1
|
Yang Y, Wang Z, Xiao T, Ni X, Song E, Dai L, Chen Y, Lu H, Shang D, Wen Y. Preliminary Determination of the Therapeutic Reference Range of Lurasidone in Chinese Patients and Analysis of the Factors Influencing Lurasidone Dose-Corrected Concentrations. Ther Drug Monit 2024:00007691-990000000-00301. [PMID: 39671209 DOI: 10.1097/ftd.0000000000001298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Indexed: 12/14/2024]
Abstract
BACKGROUND The aim of this study was to determine the therapeutic reference range of lurasidone, and to analyze the factors influencing the dose-corrected concentration of lurasidone in Chinese psychiatric patients, thereby providing a basis for the development of individualized dosing of lurasidone. METHODS A retrospective analysis was conducted for hospitalized patients who had received lurasidone and undergone blood concentration monitoring from May 2022 to September 2023 at the Affiliated Brain Hospital of Guangzhou Medical University. Analyses were based on patient demographic data, treatment regimens, and administered drug concentrations. RESULTS Data for a total of 123 lurasidone steady-state trough concentrations were collected from 120 hospitalized patients. It was found that 85.56% of lurasidone steady-state trough concentrations were below the lower limit of the lurasidone therapeutic reference range (15 ng·mL-1), and that the median steady-state trough concentration was 7.09 ng·mL-1 (IQ1-IQ3 = 4.12-11.82 ng·mL-1). Gender, age, and co-medication with valproic acid were found to be significant factors influencing lurasidone steady-state trough concentration/daily dose (C/D) values. C/D values for females were 14% higher than those obtained for males. Among patients who did not receive concomitant administration of valproic acid, the C/D values were 55% higher than those who had received co-administered valproic acid. Furthermore, C/D values obtained for elderly patients (≥60 years) were 140% higher than those recorded for adolescents (<18 years) and 157% higher than those in younger adults (18-60 years). CONCLUSIONS The findings of this study indicated that the guideline-recommended therapeutic reference range (15-40 ng·mL-1) for lurasidone may not be appropriate, at least for the Chinese population. More extensive therapeutic drug monitoring is recommended for elderly female patients and those receiving co-medication with lurasidone and valproic acid.
Collapse
Affiliation(s)
- Ye Yang
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Pharmacy, Guangdong Sanjiu Brain Hospital, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou
| | - Zhanzhang Wang
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou
| | - Tao Xiao
- Department of Clinical Research, Guangdong Second Provincial General Hospital, Guangzhou, China; and
| | - Xiaojia Ni
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou
| | - Emei Song
- Department of Pharmacy, Guangdong North Third People's Hospital, Shaoguan, China
| | - Lijing Dai
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Pharmacy, Guangdong Sanjiu Brain Hospital, Guangzhou, China
| | - Yuqing Chen
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou
| | - Haoyang Lu
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou
| | - Dewei Shang
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou
| | - Yuguan Wen
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou
| |
Collapse
|
2
|
Bao S, Yang S, Hua Z, Li J, Zang Y, Li X. Ziprasidone population pharmacokinetics and co-medication effects in Chinese patients. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:9811-9821. [PMID: 38918237 DOI: 10.1007/s00210-024-03244-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024]
Abstract
Ziprasidone is widely used in the treatment of psychiatric disorders. Despite its prevalence, there is a notable lack of population pharmacokinetics (PPK) studies on ziprasidone in serum, both domestically and internationally. This study aimed to comprehensively investigate the various factors influencing the PPK characteristics of Ziprasidone, thereby providing a scientific basis for personalized treatment strategies in clinical settings. This is a retrospective study. A non-linear mixed-effects modeling method was used for data analysis, with the ziprasidone PPK model established using the Phoenix NLME 8.1 software. Model evaluation employed goodness-of-fit plots, visual predictive checks, and Bootstrap methods to ensure reliability and accuracy. To further validate the model's applicability, data from an additional 30 patients meeting the same inclusion criteria but not included in the final model were collected for external validation. Simulations were performed to explore the personalized dosage regimens. This retrospective analysis collected 547 drug concentration data points from 185 psychiatric disorder patients, along with related medical records. The data included detailed demographic information (such as age, gender, weight), dosing regimens, laboratory test results, and concomitant medication details. In the final model, Ka was fixed at 0.5 h-1 based on literature, and the population typical values for ziprasidone clearance (CL) and volume of distribution (V) were 18.74 L/h and 110.24 L, respectively. Co-administration of lorazepam and valproic acid significantly influenced the clearance of ziprasidone. Moreover, the model evaluation indicated good stability and predictive accuracy. A simple to use dosage regimen table was derived based on the results of simulations. This study successfully established and validated a PPK model for ziprasidone in Chinese patients with psychiatric disorders. The model provides a scientific reference for individualized dosing of ziprasidone and holds the potential to optimize treatment strategies, thereby enhancing therapeutic efficacy and safety.
Collapse
Affiliation(s)
- Shuang Bao
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, No. 95 Yongan Road, Xicheng District, Beijing, 100050, China
- Department of Pharmacy, Beijing Anding Hospital, Capital Medical University, No. 5 Ankang Hutong, Xicheng District, Beijing, 100088, China
| | - Siyu Yang
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, No. 95 Yongan Road, Xicheng District, Beijing, 100050, China
| | - Zixin Hua
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, No. 95 Yongan Road, Xicheng District, Beijing, 100050, China
| | - Jiqian Li
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, No. 95 Yongan Road, Xicheng District, Beijing, 100050, China
| | - Yannan Zang
- Department of Pharmacy, Beijing Anding Hospital, Capital Medical University, No. 5 Ankang Hutong, Xicheng District, Beijing, 100088, China
| | - Xingang Li
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, No. 95 Yongan Road, Xicheng District, Beijing, 100050, China.
| |
Collapse
|
3
|
Cohen H, Bahash N, Raccah B, Matok I, Ekstein D, Goldstein L, Kalish Y, Eyal S. The level is in the details: Why differences between direct-acting oral anticoagulants should be considered in the treatment of patients with epilepsy. Epilepsia 2024; 65:3474-3483. [PMID: 39460651 DOI: 10.1111/epi.18144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/07/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024]
Affiliation(s)
- Hagar Cohen
- Department of Clinical Pharmacy, School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nahawand Bahash
- Department of Clinical Pharmacy, School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Bruria Raccah
- Department of Clinical Pharmacy, School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ilan Matok
- Department of Clinical Pharmacy, School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Dana Ekstein
- Department of Neurology, Agnes Ginges Center for Human Neurogenetics, Hadassah Medical Organization, Jerusalem, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Lee Goldstein
- Internal Medicine C and Clinical Pharmacology Unit, Haemek Medical Center, Afula, Israel; affiliated with the Bruce Rapapport School of Medicine, Technion, Haifa, Israel
| | - Yosef Kalish
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Hematology, Hadassah Medical Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Sara Eyal
- Department of Clinical Pharmacy, School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
4
|
Mensah JA, Johnson K, Freeman T, Reilly CA, Rower JE, Metcalf CS, Wilcox KS. Utilizing an acute hyperthermia-induced seizure test and pharmacokinetic studies to establish optimal dosing regimens in a mouse model of Dravet syndrome. Epilepsia 2024; 65:3100-3114. [PMID: 39212337 PMCID: PMC11496002 DOI: 10.1111/epi.18104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
OBJECTIVE The current standard of care for Dravet syndrome (DS) includes polytherapy after inadequate seizure control with one or more monotherapy approaches. Treatment guidelines are often based on expert opinions, and finding an optimal balance between seizure control and adverse drug effects can be challenging. This study utilizes the efficacy and pharmacokinetic assessment of a second-line treatment regimen that combines clobazam and sodium valproate with an add-on drug as a proof-of-principle approach to establish an effective therapeutic regimen in a DS mouse model. METHODS We evaluated the efficacy of add-on therapies stiripentol, cannabidiol, lorcaserin, or fenfluramine added to clobazam and sodium valproate against hyperthermia-induced seizures in Scn1aA1783V/WT mice. Clobazam, N-desmethyl clobazam (an active metabolite of clobazam), sodium valproate, stiripentol, and cannabidiol concentrations were quantified in plasma and brain using liquid chromatography-tandem mass spectrometry for the combinations deemed effective against hyperthermia-induced seizures. The concentration data were used to calculate pharmacokinetic parameters via noncompartmental analysis in Phoenix WinNonLin. RESULTS Higher doses of stiripentol or cannabidiol, in combination with clobazam and sodium valproate, were effective against hyperthermia-induced seizures in Scn1aA1783V/WT mice. In Scn1aWT/WT mice, brain clobazam and N-desmethyl clobazam concentrations were higher in the triple-drug combinations than in the clobazam monotherapy. Stiripentol and cannabidiol brain concentrations were greater in the triple-drug therapy than when given alone. SIGNIFICANCE A polypharmacy strategy may be a practical preclinical approach to identifying efficacious compounds for DS. The drug-drug interactions between compounds used in this study may explain the potentiated efficacy of some polytherapies.
