1
|
Nematisouldaragh D, Nguyen H, Rabinovich-Nikitin I. Agonists, inverse agonists, and antagonists as therapeutic approaches to manipulate retinoic acid-related orphan receptors. Can J Physiol Pharmacol 2024; 102:620-633. [PMID: 38728749 DOI: 10.1139/cjpp-2024-0099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
Retinoic acid-related orphan receptors (RORs) serve as transcription factors that play a pivotal role in a myriad of physiological processes within the body. Their involvement extends to critical biological processes that confer protective effects in the heart, immune system, and nervous system, as well as contributing to the mitigation of several aggressive cancer types. These protective functions are attributed to ROR's regulation of key proteins and the management of various cellular processes, including autophagy, mitophagy, inflammation, oxidative stress, and glucose metabolism, highlighting the emerging need for pharmacological approaches to modulate ROR expression. Thus, the modulation of RORs is a rapidly growing area of research aimed not only at comprehending these receptors, but also at manipulating them to attain the desired physiological response. Despite the presence of natural ROR ligands, the development of synthetic agonists with high selectivity for these receptors holds substantial therapeutic potential. The exploration and advancement of such compounds can effectively target diseases associated with ROR dysregulation, thereby providing avenues for therapeutic interventions. Herein, we provide a comprehensive examination of the multifaceted role of ROR in diverse physiological and pathophysiological conditions, accompanied by an in-depth exploration of a spectrum of ROR agonists, inverse agonists, and antagonists.
Collapse
Affiliation(s)
- Darya Nematisouldaragh
- Department of Physiology and Pathophysiology, Rady College of Medicine, Max Rady Faculty of Health Sciences, The Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada
| | - Huong Nguyen
- Department of Physiology and Pathophysiology, Rady College of Medicine, Max Rady Faculty of Health Sciences, The Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada
| | - Inna Rabinovich-Nikitin
- Department of Physiology and Pathophysiology, Rady College of Medicine, Max Rady Faculty of Health Sciences, The Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada
| |
Collapse
|
2
|
Biagioli M, Di Giorgio C, Morretta E, Bellini R, Massa C, Urbani G, Bordoni M, Marchianò S, Lachi G, Sepe V, Monti MC, Distrutti E, Zampella A, Fiorucci S. Development of dual GPBAR1 agonist and RORγt inverse agonist for the treatment of inflammatory bowel diseases. Pharmacol Res 2024; 208:107403. [PMID: 39265668 DOI: 10.1016/j.phrs.2024.107403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/14/2024]
Abstract
Inflammatory bowel diseases (IBD), including Crohn's disease and ulcerative colitis, are chronic disorders characterized by dysregulated immune response and persistent inflammation. Recent studies suggest that bile acid receptors, particularly GPBAR1, and the transcription factor RORγt play critical roles in modulating intestinal inflammation. This study evaluates the therapeutic potential of PBT002, a dual GPBAR1 agonist and RORγt inverse agonist, in IBD models. The effects of PBT002 were assessed through in vitro and in vivo experiments. Macrophages and T lymphocytes obtained from the buffy coat were exposed to PBT002 to evaluate its immunomodulatory activity. The beneficial effects in vivo were evaluated in mouse models of colitis induced by TNBS, DSS or DSS + IL-23 using also a Gpbar1 knock-out male mice. PBT002 exhibited an EC50 of 1.2 µM for GPBAR1 and an IC50 of 2.8 µM for RORγt. In in vitro, PBT002 modulated macrophage polarization towards an anti-inflammatory M2 phenotype and reduced Th17 cell markers while increasing Treg markers. In the TNBS-induced colitis model, PBT002 reduced weight loss, CDAI, and colon damage, while it modulated cytokine gene expression towards an anti-inflammatory profile. In GPBAR1-/-, the anti-inflammatory effects of PBT002 were attenuated, indicating partial GPBAR1 dependence. RNA sequencing revealed significant modulation of inflammatory pathways by PBT002. In DSS+IL-23 induced colitis, PBT002 mitigated disease exacerbation, reducing pro-inflammatory cytokine levels and immune cell infiltration. In conclusion, PBT002, a GPBAR1 agonist and RORγt inverse agonist, modulates both the innate and adaptive immune responses to reduce inflammation and disease severity in models of IBD.
Collapse
Affiliation(s)
- Michele Biagioli
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy.
| | | | - Elva Morretta
- Department of Pharmacy, University of Salerno, Salerno, Italy; Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Rachele Bellini
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Carmen Massa
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Ginevra Urbani
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Martina Bordoni
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Silvia Marchianò
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Ginevra Lachi
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Valentina Sepe
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Maria Chiara Monti
- Department of Pharmacy, University of Salerno, Salerno, Italy; Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | | | - Angela Zampella
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Stefano Fiorucci
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|
3
|
Carrazana R, Espinoza F, Ávila A. Mechanistic perspective on the actions of vitamin a in autism spectrum disorder etiology. Neuroscience 2024; 554:72-82. [PMID: 39002756 DOI: 10.1016/j.neuroscience.2024.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 05/07/2024] [Accepted: 07/08/2024] [Indexed: 07/15/2024]
Abstract
Vitamin A (VA) has many functions in the body, some of which are key for the development and functioning of the nervous system, while some others might indirectly influence neural function. Both hypovitaminosis and hypervitaminosis A can lead to clinical manifestations of concern for individuals and for general global health. Scientific evidence on the link between VA and autism spectrum disorder (ASD) is growing, with some clinical studies and accumulating results obtained from basic research using cellular and animal models. Remarkably, it has been shown that VA deficiency can exacerbate autistic symptomatology. In turn, VA supplementation has been shown to be able to improve autistic symptomatology in selected groups of individuals with ASD. However, it is important to recognize that ASD is a highly heterogeneous condition. Therefore, it is important to clarify how and when VA supplementation can be of benefit for affected individuals. Here we delve into the relationship between VA and ASD, discussing clinical observations and mechanistic insights obtained from research on selected autistic syndromes and laboratory models to advance in defining how the VA signaling pathway can be exploited for treatment of ASD.
Collapse
Affiliation(s)
- Ramón Carrazana
- Neurodevelopmental Biology Unit, Biomedical Sciences Research Laboratory, Basic Sciences Department, Faculty of Medicine, Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - Francisca Espinoza
- Neurodevelopmental Biology Unit, Biomedical Sciences Research Laboratory, Basic Sciences Department, Faculty of Medicine, Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - Ariel Ávila
- Neurodevelopmental Biology Unit, Biomedical Sciences Research Laboratory, Basic Sciences Department, Faculty of Medicine, Universidad Católica de la Santísima Concepción, Concepción, Chile.
| |
Collapse
|
4
|
Panmanee J, Charoensutthivarakul S, Cheng CW, Promthep K, Mukda S, Prasertporn T, Nopparat C, Teerapo K, Supcharoen P, Petchyam N, Chetsawang B, Govitrapong P, Phanchana M. A Complex Interplay Between Melatonin and RORβ: RORβ is Unlikely a Putative Receptor for Melatonin as Revealed by Biophysical Assays. Mol Neurobiol 2024:10.1007/s12035-024-04395-y. [PMID: 39105871 DOI: 10.1007/s12035-024-04395-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 07/12/2024] [Indexed: 08/07/2024]
Abstract
A nuclear retinoic acid receptor (RAR)-related orphan receptor β (RORβ) is strictly expressed in the brain, particularly in the pineal gland where melatonin is primarily synthesized and concentrated. The controversial issues regarding the direct interaction of melatonin toward ROR receptors have prompted us to investigate the potential melatonin binding sites on different ROR isoforms. We adopted computational and biophysical approaches to investigate the potential of melatonin as the ligand for RORs, in particular RORβ. Herein, possible melatonin binding sites were predicted by molecular docking on human RORs. The results showed that melatonin might be able to bind within the ligand-binding domain (LBD) of all RORs, despite their difference in sequence homology. The predicted melatonin binding scores were comparable to binding energies with respect to those of melatonin interaction to the well-characterized membrane receptors, MT1 and MT2. Although the computational analyses suggested the binding potential of melatonin to the LBD of RORβ, biophysical validation failed to confirm the binding. Melatonin was unable to alter the stability of human RORβ as shown by the unaltered melting temperatures upon melatonin administration in differential scanning fluorometry (DSF). A thermodynamic isothermal titration calorimetry (ITC) profile showed that melatonin did not interact with human RORβ in solutions, even in the presence of SRC-1 co-activator peptide. Although the direct interaction between the LBD of RORβ could not be established, RORα and RORβ gene expressions were increased upon 24 h treatment with μM-range melatonin. Our data, thus, support the studies that the nuclear effects of melatonin may not be directly mediated via its interaction with the RORβ. These findings warrant further investigation on how melatonin interacts with ROR signaling and urge the melatonin research community for a paradigm shift in the direct interaction of melatonin toward RORs. The quest to identify nuclear receptors for melatonin in neuronal cells remains valid for the community to achieve.
Collapse
Affiliation(s)
- Jiraporn Panmanee
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Sitthivut Charoensutthivarakul
- Innovative Molecular Discovery Laboratory (iMOD), School of Bioinnovation and Bio-Based Product Intelligence, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
- Excellent Center for Drug Discovery (ECDD), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
- Center for Neuroscience, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Chew Weng Cheng
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, LS2 9JT, UK
| | - Kornkanok Promthep
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Sujira Mukda
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Tanya Prasertporn
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Chutikorn Nopparat
- Innovative Learning Center, Srinakharinwirot University, Sukhumvit 23, Bangkok, 10110, Thailand
| | - Kittitat Teerapo
- Mahidol University-Frontier Research Facility (MU-FRF), Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Promsup Supcharoen
- Mahidol University-Frontier Research Facility (MU-FRF), Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Nopphon Petchyam
- Center for Advanced Therapeutics, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Banthit Chetsawang
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Piyarat Govitrapong
- Chulabhorn Graduate Institute, Kamphaeng Phet 6 Road, Lak Si, Bangkok, 10210, Thailand
| | - Matthew Phanchana
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
5
|
Sharma SA, Oladejo SO, Kuang Z. Chemical interplay between gut microbiota and epigenetics: Implications in circadian biology. Cell Chem Biol 2024:S2451-9456(24)00178-8. [PMID: 38776923 DOI: 10.1016/j.chembiol.2024.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/22/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024]
Abstract
Circadian rhythms are intrinsic molecular mechanisms that synchronize biological functions with the day/night cycle. The mammalian gut is colonized by a myriad of microbes, collectively named the gut microbiota. The microbiota impacts host physiology via metabolites and structural components. A key mechanism is the modulation of host epigenetic pathways, especially histone modifications. An increasing number of studies indicate the role of the microbiota in regulating host circadian rhythms. However, the mechanisms remain largely unknown. Here, we summarize studies on microbial regulation of host circadian rhythms and epigenetic pathways, highlight recent findings on how the microbiota employs host epigenetic machinery to regulate circadian rhythms, and discuss its impacts on host physiology, particularly immune and metabolic functions. We further describe current challenges and resources that could facilitate research on microbiota-epigenetic-circadian rhythm interactions to advance our knowledge of circadian disorders and possible therapeutic avenues.
Collapse
Affiliation(s)
- Samskrathi Aravinda Sharma
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Sarah Olanrewaju Oladejo
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Zheng Kuang
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA.
| |
Collapse
|
6
|
Azizi S, Esmaeili Motlagh P, Eslami S, Ghafouri-Fard S. Association Between RORA Polymorphisms and Obesity. Biochem Genet 2024:10.1007/s10528-024-10768-8. [PMID: 38570441 DOI: 10.1007/s10528-024-10768-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 02/29/2024] [Indexed: 04/05/2024]
Abstract
RORα is a transcription factor encoded by RORA gene. This protein is involved in several metabolic conditions, including obesity. We assessed association between two polymorphisms within this gene (namely rs11639084 and rs4774388) and severe obesity in Iranian population. Both SNPs were associated with obesity in all models (P < 0.0001) except for over-dominant model. T allele of rs11639084 was associated with this trait with OR (95% CI) of 16.85 (13.11-21.67) and was considered as the risk allele. Allelic model best fit the data, since the AIC value for this model was the highest (AIC = 28.82). In the co-dominant model, TT genotype was associated with obesity with OR (95% CI) of 301.6 (137.4-662.1). This genotype was shown to be the risk genotype in the recessive model when compared with TC+CC (OR (95% CI) = 60.54 (30.35-120.7)). The C allele of rs4774388 was shown to be the risk allele with OR (95% CI) of 4.61 (3.72-5.71). In the recessive model, the CC genotype was associated with the mentioned trait with OR (95% CI) of 9.92 (6.62-14.8). This model best fit the data (AIC = 37.08). Cumulatively, the current study suggests contribution of RORα to the pathogenesis of obesity.
Collapse
Affiliation(s)
- Shahryar Azizi
- Department of Surgery, Erfan Niayesh Hospital, Tehran, Iran
| | - Parisa Esmaeili Motlagh
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Solat Eslami
- Department of Medical Biotechnology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Zhang Y, Ma J, Bao X, Hu M, Wei X. The role of retinoic acid receptor-related orphan receptors in skeletal diseases. Front Endocrinol (Lausanne) 2023; 14:1302736. [PMID: 38027103 PMCID: PMC10664752 DOI: 10.3389/fendo.2023.1302736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Bone homeostasis, depending on the balance between bone formation and bone resorption, is responsible for maintaining the proper structure and function of the skeletal system. As an important group of transcription factors, retinoic acid receptor-related orphan receptors (RORs) have been reported to play important roles in bone homeostasis by regulating the transcription of target genes in skeletal cells. On the other hand, the dysregulation of RORs often leads to various skeletal diseases such as osteoporosis, rheumatoid arthritis (RA), and osteoarthritis (OA). Herein, we summarized the roles and mechanisms of RORs in skeletal diseases, aiming to provide evidence for potential therapeutic strategies.
