1
|
Pinti P, Dina LM, Smith TJ. Ecological functional near-infrared spectroscopy in mobile children: using short separation channels to correct for systemic contamination during naturalistic neuroimaging. NEUROPHOTONICS 2024; 11:045004. [PMID: 39380715 PMCID: PMC11460616 DOI: 10.1117/1.nph.11.4.045004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 10/10/2024]
Abstract
Significance The advances and miniaturization in functional near-infrared spectroscopy (fNIRS) instrumentation offer the potential to move the classical laboratory-based cognitive neuroscience investigations into more naturalistic settings. Wearable and mobile fNIRS devices also provide a novel child-friendly means to image functional brain activity in freely moving toddlers and preschoolers. Measuring brain activity in more ecologically valid settings with fNIRS presents additional challenges, such as the increased impact of physiological interferences. One of the most popular methods for minimizing such interferences is to regress out short separation channels from the long separation channels [i.e., superficial signal regression (SSR)]. Although this has been extensively investigated in adults, little is known about the impact of systemic changes on the fNIRS signals recorded in children in either classical or novel naturalistic experiments. Aim We aim to investigate if extracerebral physiological changes occur in toddlers and preschoolers and whether SSR can help minimize these interferences. Approach We collected fNIRS data from 3- to 7-year-olds during a conventional computerized static task and in a dynamic naturalistic task in an immersive virtual reality (VR) cave automatic virtual environment. Results Our results show that superficial signal contamination data are present in young children as in adults. Importantly, we find that SSR helps in improving the localization of functional brain activity, both in the computerized task and, to a larger extent, in the dynamic VR task. Conclusions Following these results, we formulate suggestions to advance the field of developmental neuroimaging with fNIRS, particularly in ecological settings.
Collapse
Affiliation(s)
- Paola Pinti
- University of London, Birkbeck, Department of Psychological Sciences, London, United Kingdom
- University College London, Department of Medical Physics and Biomedical Engineering, London, United Kingdom
| | - Larisa M. Dina
- University of London, Birkbeck, Department of Psychological Sciences, London, United Kingdom
- King’s College London, Department of Psychology, London, United Kingdom
| | - Tim J. Smith
- University of London, Birkbeck, Department of Psychological Sciences, London, United Kingdom
- University of the Arts London, Creative Computing Institute, London, United Kingdom
| |
Collapse
|
2
|
Gao L, Lin Q, Tian D, Zhu S, Tai X. Advances and trends in the application of functional near-infrared spectroscopy for pediatric assessments: a bibliometric analysis. Front Neurol 2024; 15:1459214. [PMID: 39309263 PMCID: PMC11412835 DOI: 10.3389/fneur.2024.1459214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/29/2024] [Indexed: 09/25/2024] Open
Abstract
Objective The objective is to elucidate the collaboration and current research status in the pediatric field of fNIRS using bibliometric analysis, and to discuss future directions. Method Bibliometric analysis was conducted on publications related to pediatric fNIRS research published before June 2024 in the Web of Science Core Collection using VOSviewer software and R language. Results A total of 761 documents were retrieved, published by 2,686 authors from 893 institutions across 44 countries in 239 journals. The number of publications has significantly increased since 2012. The United States is the country with the highest number of publications, University College London is the institution with the most publications, Lloyd-Fox Sarah is the author with the most publications and significant influence, and "Neurophotonics" is the journal with the most publications. The current hotspots mainly involve using fNIRS to study executive functions and autism spectrum disorders in children. Conclusion The study provides useful reference information for researchers by analyzing publication numbers, collaborative networks, publishing journals, and research hotspots. In the future, there should be an emphasis on enhancing interdisciplinary and international collaboration to collectively dedicate efforts toward the advancement of fNIRS technology and the standardization of research.
Collapse
Affiliation(s)
- Lin Gao
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, China
| | | | - Dong Tian
- Second Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, China
| | - Siying Zhu
- Second Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, China
| | - Xiantao Tai
- Second Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, China
| |
Collapse
|
3
|
AlQahtani NJ, Al-Naib I, Althobaiti M. Recent progress on smart lower prosthetic limbs: a comprehensive review on using EEG and fNIRS devices in rehabilitation. Front Bioeng Biotechnol 2024; 12:1454262. [PMID: 39253705 PMCID: PMC11381415 DOI: 10.3389/fbioe.2024.1454262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/19/2024] [Indexed: 09/11/2024] Open
Abstract
The global rise in lower limb amputation cases necessitates advancements in prosthetic limb technology to enhance the quality of life for affected patients. This review paper explores recent advancements in the integration of EEG and fNIRS modalities for smart lower prosthetic limbs for rehabilitation applications. The paper synthesizes current research progress, focusing on the synergy between brain-computer interfaces and neuroimaging technologies to enhance the functionality and user experience of lower limb prosthetics. The review discusses the potential of EEG and fNIRS in decoding neural signals, enabling more intuitive and responsive control of prosthetic devices. Additionally, the paper highlights the challenges, innovations, and prospects associated with the incorporation of these neurotechnologies in the field of rehabilitation. The insights provided in this review contribute to a deeper understanding of the evolving landscape of smart lower prosthetic limbs and pave the way for more effective and user-friendly solutions in the realm of neurorehabilitation.
Collapse
Affiliation(s)
- Nouf Jubran AlQahtani
- Biomedical Engineering Department, College of Engineering, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Ibraheem Al-Naib
- Bioengineering Department, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia
- Interdisciplinary Research Center for Communication Systems and Sensing, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia
| | - Murad Althobaiti
- Biomedical Engineering Department, College of Engineering, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
4
|
Kang KYL, Rosenkranz R, Altinsoy ME, Li SC. Cortical processes of multisensory plausibility modulation of vibrotactile perception in virtual environments in middled-aged and older adults. Sci Rep 2024; 14:13366. [PMID: 38862559 PMCID: PMC11166973 DOI: 10.1038/s41598-024-64054-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 06/04/2024] [Indexed: 06/13/2024] Open
Abstract
Digital technologies, such as virtual or augmented reality, can potentially support neurocognitive functions of the aging populations worldwide and complement existing intervention methods. However, aging-related declines in the frontal-parietal network and dopaminergic modulation which progress gradually across the later periods of the adult lifespan may affect the processing of multisensory congruence and expectancy based contextual plausibility. We assessed hemodynamic brain responses while middle-aged and old adults experienced car-riding virtual-reality scenarios where the plausibility of vibrotactile stimulations was manipulated by delivering stimulus intensities that were either congruent or incongruent with the digitalized audio-visual contexts of the respective scenarios. Relative to previous findings observed in young adults, although highly plausible vibrotactile stimulations confirming with contextual expectations also elicited higher brain hemodynamic responses in middle-aged and old adults, this effect was limited to virtual scenarios with extreme expectancy violations. Moreover, individual differences in plausibility-related frontal activity did not correlate with plausibility violation costs in the sensorimotor cortex, indicating less systematic frontal context-based sensory filtering in older ages. These findings have practical implications for advancing digital technologies to support aging societies.
Collapse
Affiliation(s)
- Kathleen Y L Kang
- Centre for Tactile Internet with Human-in-the-Loop (CeTI), Technische Universität Dresden, Dresden, Germany.
- Faculty of Psychology, Technische Universität Dresden, Zellerscher Weg 17 Room A232/233, 01069, Dresden, Germany.
- School of Psychology and Vision Sciences, University of Leicester, Leicester, UK.
| | - Robert Rosenkranz
- Centre for Tactile Internet with Human-in-the-Loop (CeTI), Technische Universität Dresden, Dresden, Germany
- Faculty of Electrical and Computer Engineering, Technische Universität Dresden, Dresden, Germany
| | - Mehmet Ercan Altinsoy
- Centre for Tactile Internet with Human-in-the-Loop (CeTI), Technische Universität Dresden, Dresden, Germany
- Faculty of Electrical and Computer Engineering, Technische Universität Dresden, Dresden, Germany
| | - Shu-Chen Li
- Centre for Tactile Internet with Human-in-the-Loop (CeTI), Technische Universität Dresden, Dresden, Germany.
