Amsterdam The Netherlands
| | - Terje S. Larsen
- Cardiovascular Research Group Department of Medical Biology UiT the Arctic University of Norway Tromso Norway
| |
Collapse
|
18
|
Alves R, Suehiro CL, Oliveira FGD, Frantz EDC, Medeiros RFD, Vieira RDP, Martins MDA, Lin CJ, Nobrega ACLD, Toledo-Arruda ACD. Aerobic exercise modulates cardiac NAD(P)H oxidase and the NRF2/KEAP1 pathway in a mouse model of chronic fructose consumption. J Appl Physiol (1985) 2020; 128:59-69. [PMID: 31647720 DOI: 10.1152/japplphysiol.00201.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The present study investigated the effects of exercise on the cardiac nuclear factor (erythroid-derived 2) factor 2 (NRF2)/Kelch-like ECH-associated protein 1 (KEAP1) pathway in an experimental model of chronic fructose consumption. Male C57BL/6 mice were assigned to Control, Fructose (20% fructose in drinking water), Exercise (treadmill exercise at moderate intensity), and Fructose + Exercise groups ( n = 10). After 12 wk, the energy intake and body weight in the groups were similar. Maximum exercise testing, resting energy expenditure, resting oxygen consumption, and carbon dioxide production increased in the exercise groups (Exercise and Fructose + Exercise vs. Control and Fructose groups, P < 0.05). Chronic fructose intake induced circulating hypercholesterolemia, hypertriglyceridemia, and hyperleptinemia and increased white adipose tissue depots, with no changes in blood pressure. This metabolic environment increased circulating IL-6, IL-1β, IL-10, cardiac hypertrophy, and cardiac NF-κB-p65 and TNF-α expression, which were reduced by exercise ( P < 0.05). Cardiac ANG II type 1 receptor and NAD(P)H oxidase 2 (NOX2) were increased by fructose intake and exercise decreased this response ( P < 0.05). Exercise increased the cardiac expression of the NRF2-to-KEAP1 ratio and phase II antioxidants in fructose-fed mice ( P < 0.05). NOX4, glutathione reductase, and catalase protein expression were similar between the groups. These findings suggest that exercise confers modulatory cardiac effects, improving antioxidant defenses through the NRF2/KEAP1 pathway and decreasing oxidative stress, representing a potential nonpharmacological approach to protect against fructose-induced cardiometabolic diseases.NEW & NOTEWORTHY This is the first study to evaluate the cardiac modulation of NAD(P)H oxidase (NOX), the NRF2/Kelch-like ECH-associated protein 1 pathway (KEAP), and the thioredoxin (TRX1) system through exercise in the presence of moderate fructose intake. We demonstrated a novel mechanism by which exercise improves cardiac antioxidant defenses in an experimental model of chronic fructose intake, which involves NRF2-to-KEAP1 ratio modulation, enhancing the local phase II antioxidants hemoxygenase-1, thioredoxin reductase (TXNRD1), and peroxiredoxin1B (PDRX1), and inhibiting cardiac NOX2 overexpression.
Collapse
Affiliation(s)
- Renata Alves
- Laboratory of Exercise Sciences, Department of Physiology and Pharmacology, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil
- National Institute for Science and Technology-INCT (In)activity and Exercise, Conselho Nacional de Desenvolvimento Científico e Tecnológico-Niterói (RJ), Rio de Janeiro, Brazil
| | - Camila Liyoko Suehiro
- Department of Pathology, University of Sao Paulo, School of Medicine, Sao Paulo, Brazil
- Department of Internal Medicine, University of Sao Paulo, School of Medicine, Sao Paulo, Brazil
| | - Flavia Garcia de Oliveira
- Laboratory of Exercise Sciences, Department of Physiology and Pharmacology, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil
- National Institute for Science and Technology-INCT (In)activity and Exercise, Conselho Nacional de Desenvolvimento Científico e Tecnológico-Niterói (RJ), Rio de Janeiro, Brazil
| | - Eliete Dalla Corte Frantz
- Laboratory of Exercise Sciences, Department of Physiology and Pharmacology, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil
- National Institute for Science and Technology-INCT (In)activity and Exercise, Conselho Nacional de Desenvolvimento Científico e Tecnológico-Niterói (RJ), Rio de Janeiro, Brazil
| | - Renata Frauches de Medeiros
- Laboratory of Exercise Sciences, Department of Physiology and Pharmacology, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil
- National Institute for Science and Technology-INCT (In)activity and Exercise, Conselho Nacional de Desenvolvimento Científico e Tecnológico-Niterói (RJ), Rio de Janeiro, Brazil
| | - Rodolfo de Paula Vieira
- Department of Internal Medicine, University of Sao Paulo, School of Medicine, Sao Paulo, Brazil
- Brazilian Institute of Teaching and Research in Pulmonary and Exercise Immunology (IBEPIPE), Sao Jose dos Campos, Sao Paulo, Brazil
- Graduate Program in Sciences of Human Movement and Rehabilitation, Federal University of Sao Paulo, Santos, Sao Paulo, Brazil
- Graduate Program in Bioengineering, Universidade Brasil, Campus Itaquera, Sao Paulo, Sao Paulo, Brazil
- School of Medicine, Anhembi Morumbi University, São José dos Campos, Sao Paulo, Brazil
| | | | - Chin Jia Lin
- Department of Pathology, University of Sao Paulo, School of Medicine, Sao Paulo, Brazil
| | - Antonio Claudio Lucas da Nobrega
- Laboratory of Exercise Sciences, Department of Physiology and Pharmacology, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil
- National Institute for Science and Technology-INCT (In)activity and Exercise, Conselho Nacional de Desenvolvimento Científico e Tecnológico-Niterói (RJ), Rio de Janeiro, Brazil
| | - Alessandra Choqueta de Toledo-Arruda
- Laboratory of Exercise Sciences, Department of Physiology and Pharmacology, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil
- National Institute for Science and Technology-INCT (In)activity and Exercise, Conselho Nacional de Desenvolvimento Científico e Tecnológico-Niterói (RJ), Rio de Janeiro, Brazil
- Department of Pathology, University of Sao Paulo, School of Medicine, Sao Paulo, Brazil
- Department of Internal Medicine, University of Sao Paulo, School of Medicine, Sao Paulo, Brazil
| |
Collapse
|
19
|
Fisher-Wellman KH, Davidson MT, Narowski TM, Lin CT, Koves TR, Muoio DM. Mitochondrial Diagnostics: A Multiplexed Assay Platform for Comprehensive Assessment of Mitochondrial Energy Fluxes. Cell Rep 2019; 24:3593-3606.e10. [PMID: 30257218 DOI: 10.1016/j.celrep.2018.08.091] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 06/23/2018] [Accepted: 08/29/2018] [Indexed: 12/17/2022] Open
Abstract
Chronic metabolic diseases have been linked to molecular signatures of mitochondrial dysfunction. Nonetheless, molecular remodeling of the transcriptome, proteome, and/or metabolome does not necessarily translate to functional consequences that confer physiologic phenotypes. The work here aims to bridge the gap between molecular and functional phenomics by developing and validating a multiplexed assay platform for comprehensive assessment of mitochondrial energy transduction. The diagnostic power of the platform stems from a modified version of the creatine kinase energetic clamp technique, performed in parallel with multiplexed analyses of dehydrogenase activities and ATP synthesis rates. Together, these assays provide diagnostic coverage of the mitochondrial network at a level approaching that gained by molecular "-omics" technologies. Application of the platform to a comparison of skeletal muscle versus heart mitochondria reveals mechanistic insights into tissue-specific distinctions in energy transfer efficiency. This platform opens exciting opportunities to unravel the connection between mitochondrial bioenergetics and human disease.
Collapse
Affiliation(s)
- Kelsey H Fisher-Wellman
- Departments of Medicine and Pharmacology and Cancer Biology, Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute, Duke University, Durham, NC 27701, USA; East Carolina Diabetes and Obesity Institute, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA.
| | - Michael T Davidson
- Departments of Medicine and Pharmacology and Cancer Biology, Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute, Duke University, Durham, NC 27701, USA
| | - Tara M Narowski
- Departments of Medicine and Pharmacology and Cancer Biology, Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute, Duke University, Durham, NC 27701, USA
| | - Chien-Te Lin
- East Carolina Diabetes and Obesity Institute, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Timothy R Koves
- Departments of Medicine and Pharmacology and Cancer Biology, Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute, Duke University, Durham, NC 27701, USA
| | - Deborah M Muoio
- Departments of Medicine and Pharmacology and Cancer Biology, Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute, Duke University, Durham, NC 27701, USA.
| |
Collapse
|
20
|
Berru FN, Gray SE, Thome T, Kumar RA, Salyers ZR, Coleman M, Dennis Le, O'Malley K, Ferreira LF, Berceli SA, Scali ST, Ryan TE. Chronic kidney disease exacerbates ischemic limb myopathy in mice via altered mitochondrial energetics. Sci Rep 2019; 9:15547. [PMID: 31664123 PMCID: PMC6820860 DOI: 10.1038/s41598-019-52107-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 10/12/2019] [Indexed: 02/07/2023] Open
Abstract
Chronic kidney disease (CKD) substantially increases the severity of peripheral arterial disease (PAD) symptomology, however, the biological mechanisms remain unclear. The objective herein was to determine the impact of CKD on PAD pathology in mice. C57BL6/J mice were subjected to a diet-induced model of CKD by delivery of adenine for six weeks. CKD was confirmed by measurements of glomerular filtration rate, blood urea nitrogen, and kidney histopathology. Mice with CKD displayed lower muscle force production and greater ischemic lesions in the tibialis anterior muscle (78.1 ± 14.5% vs. 2.5 ± 0.5% in control mice, P < 0.0001, N = 5-10/group) and decreased myofiber size (1661 ± 134 μm2 vs. 2221 ± 100 μm2 in control mice, P < 0.01, N = 5-10/group). This skeletal myopathy occurred despite normal capillary density (516 ± 59 vs. 466 ± 45 capillaries/20x field of view) and limb perfusion. CKD mice displayed a ~50-65% reduction in muscle mitochondrial respiratory capacity in ischemic muscle, whereas control mice had normal mitochondrial function. Hydrogen peroxide emission was modestly higher in the ischemic muscle of CKD mice, which coincided with decreased oxidant buffering. Exposure of cultured myotubes to CKD serum resulted in myotube atrophy and elevated oxidative stress, which were attenuated by mitochondrial-targeted therapies. Taken together, these findings suggest that mitochondrial impairments caused by CKD contribute to the exacerbation of ischemic pathology.
Collapse
Affiliation(s)
- Fabian N Berru
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Sarah E Gray
- Division of Vascular Surgery and Endovascular Therapy, University of Florida, Gainesville, FL, USA
- Malcolm Randall Veteran Affairs Medical Center, Gainesville, FL, USA
| | - Trace Thome
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Ravi A Kumar
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Zachary R Salyers
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Madeline Coleman
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Dennis Le
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Kerri O'Malley
- Division of Vascular Surgery and Endovascular Therapy, University of Florida, Gainesville, FL, USA
- Malcolm Randall Veteran Affairs Medical Center, Gainesville, FL, USA
| | - Leonardo F Ferreira
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
- Center for Exercise Science, University of Florida, Gainesville, FL, USA
| | - Scott A Berceli
- Division of Vascular Surgery and Endovascular Therapy, University of Florida, Gainesville, FL, USA
- Malcolm Randall Veteran Affairs Medical Center, Gainesville, FL, USA
| | - Salvatore T Scali
- Division of Vascular Surgery and Endovascular Therapy, University of Florida, Gainesville, FL, USA
- Malcolm Randall Veteran Affairs Medical Center, Gainesville, FL, USA
| | - Terence E Ryan
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA.