Collapse
Affiliation(s)
- Yifan Zhang
- Department of Orthodontics, Hospital of Stomatology Jilin University, Changchun, Jilin, China
| | - Jun Ma
- Department of Oral Anatomy and Physiology, Hospital of Stomatology Jilin University, Changchun, Jilin, China
| | - Xingfu Bao
- Department of Orthodontics, Hospital of Stomatology Jilin University, Changchun, Jilin, China
| | - Min Hu
- Department of Orthodontics, Hospital of Stomatology Jilin University, Changchun, Jilin, China
| | - Xiaoxi Wei
- Department of Orthodontics, Hospital of Stomatology Jilin University, Changchun, Jilin, China
| |
Collapse
|
8
|
Kim E, Mawatari K, Yoo SH, Chen Z. The Circadian Nobiletin-ROR Axis Suppresses Adipogenic Differentiation and IκBα/NF-κB Signaling in Adipocytes. Nutrients 2023; 15:3919. [PMID: 37764703 PMCID: PMC10537147 DOI: 10.3390/nu15183919] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Obesity is a known risk factor for metabolic diseases and is often associated with chronic inflammation in adipose tissue. We previously identified the polyethoxylated flavonoid Nobiletin (NOB) as a circadian clock modulator that directly binds to and activates the ROR receptors in the core oscillator, markedly improving metabolic fitness in obese mice. Here, we show that NOB enhanced the oscillation of core clock genes in differentiated 3T3-L1 adipocytes, including ROR target genes such as Bmal1, Cry1, Dec1, and Dec2. NOB inhibited lipid accumulation in 3T3-L1 and SVF cells, concomitant with the dysregulated circadian expression of adipogenic differentiation-related genes including Cebpb, Pparg, Lpl, Scd1, and Fas. Importantly, RORα/RORγ double knockdown in 3T3-L1 cells (Ror DKD) significantly attenuated the effects of NOB on circadian gene expression and lipid accumulation. Furthermore, whereas NOB upregulated the expression of IκBα, a target of RORs, to inhibit NF-κB activation and proinflammatory cytokine expression, Ror DKD cells exhibited a heightened activation of the NF-κB pathway, further indicating a requisite role of RORs for NOB efficacy in adipocytes. Together, these results highlight a significant regulatory function of the NOB-ROR axis in the circadian expression of clock and clock-controlled genes in adipocytes, thereby governing adipogenic differentiation, lipogenesis, and inflammation.
Collapse
Affiliation(s)
- Eunju Kim
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, TX 77030, USA;
| | - Kazuaki Mawatari
- Department of Preventive Environment and Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Kuramoto-cho 3-18-15, Tokushima 770-8503, Japan;
| | - Seung-Hee Yoo
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, TX 77030, USA;
| | - Zheng Chen
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, TX 77030, USA;
| |
Collapse
|
9
|
Roberts J, Chevalier A, Hawerkamp HC, Yeow A, Matarazzo L, Schwartz C, Hams E, Fallon PG. Retinoic Acid-Related Orphan Receptor α Is Required for Generation of Th2 Cells in Type 2 Pulmonary Inflammation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:626-632. [PMID: 37387671 PMCID: PMC10404816 DOI: 10.4049/jimmunol.2200896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 06/08/2023] [Indexed: 07/01/2023]
Abstract
The transcription factor retinoic acid-related orphan receptor α (RORα) is important in regulating several physiological functions, such as cellular development, circadian rhythm, metabolism, and immunity. In two in vivo animal models of type 2 lung inflammation, Nippostrongylus brasiliensis infection and house dust mite (HDM) sensitization, we show a role for Rora in Th2 cellular development during pulmonary inflammation. N. brasiliensis infection and HDM challenge induced an increase in frequency of Rora-expressing GATA3+CD4 T cells in the lung. Using staggerer mice, which have a ubiquitous deletion of functional RORα, we generated bone marrow chimera mice, and we observed a delayed worm expulsion and reduced frequency in the expansion of Th2 cells and innate lymphoid type 2 cells (ILC2s) in the lungs after N. brasiliensis infection. ILC2-deficient mouse (Rorafl/flIl7raCre) also had delayed worm expulsion with associated reduced frequency of Th2 cells and ILC2s in the lungs after N. brasiliensis infection. To further define the role for Rora-expressing Th2 cells, we used a CD4-specific Rora-deficient mouse (Rorafl/flCD4Cre), with significantly reduced frequency of lung Th2 cells, but not ILC2, after N. brasiliensis infection and HDM challenge. Interestingly, despite the reduction in pulmonary Th2 cells in Rorafl/flCD4Cre mice, this did not impact the expulsion of N. brasiliensis after primary and secondary infection, or the generation of lung inflammation after HDM challenge. This study demonstrates a role for RORα in Th2 cellular development during pulmonary inflammation that could be relevant to the range of inflammatory diseases in which RORα is implicated.
Collapse
Affiliation(s)
- Joseph Roberts
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Anne Chevalier
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Heike C. Hawerkamp
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Aoife Yeow
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Laura Matarazzo
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Christian Schwartz
- Mikrobiologisches Institut–Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
- Medical Immunology Campus Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Emily Hams
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Padraic G. Fallon
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
10
|
Cheung KCP, Ma J, Loiola RA, Chen X, Jia W. Bile acid-activated receptors in innate and adaptive immunity: targeted drugs and biological agents. Eur J Immunol 2023; 53:e2250299. [PMID: 37172599 DOI: 10.1002/eji.202250299] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/10/2023] [Accepted: 05/11/2023] [Indexed: 05/15/2023]
Abstract
Bile acid-activated receptors (BARs) such as a G-protein bile acid receptor 1 and the farnesol X receptor are activated by bile acids (BAs) and have been implicated in the regulation of microbiota-host immunity in the intestine. The mechanistic roles of these receptors in immune signaling suggest that they may also influence the development of metabolic disorders. In this perspective, we provide a summary of recent literature describing the main regulatory pathways and mechanisms of BARs and how they affect both innate and adaptive immune system, cell proliferation, and signaling in the context of inflammatory diseases. We also discuss new approaches for therapy and summarize clinical projects on BAs for the treatment of diseases. In parallel, some drugs that are classically used for other therapeutic purposes and BAR activity have recently been proposed as regulators of immune cells phenotype. Another strategy consists of using specific strains of gut bacteria to regulate BA production in the intestine.
Collapse
Affiliation(s)
- Kenneth C P Cheung
- Hong Kong Phenome Research Center, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Jiao Ma
- Hong Kong Phenome Research Center, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | | | - Xingxuan Chen
- Hong Kong Phenome Research Center, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Wei Jia
- Hong Kong Phenome Research Center, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
11
|
Fotie J, Matherne CM, Wroblewski JE. Silicon switch: Carbon-silicon Bioisosteric replacement as a strategy to modulate the selectivity, physicochemical, and drug-like properties in anticancer pharmacophores. Chem Biol Drug Des 2023; 102:235-254. [PMID: 37029092 DOI: 10.1111/cbdd.14239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 04/09/2023]
Abstract
Bioisosterism is one of the leading strategies in medicinal chemistry for the design and modification of drugs, consisting in replacing an atom or a substituent with a different atom or a group with similar chemical properties and an inherent biocompatibility. The objective of such an exercise is to produce a diversity of molecules with similar behavior while enhancing the desire biological and pharmacological properties, without inducing significant changes to the chemical framework. In drug discovery and development, the optimization of the absorption, distribution, metabolism, elimination, and toxicity (ADMETox) profile is of paramount importance. Silicon appears to be the right choice as a carbon isostere because they possess very similar intrinsic properties. However, the replacement of a carbon by a silicon atom in pharmaceuticals has proven to result in improved efficacy and selectivity, while enhancing physicochemical properties and bioavailability. The current review discusses how silicon has been strategically introduced to modulate drug-like properties of anticancer agents, from a molecular design strategy, biological activity, computational modeling, and structure-activity relationships perspectives.
Collapse
Affiliation(s)
- Jean Fotie
- Department of Chemistry and Physics, Southeastern Louisiana University, Hammond, Louisiana, USA
| | - Caitlyn M Matherne
- Department of Chemistry and Physics, Southeastern Louisiana University, Hammond, Louisiana, USA
| | - Jordan E Wroblewski
- Department of Chemistry and Physics, Southeastern Louisiana University, Hammond, Louisiana, USA
| |
Collapse
|
12
|
Hariri A, Mirian M, Zarrabi A, Kohandel M, Amini-Pozveh M, Aref AR, Tabatabaee A, Prabhakar PK, Sivakumar PM. The circadian rhythm: an influential soundtrack in the diabetes story. Front Endocrinol (Lausanne) 2023; 14:1156757. [PMID: 37441501 PMCID: PMC10333930 DOI: 10.3389/fendo.2023.1156757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/03/2023] [Indexed: 07/15/2023] Open
Abstract
Type 2 Diabetes Mellitus (T2DM) has been the main category of metabolic diseases in recent years due to changes in lifestyle and environmental conditions such as diet and physical activity. On the other hand, the circadian rhythm is one of the most significant biological pathways in humans and other mammals, which is affected by light, sleep, and human activity. However, this cycle is controlled via complicated cellular pathways with feedback loops. It is widely known that changes in the circadian rhythm can alter some metabolic pathways of body cells and could affect the treatment process, particularly for metabolic diseases like T2DM. The aim of this study is to explore the importance of the circadian rhythm in the occurrence of T2DM via reviewing the metabolic pathways involved, their relationship with the circadian rhythm from two perspectives, lifestyle and molecular pathways, and their effect on T2DM pathophysiology. These impacts have been demonstrated in a variety of studies and led to the development of approaches such as time-restricted feeding, chronotherapy (time-specific therapies), and circadian molecule stabilizers.
Collapse
Affiliation(s)
- Amirali Hariri
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mina Mirian
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, Türkiye
| | - Mohammad Kohandel
- Department of Applied Mathematics, Faculty of Mathematics, University of Waterloo, Waterloo, ON, Canada
| | - Maryam Amini-Pozveh
- Department of Prosthodontics Dentistry, Dental Materials Research Center, Dental Research Institute, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana Farber Cancer Institute, Boston, MA, United States
- Translational Sciences, Xsphera Biosciences Inc., Boston, MA, United States
| | - Aliye Tabatabaee
- School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Pranav Kumar Prabhakar
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Lovely Professional University, Phagwara, Punjab, India
- Division of Research and Development, Lovely Professional University, Phagwara Punjab, India
| | - Ponnurengam Malliappan Sivakumar
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
- School of Medicine and Pharmacy, Duy Tan University, Da Nang, Vietnam
| |
Collapse
|
13
|
Kim E, Yoo SH, Chen Z. Circadian stabilization loop: the regulatory hub and therapeutic target promoting circadian resilience and physiological health. F1000Res 2022; 11:1236. [PMID: 36415204 PMCID: PMC9652504 DOI: 10.12688/f1000research.126364.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/17/2022] [Indexed: 11/13/2022] Open
Abstract
The circadian clock is a fundamental biological mechanism that orchestrates essential cellular and physiological processes to optimize fitness and health. The basic functional unit is the cell-autonomous oscillator, consisting of intersecting negative feedback loops. Whereas the core loop is primarily responsible for rhythm generation, auxiliary loops, most notably the secondary or stabilization loop, play pivotal roles to confer temporal precision and molecular robustness. The stabilization loop contains opposing nuclear receptor subfamilies REV-ERBs and retinoic acid receptor-related orphan receptors (RORs), competing to modulate rhythmic expression of the basic helix-loop-helix ARNT like 1 ( Bmal1) genes in the core loop as well as other clock-controlled genes. Therefore, REV-ERBs and RORs are strategically located to interface the oscillator and the global transcriptomic network, promoting cellular homeostasis and physiological fitness throughout lifespan. Disruption of REV-ERB and ROR functions has been linked with diseases and aging, and pharmacological manipulation of these factors has shown promise in various mouse disease models. Nobiletin is a natural compound that directly binds to and activates RORα/γ, modulating circadian rhythms, and shows robust in vivo efficacies to combat clock-associated pathophysiologies and age-related decline. Results from several studies demonstrate an inverse relation between nobiletin efficacy and clock functional state, where nobiletin elicits little effect in young and healthy mice with growing efficacy as the clock is perturbed by environmental and genetic challenges. This mode of action is consistent with the function of the stabilization loop to promote circadian and physiological resilience. Future studies should further investigate the function and mechanism of REV-ERBs and RORs, and test strategies targeting these factors against disease and aging.
Collapse
Affiliation(s)
- Eunju Kim
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, TX, 77030, USA
| | - Seung-Hee Yoo
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, TX, 77030, USA
| | - Zheng Chen
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, TX, 77030, USA,
| |
Collapse
|
14
|
Kim E, Yoo SH, Chen Z. Circadian stabilization loop: the regulatory hub and therapeutic target promoting circadian resilience and physiological health. F1000Res 2022; 11:1236. [PMID: 36415204 PMCID: PMC9652504.2 DOI: 10.12688/f1000research.126364.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
The circadian clock is a fundamental biological mechanism that orchestrates essential cellular and physiological processes to optimize fitness and health. The basic functional unit is the cell-autonomous oscillator, consisting of intersecting negative feedback loops. Whereas the core loop is primarily responsible for rhythm generation, auxiliary loops, most notably the secondary or stabilization loop, play pivotal roles to confer temporal precision and molecular robustness. The stabilization loop contains opposing nuclear receptor subfamilies REV-ERBs and retinoic acid receptor-related orphan receptors (RORs), competing to modulate rhythmic expression of the basic helix-loop-helix ARNT like 1 ( Bmal1) genes in the core loop as well as other clock-controlled genes. Therefore, REV-ERBs and RORs are strategically located to interface the oscillator and the global transcriptomic network, promoting cellular homeostasis and physiological fitness throughout lifespan. Disruption of REV-ERB and ROR functions has been linked with diseases and aging, and pharmacological manipulation of these factors has shown promise in various mouse disease models. Nobiletin is a natural compound that directly binds to and activates RORα/γ, modulating circadian rhythms, and shows robust in vivo efficacies to combat clock-associated pathophysiologies and age-related decline. Results from several studies demonstrate an inverse relation between nobiletin efficacy and clock functional state, where nobiletin elicits little effect in young and healthy mice with growing efficacy as the clock is perturbed by environmental and genetic challenges. This mode of action is consistent with the function of the stabilization loop to promote circadian and physiological resilience. Future studies should further investigate the function and mechanism of REV-ERBs and RORs, and test strategies targeting these factors against disease and aging.