- Faculty of Psychology, Technische Universität Dresden, Zellerscher Weg 17 Room A232/233, 01069, Dresden, Germany.
| |
Collapse
|
5
|
Klein F. Optimizing spatial specificity and signal quality in fNIRS: an overview of potential challenges and possible options for improving the reliability of real-time applications. FRONTIERS IN NEUROERGONOMICS 2024; 5:1286586. [PMID: 38903906 PMCID: PMC11188482 DOI: 10.3389/fnrgo.2024.1286586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 04/29/2024] [Indexed: 06/22/2024]
Abstract
The optical brain imaging method functional near-infrared spectroscopy (fNIRS) is a promising tool for real-time applications such as neurofeedback and brain-computer interfaces. Its combination of spatial specificity and mobility makes it particularly attractive for clinical use, both at the bedside and in patients' homes. Despite these advantages, optimizing fNIRS for real-time use requires careful attention to two key aspects: ensuring good spatial specificity and maintaining high signal quality. While fNIRS detects superficial cortical brain regions, consistently and reliably targeting specific regions of interest can be challenging, particularly in studies that require repeated measurements. Variations in cap placement coupled with limited anatomical information may further reduce this accuracy. Furthermore, it is important to maintain good signal quality in real-time contexts to ensure that they reflect the true underlying brain activity. However, fNIRS signals are susceptible to contamination by cerebral and extracerebral systemic noise as well as motion artifacts. Insufficient real-time preprocessing can therefore cause the system to run on noise instead of brain activity. The aim of this review article is to help advance the progress of fNIRS-based real-time applications. It highlights the potential challenges in improving spatial specificity and signal quality, discusses possible options to overcome these challenges, and addresses further considerations relevant to real-time applications. By addressing these topics, the article aims to help improve the planning and execution of future real-time studies, thereby increasing their reliability and repeatability.
Collapse
Affiliation(s)
- Franziska Klein
- Biomedical Devices and Systems Group, R&D Division Health, OFFIS - Institute for Information Technology, Oldenburg, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical School, RWTH Aachen University, Aachen, Germany
- Neurocognition and Functional Neurorehabilitation Group, Department of Psychology, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
6
|
Huang YX, Mahler S, Dickson M, Abedi A, Tyszka JM, Lo YT, Russin J, Liu C, Yang C. Compact and cost-effective laser-powered speckle contrast optical spectroscopy fiber-free device for measuring cerebral blood flow. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:067001. [PMID: 38826808 PMCID: PMC11140771 DOI: 10.1117/1.jbo.29.6.067001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/22/2024] [Accepted: 05/15/2024] [Indexed: 06/04/2024]
Abstract
Significance In the realm of cerebrovascular monitoring, primary metrics typically include blood pressure, which influences cerebral blood flow (CBF) and is contingent upon vessel radius. Measuring CBF noninvasively poses a persistent challenge, primarily attributed to the difficulty of accessing and obtaining signal from the brain. Aim Our study aims to introduce a compact speckle contrast optical spectroscopy device for noninvasive CBF measurements at long source-to-detector distances, offering cost-effectiveness, and scalability while tracking blood flow (BF) with remarkable sensitivity and temporal resolution. Approach The wearable sensor module consists solely of a laser diode and a board camera. It can be easily placed on a subject's head to measure BF at a sampling rate of 80 Hz. Results Compared to the single-fiber-based version, the proposed device achieved a signal gain of about 70 times, showed superior stability, reproducibility, and signal-to-noise ratio for measuring BF at long source-to-detector distances. The device can be distributed in multiple configurations around the head. Conclusions Given its cost-effectiveness, scalability, and simplicity, this laser-centric tool offers significant potential in advancing noninvasive cerebral monitoring technologies.
Collapse
Affiliation(s)
- Yu Xi Huang
- California Institute of Technology, Department of Electrical Engineering, Pasadena, California, United States
| | - Simon Mahler
- California Institute of Technology, Department of Electrical Engineering, Pasadena, California, United States
| | - Maya Dickson
- California Institute of Technology, Department of Electrical Engineering, Pasadena, California, United States
| | - Aidin Abedi
- University of Southern California, USC Neurorestoration Center, Department of Neurological Surgery, Los Angeles, California, United States
| | - Julian Michael Tyszka
- California Institute of Technology, Division of Humanities and Social Sciences, Pasadena, California, United States
| | - Yu Tung Lo
- University of Southern California, USC Neurorestoration Center, Department of Neurological Surgery, Los Angeles, California, United States
| | - Jonathan Russin
- University of Southern California, USC Neurorestoration Center, Department of Neurological Surgery, Los Angeles, California, United States
- Rancho Los Amigos National Rehabilitation Center, Downey, California, United States
| | - Charles Liu
- University of Southern California, USC Neurorestoration Center, Department of Neurological Surgery, Los Angeles, California, United States
- Rancho Los Amigos National Rehabilitation Center, Downey, California, United States
| | - Changhuei Yang
- California Institute of Technology, Department of Electrical Engineering, Pasadena, California, United States
| |
Collapse
|
7
|
Shahdadian S, Wang X, Liu H. Directed physiological networks in the human prefrontal cortex at rest and post transcranial photobiomodulation. Sci Rep 2024; 14:10242. [PMID: 38702415 PMCID: PMC11068774 DOI: 10.1038/s41598-024-59879-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 04/16/2024] [Indexed: 05/06/2024] Open
Abstract
Cerebral infra-slow oscillation (ISO) is a source of vasomotion in endogenic (E; 0.005-0.02 Hz), neurogenic (N; 0.02-0.04 Hz), and myogenic (M; 0.04-0.2 Hz) frequency bands. In this study, we quantified changes in prefrontal concentrations of oxygenated hemoglobin (Δ[HbO]) and redox-state cytochrome c oxidase (Δ[CCO]) as hemodynamic and metabolic activity metrics, and electroencephalogram (EEG) powers as electrophysiological activity, using concurrent measurements of 2-channel broadband near-infrared spectroscopy and EEG on the forehead of 22 healthy participants at rest. After preprocessing, the multi-modality signals were analyzed using generalized partial directed coherence to construct unilateral neurophysiological networks among the three neurophysiological metrics (with simplified symbols of HbO, CCO, and EEG) in each E/N/M frequency band. The links in these networks represent neurovascular, neurometabolic, and metabolicvascular coupling (NVC, NMC, and MVC). The results illustrate that the demand for oxygen by neuronal activity and metabolism (EEG and CCO) drives the hemodynamic supply (HbO) in all E/N/M bands in the resting prefrontal cortex. Furthermore, to investigate the effect of transcranial photobiomodulation (tPBM), we performed a sham-controlled study by delivering an 800-nm laser beam to the left and right prefrontal cortex of the same participants. After performing the same data processing and statistical analysis, we obtained novel and important findings: tPBM delivered on either side of the prefrontal cortex triggered the alteration or reversal of directed network couplings among the three neurophysiological entities (i.e., HbO, CCO, and EEG frequency-specific powers) in the physiological network in the E and N bands, demonstrating that during the post-tPBM period, both metabolism and hemodynamic supply drive electrophysiological activity in directed network coupling of the prefrontal cortex (PFC). Overall, this study revealed that tPBM facilitates significant modulation of the directionality of neurophysiological networks in electrophysiological, metabolic, and hemodynamic activities.