- Center for Exercise Science, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
21
|
Boardman NT, Rossvoll L, Lund J, Hafstad AD, Aasum E. 3-Weeks of Exercise Training Increases Ischemic-Tolerance in Hearts From High-Fat Diet Fed Mice. Front Physiol 2019; 10:1274. [PMID: 31632301 PMCID: PMC6783811 DOI: 10.3389/fphys.2019.01274] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 09/19/2019] [Indexed: 12/15/2022] Open
Abstract
Physical activity is an efficient strategy to delay development of obesity and insulin resistance, and thus the progression of obesity/diabetes-related cardiomyopathy. In support of this, experimental studies using animal models of obesity show that chronic exercise prevents the development of obesity-induced cardiac dysfunction (cardiomyopathy). Whether exercise also improves the tolerance to ischemia-reperfusion in these models is less clear, and may depend on the type of exercise procedure as well as time of initiation. We have previously shown a reduction in ischemic-injury in diet-induced obese mice, when the exercise was started prior to the development of cardiac dysfunction in this model. In the present study, we aimed to explore the effect of exercise on ischemic-tolerance when exercise was initiated after the development obesity-mediated. Male C57BL/6J mice were fed a high-fat diet (HFD) for 20–22 weeks, where they were subjected to high-intensity interval training (HIT) during the last 3 weeks of the feeding period. Sedentary HFD fed and chow fed mice served as controls. Left-ventricular (LV) post-ischemic functional recovery and infarct size were measured in isolated perfused hearts. We also assessed the effect of 3-week HIT on mitochondrial function and myocardial oxygen consumption (MVO2). Sedentary HFD fed mice developed marked obesity and insulin resistance, and demonstrated reduced post-ischemic cardiac functional recovery and increased infarct size. Three weeks of HIT did not induce cardiac hypertrophy and only had a mild effect on obesity and insulin resistance. Despite this, HIT improved post-ischemic LV functional recovery and reduced infarct size. This increase in ischemic-tolerance was accompanied by an improved mitochondrial function as well as reduced MVO2. The present study highlights the beneficial effects of exercise training with regard to improving the ischemic-tolerance in hearts with cardiomyopathy following obesity and insulin resistance. This study also emphasizes the exercise-induced improvement of cardiac energetics and mitochondrial function in obesity/diabetes.
Collapse
Affiliation(s)
- Neoma T Boardman
- Cardiovascular Research Group, Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Line Rossvoll
- Cardiovascular Research Group, Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Jim Lund
- Cardiovascular Research Group, Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Anne D Hafstad
- Cardiovascular Research Group, Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Ellen Aasum
- Cardiovascular Research Group, Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
22
|
Zhang PL, Wang ZK, Chen QY, Du X, Gao J. Biocompatible G-Quadruplex/BODIPY assembly for cancer cell imaging and the attenuation of mitochondria. Bioorg Med Chem Lett 2019; 29:1943-1947. [DOI: 10.1016/j.bmcl.2019.05.043] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 05/20/2019] [Accepted: 05/20/2019] [Indexed: 01/26/2023]
|
23
|
Hughes MC, Ramos SV, Turnbull PC, Rebalka IA, Cao A, Monaco CM, Varah NE, Edgett BA, Huber JS, Tadi P, Delfinis LJ, Schlattner U, Simpson JA, Hawke TJ, Perry CG. Early myopathy in Duchenne muscular dystrophy is associated with elevated mitochondrial H 2 O 2 emission during impaired oxidative phosphorylation. J Cachexia Sarcopenia Muscle 2019; 10:643-661. [PMID: 30938481 PMCID: PMC6596403 DOI: 10.1002/jcsm.12405] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 12/13/2018] [Accepted: 01/09/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Muscle wasting and weakness in Duchenne muscular dystrophy (DMD) causes severe locomotor limitations and early death due in part to respiratory muscle failure. Given that current clinical practice focuses on treating secondary complications in this genetic disease, there is a clear need to identify additional contributions in the aetiology of this myopathy for knowledge-guided therapy development. Here, we address the unresolved question of whether the complex impairments observed in DMD are linked to elevated mitochondrial H2 O2 emission in conjunction with impaired oxidative phosphorylation. This study performed a systematic evaluation of the nature and degree of mitochondrial-derived H2 O2 emission and mitochondrial oxidative dysfunction in a mouse model of DMD by designing in vitro bioenergetic assessments that attempt to mimic in vivo conditions known to be critical for the regulation of mitochondrial bioenergetics. METHODS Mitochondrial bioenergetics were compared with functional and histopathological indices of myopathy early in DMD (4 weeks) in D2.B10-DMDmdx /2J mice (D2.mdx)-a model that demonstrates severe muscle weakness. Adenosine diphosphate's (ADP's) central effect of attenuating H2 O2 emission while stimulating respiration was compared under two models of mitochondrial-cytoplasmic phosphate exchange (creatine independent and dependent) in muscles that stained positive for membrane damage (diaphragm, quadriceps, and white gastrocnemius). RESULTS Pathway-specific analyses revealed that Complex I-supported maximal H2 O2 emission was elevated concurrent with a reduced ability of ADP to attenuate emission during respiration in all three muscles (mH2 O2 : +17 to +197% in D2.mdx vs. wild type). This was associated with an impaired ability of ADP to stimulate respiration at sub-maximal and maximal kinetics (-17 to -72% in D2.mdx vs. wild type), as well as a loss of creatine-dependent mitochondrial phosphate shuttling in diaphragm and quadriceps. These changes largely occurred independent of mitochondrial density or abundance of respiratory chain complexes, except for quadriceps. This muscle was also the only one exhibiting decreased calcium retention capacity, which indicates increased sensitivity to calcium-induced permeability transition pore opening. Increased H2 O2 emission was accompanied by a compensatory increase in total glutathione, while oxidative stress markers were unchanged. Mitochondrial bioenergetic dysfunctions were associated with induction of mitochondrial-linked caspase 9, necrosis, and markers of atrophy in some muscles as well as reduced hindlimb torque and reduced respiratory muscle function. CONCLUSIONS These results provide evidence that Complex I dysfunction and loss of central respiratory control by ADP and creatine cause elevated oxidant generation during impaired oxidative phosphorylation. These dysfunctions may contribute to early stage disease pathophysiology and support the growing notion that mitochondria are a potential therapeutic target in this disease.
Collapse
Affiliation(s)
- Meghan C. Hughes
- School of Kinesiology and Health Science, Muscle Health Research Centre, 344 Norman Bethune CollegeYork UniversityTorontoONCanada
| | - Sofhia V. Ramos
- School of Kinesiology and Health Science, Muscle Health Research Centre, 344 Norman Bethune CollegeYork UniversityTorontoONCanada
| | - Patrick C. Turnbull
- School of Kinesiology and Health Science, Muscle Health Research Centre, 344 Norman Bethune CollegeYork UniversityTorontoONCanada
| | - Irena A. Rebalka
- Department of Pathology and Molecular MedicineMcMaster UniversityHamiltonONCanada
| | - Andrew Cao
- Department of Pathology and Molecular MedicineMcMaster UniversityHamiltonONCanada
| | - Cynthia M.F. Monaco
- Department of Pathology and Molecular MedicineMcMaster UniversityHamiltonONCanada
| | - Nina E. Varah
- Department of Pathology and Molecular MedicineMcMaster UniversityHamiltonONCanada
| | - Brittany A. Edgett
- Department of Human Health and Nutritional Sciences and Cardiovascular Research GroupUniversity of GuelphGuelphONCanada
| | - Jason S. Huber
- Department of Human Health and Nutritional Sciences and Cardiovascular Research GroupUniversity of GuelphGuelphONCanada
| | - Peyman Tadi
- School of Kinesiology and Health Science, Muscle Health Research Centre, 344 Norman Bethune CollegeYork UniversityTorontoONCanada
| | - Luca J. Delfinis
- School of Kinesiology and Health Science, Muscle Health Research Centre, 344 Norman Bethune CollegeYork UniversityTorontoONCanada
| | - U. Schlattner
- Laboratory of Fundamental and Applied Bioenergetics (LBFA) and SFR Environmental and Systems Biology (BEeSy)University Grenoble AlpesGrenobleFrance
| | - Jeremy A. Simpson
- Department of Human Health and Nutritional Sciences and Cardiovascular Research GroupUniversity of GuelphGuelphONCanada
| | - Thomas J. Hawke
- Department of Pathology and Molecular MedicineMcMaster UniversityHamiltonONCanada
| | - Christopher G.R. Perry
- School of Kinesiology and Health Science, Muscle Health Research Centre, 344 Norman Bethune CollegeYork UniversityTorontoONCanada
| |
Collapse
|
24
|
Hughes MC, Ramos SV, Turnbull PC, Edgett BA, Huber JS, Polidovitch N, Schlattner U, Backx PH, Simpson JA, Perry CGR. Impairments in left ventricular mitochondrial bioenergetics precede overt cardiac dysfunction and remodelling in Duchenne muscular dystrophy. J Physiol 2019; 598:1377-1392. [PMID: 30674086 DOI: 10.1113/jp277306] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 01/22/2019] [Indexed: 12/21/2022] Open
Abstract
KEY POINTS Ninety-eight per cent of patients with Duchenne muscular dystrophy (DMD) develop cardiomyopathy, with 40% developing heart failure. While increased propensity for mitochondrial induction of cell death has been observed in left ventricle, it remains unknown whether this is linked to impaired mitochondrial respiratory control and elevated H2 O2 emission prior to the onset of cardiomyopathy. Classic mouse models of DMD demonstrate hyper-regeneration in skeletal muscle which may mask mitochondrial abnormalities. Using a model with less regenerative capacity that is more akin to DMD patients, we observed elevated left ventricular mitochondrial H2 O2 and impaired oxidative phosphorylation in the absence of cardiac remodelling or overt cardiac dysfunction at 4 weeks. These impairments were associated with dysfunctions at complex I, governance by ADP and creatine-dependent phosphate shuttling, which results in a less efficient response to energy demands. Mitochondria may be a therapeutic target for the treatment of cardiomyopathy in DMD. ABSTRACT In Duchenne muscular dystrophy (DMD), mitochondrial dysfunction is predicted as a response to numerous cellular stressors, yet the contribution of mitochondria to the onset of cardiomyopathy remains unknown. To resolve this uncertainty, we designed in vitro assessments of mitochondrial bioenergetics to model mitochondrial control parameters that influence cardiac function. Both left ventricular mitochondrial responsiveness to the central bioenergetic controller ADP and the ability of creatine to facilitate mitochondrial-cytoplasmic phosphate shuttling were assessed. These measurements were performed in D2.B10-DMDmdx /2J mice - a model that demonstrates skeletal muscle atrophy and weakness due to limited regenerative capacities and cardiomyopathy more akin to people with DMD than classic models. At 4 weeks of age, there was no evidence of cardiac remodelling or cardiac dysfunction despite impairments in ADP-stimulated respiration and ADP attenuation of H2 O2 emission. These impairments were seen at both submaximal and maximal ADP concentrations despite no reductions in mitochondrial content markers. The ability of creatine to enhance ADP's control of mitochondrial bioenergetics was also impaired, suggesting an impairment in mitochondrial creatine kinase-dependent phosphate shuttling. Susceptibly to permeability transition pore opening and the subsequent activation of cell death pathways remained unchanged. Mitochondrial H2 O2 emission was elevated despite no change in markers of irreversible oxidative damage, suggesting alternative redox signalling mechanisms should be explored. These findings demonstrate that selective mitochondrial dysfunction precedes the onset of overt cardiomyopathy in D2.mdx mice, suggesting that improving mitochondrial bioenergetics by restoring ADP, creatine-dependent phosphate shuttling and complex I should be considered for treating DMD patients.