Collapse
Affiliation(s)
| | | | | | - Christopher A. Reilly
- Center for Human Toxicology
- Department of Pharmacology & Toxicology, University of Utah
| | - Joseph E. Rower
- Center for Human Toxicology
- Department of Pharmacology & Toxicology, University of Utah
| | - Cameron S. Metcalf
- Contract Site of the NINDS Epilepsy Therapy Screening Program
- Department of Pharmacology & Toxicology, University of Utah
| | - Karen S. Wilcox
- Contract Site of the NINDS Epilepsy Therapy Screening Program
- Department of Pharmacology & Toxicology, University of Utah
| |
Collapse
|
5
|
Rota E, Immovilli P, Pappalardo I, Risso R, Zuccotti G, Agosti S, Morelli N, Rovere ME, Costa I, D'Orsi ML. Direct Oral Anticoagulants and Concomitant Anti-seizure Medications: A Retrospective, Case-Control Study in a Real-World Setting. Clin Ther 2024; 46:e26-e30. [PMID: 38972763 DOI: 10.1016/j.clinthera.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 06/02/2024] [Accepted: 06/04/2024] [Indexed: 07/09/2024]
Abstract
PURPOSE Although prescription of direct oral anticoagulants (DOACs) for epileptic patients on anti-seizure medications (ASMs) is on the increase, international guidelines pose strict restrictions because this may lead to pharmacologic interactions. However, current evidence on their clinical relevance remains scanty. This retrospective, case-control study assessed the frequency of ischemic/hemorrhagic events and epileptic seizures involving DOAC-ASM cotherapy in the real world, compared with DOAC and ASM monotherapy, in age- and gender-matched controls. METHODS Data on patients who had been prescribed a concomitant DOAC and ASM therapy for at least 6 months were extracted from the database of the Pharmaceutical Service of the Alessandria Province (Italy). After exclusions, the case group included 124 patients, 44 on valproic acid (VPA) and 80 on levetiracetam (LEV) concomitant with a DOAC, and it was compared with the DOAC-control and ASM-control groups. The clinical and laboratory data were extracted from the electronic archives of the hospitals in the same province. FINDINGS Two (1.6%) ischemic and 2 (1.6%) major hemorrhagic events were observed in the case group. Four (3.2%) ischemic and no hemorrhagic events occurred in the DOAC-control group. There were no statistically significant differences in the ischemic and hemorrhagic events between the case group (patients on concomitant LEV or VPA who were prescribed a DOAC) and the DOAC-control group, and there was no difference in the recurrence rate of epileptic seizures between the case group and the ASM-control group. IMPLICATIONS Although this study has some limits, mainly the small sample size, our findings indicate that neither LEV nor VPA concomitant treatment significantly affects the effects of DOACs in a real-world setting.
Collapse
Affiliation(s)
- Eugenia Rota
- The Neurology Unit, San Giacomo Hospital, ASL Alessandria, Novi Ligure, Italy.
| | - Paolo Immovilli
- The Neurology Unit, Guglielmo da Saliceto Hospital, AUSLPC, Piacenza, Italy
| | - Irene Pappalardo
- The Clinical Neurophysiology and Epilepsy Unit, IRCCS San Martino Hospital, Genova, Italy
| | - Roberta Risso
- The Internal Medicine Unit, M. Ferrero Hospital, ASLCN2, Verduno, Italy
| | | | - Sergio Agosti
- The Cardiology Unit, Micone Hospital, ASL3, Sestri Ponente, Italy
| | - Nicola Morelli
- The Neurology Unit, Guglielmo da Saliceto Hospital, AUSLPC, Piacenza, Italy
| | | | - Ilaria Costa
- The Hospital Pharmacy, ASL Alessandria, Alessandria, Italy
| | | |
Collapse
|
6
|
Ansermot N, Vathanarasa H, Ranjbar S, Gholam M, Crettol S, Vandenberghe F, Gamma F, Plessen KJ, von Gunten A, Conus P, Eap CB. Therapeutic Drug Monitoring of Olanzapine: Effects of Clinical Factors on Plasma Concentrations in Psychiatric Patients. Ther Drug Monit 2024; 46:00007691-990000000-00234. [PMID: 38833576 PMCID: PMC11554250 DOI: 10.1097/ftd.0000000000001227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/31/2024] [Indexed: 06/06/2024]
Abstract
BACKGROUND Therapeutic drug monitoring (TDM) is strongly recommended for olanzapine due to its high pharmacokinetic variability. This study aimed to investigate the impact of various clinical factors on olanzapine plasma concentrations in patients with psychiatric disorders. METHODS The study used TDM data from the PsyMetab cohort, including 547 daily dose-normalized, steady-state, olanzapine plasma concentrations (C:D ratios) from 248 patients. Both intrinsic factors (eg, sex, age, body weight) and extrinsic factors (eg, smoking status, comedications, hospitalization) were examined. Univariate and multivariable, linear, mixed-effects models were employed, with a stepwise selection procedure based on Akaike information criterion to identify the relevant covariates. RESULTS In the multivariable model (based on 440 observations with a complete data set), several significant findings emerged. Olanzapine C:D ratios were significantly lower in smokers (β = -0.65, P < 0.001), valproate users (β = -0.53, P = 0.002), and inpatients (β = -0.20, P = 0.025). Furthermore, the C:D ratios decreased significantly as the time since the last dose increased (β = -0.040, P < 0.001). The male sex had a significant main effect on olanzapine C:D ratios (β = -2.80, P < 0.001), with significant interactions with age (β = 0.025, P < 0.001) and body weight (β = 0.017, P = 0.011). The selected covariates explained 30.3% of the variation in C:D ratios, with smoking status accounting for 7.7% and sex contributing 6.9%. The overall variation explained by both the fixed and random parts of the model was 67.4%. The model facilitated the prediction of olanzapine C:D ratios based on sex, age, and body weight. CONCLUSIONS The clinical factors examined in this study, including sex, age, body weight, smoking status, and valproate comedication, remarkably influence olanzapine C:D ratios. Considering these factors, in addition to TDM and the clinical situation, could be important for dose adjustment.
Collapse
Affiliation(s)
- Nicolas Ansermot
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Centre for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
| | - Harish Vathanarasa
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Centre for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
| | - Setareh Ranjbar
- Psychiatric Epidemiology and Psychopathology Research Centre, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
| | - Mehdi Gholam
- Psychiatric Epidemiology and Psychopathology Research Centre, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
| | - Séverine Crettol
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Centre for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
| | - Frederik Vandenberghe
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Centre for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
| | - Franziska Gamma
- Les Toises Psychiatry and Psychotherapy Centre, Lausanne, Switzerland
| | - Kerstin Jessica Plessen
- Service of Child and Adolescent Psychiatry, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
| | - Armin von Gunten
- Service of Old Age Psychiatry, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
| | - Philippe Conus
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
| | - Chin B. Eap
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Centre for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
- Centre for Research and Innovation in Clinical Pharmaceutical Sciences, University of Lausanne, Lausanne, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland; and
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, University of Lausanne, Geneva and Lausanne, Switzerland
| |
Collapse
|
7
|
Stöllberger C, Finsterer J, Schneider B. Interactions between antiepileptic drugs and direct oral anticoagulants for primary and secondary stroke prevention. Expert Opin Drug Metab Toxicol 2024; 20:359-376. [PMID: 38712571 DOI: 10.1080/17425255.2024.2352466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024]
Abstract
INTRODUCTION Direct oral anticoagulants (DOAC) are the guideline-recommended therapy for prevention of stroke in atrial fibrillation (AF) and venous thromboembolism. Since approximately 10% of patients using antiepileptic drugs (AED) also receive DOAC, aim of this review is to summarize data about drug-drug interactions (DDI) of DOAC with AED by using data from PubMed until December 2023. AREAS COVERED Of 49 AED, only 16 have been investigated regarding DDI with DOAC by case reports or observational studies. No increased risk for stroke was reported only for topiramate, zonisamide, pregabalin, and gabapentin, whereas for the remaining 12 AED conflicting results regarding the risk for stroke and bleeding were found. Further 16 AED have the potential for pharmacodynamic or pharmacokinetic DDI, but no data regarding DOAC are available. For the remaining 17 AED it is unknown if they have DDI with DOAC. EXPERT OPINION Knowledge about pharmacokinetic and pharmacodynamic DDI of AED and DOAC is limited and frequently restricted to in vitro and in vivo findings. Since no data about DDI with DOAC are available for 67% of AED and an increasing number of patients have a combined medication of DOAC and AED, there is an urgent need for research on this topic.