Collapse
Affiliation(s)
- Sadra Shahdadian
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Xinlong Wang
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Hanli Liu
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, 76019, USA.
| |
Collapse
|
8
|
Roger K, Vannasing P, Tremblay J, Bringas Vega ML, Bryce CP, Rabinowitz A, Valdes-Sosa PA, Galler JR, Gallagher A. Early childhood malnutrition impairs adult resting brain function using near-infrared spectroscopy. Front Hum Neurosci 2024; 17:1287488. [PMID: 38298205 PMCID: PMC10827877 DOI: 10.3389/fnhum.2023.1287488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/15/2023] [Indexed: 02/02/2024] Open
Abstract
Introduction Early childhood malnutrition affects 200+ million children under 5 years of age worldwide and is associated with persistent cognitive, behavioral and psychiatric impairments in adulthood. However, very few studies have investigated the long-term effects of childhood protein-energy malnutrition (PEM) on brain function using a functional hemodynamic brain imaging technique. Objective and methods This study aims to investigate functional brain network alterations using near infrared spectroscopy (NIRS) in adults, aged 45-51 years, from the Barbados Nutrition Study (BNS) who suffered from a single episode of malnutrition restricted to their first year of life (n = 26) and controls (n = 29). A total of 55 individuals from the BNS cohort underwent NIRS recording at rest. Results and discussion Using functional connectivity and permutation analysis, we found patterns of increased Pearson's correlation with a specific vulnerability of the frontal cortex in the PEM group (ps < 0.05). Using a graph theoretical approach, mixed ANCOVAs showed increased segregation (ps = 0.0303 and 0.0441) and decreased integration (p = 0.0498) in previously malnourished participants compared to healthy controls. These results can be interpreted as a compensatory mechanism to preserve cognitive functions, that could also be related to premature or pathological brain aging. To our knowledge, this study is the first NIRS neuroimaging study revealing brain function alterations in middle adulthood following early childhood malnutrition limited to the first year of life.
Collapse
Affiliation(s)
- Kassandra Roger
- LION Lab, Sainte-Justine University Hospital Research Center, University of Montreal, Montreal, QC, Canada
| | - Phetsamone Vannasing
- LION Lab, Sainte-Justine University Hospital Research Center, University of Montreal, Montreal, QC, Canada
| | - Julie Tremblay
- LION Lab, Sainte-Justine University Hospital Research Center, University of Montreal, Montreal, QC, Canada
| | - Maria L. Bringas Vega
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China
| | | | - Arielle Rabinowitz
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Pedro Antonio Valdes-Sosa
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China
| | - Janina R. Galler
- Division of Pediatric Gastroenterology and Nutrition, MassGeneral Hospital for Children, Boston, MA, United States
| | - Anne Gallagher
- LION Lab, Sainte-Justine University Hospital Research Center, University of Montreal, Montreal, QC, Canada
| |
Collapse
|
9
|
Borgheai SB, Zisk AH, McLinden J, Mcintyre J, Sadjadi R, Shahriari Y. Multimodal pre-screening can predict BCI performance variability: A novel subject-specific experimental scheme. Comput Biol Med 2024; 168:107658. [PMID: 37984201 DOI: 10.1016/j.compbiomed.2023.107658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 10/20/2023] [Accepted: 10/31/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND Brain-computer interface (BCI) systems currently lack the required robustness for long-term daily use due to inter- and intra-subject performance variability. In this study, we propose a novel personalized scheme for a multimodal BCI system, primarily using functional near-infrared spectroscopy (fNIRS) and electroencephalography (EEG), to identify, predict, and compensate for factors affecting competence-related and interfering factors associated with performance. METHOD 11 (out of 13 recruited) participants, including five participants with motor deficits, completed four sessions on average. During the training sessions, the subjects performed a short pre-screening phase, followed by three variations of a novel visou-mental (VM) protocol. Features extracted from the pre-screening phase were used to construct predictive platforms using stepwise multivariate linear regression (MLR) models. In the test sessions, we employed a task-correction phase where our predictive models were used to predict the ideal task variation to maximize performance, followed by an interference-correction phase. We then investigated the associations between predicted and actual performances and evaluated the outcome of correction strategies. RESULT The predictive models resulted in respective adjusted R-squared values of 0.942, 0.724, and 0.939 for the first, second, and third variation of the task, respectively. The statistical analyses showed significant associations between the performances predicted by predictive models and the actual performances for the first two task variations, with rhos of 0.7289 (p-value = 0.011) and 0.6970 (p-value = 0.017), respectively. For 81.82 % of the subjects, the task/workload correction stage correctly determined which task variation provided the highest accuracy, with an average performance gain of 5.18 % when applying the correction strategies. CONCLUSION Our proposed method can lead to an integrated multimodal predictive framework to compensate for BCI performance variability, particularly, for people with severe motor deficits.
Collapse
Affiliation(s)
- Seyyed Bahram Borgheai
- Department of Electrical, Computer, and Biomedical Engineering, University of Rhode Island, Kingston, RI, United States; Neurology Department, Emory University, Atlanta, GA, United States
| | - Alyssa Hillary Zisk
- Interdisciplinary Neuroscience Program, University of Rhode Island, Kingston, RI, United States
| | - John McLinden
- Department of Electrical, Computer, and Biomedical Engineering, University of Rhode Island, Kingston, RI, United States
| | - James Mcintyre
- Department of Electrical, Computer, and Biomedical Engineering, University of Rhode Island, Kingston, RI, United States
| | - Reza Sadjadi
- Neurology Department, Massachusetts General Hospital, Boston, MA, United States
| | - Yalda Shahriari
- Department of Electrical, Computer, and Biomedical Engineering, University of Rhode Island, Kingston, RI, United States; Interdisciplinary Neuroscience Program, University of Rhode Island, Kingston, RI, United States.
| |
Collapse
|
10
|
Peng K, Karunakaran KD, Green S, Borsook D. Machines, mathematics, and modules: the potential to provide real-time metrics for pain under anesthesia. NEUROPHOTONICS 2024; 11:010701. [PMID: 38389718 PMCID: PMC10883389 DOI: 10.1117/1.nph.11.1.010701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/08/2024] [Accepted: 01/16/2024] [Indexed: 02/24/2024]
Abstract
The brain-based assessments under anesthesia have provided the ability to evaluate pain/nociception during surgery and the potential to prevent long-term evolution of chronic pain. Prior studies have shown that the functional near-infrared spectroscopy (fNIRS)-measured changes in cortical regions such as the primary somatosensory and the polar frontal cortices show consistent response to evoked and ongoing pain in awake, sedated, and anesthetized patients. We take this basic approach and integrate it into a potential framework that could provide real-time measures of pain/nociception during the peri-surgical period. This application could have significant implications for providing analgesia during surgery, a practice that currently lacks quantitative evidence to guide patient tailored pain management. Through a simple readout of "pain" or "no pain," the proposed system could diminish or eliminate levels of intraoperative, early post-operative, and potentially, the transition to chronic post-surgical pain. The system, when validated, could also be applied to measures of analgesic efficacy in the clinic.