Collapse
Affiliation(s)
- Meghan C Hughes
- School of Kinesiology and Health Science and the Muscle Health Research Centre, York University, Toronto, ON, Canada
| | - Sofhia V Ramos
- School of Kinesiology and Health Science and the Muscle Health Research Centre, York University, Toronto, ON, Canada
| | - Patrick C Turnbull
- School of Kinesiology and Health Science and the Muscle Health Research Centre, York University, Toronto, ON, Canada
| | - Brittany A Edgett
- Department of Human Health and Nutritional Sciences and Cardiovascular Research Group, University of Guelph, Guelph, ON, Canada.,Department of Pharmacology, Dalhousie Medicine New Brunswick, Saint John, New Brunswick, Canada.,IMPART Team Canada Investigator Network, Saint John, New Brunswick, Canada
| | - Jason S Huber
- Department of Human Health and Nutritional Sciences and Cardiovascular Research Group, University of Guelph, Guelph, ON, Canada
| | - Nazari Polidovitch
- Department of Biology and the Muscle Health Research Centre, York University, Toronto, ON, Canada
| | - Uwe Schlattner
- Laboratory of Fundamental and Applied Bioenergetics (LBFA) and SFR Environmental and Systems Biology (BEeSy), University Grenoble Alpes, Grenoble, France
| | - Peter H Backx
- Department of Biology and the Muscle Health Research Centre, York University, Toronto, ON, Canada
| | - Jeremy A Simpson
- Department of Human Health and Nutritional Sciences and Cardiovascular Research Group, University of Guelph, Guelph, ON, Canada.,IMPART Team Canada Investigator Network, Saint John, New Brunswick, Canada
| | - Christopher G R Perry
- School of Kinesiology and Health Science and the Muscle Health Research Centre, York University, Toronto, ON, Canada
| |
Collapse
|
25
|
Weiss RA, Bernardy J. Induction of fat apoptosis by a non-thermal device: Mechanism of action of non-invasive high-intensity electromagnetic technology in a porcine model. Lasers Surg Med 2018; 51:47-53. [PMID: 30549290 PMCID: PMC6590311 DOI: 10.1002/lsm.23039] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2018] [Indexed: 12/30/2022]
Abstract
Objectives While controlled thermal changes in subcutaneous tissue have been used to trigger apoptosis of fat cells and have been proven clinically efficacious, another mechanism of electromagnetic stress suggests that fat apoptosis could be achieved by a non‐thermal manner as well. This animal model study investigates the use of a non‐invasive high‐intensity magnetic field device to induce apoptosis in fat cells. Methods Yorkshire pigs (N = 2) received one treatment (30 minutes) in the abdominal area using a High‐Intensity Focused Electromagnetic (HIFEM) device. Punch biopsy samples of fat tissue and blood samples were collected at the baseline, 1 and 8 hours after the treatment. Biopsy samples were sectioned and evaluated for the levels of an apoptotic index (AI) by the TUNEL method. Statistical significance was examined using the rANOVA and Tukey's test (α 5%). Biopsy samples were also assessed for molecular biomarkers. Blood samples were evaluated to determine changes related to fat and muscle metabolism. Free fatty acids (FFA), triacylglycerol (TG), glycerol and glucose (Glu) were used as the main biomarkers of fat metabolism. Creatinine, creatinine kinase (CK), lactate dehydrogenase (LDH) and interleukin 6 (IL6) served as the main biomarkers to evaluate muscle metabolism. Results In treated pigs, a statistically significant increase in the apoptotic index (AI) (P = 1.17E‐4) was observed. A significant difference was found between AI at baseline (AI = 18.75%) and 8‐hours post‐treatment (AI = 35.95%). Serum levels of fat and muscle metabolism indicated trends (FFA −0.32 mmol · l−1, −28.1%; TG −0.24 mmol · l−1, −51.8%; Glycerol −5.68 mg · l−1, −54.8%; CK +67.58 μkat · l−1, +227.8%; LDH +4.9 μkat · l−1,+35.4%) suggesting that both adipose and muscle tissue were affected by HIFEM treatment. No adverse events were noted to skin and surrounding tissue. Conclusions Application of a high‐intensity electromagnetic field in a porcine model results in adipocyte apoptosis. The analysis of serum levels suggests that HIFEM treatment influences fat and muscle metabolism. Lasers Surg. Med. 51:47–53, 2019. © 2018 The Authors. Lasers in Surgery and Medicine Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Robert A Weiss
- Maryland Laser Skin, & Vein Institute, Hunt Valley, Maryland
| | - Jan Bernardy
- Veterinary Research Institute, Brno, Czech Republic
| |
Collapse
|
26
|
Anderson EJ, Vistoli G, Katunga LA, Funai K, Regazzoni L, Monroe TB, Gilardoni E, Cannizzaro L, Colzani M, De Maddis D, Rossoni G, Canevotti R, Gagliardi S, Carini M, Aldini G. A carnosine analog mitigates metabolic disorders of obesity by reducing carbonyl stress. J Clin Invest 2018; 128:5280-5293. [PMID: 30226473 DOI: 10.1172/jci94307] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 09/11/2018] [Indexed: 12/15/2022] Open
Abstract
Sugar- and lipid-derived aldehydes are reactive carbonyl species (RCS) frequently used as surrogate markers of oxidative stress in obesity. A pathogenic role for RCS in metabolic diseases of obesity remains controversial, however, partly because of their highly diffuse and broad reactivity and the lack of specific RCS-scavenging therapies. Naturally occurring histidine dipeptides (e.g., anserine and carnosine) show RCS reactivity, but their therapeutic potential in humans is limited by serum carnosinases. Here, we present the rational design, characterization, and pharmacological evaluation of carnosinol, i.e., (2S)-2-(3-amino propanoylamino)-3-(1H-imidazol-5-yl)propanol, a derivative of carnosine with high oral bioavailability that is resistant to carnosinases. Carnosinol displayed a suitable ADMET (absorption, distribution, metabolism, excretion, and toxicity) profile and was determined to have the greatest potency and selectivity toward α,β-unsaturated aldehydes (e.g., 4-hydroxynonenal, HNE, ACR) among all others reported thus far. In rodent models of diet-induced obesity and metabolic syndrome, carnosinol dose-dependently attenuated HNE adduct formation in liver and skeletal muscle, while simultaneously mitigating inflammation, dyslipidemia, insulin resistance, and steatohepatitis. These improvements in metabolic parameters with carnosinol were not due to changes in energy expenditure, physical activity, adiposity, or body weight. Collectively, our findings illustrate a pathogenic role for RCS in obesity-related metabolic disorders and provide validation for a promising new class of carbonyl-scavenging therapeutic compounds rationally derived from carnosine.
Collapse
Affiliation(s)
- Ethan J Anderson
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa, USA.,Department of Pharmacology and Toxicology, East Carolina University, Greenville, North Carolina, USA
| | - Giulio Vistoli
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Lalage A Katunga
- Department of Pharmacology and Toxicology, East Carolina University, Greenville, North Carolina, USA
| | - Katsuhiko Funai
- Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, Utah, USA
| | - Luca Regazzoni
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - T Blake Monroe
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa, USA.,Department of Pharmacology and Toxicology, East Carolina University, Greenville, North Carolina, USA
| | - Ettore Gilardoni
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Luca Cannizzaro
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Mara Colzani
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Danilo De Maddis
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Giuseppe Rossoni
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | | | | | - Marina Carini
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Giancarlo Aldini
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| |
Collapse
|
27
|
Tinkov AA, Bjørklund G, Skalny AV, Holmgren A, Skalnaya MG, Chirumbolo S, Aaseth J. The role of the thioredoxin/thioredoxin reductase system in the metabolic syndrome: towards a possible prognostic marker? Cell Mol Life Sci 2018; 75:1567-1586. [PMID: 29327078 PMCID: PMC11105605 DOI: 10.1007/s00018-018-2745-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 12/13/2017] [Accepted: 01/03/2018] [Indexed: 12/12/2022]
Abstract
Mammalian thioredoxin reductase (TrxR) is a selenoprotein with three existing isoenzymes (TrxR1, TrxR2, and TrxR3), which is found primarily intracellularly but also in extracellular fluids. The main substrate thioredoxin (Trx) is similarly found (as Trx1 and Trx2) in various intracellular compartments, in blood plasma, and is the cell's major disulfide reductase. Thioredoxin reductase is necessary as a NADPH-dependent reducing agent in biochemical reactions involving Trx. Genetic and environmental factors like selenium status influence the activity of TrxR. Research shows that the Trx/TrxR system plays a significant role in the physiology of the adipose tissue, in carbohydrate metabolism, insulin production and sensitivity, blood pressure regulation, inflammation, chemotactic activity of macrophages, and atherogenesis. Based on recent research, it has been reported that the modulation of the Trx/TrxR system may be considered as a new target in the management of the metabolic syndrome, insulin resistance, and type 2 diabetes, as well as in the treatment of hypertension and atherosclerosis. In this review evidence about a possible role of this system as a marker of the metabolic syndrome is reported.
Collapse
Affiliation(s)
- Alexey A Tinkov
- Yaroslavl State University, Yaroslavl, Russia
- Peoples' Friendship University of Russia (RUDN University), Moscow, Russia
- Institute of Cellular and Intracellular Symbiosis, Russian Academy of Sciences, Orenburg, Russia
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Toften 24, 8610, Mo i Rana, Norway.
| | - Anatoly V Skalny
- Yaroslavl State University, Yaroslavl, Russia
- Peoples' Friendship University of Russia (RUDN University), Moscow, Russia
- Trace Element Institute for UNESCO, Lyon, France
- Orenburg State University, Orenburg, Russia
| | - Arne Holmgren
- Department of Medical Biochemistry and Biophysics (MBB), Karolinska Institute, Stockholm, Sweden
| | | | - Salvatore Chirumbolo
- Department of Neurological and Movement Sciences, University of Verona, Verona, Italy
| | - Jan Aaseth
- Research Department, Innlandet Hospital Trust, Brumunddal, Norway
- Inland Norway University of Applied Sciences, Elverum, Norway
| |
Collapse
|
28
|
Lou PH, Lucchinetti E, Scott KY, Huang Y, Gandhi M, Hersberger M, Clanachan AS, Lemieux H, Zaugg M. Alterations in fatty acid metabolism and sirtuin signaling characterize early type-2 diabetic hearts of fructose-fed rats. Physiol Rep 2018; 5:5/16/e13388. [PMID: 28830979 PMCID: PMC5582268 DOI: 10.14814/phy2.13388] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 07/24/2017] [Indexed: 01/25/2023] Open
Abstract
Despite the fact that skeletal muscle insulin resistance is the hallmark of type‐2 diabetes mellitus (T2DM), inflexibility in substrate energy metabolism has been observed in other tissues such as liver, adipose tissue, and heart. In the heart, structural and functional changes ultimately lead to diabetic cardiomyopathy. However, little is known about the early biochemical changes that cause cardiac metabolic dysregulation and dysfunction. We used a dietary model of fructose‐induced T2DM (10% fructose in drinking water for 6 weeks) to study cardiac fatty acid metabolism in early T2DM and related signaling events in order to better understand mechanisms of disease. In early type‐2 diabetic hearts, flux through the fatty acid oxidation pathway was increased as a result of increased cellular uptake (CD36), mitochondrial uptake (CPT1B), as well as increased β‐hydroxyacyl‐CoA dehydrogenase and medium‐chain acyl‐CoA dehydrogenase activities, despite reduced mitochondrial mass. Long‐chain acyl‐CoA dehydrogenase activity was slightly decreased, resulting in the accumulation of long‐chain acylcarnitine species. Cardiac function and overall mitochondrial respiration were unaffected. However, evidence of oxidative stress and subtle changes in cardiolipin content and composition were found in early type‐2 diabetic mitochondria. Finally, we observed decreased activity of SIRT1, a pivotal regulator of fatty acid metabolism, despite increased protein levels. This indicates that the heart is no longer capable of further increasing its capacity for fatty acid oxidation. Along with increased oxidative stress, this may represent one of the earliest signs of dysfunction that will ultimately lead to inflammation and remodeling in the diabetic heart.