Collapse
|
8
|
Morel C, Paoli J, Emond C, Debaugnies F, Hardy EM, Creta M, Montagne M, Borde P, Nieuwenhuyse AV, Duca RC, Schroeder H, Grova N. Pharmacokinetic characterisation of a valproate Autism Spectrum Disorder rat model in a context of co-exposure to α-Hexabromocyclododecane. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 105:104343. [PMID: 38122861 DOI: 10.1016/j.etap.2023.104343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023]
Abstract
Assessing the role of α-hexabromocyclododecane α-HBCDD as a factor of susceptibility for Autism Spectrum disorders by using valproic acid-exposed rat model (VPA) required characterizing VPA pharmacokinetic in the context of α-HBCDD-co-exposure in non-pregnant and pregnant rats. The animals were exposed to α-HBCDD by gavage (100 ng/kg/day) for 12 days. This was followed by a single intraperitoneal dose of VPA (500 mg/kg) or a daily oral dose of VPA (500 mg/kg) for 3 days. Exposure to α-HBCDD did not affect the pharmacokinetics of VPA in pregnant or non-pregnant rats. Surprisingly, VPA administration altered the pharmacokinetics of α-HBCDD. VPA also triggered higher foetal toxicity and lethality with the PO than IP route. α-HBCDD did not aggravate the embryotoxicity observed with VPA, regardless of the route of exposure. Based on this evidence, a single administration of 500 mg/kg IP is the most suitable VPA model to investigate α-HBCDD co-exposure.
Collapse
Affiliation(s)
- C Morel
- Calbinotox EA-7488, Faculty of Science and Technology, University of Lorraine, Campus Aiguillettes, B.P. 70239, 54506 Vandœuvre-lès-Nancy, France.
| | - J Paoli
- Calbinotox EA-7488, Faculty of Science and Technology, University of Lorraine, Campus Aiguillettes, B.P. 70239, 54506 Vandœuvre-lès-Nancy, France; UMR Inserm 1256 nGERE, Nutrition-Génétique et exposition aux risques environnementaux, Institute of Medical Research (Pôle BMS) - University of Lorraine, B.P. 184, 54511 Nancy, France.
| | - C Emond
- Calbinotox EA-7488, Faculty of Science and Technology, University of Lorraine, Campus Aiguillettes, B.P. 70239, 54506 Vandœuvre-lès-Nancy, France; PKSH Inc., Crabtree, Quebec, Canada; School of Public Health, DSEST, University of Montreal, Montreal, Quebec, Canada.
| | - F Debaugnies
- Department of Medical Biology, National Health Laboratory (LNS), Dudelange, Grand Duchy of Luxembourg.
| | - E M Hardy
- Department of Health Protection, National Health Laboratory (LNS), Dudelange, Grand Duchy of Luxembourg.
| | - M Creta
- Department of Health Protection, National Health Laboratory (LNS), Dudelange, Grand Duchy of Luxembourg.
| | - M Montagne
- Department of Health Protection, National Health Laboratory (LNS), Dudelange, Grand Duchy of Luxembourg.
| | - P Borde
- Department of Medical Biology, National Health Laboratory (LNS), Dudelange, Grand Duchy of Luxembourg.
| | - A Van Nieuwenhuyse
- Department of Health Protection, National Health Laboratory (LNS), Dudelange, Grand Duchy of Luxembourg; Environment and Health, Department of Public Health and Primary Care, University of Leuven (KU Leuven), Leuven, Belgium.
| | - R C Duca
- Department of Health Protection, National Health Laboratory (LNS), Dudelange, Grand Duchy of Luxembourg; Environment and Health, Department of Public Health and Primary Care, University of Leuven (KU Leuven), Leuven, Belgium.
| | - H Schroeder
- Calbinotox EA-7488, Faculty of Science and Technology, University of Lorraine, Campus Aiguillettes, B.P. 70239, 54506 Vandœuvre-lès-Nancy, France; UMR Inserm 1256 nGERE, Nutrition-Génétique et exposition aux risques environnementaux, Institute of Medical Research (Pôle BMS) - University of Lorraine, B.P. 184, 54511 Nancy, France.
| | - N Grova
- Calbinotox EA-7488, Faculty of Science and Technology, University of Lorraine, Campus Aiguillettes, B.P. 70239, 54506 Vandœuvre-lès-Nancy, France; UMR Inserm 1256 nGERE, Nutrition-Génétique et exposition aux risques environnementaux, Institute of Medical Research (Pôle BMS) - University of Lorraine, B.P. 184, 54511 Nancy, France; Immune Endocrine Epigenetics Research Group, Department of Infection and Immunity-Luxembourg Institute of Health, 29 rue Henri Koch, L-4354, Esch-Sur-Alzette, Grand Duchy of Luxembourg.
| |
Collapse
|
9
|
Kingston E, Tingle M, Bellissima BL, Helsby N, Burns K. CYP-catalysed cycling of clozapine and clozapine- N-oxide promotes the generation of reactive oxygen species in vitro. Xenobiotica 2024; 54:26-37. [PMID: 38108307 DOI: 10.1080/00498254.2023.2294473] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/10/2023] [Indexed: 12/19/2023]
Abstract
Clozapine is an effective atypical antipsychotic indicated for treatment-resistant schizophrenia, but is under-prescribed due to the risk of severe adverse drug reactions such as myocarditis.A mechanistic understanding of clozapine cardiotoxicity remains elusive.This study aimed to investigate the contribution of selected CYP isoforms to cycling between clozapine and its major circulating metabolites, N-desmethylclozapine and clozapine-N-oxide, with the potential for reactive species production.CYP supersome™-based in vitro techniques were utilised to quantify specific enzyme activity associated with clozapine, clozapine-N-oxide and N-desmethylclozapine metabolism.The formation of reactive species within each incubation were quantified, and known intermediates detected.CYP3A4 predominately catalysed clozapine-N-oxide formation from clozapine and was associated with concentration-dependent reactive species production, whereas isoforms favouring the N-desmethylclozapine pathway (CYP2C19 and CYP1A2) did not produce reactive species.Extrahepatic isoforms CYP2J2 and CYP1B1 were also associated with the formation of clozapine-N-oxide and N-desmethylclozapine but did not favour one metabolic pathway over another.Unique to this investigation is that various CYP isoforms catalyse clozapine-N-oxide reduction to clozapine.This process was associated with the concentration-dependent formation of reactive species with CYP3A4, CYP1B1 and CYP1A1 that did not correlate with known reactive intermediates, implicating metabolite cycling and reactive oxygen species in the mechanism of clozapine-induced toxicity.