Collapse
Affiliation(s)
- Ke Peng
- University of Manitoba, Department of Electrical and Computer Engineering, Price Faculty of Engineering, Winnipeg, Manitoba, Canada
| | - Keerthana Deepti Karunakaran
- Massachusetts General Hospital, Harvard Medical School, Department of Psychiatry, Boston, Massachusetts, United States
| | - Stephen Green
- Massachusetts Institute of Technology, Department of Mechanical Engineering, Boston, Massachusetts, United States
| | - David Borsook
- Massachusetts General Hospital, Harvard Medical School, Department of Psychiatry, Boston, Massachusetts, United States
- Massachusetts General Hospital, Harvard Medical School, Department of Radiology, Boston, Massachusetts, United States
| |
Collapse
|
11
|
Shahdadian S, Wang X, Liu H. Directed physiological networks in the human prefrontal cortex at rest and post transcranial photobiomodulation. RESEARCH SQUARE 2023:rs.3.rs-3393702. [PMID: 37886539 PMCID: PMC10602070 DOI: 10.21203/rs.3.rs-3393702/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Cerebral infra-slow oscillation (ISO) is a source of vasomotion in endogenic (E; 0.005-0.02 Hz), neurogenic (N; 0.02-0.04 Hz), and myogenic (M; 0.04-0.2 Hz) frequency bands. In this study, we quantified changes in prefrontal concentrations of oxygenated hemoglobin ( Δ [ H b O ] ) and redox-state cytochrome c oxidase ( Δ [ C C O ] ) as hemodynamic and metabolic activity metrics, and electroencephalogram (EEG) powers as electrophysiological activity, using concurrent measurements of 2-channel broadband near-infrared spectroscopy and EEG on the forehead of 22 healthy participants at rest. After preprocessing, the multi-modality signals were analyzed using generalized partial directed coherence to construct unilateral neurophysiological networks among the three neurophysiological metrics (with simplified symbols of HbO, CCO, and EEG) in each E/N/M frequency band. The links in these networks represent neurovascular, neurometabolic, and metabolicvascular coupling (NVC, NMC, and MVC). The results illustrate that the demand for oxygen by neuronal activity and metabolism (EEG and CCO) drives the hemodynamic supply (HbO) in all E/N/M bands in the resting prefrontal cortex. Furthermore, to investigate the effect of transcranial photobiomodulation (tPBM), we performed a sham-controlled study by delivering an 800-nm laser beam to the left and right prefrontal cortex of the same participants. After performing the same data processing and statistical analysis, we obtained novel and important findings: tPBM delivered on either side of the prefrontal cortex triggered the alteration or reversal of directed network couplings among the three neurophysiological entities (i.e., HbO, CCO, and EEG frequency-specific powers) in the physiological network in the E and N bands, demonstrating that during the post-tPBM period, both metabolism and hemodynamic supply drive electrophysiological activity in directed network coupling of the PFC. Overall, this study revealed that tPBM facilitates significant modulation of the directionality of neurophysiological networks in electrophysiological, metabolic, and hemodynamic activities.
Collapse
|
12
|
Yoo SH, Huang G, Hong KS. Physiological Noise Filtering in Functional Near-Infrared Spectroscopy Signals Using Wavelet Transform and Long-Short Term Memory Networks. Bioengineering (Basel) 2023; 10:685. [PMID: 37370616 DOI: 10.3390/bioengineering10060685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/26/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Activated channels of functional near-infrared spectroscopy are typically identified using the desired hemodynamic response function (dHRF) generated by a trial period. However, this approach is not possible for an unknown trial period. In this paper, an innovative method not using the dHRF is proposed, which extracts fluctuating signals during the resting state using maximal overlap discrete wavelet transform, identifies low-frequency wavelets corresponding to physiological noise, trains them using long-short term memory networks, and predicts/subtracts them during the task session. The motivation for prediction is to maintain the phase information of physiological noise at the start time of a task, which is possible because the signal is extended from the resting state to the task session. This technique decomposes the resting state data into nine wavelets and uses the fifth to ninth wavelets for learning and prediction. In the eighth wavelet, the prediction error difference between the with and without dHRF from the 15-s prediction window appeared to be the largest. Considering the difficulty in removing physiological noise when the activation period is near the physiological noise, the proposed method can be an alternative solution when the conventional method is not applicable. In passive brain-computer interfaces, estimating the brain signal starting time is necessary.
Collapse
Affiliation(s)
- So-Hyeon Yoo
- School of Mechanical Engineering, Pusan National University, 2 Busandaehak-ro, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Guanghao Huang
- Institute for Future, School of Automation, Qingdao University, Qingdao 266071, China
| | - Keum-Shik Hong
- School of Mechanical Engineering, Pusan National University, 2 Busandaehak-ro, Geumjeong-gu, Busan 46241, Republic of Korea
- Institute for Future, School of Automation, Qingdao University, Qingdao 266071, China
| |
Collapse
|
13
|
Bahr N, Ivankovic J, Meckler G, Hansen M, Eriksson C, Guise JM. Measuring cognitively demanding activities in pediatric out-of-hospital cardiac arrest. Adv Simul (Lond) 2023; 8:15. [PMID: 37208778 PMCID: PMC10199511 DOI: 10.1186/s41077-023-00253-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 05/03/2023] [Indexed: 05/21/2023] Open
Abstract
BACKGROUND This methodological intersection article demonstrates a method to measure cognitive load in clinical simulations. Researchers have hypothesized that high levels of cognitive load reduce performance and increase errors. This phenomenon has been studied primarily by experimental designs that measure responses to predetermined stimuli and self-reports that reduce the experience to a summative value. Our goal was to develop a method to identify clinical activities with high cognitive burden using physiologic measures. METHODS Teams of emergency medical responders were recruited from local fire departments to participate in a scenario with a shockable pediatric out-of-hospital cardiac arrest (POHCA) patient. The scenario was standardized with the patient being resuscitated after receiving high-quality CPR and 3 defibrillations. Each team had a person in charge (PIC) who wore a functional near-infrared spectroscopy (fNIRS) device that recorded changes in oxygenated and deoxygenated hemoglobin concentration in their prefrontal cortex (PFC), which was interpreted as cognitive activity. We developed a data processing pipeline to remove nonneural noise (e.g., motion artifacts, heart rate, respiration, and blood pressure) and detect statistically significant changes in cognitive activity. Two researchers independently watched videos and coded clinical tasks corresponding to detected events. Disagreements were resolved through consensus, and results were validated by clinicians. RESULTS We conducted 18 simulations with 122 participants. Participants arrived in teams of 4 to 7 members, including one PIC. We recorded the PIC's fNIRS signals and identified 173 events associated with increased cognitive activity. [Defibrillation] (N = 34); [medication] dosing (N = 33); and [rhythm checks] (N = 28) coincided most frequently with detected elevations in cognitive activity. [Defibrillations] had affinity with the right PFC, while [medication] dosing and [rhythm checks] had affinity with the left PFC. CONCLUSIONS FNIRS is a promising tool for physiologically measuring cognitive load. We describe a novel approach to scan the signal for statistically significant events with no a priori assumptions of when they occur. The events corresponded to key resuscitation tasks and appeared to be specific to the type of task based on activated regions in the PFC. Identifying and understanding the clinical tasks that require high cognitive load can suggest targets for interventions to decrease cognitive load and errors in care.