Collapse
Affiliation(s)
- Phing-How Lou
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - Eliana Lucchinetti
- Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Katrina Y Scott
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - Yiming Huang
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - Manoj Gandhi
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - Martin Hersberger
- Division of Clinical Chemistry and Biochemistry, University Children's Hospital Zürich, Zurich, Switzerland
| | | | - Hélène Lemieux
- Faculty Saint-Jean, University of Alberta, Edmonton, Alberta, Canada
| | - Michael Zaugg
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada .,Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
29
|
Morton AB, Mor Huertas A, Hinkley JM, Ichinoseki-Sekine N, Christou DD, Smuder AJ. Mitochondrial accumulation of doxorubicin in cardiac and diaphragm muscle following exercise preconditioning. Mitochondrion 2018; 45:52-62. [PMID: 29474837 DOI: 10.1016/j.mito.2018.02.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/22/2017] [Accepted: 02/15/2018] [Indexed: 12/22/2022]
Abstract
Doxorubicin (DOX) is a highly effective anthracycline antibiotic. Unfortunately, the clinical use of DOX is limited by the risk of deleterious effects to cardiac and respiratory (i.e. diaphragm) muscle, resulting from mitochondrial reactive oxygen species (ROS) production. In this regard, exercise is demonstrated to protect against DOX-induced myotoxicity and prevent mitochondrial dysfunction. However, the protective mechanisms are currently unclear. We hypothesized that exercise may induce protection by increasing the expression of mitochondria-specific ATP-binding cassette (ABC) transporters and reducing mitochondrial DOX accumulation. Our results confirm this finding and demonstrate that two weeks of exercise preconditioning is sufficient to prevent cardiorespiratory dysfunction.
Collapse
Affiliation(s)
- Aaron B Morton
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
| | - Andres Mor Huertas
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
| | - J Matthew Hinkley
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
| | | | - Demetra D Christou
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
| | - Ashley J Smuder
- Department of Exercise Science, University of South Carolina, Columbia, SC, United States.
| |
Collapse
|
30
|
Mahmoud AM. Exercise Amaliorates Metabolic Disturbances and Oxidative Stress in Diabetic Cardiomyopathy: Possible Underlying Mechanisms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 999:207-230. [PMID: 29022265 DOI: 10.1007/978-981-10-4307-9_12] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
31
|
Pereira RO, Tadinada SM, Zasadny FM, Oliveira KJ, Pires KMP, Olvera A, Jeffers J, Souvenir R, Mcglauflin R, Seei A, Funari T, Sesaki H, Potthoff MJ, Adams CM, Anderson EJ, Abel ED. OPA1 deficiency promotes secretion of FGF21 from muscle that prevents obesity and insulin resistance. EMBO J 2017; 36:2126-2145. [PMID: 28607005 PMCID: PMC5510002 DOI: 10.15252/embj.201696179] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 05/08/2017] [Accepted: 05/09/2017] [Indexed: 12/21/2022] Open
Abstract
Mitochondrial dynamics is a conserved process by which mitochondria undergo repeated cycles of fusion and fission, leading to exchange of mitochondrial genetic content, ions, metabolites, and proteins. Here, we examine the role of the mitochondrial fusion protein optic atrophy 1 (OPA1) in differentiated skeletal muscle by reducing OPA1 gene expression in an inducible manner. OPA1 deficiency in young mice results in non-lethal progressive mitochondrial dysfunction and loss of muscle mass. Mutant mice are resistant to age- and diet-induced weight gain and insulin resistance, by mechanisms that involve activation of ER stress and secretion of fibroblast growth factor 21 (FGF21) from skeletal muscle, resulting in increased metabolic rates and improved whole-body insulin sensitivity. OPA1-elicited mitochondrial dysfunction activates an integrated stress response that locally induces muscle atrophy, but via secretion of FGF21 acts distally to modulate whole-body metabolism.
Collapse
Affiliation(s)
- Renata Oliveira Pereira
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, IA, USA
| | - Satya M Tadinada
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, IA, USA
| | - Frederick M Zasadny
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, IA, USA
| | - Karen Jesus Oliveira
- Division of Endocrinology, Metabolism and Diabetes, and Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Karla Maria Pereira Pires
- Division of Endocrinology, Metabolism and Diabetes, and Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Angela Olvera
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, IA, USA
| | - Jennifer Jeffers
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, IA, USA
| | - Rhonda Souvenir
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, IA, USA
| | - Rose Mcglauflin
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, IA, USA
| | - Alec Seei
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, IA, USA
| | - Trevor Funari
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, IA, USA
| | - Hiromi Sesaki
- Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Matthew J Potthoff
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, IA, USA
- Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, IA, USA
| | - Christopher M Adams
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, IA, USA
| | - Ethan J Anderson
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, IA, USA
- College of Pharmacy, University of Iowa, Iowa City, IA, USA
| | - E Dale Abel
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, IA, USA
- Division of Endocrinology, Metabolism and Diabetes, and Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| |
Collapse
|
32
|
La Favor JD, Dubis GS, Yan H, White JD, Nelson MAM, Anderson EJ, Hickner RC. Microvascular Endothelial Dysfunction in Sedentary, Obese Humans Is Mediated by NADPH Oxidase: Influence of Exercise Training. Arterioscler Thromb Vasc Biol 2016; 36:2412-2420. [PMID: 27765769 DOI: 10.1161/atvbaha.116.308339] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Accepted: 10/06/2016] [Indexed: 12/27/2022]
Abstract
OBJECTIVE The objectives of this study were to determine the impact of in vivo reactive oxygen species (ROS) on microvascular endothelial function in obese human subjects and the efficacy of an aerobic exercise intervention on alleviating obesity-associated dysfunctionality. APPROACH AND RESULTS Young, sedentary men and women were divided into lean (body mass index 18-25; n=14), intermediate (body mass index 28-32.5; n=13), and obese (body mass index 33-40; n=15) groups. A novel microdialysis technique was utilized to detect elevated interstitial hydrogen peroxide (H2O2) and superoxide levels in the vastus lateralis of obese compared with both lean and intermediate subjects. Nutritive blood flow was monitored in the vastus lateralis via the microdialysis-ethanol technique. A decrement in acetylcholine-stimulated blood flow revealed impaired microvascular endothelial function in the obese subjects. Perfusion of apocynin, an NADPH oxidase inhibitor, lowered (normalized) H2O2 and superoxide levels, and reversed microvascular endothelial dysfunction in obese subjects. After 8 weeks of exercise, H2O2 levels were decreased in the obese subjects and microvascular endothelial function in these subjects was restored to levels similar to lean subjects. Skeletal muscle protein expression of the NADPH oxidase subunits p22phox, p47phox, and p67phox was increased in obese relative to lean subjects, where p22phox and p67phox expression was attenuated by exercise training in obese subjects. CONCLUSIONS This study implicates NADPH oxidase as a source of excessive ROS production in skeletal muscle of obese individuals and links excessive NADPH oxidase-derived ROS to microvascular endothelial dysfunction in obesity. Furthermore, aerobic exercise training proved to be an effective strategy for alleviating these maladies.
Collapse
Affiliation(s)
- Justin D La Favor
- From the Human Performance Laboratory, Departments of Kinesiology (J.D.L.F., G.S.D., H.Y., J.D.W., R.C.H.), Pharmacology and Toxicology (M.A.M.N., E.J.A.), Physiology (R.C.H.), East Carolina Diabetes and Obesity Institute (J.D.L.F., M.A.M.N., E.J.A., R.C.H.), Center for Health Disparities (R.C.H.), East Carolina University, Greenville, NC; Department of Urology, The James Buchannan Brady Urological Institute, The Johns Hopkins School of Medicine, Baltimore, MD (J.D.L.F.); Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City (E.J.A.); and Department of Biokinetics, Exercise and Leisure Science, University of KwaZulu-Natal, Durban, South Africa (R.C.H.).
| | - Gabriel S Dubis
- From the Human Performance Laboratory, Departments of Kinesiology (J.D.L.F., G.S.D., H.Y., J.D.W., R.C.H.), Pharmacology and Toxicology (M.A.M.N., E.J.A.), Physiology (R.C.H.), East Carolina Diabetes and Obesity Institute (J.D.L.F., M.A.M.N., E.J.A., R.C.H.), Center for Health Disparities (R.C.H.), East Carolina University, Greenville, NC; Department of Urology, The James Buchannan Brady Urological Institute, The Johns Hopkins School of Medicine, Baltimore, MD (J.D.L.F.); Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City (E.J.A.); and Department of Biokinetics, Exercise and Leisure Science, University of KwaZulu-Natal, Durban, South Africa (R.C.H.)
| | - Huimin Yan
- From the Human Performance Laboratory, Departments of Kinesiology (J.D.L.F., G.S.D., H.Y., J.D.W., R.C.H.), Pharmacology and Toxicology (M.A.M.N., E.J.A.), Physiology (R.C.H.), East Carolina Diabetes and Obesity Institute (J.D.L.F., M.A.M.N., E.J.A., R.C.H.), Center for Health Disparities (R.C.H.), East Carolina University, Greenville, NC; Department of Urology, The James Buchannan Brady Urological Institute, The Johns Hopkins School of Medicine, Baltimore, MD (J.D.L.F.); Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City (E.J.A.); and Department of Biokinetics, Exercise and Leisure Science, University of KwaZulu-Natal, Durban, South Africa (R.C.H.)
| | - Joseph D White
- From the Human Performance Laboratory, Departments of Kinesiology (J.D.L.F., G.S.D., H.Y., J.D.W., R.C.H.), Pharmacology and Toxicology (M.A.M.N., E.J.A.), Physiology (R.C.H.), East Carolina Diabetes and Obesity Institute (J.D.L.F., M.A.M.N., E.J.A., R.C.H.), Center for Health Disparities (R.C.H.), East Carolina University, Greenville, NC; Department of Urology, The James Buchannan Brady Urological Institute, The Johns Hopkins School of Medicine, Baltimore, MD (J.D.L.F.); Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City (E.J.A.); and Department of Biokinetics, Exercise and Leisure Science, University of KwaZulu-Natal, Durban, South Africa (R.C.H.)