Collapse
Affiliation(s)
- Eunju Kim
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, TX, 77030, USA
| | - Seung-Hee Yoo
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, TX, 77030, USA
| | - Zheng Chen
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, TX, 77030, USA,
| |
Collapse
|
15
|
Hall JA, Pokrovskii M, Kroehling L, Kim BR, Kim SY, Wu L, Lee JY, Littman DR. Transcription factor RORα enforces stability of the Th17 cell effector program by binding to a Rorc cis-regulatory element. Immunity 2022; 55:2027-2043.e9. [PMID: 36243007 DOI: 10.1016/j.immuni.2022.09.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/05/2022] [Accepted: 09/20/2022] [Indexed: 11/05/2022]
Abstract
T helper 17 (Th17) cells regulate mucosal barrier defenses but also promote multiple autoinflammatory diseases. Although many molecular determinants of Th17 cell differentiation have been elucidated, the transcriptional programs that sustain Th17 cells in vivo remain obscure. The transcription factor RORγt is critical for Th17 cell differentiation; however, it is not clear whether the closely related RORα, which is co-expressed in Th17 cells, has a distinct role. Here, we demonstrated that although dispensable for Th17 cell differentiation, RORα was necessary for optimal Th17 responses in peripheral tissues. The absence of RORα in T cells led to reductions in both RORγt expression and effector function among Th17 cells. Cooperative binding of RORα and RORγt to a previously unidentified Rorc cis-regulatory element was essential for Th17 lineage maintenance in vivo. These data point to a non-redundant role of RORα in Th17 lineage maintenance via reinforcement of the RORγt transcriptional program.
Collapse
Affiliation(s)
- Jason A Hall
- The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY 10016, USA
| | - Maria Pokrovskii
- The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY 10016, USA
| | - Lina Kroehling
- The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY 10016, USA
| | - Bo-Ram Kim
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Seung Yong Kim
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Lin Wu
- The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY 10016, USA
| | - June-Yong Lee
- The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY 10016, USA; Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.
| | - Dan R Littman
- The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY 10016, USA; Howard Hughes Medical Institute, New York, NY 10016, USA.
| |
Collapse
|
16
|
Maduranga Karunarathne WAH, Choi YH, Park SR, Lee CM, Kim GY. Bisphenol A inhibits osteogenic activity and causes bone resorption via the activation of retinoic acid-related orphan receptor α. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129458. [PMID: 35780740 DOI: 10.1016/j.jhazmat.2022.129458] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/13/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
Bisphenol A (BPA) has deleterious effects on bone metabolism; however, its underlying mechanism has not yet been comprehensively understood. Here, we investigated whether RORα plays an important role in BPA-induced bone resorption both in vitro and in vivo. We found that BPA (0.1-1 μM) inhibited osteogenic activity (including ALP activity and mineralization), decreased the expression levels of osteoblast markers (such as RUNX2, OSX, and ALP) in human MG-63 osteoblast-like osteosarcoma cells, and inhibited spontaneous vertebral formation in zebrafish larvae. Additionally, BPA diminished β-glycerophosphate-induced osteoblast differentiation and vertebral formation, while simultaneously downregulating the expression levels of RUNX2a, OSX, and ALP. Furthermore, molecular docking data showed that a hydroxyl group of BPA dominantly binds to the H3 (ALA70) and/or H5 (ARG107) of RORα-ligand binding domain with hydrogen bonding (ALA330 and/or ARG367 in the full length of RORα, respectively), which another hydroxyl group of BPA fits into H3, H6, and H7 elements with non-covalent interactions, resulting in the activation of RORα. However, an RORα inverse agonist potently inhibited BPA-induced anti-osteogenic activity and vertebral formation in zebrafish larvae, concomitant with inhibition of osteogenic gene expression. Overall, our findings reveal that BPA inhibits osteoblast differentiation and bone formation by activating RORα. These results suggest that BPA exposure (0.1-1 μM) can cause various bone-resorptive diseases, such as osteoporosis.
Collapse
Affiliation(s)
| | - Yung Hyun Choi
- Department of Biochemistry, College of Korean Medicine, Dong-Eui University, Busan 47227, Republic of Korea
| | - Sang Rul Park
- Department of Marine Life Science, Jeju National University, Jeju 63243, Republic of Korea
| | - Chang-Min Lee
- Department of Molecular Microbiology and Immunology, Division of Biology and Medicine, Brown University, 185 Meeting St., Providence, RI 02912, USA
| | - Gi-Young Kim
- Department of Marine Life Science, Jeju National University, Jeju 63243, Republic of Korea.
| |
Collapse
|
17
|
Patel R, Galagali H, Kim JK, Frand AR. Feedback between a retinoid-related nuclear receptor and the let-7 microRNAs controls the pace and number of molting cycles in C. elegans. eLife 2022; 11:e80010. [PMID: 35968765 PMCID: PMC9377799 DOI: 10.7554/elife.80010] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/22/2022] [Indexed: 11/13/2022] Open
Abstract
Animal development requires coordination among cyclic processes, sequential cell fate specifications, and once-a-lifetime morphogenic events, but the underlying timing mechanisms are not well understood. Caenorhabditis elegans undergoes four molts at regular 8 to 10 hour intervals. The pace of the cycle is governed by PERIOD/lin-42 and other as-yet unknown factors. Cessation of the cycle in young adults is controlled by the let-7 family of microRNAs and downstream transcription factors in the heterochronic pathway. Here, we characterize a negative feedback loop between NHR-23, the worm homolog of mammalian retinoid-related orphan receptors (RORs), and the let-7 family of microRNAs that regulates both the frequency and finite number of molts. The molting cycle is decelerated in nhr-23 knockdowns and accelerated in let-7(-) mutants, but timed similarly in let-7(-) nhr-23(-) double mutants and wild-type animals. NHR-23 binds response elements (ROREs) in the let-7 promoter and activates transcription. In turn, let-7 dampens nhr-23 expression across development via a complementary let-7-binding site (LCS) in the nhr-23 3' UTR. The molecular interactions between NHR-23 and let-7 hold true for other let-7 family microRNAs. Either derepression of nhr-23 transcripts by LCS deletion or high gene dosage of nhr-23 leads to protracted behavioral quiescence and extra molts in adults. NHR-23 and let-7 also coregulate scores of genes required for execution of the molts, including lin-42. In addition, ROREs and LCSs isolated from mammalian ROR and let-7 genes function in C. elegans, suggesting conservation of this feedback mechanism. We propose that this feedback loop unites the molting timer and the heterochronic gene regulatory network, possibly by functioning as a cycle counter.
Collapse
Affiliation(s)
- Ruhi Patel
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los AngelesLos AngelesUnited States
| | - Himani Galagali
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
| | - John K Kim
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
| | - Alison R Frand
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los AngelesLos AngelesUnited States
| |
Collapse
|
18
|
Tomaz RA, Zacharis ED, Bachinger F, Wurmser A, Yamamoto D, Petrus-Reurer S, Morell CM, Dziedzicka D, Wesley BT, Geti I, Segeritz CP, de Brito MC, Chhatriwala M, Ortmann D, Saeb-Parsy K, Vallier L. Generation of functional hepatocytes by forward programming with nuclear receptors. eLife 2022; 11:71591. [PMID: 35959725 PMCID: PMC9374437 DOI: 10.7554/elife.71591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Production of large quantities of hepatocytes remains a major challenge for a number of clinical applications in the biomedical field. Directed differentiation of human pluripotent stem cells (hPSCs) into hepatocyte-like cells (HLCs) provides an advantageous solution and a number of protocols have been developed for this purpose. However, these methods usually follow different steps of liver development in vitro, which is time consuming and requires complex culture conditions. In addition, HLCs lack the full repertoire of functionalities characterising primary hepatocytes. Here, we explore the interest of forward programming to generate hepatocytes from hPSCs and to bypass these limitations. This approach relies on the overexpression of three hepatocyte nuclear factors (HNF1A, HNF6, and FOXA3) in combination with different nuclear receptors expressed in the adult liver using the OPTi-OX platform. Forward programming allows for the rapid production of hepatocytes (FoP-Heps) with functional characteristics using a simplified process. We also uncovered that the overexpression of nuclear receptors such as RORc can enhance specific functionalities of FoP-Heps thereby validating its role in lipid/glucose metabolism. Together, our results show that forward programming could offer a versatile alternative to direct differentiation for generating hepatocytes in vitro.
Collapse
Affiliation(s)
- Rute A Tomaz
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom.,Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, United Kingdom
| | - Ekaterini D Zacharis
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom.,Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, United Kingdom
| | - Fabian Bachinger
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom.,Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, United Kingdom
| | - Annabelle Wurmser
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom.,Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, United Kingdom
| | - Daniel Yamamoto
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom.,Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, United Kingdom
| | - Sandra Petrus-Reurer
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, United Kingdom
| | - Carola M Morell
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom.,Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, United Kingdom
| | - Dominika Dziedzicka
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom.,Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, United Kingdom
| | - Brandon T Wesley
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Imbisaat Geti
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom.,Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, United Kingdom
| | - Charis-Patricia Segeritz
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom.,Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, United Kingdom
| | - Miguel C de Brito
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom.,Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, United Kingdom
| | - Mariya Chhatriwala
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, United Kingdom
| | - Daniel Ortmann
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom.,Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, United Kingdom
| | - Kourosh Saeb-Parsy
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, United Kingdom
| | - Ludovic Vallier
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom.,Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, United Kingdom.,Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| |
Collapse
|
19
|
Maresin 1 improves cognitive decline and ameliorates inflammation and blood-brain barrier damage in rats with chronic cerebral hypoperfusion. Brain Res 2022; 1788:147936. [DOI: 10.1016/j.brainres.2022.147936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/25/2022] [Accepted: 05/01/2022] [Indexed: 11/20/2022]
|
20
|
RORA polymorphisms are risk factors for allergic rhinitis susceptibility in the Shaanxi Han population. Int Immunopharmacol 2022; 108:108874. [DOI: 10.1016/j.intimp.2022.108874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/13/2022] [Accepted: 05/15/2022] [Indexed: 11/19/2022]
|
21
|
Gu H, Hu P, Zhao Y, Liu Y, Wang YT, Ahmed AA, Liu HY, Cai D. Nuclear Receptor RORα/γ: Exciting Modulators in Metabolic Syndrome and Related Disorders. Front Nutr 2022; 9:925267. [PMID: 35799591 PMCID: PMC9253614 DOI: 10.3389/fnut.2022.925267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/18/2022] [Indexed: 11/29/2022] Open
Abstract
Under the influences of modern lifestyle, metabolic syndromes (MetS), including insulin resistance, obesity, and fatty liver, featuring a worldwide chronic disease, greatly raise the risk of type 2 diabetes, heart disease, and stroke. However, its pathogenesis is still unclear, and there are limited drugs with strong clinical efficacy and specificity. Given the close connection between impaired lipid metabolism and MetS onset, modulating the lipid metabolic genes may provide potential prospects in the development of MetS therapeutics. Nuclear receptors are such druggable transcription factors that translate physiological signals into gene regulation via DNA binding upon ligand activation. Recent studies reveal vital functions of the NRs retinoic acid's receptor-related orphan receptors (RORs), including RORα and RORγ, in the gene regulation in lipid metabolism and MetS. This review focuses on the latest developments in their actions on MetS and related metabolic disorders, which would benefit future clinically therapeutic applications.
Collapse
Affiliation(s)
- Haotian Gu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Ping Hu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yahui Zhao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yaya Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yi-Ting Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Abdelkareem A. Ahmed
- Department of Veterinary Biomedical Sciences, Botswana University of Agriculture and Agriculture and Natural Resources, Gaborone, Botswana
- Biomedical Research Institute, Darfur University College, Nyala, Sudan
| | - Hao-Yu Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- *Correspondence: Hao-Yu Liu
| | - Demin Cai
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Demin Cai
| |
Collapse
|
22
|
Nuclear receptor RORγ inverse agonists/antagonists display tissue- and gene-context selectivity through distinct activities in altering chromatin accessibility and master regulator SREBP2 occupancy. Pharmacol Res 2022; 182:106324. [PMID: 35750301 PMCID: PMC10158160 DOI: 10.1016/j.phrs.2022.106324] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/26/2022] [Accepted: 06/19/2022] [Indexed: 11/21/2022]
Abstract
The nuclear receptor RORγ is a major driver of autoimmune diseases and certain types of cancer due to its aberrant function in T helper 17 (Th17) cell differentiation and tumor cholesterol metabolism, respectively. Compound screening using the classic receptor-coactivator interaction perturbation scheme led to identification of many small-molecule modulators of RORγ(t). We report here that inverse agonists/antagonists of RORγ such as VTP-43742 derivative VTP-23 and TAK828F, which can potently inhibit the inflammatory gene program in Th17 cells, unexpectedly lack high potency in inhibiting the growth of TNBC tumor cells. In contrast, antagonists such as XY018 and GSK805 that strongly suppress tumor cell growth and survival display only modest activities in reducing Th17-related cytokine expression. Unexpectedly, we found that VTP-23 significantly induces the cholesterol biosynthesis program in TNBC cells. Our further mechanistic analyses revealed that VTP-23 enhances the local chromatin accessibility, H3K27ac mark and the cholesterol master regulator SREBP2 recruitment at the RORγ binding sites, whereas XY018 exerts the opposite activities. Yet, they display similar inhibitory effects on circadian rhythm program. Similar distinctions and contrasting activities between TAK828F and SR2211 in their effects on local chromatin structure at Il17 genes were also observed. Together, our study shows for the first-time that structurally distinct RORγ antagonists possess different or even contrasting activities in tissue/cell-specific manner. Our findings also highlight that the activities at natural chromatin are key determinants of RORγ modulators' tissue selectivity.