Collapse
Affiliation(s)
- Nathan Bahr
- Department of Obstetrics and Gynecology, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd, L-466, Portland, OR 97239 USA
| | - Jonathan Ivankovic
- Department of Obstetrics and Gynecology, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd, L-466, Portland, OR 97239 USA
| | - Garth Meckler
- Department of Pediatric Emergency Medicine, University of British Columbia, 24-1160 Nicola Street, Vancouver, BC V6G 2E5 Canada
- Department of Pediatrics, University of British Columbia, Vancouver, V6G 2E5 Canada
| | - Matthew Hansen
- Department of Emergency Medicine, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd, HRC 11D01, Portland, OR 97239 USA
| | - Carl Eriksson
- Department of Pediatrics, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd, CDRC 1231, Portland, OR 97239 USA
| | - Jeanne-Marie Guise
- Department of Obstetrics, Gynecology, and Reproductive Biology, Beth Israel Deaconess Medical Center and Harvard Medical School, East Campus, Kirstein 3Rd Floor, OBGYN, 330 Brookline Ave, Boston, MA 02215 USA
| |
Collapse
|
14
|
Hirsch J, Zhang X, Noah JA, Bhattacharya A. Neural mechanisms for emotional contagion and spontaneous mimicry of live facial expressions. Philos Trans R Soc Lond B Biol Sci 2023; 378:20210472. [PMID: 36871593 PMCID: PMC9985973 DOI: 10.1098/rstb.2021.0472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 01/16/2023] [Indexed: 03/07/2023] Open
Abstract
Viewing a live facial expression typically elicits a similar expression by the observer (facial mimicry) that is associated with a concordant emotional experience (emotional contagion). The model of embodied emotion proposes that emotional contagion and facial mimicry are functionally linked although the neural underpinnings are not known. To address this knowledge gap, we employed a live two-person paradigm (n = 20 dyads) using functional near-infrared spectroscopy during live emotive face-processing while also measuring eye-tracking, facial classifications and ratings of emotion. One dyadic partner, 'Movie Watcher', was instructed to emote natural facial expressions while viewing evocative short movie clips. The other dyadic partner, 'Face Watcher', viewed the Movie Watcher's face. Task and rest blocks were implemented by timed epochs of clear and opaque glass that separated partners. Dyadic roles were alternated during the experiment. Mean cross-partner correlations of facial expressions (r = 0.36 ± 0.11 s.e.m.) and mean cross-partner affect ratings (r = 0.67 ± 0.04) were consistent with facial mimicry and emotional contagion, respectively. Neural correlates of emotional contagion based on covariates of partner affect ratings included angular and supramarginal gyri, whereas neural correlates of the live facial action units included motor cortex and ventral face-processing areas. Findings suggest distinct neural components for facial mimicry and emotional contagion. This article is part of a discussion meeting issue 'Face2face: advancing the science of social interaction'.
Collapse
Affiliation(s)
- Joy Hirsch
- Brain Function Laboratory, Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511, USA
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06511, USA
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT 06511, USA
- Wu Tsai Institute, Yale University, PO Box 208091, New Haven, CT 06520, USA
- Haskins Laboratories, 300 George Street, New Haven, CT 06511, USA
- Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, UK
| | - Xian Zhang
- Brain Function Laboratory, Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511, USA
| | - J. Adam Noah
- Brain Function Laboratory, Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511, USA
| | | |
Collapse
|
15
|
Klein F, Lührs M, Benitez-Andonegui A, Roehn P, Kranczioch C. Performance comparison of systemic activity correction in functional near-infrared spectroscopy for methods with and without short distance channels. NEUROPHOTONICS 2023; 10:013503. [PMID: 36248616 PMCID: PMC9555616 DOI: 10.1117/1.nph.10.1.013503] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/25/2022] [Indexed: 05/20/2023]
Abstract
Significance: Functional near-infrared spectroscopy (fNIRS) is a promising tool for neurofeedback (NFB) or brain-computer interfaces (BCIs). However, fNIRS signals are typically highly contaminated by systemic activity (SA) artifacts, and, if not properly corrected, NFB or BCIs run the risk of being based on noise instead of brain activity. This risk can likely be reduced by correcting for SA, in particular when short-distance channels (SDCs) are available. Literature comparing correction methods with and without SDCs is still sparse, specifically comparisons considering single trials are lacking. Aim: This study aimed at comparing the performance of SA correction methods with and without SDCs. Approach: Semisimulated and real motor task data of healthy older adults were used. Correction methods without SDCs included a simple and a more advanced spatial filter. Correction methods with SDCs included a regression approach considering only the closest SDC and two GLM-based methods, one including all eight SDCs and one using only two a priori selected SDCs as regressors. All methods were compared with data uncorrected for SA and correction performance was assessed with quality measures quantifying signal improvement and spatial specificity at single trial level. Results: All correction methods were found to improve signal quality and enhance spatial specificity as compared with the uncorrected data. Methods with SDCs usually outperformed methods without SDCs. Correction methods without SDCs tended to overcorrect the data. However, the exact pattern of results and the degree of differences observable between correction methods varied between semisimulated and real data, and also between quality measures. Conclusions: Overall, results confirmed that both Δ [ HbO ] and Δ [ HbR ] are affected by SA and that correction methods with SDCs outperform methods without SDCs. Nonetheless, improvements in signal quality can also be achieved without SDCs and should therefore be given priority over not correcting for SA.
Collapse
Affiliation(s)
- Franziska Klein
- Carl von Ossietzky University of Oldenburg, Neurocognition and Functional Neurorehabilitation Group, Neuropsychology Lab, Oldenburg, Germany
| | - Michael Lührs
- Maastricht University, Faculty of Psychology and Neuroscience, Maastricht, The Netherlands
- Brain Innovation B.V., Maastricht, The Netherlands
| | | | - Pauline Roehn
- Carl von Ossietzky University of Oldenburg, Neurocognition and Functional Neurorehabilitation Group, Neuropsychology Lab, Oldenburg, Germany
| | - Cornelia Kranczioch
- Carl von Ossietzky University of Oldenburg, Neurocognition and Functional Neurorehabilitation Group, Neuropsychology Lab, Oldenburg, Germany
| |
Collapse
|
16
|
Congruence-based contextual plausibility modulates cortical activity during vibrotactile perception in virtual multisensory environments. Commun Biol 2022; 5:1360. [PMID: 36509971 PMCID: PMC9744907 DOI: 10.1038/s42003-022-04318-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022] Open
Abstract
How congruence cues and congruence-based expectations may together shape perception in virtual reality (VR) still need to be unravelled. We linked the concept of plausibility used in VR research with congruence-based modulation by assessing brain responses while participants experienced vehicle riding experiences in VR scenarios. Perceptual plausibility was manipulated by sensory congruence, with multisensory stimulations confirming with common expectations of road scenes being plausible. We hypothesized that plausible scenarios would elicit greater cortical responses. The results showed that: (i) vibrotactile stimulations at expected intensities, given embedded audio-visual information, engaged greater cortical activities in frontal and sensorimotor regions; (ii) weaker plausible stimulations resulted in greater responses in the sensorimotor cortex than stronger but implausible stimulations; (iii) frontal activities under plausible scenarios negatively correlated with plausibility violation costs in the sensorimotor cortex. These results potentially indicate frontal regulation of sensory processing and extend previous evidence of contextual modulation to the tactile sense.
Collapse
|
17
|
Zhou X, Burg E, Kan A, Litovsky RY. Investigating effortful speech perception using fNIRS and pupillometry measures. CURRENT RESEARCH IN NEUROBIOLOGY 2022; 3:100052. [PMID: 36518346 PMCID: PMC9743070 DOI: 10.1016/j.crneur.2022.100052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 05/12/2022] [Accepted: 08/12/2022] [Indexed: 10/15/2022] Open
Abstract
The current study examined the neural mechanisms for mental effort and its correlation to speech perception using functional near-infrared spectroscopy (fNIRS) in listeners with normal hearing (NH). Data were collected while participants listened and responded to unprocessed and degraded sentences, where words were presented in grammatically correct or shuffled order. Effortful listening and task difficulty due to stimulus manipulations was confirmed using a subjective questionnaire and a well-established objective measure of mental effort - pupillometry. fNIRS measures focused on cortical responses in two a priori regions of interest, the left auditory cortex (AC) and lateral frontal cortex (LFC), which are closely related to auditory speech perception and listening effort, respectively. We examined the relations between the two objective measures and behavioral measures of speech perception (task performance) and task difficulty. Results demonstrated that changes in pupil dilation were positively correlated with the self-reported task difficulty levels and negatively correlated with the task performance scores. A significant and negative correlation between the two behavioral measures was also found. That is, as perceived task demands increased and task performance scores decreased, pupils dilated more. fNIRS measures (cerebral oxygenation) in the left AC and LFC were both negatively correlated with the self-reported task difficulty levels and positively correlated with task performance scores. These results suggest that pupillometry measures can indicate task demands and listening effort; whereas, fNIRS measures using a similar paradigm seem to reflect speech processing, but not effort.