| | - Margaret A M Nelson
- From the Human Performance Laboratory, Departments of Kinesiology (J.D.L.F., G.S.D., H.Y., J.D.W., R.C.H.), Pharmacology and Toxicology (M.A.M.N., E.J.A.), Physiology (R.C.H.), East Carolina Diabetes and Obesity Institute (J.D.L.F., M.A.M.N., E.J.A., R.C.H.), Center for Health Disparities (R.C.H.), East Carolina University, Greenville, NC; Department of Urology, The James Buchannan Brady Urological Institute, The Johns Hopkins School of Medicine, Baltimore, MD (J.D.L.F.); Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City (E.J.A.); and Department of Biokinetics, Exercise and Leisure Science, University of KwaZulu-Natal, Durban, South Africa (R.C.H.)
| | - Ethan J Anderson
- From the Human Performance Laboratory, Departments of Kinesiology (J.D.L.F., G.S.D., H.Y., J.D.W., R.C.H.), Pharmacology and Toxicology (M.A.M.N., E.J.A.), Physiology (R.C.H.), East Carolina Diabetes and Obesity Institute (J.D.L.F., M.A.M.N., E.J.A., R.C.H.), Center for Health Disparities (R.C.H.), East Carolina University, Greenville, NC; Department of Urology, The James Buchannan Brady Urological Institute, The Johns Hopkins School of Medicine, Baltimore, MD (J.D.L.F.); Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City (E.J.A.); and Department of Biokinetics, Exercise and Leisure Science, University of KwaZulu-Natal, Durban, South Africa (R.C.H.)
| | - Robert C Hickner
- From the Human Performance Laboratory, Departments of Kinesiology (J.D.L.F., G.S.D., H.Y., J.D.W., R.C.H.), Pharmacology and Toxicology (M.A.M.N., E.J.A.), Physiology (R.C.H.), East Carolina Diabetes and Obesity Institute (J.D.L.F., M.A.M.N., E.J.A., R.C.H.), Center for Health Disparities (R.C.H.), East Carolina University, Greenville, NC; Department of Urology, The James Buchannan Brady Urological Institute, The Johns Hopkins School of Medicine, Baltimore, MD (J.D.L.F.); Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City (E.J.A.); and Department of Biokinetics, Exercise and Leisure Science, University of KwaZulu-Natal, Durban, South Africa (R.C.H.)
| |
Collapse
|
33
|
Lawler JM, Rodriguez DA, Hord JM. Mitochondria in the middle: exercise preconditioning protection of striated muscle. J Physiol 2016; 594:5161-83. [PMID: 27060608 PMCID: PMC5023703 DOI: 10.1113/jp270656] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 04/01/2016] [Indexed: 12/24/2022] Open
Abstract
Cellular and physiological adaptations to an atmosphere which became enriched in molecular oxygen spurred the development of a layered system of stress protection, including antioxidant and stress response proteins. At physiological levels reactive oxygen and nitrogen species regulate cell signalling as well as intracellular and intercellular communication. Exercise and physical activity confer a variety of stressors on skeletal muscle and the cardiovascular system: mechanical, metabolic, oxidative. Transient increases of stressors during acute bouts of exercise or exercise training stimulate enhancement of cellular stress protection against future insults of oxidative, metabolic and mechanical stressors that could induce injury or disease. This phenomenon has been termed both hormesis and exercise preconditioning (EPC). EPC stimulates transcription factors such as Nrf-1 and heat shock factor-1 and up-regulates gene expression of a cadre of cytosolic (e.g. glutathione peroxidase and heat shock proteins) and mitochondrial adaptive or stress proteins (e.g. manganese superoxide dismutase, mitochondrial KATP channels and peroxisome proliferator activated receptor γ coactivator-1 (PGC-1)). Stress response and antioxidant enzyme inducibility with exercise lead to protection against striated muscle damage, oxidative stress and injury. EPC may indeed provide significant clinical protection against ischaemia-reperfusion injury, Type II diabetes and ageing. New molecular mechanisms of protection, such as δ-opioid receptor regulation and mitophagy, reinforce the notion that mitochondrial adaptations (e.g. heat shock proteins, antioxidant enzymes and sirtuin-1/PGC-1 signalling) are central to the protective effects of exercise preconditioning.
Collapse
Affiliation(s)
- John M Lawler
- Redox Biology & Cell Signalling Laboratory, Department of Health and Kinesiology, Graduate Faculty of Nutrition & Food Science, Texas A&M University, College Station, TX, USA.
| | - Dinah A Rodriguez
- Redox Biology & Cell Signalling Laboratory, Department of Health and Kinesiology, Graduate Faculty of Nutrition & Food Science, Texas A&M University, College Station, TX, USA
| | - Jeffrey M Hord
- Redox Biology & Cell Signalling Laboratory, Department of Health and Kinesiology, Graduate Faculty of Nutrition & Food Science, Texas A&M University, College Station, TX, USA
| |
Collapse
|
34
|
La Favor JD, Burnett AL. A microdialysis method to measure in vivo hydrogen peroxide and superoxide in various rodent tissues. Methods 2016; 109:131-140. [PMID: 27452801 DOI: 10.1016/j.ymeth.2016.07.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 07/18/2016] [Accepted: 07/20/2016] [Indexed: 01/07/2023] Open
Abstract
Reactive oxygen species (ROS) play a critical role in cell signaling and disease pathogenesis. Despite their biological importance, assessment of ROS often involves measurement of indirect byproducts or measurement of ROS from excised tissue. Herein, we describe a microdialysis technique that utilizes the Amplex Ultrared assay to directly measure hydrogen peroxide (H2O2) and superoxide in tissue of living, anesthetized rats and mice. We demonstrate the application of this methodology in the penis, adipose tissue, skeletal muscle, kidney, and liver. We provide data demonstrating the impact of important methodological considerations such as membrane length, perfusion rate, and time-dependence upon probe insertion. In this report, we provide a complete list of equipment, troubleshooting tips, and suggestions for implementing this technique in a new system. The data herein demonstrate the feasibility of measuring both in vivo H2O2 and superoxide in the extracellular environment of various rodent tissues, providing a technique with potential application to a vast array of disease states which are subject to oxidative stress.
Collapse
Affiliation(s)
- Justin D La Favor
- The James Buchanan Brady Urological Institute and Department of Urology, The Johns Hopkins School of Medicine, Baltiore, MD, United States.
| | - Arthur L Burnett
- The James Buchanan Brady Urological Institute and Department of Urology, The Johns Hopkins School of Medicine, Baltiore, MD, United States
| |
Collapse
|
35
|
Yoshioka J. Thioredoxin superfamily and its effects on cardiac physiology and pathology. Compr Physiol 2016; 5:513-30. [PMID: 25880503 DOI: 10.1002/cphy.c140042] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A precise control of oxidation/reduction of protein thiols is essential for intact cardiac physiology. Irreversible oxidative modifications have been proposed to play a role in the pathogenesis of cardiovascular diseases. An imbalance of redox homeostasis with diminution of antioxidant capacities predisposes the heart to oxidant injury. There is growing interest in endoplasmic reticulum (ER) stress in the cardiovascular field, since perturbation of redox homeostasis in the ER is sufficient to cause ER stress. Because a number of human diseases are related to altered redox homeostasis and defects in protein folding, many research efforts have been devoted in recent years to understanding the structure and enzymatic properties of the thioredoxin superfamily. The thioredoxin superfamily has been well documented as thiol oxidoreductases to exert a role in various cell signaling pathways. The redox properties of the thioredoxin motif account for the different functions of several members of the thioredoxin superfamily. While thioredoxin and glutaredoxin primarily act as antioxidants by reducing protein disulfides and mixed disulfide, another member of the superfamily, protein disulfide isomerase (PDI), can act as an oxidant by forming intrachain disulfide bonds that contribute to proper protein folding. Increasing evidence suggests a pivotal role of PDI in the survival pathway that promotes cardiomyocyte survival and leads to more favorable cardiac remodeling. Thus, the thiol redox state is important for cellular redox signaling and survival pathway in the heart. This review summarizes the key features of major members of the thioredoxin superfamily directly involved in cardiac physiology and pathology.
Collapse
Affiliation(s)
- Jun Yoshioka
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Cambridge, Massachusetts, USA
| |
Collapse
|
36
|
Bartz RR, Suliman HB, Piantadosi CA. Redox mechanisms of cardiomyocyte mitochondrial protection. Front Physiol 2015; 6:291. [PMID: 26578967 PMCID: PMC4620408 DOI: 10.3389/fphys.2015.00291] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Accepted: 10/02/2015] [Indexed: 12/30/2022] Open
Abstract
Oxidative and nitrosative stress are primary contributors to the loss of myocardial tissue in insults ranging from ischemia/reperfusion injury from coronary artery disease and heart transplantation to sepsis-induced myocardial dysfunction and drug-induced myocardial damage. This cell damage caused by oxidative and nitrosative stress leads to mitochondrial protein, DNA, and lipid modifications, which inhibits energy production and contractile function, potentially leading to cell necrosis and/or apoptosis. However, cardiomyocytes have evolved an elegant set of redox-sensitive mechanisms that respond to and contain oxidative and nitrosative damage. These responses include the rapid induction of antioxidant enzymes, mitochondrial DNA repair mechanisms, selective mitochondrial autophagy (mitophagy), and mitochondrial biogenesis. Coordinated cytoplasmic to nuclear cell-signaling and mitochondrial transcriptional responses to the presence of elevated cytoplasmic oxidant production, e.g., H2O2, allows nuclear translocation of the Nfe2l2 transcription factor and up-regulation of downstream cytoprotective genes such as heme oxygenase-1 which generates physiologic signals, such as CO that up-regulates Nfe212 gene transcription. Simultaneously, a number of other DNA binding transcription factors are expressed and/or activated under redox control, such as Nuclear Respiratory Factor-1 (NRF-1), and lead to the induction of genes involved in both intracellular and mitochondria-specific repair mechanisms. The same insults, particularly those related to vascular stress and inflammation also produce elevated levels of nitric oxide, which also has mitochondrial protein thiol-protective functions and induces mitochondrial biogenesis through cyclic GMP-dependent and perhaps other pathways. This brief review provides an overview of these pathways and interconnected cardiac repair mechanisms.
Collapse
Affiliation(s)
- Raquel R Bartz
- Department of Anesthesiology, Duke University School of Medicine Durham, NC, USA ; Department of Medicine, Duke University School of Medicine Durham, NC, USA
| | - Hagir B Suliman
- Department of Anesthesiology, Duke University School of Medicine Durham, NC, USA ; Department of Pathology, Duke University School of Medicine Durham, NC, USA
| | - Claude A Piantadosi
- Department of Anesthesiology, Duke University School of Medicine Durham, NC, USA ; Department of Medicine, Duke University School of Medicine Durham, NC, USA ; Department of Pathology, Duke University School of Medicine Durham, NC, USA ; Durham Veterans Affairs Hospital Durham, NC, USA
| |
Collapse
|
37
|
Hafstad AD, Boardman N, Aasum E. How exercise may amend metabolic disturbances in diabetic cardiomyopathy. Antioxid Redox Signal 2015; 22:1587-605. [PMID: 25738326 PMCID: PMC4449627 DOI: 10.1089/ars.2015.6304] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
SIGNIFICANCE Over-nutrition and sedentary lifestyle has led to a worldwide increase in obesity, insulin resistance, and type 2 diabetes (T2D) associated with an increased risk of development of cardiovascular disorders. Diabetic cardiomyopathy, independent of hypertension or coronary disease, is induced by a range of systemic changes and may through multiple processes result in functional and structural cardiac derangements. The pathogenesis of this cardiomyopathy is complex and multifactorial, and it will eventually lead to reduced cardiac working capacity and increased susceptibility to ischemic injury. RECENT ADVANCES Metabolic disturbances such as altered lipid handling and substrate utilization, decreased mechanical efficiency, mitochondrial dysfunction, disturbances in nonoxidative glucose pathways, and increased oxidative stress are hallmarks of diabetic cardiomyopathy. Interestingly, several of these disturbances are found to precede the development of cardiac dysfunction. CRITICAL ISSUES Exercise training is effective in the prevention and treatment of obesity and T2D. In addition to its beneficial influence on diabetes/obesity-related systemic changes, it may also amend many of the metabolic disturbances characterizing the diabetic myocardium. These changes are due to both indirect effects, exercise-mediated systemic changes, and direct effects originating from the high contractile activity of the heart during physical training. FUTURE DIRECTIONS Revealing the molecular mechanisms behind the beneficial effects of exercise training is of considerable scientific value to generate evidence-based therapy and in the development of new treatment strategies.