Collapse
Affiliation(s)
- Ellen Kingston
- Department of Pharmacology and Clinical Pharmacology, The University of Auckland, Auckland, New Zealand
| | - Malcolm Tingle
- Department of Pharmacology and Clinical Pharmacology, The University of Auckland, Auckland, New Zealand
| | - Brandi L Bellissima
- Department of Pharmacology and Clinical Pharmacology, The University of Auckland, Auckland, New Zealand
| | - Nuala Helsby
- Department of Molecular Medicine and Pathology, The University of Auckland, Auckland, New Zealand
| | - Kathryn Burns
- Department of Pharmacology and Clinical Pharmacology, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
10
|
Ding J, Yang L, Meng Z, Tian M, Chen Y, Gong Y, Hu J, Wei B, Cui X. Therapeutic drug monitoring of perospirone: The lowest effective plasma concentration in patients with schizophrenia. Asian J Psychiatr 2023; 90:103832. [PMID: 37980799 DOI: 10.1016/j.ajp.2023.103832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/30/2023] [Accepted: 11/14/2023] [Indexed: 11/21/2023]
Abstract
OBJECTIVES This study investigated the effects of demographic factors such as age, sex and comedications on the plasma concentrations of perospirone in individuals diagnosed with schizophrenia. Additionally, the relationship between these plasma levels and the clinical efficacy of the medication was explored. METHODS Data regarding the plasma concentration of perospirone in patients with schizophrenia were obtained from the Xi'an Mental Health Center and were retrospectively analysed. RESULTS The study results revealed a range of 0.50-1.59 ng/mL for the 25th-75th percentile of perospirone concentration in the plasma, which ranged from 0.07 to 6.0 ng/mL. The plasma concentration of perospirone increased with the daily oral dose (r = 0.283, P < 0.05). Furthermore, patients with higher plasma perospirone concentrations and concentration-to-dose ratios (C/D) tended to be older or were women. Notably, the coadministration of valproate significantly reduced perospirone concentration and the C/D ratio by 54.7% and 35.3%, respectively (P < 0.01). Receiver operating characteristics curve analyses revealed that patients exhibited a good clinical response when their plasma perospirone concentrations were ≥ 1.17 ng/mL. CONCLUSION The findings suggest that therapeutic drug monitoring of perospirone and adjustments to achieve steady-state concentrations of ≥ 1.17 ng/mL can be beneficial for optimising treatment for patients with schizophrenia.
Collapse
Affiliation(s)
- Jing Ding
- Xi'an Mental Health Center, 710100 Xi'an, PR China
| | - Liu Yang
- Xi'an Mental Health Center, 710100 Xi'an, PR China
| | | | - Mi Tian
- Xi'an Mental Health Center, 710100 Xi'an, PR China
| | - Yanming Chen
- Xi'an Mental Health Center, 710100 Xi'an, PR China
| | - Yangze Gong
- Xi'an Mental Health Center, 710100 Xi'an, PR China
| | - Jiewen Hu
- Xi'an Mental Health Center, 710100 Xi'an, PR China
| | - Boyu Wei
- Xi'an Mental Health Center, 710100 Xi'an, PR China
| | - Xiaohua Cui
- Xi'an Mental Health Center, 710100 Xi'an, PR China.
| |
Collapse
|
11
|
Zhu J, Lu J, He Y, Shen X, Xia H, Li W, Zhang J, Fan X. Association of ABCB1 Polymorphisms with Efficacy and Adverse Drug Reactions of Valproic Acid in Children with Epilepsy. Pharmaceuticals (Basel) 2023; 16:1536. [PMID: 38004402 PMCID: PMC10675623 DOI: 10.3390/ph16111536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/21/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
Genetic polymorphisms in ATP-binding cassette subfamily B member 1 (ABCB1, also known as MDR1) have been reported to be possibly associated with the regulation of response to antiseizure medications. The aim of this study was to investigate the association of ABCB1 polymorphisms with the efficacy of and adverse drug reactions to valproic acid among Chinese children with epilepsy. A total of 170 children from southern China with epilepsy treated with valproic acid for more than one year were recruited, including 61 patients with persistent seizures and 109 patients who were seizure-free. Two single nucleotide polymorphisms of ABCB1, rs1128503 and rs3789243, were genotyped using the Sequenom MassArray system. The two single nucleotide polymorphisms of ABCB1 were found to be significantly associated with treatment outcomes of valproic acid in children with epilepsy. Carriers with the TT genotype of ABCB1 rs1128503 were more inclined to exhibit persistent seizures after treatment with valproic acid (p = 0.013). The CC genotype of rs3789243 was observed to be a potential protective factor for valproic acid-induced gastrointestinal adverse drug reactions (p = 0.018), but possibly increased the risk of valproic acid-induced cutaneous adverse drug reactions (p = 0.011). In contrast, the CT genotype of rs3789243 was associated with a lower risk of valproic acid-induced cutaneous adverse drug reactions (p = 0.011). Haplotype analysis showed that CC haplotype carriers tended to respond better to valproic acid treatment (p = 0.009). Additionally, no significant association was found between ABCB1 polymorphisms and serum concentrations of valproic acid. This study revealed that the polymorphisms and haplotypes of the ABCB1 gene might be associated with the treatment outcomes of valproic acid in Chinese children with epilepsy.
Collapse
Affiliation(s)
- Jiahao Zhu
- Department of Clinical Pharmacology, College of Pharmacy, Jinan University, Guangzhou 511436, China; (J.Z.); (J.L.); (Y.H.); (X.S.); (J.Z.)
- Department of Pharmacy, Shenzhen Baoan Women’s and Children’s Hospital, Jinan University, Shenzhen 518102, China; (H.X.); (W.L.)
| | - Jieluan Lu
- Department of Clinical Pharmacology, College of Pharmacy, Jinan University, Guangzhou 511436, China; (J.Z.); (J.L.); (Y.H.); (X.S.); (J.Z.)
| | - Yaodong He
- Department of Clinical Pharmacology, College of Pharmacy, Jinan University, Guangzhou 511436, China; (J.Z.); (J.L.); (Y.H.); (X.S.); (J.Z.)
- Department of Pharmacy, Shenzhen Baoan Women’s and Children’s Hospital, Jinan University, Shenzhen 518102, China; (H.X.); (W.L.)
| | - Xianhuan Shen
- Department of Clinical Pharmacology, College of Pharmacy, Jinan University, Guangzhou 511436, China; (J.Z.); (J.L.); (Y.H.); (X.S.); (J.Z.)
- Department of Pharmacy, Shenzhen Baoan Women’s and Children’s Hospital, Jinan University, Shenzhen 518102, China; (H.X.); (W.L.)
| | - Hanbing Xia
- Department of Pharmacy, Shenzhen Baoan Women’s and Children’s Hospital, Jinan University, Shenzhen 518102, China; (H.X.); (W.L.)
| | - Wenzhou Li
- Department of Pharmacy, Shenzhen Baoan Women’s and Children’s Hospital, Jinan University, Shenzhen 518102, China; (H.X.); (W.L.)
| | - Jianping Zhang
- Department of Clinical Pharmacology, College of Pharmacy, Jinan University, Guangzhou 511436, China; (J.Z.); (J.L.); (Y.H.); (X.S.); (J.Z.)
| | - Xiaomei Fan
- Department of Pharmacy, Shenzhen Baoan Women’s and Children’s Hospital, Jinan University, Shenzhen 518102, China; (H.X.); (W.L.)
| |
Collapse
|
12
|
Bachorz RA, Pastwińska J, Nowak D, Karaś K, Karwaciak I, Ratajewski M. The application of machine learning methods to the prediction of novel ligands for ROR γ/ROR γT receptors. Comput Struct Biotechnol J 2023; 21:5491-5505. [PMID: 38022699 PMCID: PMC10663739 DOI: 10.1016/j.csbj.2023.10.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023] Open
Abstract
In this work, we developed and applied a computational procedure for creating and validating predictive models capable of estimating the biological activity of ligands. The combination of modern machine learning methods, experimental data, and the appropriate setup of molecular descriptors led to a set of well-performing models. We thoroughly inspected both the methodological space and various possibilities for creating a chemical feature space. The resulting models were applied to the virtual screening of the ZINC20 database to identify new, biologically active ligands of RORγ receptors, which are a subfamily of nuclear receptors. Based on the known ligands of RORγ, we selected candidates and calculate their predicted activities with the best-performing models. We chose two candidates that were experimentally verified. One of these candidates was confirmed to induce the biological activity of the RORγ receptors, which we consider proof of the efficacy of the proposed methodology.