Collapse
Affiliation(s)
- Xin Zhou
- Waisman Center, University of Wisconsin Madison, WI, USA
| | - Emily Burg
- Waisman Center, University of Wisconsin Madison, WI, USA
- Department of Communication Science and Disorders, University of Wisconsin Madison, WI, USA
| | - Alan Kan
- School of Engineering, Macquarie University, Sydney, NSW, Australia
| | - Ruth Y Litovsky
- Waisman Center, University of Wisconsin Madison, WI, USA
- Department of Communication Science and Disorders, University of Wisconsin Madison, WI, USA
| |
Collapse
|
18
|
Jackson ES, Dravida S, Zhang X, Noah JA, Gracco V, Hirsch J. Activation in Right Dorsolateral Prefrontal Cortex Underlies Stuttering Anticipation. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2022; 3:469-494. [PMID: 37216062 PMCID: PMC10158639 DOI: 10.1162/nol_a_00073] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 05/16/2022] [Indexed: 05/24/2023]
Abstract
People who stutter learn to anticipate many of their overt stuttering events. Despite the critical role of anticipation, particularly how responses to anticipation shape stuttering behaviors, the neural bases associated with anticipation are unknown. We used a novel approach to identify anticipated and unanticipated words, which were produced by 22 adult stutterers in a delayed-response task while hemodynamic activity was measured using functional near infrared spectroscopy (fNIRS). Twenty-two control participants were included such that each individualized set of anticipated and unanticipated words was produced by one stutterer and one control participant. We conducted an analysis on the right dorsolateral prefrontal cortex (R-DLPFC) based on converging lines of evidence from the stuttering and cognitive control literatures. We also assessed connectivity between the R-DLPFC and right supramarginal gyrus (R-SMG), two key nodes of the frontoparietal network (FPN), to assess the role of cognitive control, and particularly error-likelihood monitoring, in stuttering anticipation. All analyses focused on the five-second anticipation phase preceding the go signal to produce speech. The results indicate that anticipated words are associated with elevated activation in the R-DLPFC, and that compared to non-stutterers, stutterers exhibit greater activity in the R-DLPFC, irrespective of anticipation. Further, anticipated words are associated with reduced connectivity between the R-DLPFC and R-SMG. These findings highlight the potential roles of the R-DLPFC and the greater FPN as a neural substrate of stuttering anticipation. The results also support previous accounts of error-likelihood monitoring and action-stopping in stuttering anticipation. Overall, this work offers numerous directions for future research with clinical implications for targeted neuromodulation.
Collapse
Affiliation(s)
- Eric S. Jackson
- Department of Communicative Sciences and Disorders, New York University, New York, USA
| | - Swethasri Dravida
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Xian Zhang
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - J. Adam Noah
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Vincent Gracco
- Haskins Laboratories, New Haven, CT, USA
- McGill University, Montreal, Canada
| | - Joy Hirsch
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Department of Comparative Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| |
Collapse
|
19
|
Shahdadian S, Wang X, Kang S, Carter C, Chaudhari A, Liu H. Prefrontal cortical connectivity and coupling of infraslow oscillation in the resting human brain: a 2-channel broadband NIRS study. Cereb Cortex Commun 2022; 3:tgac033. [PMID: 36072711 PMCID: PMC9441674 DOI: 10.1093/texcom/tgac033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 07/19/2022] [Accepted: 07/23/2022] [Indexed: 11/12/2022] Open
Abstract
The resting-state infraslow oscillation (ISO) of the cerebral cortex reflects the neurophysiological state of the human brain. ISO results from distinct vasomotion with endogenic (E), neurogenic (N), and myogenic (M) frequency bands. Quantification of prefrontal ISO in cortical hemodynamics and metabolism in the resting human brain may facilitate the identification of objective features that are characteristic of certain brain disorders. The goal of this study was to explore and quantify the prefrontal ISO of the cortical concentration changes of oxygenated hemoglobin (Δ[HbO]) and redox-state cytochrome c oxidase (Δ[CCO]) as hemodynamic and metabolic activity metrics in all 3 E/N/M bands. Two-channel broadband near-infrared spectroscopy (2-bbNIRS) enabled measurements of the forehead of 26 healthy young participants in a resting state once a week for 5 weeks. After quantifying the ISO spectral amplitude (SA) and coherence at each E/N/M band, several key and statistically reliable metrics were obtained as features: (i) SA of Δ[HbO] at all E/N/M bands, (ii) SA of Δ[CCO] in the M band, (iii) bilateral connectivity of hemodynamics and metabolism across the E and N bands, and (iv) unilateral hemodynamic-metabolic coupling in each of the E and M bands. These features have promising potential to be developed as objective biomarkers for clinical applications in the future.
Collapse
Affiliation(s)
- Sadra Shahdadian
- Department of Bioengineering, The University of Texas at Arlington, 500 UTA Blvd, Arlington, TX 76019, United States
| | - Xinlong Wang
- Department of Bioengineering, The University of Texas at Arlington, 500 UTA Blvd, Arlington, TX 76019, United States
| | - Shu Kang
- Department of Bioengineering, The University of Texas at Arlington, 500 UTA Blvd, Arlington, TX 76019, United States
| | - Caroline Carter
- Department of Bioengineering, The University of Texas at Arlington, 500 UTA Blvd, Arlington, TX 76019, United States
| | - Akhil Chaudhari
- Department of Bioengineering, The University of Texas at Arlington, 500 UTA Blvd, Arlington, TX 76019, United States
| | - Hanli Liu
- Department of Bioengineering, The University of Texas at Arlington, 500 UTA Blvd, Arlington, TX 76019, United States
| |
Collapse
|
20
|
Scholkmann F, Tachtsidis I, Wolf M, Wolf U. Systemic physiology augmented functional near-infrared spectroscopy: a powerful approach to study the embodied human brain. NEUROPHOTONICS 2022; 9:030801. [PMID: 35832785 PMCID: PMC9272976 DOI: 10.1117/1.nph.9.3.030801] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 06/07/2022] [Indexed: 05/15/2023]
Abstract
In this Outlook paper, we explain why an accurate physiological interpretation of functional near-infrared spectroscopy (fNIRS) neuroimaging signals is facilitated when systemic physiological activity (e.g., cardiorespiratory and autonomic activity) is measured simultaneously by employing systemic physiology augmented functional near-infrared spectroscopy (SPA-fNIRS). The rationale for SPA-fNIRS is twofold: (i) SPA-fNIRS enables a more complete interpretation and understanding of the fNIRS signals measured at the head since they contain components originating from neurovascular coupling and from systemic physiological sources. The systemic physiology signals measured with SPA-fNIRS can be used for regressing out physiological confounding components in fNIRS signals. Misinterpretations can thus be minimized. (ii) SPA-fNIRS enables to study the embodied brain by linking the brain with the physiological state of the entire body, allowing novel insights into their complex interplay. We envisage the SPA-fNIRS approach will become increasingly important in the future.
