1
|
Henningsen K, Henry R, Gaskell SK, Alcock R, Mika A, Rauch C, Cheuvront SN, Blazy P, Kenefick R, Costa RJS. Exertional heat stress promotes the presence of bacterial DNA in plasma: A counterbalanced randomised controlled trial. J Sci Med Sport 2024; 27:610-617. [PMID: 38906729 DOI: 10.1016/j.jsams.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 06/23/2024]
Abstract
OBJECTIVES The primary aim was to explore the impact of exertional-heat stress (EHS) promoted exercise-associated bacteraemia. A secondary aim was to examine if an amino acid beverage (AAB) intervention may mitigate exercise-associated bacteraemia. DESIGN Counterbalanced randomised control trial. METHODS Twenty endurance trained male participants completed two randomised EHS trials. On one occasion, participants consumed a 237 mL AAB twice daily for 7 days prior, immediately before and every 20 min during EHS (2 h running at 60 % V̇O2max in 35 °C). On the other occasion, a water volume control (CON) equivalent was consumed. Whole blood samples were collected pre- and immediately post-EHS, and were analysed for plasma DNA concentration by fluorometer quantification after microbial extraction, and bacterial relative abundance by next generation 16s rRNA gene sequencing. RESULTS Increased concentration of microbial DNA in plasma pre- to post-EHS was observed on CON (pre-EHS 0.014 ng/μL, post-EHS 0.039 ng/μL) (p < 0.001) and AAB (pre-EHS 0.015 ng/μL, post-EHS 0.031 ng/μL) (p < 0.001). The magnitude of change from pre- to post-exercise on AAB was 40 % lower, but no significant difference was observed versus CON (p = 0.455). Predominant bacterial groups identified included: phyla-Proteobacteria (88.0 %), family-Burkholderiaceae (59.1 %), and genus-Curvibacter (58.6 %). No significant variation in absolute and relative change in α-diversity and relative abundance for phyla, family, and genus bacterial groups was observed in AAB versus CON. CONCLUSIONS The increased presence of microbial-bacterial DNA in systemic circulation in response to EHS appears positive in all participants. An amino acid beverage supplementation period prior to and consumption during EHS did not provide significant attenuation of EHS-associated bacteraemia.
Collapse
|
2
|
McCubbin AJ, Irwin CG, Costa RJS. Nourishing Physical Productivity and Performance On a Warming Planet - Challenges and Nutritional Strategies to Mitigate Exertional Heat Stress. Curr Nutr Rep 2024; 13:399-411. [PMID: 38995600 PMCID: PMC11327203 DOI: 10.1007/s13668-024-00554-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2024] [Indexed: 07/13/2024]
Abstract
PURPOSE OF REVIEW: Climate change is predicted to increase the frequency and severity of exposure to hot environments. This can impair health, physical performance, and productivity for active individuals in occupational and athletic settings. This review summarizes current knowledge and recent advancements in nutritional strategies to minimize the impact of exertional-heat stress (EHS). RECENT FINDINGS: Hydration strategies limiting body mass loss to < 3% during EHS are performance-beneficial in weight-supported activities, although evidence regarding smaller fluid deficits (< 2% body mass loss) and weight-dependent activities is less clear due to a lack of well-designed studies with adequate blinding. Sodium replacement requirements during EHS depends on both sweat losses and the extent of fluid replacement, with quantified sodium replacement only necessary once fluid replacement > 60-80% of losses. Ice ingestion lowers core temperature and may improve thermal comfort and performance outcomes when consumed before, but less so during activity. Prevention and management of gastrointestinal disturbances during EHS should focus on high carbohydrate but low FODMAP availability before and during exercise, frequent provision of carbohydrate and/or protein during exercise, adequate hydration, and body temperature regulation. Evidence for these approaches is lacking in occupational settings. Acute kidney injury is a potential concern resulting from inadequate fluid replacement during and post-EHS, and emerging evidence suggests that repeated exposures may increase the risk of developing chronic kidney disease. Nutritional strategies can help regulate hydration, body temperature, and gastrointestinal status during EHS. Doing so minimizes the impact of EHS on health and safety and optimizes productivity and performance outcomes on a warming planet.
Collapse
Affiliation(s)
- Alan J McCubbin
- Department of Nutrition, Dietetics and Food, Monash University, Level 1, 264 Ferntree Gully Road, Notting Hill, Victoria, 3168, Australia.
| | - Christopher G Irwin
- School of Health Sciences and Social Work, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Ricardo J S Costa
- Department of Nutrition, Dietetics and Food, Monash University, Level 1, 264 Ferntree Gully Road, Notting Hill, Victoria, 3168, Australia
| |
Collapse
|
3
|
Martinez IG, Houghton MJ, Forte M, Williamson G, Biesiekierski JR, Costa RJ. Development of a low-fructose carbohydrate gel for exercise application. Heliyon 2024; 10:e33497. [PMID: 39040322 PMCID: PMC11260965 DOI: 10.1016/j.heliyon.2024.e33497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/05/2024] [Accepted: 06/21/2024] [Indexed: 07/24/2024] Open
Abstract
This study aimed to develop a low-fructose (<3 g/serve) carbohydrate (CHO) gel for athletes. Various prototypes with 30 g CHO/serve and differing water content (12 %, 21 %, 32 %, 39 % w/v) were created and evaluated for sensory attributes. The final gel contained 62.1 ± 0.2 g CHO/100 g with 0.17 % w/w fructose. Endurance athletes (n = 20) underwent a feeding-challenge protocol, ingesting 30 g gel every 20 min during 2 h of running (60 %V ˙ O2max), followed by a 1 h self-paced distance test. Blood glucose increased significantly from baseline (4.0 ± 0.9 vs. 6.6 ± 0.6 mmol/L, p < 0.001) and remained elevated after the distance test (4.9 ± 0.7 mmol/L, p < 0.05). Breath hydrogen levels increased (5 ± 4 ppm, p < 0.05) without substantial CHO malabsorption detected. Gastrointestinal symptoms (GIS) increased during exercise but were mild. The low-fructose CHO gel demonstrated good tolerance, promoting glucose availability without severe GIS or CHO malabsorption.
Collapse
Affiliation(s)
- Isabel G. Martinez
- Department of Nutrition, Dietetics and Food, Monash University, Level 1, 264 Ferntree Gully Road, Notting Hill, VIC 3168, Australia
| | - Michael J. Houghton
- Department of Nutrition, Dietetics and Food, Monash University, Level 1, 264 Ferntree Gully Road, Notting Hill, VIC 3168, Australia
- Victorian Heart Institute, Monash University, Victorian Heart Hospital, 631 Blackburn Road, Clayton, VIC 3168, Australia
| | - Matteo Forte
- Department of Land, Environment, Agriculture and Forestry, Università Degli Studi di Padova, Viale Dell’Università 16, 35020, Legnaro, PD, Italy
| | - Gary Williamson
- Department of Nutrition, Dietetics and Food, Monash University, Level 1, 264 Ferntree Gully Road, Notting Hill, VIC 3168, Australia
- Victorian Heart Institute, Monash University, Victorian Heart Hospital, 631 Blackburn Road, Clayton, VIC 3168, Australia
| | - Jessica R. Biesiekierski
- Department of Nutrition, Dietetics and Food, Monash University, Level 1, 264 Ferntree Gully Road, Notting Hill, VIC 3168, Australia
| | - Ricardo J.S. Costa
- Department of Nutrition, Dietetics and Food, Monash University, Level 1, 264 Ferntree Gully Road, Notting Hill, VIC 3168, Australia
| |
Collapse
|
4
|
Henningsen K, Martinez I, Costa RJS. Exertional Stress-induced Pathogenic Luminal Content Translocation - Friend or Foe? Int J Sports Med 2024; 45:559-571. [PMID: 38286406 DOI: 10.1055/a-2235-1629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
The incidence of perturbed gastrointestinal integrity, as well as resulting systemic immune responses and gastrointestinal symptoms, otherwise known as exercised-induced gastrointestinal syndrome (EIGS), is common among individuals who partake in prolonged exercise. EIGS may cause the translocation of pathogenic material, including whole bacteria and bacterial endotoxins, from the lumen into circulation, which may progress into clinical consequences such as sepsis, and potentially subsequent fatality. However, further investigation is warranted to assess the possibility of food allergen and/or digestive enzyme luminal to circulatory translocation in response to exercise, and the clinical consequences. Findings from this narrative literature review demonstrate evidence that whole bacteria and bacterial endotoxins translocation from the gastrointestinal lumen to systemic circulation occurs in response to exercise stress, with a greater propensity of translocation occurring with accompanying heat exposure. It has also been demonstrated that food allergens can translocate from the lumen to systemic circulation in response to exercise stress and initiate anaphylaxis. To date, no research investigating the effect of exercise on the translocation of digestive enzymes from the lumen into systemic circulation exists. It is evident that EIGS and consequential pathogenic translocation presents life-threatening clinical implications, warranting the development and implementation of effective management strategies in at-risk populations.