Collapse
|
23
|
Tobeiha M, Jafari A, Fadaei S, Mirazimi SMA, Dashti F, Amiri A, Khan H, Asemi Z, Reiter RJ, Hamblin MR, Mirzaei H. Evidence for the Benefits of Melatonin in Cardiovascular Disease. Front Cardiovasc Med 2022; 9:888319. [PMID: 35795371 PMCID: PMC9251346 DOI: 10.3389/fcvm.2022.888319] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/10/2022] [Indexed: 12/13/2022] Open
Abstract
The pineal gland is a neuroendocrine gland which produces melatonin, a neuroendocrine hormone with critical physiological roles in the circadian rhythm and sleep-wake cycle. Melatonin has been shown to possess anti-oxidant activity and neuroprotective properties. Numerous studies have shown that melatonin has significant functions in cardiovascular disease, and may have anti-aging properties. The ability of melatonin to decrease primary hypertension needs to be more extensively evaluated. Melatonin has shown significant benefits in reducing cardiac pathology, and preventing the death of cardiac muscle in response to ischemia-reperfusion in rodent species. Moreover, melatonin may also prevent the hypertrophy of the heart muscle under some circumstances, which in turn would lessen the development of heart failure. Several currently used conventional drugs show cardiotoxicity as an adverse effect. Recent rodent studies have shown that melatonin acts as an anti-oxidant and is effective in suppressing heart damage mediated by pharmacologic drugs. Therefore, melatonin has been shown to have cardioprotective activity in multiple animal and human studies. Herein, we summarize the most established benefits of melatonin in the cardiovascular system with a focus on the molecular mechanisms of action.
Collapse
Affiliation(s)
- Mohammad Tobeiha
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Ameneh Jafari
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Fadaei
- Department of Internal Medicine and Endocrinology, Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Ali Mirazimi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Dashti
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Atefeh Amiri
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, Pakistan
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Russel J. Reiter
- Department of Cell Systems and Anatomy, UT Health. Long School of Medicine, San Antonio, TX, United States
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Johannesburg, South Africa
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
24
|
Pham B, Cheng Z, Lopez D, Lindsay RJ, Foutch D, Majors RT, Shen T. Statistical Analysis of Protein-Ligand Interaction Patterns in Nuclear Receptor RORγ. Front Mol Biosci 2022; 9:904445. [PMID: 35782874 PMCID: PMC9240913 DOI: 10.3389/fmolb.2022.904445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/16/2022] [Indexed: 11/21/2022] Open
Abstract
The receptor RORγ belongs to the nuclear receptor superfamily that senses small signaling molecules and regulates at the gene transcription level. Since RORγ has a high basal activity and plays an important role in immune responses, inhibitors targeting this receptor have been a focus for many studies. The receptor-ligand interaction is complex, and often subtle differences in ligand structure can determine its role as an inverse agonist or an agonist. We examined more than 130 existing RORγ crystal structures that have the same receptor complexed with different ligands. We reported the features of receptor-ligand interaction patterns and the differences between agonist and inverse agonist binding. Specific changes in the contact interaction map are identified to distinguish active and inactive conformations. Further statistical analysis of the contact interaction patterns using principal component analysis reveals a dominant mode which separates allosteric binding vs. canonical binding and a second mode which may indicate active vs. inactive structures. We also studied the nature of constitutive activity by performing a 100-ns computer simulation of apo RORγ. Using constitutively active nuclear receptor CAR as a comparison, we identified a group of conserved contacts that have similar contact strength between the two receptors. These conserved contact interactions, especially a couple key contacts in H11–H12 interaction, can be considered essential to the constitutive activity of RORγ. These protein-ligand and internal protein contact interactions can be useful in the development of new drugs that direct receptor activity.
Collapse
Affiliation(s)
- Bill Pham
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, United States
| | - Ziju Cheng
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, United States
| | - Daniel Lopez
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, United States
| | - Richard J. Lindsay
- UT-ORNL Graduate School of Genome Science and Technology, Knoxville, TN, United States
| | - David Foutch
- UT-ORNL Graduate School of Genome Science and Technology, Knoxville, TN, United States
| | - Rily T. Majors
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, United States
| | - Tongye Shen
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, United States
- *Correspondence: Tongye Shen,
| |
Collapse
|
25
|
Gómez-Boronat M, De Pedro N, Alonso-Gómez ÁL, Delgado MJ, Isorna E. Nuclear Receptors (PPARs, REV-ERBs, RORs) and Clock Gene Rhythms in Goldfish (Carassius auratus) Are Differently Regulated in Hypothalamus and Liver. Front Physiol 2022; 13:903799. [PMID: 35733989 PMCID: PMC9207440 DOI: 10.3389/fphys.2022.903799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/19/2022] [Indexed: 01/03/2023] Open
Abstract
The circadian system is formed by a network of oscillators located in central and peripheral tissues that are tightly linked to generate rhythms in vertebrates to adapt the organism to the cyclic environmental changes. The nuclear receptors PPARs, REV-ERBs and RORs are transcription factors controlled by the circadian system that regulate, among others, a large number of genes that control metabolic processes for which they have been proposed as key genes that link metabolism and temporal homeostasis. To date it is unclear whether these nuclear receptors show circadian expression and which zeitgebers are important for their synchronization in fish. Therefore, the objective of this study was to investigate whether the two main zeitgebers (light-dark cycle and feeding time) could affect the synchronization of central (hypothalamus) and peripheral (liver) core clocks and nuclear receptors in goldfish. To this aim, three experimental groups were established: fish under a 12 h light-12 h darkness and fed at Zeitgeber Time 2; fish with the same photoperiod but randomly fed; and fish under constant darkness and fed at Circadian Time 2. After one month, clock genes and nuclear receptors expression in hypothalamus and liver and circulating glucose were studied. Clock genes displayed daily rhythms in both tissues of goldfish if the light-dark cycle was present, with shifted-acrophases of negative and positive elements, as expected for proper functioning clocks. In darkness-maintained fish hypothalamic clock genes were fully arrhythmic while the hepatic ones were still rhythmic. Among studied nuclear receptors, in the hypothalamus only nr1d1 was rhythmic and only when the light-dark cycle was present. In the liver all nuclear receptors were rhythmic when both zeitgebers were present, but only nr1d1 when one of them was removed. Plasma glucose levels showed significant rhythms in fish maintained under random fed regimen or constant darkness, with the highest levels at 1-h postprandially in all groups. Altogether these results support that hypothalamus is mainly a light-entrained-oscillator, while the liver is a food-entrained-oscillator. Moreover, nuclear receptors are revealed as clear outputs of the circadian system acting as key elements in the timekeeping of temporal homeostasis, particularly in the liver.
Collapse
|
26
|
Sakellakis M. Orphan receptors in prostate cancer. Prostate 2022; 82:1016-1024. [PMID: 35538397 DOI: 10.1002/pros.24370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/22/2022] [Accepted: 04/22/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND The identification of new cellular receptors has been increasing rapidly. A receptor is called "orphan" if an endogenous ligand has not been identified yet. METHODS Here we review receptors that contribute to prostate cancer and are considered orphan or partially orphan. This means that the full spectrum of their endogenous ligands remains unknown. RESULTS The orphan receptors are divided into two major families. The first group includes G protein-coupled receptors. Most are orphan olfactory receptors. OR51E1 inhibits cell proliferation and induces senescence in prostate cancer. OR51E2 inhibits prostate cancer growth, but promotes invasiveness and metastasis. GPR158, GPR110, and GPCR-X play significant roles in prostate cancer development and progression. However, GPR160 induces cell cycle arrest and apoptosis. The other major subset of orphan receptors are nuclear receptors. Receptor-related orphan receptor α (RORα) inhibits tumor growth, but RORγ stimulates androgen receptor signaling. PXR contributes to metabolic deactivation of androgens and inhibits cell proliferation. TLX has protumorigenic effects in prostate cancer, while its knockdown triggers cellular senescence and growth arrest. Estrogen-related receptor ERRγ can inhibit tumor growth but ERRα is protumorigenic. Dax1 and short heterodimeric partner are also inhibitory in prostate cancer. CONCLUSION There is a "zoo" of relatively underappreciated orphan receptors that play key roles in prostate cancer.
Collapse
Affiliation(s)
- Minas Sakellakis
- Fourth Oncology Department and Comprehensive Clinical Trials Center, Metropolitan Hospital, Athens, Greece
| |
Collapse
|
27
|
ABCB1 restricts brain accumulation of the novel RORγ agonist cintirorgon, while OATP1A/1B and CYP3A limit its oral availability. Eur J Pharm Biopharm 2022; 177:135-146. [DOI: 10.1016/j.ejpb.2022.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 05/29/2022] [Accepted: 06/16/2022] [Indexed: 11/21/2022]
|
28
|
Ritonja JA, Aronson KJ, Leung M, Flaten L, Topouza DG, Duan QL, Durocher F, Tranmer JE, Bhatti P. Investigating the relationship between melatonin patterns and methylation in circadian genes among day shift and night shift workers. Occup Environ Med 2022; 79:oemed-2021-108111. [PMID: 35501127 DOI: 10.1136/oemed-2021-108111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 04/16/2022] [Indexed: 11/04/2022]
Abstract
OBJECTIVES Mechanisms underlying the carcinogenicity of night shift work remain uncertain. One compelling yet understudied cancer mechanism may involve altered DNA methylation in circadian genes due to melatonin secretion patterns. The objective of this study was to explore the relationship between melatonin secretion patterns and circadian gene methylation among day and night shift workers. METHODS Female healthcare employees (n=38 day workers, n=36 night shift workers) for whom we had urinary 6-sulfatoxymelatonin secretion data from a previous study were recontacted. New blood samples were collected and used to measure methylation levels at 1150 CpG loci across 22 circadian genes using the Illumina Infinium MethylationEPIC beadchip. Linear regression was used to examine the association between melatonin (acrophase and mesor) and M values for each CpG site (false discovery rate, q=0.2), while testing for effect modification by shift work status. RESULTS Among night shift workers, a higher mesor (24 hours of mean production of melatonin) was associated with increased methylation in the body of RORA (q=0.02) and decreased methylation in the putative promoter region of MTNR1A (q=0.03). Later acrophase (ie, time of peak concentration) was associated with increased methylation in the putative promoter region of MTNR1A (q=0.20) and decreased methylation in the body of PER3 (q=0.20). No associations were identified among day workers. CONCLUSIONS In conclusion, patterns in melatonin secretion were associated with differential circadian gene methylation among night shift workers. Melatonin and alteration of DNA methylation in circadian genes may be one pathway towards increased cancer risk, although larger-scale studies examining multiple time points are needed.
Collapse
Affiliation(s)
- Jennifer A Ritonja
- Department of Public Health Sciences, Queen's University, Kingston, Ontario, Canada
| | - Kristan J Aronson
- Department of Public Health Sciences, Queen's University, Kingston, Ontario, Canada
- Division of Cancer Care and Epidemiology, Queen's University Cancer Research Institute, Kingston, Ontario, Canada
| | - Michael Leung
- Department of Epidemiology, Harvard University T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Lisa Flaten
- Department of Public Health Sciences, Queen's University, Kingston, Ontario, Canada
| | - Danai G Topouza
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Qing Ling Duan
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
- School of Computing, Queen's University, Kingston, Ontario, Canada
| | - Francine Durocher
- Département de Médecine Moléculaire, Faculté de Médecine, Université Laval, Quebec, Quebec, Canada
- Centre de Recherche sur le Cancer, Centre de recherche du CHU de Québec-Université Laval, Quebec, Quebec, Canada
| | - Joan E Tranmer
- Department of Public Health Sciences, Queen's University, Kingston, Ontario, Canada
- School of Nursing, Queen's University, Kingston, Ontario, Canada
| | - Parveen Bhatti
- Cancer Control Research, BC Cancer Agency, Vancouver, British Columbia, Canada
- School of Population and Public Health, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
29
|
Bischoff NS, Proquin H, Jetten MJ, Schrooders Y, Jonkhout MCM, Briedé JJ, van Breda SG, Jennen DGJ, Medina-Reyes EI, Delgado-Buenrostro NL, Chirino YI, van Loveren H, de Kok TM. The Effects of the Food Additive Titanium Dioxide (E171) on Tumor Formation and Gene Expression in the Colon of a Transgenic Mouse Model for Colorectal Cancer. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1256. [PMID: 35457963 PMCID: PMC9027218 DOI: 10.3390/nano12081256] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/28/2022] [Accepted: 04/05/2022] [Indexed: 11/16/2022]
Abstract
Titanium dioxide (TiO2) is present in many different food products as the food additive E171, which is currently scrutinized due to its potential adverse effects, including the stimulation of tumor formation in the gastrointestinal tract. We developed a transgenic mouse model to examine the effects of E171 on colorectal cancer (CRC), using the Cre-LoxP system to create an Apc-gene-knockout model which spontaneously develops colorectal tumors. A pilot study showed that E171 exposed mice developed colorectal adenocarcinomas, which were accompanied by enhanced hyperplasia in epithelial cells, lymphatic nodules at the base of the polyps, and increased tumor size. In the main study, tumor formation was studied following the exposure to 5 mg/kgbw/day of E171 for 9 weeks (Phase I). E171 exposure showed a statistically nonsignificant increase in the number of colorectal tumors in these transgenic mice, as well as a statistically nonsignificant increase in the average number of mice with tumors. Gene expression changes in the colon were analyzed after exposure to 1, 2, and 5 mg/kgbw/day of E171 for 2, 7, 14, and 21 days (Phase II). Whole-genome mRNA analysis revealed the modulation of genes in pathways involved in the regulation of gene expression, cell cycle, post-translational modification, nuclear receptor signaling, and circadian rhythm. The processes associated with these genes might be involved in the enhanced tumor formation and suggest that E171 may contribute to tumor formation and progression by modulation of events related to inflammation, activation of immune responses, cell cycle, and cancer signaling.