Collapse
Affiliation(s)
- Felix Scholkmann
- University of Bern, Institute of Complementary and Integrative Medicine, Bern, Switzerland
- University Hospital Zurich, University of Zurich, Biomedical Optics Research Laboratory, Neonatology Research, Department of Neonatology, Zurich, Switzerland
| | - Ilias Tachtsidis
- University College London, Biomedical Optics Research Laboratory, Department of Medical Physics and Biomedical Engineering, London, United Kingdom
| | - Martin Wolf
- University Hospital Zurich, University of Zurich, Biomedical Optics Research Laboratory, Neonatology Research, Department of Neonatology, Zurich, Switzerland
| | - Ursula Wolf
- University of Bern, Institute of Complementary and Integrative Medicine, Bern, Switzerland
| |
Collapse
|
21
|
Wang S, Zhang X, Hong T, Tzeng OJL, Aslin R. Top-down sensory prediction in the infant brain at 6 months is correlated with language development at 12 and 18 months. BRAIN AND LANGUAGE 2022; 230:105129. [PMID: 35576737 DOI: 10.1016/j.bandl.2022.105129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 04/18/2022] [Accepted: 04/21/2022] [Indexed: 06/15/2023]
Abstract
Previous research has suggested that top-down sensory prediction facilitates, and may be necessary for, efficient transmission of information in the brain. Here we related infants' vocabulary development to the top-down sensory prediction indexed by occipital cortex activation to the unexpected absence of a visual stimulus previously paired with an auditory stimulus. The magnitude of the neural response to the unexpected omission of a visual stimulus was assessed at the age of 6 months with functional near-infrared spectroscopy (fNIRS) and vocabulary scores were obtained using the MacArthur-Bates Communicative Development Inventory (MCDI) when infants reached the age of 12 months and 18 months, respectively. Results indicated significant positive correlations between this predictive neural signal at 6 months and MCDI expressive vocabulary scores at 12 and 18 months. These findings provide additional and robust support for the hypothesis that top-down prediction at the neural level plays a key role in infants' language development.
Collapse
Affiliation(s)
- Shinmin Wang
- Department of Human Development and Family Studies, National Taiwan Normal University, Taipei, Taiwan.
| | - Xian Zhang
- Department of Psychiatry, Yale School of Medicine,New Haven, CT, USA.
| | - Tian Hong
- Haskins Laboratories, New Haven, CT, USA.
| | - Ovid J L Tzeng
- Department of Educational Psychology and Counseling, National Taiwan Normal University, Taipei, Taiwan; Taipei Medical University, Taipei, Taiwan; Linguistic Institute, Academia Sinica, Taipei, Taiwan.
| | - Richard Aslin
- Haskins Laboratories, New Haven, CT, USA; Department of Psychology and Child Study Center, Yale University, New Haven, CT, USA; Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
22
|
Truong NCD, Wang X, Wanniarachchi H, Liu H. Enhancement of Frequency-Specific Hemodynamic Power and Functional Connectivity by Transcranial Photobiomodulation in Healthy Humans. Front Neurosci 2022; 16:896502. [PMID: 35757526 PMCID: PMC9226485 DOI: 10.3389/fnins.2022.896502] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/09/2022] [Indexed: 12/03/2022] Open
Abstract
Transcranial photobiomodulation (tPBM) has been considered a safe and effective brain stimulation modality being able to enhance cerebral oxygenation and neurocognitive function. To better understand the underlying neurophysiological effects of tPBM in the human brain, we utilized a 111-channel functional near infrared spectroscopy (fNIRS) system to map cerebral hemodynamic responses over the whole head to 8-min tPBM with 1,064-nm laser given on the forehead of 19 healthy participants. Instead of analyzing broad-frequency hemodynamic signals (0–0.2 Hz), we investigated frequency-specific effects of tPBM on three infra-slow oscillation (ISO) components consisting of endogenic, neurogenic, and myogenic vasomotions. Significant changes induced by tPBM in spectral power of oxygenated hemoglobin concentration (Δ[HbO]), functional connectivity (FC), and global network metrics at each of the three ISO frequency bands were identified and mapped topographically for frequency-specific comparisons. Our novel findings revealed that tPBM significantly increased endogenic Δ[HbO] powers over the right frontopolar area near the stimulation site. Also, we demonstrated that tPBM enabled significant enhancements of endogenic and myogenic FC across cortical regions as well as of several global network metrics. These findings were consistent with recent reports and met the expectation that myogenic oscillation is highly associated with endothelial activity, which is stimulated by tPBM-evoked nitric oxide (NO) release.
Collapse
Affiliation(s)
- Nghi Cong Dung Truong
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, United States
| | - Xinlong Wang
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, United States
| | - Hashini Wanniarachchi
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, United States
| | - Hanli Liu
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, United States
| |
Collapse
|
23
|
Haemodynamic Signatures of Temporal Integration of Visual Mirror Symmetry. Symmetry (Basel) 2022. [DOI: 10.3390/sym14050901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
EEG, fMRI and TMS studies have implicated the extra-striate cortex, including the Lateral Occipital Cortex (LOC), in the processing of visual mirror symmetries. Recent research has found that the sustained posterior negativity (SPN), a symmetry specific electrophysiological response identified in the region of the LOC, is generated when temporally displaced asymmetric components are integrated into a symmetric whole. We aim to expand on this finding using dynamic dot-patterns with systematically increased intra-pair temporal delay to map the limits of temporal integration of visual mirror symmetry. To achieve this, we used functional near-infrared spectroscopy (fNIRS) which measures the changes in the haemodynamic response to stimulation using near infrared light. We show that a symmetry specific haemodynamic response can be identified following temporal integration of otherwise meaningless dot-patterns, and the magnitude of this response scales with the duration of temporal delay. These results contribute to our understanding of when and where mirror symmetry is processed in the visual system. Furthermore, we highlight fNIRS as a promising but so far underutilised method of studying the haemodynamics of mid-level visual processes in the brain.
Collapse
|
24
|
Abdalmalak A, Novi SL, Kazazian K, Norton L, Benaglia T, Slessarev M, Debicki DB, Lawrence KS, Mesquita RC, Owen AM. Effects of Systemic Physiology on Mapping Resting-State Networks Using Functional Near-Infrared Spectroscopy. Front Neurosci 2022; 16:803297. [PMID: 35350556 PMCID: PMC8957952 DOI: 10.3389/fnins.2022.803297] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 02/07/2022] [Indexed: 12/11/2022] Open
Abstract
Resting-state functional connectivity (rsFC) has gained popularity mainly due to its simplicity and potential for providing insights into various brain disorders. In this vein, functional near-infrared spectroscopy (fNIRS) is an attractive choice due to its portability, flexibility, and low cost, allowing for bedside imaging of brain function. While promising, fNIRS suffers from non-neural signal contaminations (i.e., systemic physiological noise), which can increase correlation across fNIRS channels, leading to spurious rsFC networks. In the present work, we hypothesized that additional measurements with short channels, heart rate, mean arterial pressure, and end-tidal CO2 could provide a better understanding of the effects of systemic physiology on fNIRS-based resting-state networks. To test our hypothesis, we acquired 12 min of resting-state data from 10 healthy participants. Unlike previous studies, we investigated the efficacy of different pre-processing approaches in extracting resting-state networks. Our results are in agreement with previous studies and reinforce the fact that systemic physiology can overestimate rsFC. We expanded on previous work by showing that removal of systemic physiology decreases intra- and inter-subject variability, increasing the ability to detect neural changes in rsFC across groups and over longitudinal studies. Our results show that by removing systemic physiology, fNIRS can reproduce resting-state networks often reported with functional magnetic resonance imaging (fMRI). Finally, the present work details the effects of systemic physiology and outlines how to remove (or at least ameliorate) their contributions to fNIRS signals acquired at rest.