Collapse
Affiliation(s)
- Kayla Henningsen
- Nutrition Dietetics & Food, Monash University Faculty of Medicine Nursing and Health Sciences, Notting Hill, Australia
| | - Isabel Martinez
- Nutrition Dietetics & Food, Monash University Faculty of Medicine Nursing and Health Sciences, Notting Hill, Australia
| | - Ricardo J S Costa
- Nutrition Dietetics & Food, Monash University Faculty of Medicine Nursing and Health Sciences, Notting Hill, Australia
| |
Collapse
|
5
|
Sapp PA, Townsend JR, Kirby TO, Govaert M, Duysburgh C, Verstrepen L, Marzorati M, Marshall TM, Esposito R. AG1 ®, a Novel Synbiotic, Maintains Gut Barrier Function following Inflammatory Challenge in a Caco-2/THP1-Blue™ Co-Culture Model. Microorganisms 2024; 12:1263. [PMID: 39065031 PMCID: PMC11278950 DOI: 10.3390/microorganisms12071263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/14/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
Nutritional interventions to reduce gastrointestinal (GI) permeability are of significant interest to physically active adults and those experiencing chronic health conditions. This in vitro study was designed to assess the impact of AG1, a novel synbiotic, on GI permeability following an inflammatory challenge. Interventions [AG1 (vitamins/minerals, pre-/probiotics, and phytonutrients) and control (control medium)] were fed separately into a human GI tract model (stomach, small intestine, and colon). In the colonic phase, the GI contents were combined with fecal inocula from three healthy human donors. GI permeability was evaluated with transepithelial electrical resistance (TEER) in a Caco-2 (apical)/THP1-Blue™ (basolateral) co-culture model. The apical side received sodium butyrate (positive control) or Caco-2 complete medium (negative control) during baseline testing. In the 24 h experiment, the apical side received colonic simulation isolates from the GI model, and the basolateral side was treated with Caco-2 complete medium, then 6 h treatment with lipopolysaccharide. TEER was assessed at 0 h and 24 h, and inflammatory markers were measured at 30 h in triplicate. Paired samples t-tests were used to evaluate endpoint mean difference (MD) for AG1 vs. control. TEER was higher for AG1 (mean ± SD: 99.89 ± 1.32%) vs. control (mean ± SD: 92.87 ± 1.22%) following activated THP1-induced damage [MD: 7.0% (p < 0.05)]. AG1 maintained TEER similar to the level of the negative control [-0.1% (p = 0.02)]. No differences in inflammatory markers were observed. These in vitro data suggest that acute supplementation with AG1 might stimulate protective effects on GI permeability. These changes may be driven by SCFA production due to the pre-/probiotic properties of AG1, but more research is needed.
Collapse
Affiliation(s)
- Philip A. Sapp
- Research, Nutrition, and Innovation, AG1, Carson City, NV 89701, USA
| | - Jeremy R. Townsend
- Research, Nutrition, and Innovation, AG1, Carson City, NV 89701, USA
- Health & Human Performance, Concordia University Chicago, River Forest, IL 60305, USA
| | - Trevor O. Kirby
- Research, Nutrition, and Innovation, AG1, Carson City, NV 89701, USA
| | | | | | | | - Massimo Marzorati
- ProDigest BVBA, B-9052 Ghent, Belgium
- Center of Microbial Ecology and Technology (CMET), Ghent University, B-9000 Ghent, Belgium
| | - Tess M. Marshall
- Research, Nutrition, and Innovation, AG1, Carson City, NV 89701, USA
| | - Ralph Esposito
- Research, Nutrition, and Innovation, AG1, Carson City, NV 89701, USA
- Department of Nutrition, Food Studies, and Public Health, New York University-Steinhardt, New York, NY 10003, USA
| |
Collapse
|
6
|
Convit L, Rahman SS, Jardine WT, Urwin CS, Roberts SSH, Condo D, Main LC, Carr AJ, Young C, Snipe RMJ. Total fermentable oligo-, di-, monosaccharides and polyols intake, carbohydrate malabsorption and gastrointestinal symptoms during a 56 km trail ultramarathon event. Nutr Diet 2024; 81:335-346. [PMID: 38637153 DOI: 10.1111/1747-0080.12870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/20/2023] [Accepted: 03/03/2024] [Indexed: 04/20/2024]
Abstract
AIMS To explore the relationship between nutritional intake, fermentable oligo-, di, monosaccharides and polyols, and carbohydrate malabsorption, with gastrointestinal symptoms during a 56 km trail ultramarathon event and identify differences in nutritional intake between runners with severe and non-severe gastrointestinal symptoms. METHODS Forty-four ultramarathoners recorded and self-reported dietary intake 3 days before, morning of, and during the ultramarathon with gastrointestinal symptoms obtained retrospectively and nutrient analysis via FoodWorks. Carbohydrate malabsorption was determined via breath hydrogen content pre- and post-race. Spearman's rank-order and Mann-Whitney U-tests were used to identify relationships and differences between groups. RESULTS Total fermentable oligo-, di, monosaccharides and polyols intake were not associated with gastrointestinal symptoms, but weak associations were observed for lower energy (rs = -0.302, p = 0.044) and fat intake (rs = -0.340, p = 0.024) 3 days before with upper gastrointestinal symptoms and higher caffeine intake 3 days before with overall gastrointestinal symptoms (rs = 0.314, p = 0.038). Total fermentable oligo-, di-, monosaccharides and polyols intake and breath hydrogen were not different between those with severe versus non-severe symptoms (p > 0.05). Although those with severe symptoms had higher caffeine (p = 0.032), and total polyols intake (p = 0.031) 3 days before, and higher % energy from fat (p = 0.043) and sorbitol intake (p = 0.026) during the race, and slower ultramarathon finish times (p = 0.042). CONCLUSION Total fermentable oligo-, di-, and monosaccharides intake and carbohydrate malabsorption were not associated with gastrointestinal symptoms. Additional research on the effect of fat, caffeine, and polyol intake on exercise-associated gastrointestinal symptoms is warranted and presents new nutritional areas for consideration when planning nutritional intake for ultramarathoners.