Collapse
Affiliation(s)
- Rafał A. Bachorz
- Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, Łódź, 93-232, Poland
| | - Joanna Pastwińska
- Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, Łódź, 93-232, Poland
| | - Damian Nowak
- Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, Łódź, 93-232, Poland
| | - Kaja Karaś
- Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, Łódź, 93-232, Poland
| | - Iwona Karwaciak
- Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, Łódź, 93-232, Poland
| | - Marcin Ratajewski
- Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, Łódź, 93-232, Poland
| |
Collapse
|
13
|
Yang S, Wang H, Zheng GF, Wang Y. Age, Sex, and Comedication Effects on the Steady-State Plasma Concentrations of Amisulpride in Chinese Patients with Schizophrenia. Ther Drug Monit 2023; 45:676-682. [PMID: 36863030 DOI: 10.1097/ftd.0000000000001089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/02/2023] [Indexed: 03/04/2023]
Abstract
BACKGROUND Amisulpride, a second-generation atypical antipsychotic drug, was first marketed in Europe in the 1990s. This study aimed to provide a reference for the clinical application of amisulpride. The effects of age, sex, or specific comedications on amisulpride concentrations in Chinese patients with schizophrenia in the real world were investigated. METHODS A retrospective study was conducted of data on amisulpride based on the therapeutic drug monitoring service database at the Zigong Affiliated Hospital of Southwest Medical University. RESULTS Based on the inclusion criteria, 195 plasma samples from 173 patients (67.05% female and 32.95% male patients) were included for in-depth analysis. The median daily dose of amisulpride was 400 mg/d, median plasma concentration was 457.50 ng/mL, and median concentration/dose (C/D) ratio was 1.04 ng/mL/mg/d. The daily dose of amisulpride positively correlated with measured steady-state plasma concentrations. A significant difference was observed in the subgroup analysis of the combination with valproic acid, zopiclone, or aripiprazole on plasma concentrations. Combining amisulpride with these drugs increased the C/D ratios by 0.56-, 2.31-, and 0.77-fold, respectively. After adjusting for age, the median C/D ratio was found to be significantly different between female and male patients. However, no significant differences in daily dose, plasma concentration, and C/D ratio were noted with respect to sex and age of the patients. CONCLUSIONS Sex differences were inferred for the first time in this study, with differential effects on daily dose, steady-state plasma concentration, and C/D ratio associated with the population. In the included study samples, blood concentrations were distributed in the range of 223.25-823.55 ng/mL, which perhaps needs to be evaluated in line with the reference range of ammonia-sulfur ratios in the Chinese population.
Collapse
Affiliation(s)
- Shuo Yang
- Department of Pharmacy, Jianyang People's Hospital, Chengdu; and
| | - HaiYan Wang
- Department of Pharmacy, Jianyang Chinese Medicine Hospital, Chengdu, P.R. China
| | - Gao Feng Zheng
- Department of Pharmacy, Jianyang People's Hospital, Chengdu; and
| | - Yi Wang
- Zigong Affiliated Hospital of Southwest Medical University
- Zigong Psychiatric Research Center, Zigong
| |
Collapse
|
14
|
Hegde M, Girisa S, Naliyadhara N, Kumar A, Alqahtani MS, Abbas M, Mohan CD, Warrier S, Hui KM, Rangappa KS, Sethi G, Kunnumakkara AB. Natural compounds targeting nuclear receptors for effective cancer therapy. Cancer Metastasis Rev 2023; 42:765-822. [PMID: 36482154 DOI: 10.1007/s10555-022-10068-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/03/2022] [Indexed: 12/13/2022]
Abstract
Human nuclear receptors (NRs) are a family of forty-eight transcription factors that modulate gene expression both spatially and temporally. Numerous biochemical, physiological, and pathological processes including cell survival, proliferation, differentiation, metabolism, immune modulation, development, reproduction, and aging are extensively orchestrated by different NRs. The involvement of dysregulated NRs and NR-mediated signaling pathways in driving cancer cell hallmarks has been thoroughly investigated. Targeting NRs has been one of the major focuses of drug development strategies for cancer interventions. Interestingly, rapid progress in molecular biology and drug screening reveals that the naturally occurring compounds are promising modern oncology drugs which are free of potentially inevitable repercussions that are associated with synthetic compounds. Therefore, the purpose of this review is to draw our attention to the potential therapeutic effects of various classes of natural compounds that target NRs such as phytochemicals, dietary components, venom constituents, royal jelly-derived compounds, and microbial derivatives in the establishment of novel and safe medications for cancer treatment. This review also emphasizes molecular mechanisms and signaling pathways that are leveraged to promote the anti-cancer effects of these natural compounds. We have also critically reviewed and assessed the advantages and limitations of current preclinical and clinical studies on this subject for cancer prophylaxis. This might subsequently pave the way for new paradigms in the discovery of drugs that target specific cancer types.
Collapse
Affiliation(s)
- Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Nikunj Naliyadhara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Aviral Kumar
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha, 61421, Saudi Arabia
- BioImaging Unit, Space Research Centre, University of Leicester, Michael Atiyah Building, Leicester, LE1 7RH, UK
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha, 61421, Saudi Arabia
- Electronics and Communications Department, College of Engineering, Delta University for Science and Technology, 35712, Gamasa, Egypt
| | | | - Sudha Warrier
- Division of Cancer Stem Cells and Cardiovascular Regeneration, School of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore, 560065, India
- Cuor Stem Cellutions Pvt Ltd, Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore, 560065, India
| | - Kam Man Hui
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre, Singapore, 169610, Singapore
| | | | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
15
|
Leo S, Kato Y, Wu Y, Yokota M, Koike M, Yui S, Tsuchiya K, Shiraki N, Kume S. The Effect of Vitamin D3 and Valproic Acid on the Maturation of Human-Induced Pluripotent Stem Cell-Derived Enterocyte-Like Cells. Stem Cells 2023; 41:775-791. [PMID: 37228023 DOI: 10.1093/stmcls/sxad042] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 05/17/2023] [Indexed: 05/27/2023]
Abstract
Cytochrome P450 3A4 (CYP3A4) is involved in first-pass metabolism in the small intestine and is heavily implicated in oral drug bioavailability and pharmacokinetics. We previously reported that vitamin D3 (VD3), a known CYP enzyme inducer, induces functional maturation of iPSC-derived enterocyte-like cells (iPSC-ent). Here, we identified a Notch activator and CYP modulator valproic acid (VPA), as a promotor for the maturation of iPSC-ent. We performed bulk RNA sequencing to investigate the changes in gene expression during the differentiation and maturation periods of these cells. VPA potentiated gene expression of key enterocyte markers ALPI, FABP2, and transporters such as SULT1B1. RNA-sequencing analysis further elucidated several function-related pathways involved in fatty acid metabolism, significantly upregulated by VPA when combined with VD3. Particularly, VPA treatment in tandem with VD3 significantly upregulated key regulators of enterohepatic circulation, such as FGF19, apical bile acid transporter SLCO1A2 and basolateral bile acid transporters SLC51A and SLC51B. To sum up, we could ascertain the genetic profile of our iPSC-ent cells to be specialized toward fatty acid absorption and metabolism instead of transporting other nutrients, such as amino acids, with the addition of VD3 and VPA in tandem. Together, these results suggest the possible application of VPA-treated iPSC-ent for modelling enterohepatic circulation.
Collapse
Affiliation(s)
- Sylvia Leo
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Yusuke Kato
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Yumeng Wu
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Mutsumi Yokota
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Masato Koike
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shiro Yui
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Kiichiro Tsuchiya
- Department of Gastroenterology, Institute of Medicine, University of Tsukuba, Tennoudai, Tsukuba, Ibaraki, Japan
| | - Nobuaki Shiraki
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Shoen Kume
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| |
Collapse
|
16
|
Zhang J, Jia Q, Li Y, He J. The Function of Xenobiotic Receptors in Metabolic Diseases. Drug Metab Dispos 2023; 51:237-248. [PMID: 36414407 DOI: 10.1124/dmd.122.000862] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 09/01/2022] [Accepted: 11/09/2022] [Indexed: 11/23/2022] Open
Abstract
Metabolic diseases are a series of metabolic disorders that include obesity, diabetes, insulin resistance, hypertension, and hyperlipidemia. The increased prevalence of metabolic diseases has resulted in higher mortality and mobility rates over the past decades, and this has led to extensive research focusing on the underlying mechanisms. Xenobiotic receptors (XRs) are a series of xenobiotic-sensing nuclear receptors that regulate their downstream target genes expression, thus defending the body from xenobiotic and endotoxin attacks. XR activation is associated with the development of a number of metabolic diseases such as obesity, nonalcoholic fatty liver disease, type 2 diabetes, and cardiovascular diseases, thus suggesting an important role for XRs in modulating metabolic diseases. However, the regulatory mechanism of XRs in the context of metabolic disorders under different nutrient conditions is complex and remains controversial. This review summarizes the effects of XRs on different metabolic components (cholesterol, lipids, glucose, and bile acids) in different tissues during metabolic diseases. As chronic inflammation plays a critical role in the initiation and progression of metabolic diseases, we also discuss the impact of XRs on inflammation to comprehensively recognize the role of XRs in metabolic diseases. This will provide new ideas for treating metabolic diseases by targeting XRs. SIGNIFICANCE STATEMENT: This review outlines the current understanding of xenobiotic receptors on nutrient metabolism and inflammation during metabolic diseases. This work also highlights the gaps in this field, which can be used to direct the future investigations on metabolic diseases treatment by targeting xenobiotic receptors.