Collapse
Affiliation(s)
- Anne D Hafstad
- Cardiovascular Research Group, Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Neoma Boardman
- Cardiovascular Research Group, Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Ellen Aasum
- Cardiovascular Research Group, Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
38
|
Roul D, Recchia FA. Metabolic alterations induce oxidative stress in diabetic and failing hearts: different pathways, same outcome. Antioxid Redox Signal 2015; 22:1502-14. [PMID: 25836025 PMCID: PMC4449624 DOI: 10.1089/ars.2015.6311] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
SIGNIFICANCE Several authors have proposed a link between altered cardiac energy substrate metabolism and reactive oxygen species (ROS) generation. A cogent evidence of this association has been found in diabetic cardiomyopathy (dCM); however, experimental findings in animal models of heart failure (HF) and in human myocardium also seem to support the coexistence of the two alterations in HF. CRITICAL ISSUES Two important questions remain open: whether pathological changes in metabolism play an important role in enhancing oxidative stress and whether there is a common pathway linking altered substrate utilization and activation of ROS-generating enzymes, independently of the underlying cardiac pathology. In this regard, the comparison between dCM and HF is intriguing, in that these pathological conditions display very different cardiac metabolic phenotypes. RECENT ADVANCES Our literature review on this topic indicates that a vast body of knowledge is now available documenting the relationship between the metabolism of energy substrates and ROS generation in dCM. In some cases, biochemical mechanisms have been identified. On the other hand, only a few and relatively recent studies have explored this phenomenon in HF and their conclusions are not consistent. FUTURE DIRECTIONS Better methods of investigation, especially in vivo, will be necessary to test whether the metabolic fate of certain substrates is causally linked to ROS production. If successful, these studies will place a new emphasis on the potential clinical relevance of metabolic modulators, which might indirectly mitigate cardiac oxidative stress in dCM, HF, and, possibly, in other pathological conditions.
Collapse
Affiliation(s)
- David Roul
- 1Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Fabio A Recchia
- 1Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania.,2Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| |
Collapse
|
39
|
Aon MA, Tocchetti CG, Bhatt N, Paolocci N, Cortassa S. Protective mechanisms of mitochondria and heart function in diabetes. Antioxid Redox Signal 2015; 22:1563-86. [PMID: 25674814 PMCID: PMC4449630 DOI: 10.1089/ars.2014.6123] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
SIGNIFICANCE The heart depends on continuous mitochondrial ATP supply and maintained redox balance to properly develop force, particularly under increased workload. During diabetes, however, myocardial energetic-redox balance is perturbed, contributing to the systolic and diastolic dysfunction known as diabetic cardiomyopathy (DC). CRITICAL ISSUES How these energetic and redox alterations intertwine to influence the DC progression is still poorly understood. Excessive bioavailability of both glucose and fatty acids (FAs) play a central role, leading, among other effects, to mitochondrial dysfunction. However, where and how this nutrient excess affects mitochondrial and cytoplasmic energetic/redox crossroads remains to be defined in greater detail. RECENT ADVANCES We review how high glucose alters cellular redox balance and affects mitochondrial DNA. Next, we address how lipid excess, either stored in lipid droplets or utilized by mitochondria, affects performance in diabetic hearts by influencing cardiac energetic and redox assets. Finally, we examine how the reciprocal energetic/redox influence between mitochondrial and cytoplasmic compartments shapes myocardial mechanical activity during the course of DC, focusing especially on the glutathione and thioredoxin systems. FUTURE DIRECTIONS Protecting mitochondria from losing their ability to generate energy, and to control their own reactive oxygen species emission is essential to prevent the onset and/or to slow down DC progression. We highlight mechanisms enforced by the diabetic heart to counteract glucose/FAs surplus-induced damage, such as lipid storage, enhanced mitochondria-lipid droplet interaction, and upregulation of key antioxidant enzymes. Learning more on the nature and location of mechanisms sheltering mitochondrial functions would certainly help in further optimizing therapies for human DC.
Collapse
Affiliation(s)
- Miguel A Aon
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Carlo G Tocchetti
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Niraj Bhatt
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Nazareno Paolocci
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Sonia Cortassa
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
40
|
Katunga LA, Gudimella P, Efird JT, Abernathy S, Mattox TA, Beatty C, Darden TM, Thayne KA, Alwair H, Kypson AP, Virag JA, Anderson EJ. Obesity in a model of gpx4 haploinsufficiency uncovers a causal role for lipid-derived aldehydes in human metabolic disease and cardiomyopathy. Mol Metab 2015; 4:493-506. [PMID: 26042203 PMCID: PMC4443294 DOI: 10.1016/j.molmet.2015.04.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 04/08/2015] [Accepted: 04/14/2015] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE Lipid peroxides and their reactive aldehyde derivatives (LPPs) have been linked to obesity-related pathologies, but whether they have a causal role has remained unclear. Glutathione peroxidase 4 (GPx4) is a selenoenzyme that selectively neutralizes lipid hydroperoxides, and human gpx4 gene variants have been associated with obesity and cardiovascular disease in epidemiological studies. This study tested the hypothesis that LPPs underlie cardio-metabolic derangements in obesity using a high fat, high sucrose (HFHS) diet in gpx4 haploinsufficient mice (GPx4(+/-)) and in samples of human myocardium. METHODS Wild-type (WT) and GPx4(+/-) mice were fed either a standard chow (CNTL) or HFHS diet for 24 weeks, with metabolic and cardiovascular parameters measured throughout. Biochemical and immuno-histological analysis was performed in heart and liver at termination of study, and mitochondrial function was analyzed in heart. Biochemical analysis was also performed on samples of human atrial myocardium from a cohort of 103 patients undergoing elective heart surgery. RESULTS Following HFHS diet, WT mice displayed moderate increases in 4-hydroxynonenal (HNE)-adducts and carbonyl stress, and a 1.5-fold increase in GPx4 enzyme in both liver and heart, while gpx4 haploinsufficient (GPx4(+/-)) mice had marked carbonyl stress in these organs accompanied by exacerbated glucose intolerance, dyslipidemia, and liver steatosis. Although normotensive, cardiac hypertrophy was evident with obesity, and cardiac fibrosis more pronounced in obese GPx4(+/-) mice. Mitochondrial dysfunction manifesting as decreased fat oxidation capacity and increased reactive oxygen species was also present in obese GPx4(+/-) but not WT hearts, along with up-regulation of pro-inflammatory and pro-fibrotic genes. Patients with diabetes and hyperglycemia exhibited significantly less GPx4 enzyme and greater HNE-adducts in their hearts, compared with age-matched non-diabetic patients. CONCLUSION These findings suggest LPPs are key factors underlying cardio-metabolic derangements that occur with obesity and that GPx4 serves a critical role as an adaptive countermeasure.
Collapse
Key Words
- 4-HNE, 4-hydroxynonenal
- BMI, body mass index
- CNTL, control
- Coll1a1, collagen, type I, alpha
- Coll4a1, collagen, type IV, alpha 1
- EF, ejection fraction
- FS, fractional shortening
- GPx4, glutathione peroxidase 4
- Glutathione peroxidase 4
- HDL, high-density lipoprotein
- HFHS, high fat, high sucrose
- Human heart
- IL-1β, interleukin-1 beta
- IL-6, interleukin-6
- Inflammation
- LPPs, lipid peroxidation end products
- Lipid peroxidation
- Mitochondria
- Nrf2, nuclear factor (erythroid-derived 2)-like 2
- Obesity
- PUFA, polyunsaturated fatty acids
- RAGE, receptor for advanced glycation end products
- RNS, reactive nitrogen species
- ROS, reactive oxygen species
- TG, triglycerides
- TGF-β1, transforming growth factor beta 1
- TGF-β2, transforming growth factor beta 2
- TNF-α, tumor necrosis factor-α
- WT, wild type
- iNOS, inducible nitric oxide synthase
- β-MHC, β myosin heavy chain
Collapse
Affiliation(s)
- Lalage A. Katunga
- Department of Pharmacology & Toxicology, East Carolina University, Greenville, NC, United States
- Department of Public Health, East Carolina University, Greenville, NC, United States
| | - Preeti Gudimella
- Department of Pharmacology & Toxicology, East Carolina University, Greenville, NC, United States
| | - Jimmy T. Efird
- Department of Public Health, East Carolina University, Greenville, NC, United States
- East Carolina Heart Institute, East Carolina University, Greenville, NC, United States
| | - Scott Abernathy
- Department of Pharmacology & Toxicology, East Carolina University, Greenville, NC, United States
| | - Taylor A. Mattox
- Department of Pharmacology & Toxicology, East Carolina University, Greenville, NC, United States
| | - Cherese Beatty
- Department of Pharmacology & Toxicology, East Carolina University, Greenville, NC, United States
| | - Timothy M. Darden
- Department of Pharmacology & Toxicology, East Carolina University, Greenville, NC, United States
| | - Kathleen A. Thayne
- Department of Pharmacology & Toxicology, East Carolina University, Greenville, NC, United States
| | - Hazaim Alwair
- East Carolina Heart Institute, East Carolina University, Greenville, NC, United States
| | - Alan P. Kypson
- East Carolina Heart Institute, East Carolina University, Greenville, NC, United States
| | - Jitka A. Virag
- Department of Physiology, East Carolina University, Greenville, NC, United States
| | - Ethan J. Anderson
- Department of Pharmacology & Toxicology, East Carolina University, Greenville, NC, United States
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, United States
| |
Collapse
|
41
|
Impact of oxidative stress on exercising skeletal muscle. Biomolecules 2015; 5:356-77. [PMID: 25866921 PMCID: PMC4496677 DOI: 10.3390/biom5020356] [Citation(s) in RCA: 240] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 03/24/2015] [Accepted: 03/30/2015] [Indexed: 01/01/2023] Open
Abstract
It is well established that muscle contractions during exercise lead to elevated levels of reactive oxygen species (ROS) in skeletal muscle. These highly reactive molecules have many deleterious effects, such as a reduction of force generation and increased muscle atrophy. Since the discovery of exercise-induced oxidative stress several decades ago, evidence has accumulated that ROS produced during exercise also have positive effects by influencing cellular processes that lead to increased expression of antioxidants. These molecules are particularly elevated in regularly exercising muscle to prevent the negative effects of ROS by neutralizing the free radicals. In addition, ROS also seem to be involved in the exercise-induced adaptation of the muscle phenotype. This review provides an overview of the evidences to date on the effects of ROS in exercising muscle. These aspects include the sources of ROS, their positive and negative cellular effects, the role of antioxidants, and the present evidence on ROS-dependent adaptations of muscle cells in response to physical exercise.