Collapse
Affiliation(s)
- Lilia Convit
- Faculty of Health, School of Exercise and Nutrition Sciences, Centre for Sport Research, Deakin University, Geelong, Victoria, Australia
| | - Shant S Rahman
- Faculty of Health, School of Exercise and Nutrition Sciences, Centre for Sport Research, Deakin University, Geelong, Victoria, Australia
| | - William T Jardine
- Faculty of Health, School of Exercise and Nutrition Sciences, Centre for Sport Research, Deakin University, Geelong, Victoria, Australia
| | - Charles S Urwin
- Faculty of Health, School of Exercise and Nutrition Sciences, Centre for Sport Research, Deakin University, Geelong, Victoria, Australia
| | - Spencer S H Roberts
- Faculty of Health, School of Exercise and Nutrition Sciences, Centre for Sport Research, Deakin University, Geelong, Victoria, Australia
| | - Dominique Condo
- Faculty of Health, School of Exercise and Nutrition Sciences, Centre for Sport Research, Deakin University, Geelong, Victoria, Australia
| | - Luana C Main
- Faculty of Health, School of Exercise and Nutrition Sciences, Institute for Physical Activity and Nutrition, Deakin University, Geelong, Victoria, Australia
| | - Amelia J Carr
- Faculty of Health, School of Exercise and Nutrition Sciences, Centre for Sport Research, Deakin University, Geelong, Victoria, Australia
| | - Chris Young
- Faculty of Health, School of Exercise and Nutrition Sciences, Centre for Sport Research, Deakin University, Geelong, Victoria, Australia
| | - Rhiannon M J Snipe
- Faculty of Health, School of Exercise and Nutrition Sciences, Centre for Sport Research, Deakin University, Geelong, Victoria, Australia
| |
Collapse
|
7
|
Scrivin R, Slater G, Mika A, Rauch C, Young P, Martinez I, Costa RJS. The impact of 48 h high carbohydrate diets with high and low FODMAP content on gastrointestinal status and symptoms in response to endurance exercise, and subsequent endurance performance. Appl Physiol Nutr Metab 2024; 49:773-791. [PMID: 38359412 DOI: 10.1139/apnm-2023-0508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
This study investigated the effects of a high carbohydrate diet, with varied fermentable oligo-, di-, and mono-saccharide and polyol (FODMAP) content, before endurance exercise on gastrointestinal integrity, motility, and symptoms; and subsequent exercise performance. Twelve endurance athletes were provided with a 48 h high carbohydrate (mean ± SD: 12.1 ± 1.8 g kg day-1) diet on two separate occasions, composed of high (54.8 ± 10.5 g day-1) and low FODMAP (3.0 ± 0.2 g day-1) content. Thereafter, participants completed a 2 h steady-state running exercise at 60% of V ˙ O 2 max (22.9 ± 1.2 °C, 46.4 ± 7.9% RH), followed by a 1 h distance performance test. Pre-exercise and every 20 min during steady-state exercise, 100 mL maltodextrin (10% w/v) solution was consumed. A 150 mL lactulose (20 g) solution was consumed 30 min into the distance performance test to determine orocecal transit time (OCTT) during exercise. Blood was collected pre- and post exercise to determine gastrointestinal integrity biomarkers (i.e., I-FABP, sCD14, and CRP). Breath hydrogen (H2) and gastrointestinal symptoms (GIS) were determined pre-exercise, every 15 min, during and throughout recovery. No differences in gastrointestinal integrity biomarkers, OCTT, or distance completed were observed between trials. Pre-exercise total-GIS (1.3 ± 2.9 vs. 4.3 ± 4.4), gut discomfort (9.9 ± 8.1 vs. 15.8 ± 9.0), and upper-GIS (2.8 ± 2.6 vs. 5.7 ± 4.8) during exercise were less severe on high carbohydrate low FODMAP (HC-LFOD) versus high carbohydrate high FODMAP (HC-HFOD) (p < 0.05). Gut discomfort (3.4 ± 4.4 vs. 0.2 ± 0.6) and total-GIS (4.9 ± 6.8 vs. 0.2 ± 0.6) were higher during recovery on HC-LFOD versus HC-HFOD (p < 0.05). The FODMAP content of a 48 h high carbohydrate diet does not impact gastrointestinal integrity or motility in response to endurance exercise. However, a high FODMAP content exacerbates GIS before and during exercise, but this does not impact performance outcomes.
Collapse
Affiliation(s)
- Rachel Scrivin
- School of Health and Behavioural Sciences, University of the Sunshine Coast, Sippy Downs, QLD, Australia
- Faculty of Health, Education and Environment, Toi Ohomai Institute of Technology, Tauranga, New Zealand
| | - Gary Slater
- School of Health and Behavioural Sciences, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Alice Mika
- Faculty of Medicine Nursing & Health Sciences, Department of Nutrition Dietetics and Food, Monash University, Melbourne, VIC, Australia
| | - Christopher Rauch
- Faculty of Medicine Nursing & Health Sciences, Department of Nutrition Dietetics and Food, Monash University, Melbourne, VIC, Australia
| | - Pascale Young
- Faculty of Medicine Nursing & Health Sciences, Department of Nutrition Dietetics and Food, Monash University, Melbourne, VIC, Australia
| | - Isabel Martinez
- Faculty of Medicine Nursing & Health Sciences, Department of Nutrition Dietetics and Food, Monash University, Melbourne, VIC, Australia
| | - Ricardo J S Costa
- Faculty of Medicine Nursing & Health Sciences, Department of Nutrition Dietetics and Food, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
8
|
Young P, Henningsen K, Snipe R, Gaskell S, Alcock R, Mika A, Rauch C, Costa RJS. Does Age Influence Gastrointestinal Status Responses to Exertional-heat Stress? Int J Sports Med 2024; 45:272-281. [PMID: 38198808 DOI: 10.1055/a-2195-3131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
This meta-data exploration aimed to determine the impact of exertional-heat stress (EHS) on gastrointestinal status of masters age and young adult endurance athletes. Sixteen MASTERS (mean: 44y) and twenty-one YOUNG (26y) recreational endurance athletes completed 2 h of running at 60% ˙V O2max in 35˚C ambient conditions. Blood samples were collected pre-, immediately and 1 h post-EHS, and analyzed for markers of exercise-induced gastrointestinal syndrome (EIGS). Thermo-physiological measures and gastrointestinal symptoms (GIS) were recorded every 10-20 min during EHS. Peak Δ pre- to post-EHS did not substantially differ (p>0.05) between MASTERS and YOUNG for intestinal epithelial injury [I-FABP: 1652pg/ml vs. 1524pg/ml, respectively], bacterial endotoxic translocation [sCD14: -0.09µg/mL vs. 0.84µg/mL, respectively], lipopolysaccharide-binding protein [LBP: 0.26µg/mL vs. 1.76µg/mL, respectively], and systemic inflammatory response profile (SIR-Profile: 92.0arb.unit vs. 154arb.unit, respectively). A significantly higher peak Δ pre- to post-EHS in endogenous endotoxin anti-body IgM (p=0.042), and pro-inflammatory cytokine IL-1β (p=0.038), was observed in YOUNG compared to MASTERS. No difference was observed between incidence (81% and 80%, respectively) and severity (summative accumulation: 21 and 30, respectively) of reported GIS during EHS between MASTERS and YOUNG. Pathophysiology of EIGS in response to EHS does not substantially differ with age progression, since masters and younger adult endurance athletes responded comparably.
Collapse
Affiliation(s)
- Pascale Young
- Department of Nutrition Dietetics & Food, Monash University, Notting Hill, Victoria, Australia
| | - Kayla Henningsen
- Department of Nutrition Dietetics & Food, Monash University, Notting Hill, Victoria, Australia
| | - Rhiannon Snipe
- Centre for Sport Research, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Victoria, Australia
| | - Stephanie Gaskell
- Department of Nutrition Dietetics & Food, Monash University, Notting Hill, Victoria, Australia
| | | | - Alice Mika
- Department of Nutrition Dietetics & Food, Monash University, Notting Hill, Victoria, Australia
| | - Christopher Rauch
- Department of Nutrition Dietetics & Food, Monash University, Notting Hill, Victoria, Australia
| | - Ricardo J S Costa
- Department of Nutrition Dietetics & Food, Monash University, Notting Hill, Victoria, Australia
| |
Collapse
|
9
|
Lee BJ, Flood TR, Galan-Lopez N, McCormick JJ, King KE, Fujii N, Kenny GP. Changes in surrogate markers of intestinal epithelial injury and microbial translocation in young and older men during prolonged occupational heat stress in temperate and hot conditions. Eur J Appl Physiol 2024; 124:1049-1062. [PMID: 37815618 DOI: 10.1007/s00421-023-05329-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 09/16/2023] [Indexed: 10/11/2023]
Abstract
PURPOSE Exertional heat stress can cause damage to the intestinal epithelium and disrupt gastrointestinal barrier integrity, leading to microbial translocation (MT) linked to the development of heat stroke. This study aimed to assess age-related differences in markers of intestinal epithelial injury and MT following non-heat stress and high-heat stress exercise in healthy young and older men. METHODS Markers of intestinal epithelial injury (intestinal fatty acid-binding protein-'IFABP') and MT (soluble cluster of differentiation 14-'sCD14'; and lipopolysaccharide-binding protein-'LBP') were assessed in healthy young (18-30 y, n = 13) and older (50-70 y) men (n = 12). Blood samples were collected before, after 180 min of moderate-intensity (metabolic rate: 200 W/m2) walking and following 60 min recovery in either a non-heat stress [temperate: 21.9 °C, 35% relative humidity (RH)] or high-heat stress (hot: 41.4 °C, 35% RH) environment. RESULTS There were no differences in IFABP and sCD14 between the young and older groups in the temperate condition, while LBP was greater in the older group (+ 0.66 ug/mL; + 0.08 to + 1.24 ug/mL). In the hot condition, the older group experienced greater increases in IFABP compared to the young group (+ 712 pg/mL/hr; + 269 to + 1154 pg/mL/hr). However, there were no clear between-group differences for sCD14 (+ 0.24 ug/mL/hr, - 0.22 to + 0.70 ug/mL/hr) or LBP (+ 0.86 ug/mL/hr, - 0.73 to + 2.46 ug/mL/hr). CONCLUSION While older men may experience greater intestinal epithelial injury following exercise in the heat; this did not lead to a greater magnitude of microbial translocation relative to their younger counterparts.