Collapse
Affiliation(s)
- Androu Abdalmalak
- Department of Physiology and Pharmacology, Western University, London, ON, Canada
- Brain and Mind Institute, Western University, London, ON, Canada
- *Correspondence: Androu Abdalmalak,
| | - Sergio L. Novi
- “Gleb Wataghin” Institute of Physics, University of Campinas, Campinas, Brazil
- *Correspondence: Androu Abdalmalak,
| | - Karnig Kazazian
- Brain and Mind Institute, Western University, London, ON, Canada
| | - Loretta Norton
- Department of Psychology, King’s University College at Western University, London, ON, Canada
| | - Tatiana Benaglia
- Institute of Mathematics, Statistics and Scientific Computing, University of Campinas, Campinas, Brazil
| | - Marat Slessarev
- Clinical Neurological Sciences, Western University, London, ON, Canada
| | - Derek B. Debicki
- Brain and Mind Institute, Western University, London, ON, Canada
- Clinical Neurological Sciences, Western University, London, ON, Canada
| | - Keith St. Lawrence
- Department of Medical Biophysics, Western University, London, ON, Canada
| | - Rickson C. Mesquita
- “Gleb Wataghin” Institute of Physics, University of Campinas, Campinas, Brazil
| | - Adrian M. Owen
- Department of Physiology and Pharmacology, Western University, London, ON, Canada
- Brain and Mind Institute, Western University, London, ON, Canada
- Department of Psychology, Western University, London, ON, Canada
| |
Collapse
|
25
|
Paranawithana I, Mao D, Wong YT, McKay CM. Reducing false discoveries in resting-state functional connectivity using short channel correction: an fNIRS study. NEUROPHOTONICS 2022; 9:015001. [PMID: 35071689 PMCID: PMC8765292 DOI: 10.1117/1.nph.9.1.015001] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
Significance: Functional near-infrared spectroscopy (fNIRS) is a neuroimaging tool that can measure resting-state functional connectivity; however, non-neuronal components present in fNIRS signals introduce false discoveries in connectivity, which can impact interpretation of functional networks. Aim: We investigated the effect of short channel correction on resting-state connectivity by removing non-neuronal signals from fNIRS long channel data. We hypothesized that false discoveries in connectivity can be reduced, hence improving the discriminability of functional networks of known, different connectivity strengths. Approach: A principal component analysis-based short channel correction technique was applied to resting-state data of 10 healthy adult subjects. Connectivity was analyzed using magnitude-squared coherence of channel pairs in connectivity groups of homologous and control brain regions, which are known to differ in connectivity. Results: By removing non-neuronal components using short channel correction, significant reduction of coherence was observed for oxy-hemoglobin concentration changes in frequency bands associated with resting-state connectivity that overlap with the Mayer wave frequencies. The results showed that short channel correction reduced spurious correlations in connectivity measures and improved the discriminability between homologous and control groups. Conclusions: Resting-state functional connectivity analysis with short channel correction performs better than without correction in its ability to distinguish functional networks with distinct connectivity characteristics.
Collapse
Affiliation(s)
- Ishara Paranawithana
- Monash University, Department of Electrical and Computer Systems Engineering, Clayton, Victoria, Australia
- The Bionics Institute, East Melbourne, Victoria, Australia
| | - Darren Mao
- The Bionics Institute, East Melbourne, Victoria, Australia
- The University of Melbourne, Department of Medical Bionics, Parkville, Victoria, Australia
| | - Yan T. Wong
- Monash University, Department of Electrical and Computer Systems Engineering, Clayton, Victoria, Australia
- Monash University, Monash Biomedicine Discovery Institute, Department of Physiology, Clayton, Victoria, Australia
| | - Colette M. McKay
- The Bionics Institute, East Melbourne, Victoria, Australia
- The University of Melbourne, Department of Medical Bionics, Parkville, Victoria, Australia
| |
Collapse
|
26
|
Afzal Khan MN, Hong KS. Most favorable stimulation duration in the sensorimotor cortex for fNIRS-based BCI. BIOMEDICAL OPTICS EXPRESS 2021; 12:5939-5954. [PMID: 34745714 PMCID: PMC8547991 DOI: 10.1364/boe.434936] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 05/13/2023]
Abstract
One of the primary objectives of the brain-computer interface (BCI) is to obtain a command with higher classification accuracy within the shortest possible time duration. Therefore, this study evaluates several stimulation durations to propose a duration that can yield the highest classification accuracy. Furthermore, this study aims to address the inherent delay in the hemodynamic responses (HRs) for the command generation time. To this end, HRs in the sensorimotor cortex were evaluated for the functional near-infrared spectroscopy (fNIRS)-based BCI. To evoke brain activity, right-hand-index finger poking and tapping tasks were used. In this study, six different stimulation durations (i.e., 1, 3, 5, 7, 10, and 15 s) were tested on 10 healthy male subjects. Upon stimulation, different temporal features and multiple time windows were utilized to extract temporal features. The extracted features were then classified using linear discriminant analysis. The classification results using the main HR showed that a 5 s stimulation duration could yield the highest classification accuracy, i.e., 74%, with a combination of the mean and maximum value features. However, the results were not significantly different from the classification accuracy obtained using the 15 s stimulation. To further validate the results, a classification using the initial dip was performed. The results obtained endorsed the finding with an average classification accuracy of 73.5% using the features of minimum peak and skewness in the 5 s window. The results based on classification using the initial dip for 5 s were significantly different from all other tested stimulation durations (p < 0.05) for all feature combinations. Moreover, from the visual inspection of the HRs, it is observed that the initial dip occurred as soon as the task started, but the main HR had a delay of more than 2 s. Another interesting finding is that impulsive stimulation in the sensorimotor cortex can result in the generation of a clearer initial dip phenomenon. The results reveal that the command for the fNIRS-based BCI can be generated using the 5 s stimulation duration. In conclusion, the use of the initial dip can reduce the time taken for the generation of commands and can be used to achieve a higher classification accuracy for the fNIRS-BCI within a 5 s task duration rather than relying on longer durations.
Collapse
Affiliation(s)
- M. N. Afzal Khan
- School of Mechanical Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Keum-Shik Hong
- School of Mechanical Engineering, Pusan National University, Busan 46241, Republic of Korea
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
27
|
Zhang F, Cheong D, Khan AF, Chen Y, Ding L, Yuan H. Correcting physiological noise in whole-head functional near-infrared spectroscopy. J Neurosci Methods 2021; 360:109262. [PMID: 34146592 DOI: 10.1016/j.jneumeth.2021.109262] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/20/2021] [Accepted: 06/14/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Functional near-infrared spectroscopy (fNIRS) has been increasingly employed to monitor cerebral hemodynamics in normal and diseased conditions. However, fNIRS suffers from its susceptibility to superficial activity and systemic physiological noise. The objective of the study was to establish a noise reduction method for fNIRS in a whole-head montage. NEW METHOD We have developed an automated denoising method for whole-head fNIRS. A high-density montage consisting of 109 long-separation channels and 8 short-separation channels was used for recording. Auxiliary sensors were also used to measure motion, respiration and pulse simultaneously. The method incorporates principal component analysis and general linear model to identify and remove a globally uniform superficial component. Our denoising method was evaluated in experimental data acquired from a group of healthy human subjects during a visually cued motor task and further compared with a minimal preprocessing method and three established denoising methods in the literature. Quantitative metrics including contrast-to-noise ratio, within-subject standard deviation and adjusted coefficient of determination were evaluated. RESULTS After denoising, whole-head topography of fNIRS revealed focal activations concurrently in the primary motor and visual areas. COMPARISON WITH EXISTING METHODS Analysis showed that our method improves upon the four established preprocessing methods in the literature. CONCLUSIONS An automatic, effective and robust preprocessing pipeline was established for removing physiological noise in whole-head fNIRS recordings. Our method can enable fNIRS as a reliable tool in monitoring large-scale, network-level brain activities for clinical uses.
Collapse
Affiliation(s)
- Fan Zhang
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, USA
| | - Daniel Cheong
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, USA
| | - Ali F Khan
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, USA
| | - Yuxuan Chen
- School of Electrical and Computer Engineering, University of Oklahoma, Norman, OK, USA
| | - Lei Ding
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, USA; Institute for Biomedical Engineering, Science and Technology, University of Oklahoma, Norman, OK, USA
| | - Han Yuan
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, USA; Institute for Biomedical Engineering, Science and Technology, University of Oklahoma, Norman, OK, USA.
| |
Collapse
|