Collapse
Affiliation(s)
- Jinhang Zhang
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy (J.Z., Y.L., J.H.) and Department of Endocrinology and Metabolism (Q.J.), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qingyi Jia
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy (J.Z., Y.L., J.H.) and Department of Endocrinology and Metabolism (Q.J.), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yanping Li
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy (J.Z., Y.L., J.H.) and Department of Endocrinology and Metabolism (Q.J.), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jinhan He
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy (J.Z., Y.L., J.H.) and Department of Endocrinology and Metabolism (Q.J.), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
17
|
Mhaimeed N, Mhaimeed N, Shad MU. Pharmacokinetic mechanisms underlying clinical cases of valproic acid autoinduction: A review. JOURNAL OF AFFECTIVE DISORDERS REPORTS 2022. [DOI: 10.1016/j.jadr.2022.100426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
18
|
Effects of Age, Sex, and Comedication on the Plasma Concentrations of Olanzapine in Chinese Patients With Schizophrenia Based on Therapeutic Drug Monitoring Data. J Clin Psychopharmacol 2022; 42:552-559. [PMID: 36286707 DOI: 10.1097/jcp.0000000000001618] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Olanzapine (OLA) is an atypical second-generation antipsychotic that exhibits significant pharmacokinetic variability. We retrospectively investigated the effects of age, sex, and specific comedications on OLA pharmacokinetics in Chinese patients with schizophrenia. METHODS Data on sex, age, and OLA dosage and steady-state plasma concentrations of 386 patients with schizophrenia (who have received OLA or a comedication of OLA with a psychotherapeutic drug) were collected and analyzed. The combined effects of dosage, age, sex, and comedication on OLA plasma levels were assessed via multiple linear regression analyses. RESULTS A daily dose of OLA was positively correlated with the drug's plasma concentrations. Overall, the OLA plasma concentrations and concentration-to-dose ratio (C/D) of the studied patients varied by 53.6- and 64.1-fold, achieving median values of 42.7 ng/mL and 2.73 (ng/mL)/(mg/d), respectively. Furthermore, a 1.27-fold higher estimated C/D in patients 60 years or older than in those younger than 60 years was identified. Female patients demonstrated a 33.6% higher C/D than in male patients. When coadministered with mood stabilizers (valproate or lithium), the median OLA C/D was 24.1% to 26.1% lower than that of OLA monotherapy. Interestingly, the OLA plasma concentration and C/D were not significantly affected by a comedication with aripiprazole, haloperidol, amisulpride, risperidone, clozapine, ziprasidone, citalopram, or buspirone. CONCLUSIONS The administered drug's dose was identified as an important determinant of the achieved OLA plasma concentration, with a positive correlation. The patients' sex and valproate (or lithium) comedication can significantly affect the C/D of OLA. Therapeutic drug monitoring should be routinely applied in cases of OLA-receiving patients with schizophrenia.
Collapse
|
19
|
Gao P, Wang J, Zhang L, Wang H, Hu Y, Ni Y, Huang L, Zhu Z, Luo F. The impact of ibuprofen on valproic acid plasma concentration in pediatric patients. Xenobiotica 2022; 52:535-540. [PMID: 35997547 DOI: 10.1080/00498254.2022.2117109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
The combination of valproic acid (VPA) and ibuprofen is common in children with epilepsy. Three case reports investigated that ibuprofen might decrease plasma concentration of VPA, however, no cohort study was published to evaluate the interaction of ibuprofen on VPA plasma concentration in pediatric patients.Data from patients with measured VPA trough concentrations (C0) were retrospectively collected in a Chinese teaching and tertiary Children's Hospital from January 2017 to June 2019. The samples measured within 6 weeks of the last ibuprofen administration were considered as ibuprofen combination samples. Patients with paired samples before and after ibuprofen administration were additionally analyzed. The effects of ibuprofen on the VPA trough concentration to dose (C0/D) ratio were investigated. The proportion of samples with achieved target concentrations of VPA (50-100 mg/L) and the corresponding required dosage were compared. Moreover, subgroup analysis according to the interval between the last ibuprofen dosage and C0 measurement was performed.A total of 616 samples from 434 patients, of whom 16 had paired samples, were included. VPA C0/D decreased when ibuprofen was administered by 7.5% and 30.6% of the total samples and paired samples, respectively. The interaction was significant within 1 week of the last ibuprofen dose. No significant differences were observed in the proportion of target concentration achieved and VPA dose requirement when ibuprofen was combined.A moderate effect of ibuprofen on VPA C0/D was observed within 1 week of ibuprofen administration; the target concentration and required doses of VPA were comparable.
Collapse
Affiliation(s)
- Peng Gao
- Department of Pharmacy, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Junyan Wang
- Department of Pharmacy, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Liwen Zhang
- Department of Pharmacy, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Huijuan Wang
- Department of Pharmacy, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Yan Hu
- Department of Pharmacy, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Yinghua Ni
- Department of Pharmacy, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Lingfei Huang
- Department of Pharmacy, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Zhengyi Zhu
- Department of Pharmacy, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Fang Luo
- Department of Pharmacy, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China.,Zhejiang Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer, Zhejiang Cancer Hospital, Hangzhou 310022, China
| |
Collapse
|
20
|
Wang J, Fu J, Sun W, Yin X, Lv K, Zhang J. Functionalized PEG-PLA nanoparticles for brain targeted delivery of ketoconazole contribute to pregnane X receptor overexpressing in drug-resistant epilepsy. Epilepsy Res 2022; 186:107000. [PMID: 36037622 DOI: 10.1016/j.eplepsyres.2022.107000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 07/24/2022] [Accepted: 08/11/2022] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To develop a functionalized PEG-PLA nanoparticle system containing ketoconazole (KCZ) to overcome the overactivity of pregnane X receptor (PXR) for the treatment of drug-resistant epilepsy (DRE). SIGNIFICANCE KCZ was developed as a therapy strategy for DRE limited by its lethal hepatotoxicity and minute brain concentration. KCZ-incorporated nanoparticles modified with angiopep-2 (NPs/KCZ) could reduce adverse effects of KCZ and achieve epileptic foci-targeted drug delivery. METHODS NPs/KCZ was prepared by thin-film hydration method and characterized in vitro and in vivo. The efficacy evaluation of NPs/KCZ was evaluated in a kainic acid (KA)-induced mice model of epilepsy with carbamazepine (CBZ) treatment. RESULTS The mean particle size and Zeta potential of NPs/KCZ were 17.84 ± 0.33 nm and - 2.28 ± 0.12 mV, respectively. The drug-loading (DL%) of KCZ in nanoparticles was 8.96 ± 0.12 % and the entrapment efficiency (EE%) was 98.56 ± 0.02 %. The critical value of critical micelle concentration was 10-3.3 mg/ml. No obvious cytotoxicity was found in vitro. The behavioral and electrographic seizure activities were obviously attenuated in NPs/KCZ+CBZ group. The CBZ concentration of brain tissues in mice treated with NPs/KCZ+CBZ was significantly increased than those treated with CBZ alone (P = 0.0028). A significantly decreased expression level of PXR and its downstream proteins was observed in NPs/KCZ+CBZ group compared with that in the control and CBZ group (All P < 0.05). CONCLUSION Our results showed that NPs/KCZ achieved the epileptic foci-targeted delivery of KCZ and ameliorated the efficacy of CBZ on DRE by attenuating the overactivity of PXR.