Collapse
Affiliation(s)
- Ben J Lee
- Occupational and Environmental Physiology Group, Centre for Sport, Exercise, and Life Sciences, Coventry University, Coventry, UK
| | - Tessa R Flood
- Institute of Sport, Manchester Metropolitan University, Manchester, UK
| | - Natalia Galan-Lopez
- Occupational and Environmental Physiology Group, Centre for Sport, Exercise, and Life Sciences, Coventry University, Coventry, UK
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - James J McCormick
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, 125 University Ave., Room 367, Montpetit Hall, Ottawa, ON, K1N 6N5, Canada
| | - Kelli E King
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, 125 University Ave., Room 367, Montpetit Hall, Ottawa, ON, K1N 6N5, Canada
| | - Naoto Fujii
- Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, 125 University Ave., Room 367, Montpetit Hall, Ottawa, ON, K1N 6N5, Canada.
| |
Collapse
|
10
|
Mohr AE, Pyne DB, Leite GSF, Akins D, Pugh J. A systematic scoping review of study methodology for randomized controlled trials investigating probiotics in athletic and physically active populations. JOURNAL OF SPORT AND HEALTH SCIENCE 2024; 13:61-71. [PMID: 36539062 PMCID: PMC10818115 DOI: 10.1016/j.jshs.2022.12.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/25/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND The purported ergogenic and health effects of probiotics have been a topic of great intrigue among researchers, practitioners, and the lay public alike. There has also been an increased research focus within the realm of sports science and exercise medicine on the athletic gut microbiota. However, compared to other ergogenic aids and dietary supplements, probiotics present unique study challenges. The objectives of this systematic scoping review were to identify and characterize study methodologies of randomized controlled trials investigating supplementation with probiotics in athletes and physically active individuals. METHODS Four databases (MEDLINE, CINAHL, Cochrane CENTRAL, and Cochrane Database of Systematic Reviews) were searched for randomized controlled studies involving healthy athletes or physically active individuals. An intervention with probiotics and inclusion of a control and/or placebo group were essential. Only peer-reviewed articles in English were considered, and there were no date restrictions. Results were extracted and presented in tabular form to detail study protocols, characteristics, and outcomes. Bias in randomized controlled trials was determined with the RoB 2.0 tool. RESULTS A total of 45 studies were included in the review, with 35 using a parallel group design and 10 using a cross-over design. Approximately half the studies used a single probiotic and the other half a multi-strain preparation. The probiotic dose ranged from 2 × 108 to 1 × 1011 colony forming units daily, and the length of intervention was between 7 and 150 days. Fewer than half the studies directly assessed gastrointestinal symptoms, gut permeability, or the gut microbiota. The sex ratio of participants was heavily weighted toward males, and only 3 studies exclusively investigated females. Low-level adverse events were reported in only 2 studies, although the methodology of reporting varied widely. The risk of bias was generally low, although details on randomization were lacking in some studies. CONCLUSION There is a substantial body of research on the effects of probiotic supplementation in healthy athletes and physically active individuals. Considerable heterogeneity in probiotic selection and dosage as well as outcome measures has made clinical and mechanistic interpretation challenging for both health care practitioners and researchers. Attention to issues of randomization of participants, treatments and interventions, selection of outcomes, demographics, and reporting of adverse events will facilitate more trustworthy interpretation of probiotic study results and inform evidence-based guidelines.
Collapse
Affiliation(s)
- Alex E Mohr
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA.
| | - David B Pyne
- Research Institute for Sport and Exercise, University of Canberra, Canberra, ACT 2617, Australia
| | - Geovana Silva Fogaça Leite
- Laboratory of Functional Fermented Food, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-030, Brazil
| | - Deborah Akins
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA
| | - Jamie Pugh
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| |
Collapse
|
11
|
Dziewiecka H, Kasperska A, Ostapiuk-Karolczuk J, Cichoń-Woźniak J, Basta P, Skarpańska-Stejnborn A. Influence of the 2000-m ergometer test on indirect markers of intestinal injury in competitive elite rowers in different training phases. BMC Sports Sci Med Rehabil 2023; 15:148. [PMID: 37936222 PMCID: PMC10629036 DOI: 10.1186/s13102-023-00761-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/26/2023] [Indexed: 11/09/2023]
Abstract
BACKGROUND We examined the effect of the 2000-m ergometer test on gut injury in competitive elite rowers in two different training phases. Given that inflammatory markers during the competitive phase are higher, we hypothesise that markers of intestinal injury are also more elevated during that phase. METHODS We performed this study during the preparatory phase (Test I) and competitive phase (Test II) of annual training. We included 10 competitive elite rowers, members of the Polish Rowing Team, in the study after applying the inclusion/exclusion criteria. The participants performed a 2000-m ergometer test during both phases (Tests I and II). We collected blood samples before the test, immediately after the test and after 1 h of recovery. We measured the levels of interleukin 6 (IL-6), intestinal fatty acid binding protein (I-FABP), lipopolysaccharide (LPS), lipopolysaccharide-binding protein (LBP), and zonulin. RESULTS There were no significant changes over time in Test I and Test II in the gut integrity markers. There were significantly lower I-FABP and IL-6 levels after the test for Test II compared with Test I. The pre-test LPS level was significantly lower for Test II compared with Test I. The pre-test LBP and zonulin levels were numerically lower in Test II, but the differences were not significant. CONCLUSIONS The 2000-m ergometer test showed no influence on gut integrity markers. However, there were differences in the response to exercise between Tests I and II. The lower level of gut injury markers after extreme exercise tests carried out during the preparation period may be the result of adaptive mechanisms and could indicate that rationally conducted training significantly decreases intestinal injury.
Collapse
Affiliation(s)
- Hanna Dziewiecka
- Department of Biological Sciences, Faculty of Physical Culture in Gorzów Wielkopolski, Poznań University of Physical Education, Estkowskiego 13, 66-400 Gorzów, Wielkopolski, Poland.
| | - Anna Kasperska
- Department of Biological Sciences, Faculty of Physical Culture in Gorzów Wielkopolski, Poznań University of Physical Education, Estkowskiego 13, 66-400 Gorzów, Wielkopolski, Poland
| | - Joanna Ostapiuk-Karolczuk
- Department of Biological Sciences, Faculty of Physical Culture in Gorzów Wielkopolski, Poznań University of Physical Education, Estkowskiego 13, 66-400 Gorzów, Wielkopolski, Poland
| | - Justyna Cichoń-Woźniak
- Department of Biological Sciences, Faculty of Physical Culture in Gorzów Wielkopolski, Poznań University of Physical Education, Estkowskiego 13, 66-400 Gorzów, Wielkopolski, Poland
| | - Piotr Basta
- Department of Physical Education and Sport, Faculty of Physical Culture in Gorzów Wielkopolski, Poznań University of Physical Education, Estkowskiego 13, 66-400 Gorzów, Wielkopolski, Poland
| | - Anna Skarpańska-Stejnborn
- Department of Biological Sciences, Faculty of Physical Culture in Gorzów Wielkopolski, Poznań University of Physical Education, Estkowskiego 13, 66-400 Gorzów, Wielkopolski, Poland
| |
Collapse
|
12
|
Houghton MJ, Snipe RMJ, Williamson G, Costa RJS. Plasma measurements of the dual sugar test reveal carbohydrate immediately alleviates intestinal permeability caused by exertional heat stress. J Physiol 2023; 601:4573-4589. [PMID: 37695123 DOI: 10.1113/jp284536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 08/18/2023] [Indexed: 09/12/2023] Open
Abstract
The aim of this set of randomised cross-over studies was to determine the impact of progressive heat exposure and carbohydrate or protein feeding during exertional stress on small intestine permeability using a dual sugar test. In our previous work, and typically in the field, recovery of lactulose and l-rhamnose is measured cumulatively in urine. This follow-up study exploits our novel high-performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD) protocol to accurately quantify the sugars in plasma. Endurance-trained participants completed experimental trial A (ET-A; n = 8), consisting of 2 h running at 60%V ̇ O 2 max ${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ in temperate, warm and hot ambient conditions, and/or experimental trial B (ET-B; n = 9), consisting of 2 h running at 60%V ̇ O 2 max ${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ in the heat while consuming water, carbohydrate or protein. Blood samples were collected and plasma lactulose (L) and l-rhamnose (R) appearance, after dual sugar solution ingestion at 90 min of exercise, was quantified by HPAEC-PAD to measure plasma L/R and reveal new information about intestinal permeability immediately post-exercise and during recovery. In ET-A, plasma L/R increased immediately post-exercise in hot compared with temperate and warm conditions, while, in ET-B, carbohydrate alleviated this, and this information was otherwise missed when measuring urine L/R. Consuming carbohydrate or protein before and during exercise attenuated small intestine permeability throughout recovery from exertional heat stress. We recommend using the dual sugar test with quantification of plasma sugars by HPAEC-PAD at intervals to maximise intestinal permeability data collection in exercise gastroenterology research, as this gives additional information compared to urinary measurements. KEY POINTS: Intestinal permeability is typically assessed using a dual sugar test, by administering a drink containing non-metabolisable sugars (e.g. lactulose (L) and l-rhamnose (R)) that can enter the circulation by paracellular translocation when the epithelium is compromised, and are subsequently measured in urine. We demonstrate that our recently developed ion chromatography protocol can be used to accurately quantify the L/R ratio in plasma, and that measuring L/R in plasma collected at intervals during the post-exercise recovery period reveals novel acute response information compared to measuring 5-h cumulative urine L/R. We confirm that exercising in hot ambient conditions increases intestinal epithelial permeability immediately after exercise, while consuming carbohydrate or protein immediately before and during exercise attenuates this. We recommend using our dual sugar absorption test protocol to maximise intestinal epithelial permeability data collection in exercise gastroenterology research and beyond.