Collapse
Affiliation(s)
- Nicolaj S. Bischoff
- Department of Toxicogenomics, GROW School for Oncology and Reproduction, Maastricht University Medical Center, 6229 ER Maastricht, The Netherlands; (H.P.); (M.J.J.); (Y.S.); (M.C.M.J.); (J.J.B.); (S.G.v.B.); (D.G.J.J.); (H.v.L.); (T.M.d.K.)
| | - Héloïse Proquin
- Department of Toxicogenomics, GROW School for Oncology and Reproduction, Maastricht University Medical Center, 6229 ER Maastricht, The Netherlands; (H.P.); (M.J.J.); (Y.S.); (M.C.M.J.); (J.J.B.); (S.G.v.B.); (D.G.J.J.); (H.v.L.); (T.M.d.K.)
- National Institute for Public Health and Environment (RIVM), Bilthoven, 3721 MA De Bilt, The Netherlands
| | - Marlon J. Jetten
- Department of Toxicogenomics, GROW School for Oncology and Reproduction, Maastricht University Medical Center, 6229 ER Maastricht, The Netherlands; (H.P.); (M.J.J.); (Y.S.); (M.C.M.J.); (J.J.B.); (S.G.v.B.); (D.G.J.J.); (H.v.L.); (T.M.d.K.)
- Faculty of Health, Medicine and Life Science, Maastricht University Medical Center, 6229 ES Maastricht, The Netherlands
| | - Yannick Schrooders
- Department of Toxicogenomics, GROW School for Oncology and Reproduction, Maastricht University Medical Center, 6229 ER Maastricht, The Netherlands; (H.P.); (M.J.J.); (Y.S.); (M.C.M.J.); (J.J.B.); (S.G.v.B.); (D.G.J.J.); (H.v.L.); (T.M.d.K.)
- Laboratory of Biosignaling & Therapeutics, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Marloes C. M. Jonkhout
- Department of Toxicogenomics, GROW School for Oncology and Reproduction, Maastricht University Medical Center, 6229 ER Maastricht, The Netherlands; (H.P.); (M.J.J.); (Y.S.); (M.C.M.J.); (J.J.B.); (S.G.v.B.); (D.G.J.J.); (H.v.L.); (T.M.d.K.)
- Laboratory of Biosignaling & Therapeutics, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Jacco J. Briedé
- Department of Toxicogenomics, GROW School for Oncology and Reproduction, Maastricht University Medical Center, 6229 ER Maastricht, The Netherlands; (H.P.); (M.J.J.); (Y.S.); (M.C.M.J.); (J.J.B.); (S.G.v.B.); (D.G.J.J.); (H.v.L.); (T.M.d.K.)
| | - Simone G. van Breda
- Department of Toxicogenomics, GROW School for Oncology and Reproduction, Maastricht University Medical Center, 6229 ER Maastricht, The Netherlands; (H.P.); (M.J.J.); (Y.S.); (M.C.M.J.); (J.J.B.); (S.G.v.B.); (D.G.J.J.); (H.v.L.); (T.M.d.K.)
| | - Danyel G. J. Jennen
- Department of Toxicogenomics, GROW School for Oncology and Reproduction, Maastricht University Medical Center, 6229 ER Maastricht, The Netherlands; (H.P.); (M.J.J.); (Y.S.); (M.C.M.J.); (J.J.B.); (S.G.v.B.); (D.G.J.J.); (H.v.L.); (T.M.d.K.)
| | - Estefany I. Medina-Reyes
- Laboratorio de Carcinogénesis y Toxicología, Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Mexico City 54090, Mexico; (E.I.M.-R.); (N.L.D.-B.); (Y.I.C.)
| | - Norma L. Delgado-Buenrostro
- Laboratorio de Carcinogénesis y Toxicología, Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Mexico City 54090, Mexico; (E.I.M.-R.); (N.L.D.-B.); (Y.I.C.)
| | - Yolanda I. Chirino
- Laboratorio de Carcinogénesis y Toxicología, Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Mexico City 54090, Mexico; (E.I.M.-R.); (N.L.D.-B.); (Y.I.C.)
| | - Henk van Loveren
- Department of Toxicogenomics, GROW School for Oncology and Reproduction, Maastricht University Medical Center, 6229 ER Maastricht, The Netherlands; (H.P.); (M.J.J.); (Y.S.); (M.C.M.J.); (J.J.B.); (S.G.v.B.); (D.G.J.J.); (H.v.L.); (T.M.d.K.)
| | - Theo M. de Kok
- Department of Toxicogenomics, GROW School for Oncology and Reproduction, Maastricht University Medical Center, 6229 ER Maastricht, The Netherlands; (H.P.); (M.J.J.); (Y.S.); (M.C.M.J.); (J.J.B.); (S.G.v.B.); (D.G.J.J.); (H.v.L.); (T.M.d.K.)
| |
Collapse
|
30
|
Kim JY, Yang IS, Kim HJ, Yoon JY, Han YH, Seong JK, Lee MO. RORα contributes to the maintenance of genome ploidy in the liver of mice with diet-induced nonalcoholic steatohepatitis. Am J Physiol Endocrinol Metab 2022; 322:E118-E131. [PMID: 34894722 DOI: 10.1152/ajpendo.00309.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Hepatic polyploidization is closely linked to the progression of nonalcoholic fatty liver disease (NAFLD); however, the underlying molecular mechanism is not clearly understood. In this study, we demonstrated the role of retinoic acid-related orphan receptor α (RORα) in the maintenance of genomic integrity, particularly in the pathogenesis of NAFLD, using the high-fat diet (HFD)-fed liver-specific RORα knockout (RORα-LKO) mouse model. First, we observed that the loss of hepatic retinoic acid receptor-related orphan receptor α (RORα) accelerated hepatocyte nuclear polyploidization after HFD feeding. In 70% partial hepatectomy experiments, enrichment of hepatocyte polyploidy was more obvious in the RORα-LKO animals, which was accompanied by early progression to the S phase and blockade of the G2/M transition, suggesting a potential role of RORα in suppressing hepatocyte polyploidization in the regenerating liver. An analysis of a publicly available RNA sequencing (RNA-seq) and chromatin immunoprecipitation-seq dataset, together with the Search Tool of the Retrieval of Interacting Genes/Proteins database resource, revealed that DNA endoreplication was the top-enriched biological process Gene Ontology term. Furthermore, we found that E2f7 and E2f8, which encode key transcription factors for DNA endoreplication, were the downstream targets of RORα-induced transcriptional repression. Finally, we showed that the administration of JC1-40, an RORα activator (5 mg/kg body wt), significantly reduced hepatic nuclear polyploidization in the HFD-fed mice. Together, our observations suggest that the RORα-induced suppression of hepatic polyploidization may provide new insights into the pathological polyploidy of NAFLD and may contribute to the development of therapeutic strategies for the treatment of NAFLD.NEW & NOTEWORTHY It has been reported that hepatic polyploidization is closely linked to the progression of NAFLD. Here, we showed that the genetic depletion of hepatic RORα in mice accelerated hepatocyte polyploidization after high-fat diet feeding. The mechanism could be the RORα-mediated repression of E2f7 and E2f8, key transcription factors for DNA endoreplication. Thus, preservation of genome integrity by RORα could provide a new insight for developing therapeutics against the disease.
Collapse
Affiliation(s)
- Ju-Yeon Kim
- College of Pharmacy, Seoul National University, Seoul, South Korea
| | - In Sook Yang
- College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Hyeon-Ji Kim
- College of Pharmacy, Seoul National University, Seoul, South Korea
- Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| | - Jae-Yeun Yoon
- College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Yong-Hyun Han
- College of Pharmacy, Kangwon National University, Chuncheon, South Korea
| | - Je Kyung Seong
- College of Veterinary Medicine, Seoul National University, Seoul, South Korea
- Research Institute of Veterinary Science, Seoul National University, Seoul, South Korea
- Korea Mouse Phenotyping Center, Seoul National University, Seoul, South Korea
| | - Mi-Ock Lee
- College of Pharmacy, Seoul National University, Seoul, South Korea
- Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
- Bio-MAX Institute, Seoul National University, Seoul, South Korea
- Korea Mouse Phenotyping Center, Seoul National University, Seoul, South Korea
| |
Collapse
|
31
|
Xie Y, Abel PW, Casale TB, Tu Y. T H17 cells and corticosteroid insensitivity in severe asthma. J Allergy Clin Immunol 2022; 149:467-479. [PMID: 34953791 PMCID: PMC8821175 DOI: 10.1016/j.jaci.2021.12.769] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/30/2021] [Accepted: 12/15/2021] [Indexed: 02/03/2023]
Abstract
Asthma is classically described as having either a type 2 (T2) eosinophilic phenotype or a non-T2 neutrophilic phenotype. T2 asthma usually responds to classical bronchodilation therapy and corticosteroid treatment. Non-T2 neutrophilic asthma is often more severe. Patients with non-T2 asthma or late-onset T2 asthma show poor response to the currently available anti-inflammatory therapies. These therapeutic failures result in increased morbidity and cost associated with asthma and pose a major health care problem. Recent evidence suggests that some non-T2 asthma is associated with elevated TH17 cell immune responses. TH17 cells producing Il-17A and IL-17F are involved in the neutrophilic inflammation and airway remodeling processes in severe asthma and have been suggested to contribute to the development of subsets of corticosteroid-insensitive asthma. This review explores the pathologic role of TH17 cells in corticosteroid insensitivity of severe asthma and potential targets to treat this endotype of asthma.
Collapse
Affiliation(s)
- Yan Xie
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE, USA
| | - Peter W. Abel
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE, USA
| | - Thomas B. Casale
- Department of Internal Medicine, University of South Florida School of Medicine, Tampa, FL, USA
| | - Yaping Tu
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE, USA
| |
Collapse
|
32
|
Smith HA, Betts JA. Nutrient timing and metabolic regulation symposium review from "Novel dietary approaches to appetite regulation, health and performance (2021)". J Physiol 2022; 600:1299-1312. [PMID: 35038774 PMCID: PMC9305539 DOI: 10.1113/jp280756] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 12/09/2021] [Indexed: 11/19/2022] Open
Abstract
Daily (circadian) rhythms coordinate our physiology and behaviour with regular environmental changes. Molecular clocks in peripheral tissues (e.g. liver, skeletal muscle and adipose) give rise to rhythms in macronutrient metabolism, appetite regulation and the components of energy balance such that our bodies can align the periodic delivery of nutrients with ongoing metabolic requirements. The timing of meals both in absolute terms (i.e. relative to clock time) and in relative terms (i.e. relative to other daily events) is therefore relevant to metabolism and health. Experimental manipulation of feeding–fasting cycles can advance understanding of the effect of absolute and relative timing of meals on metabolism and health. Such studies have extended the overnight fast by regular breakfast omission and revealed that morning fasting can alter the metabolic response to subsequent meals later in the day, whilst also eliciting compensatory behavioural responses (i.e. reduced physical activity). Similarly, restricting energy intake via alternate‐day fasting also has the potential to elicit a compensatory reduction in physical activity, and so can undermine weight‐loss efforts (i.e. to preserve body fat stores). Interrupting the usual overnight fast (and therefore also the usual sleep cycle) by nocturnal feeding has also been examined and further research is needed to understand the importance of this period for either nutritional intervention or nutritional withdrawal. In summary, it is important for dietary guidelines for human health to consider nutrient timing (i.e. when we eat) alongside the conventional focus on nutrient quantity and nutrient quality (i.e. how much we eat and what we eat).