Collapse
|
42
|
Schild M, Ruhs A, Beiter T, Zügel M, Hudemann J, Reimer A, Krumholz-Wagner I, Wagner C, Keller J, Eder K, Krüger K, Krüger M, Braun T, Nieß A, Steinacker J, Mooren FC. Basal and exercise induced label-free quantitative protein profiling of m. vastus lateralis in trained and untrained individuals. J Proteomics 2015; 122:119-32. [PMID: 25857276 DOI: 10.1016/j.jprot.2015.03.028] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 03/13/2015] [Accepted: 03/28/2015] [Indexed: 12/26/2022]
Abstract
UNLABELLED Morphological and metabolic adaptations of the human skeletal muscle to exercise are crucial to improve performance and prevent chronic diseases and metabolic disorders. In this study we investigated human skeletal muscle protein composition in endurance trained (ET) versus untrained individuals (UT) and its modulation by an acute bout of endurance exercise. Participants were recruited based on their VO2max and subjected to a bicycle exercise test. M. vastus lateralis biopsies were taken before and three hours after exercise. Muscle lysates were analyzed using off-gel LC-MS/MS. Relative protein abundances were compared between ET and UT at rest and after exercise. Comparing UT and ET, we identified 92 significantly changed proteins under resting conditions. Specifically, fiber-type-specific and proteins of the oxidative phosphorylation and tricarboxylic acid cycle were increased in ET. In response to acute exercise, 71 proteins in ET and 44 in UT were altered. Here, a decrease of proteins involved in energy metabolism accompanied with alterations of heat shock and proteasomal proteins could be observed. In summary, long-term endurance training increased the basal level of structural and mitochondrial proteins in skeletal muscle. In contrast, acute exercise resulted in a depletion of proteins related to substrate utilization, especially in trained athletes. BIOLOGICAL SIGNIFICANCE The investigation of the human skeletal muscle proteome in response to exercise may provide novel insights into the process of muscular plasticity. It is of importance in the development of exercise-based strategies in the prevention and therapy of many chronic inflammatory and degenerative diseases which are often accompanied by muscular deconditioning. Up to date, proteomic investigations of the human muscle proteome in adaptation to exercise are mainly focused on untrained individuals and often restricted to animal studies. In the present study we compare the protein composition in endurance trained athletes and untrained individuals in the resting muscle and its modulation in response to acute exercise. To our knowledge, we present the first comprehensive analysis of skeletal muscle proteome alterations in response to acute and long-term exercise intervention.
Collapse
Affiliation(s)
- Marius Schild
- Department of Sports Medicine, Justus-Liebig University Giessen, Kugelberg 62, 35394 Giessen, Germany
| | - Aaron Ruhs
- Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Parkstr. 1, 61231 Bad Nauheim, Germany
| | - Thomas Beiter
- Department of Sports Medicine, University Hospital of Tuebingen, Otfried-Müller-Str. 10, 72076 Tuebingen, Germany
| | - Martina Zügel
- Division of Sport and Rehabilitation Medicine, University Hospital Ulm, Parkstr. 11, 89075 Ulm, Germany
| | - Jens Hudemann
- Department of Sports Medicine, University Hospital of Tuebingen, Otfried-Müller-Str. 10, 72076 Tuebingen, Germany
| | - Anna Reimer
- Department of Sports Medicine, Justus-Liebig University Giessen, Kugelberg 62, 35394 Giessen, Germany
| | - Ilke Krumholz-Wagner
- Department of Sports Medicine, Justus-Liebig University Giessen, Kugelberg 62, 35394 Giessen, Germany
| | - Carola Wagner
- Division of Sport and Rehabilitation Medicine, University Hospital Ulm, Parkstr. 11, 89075 Ulm, Germany
| | - Janine Keller
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Klaus Eder
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Karsten Krüger
- Department of Sports Medicine, Justus-Liebig University Giessen, Kugelberg 62, 35394 Giessen, Germany
| | - Marcus Krüger
- CECAD Research Center, Institute of Genetics, University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Thomas Braun
- Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Parkstr. 1, 61231 Bad Nauheim, Germany
| | - Andreas Nieß
- Department of Sports Medicine, University Hospital of Tuebingen, Otfried-Müller-Str. 10, 72076 Tuebingen, Germany
| | - Jürgen Steinacker
- Division of Sport and Rehabilitation Medicine, University Hospital Ulm, Parkstr. 11, 89075 Ulm, Germany
| | - Frank C Mooren
- Department of Sports Medicine, Justus-Liebig University Giessen, Kugelberg 62, 35394 Giessen, Germany.
| |
Collapse
|
43
|
Wiggs MP. Can endurance exercise preconditioning prevention disuse muscle atrophy? Front Physiol 2015; 6:63. [PMID: 25814955 PMCID: PMC4356230 DOI: 10.3389/fphys.2015.00063] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 02/17/2015] [Indexed: 12/18/2022] Open
Abstract
Emerging evidence suggests that exercise training can provide a level of protection against disuse muscle atrophy. Endurance exercise training imposes oxidative, metabolic, and heat stress on skeletal muscle which activates a variety of cellular signaling pathways that ultimately leads to the increased expression of proteins that have been demonstrated to protect muscle from inactivity -induced atrophy. This review will highlight the effect of exercise-induced oxidative stress on endogenous enzymatic antioxidant capacity (i.e., superoxide dismutase, glutathione peroxidase, and catalase), the role of oxidative and metabolic stress on PGC1-α, and finally highlight the effect heat stress and HSP70 induction. Finally, this review will discuss the supporting scientific evidence that these proteins can attenuate muscle atrophy through exercise preconditioning.
Collapse
Affiliation(s)
- Michael P Wiggs
- Department of Applied Physiology and Kinesiology, Center for Exercise Science, University of Florida Gainesville, FL, USA
| |
Collapse
|
44
|
Lund J, Hafstad AD, Boardman NT, Rossvoll L, Rolim NP, Ahmed MS, Florholmen G, Attramadal H, Wisløff U, Larsen TS, Aasum E. Exercise training promotes cardioprotection through oxygen-sparing action in high fat-fed mice. Am J Physiol Heart Circ Physiol 2015; 308:H823-9. [PMID: 25637547 DOI: 10.1152/ajpheart.00734.2014] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 01/28/2015] [Indexed: 11/22/2022]
Abstract
Although exercise training has been demonstrated to have beneficial cardiovascular effects in diabetes, the effect of exercise training on hearts from obese/diabetic models is unclear. In the present study, mice were fed a high-fat diet, which led to obesity, reduced aerobic capacity, development of mild diastolic dysfunction, and impaired glucose tolerance. Following 8 wk on high-fat diet, mice were assigned to 5 weekly high-intensity interval training (HIT) sessions (10 × 4 min at 85-90% of maximum oxygen uptake) or remained sedentary for the next 10 constitutive weeks. HIT increased maximum oxygen uptake by 13%, reduced body weight by 16%, and improved systemic glucose homeostasis. Exercise training was found to normalize diastolic function, attenuate diet-induced changes in myocardial substrate utilization, and dampen cardiac reactive oxygen species content and fibrosis. These changes were accompanied by normalization of obesity-related impairment of mechanical efficiency due to a decrease in work-independent myocardial oxygen consumption. Finally, we found HIT to reduce infarct size by 47% in ex vivo hearts subjected to ischemia-reperfusion. This study therefore demonstrated for the first time that exercise training mediates cardioprotection following ischemia in diet-induced obese mice and that this was associated with oxygen-sparing effects. These findings highlight the importance of optimal myocardial energetics during ischemic stress.
Collapse
Affiliation(s)
- J Lund
- Cardiovascular Research Group, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway;
| | - A D Hafstad
- Cardiovascular Research Group, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - N T Boardman
- Cardiovascular Research Group, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - L Rossvoll
- Cardiovascular Research Group, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - N P Rolim
- K. G. Jebsen Center of Exercise in Medicine, Department of Circulation and Medical Imaging, Faculty of Medicine, Norwegian University of Science and Technology and Saint Olavs Hospital, Trondheim University Hospital, Trondheim, Norway; and
| | - M S Ahmed
- Institute for Surgical Research, Department of Cardiology, Center for Heart Failure Research, Oslo University Hospital-Rikshospitalet, University of Oslo, Oslo, Norway
| | - G Florholmen
- Institute for Surgical Research, Department of Cardiology, Center for Heart Failure Research, Oslo University Hospital-Rikshospitalet, University of Oslo, Oslo, Norway
| | - H Attramadal
- Institute for Surgical Research, Department of Cardiology, Center for Heart Failure Research, Oslo University Hospital-Rikshospitalet, University of Oslo, Oslo, Norway
| | - U Wisløff
- K. G. Jebsen Center of Exercise in Medicine, Department of Circulation and Medical Imaging, Faculty of Medicine, Norwegian University of Science and Technology and Saint Olavs Hospital, Trondheim University Hospital, Trondheim, Norway; and
| | - T S Larsen
- Cardiovascular Research Group, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - E Aasum
- Cardiovascular Research Group, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
45
|
Alleman RJ, Katunga LA, Nelson MAM, Brown DA, Anderson EJ. The "Goldilocks Zone" from a redox perspective-Adaptive vs. deleterious responses to oxidative stress in striated muscle. Front Physiol 2014; 5:358. [PMID: 25278906 PMCID: PMC4166897 DOI: 10.3389/fphys.2014.00358] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 09/02/2014] [Indexed: 01/17/2023] Open
Abstract
Consequences of oxidative stress may be beneficial or detrimental in physiological systems. An organ system's position on the “hormetic curve” is governed by the source and temporality of reactive oxygen species (ROS) production, proximity of ROS to moieties most susceptible to damage, and the capacity of the endogenous cellular ROS scavenging mechanisms. Most importantly, the resilience of the tissue (the capacity to recover from damage) is a decisive factor, and this is reflected in the disparate response to ROS in cardiac and skeletal muscle. In myocytes, a high oxidative capacity invariably results in a significant ROS burden which in homeostasis, is rapidly neutralized by the robust antioxidant network. The up-regulation of key pathways in the antioxidant network is a central component of the hormetic response to ROS. Despite such adaptations, persistent oxidative stress over an extended time-frame (e.g., months to years) inevitably leads to cumulative damages, maladaptation and ultimately the pathogenesis of chronic diseases. Indeed, persistent oxidative stress in heart and skeletal muscle has been repeatedly demonstrated to have causal roles in the etiology of heart disease and insulin resistance, respectively. Deciphering the mechanisms that underlie the divergence between adaptive and maladaptive responses to oxidative stress remains an active area of research for basic scientists and clinicians alike, as this would undoubtedly lead to novel therapeutic approaches. Here, we provide an overview of major types of ROS in striated muscle and the divergent adaptations that occur in response to them. Emphasis is placed on highlighting newly uncovered areas of research on this topic, with particular focus on the mitochondria, and the diverging roles that ROS play in muscle health (e.g., exercise or preconditioning) and disease (e.g., cardiomyopathy, ischemia, metabolic syndrome).