Collapse
Affiliation(s)
- Michael J Houghton
- Department of Nutrition, Dietetics and Food, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, Notting Hill, Victoria, Australia
- Victorian Heart Institute, Monash University, Clayton, Victoria, Australia
| | - Rhiannon M J Snipe
- Centre for Sport Research, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Victoria, Australia
| | - Gary Williamson
- Department of Nutrition, Dietetics and Food, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, Notting Hill, Victoria, Australia
- Victorian Heart Institute, Monash University, Clayton, Victoria, Australia
| | - Ricardo J S Costa
- Department of Nutrition, Dietetics and Food, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, Notting Hill, Victoria, Australia
| |
Collapse
|
13
|
Mountjoy M, Ackerman KE, Bailey DM, Burke LM, Constantini N, Hackney AC, Heikura IA, Melin A, Pensgaard AM, Stellingwerff T, Sundgot-Borgen JK, Torstveit MK, Jacobsen AU, Verhagen E, Budgett R, Engebretsen L, Erdener U. 2023 International Olympic Committee's (IOC) consensus statement on Relative Energy Deficiency in Sport (REDs). Br J Sports Med 2023; 57:1073-1097. [PMID: 37752011 DOI: 10.1136/bjsports-2023-106994] [Citation(s) in RCA: 87] [Impact Index Per Article: 87.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2023] [Indexed: 09/28/2023]
Abstract
Relative Energy Deficiency in Sport (REDs) was first introduced in 2014 by the International Olympic Committee's expert writing panel, identifying a syndrome of deleterious health and performance outcomes experienced by female and male athletes exposed to low energy availability (LEA; inadequate energy intake in relation to exercise energy expenditure). Since the 2018 REDs consensus, there have been >170 original research publications advancing the field of REDs science, including emerging data demonstrating the growing role of low carbohydrate availability, further evidence of the interplay between mental health and REDs and more data elucidating the impact of LEA in males. Our knowledge of REDs signs and symptoms has resulted in updated Health and Performance Conceptual Models and the development of a novel Physiological Model. This Physiological Model is designed to demonstrate the complexity of either problematic or adaptable LEA exposure, coupled with individual moderating factors, leading to changes in health and performance outcomes. Guidelines for safe and effective body composition assessment to help prevent REDs are also outlined. A new REDs Clinical Assessment Tool-Version 2 is introduced to facilitate the detection and clinical diagnosis of REDs based on accumulated severity and risk stratification, with associated training and competition recommendations. Prevention and treatment principles of REDs are presented to encourage best practices for sports organisations and clinicians. Finally, methodological best practices for REDs research are outlined to stimulate future high-quality research to address important knowledge gaps.
Collapse
Affiliation(s)
- Margo Mountjoy
- Family Medicine, McMaster University Michael G DeGroote School of Medicine, Waterloo, Ontario, Canada
- Games Group, International Olympic Committee, Lausanne, Switzerland
| | - Kathryn E Ackerman
- Wu Tsai Female Athlete Program, Harvard Medical School, Boston Children's Hospital, Boston, Massachusetts, USA
| | | | - Louise M Burke
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, Australia
| | - Naama Constantini
- Sports Medicine Center, Shaare Zedek Medical Center, The Hebrew University, Jerusalem, Israel
| | - Anthony C Hackney
- Exercise and Sport Science, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Ida Aliisa Heikura
- Canada Sport Institute Pacific, Victoria, British Columbia, Canada
- Exercise Science, Physical & Health Education, University of Victoria, Victoria, British Columbia, Canada
| | - Anna Melin
- Department of Sport Science - Swedish Olympic Committee Research Fellow, Linnaeus University, Kalmar, Sweden
| | - Anne Marte Pensgaard
- Department of Sport and Social Sciences, Norwegian School of Sports Sciences, Oslo, Norway
| | - Trent Stellingwerff
- Canada Sport Institute Pacific, Victoria, British Columbia, Canada
- Exercise Science, Physical & Health Education, University of Victoria, Victoria, British Columbia, Canada
| | | | | | | | - Evert Verhagen
- Amsterdam Collaboration on Health & Safety in Sports, Department of Public and Occupational Health, Amsterdam Movement Science, Amsterdam UMC Locatie VUmc, Amsterdam, The Netherlands
| | - Richard Budgett
- Medical and Scientific Department, International Olympic Committee, Lausanne, Switzerland
| | - Lars Engebretsen
- Medical and Scientific Department, International Olympic Committee, Lausanne, Switzerland
| | - Uğur Erdener
- Department of Ophthalmology, Hacettepe University, Ankara, Turkey
- World Archery, Lausanne, Switzerland
| |
Collapse
|
14
|
Ackerman KE, Rogers MA, Heikura IA, Burke LM, Stellingwerff T, Hackney AC, Verhagen E, Schley S, Saville GH, Mountjoy M, Holtzman B. Methodology for studying Relative Energy Deficiency in Sport (REDs): a narrative review by a subgroup of the International Olympic Committee (IOC) consensus on REDs. Br J Sports Med 2023; 57:1136-1147. [PMID: 37752010 DOI: 10.1136/bjsports-2023-107359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2023] [Indexed: 09/28/2023]
Abstract
In the past decade, the study of relationships among nutrition, exercise and the effects on health and athletic performance, has substantially increased. The 2014 introduction of Relative Energy Deficiency in Sport (REDs) prompted sports scientists and clinicians to investigate these relationships in more populations and with more outcomes than had been previously pursued in mostly white, adolescent or young adult, female athletes. Much of the existing physiology and concepts, however, are either based on or extrapolated from limited studies, and the comparison of studies is hindered by the lack of standardised protocols. In this review, we have evaluated and outlined current best practice methodologies to study REDs in an attempt to guide future research.This includes an agreement on the definition of key terms, a summary of study designs with appropriate applications, descriptions of best practices for blood collection and assessment and a description of methods used to assess specific REDs sequelae, stratified as either Preferred, Used and Recommended or Potential Researchers can use the compiled information herein when planning studies to more consistently select the proper tools to investigate their domain of interest. Thus, the goal of this review is to standardise REDs research methods to strengthen future studies and improve REDs prevention, diagnosis and care.