![]()
Collapse
Affiliation(s)
- Harry A Smith
- Centre for Nutrition Exercise and Metabolism, Department for Health, University of Bath, Bath, BA2 7AY, United Kingdom
| | - James A Betts
- Centre for Nutrition Exercise and Metabolism, Department for Health, University of Bath, Bath, BA2 7AY, United Kingdom
| |
Collapse
|
33
|
Ho CC, Kim G, Mun CH, Kim JW, Han J, Park JY, Park YB, Lee SK. Transcriptional Interactomic Inhibition of RORα Suppresses Th17-Related Inflammation. J Inflamm Res 2021; 14:7091-7105. [PMID: 34992408 PMCID: PMC8710077 DOI: 10.2147/jir.s344031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/08/2021] [Indexed: 11/23/2022] Open
Abstract
PURPOSE Th17 cells and their cytokines are implicated in the pathogenesis of various autoimmune diseases. Retinoic acid-related orphan receptor alpha (RORα) is a transcription factor for the differentiation and the inflammatory functions of Th17 cells. In this study, we generated the nucleus-transducible form of transcription modulation domain of RORα (nt-RORα-TMD) to investigate the functional roles of RORα in vitro and in vivo under normal physiological condition without genetic alteration. METHODS The functions of nt-RORα-TMD were analyzed in vitro through flow cytometry, luciferase assay, ELISA, and transcriptome sequencing. Finally, the in vivo therapeutic effects of nt-RORα-TMD were verified in dextran sulfate sodium (DSS)-induced colitis mice. RESULTS nt-RORα-TMD was effectively delivered into the cell nucleus in a dose- and time-dependent manner without any cellular toxicity. nt-RORα-TMD competitively inhibited the RORα-mediated transcription but not RORγt-mediated transcription. Secretion of IL-17A from the splenocytes was suppressed by nt-RORα-TMD without affecting the secretion of Th1- or Th2-type cytokine and T cell activation events such as induction of CD69 and CD25. The differentiation potential of naïve T cells into Th17 cells, not into Th1, Th2, or Treg cells, was significantly blocked by nt-RORα-TMD. Consistently, mRNA sequencing analysis showed that nt-RORα-TMD treatment down-regulated the expression of the genes related to the differentiation and functions of Th17 cells. Treatment of DSS-induced colitis mice with nt-RORα-TMD improved the overall symptoms of colitis, such as body weight change, colon length, infiltration of inflammatory cells, and the level of inflammatory cytokines in the serum. In the mesenteric lymph node (MLN) of the nt-RORα-TMD-treated mice, the population of CD4+IL-17A+ Th17 cells was reduced, and the population of CD4+Foxp3+ Treg cells increased. CONCLUSION nt-RORα-TMD has a potential to be developed as a novel therapeutic reagent for treating various inflammatory diseases in which Th17 cells are the leading pathological player.
Collapse
Affiliation(s)
- Chun-Chang Ho
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Giha Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Chin Hee Mun
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ju-Won Kim
- Department of Medical Science, Brain Korea 21 PLUS Project, Yonsei University, Seoul, Republic of Korea
| | - Jieun Han
- Department of Medical Science, Brain Korea 21 PLUS Project, Yonsei University, Seoul, Republic of Korea
| | - Ji Yoon Park
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Yong-Beom Park
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Medical Science, Brain Korea 21 PLUS Project, Yonsei University, Seoul, Republic of Korea
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sang-Kyou Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
- Good T Cells, Inc., Seoul, Republic of Korea
| |
Collapse
|
34
|
Beak JY, Kang HS, Huang W, Deshmukh R, Hong SJ, Kadakia N, Aghajanian A, Gerrish K, Jetten A, Jensen B. The nuclear receptor RORα preserves cardiomyocyte mitochondrial function by regulating caveolin-3-mediated mitophagy. J Biol Chem 2021; 297:101358. [PMID: 34756888 PMCID: PMC8626585 DOI: 10.1016/j.jbc.2021.101358] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 01/23/2023] Open
Abstract
Preserving optimal mitochondrial function is critical in the heart, which is the most ATP-avid organ in the body. Recently, we showed that global deficiency of the nuclear receptor RORα in the "staggerer" mouse exacerbates angiotensin II-induced cardiac hypertrophy and compromises cardiomyocyte mitochondrial function. However, the mechanisms underlying these observations have not been defined previously. Here, we used pharmacological and genetic gain- and loss-of-function tools to demonstrate that RORα regulates cardiomyocyte mitophagy to preserve mitochondrial abundance and function. We found that cardiomyocyte mitochondria in staggerer mice with lack of functional RORα were less numerous and exhibited fewer mitophagy events than those in WT controls. The hearts of our novel cardiomyocyte-specific RORα KO mouse line demonstrated impaired contractile function, enhanced oxidative stress, increased apoptosis, and reduced autophagic flux relative to Cre(-) littermates. We found that cardiomyocyte mitochondria in "staggerer" mice with lack of functional RORα were upregulated by hypoxia, a classical inducer of mitophagy. The loss of RORα blunted mitophagy and broadly compromised mitochondrial function in normoxic and hypoxic conditions in vivo and in vitro. We also show that RORα is a direct transcriptional regulator of the mitophagy mediator caveolin-3 in cardiomyocytes and that enhanced expression of RORα increases caveolin-3 abundance and enhances mitophagy. Finally, knockdown of RORα impairs cardiomyocyte mitophagy, compromises mitochondrial function, and induces apoptosis, but these defects could be rescued by caveolin-3 overexpression. Collectively, these findings reveal a novel role for RORα in regulating mitophagy through caveolin-3 and expand our currently limited understanding of the mechanisms underlying RORα-mediated cardioprotection.
Collapse
Affiliation(s)
- Ju Youn Beak
- McAllister Heart Institute, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Hong Soon Kang
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, North Carolina, USA
| | - Wei Huang
- McAllister Heart Institute, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Rishi Deshmukh
- McAllister Heart Institute, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Seok Jae Hong
- McAllister Heart Institute, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Nishi Kadakia
- Campbell University School of Osteopathic Medicine, Lillington, North Carolina, USA
| | - Amir Aghajanian
- McAllister Heart Institute, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA; Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Kevin Gerrish
- Molecular Genomics Core Laboratory, National Institute of Environmental Health Sciences, Durham, North Carolina, USA
| | - Anton Jetten
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, North Carolina, USA
| | - Brian Jensen
- McAllister Heart Institute, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA; Division of Cardiology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA.
| |
Collapse
|
35
|
Yi S, Yang Y. Melatonin attenuates low shear stress-induced pyroptosis and endothelial cell dysfunction via the RORα/miR-223/STAT-3 signalling pathway. Exp Ther Med 2021; 22:1392. [PMID: 34650640 PMCID: PMC8506941 DOI: 10.3892/etm.2021.10828] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/07/2021] [Indexed: 12/12/2022] Open
Abstract
Endothelial cells sense changes in blood flow shear stress and affect the progression of atherosclerotic plaques. Pyroptosis is an inflammatory form of cell death and has been implicated in cardiovascular diseases. Melatonin and its nuclear receptor retinoid-related orphan receptor α (RORα) have protective effects on the development of atherosclerosis. To date, whether melatonin can prevent endothelial cell pyroptosis and dysfunction in pathological shear stress remains unclear. In the present study, human umbilical vein endothelial cells (ECs) were cultured under low shear stress conditions (5 dyne/cm2) for 24 h and treated with or without melatonin (2 µmol/l). The binding sites of the microRNA (miR)-223 promoter and RORα were predicted using the JASPAR website. Expression of pyroptosis-related proteins, including cleaved N-terminal gasdermin D, caspase-1, intercellular adhesion molecule 1 (ICAM-1) and nitric oxide (NO) were assessed. The results indicated that low shear stress increased pyroptosis and ICAM-1 expression, whereas it decreased NO levels. Melatonin alleviated pyroptosis and ICAM-1 expression and increased the production of NO in ECs. Further assessment revealed that low-level shear stress decreased RORα protein and mRNA expression, whereas melatonin would bind to RORα and thereby promoted miR-223 transcription in ECs. The present study also identified signal transducer and activator of transcription 3 (STAT-3) as a potential target gene of miR-223-3p. When transfected with miR-223 inhibitor, ECs up-regulated the expression of pyroptosis-related proteins and ICAM-1, and down-regulated NO levels. By contrast, silencing STAT-3 expression diminished the protective effect of miR-223. These results indicated that melatonin prevented ECs from undergoing pyroptosis and alleviated dysfunction via the RORα/miR-223/STAT-3 signalling pathway. This information could aid in the development of novel therapeutic approaches and provide new insights into atherosclerosis.
Collapse
Affiliation(s)
- Sui Yi
- The Intensive Care Unit Department, Second Hospital of Dalian Medical University, Dalian, Liaoning 116027, P.R. China
| | - Yang Yang
- The Neurology Department, Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, P.R. China
| |
Collapse
|
36
|
Pathak GA, Wendt FR, Goswami A, Koller D, De Angelis F, Polimanti R. ACE2 Netlas: In silico Functional Characterization and Drug-Gene Interactions of ACE2 Gene Network to Understand Its Potential Involvement in COVID-19 Susceptibility. Front Genet 2021; 12:698033. [PMID: 34512723 PMCID: PMC8429844 DOI: 10.3389/fgene.2021.698033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/29/2021] [Indexed: 12/15/2022] Open
Abstract
Angiotensin-converting enzyme-2 (ACE2) receptor has been identified as the key adhesion molecule for the transmission of the SARS-CoV-2. However, there is no evidence that human genetic variation in ACE2 is singularly responsible for COVID-19 susceptibility. Therefore, we performed an integrative multi-level characterization of genes that interact with ACE2 (ACE2-gene network) for their statistically enriched biological properties in the context of COVID-19. The phenome-wide association of 51 genes including ACE2 with 4,756 traits categorized into 26 phenotype categories, showed enrichment of immunological, respiratory, environmental, skeletal, dermatological, and metabolic domains (p < 4e-4). Transcriptomic regulation of ACE2-gene network was enriched for tissue-specificity in kidney, small intestine, and colon (p < 4.7e-4). Leveraging the drug-gene interaction database we identified 47 drugs, including dexamethasone and spironolactone, among others. Considering genetic variants within ± 10 kb of ACE2-network genes we identified miRNAs whose binding sites may be altered as a consequence of genetic variation. The identified miRNAs revealed statistical over-representation of inflammation, aging, diabetes, and heart conditions. The genetic variant associations in RORA, SLC12A6, and SLC6A19 genes were observed in genome-wide association study (GWAS) of COVID-19 susceptibility. We also report the GWAS-identified variant in 3p21.31 locus, serves as trans-QTL for RORA and RORC genes. Overall, functional characterization of ACE2-gene network highlights several potential mechanisms in COVID-19 susceptibility. The data can also be accessed at https://gpwhiz.github.io/ACE2Netlas/.
Collapse
Affiliation(s)
- Gita A. Pathak
- Division of Human Genetics, Department of Psychiatry, Yale School of Medicine, New Haven, CT, United States
- Veteran Affairs Connecticut Healthcare System, West Haven, CT, United States
| | - Frank R. Wendt
- Division of Human Genetics, Department of Psychiatry, Yale School of Medicine, New Haven, CT, United States
- Veteran Affairs Connecticut Healthcare System, West Haven, CT, United States
| | - Aranyak Goswami
- Division of Human Genetics, Department of Psychiatry, Yale School of Medicine, New Haven, CT, United States
- Veteran Affairs Connecticut Healthcare System, West Haven, CT, United States
| | - Dora Koller
- Division of Human Genetics, Department of Psychiatry, Yale School of Medicine, New Haven, CT, United States
- Veteran Affairs Connecticut Healthcare System, West Haven, CT, United States
| | - Flavio De Angelis
- Division of Human Genetics, Department of Psychiatry, Yale School of Medicine, New Haven, CT, United States
- Veteran Affairs Connecticut Healthcare System, West Haven, CT, United States
| | | | - Renato Polimanti
- Division of Human Genetics, Department of Psychiatry, Yale School of Medicine, New Haven, CT, United States
- Veteran Affairs Connecticut Healthcare System, West Haven, CT, United States
| |
Collapse
|
37
|
Zou H, Yang N, Zhang X, Chen HW. RORγ is a context-specific master regulator of cholesterol biosynthesis and an emerging therapeutic target in cancer and autoimmune diseases. Biochem Pharmacol 2021; 196:114725. [PMID: 34384758 DOI: 10.1016/j.bcp.2021.114725] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 01/04/2023]
Abstract
Aberrant cholesterol metabolism and homeostasis in the form of elevated cholesterol biosynthesis and dysregulated efflux and metabolism is well recognized as a major feature of metabolic reprogramming in solid tumors. Recent studies have emphasized on major drivers and regulators such as Myc, mutant p53, SREBP2, LXRs and oncogenic signaling pathways that play crucial roles in tumor cholesterol metabolic reprogramming. Therapeutics such as statins targeting the mevalonate pathway were tried at the clinic without showing consistent benefits to cancer patients. Nuclear receptors are prominent regulators of mammalian metabolism. Their de-regulation often drives tumorigenesis. RORγ and its immune cell-specific isoform RORγt play important functions in control of mammalian metabolism, circadian rhythm and immune responses. Although RORγ, together with its closely related members RORα and RORβ were identified initially as orphan receptors, recent studies strongly support the conclusion that specific intermediates and metabolites of cholesterol pathways serve as endogenous ligands of RORγ. More recent studies also reveal a critical role of RORγ in tumorigenesis through major oncogenic pathways including acting a new master-like regulator of tumor cholesterol biosynthesis program. Importantly, an increasing number of RORγ orthosteric and allosteric ligands are being identified that display potent activities in blocking tumor growth and autoimmune disorders in preclinical models. This review summarizes the recent preclinical and clinical progress on RORγ with emphasis on its role in reprogramming tumor cholesterol metabolism and its regulation. It will also discuss RORγ functional mechanisms, context-specificity and its value as a therapeutic target for effective cancer treatment.