Collapse
Affiliation(s)
- Jianhong Wang
- Department of Neurology, Huashan Hospital, Fudan University, No.12 Wulumuqi Road (Middle), Shanghai 200040, China
| | - Junyan Fu
- Department of Radiology, Huashan Hospital, Fudan University, No.12 Wulumuqi Road (Middle), Shanghai 200040, China
| | - Wanbing Sun
- Department of Neurology, Huashan Hospital, Fudan University, No.12 Wulumuqi Road (Middle), Shanghai 200040, China
| | - Xuyang Yin
- Department of Radiology, Huashan Hospital, Fudan University, No.12 Wulumuqi Road (Middle), Shanghai 200040, China
| | - Kun Lv
- Department of Radiology, Huashan Hospital, Fudan University, No.12 Wulumuqi Road (Middle), Shanghai 200040, China
| | - Jun Zhang
- Department of Radiology, Huashan Hospital, Fudan University, No.12 Wulumuqi Road (Middle), Shanghai 200040, China; National Center for Neurological Disorders, No.12 Wulumuqi Road (Middle), Shanghai 200040, China.
| |
Collapse
|
21
|
Sangüesa E, Cirujeda C, Concha J, Padilla PP, García CB, Ribate MP. Pharmacokinetic interactions between clozapine and valproic acid in patients with treatment-resistant schizophrenia: Does UGT polymorphism affect these drug interactions? Chem Biol Interact 2022; 364:110042. [PMID: 35853541 DOI: 10.1016/j.cbi.2022.110042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/13/2022] [Indexed: 11/29/2022]
Abstract
The combination of valproic acid (VPA) and clozapine (CLZ) is regularly prescribed for augmentation therapy in treatment resistant schizophrenia. The VPA has been shown to reduce norclozapine (NCLZ) plasma levels, but the mechanism of this interaction remains unknown. The aim of this study is to examine the differences between patients treated with CLZ and patients treated with CLZ plus VPA. For it, various factors have been evaluated. The study was based on plasma samples from CLZ and CLZ plus VPA treated patients (n = 61) subjected to routine therapeutic drug monitoring considering clinical data, smoking status, daily dose of CLZ and VPA, concomitant medications, albumin, and renal and hepatic function. Genotyping of polymorphisms of CYP1A2, CYP3A4/5, CYP2C19, ABCB1, UGT2B10 and CYP2C19 were performed by real time PCR. CYP2D6 were genotyped using competitive allele-specific PCR and by a long PCR based method. Plasma CLZ and NCLZ concentrations were measured by Liquid Chromatography-Tandem masses (LC-MS/MS) and plasma VPA by Ultraviolet-Visible (UV-vis) spectrophotometric immunoassay. The patients presented adequate CLZ levels in relation to the dose. However, NCLZ levels were excessively low and the CLZ/NCLZ ratio very high. Patients with UGT2B10 GT (rs61750900) genotype showed lower NCLZ plasma levels and C/D NCLZ, and higher CLZ/NCLZ ratio versus patients with UGT2B10 GG genotype. VPA, smoking, the presence of UGT2B10 GT genotype and having low albumin levels indicate that the CLZ/NCLZ ratio is affected, mostly coinciding with decreased NCLZ levels and possibly with an increased risk of neutropenia.
Collapse
Affiliation(s)
- Estela Sangüesa
- Faculty of Health Sciences, Universidad San Jorge, Villanueva de Gállego- Zaragoza, Spain
| | - Christine Cirujeda
- Centro Neuropsiquiátrico Nuestra Señora del Carmen, Hermanas Hospitalarias, Zaragoza, Spain
| | - Julia Concha
- Faculty of Health Sciences, Universidad San Jorge, Villanueva de Gállego- Zaragoza, Spain
| | - Pedro Pablo Padilla
- Centro Neuropsiquiátrico Nuestra Señora del Carmen, Hermanas Hospitalarias, Zaragoza, Spain
| | - Cristina Belén García
- Faculty of Health Sciences, Universidad San Jorge, Villanueva de Gállego- Zaragoza, Spain.
| | - María Pilar Ribate
- Faculty of Health Sciences, Universidad San Jorge, Villanueva de Gállego- Zaragoza, Spain
| |
Collapse
|
22
|
Prasanna P, Joshi T, Pant M, Pundir H, Chandra S. Evaluation of the inhibitory potential of Valproic acid against histone deacetylase of Leishmania donovani and computational studies of Valproic acid derivatives. J Biomol Struct Dyn 2022:1-18. [PMID: 35706132 DOI: 10.1080/07391102.2022.2087103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Valproic acid (VA) is a proven inhibitor of human histone deacetylases (HDACs). The homogenous HDAC has been associated with all major human parasitic pathogens and hence, it has been considered an attractive drug target for anti-leishmanial therapy. To assist in drug design endeavors for HDACs, an in-vitro study has been presented to investigate the VA inhibition on Leishmania donovani HDAC (LdHDAC). The regression analysis of VA by 24 hrs viability assay confirmed its activity against LdHDAC. Moreover, the toxicity of VA is also well documented. Thus, the in-silico experiments were also conducted to screen the non-toxic VA derivatives as anti-leishmanial drug candidates having potential as inhibitors of LdHDAC. For in-silico study, the 3D structure of target LdHDAC was developed by homology modeling. Based on their in-silico activity, we shortlisted 13 VA derivatives having maximum affinity for LdHDAC and identified four potential derivatives that can specifically bind to this protein. After that, these ligands were subjected to molecular dynamics simulation. These derivatives may be effective against L. donovani promastigotes since they followed Lipinski's RO5 and were non-toxic. Thus, screened derivatives can be considered as lead ligands for targeting LdHDAC and may be used as possible drug candidates to treat leishmaniasis and overcome the limitation of anti-leishmanial drugs. This is the first report of antileishmanial potential of VA and its derivatives targeting LdHDAC. Hence, the current investigation presents a search for novel target specific drugs to aid the anti-leishmanial drug development. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Pragya Prasanna
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, Vaishali, India
| | - Tanuja Joshi
- Computational Biology & Biotechnology Laboratory, Department of Botany, Soban Singh Jeena University, Almora, Uttarakhand, India
| | - Manish Pant
- Department of Post-Harvest Process and Food Engineering, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - Hemlata Pundir
- Computational Biology & Biotechnology Laboratory, Department of Botany, Soban Singh Jeena University, Almora, Uttarakhand, India
| | - Subhash Chandra
- Computational Biology & Biotechnology Laboratory, Department of Botany, Soban Singh Jeena University, Almora, Uttarakhand, India
| |
Collapse
|
23
|
Zang YN, Guo W, Dong F, Li AN, de Leon J, Ruan CJ. Published population pharmacokinetic models of valproic acid in adult patients: a systematic review and external validation in a Chinese sample of inpatients with bipolar disorder. Expert Rev Clin Pharmacol 2022; 15:621-635. [PMID: 35536685 DOI: 10.1080/17512433.2022.2075849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND This study reviewed all published valproic acid (VPA) population pharmacokinetic (PPK) models in adult patients and assessed them using external validation methods to determine predictive performance. METHODS Thirteen published PPK models (labeled with letters A to M) not restricted to children were identified in PubMed, Embase, and Web of Science databases. They were evaluated in a sample totaling 411 serum concentrations from 146 adult inpatients diagnosed with bipolar disorder in a Chinese hospital. Serum concentrations of VPA were analyzed by validated ultra-performance liquid chromatography-tandem mass spectrometry. Performance was assessed by 4 tests (prediction-based diagnostics, visual predictive checks, normalized prediction distribution error, and Bayesian forecasting). RESULTS Models K and L, developed in large samples of Chinese and Thai patients, showed good performance in our Chinese dataset. Models H and J demonstrated good performance in Tests 2 and 3 of the 4 tests, respectively. Another 7 models exhibited intermediate performance. The models with the worst performance, F and M, could not be improved by Bayesian forecasting. CONCLUSION In our validation study the most important factors contributing to good performance were absence of children, Asian ethnicity, one-compartment models and inclusion of body weight and VPA dose in previously published models.
Collapse
Affiliation(s)
- Yan-Nan Zang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Wei Guo
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Fang Dong
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - An-Ning Li
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Jose de Leon
- Mental Health Research Center at Eastern State Hospital, 1350 Bull Lea Road, Lexington, KY 40511, USA.,Biomedical Research Centre in Mental Health Net (CIBERSAM), Santiago Apóstol Hospital, University of the Basque Country, Vitoria, Spain
| | - Can-Jun Ruan
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| |
Collapse
|
24
|
Alarcan J, de Sousa G, Katsanou ES, Spyropoulou A, Batakis P, Machera K, Rahmani R, Lampen A, Braeuning A, Lichtenstein D. Investigating the in vitro steatotic mixture effects of similarly and dissimilarly acting test compounds using an adverse outcome pathway-based approach. Arch Toxicol 2021; 96:211-229. [PMID: 34778935 PMCID: PMC8748329 DOI: 10.1007/s00204-021-03182-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/21/2021] [Indexed: 11/29/2022]
Abstract
Within the EuroMix project, we have previously developed an adverse outcome pathway (AOP)-based in vitro assay toolbox to investigate the combined effects of liver steatosis-inducing compounds in human HepaRG hepatocarcinoma cells. In this study, we applied the toolbox to further investigate mixture effects of combinations, featuring either similarly acting or dissimilarly acting substances. The valproic acid structural analogs 2-propylheptanoic acid (PHP) and 2-propylhexanoic acid (PHX) were chosen for establishing mixtures of similarly acting substances, while a combination with the pesticidal active substance clothianidin (CTD) was chosen for establishing mixtures of dissimilarly acting compounds. We first determined relative potency factors (RPFs) for each compound based on triglyceride accumulation results. Thereafter, equipotent mixtures were tested for nuclear receptor activation in transfected HepG2 cells, while gene expression and triglyceride accumulation were investigated in HepaRG cells, following the proposed AOP for liver steatosis. Dose addition was observed for all combinations and endpoints tested, indicating the validity of the additivity assumption also in the case of the tested mixtures of dissimilarly acting substances. Gene expression results indicate that the existing steatosis AOP can still be refined with respect to the early key event (KE) of gene expression, in order to reflect the diversity of molecular mechanisms underlying the adverse outcome.