Collapse
Affiliation(s)
- Kathryn E Ackerman
- Wu Tsai Female Athlete Program, Division of Sports Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Margot Anne Rogers
- Australian Institute of Sport, Bruce, South Australia, Australia
- University of Canberra Research Institute for Sport and Exercise (UCRISE), Canberra, Australian Capital Territory, Australia
| | - Ida A Heikura
- Canadian Sport Institute-Pacific, Victoria, British Columbia, Canada
- Department of Exercise Science, Physical & Health Education, University of Victoria, Victoria, British Columbia, Canada
| | - Louise M Burke
- Mary McKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, Australia
| | - Trent Stellingwerff
- Canadian Sport Institute-Pacific, Victoria, British Columbia, Canada
- Department of Exercise Science, Physical & Health Education, University of Victoria, Victoria, British Columbia, Canada
| | - Anthony C Hackney
- Exercise and Sport Science, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Evert Verhagen
- Amsterdam Collaboration on Health and Safety in Sports and Department of Public and Occupational Health, VU University Medical Center, Amsterdam, The Netherlands
| | - Stacey Schley
- Wu Tsai Female Athlete Program, Division of Sports Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Grace H Saville
- Wu Tsai Female Athlete Program, Division of Sports Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Margo Mountjoy
- Family Medicine, McMaster University Michael G DeGroote School of Medicine, Waterloo, Ontario, Canada
- Games Group, International Olympic Committee, Lausanne, Switzerland
| | - Bryan Holtzman
- Wu Tsai Female Athlete Program, Division of Sports Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Mass General for Children, Boston, Massachusetts, USA
| |
Collapse
|
15
|
Gaskell SK, Henningsen K, Young P, Gill P, Muir J, Henry R, Costa RJS. The Impact of a 24-h Low and High Fermentable Oligo- Di- Mono-Saccharides and Polyol (FODMAP) Diet on Plasma Bacterial Profile in Response to Exertional-Heat Stress. Nutrients 2023; 15:3376. [PMID: 37571312 PMCID: PMC10420669 DOI: 10.3390/nu15153376] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/27/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Exertional-heat stress (EHS) compromises intestinal epithelial integrity, potentially leading to the translocation of pathogenic agents into circulation. This study aimed to explore the impact of EHS on the systemic circulatory bacterial profile and to determine the impact of a short-term low (LFOD) and high (HFOD) fermentable oligo- di- mono-saccharide and polyol dietary intervention before EHS on this profile. Using a double-blind randomized cross-over design, thirteen endurance runners (n = 8 males, n = 5 females), with a history of exercise-associated gastrointestinal symptoms (Ex-GIS), consumed a 24 h LFOD and HFOD before 2 h running at 60% V.O2max in 35.6 °C. Blood and fecal samples were collected pre-EHS to determine plasma microbial DNA concentration, and sample bacteria and short chain fatty acid (SCFA) profiles by fluorometer quantification, 16S rRNA amplicon gene sequencing, and gas chromatography, respectively. Blood samples were also collected post-EHS to determine changes in plasma bacteria. EHS increased plasma microbial DNA similarly in both FODMAP trials (0.019 ng·μL-1 to 0.082 ng·μL-1) (p < 0.01). Similar pre- to post-EHS increases in plasma Proteobacteria (+1.6%) and Firmicutes (+0.6%) phyla relative abundance were observed in both FODMAP trials. This included increases in several Proteobacteria genus (Delftia and Serratia) groups. LFOD presented higher fecal Firmicutes (74%) and lower Bacteroidota (10%) relative abundance pre-EHS, as a result of an increase in Ruminococcaceae and Lachnospiraceae family and respective genus groups, compared with HFOD (64% and 25%, respectively). Pre-EHS plasma total SCFA (p = 0.040) and acetate (p = 0.036) concentrations were higher for HFOD (188 and 178 μmol·L-1, respectively) vs. LFOD (163 and 153 μmol·L-1, respectively). Pre-EHS total fecal SCFA concentration (119 and 74 μmol·g-1; p < 0.001), including acetate (74 and 45 μmol·g-1; p = 0.001), butyrate (22 and 13 μmol·g-1; p = 0.002), and propionate (20 and 13 μmol·g-1; p = 0.011), were higher on HFOD vs LFOD, respectively. EHS causes the translocation of whole bacteria into systemic circulation and alterations to the plasma bacterial profile, but the FODMAP content of a 24 h diet beforehand does not alter this outcome.
Collapse
Affiliation(s)
- Stephanie K. Gaskell
- Department of Nutrition Dietetics & Food, Monash University, Notting Hill, VIC 3168, Australia; (S.K.G.); (K.H.); (P.Y.)
| | - Kayla Henningsen
- Department of Nutrition Dietetics & Food, Monash University, Notting Hill, VIC 3168, Australia; (S.K.G.); (K.H.); (P.Y.)
| | - Pascale Young
- Department of Nutrition Dietetics & Food, Monash University, Notting Hill, VIC 3168, Australia; (S.K.G.); (K.H.); (P.Y.)
| | - Paul Gill
- Department of Gastroenterology, Monash University, Melbourne, VIC 3004, Australia; (P.G.); (J.M.)
| | - Jane Muir
- Department of Gastroenterology, Monash University, Melbourne, VIC 3004, Australia; (P.G.); (J.M.)
| | - Rebekah Henry
- School of Public Health and Preventive Medicine, Monash University, Clayton, VIC 3168, Australia;
- Department of Civil Engineering, Monash University, Clayton, VIC 3168, Australia
| | - Ricardo J. S. Costa
- Department of Nutrition Dietetics & Food, Monash University, Notting Hill, VIC 3168, Australia; (S.K.G.); (K.H.); (P.Y.)
| |
Collapse
|
16
|
Henningsen K, Mika A, Alcock R, Gaskell SK, Parr A, Rauch C, Russo I, Snipe RMJ, Costa RJS. The increase in core body temperature in response to exertional-heat stress can predict exercise-induced gastrointestinal syndrome. Temperature (Austin) 2023; 11:72-91. [PMID: 38577295 PMCID: PMC10989703 DOI: 10.1080/23328940.2023.2213625] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/09/2023] [Indexed: 04/06/2024] Open
Abstract
Utilizing metadata from existing exertional and exertional-heat stress studies, the study aimed to determine if the exercise-associated increase in core body temperature can predict the change in exercise-induced gastrointestinal syndrome (EIGS) biomarkers and exercise-associated gastrointestinal symptoms (Ex-GIS). Endurance-trained individuals completed 2 h of running exercise in temperate (21.2-30.0°C) to hot (35.0-37.2°C) ambient conditions (n = 132 trials). Blood samples were collected pre- and post-exercise to determine the change in gastrointestinal integrity biomarkers and systemic inflammatory cytokines. Physiological and thermoregulatory strain variables were assessed every 10-15 min during exercise. The strength of the linear relationship between maximal (M-Tre) and change (Δ Tre) in rectal temperature and EIGS variables was determined via Spearman's rank correlation coefficients. While the strength of prediction was determined via simple and multiple linear regression analyses dependent on screened EIGS and Ex-GIS confounding factors. Significant positive correlations between Tre maximum (M-Tre) and change (Δ Tre) with I-FABP (rs = 0.434, p < 0.001; and rs = 0.305, p < 0.001; respectively), sCD14 (rs = 0.358, p < 0.001; and rs = 0.362, p < 0.001), systemic inflammatory response profile (SIR-Profile) (p < 0.001), and total Ex-GIS (p < 0.05) were observed. M-Tre and Δ Tre significantly predicted (adjusted R2) magnitude of change in I-FABP (R2(2,123)=0.164, p < 0.001; and R2(2,119)=0.058, p = 0.011; respectively), sCD14 (R2(2,81)=0.249, p < 0.001; and R2(2,77)=0.214, p < 0.001), SIR-Profile (p < 0.001), and total Ex-GIS (p < 0.05). Strong to weak correlations were observed between M-Tre and Δ Tre with plasma concentrations of I-FABP, sCD14, SIR-Profile, and Ex-GIS in response to exercise. M-Tre and Δ Tre can predict the magnitude of these EIGS variables and Ex-GIS in response to exercise.