Collapse
Affiliation(s)
- Rick J Alleman
- Departments of Physiology, East Carolina University Greenville, NC, USA ; East Carolina Diabetes and Obesity Institute, East Carolina University Greenville, NC, USA
| | - Lalage A Katunga
- East Carolina Diabetes and Obesity Institute, East Carolina University Greenville, NC, USA ; Pharmacology and Toxicology, Brody School of Medicine, East Carolina University Greenville, NC, USA
| | - Margaret A M Nelson
- East Carolina Diabetes and Obesity Institute, East Carolina University Greenville, NC, USA ; Pharmacology and Toxicology, Brody School of Medicine, East Carolina University Greenville, NC, USA
| | - David A Brown
- Departments of Physiology, East Carolina University Greenville, NC, USA ; East Carolina Diabetes and Obesity Institute, East Carolina University Greenville, NC, USA
| | - Ethan J Anderson
- East Carolina Diabetes and Obesity Institute, East Carolina University Greenville, NC, USA ; Pharmacology and Toxicology, Brody School of Medicine, East Carolina University Greenville, NC, USA
| |
Collapse
|
46
|
Anderson EJ, Thayne KA, Harris M, Shaikh SR, Darden TM, Lark DS, Williams JM, Chitwood WR, Kypson AP, Rodriguez E. Do fish oil omega-3 fatty acids enhance antioxidant capacity and mitochondrial fatty acid oxidation in human atrial myocardium via PPARγ activation? Antioxid Redox Signal 2014; 21:1156-63. [PMID: 24597798 PMCID: PMC4142835 DOI: 10.1089/ars.2014.5888] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Abstract Studies in experimental models suggest that n-3 polyunsaturated fatty acids (PUFAs) improve metabolic and anti-inflammatory/antioxidant capacity of the heart, although the mechanisms are unclear and translational evidence is lacking. In this study, patients ingested a moderately high dose of n-3 PUFAs (3.4 g/day eicosapentaenoic (EPA) and doxosahexaenoic acid (DHA) ethyl-esters) for a period of 2-3 weeks before having elective cardiac surgery. Blood was obtained before treatment and at the time of surgery, and myocardial tissue from the right atrium was also dissected during surgery. Blood EPA levels increased and myocardial tissue EPA and DHA levels were significantly higher in n-3 PUFA-treated patients compared with untreated, standard-of-care control patients. Interestingly, n-3 PUFA patients had greater nuclear transactivation of peroxisome proliferator-activated receptor-γ (PPARγ), fatty acid metabolic gene expression, and enhanced mitochondrial respiration supported by palmitoyl-carnitine in the atrial myocardium, despite no difference in mitochondrial content. Myocardial tissue from n-3 PUFA patients also displayed greater expression and activity of key antioxidant/anti-inflammatory enzymes. These findings lead to our hypothesis that PPARγ activation is a mechanism by which fish oil n-3 PUFAs enhance mitochondrial fatty acid oxidation and antioxidant capacity in human atrial myocardium, and that this preoperative therapeutic regimen may be optimal for mitigating oxidative/inflammatory stress associated with cardiac surgery.
Collapse
Affiliation(s)
- Ethan J Anderson
- 1 Department of Pharmacology & Toxicology, Brody School of Medicine, East Carolina University , Greenville, North Carolina
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Moen RJ, Klein JC, Thomas DD. Electron paramagnetic resonance resolves effects of oxidative stress on muscle proteins. Exerc Sport Sci Rev 2014; 42:30-6. [PMID: 24188980 DOI: 10.1249/jes.0000000000000004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have used site-directed spin labeling and electron paramagnetic resonance (EPR) to explore the effects of oxidation on muscle function, with particular focus on the actin-myosin interaction. EPR measurements show that aging or oxidative modification causes a decrease in the fraction of myosins in the strong-binding state, which can be traced to the actin-binding cleft of the myosin catalytic domain.
Collapse
Affiliation(s)
- Rebecca J Moen
- 1Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN; 2Department of Chemistry and Geology, Minnesota State University, Mankato, Mankato, MN; and 3Department of Biology, University of Wisconsin, Lacrosse, Lacrosse, WI
| | | | | |
Collapse
|
48
|
Aon MA, Bhatt N, Cortassa SC. Mitochondrial and cellular mechanisms for managing lipid excess. Front Physiol 2014; 5:282. [PMID: 25132820 PMCID: PMC4116787 DOI: 10.3389/fphys.2014.00282] [Citation(s) in RCA: 164] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 07/10/2014] [Indexed: 12/16/2022] Open
Abstract
Current scientific debates center on the impact of lipids and mitochondrial function on diverse aspects of human health, nutrition and disease, among them the association of lipotoxicity with the onset of insulin resistance in skeletal muscle, and with heart dysfunction in obesity and diabetes. Mitochondria play a fundamental role in aging and in prevalent acute or chronic diseases. Lipids are main mitochondrial fuels however these molecules can also behave as uncouplers and inhibitors of oxidative phosphorylation. Knowledge about the functional composition of these contradictory effects and their impact on mitochondrial-cellular energetics/redox status is incomplete. Cells store fatty acids (FAs) as triacylglycerol and package them into cytoplasmic lipid droplets (LDs). New emerging data shows the LD as a highly dynamic storage pool of FAs that can be used for energy reserve. Lipid excess packaging into LDs can be seen as an adaptive response to fulfilling energy supply without hindering mitochondrial or cellular redox status and keeping low concentration of lipotoxic intermediates. Herein we review the mechanisms of action and utilization of lipids by mitochondria reported in liver, heart and skeletal muscle under relevant physiological situations, e.g., exercise. We report on perilipins, a family of proteins that associate with LDs in response to loading of cells with lipids. Evidence showing that in addition to physical contact, mitochondria and LDs exhibit metabolic interactions is presented and discussed. A hypothetical model of channeled lipid utilization by mitochondria is proposed. Direct delivery and channeled processing of lipids in mitochondria could represent a reliable and efficient way to maintain reactive oxygen species (ROS) within levels compatible with signaling while ensuring robust and reliable energy supply.
Collapse
Affiliation(s)
- Miguel A Aon
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine Baltimore, MD, USA
| | - Niraj Bhatt
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine Baltimore, MD, USA
| | - Sonia C Cortassa
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine Baltimore, MD, USA
| |
Collapse
|
49
|
Beaudoin MS, Perry CGR, Arkell AM, Chabowski A, Simpson JA, Wright DC, Holloway GP. Impairments in mitochondrial palmitoyl-CoA respiratory kinetics that precede development of diabetic cardiomyopathy are prevented by resveratrol in ZDF rats. J Physiol 2014; 592:2519-33. [PMID: 24639481 DOI: 10.1113/jphysiol.2013.270538] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Alterations in lipid metabolism within the heart may have a causal role in the establishment of diabetic cardiomyopathy; however, this remains equivocal. Therefore, in the current study we determined cardiac mitochondrial bioenergetics in ZDF rats before overt type 2 diabetes and diabetic cardiomyopathy developed. In addition, we utilized resveratrol, a compound previously shown to improve, prevent or reverse cardiac dysfunction in high-fat-fed rodents, as a tool to potentially recover dysfunctions within mitochondria. Fasting blood glucose and invasive left ventricular haemodynamic analysis confirmed the absence of type 2 diabetes and diabetic cardiomyopathy. However, fibrosis was already increased (P < 0.05) ∼70% in ZDF rats at this early stage in disease progression. Assessments of mitochondrial ADP and pyruvate respiratory kinetics in permeabilized fibres from the left ventricle revealed normal electron transport chain function and content. In contrast, the apparent Km to palmitoyl-CoA (P-CoA) was increased (P < 0.05) ∼60%, which was associated with an accumulation of intracellular triacylgycerol, diacylglycerol and ceramide species. In addition, the capacity for mitochondrial reactive oxygen species emission was increased (P < 0.05) ∼3-fold in ZDF rats. The provision of resveratrol reduced fibrosis, P-CoA respiratory sensitivity, reactive lipid accumulation and mitochondrial reactive oxygen species emission rates. Altogether the current data support the supposition that a chronic dysfunction within mitochondrial lipid-supported bioenergetics contributes to the development of diabetic cardiomyopathy, as this was present before overt diabetes or cardiac dysfunction. In addition, we show that resveratrol supplementation prevents these changes, supporting the belief that resveratrol is a potent therapeutic approach for preventing diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Marie-Soleil Beaudoin
- Department of Human Health and Nutritional Sciences, University of Guelph, Ontario, Canada, N1G 2W1
| | - Christopher G R Perry
- School of Kinesiology and Health Science, Faculty of Health, York University, Toronto, Ontario, Canada, M3J 1P3
| | - Alicia M Arkell
- Department of Human Health and Nutritional Sciences, University of Guelph, Ontario, Canada, N1G 2W1
| | - Adrian Chabowski
- Department of Physiology, Medical University of Bialystok, 15-222 Bialystok, Poland
| | - Jeremy A Simpson
- Department of Human Health and Nutritional Sciences, University of Guelph, Ontario, Canada, N1G 2W1
| | - David C Wright
- Department of Human Health and Nutritional Sciences, University of Guelph, Ontario, Canada, N1G 2W1
| | - Graham P Holloway
- Department of Human Health and Nutritional Sciences, University of Guelph, Ontario, Canada, N1G 2W1
| |
Collapse
|
50
|
Anderson EJ, Efird JT, Davies SW, O'Neal WT, Darden TM, Thayne KA, Katunga LA, Kindell LC, Ferguson TB, Anderson CA, Chitwood WR, Koutlas TC, Williams JM, Rodriguez E, Kypson AP. Monoamine oxidase is a major determinant of redox balance in human atrial myocardium and is associated with postoperative atrial fibrillation. J Am Heart Assoc 2014; 3:e000713. [PMID: 24572256 PMCID: PMC3959694 DOI: 10.1161/jaha.113.000713] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Onset of postoperative atrial fibrillation (POAF) is a common and costly complication of heart surgery despite major improvements in surgical technique and quality of patient care. The etiology of POAF, and the ability of clinicians to identify and therapeutically target high‐risk patients, remains elusive. Methods and Results Myocardial tissue dissected from right atrial appendage (RAA) was obtained from 244 patients undergoing cardiac surgery. Reactive oxygen species (ROS) generation from multiple sources was assessed in this tissue, along with total glutathione (GSHt) and its related enzymes GSH‐peroxidase (GPx) and GSH‐reductase (GR). Monoamine oxidase (MAO) and NADPH oxidase were observed to generate ROS at rates 10‐fold greater than intact, coupled mitochondria. POAF risk was significantly associated with MAO activity (Quartile 1 [Q1]: adjusted relative risk [ARR]=1.0; Q2: ARR=1.8, 95% confidence interval [CI]=0.84 to 4.0; Q3: ARR=2.1, 95% CI=0.99 to 4.3; Q4: ARR=3.8, 95% CI=1.9 to 7.5; adjusted Ptrend=0.009). In contrast, myocardial GSHt was inversely associated with POAF (Quartile 1 [Q1]: adjusted relative risk [ARR]=1.0; Q2: ARR=0.93, 95% confidence interval [CI]=0.60 to 1.4; Q3: ARR=0.62, 95% CI=0.36 to 1.1; Q4: ARR=0.56, 95% CI=0.34 to 0.93; adjusted Ptrend=0.014). GPx also was significantly associated with POAF; however, a linear trend for risk was not observed across increasing levels of the enzyme. GR was not associated with POAF risk. Conclusions Our results show that MAO is an important determinant of redox balance in human atrial myocardium, and that this enzyme, in addition to GSHt and GPx, is associated with an increased risk for POAF. Further investigation is needed to validate MAO as a predictive biomarker for POAF, and to explore this enzyme's potential role in arrhythmogenesis.
Collapse
Affiliation(s)
- Ethan J Anderson
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, NC
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|