Collapse
Affiliation(s)
- Hongye Zou
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Sacramento, California, USA
| | - Nianxin Yang
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Sacramento, California, USA
| | - Xiong Zhang
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Sacramento, California, USA
| | - Hong-Wu Chen
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Sacramento, California, USA; UC Davis Comprehensive Cancer Center, University of California, Davis, Sacramento, California, USA; VA Northern California Health Care System, Mather, California, USA.
| |
Collapse
|
38
|
Moreno-Smith M, Milazzo G, Tao L, Fekry B, Zhu B, Mohammad MA, Di Giacomo S, Borkar R, Reddy KRK, Capasso M, Vasudevan SA, Sumazin P, Hicks J, Putluri N, Perini G, Eckel-Mahan K, Burris TP, Barbieri E. Restoration of the molecular clock is tumor suppressive in neuroblastoma. Nat Commun 2021; 12:4006. [PMID: 34183658 PMCID: PMC8238982 DOI: 10.1038/s41467-021-24196-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 06/07/2021] [Indexed: 02/07/2023] Open
Abstract
MYCN activation is a hallmark of advanced neuroblastoma (NB) and a known master regulator of metabolic reprogramming, favoring NB adaptation to its microenvironment. We found that the expression of the main regulators of the molecular clock loops is profoundly disrupted in MYCN-amplified NB patients, and this disruption independently predicts poor clinical outcome. MYCN induces the expression of clock repressors and downregulates the one of clock activators by directly binding to their promoters. Ultimately, MYCN attenuates the molecular clock by suppressing BMAL1 expression and oscillation, thereby promoting cell survival. Reestablishment of the activity of the clock activator RORα via its genetic overexpression and its stimulation through the agonist SR1078, restores BMAL1 expression and oscillation, effectively blocks MYCN-mediated tumor growth and de novo lipogenesis, and sensitizes NB tumors to conventional chemotherapy. In conclusion, reactivation of RORα could serve as a therapeutic strategy for MYCN-amplified NBs by blocking the dysregulation of molecular clock and cell metabolism mediated by MYCN.
Collapse
Affiliation(s)
- Myrthala Moreno-Smith
- Department of Pediatrics, Section of Hematology-Oncology, Texas Children's Cancer and Hematology Centers, Baylor College of Medicine, Houston, TX, USA
| | - Giorgio Milazzo
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Ling Tao
- Department of Pediatrics, Section of Hematology-Oncology, Texas Children's Cancer and Hematology Centers, Baylor College of Medicine, Houston, TX, USA
| | - Baharan Fekry
- Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center (UT Health), Houston, TX, USA
| | - Bokai Zhu
- Department of Medicine, Division of Endocrinology and Metabolism, Aging Institute of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, USA
| | - Mahmoud A Mohammad
- Department of Pediatrics, Children's Nutrition Research Center, US Department of Agriculture, Agricultural Research Service, Baylor College of Medicine, Houston, TX, USA
| | - Simone Di Giacomo
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Roshan Borkar
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | | | - Mario Capasso
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli, Naples, Italy
- CEINGE Biotecnologie Avanzate, Naples, Italy
| | - Sanjeev A Vasudevan
- Division of Pediatric Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Pavel Sumazin
- Department of Pediatrics, Section of Hematology-Oncology, Texas Children's Cancer and Hematology Centers, Baylor College of Medicine, Houston, TX, USA
| | - John Hicks
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Nagireddy Putluri
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Giovanni Perini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Kristin Eckel-Mahan
- Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center (UT Health), Houston, TX, USA
| | - Thomas P Burris
- Center for Clinical Pharmacology, Washington University School of Medicine and St. Louis College of Pharmacy, St. Louis, MO, USA
| | - Eveline Barbieri
- Department of Pediatrics, Section of Hematology-Oncology, Texas Children's Cancer and Hematology Centers, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
39
|
Bile Acids Activated Receptors in Inflammatory Bowel Disease. Cells 2021; 10:cells10061281. [PMID: 34064187 PMCID: PMC8224328 DOI: 10.3390/cells10061281] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/14/2021] [Accepted: 05/20/2021] [Indexed: 12/18/2022] Open
Abstract
Once known exclusively for their role in nutrients absorption, bile acids have emerged as signaling molecules, generated from cholesterol breakdown, acting on several immune cells by activating a variety of receptors including the G protein-coupled bile acid receptor 1 (GPABR1 or TGR5), the Farnesoid-X-receptor (FXR) and, as recently discovered, the retinoid-related orphan receptors (ROR)γt. GPBAR1, FXR, and RORγt are highly expressed in cells of the innate and adaptive immune system (i.e., dendritic cells (DCs), macrophages, innate lymphoid 3 cells (ILC3s), and T helper 17 (Th17) lymphocytes) and plays an important role in regulating intestinal and liver immunity, highlighting a role for various bile acid species in regulating immune responses to intestinal microbial antigens. While primary bile acids are generated from the cholesterol breakdown secondary bile acids, the GPBAR1 ligands, and oxo-bile acids derivatives, the RORγt ligands, are generated by the intestinal microbiota, highlighting the potential of these bile acids in mediating the chemical communication between the intestinal microbiota and the host. Changes in intestinal microbiota, dysbiosis, alter the composition of the bile acid pool, promoting the activation of the immune system and development of chronic inflammation. In this review, we focus on the molecular mechanisms by which an altered bile acid signaling promotes intestinal inflammation.
Collapse
|
40
|
Haim-Vilmovsky L, Henriksson J, Walker JA, Miao Z, Natan E, Kar G, Clare S, Barlow JL, Charidemou E, Mamanova L, Chen X, Proserpio V, Pramanik J, Woodhouse S, Protasio AV, Efremova M, Griffin JL, Berriman M, Dougan G, Fisher J, Marioni JC, McKenzie ANJ, Teichmann SA. Mapping Rora expression in resting and activated CD4+ T cells. PLoS One 2021; 16:e0251233. [PMID: 34003838 PMCID: PMC8130942 DOI: 10.1371/journal.pone.0251233] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 04/22/2021] [Indexed: 11/19/2022] Open
Abstract
The transcription factor Rora has been shown to be important for the development of ILC2 and the regulation of ILC3, macrophages and Treg cells. Here we investigate the role of Rora across CD4+ T cells in general, but with an emphasis on Th2 cells, both in vitro as well as in the context of several in vivo type 2 infection models. We dissect the function of Rora using overexpression and a CD4-conditional Rora-knockout mouse, as well as a RORA-reporter mouse. We establish the importance of Rora in CD4+ T cells for controlling lung inflammation induced by Nippostrongylus brasiliensis infection, and have measured the effect on downstream genes using RNA-seq. Using a systematic stimulation screen of CD4+ T cells, coupled with RNA-seq, we identify upstream regulators of Rora, most importantly IL-33 and CCL7. Our data suggest that Rora is a negative regulator of the immune system, possibly through several downstream pathways, and is under control of the local microenvironment.
Collapse
MESH Headings
- Animals
- Antigens, Helminth/immunology
- Antigens, Helminth/metabolism
- CD4-Positive T-Lymphocytes/immunology
- Cells, Cultured
- Cytokines/metabolism
- Disease Models, Animal
- Female
- Gene Expression Regulation/immunology
- Lymphocyte Activation
- Macrophages/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Nippostrongylus/immunology
- Nuclear Receptor Subfamily 1, Group F, Member 1/immunology
- Nuclear Receptor Subfamily 1, Group F, Member 1/metabolism
- Pneumonia/immunology
- Pneumonia/parasitology
- Pneumonia/pathology
- Strongylida Infections/immunology
- Strongylida Infections/parasitology
- Th2 Cells/immunology
Collapse
Affiliation(s)
- Liora Haim-Vilmovsky
- EMBL-European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Johan Henriksson
- EMBL-European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Jennifer A. Walker
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Zhichao Miao
- EMBL-European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Eviatar Natan
- EMBL-European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Gozde Kar
- EMBL-European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Simon Clare
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Jillian L. Barlow
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Evelina Charidemou
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Lira Mamanova
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Xi Chen
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Valentina Proserpio
- EMBL-European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Jhuma Pramanik
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Steven Woodhouse
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
- Wellcome Trust—Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Anna V. Protasio
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Mirjana Efremova
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Julian L. Griffin
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
- Department of Metabolism, Digestion and Reproduction, Biomolecular Medicine, Imperial College London, London, United Kingdom
| | - Matt Berriman
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Gordon Dougan
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | | | - John C. Marioni
- EMBL-European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Andrew N. J. McKenzie
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Sarah A. Teichmann
- EMBL-European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
- Theory of Condensed Matter, Cavendish Laboratory, Cambridge, United Kingdom
| |
Collapse
|
41
|
Liu Q, Xiao HY, Batt DG, Xiao Z, Zhu Y, Yang MG, Li N, Yip S, Li P, Sun D, Wu DR, Ruzanov M, Sack JS, Weigelt CA, Wang J, Li S, Shuster DJ, Xie JH, Song Y, Sherry T, Obermeier MT, Fura A, Stefanski K, Cornelius G, Chacko S, Khandelwal P, Dudhgaonkar S, Rudra A, Nagar J, Murali V, Govindarajan A, Denton R, Zhao Q, Meanwell NA, Borzilleri R, Dhar TGM. Azatricyclic Inverse Agonists of RORγt That Demonstrate Efficacy in Models of Rheumatoid Arthritis and Psoriasis. ACS Med Chem Lett 2021; 12:827-835. [PMID: 34055233 DOI: 10.1021/acsmedchemlett.1c00112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/28/2021] [Indexed: 11/30/2022] Open
Abstract
Structure-activity relationship studies directed toward the replacement of the fused phenyl ring of the lead hexahydrobenzoindole RORγt inverse agonist series represented by 1 with heterocyclic moieties led to the identification of three novel aza analogs 5-7. The hexahydropyrrolo[3,2-f]quinoline series 5 (X = N, Y = Z=CH) showed potency and metabolic stability comparable to series 1 but with improved in vitro membrane permeability and serum free fraction. This structural modification was applied to the hexahydrocyclopentanaphthalene series 3, culminating in the discovery of 8e as a potent and selective RORγt inverse agonist with an excellent in vitro profile, good pharmacokinetic properties, and biologic-like in vivo efficacy in preclinical models of rheumatoid arthritis and psoriasis.
Collapse
Affiliation(s)
- Qingjie Liu
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Hai-Yun Xiao
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Douglas G. Batt
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Zili Xiao
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Yeheng Zhu
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Michael G. Yang
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Ning Li
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Shiuhang Yip
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Peng Li
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Dawn Sun
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Dauh-Rurng Wu
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Max Ruzanov
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - John S. Sack
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Carolyn A. Weigelt
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Jinhong Wang
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Sha Li
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - David J. Shuster
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Jenny H. Xie
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Yunling Song
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Tara Sherry
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Mary T. Obermeier
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Aberra Fura
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Kevin Stefanski
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Georgia Cornelius
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Silvi Chacko
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Purnima Khandelwal
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Shailesh Dudhgaonkar
- Biocon Bristol Myers Squibb Research Centre, Biocon Park, Bommasandra IV Phase, Jigani Link Road, Bengaluru 560099, India
| | - Anjuman Rudra
- Biocon Bristol Myers Squibb Research Centre, Biocon Park, Bommasandra IV Phase, Jigani Link Road, Bengaluru 560099, India
| | - Jignesh Nagar
- Biocon Bristol Myers Squibb Research Centre, Biocon Park, Bommasandra IV Phase, Jigani Link Road, Bengaluru 560099, India
| | - Venkata Murali
- Biocon Bristol Myers Squibb Research Centre, Biocon Park, Bommasandra IV Phase, Jigani Link Road, Bengaluru 560099, India
| | - Arun Govindarajan
- Biocon Bristol Myers Squibb Research Centre, Biocon Park, Bommasandra IV Phase, Jigani Link Road, Bengaluru 560099, India
| | - Rex Denton
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Qihong Zhao
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Nicholas A. Meanwell
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Robert Borzilleri
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - T. G. Murali Dhar
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| |
Collapse
|
42
|
Expression of Genes Encoding Nuclear Factors PPARγ, LXRβ, and RORα in Epicardial and Subcutaneous Adipose Tissues in Patients with Coronary Heart Disease. Bull Exp Biol Med 2021; 170:654-657. [PMID: 33788111 DOI: 10.1007/s10517-021-05126-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Indexed: 10/21/2022]
Abstract
The nuclear factors PPARγ, RORα, and LXRβ are involved in transcriptional control of adipogenesis and implicated in glucose and lipid metabolism. In adipose tissues, they regulate inflammation. This study focuses on expression of the PPARG, RORA, and LXRβ (NR1H2) genes in epicardial and subcutaneous adipose tissues in patients with coronary heart disease as well as with concomitant abdominal obesity. In patients with coronary heart disease and abdominal obesity, PPARG mRNA level in subcutaneous adipose tissue was reduced in comparison with control group. In patients with total coronary occlusions, LXRβ mRNA level in epicardial adipose tissue was reduced, and it positively correlated with plasma HDL cholesterol. Thus, in cases of concomitant abdominal obesity and chronic total coronary occlusions, coronary heart disease is characterized by down-regulated expression of the genes of various transcriptional adipogenesis-regulating factors in adipose tissue.
Collapse
|
43
|
Rahmani Z, Fayyazi Bordbar MR, Dibaj M, Alimardani M, Moghbeli M. Genetic and molecular biology of autism spectrum disorder among Middle East population: a review. Hum Genomics 2021; 15:17. [PMID: 33712060 PMCID: PMC7953769 DOI: 10.1186/s40246-021-00319-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/04/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a neurodevelopmental disease, characterized by impaired social communication, executive dysfunction, and abnormal perceptual processing. It is more frequent among males. All of these clinical manifestations are associated with atypical neural development. Various genetic and environmental risk factors are involved in the etiology of autism. Genetic assessment is essential for the early detection and intervention which can improve social communications and reduce abnormal behaviors. Although, there is a noticeable ASD incidence in Middle East countries, there is still a lack of knowledge about the genetic and molecular biology of ASD among this population to introduce efficient diagnostic and prognostic methods. MAIN BODY In the present review, we have summarized all of the genes which have been associated with ASD progression among Middle East population. We have also categorized the reported genes based on their cell and molecular functions. CONCLUSIONS This review clarifies the genetic and molecular biology of ASD among Middle East population and paves the way of introducing an efficient population based panel of genetic markers for the early detection and management of ASD in Middle East countries.