Collapse
Affiliation(s)
- Kayla Henningsen
- Department of Nutrition, Dietetics and Food, Monash University, Victoria, Australia
| | - Alice Mika
- Department of Nutrition, Dietetics and Food, Monash University, Victoria, Australia
| | - Rebekah Alcock
- Department of Dietetics and Human Nutrition, La Trobe University, Bundoora, Victoria, Australia
| | - Stephanie K. Gaskell
- Department of Nutrition, Dietetics and Food, Monash University, Victoria, Australia
| | - Alexandra Parr
- Department of Nutrition, Dietetics and Food, Monash University, Victoria, Australia
| | - Christopher Rauch
- Department of Nutrition, Dietetics and Food, Monash University, Victoria, Australia
| | - Isabela Russo
- Department of Nutrition, Dietetics and Food, Monash University, Victoria, Australia
| | - Rhiannon M. J. Snipe
- Centre for Sport Research, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Australia
| | - Ricardo J. S. Costa
- Department of Nutrition, Dietetics and Food, Monash University, Victoria, Australia
| |
Collapse
|
17
|
Martinez IG, Mika AS, Biesiekierski JR, Costa RJS. The Effect of Gut-Training and Feeding-Challenge on Markers of Gastrointestinal Status in Response to Endurance Exercise: A Systematic Literature Review. Sports Med 2023; 53:1175-1200. [PMID: 37061651 DOI: 10.1007/s40279-023-01841-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2023] [Indexed: 04/17/2023]
Abstract
BACKGROUND Nutrition during exercise is vital in sustaining prolonged activity and enhancing athletic performance; however, exercise-induced gastrointestinal syndrome (EIGS) and exercise-associated gastrointestinal symptoms (Ex-GIS) are common issues among endurance athletes. Despite this, there has been no systematic assessment of existing trials that examine the impact of repetitive exposure of the gastrointestinal tract to nutrients before and/or during exercise on gastrointestinal integrity, function, and/or symptoms. OBJECTIVE This systematic literature review aimed to identify and synthesize research that has investigated the impact of 'gut-training' or 'feeding-challenge' before and/or during exercise on markers of gastrointestinal integrity, function, and symptoms. METHODS Five databases (Ovid MEDLINE, EMBASE, CINAHL Plus, Web of Science Core Collection, and SPORTDiscus) were searched for literature that focused on gut-training or feeding-challenge before and/or during exercise that included EIGS and Ex-GIS variables. Quality assessment was conducted in duplicate and independently using the Cochrane Collaboration's risk-of-bias (RoB 2) tool. RESULTS Overall, 304 studies were identified, and eight studies were included after screening. Gut-training or feeding-challenge interventions included provision of carbohydrates only (n = 7) in various forms (e.g., gels or liquid solutions) during cycling or running, or carbohydrate with protein (n = 1) during intermittent exercise, over a varied duration (4-28 days). Gut discomfort decreased by an average of 47% and 26% with a 2-week repetitive carbohydrate feeding protocol (n = 2) and through repeated fluid ingestion over five trials (n = 1), respectively. Repetitive carbohydrate feeding during exercise for 2 weeks resulted in the reduction of carbohydrate malabsorption by 45-54% (n = 2), but also led to no significant change (n = 1). The effect of gut-training and feeding-challenges on the incidence and severity of Ex-GIS were assessed using different tools (n = 6). Significant improvements in total, upper, and lower gastrointestinal symptoms were observed (n = 2), as well as unclear results (n = 4). No significant changes in gastric emptying rate (n = 2), or markers of intestinal injury and permeability were found (n = 3). Inconclusive results were found in studies that investigated plasma inflammatory cytokine concentration in response to exercise with increased carbohydrate feeding (n = 2). CONCLUSIONS Overall, gut-training or feeding-challenge around exercise may provide advantages in reducing gut discomfort, and potentially improve carbohydrate malabsorption and Ex-GIS, which may have exercise performance implications.
Collapse
Affiliation(s)
- Isabel G Martinez
- Department of Nutrition, Dietetics and Food, Monash University, Level 1, 264 Ferntree Gully Road, Notting Hill, VIC, 3168, Australia
| | - Alice S Mika
- Department of Nutrition, Dietetics and Food, Monash University, Level 1, 264 Ferntree Gully Road, Notting Hill, VIC, 3168, Australia
| | - Jessica R Biesiekierski
- Department of Nutrition, Dietetics and Food, Monash University, Level 1, 264 Ferntree Gully Road, Notting Hill, VIC, 3168, Australia
| | - Ricardo J S Costa
- Department of Nutrition, Dietetics and Food, Monash University, Level 1, 264 Ferntree Gully Road, Notting Hill, VIC, 3168, Australia.
| |
Collapse
|
18
|
Gruet M, Behrens M, Peyré-Tartaruga LA. Editorial: Improving exercise testing methods and interpretation in human health and diseases. Front Physiol 2023; 14:1188429. [PMID: 37082247 PMCID: PMC10111030 DOI: 10.3389/fphys.2023.1188429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 03/27/2023] [Indexed: 04/07/2023] Open
Affiliation(s)
- Mathieu Gruet
- IAPS Laboratory, University of Toulon, Toulon, France
- *Correspondence: Mathieu Gruet,
| | - Martin Behrens
- Department of Sport Science, Institute III, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Leonardo A Peyré-Tartaruga
- Programa de Pós-Graduação Em Ciências Pneumológicas, Hospital de Clínicas de Porto, Alegre/Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
- LaBiodin Biodynamics Laboratory, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Ciências do Movimento Humano, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
19
|
Young P, Russo I, Gill P, Muir J, Henry R, Davidson Z, Costa RJS. Reliability of pathophysiological markers reflective of exercise-induced gastrointestinal syndrome (EIGS) in response to 2-h high-intensity interval exercise: A comprehensive methodological efficacy exploration. Front Physiol 2023; 14:1063335. [PMID: 36895638 PMCID: PMC9989174 DOI: 10.3389/fphys.2023.1063335] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 02/06/2023] [Indexed: 02/25/2023] Open
Abstract
The study aimed to determine the test-retest reliability of exercise-induced gastrointestinal syndrome (EIGS) biomarkers, and assess the association of pre-exercise short chain fatty acid (SCFA) concentration with these biomarkers in response to prolonged strenuous exercise. Thirty-four participants completed 2 h of high-intensity interval training (HIIT) on two separate occasions with at least 5-days washout. Blood samples were collected pre- and post-exercise, and analysed for biomarkers associated with EIGS [i.e., cortisol, intestinal fatty-acid binding protein (I-FABP), sCD14, lipopolysaccharide binding protein (LBP), leukocyte counts, in-vitro neutrophil function, and systemic inflammatory cytokine profile]. Fecal samples were collected pre-exercise on both occasions. In plasma and fecal samples, bacterial DNA concentration was determined by fluorometer quantification, microbial taxonomy by 16S rRNA amplicon sequencing, and SCFA concentration by gas-chromatography. In response to exercise, 2 h of HIIT modestly perturbed biomarkers indicative of EIGS, including inducing bacteremia (i.e., quantity and diversity). Reliability analysis using comparative tests, Cohen's d, two-tailed correlation, and intraclass correlation coefficient (ICC) of resting biomarkers presented good-to-excellent for IL-1ra (r = 0.710, ICC = 0.92), IL-10 (r = 0.665, ICC = 0.73), cortisol (r = 0.870, ICC = 0.87), and LBP (r = 0.813, ICC = 0.76); moderate for total (r = 0.839, ICC = 0.44) and per cell (r = 0.749, ICC = 0.54) bacterially-stimulated elastase release, IL-1β (r = 0.625, ICC = 0.64), TNF-α (r = 0.523, ICC = 0.56), I-FABP (r = 0.411, ICC = 0.21), and sCD14 (r = 0.409, ICC = 0.38), plus fecal bacterial α-diversity; and poor for leukocyte (r = 0.327, ICC = 0.33) and neutrophil (r = 0.352, ICC = 0.32) counts. In addition, a medium negative correlation was observed between plasma butyrate and I-FABP (r = -0.390). The current data suggest a suite of biomarkers should be used to determine the incidence and severity of EIGS. Moreover, determination of plasma and/or fecal SCFA may provide some insight into the mechanistic aspects of EIGS instigation and magnitude in response to exercise.
Collapse
Affiliation(s)
- Pascale Young
- Department of Nutrition Dietetics and Food, Monash University, Notting Hill, VIC, Australia
| | - Isabella Russo
- Department of Nutrition Dietetics and Food, Monash University, Notting Hill, VIC, Australia
| | - Paul Gill
- Department of Gastroenterology, Monash University, Melbourne, VIC, Australia
| | - Jane Muir
- Department of Gastroenterology, Monash University, Melbourne, VIC, Australia
| | - Rebekah Henry
- Department of Civil Engineering, Monash University, Clayton, VIC, Australia
| | - Zoe Davidson
- Department of Nutrition Dietetics and Food, Monash University, Notting Hill, VIC, Australia
| | - Ricardo J S Costa
- Department of Nutrition Dietetics and Food, Monash University, Notting Hill, VIC, Australia
| |
Collapse
|
20
|
Scrivin R, Costa RJS, Pelly F, Lis D, Slater G. Carbohydrate knowledge, beliefs, and intended practices, of endurance athletes who report exercise-associated gastrointestinal symptoms. Front Nutr 2023; 10:1133022. [PMID: 37125044 PMCID: PMC10130506 DOI: 10.3389/fnut.2023.1133022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 03/23/2023] [Indexed: 05/02/2023] Open
Abstract
This study aimed to explore carbohydrate (CHO) knowledge, beliefs, and intended practices of endurance athletes who experience exercise-associated gastrointestinal symptoms (Ex-GIS) compared to those without Ex-GIS. A validated online questionnaire was completed by endurance athletes (n = 201) participating in >60 min of exercise that present with Ex-GIS (n = 137) or without (n = 64). Descriptive statistics were used for parametric and non-parametric data with appropriate significance tests. Associations between categorical data were assessed by Chi-square analysis, and post-hoc Bonferroni tests were applied when significant. A content analysis of open-ended responses was grouped into themes, and quantitative statistics were applied. Participants included runners (n = 114, 57%), triathletes (n = 43, 21%) and non-running sports (n = 44, 21%) who participate in recreational competitive (n = 74, 37%), recreational non-competitive (n = 64, 32%), or competitive regional, national, or international levels (n = 63, 31%). Athletes correctly categorized CHO (x̄ = 92-95%) and non-CHO (x̄ = 88-90%) food and drink sources. On a Likert scale of 1 (strongly disagree) to 5 (strongly agree) athletes typically agree or strongly agree that consuming CHO around key training sessions and competitions enhances athletic performance [median = 4 (IQR, 4-5)], and they intend to consume more CHO around exercise [median = 3 (IQR, 2-3)]. No differences in beliefs and intentions were found among athletes with or without Ex-GIS. To enhance athletic performance, most endurance athletes intend to consume more CHO around exercise. Adequate knowledge of CHO-containing food sources was apparent; however, specific CHO ingestion practices remain to be verified.
Collapse
Affiliation(s)
- Rachel Scrivin
- School of Health and Behavioural Sciences, University of the Sunshine Coast, Sippy Downs, QLD, Australia
- Faculty of Health, Education and Environment, Te Pukenga, New Zealand Institute of Skills and Technology, Tauranga, New Zealand
| | - Ricardo J S Costa
- Department of Nutrition Dietetics and Food, Monash University, Melbourne, VIC, Australia
| | - Fiona Pelly
- School of Health and Behavioural Sciences, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Dana Lis
- Department of Neurobiology, Physiology and Behaviour, University of California, Davis, CA, United States
| | - Gary Slater
- School of Health and Behavioural Sciences, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| |
Collapse
|
21
|
Rauch CE, Mika AS, McCubbin AJ, Huschtscha Z, Costa RJS. Effect of prebiotics, probiotics, and synbiotics on gastrointestinal outcomes in healthy adults and active adults at rest and in response to exercise-A systematic literature review. Front Nutr 2022; 9:1003620. [PMID: 36570133 PMCID: PMC9768503 DOI: 10.3389/fnut.2022.1003620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022] Open
Abstract
Introduction A systematic literature search was undertaken to assess the impact of pre-, pro-, and syn-biotic supplementation on measures of gastrointestinal status at rest and in response to acute exercise. Methods Six databases (Ovid MEDLINE, EMBASE, Cinahl, SportsDISCUS, Web of Science, and Scopus) were used. Included were human research studies in healthy sedentary adults, and healthy active adults, involving supplementation and control or placebo groups. Sedentary individuals with non-communicable disease risk or established gastrointestinal inflammatory or functional diseases/disorders were excluded. Results A total of n = 1,204 participants were included from n = 37 papers reported resting outcomes, and n = 13 reported exercise-induced gastrointestinal syndrome (EIGS) outcomes. No supplement improved gastrointestinal permeability or gastrointestinal symptoms (GIS), and systemic endotoxemia at rest. Only modest positive changes in inflammatory cytokine profiles were observed in n = 3/15 studies at rest. Prebiotic studies (n = 4/5) reported significantly increased resting fecal Bifidobacteria, but no consistent differences in other microbes. Probiotic studies (n = 4/9) increased the supplemented bacterial species-strain. Only arabinoxylan oligosaccharide supplementation increased total fecal short chain fatty acid (SCFA) and butyrate concentrations. In response to exercise, probiotics did not substantially influence epithelial injury and permeability, systemic endotoxin profile, or GIS. Two studies reported reduced systemic inflammatory cytokine responses to exercise. Probiotic supplementation did not substantially influence GIS during exercise. Discussion Synbiotic outcomes resembled probiotics, likely due to the minimal dose of prebiotic included. Methodological issues and high risk of bias were identified in several studies, using the Cochrane Risk of Bias Assessment Tool. A major limitation in the majority of included studies was the lack of a comprehensive approach of well-validated biomarkers specific to gastrointestinal outcomes and many included studies featured small sample sizes. Prebiotic supplementation can influence gut microbial composition and SCFA concentration; whereas probiotics increase the supplemented species-strain, with minimal effect on SCFA, and no effect on any other gastrointestinal status marker at rest. Probiotic and synbiotic supplementation does not substantially reduce epithelial injury and permeability, systemic endotoxin and inflammatory cytokine profiles, or GIS in response to acute exercise.
Collapse
Affiliation(s)
- Christopher E. Rauch
- Department of Nutrition Dietetics and Food, School of Clinical Sciences, Faculty of Medicine Nursing and Health Sciences, Monash University, Notting Hill, VIC, Australia
| | - Alice S. Mika
- Department of Nutrition Dietetics and Food, School of Clinical Sciences, Faculty of Medicine Nursing and Health Sciences, Monash University, Notting Hill, VIC, Australia
| | - Alan J. McCubbin
- Department of Nutrition Dietetics and Food, School of Clinical Sciences, Faculty of Medicine Nursing and Health Sciences, Monash University, Notting Hill, VIC, Australia
| | - Zoya Huschtscha
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, Australia
| | - Ricardo J. S. Costa
- Department of Nutrition Dietetics and Food, School of Clinical Sciences, Faculty of Medicine Nursing and Health Sciences, Monash University, Notting Hill, VIC, Australia,*Correspondence: Ricardo J. S. Costa
| |
Collapse
|
22
|
Scrivin R, Costa RJS, Pelly F, Lis D, Slater G. An exploratory study of the management strategies reported by endurance athletes with exercise-associated gastrointestinal symptoms. Front Nutr 2022; 9:1003445. [PMID: 36438762 PMCID: PMC9691682 DOI: 10.3389/fnut.2022.1003445] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/12/2022] [Indexed: 11/12/2022] Open
Abstract
This exploratory study investigated endurance athletes self-reported exercise-associated gastrointestinal symptoms (Ex-GIS) and associated strategies to manage symptomology. Adult endurance athletes with a history of Ex-GIS (n = 137) participating in events ≥ 60 min completed an online validated questionnaire. Respondents included runners (55%, n = 75), triathletes (22%, n = 30), and non-running sports (23%, n = 32), participating at a recreationally competitive (37%, n = 51), recreationally non-competitive (32%, n = 44), and competitive regional/national/international (31%, n = 42) levels. Athletes identified when Ex-GIS developed most frequently either around training (AT), around competitions (AC), or equally around both training (ET) and competitions (EC). Athletes reported the severity of each symptom before, during, and after exercise. Athletes predominantly categorized Ex-GIS severity as mild (< 5/10) on a 0 (no symptoms) to 10 (extremely severe symptoms) visual analog symptomology scale. The Friedman test and post hoc analysis with Wilcoxon signed rank test was conducted with a Bonferroni correction applied to determine differences between repeated measures. The only severe symptom of significance was the urge to defecate during training in the ET group (Z = –0.536, p = 0.01). Ex-GIS incidence was significantly higher during training and competitions in all categories. A content review of self-reported strategies (n = 277) to reduce Ex-GIS indicated popular dietary strategies were dietary fiber reduction (15.2%, n = 42), dairy avoidance (5.8%, n = 16), and a low fermentable oligosaccharides, monosaccharides, and polyols (FODMAP) diet (5.4%, n = 15). In contrast, non-dietary strategies included the use of medications (4.7%, n = 13) and relaxation/meditation (4.0%, n = 11). On a Likert scale of 1–5, the most successful dietary strategies implemented were dietary fiber reduction (median = 4, IQR = 4, 5), low FODMAP diets (median = 4, IQR = 4, 5), dairy-free diets (median = 4, IQR = 4, 5), and increasing carbohydrates (median = 4, IQR = 3, 4). Accredited practicing dietitians were rated as the most important sources of information for Ex-GIS management (n = 29). Endurance athletes use a variety of strategies to manage their Ex-GIS, with dietary manipulation being the most common.
Collapse
Affiliation(s)
- Rachel Scrivin
- School of Health and Behavioral Sciences, University of the Sunshine Coast, Sippy Downs, QLD, Australia
- Faculty of Health, Education and Environment, Toi Ohomai Institute of Technology, Tauranga, New Zealand
- *Correspondence: Rachel Scrivin,
| | - Ricardo J. S. Costa
- Department of Nutrition Dietetics and Food, Monash University, Melbourne, VIC, Australia
| | - Fiona Pelly
- School of Health and Behavioral Sciences, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Dana Lis
- Department of Neurobiology, Physiology and Behavior, University of California, Los Angeles, Los Angeles, CA, United States
| | - Gary Slater
- School of Health and Behavioral Sciences, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| |
Collapse
|