Collapse
Affiliation(s)
- Zahra Rahmani
- Department of Medical Genetics, Golestan University of Medical Sciences, Gorgan, Iran
| | | | - Mohsen Dibaj
- Department of Biological Sciences, School of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Maliheh Alimardani
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
44
|
Russo-Savage L, Schulman IG. Liver X receptors and liver physiology. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166121. [PMID: 33713792 DOI: 10.1016/j.bbadis.2021.166121] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 12/29/2022]
Abstract
The liver x receptors LXRα (NR1H3) and LXRβ (NR1H2) are members of the nuclear hormone receptor superfamily of ligand dependent transcription factors that regulate transcription in response to the direct binding of cholesterol derivatives. Studies using genetic knockouts and synthetic ligands have defined the LXRs as important modulators of lipid homeostasis throughout the body. This review focuses on the control of cholesterol and fatty acid metabolism by LXRs in the liver and how modifying LXR activity can influence the pathology of liver diseases.
Collapse
Affiliation(s)
- Lillian Russo-Savage
- Department of Pharmacology, University of Virginia, School of Medicine, United States of America
| | - Ira G Schulman
- Department of Pharmacology, University of Virginia, School of Medicine, United States of America.
| |
Collapse
|
45
|
Roberts LB, Schnoeller C, Berkachy R, Darby M, Pillaye J, Oudhoff MJ, Parmar N, Mackowiak C, Sedda D, Quesniaux V, Ryffel B, Vaux R, Gounaris K, Berrard S, Withers DR, Horsnell WGC, Selkirk ME. Acetylcholine production by group 2 innate lymphoid cells promotes mucosal immunity to helminths. Sci Immunol 2021; 6:6/57/eabd0359. [PMID: 33674321 DOI: 10.1126/sciimmunol.abd0359] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 12/11/2020] [Indexed: 12/13/2022]
Abstract
Innate lymphoid cells (ILCs) are critical mediators of immunological and physiological responses at mucosal barrier sites. Whereas neurotransmitters can stimulate ILCs, the synthesis of small-molecule neurotransmitters by these cells has only recently been appreciated. Group 2 ILCs (ILC2s) are shown here to synthesize and release acetylcholine (ACh) during parasitic nematode infection. The cholinergic phenotype of pulmonary ILC2s was associated with their activation state, could be induced by in vivo exposure to extracts of Alternaria alternata or the alarmin cytokines interleukin-33 (IL-33) and IL-25, and was augmented by IL-2 in vitro. Genetic disruption of ACh synthesis by murine ILC2s resulted in increased parasite burdens, lower numbers of ILC2s, and reduced lung and gut barrier responses to Nippostrongylus brasiliensis infection. These data demonstrate a functional role for ILC2-derived ACh in the expansion of ILC2s for maximal induction of type 2 immunity.
Collapse
Affiliation(s)
- Luke B Roberts
- Department of Life Sciences, Imperial College London, London, UK. .,School of Immunology and Microbial Sciences, King's College London, Great Maze Pond, London SE1 9RT, UK
| | | | - Rita Berkachy
- Department of Life Sciences, Imperial College London, London, UK
| | - Matthew Darby
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Jamie Pillaye
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa.,College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Menno J Oudhoff
- Centre of Molecular Inflammation Research (CEMIR), Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Naveen Parmar
- Centre of Molecular Inflammation Research (CEMIR), Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Claire Mackowiak
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Delphine Sedda
- Laboratory of Molecular and Experimental Immunology and Neurogenetics, UMR 7355, CNRS-University of Orleans and Le Studium Institute for Advanced Studies, Rue Dupanloup, 45000 Orléans, France
| | - Valerie Quesniaux
- Laboratory of Molecular and Experimental Immunology and Neurogenetics, UMR 7355, CNRS-University of Orleans and Le Studium Institute for Advanced Studies, Rue Dupanloup, 45000 Orléans, France
| | - Bernhard Ryffel
- Laboratory of Molecular and Experimental Immunology and Neurogenetics, UMR 7355, CNRS-University of Orleans and Le Studium Institute for Advanced Studies, Rue Dupanloup, 45000 Orléans, France
| | - Rachel Vaux
- Department of Life Sciences, Imperial College London, London, UK
| | | | - Sylvie Berrard
- Université de Paris, NeuroDiderot, Inserm, 75019 Paris, France
| | - David R Withers
- College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - William G C Horsnell
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa. .,College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.,Laboratory of Molecular and Experimental Immunology and Neurogenetics, UMR 7355, CNRS-University of Orleans and Le Studium Institute for Advanced Studies, Rue Dupanloup, 45000 Orléans, France
| | - Murray E Selkirk
- Department of Life Sciences, Imperial College London, London, UK.
| |
Collapse
|
46
|
Li M, Yang T, Gao L, Xu H. An inadvertent issue of human retina exposure to endocrine disrupting chemicals: A safety assessment. CHEMOSPHERE 2021; 264:128484. [PMID: 33022499 DOI: 10.1016/j.chemosphere.2020.128484] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/07/2020] [Accepted: 09/27/2020] [Indexed: 06/11/2023]
Abstract
Endocrine disrupting chemicals (EDCs) are a group of chemical compounds that present a considerable public health problem due to their pervasiveness and associations with chronic diseases. EDCs can interrupt the endocrine system and interfere with hormone homeostasis, leading to abnormalities in human physiology. Much attention has been focused on the adverse effects EDCs have on the reproductive system, neurogenesis, neuroendocrine system, and thyroid dysfunction. The eye is usually directly exposed to the surrounding environment; however, the influences of EDCs on the eye have received comparatively little attention. Ocular diseases, such as ocular surface diseases and retinal diseases, have been implicated in hormone deficiency or excess. Epidemiologic studies have shown that EDC exposure not only causes ocular surface disorders, such as dry eye, but also associates with visual deficits and retinopathy. EDCs can pass through the human blood-retinal barrier and enter the neural retina, and can then accumulate in the retina. The retina is an embryologic extension of the central nervous system, and is extremely sensitive and vulnerable to EDCs that could be passed across the placenta during critical periods of retinal development. Subtle alterations in the retinal development process usually result in profound immediate, long-term, and delayed effects late in life. This review, based on extensive literature survey, briefly summarizes the current knowledge about the impact of representative manufactured EDCs on retinal toxicity, including retinal structure alterations and dysfunction. We also highlight the potential mechanism of action of EDCs on the retina, and the predictive retinal models of EDC exposure.
Collapse
Affiliation(s)
- Minghui Li
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Tian Yang
- Department of Cold Environmental Medicine, College of High Altitude Military Medicine, Third Military Medical University (Army Medical University), Chongqing, China
| | - Lixiong Gao
- Department of Ophthalmology, Third Medical Center of PLA General Hospital, Beijing, China
| | - Haiwei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China.
| |
Collapse
|
47
|
Ladurner A, Schwarz PF, Dirsch VM. Natural products as modulators of retinoic acid receptor-related orphan receptors (RORs). Nat Prod Rep 2021; 38:757-781. [PMID: 33118578 DOI: 10.1039/d0np00047g] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Covering: 1994 to 2020 Retinoic acid receptor-related orphan receptors (RORs) belong to a subfamily of the nuclear receptor superfamily and possess prominent roles in circadian rhythm, metabolism, inflammation, and cancer. They have been subject of research for over two decades and represent attractive but challenging drug targets. Natural products were among the first identified ligands of RORs and continue to be of interest to this day. This review focuses on ligands and indirect modulators of RORs from natural sources and explores their roles in a therapeutic context.
Collapse
Affiliation(s)
- Angela Ladurner
- Department of Pharmacognosy, University of Vienna, Vienna, Austria.
| | - Patrik F Schwarz
- Department of Pharmacognosy, University of Vienna, Vienna, Austria.
| | - Verena M Dirsch
- Department of Pharmacognosy, University of Vienna, Vienna, Austria.
| |
Collapse
|
48
|
Abstract
Bile acids are a group of chemically different steroids generated at the host/microbial interface. Indeed, while primary bile acids are the end-product of cholesterol breakdown in the host liver, secondary bile acids are the products of microbial metabolism. Primary and secondary bile acids along with their oxo derivatives have been identified as signaling molecules acting on a family of cell membrane and nuclear receptors collectively known as "bile acid-activated receptors." Members of this group of receptors are highly expressed throughout the gastrointestinal tract and mediate the bilateral communications of the intestinal microbiota with the host immune system. The expression and function of bile acid-activated receptors FXR, GPBAR1, PXR, VDR, and RORγt are highly dependent on the structure of the intestinal microbiota and negatively regulated by intestinal inflammation. Studies from gene ablated mice have demonstrated that FXR and GPBAR1 are essential to maintain a tolerogenic phenotype in the intestine, and their ablation promotes the polarization of intestinal T cells and macrophages toward a pro-inflammatory phenotype. RORγt inhibition by oxo-bile acids is essential to constrain Th17 polarization of intestinal lymphocytes. Gene-wide association studies and functional characterizations suggest a potential role for impaired bile acid signaling in development inflammatory bowel diseases (IBD). In this review, we will focus on how bile acids and their receptors mediate communications of intestinal microbiota with the intestinal immune system, describing dynamic changes of bile acid metabolism in IBD and the potential therapeutic application of targeting bile acid signaling in these disorders.
Collapse
|
49
|
Salcedo-Arellano MJ, Cabal-Herrera AM, Punatar RH, Clark CJ, Romney CA, Hagerman RJ. Overlapping Molecular Pathways Leading to Autism Spectrum Disorders, Fragile X Syndrome, and Targeted Treatments. Neurotherapeutics 2021; 18:265-283. [PMID: 33215285 PMCID: PMC8116395 DOI: 10.1007/s13311-020-00968-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2020] [Indexed: 02/06/2023] Open
Abstract
Autism spectrum disorders (ASD) are subdivided into idiopathic (unknown) etiology and secondary, based on known etiology. There are hundreds of causes of ASD and most of them are genetic in origin or related to the interplay of genetic etiology and environmental toxicology. Approximately 30 to 50% of the etiologies can be identified when using a combination of available genetic testing. Many of these gene mutations are either core components of the Wnt signaling pathway or their modulators. The full mutation of the fragile X mental retardation 1 (FMR1) gene leads to fragile X syndrome (FXS), the most common cause of monogenic origin of ASD, accounting for ~ 2% of the cases. There is an overlap of molecular mechanisms in those with idiopathic ASD and those with FXS, an interaction between various signaling pathways is suggested during the development of the autistic brain. This review summarizes the cross talk between neurobiological pathways found in ASD and FXS. These signaling pathways are currently under evaluation to target specific treatments in search of the reversal of the molecular abnormalities found in both idiopathic ASD and FXS.
Collapse
Affiliation(s)
- Maria Jimena Salcedo-Arellano
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA, 95817, USA.
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, Sacramento, CA, 95817, USA.
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute UCDHS, University of California Davis, 2825 50th Street, Sacramento, CA, 95817, USA.
| | - Ana Maria Cabal-Herrera
- Group on Congenital Malformations and Dysmorphology, Faculty of Health, Universidad del Valle, Cali, 00000, Colombia
| | - Ruchi Harendra Punatar
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA, 95817, USA
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute UCDHS, University of California Davis, 2825 50th Street, Sacramento, CA, 95817, USA
| | - Courtney Jessica Clark
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA, 95817, USA
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute UCDHS, University of California Davis, 2825 50th Street, Sacramento, CA, 95817, USA
| | - Christopher Allen Romney
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA, 95817, USA
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute UCDHS, University of California Davis, 2825 50th Street, Sacramento, CA, 95817, USA
| | - Randi J Hagerman
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA, 95817, USA.
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute UCDHS, University of California Davis, 2825 50th Street, Sacramento, CA, 95817, USA.
| |
Collapse
|
50
|
Liu Q, Batt DG, Weigelt CA, Yip S, Wu DR, Ruzanov M, Sack JS, Wang J, Yarde M, Li S, Shuster DJ, Xie JH, Sherry T, Obermeier MT, Fura A, Stefanski K, Cornelius G, Khandelwal P, Tino JA, Macor JE, Salter-Cid L, Denton R, Zhao Q, Dhar TGM. Novel Tricyclic Pyroglutamide Derivatives as Potent RORγt Inverse Agonists Identified using a Virtual Screening Approach. ACS Med Chem Lett 2020; 11:2510-2518. [PMID: 33335675 DOI: 10.1021/acsmedchemlett.0c00496] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/03/2020] [Indexed: 12/16/2022] Open
Abstract
Employing a virtual screening approach, we identified the pyroglutamide moiety as a nonacid replacement for the cyclohexanecarboxylic acid group which, when coupled to our previously reported conformationally locked tricyclic core, provided potent and selective RORγt inverse agonists. Structure-activity relationship optimization of the pyroglutamide moiety led to the identification of compound 18 as a potent and selective RORγt inverse agonist, albeit with poor aqueous solubility. We took advantage of the tertiary carbinol group in 18 to synthesize a phosphate prodrug, which provided good solubility, excellent exposures in mouse PK studies, and significant efficacy in a mouse model of psoriasis.
Collapse
Affiliation(s)
- Qingjie Liu
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Douglas G. Batt
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Carolyn A. Weigelt
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Shiuhang Yip
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Dauh-Rurng Wu
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Max Ruzanov
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - John S. Sack
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Jinhong Wang
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Melissa Yarde
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Sha Li
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - David J. Shuster
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Jenny H. Xie
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Tara Sherry
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Mary T. Obermeier
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Aberra Fura
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Kevin Stefanski
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Georgia Cornelius
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Purnima Khandelwal
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Joseph A. Tino
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - John E. Macor
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Luisa Salter-Cid
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Rex Denton
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Qihong Zhao
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - T. G. Murali Dhar
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| |
Collapse
|