Collapse
Affiliation(s)
- Jimmy Alarcan
- Department Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Georges de Sousa
- Institut Sophia Agrobiotech, Université Côte d'Azur-INRAE-CNRS, 06903, Sophia Antipolis, France
| | | | | | | | | | - Roger Rahmani
- Institut Sophia Agrobiotech, Université Côte d'Azur-INRAE-CNRS, 06903, Sophia Antipolis, France
| | - Alfonso Lampen
- Department Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Albert Braeuning
- Department Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany.
| | - Dajana Lichtenstein
- Department Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| |
Collapse
|
25
|
High Pregnane X Receptor (PXR) Expression Is Correlated with Poor Prognosis in Invasive Breast Carcinoma. Diagnostics (Basel) 2021; 11:diagnostics11111946. [PMID: 34829293 PMCID: PMC8624096 DOI: 10.3390/diagnostics11111946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/12/2021] [Accepted: 10/15/2021] [Indexed: 11/16/2022] Open
Abstract
Pregnane X Receptor (PXR) is involved in human cancer, either by directly affecting carcinogenesis or by inducing drug-drug interactions and chemotherapy resistance. The clinical significance of PXR expression in invasive breast carcinoma was evaluated in the present study. PXR protein expression was assessed immunohistochemically on formalin fixed paraffin-embedded breast invasive carcinoma tissue sections, obtained from 148 patients, and was correlated with clinicopathological parameters, molecular phenotypes, tumor cells' proliferative capacity, and overall disease-free patients' survival. Additionally, the expression of PXR was examined on human breast carcinoma cell lines of different histological grade, hormonal status, and metastatic potential. PXR positivity was noted in 79 (53.4%) and high PXR expression in 48 (32.4%), out of 148 breast carcinoma cases. High PXR expression was positively associated with nuclear grade (p = 0.0112) and histological grade of differentiation (p = 0.0305), as well as with tumor cells' proliferative capacity (p = 0.0051), and negatively with luminal A subtype (p = 0.0295). Associations between high PXR expression, estrogen, and progesterone receptor negative status were also recorded (p = 0.0314 and p = 0.0208, respectively). High PXR expression was associated with shorter overall patients' survival times (log-rank test, p = 0.0009). In multivariate analysis, high PXR expression was identified as an independent prognostic factor of overall patients' survival (Cox-regression analysis, p = 0.0082). PXR expression alterations were also noted in breast cancer cell lines of different hormonal status. The present data supported evidence that PXR was related to a more aggressive invasive breast carcinoma phenotype, being a strong and independent poor prognosticator.
Collapse
|
26
|
Bennett S, Shad MU. Valproic acid autoinduction: a case-based review. Int J Bipolar Disord 2021; 9:27. [PMID: 34468892 PMCID: PMC8408294 DOI: 10.1186/s40345-021-00232-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 07/29/2021] [Indexed: 11/10/2022] Open
Abstract
Although valproic acid (VPA) induces the metabolism of multiple other drugs, the clinical reports of VPA autoinduction are rare. A comprehensive literature search yielded only one published case series, which provided the rationale to conduct a review of the published cases along with a new case of VPA autoinduction. Although there may be myriad of reasons for lack of published cases of VPA autoinduction, potential underreporting may be one of the core reasons. Lack of understanding into the highly complex metabolism of VPA may also make it difficult to recognize and report VPA autoinduction. However, it is important to mention that in addition to autoinduction increased elimination of VPA may be mediated by several pharmacokinetic (PK) factors, such as drug interactions, genetic polymorphisms of metabolic enzymes, and protein displacement reactions. As VPA is metabolized by multiple metabolic pathways, the risk for drug interactions is relatively high. There is also a growing evidence for high genetic inducibility of some enzymes involved in VPA metabolism. Protein displacement reactions with VPA increase the biologically active and readily metabolizable free fraction and pose a diagnostic challenge as they are usually not requested by most clinicians. Thus, monitoring of free fraction with total VPA levels may prevent clinically serious outcomes and optimize VPA treatment in clinically challenging patients. This case-based review compares the clinical data from three published cases and a new case of VPA autoinduction to enhance clinicians' awareness of this relatively rare but clinically relevant phenomenon along with a discussion of potential underlying mechanisms.
Collapse
Affiliation(s)
| | - Mujeeb U Shad
- University of Nevada Las Vegas, Las Vegas, NV, USA. .,Touro University Nevada, Las Vegas, NV, USA. .,Valley Health System, Las Vegas, NV, USA.
| |
Collapse
|
27
|
A Retrospective Analysis of Steady-State Olanzapine Concentrations in Chinese Patients Using Therapeutic Drug Monitoring: Effects of Valproate and Other Factors. Ther Drug Monit 2021; 42:636-642. [PMID: 32039940 DOI: 10.1097/ftd.0000000000000738] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND The objective of this study was to investigate the serum concentrations of olanzapine in relation to age, sex, and other factors in Chinese patients aged between 10 and 90 years. METHODS Data for 884 olanzapine patients, deposited between 2016 and 2017, were retrieved from the therapeutic drug monitoring database of the Affiliated Brain Hospital of Guangzhou Medical University. The effects of covariates on serum olanzapine concentration, dose-normalized concentration (C/D ratio), and normalized concentration (C/D/weight) were investigated. RESULTS Generally, male patients had lower olanzapine concentration, C/D ratio, and C/D/weight than female patients (P < 0.001). Smoking and drinking reduced olanzapine concentration, C/D ratio, and C/D/weight (P < 0.001). Coadministration with valproate decreased olanzapine concentration, C/D ratio, and C/D/weight by about 16%, 30%, and 40%, respectively (P < 0.001). Patients younger than 60 years had higher olanzapine concentrations (P < 0.05) but lower C/D ratios and C/D/weight (P < 0.001) than patients older than 60 years. Age was correlated with olanzapine concentration (r = -0.082, P < 0.05), C/D ratio (r = 0.196, P < 0.001), and C/D/weight (r = 0.169, P < 0.001). Sample timing after dose and diagnostic factors also contributed to the olanzapine concentrations. Multiple linear regression analysis revealed significant influences of dosage, age, sex, valproate comedication, smoking, postdose interval, and schizophrenia (vs bipolar affective disorders) on serum olanzapine concentrations. CONCLUSIONS The metabolism of olanzapine may be altered by several factors. Patients characterized with a combination of factors may benefit from therapeutic drug monitoring for the adjustment of olanzapine dose to minimize adverse reactions.
Collapse
|
28
|
Calcagno A, Cusato J, Ferrara M, De Nicolò A, Lazzaro A, Manca A, D'Avolio A, Di Perri G, Bonora S. Antiretroviral concentrations in the presence and absence of valproic acid. J Antimicrob Chemother 2021; 75:1969-1971. [PMID: 32211890 DOI: 10.1093/jac/dkaa094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/17/2020] [Accepted: 02/19/2020] [Indexed: 02/04/2023] Open
Abstract
OBJECTIVES An unexpected drug-drug interaction has been recently reported between dolutegravir, an HIV integrase inhibitor, and valproic acid. Despite there being several potential underlying mechanisms, plasma protein displacement has been suggested. The aim of this study was to assess plasma concentrations of several antiretrovirals when administered with or without valproic acid. METHODS We performed a therapeutic drug monitoring registry analysis and identified patients concomitantly taking antiretrovirals and valproic acid and without clinical affecting conditions or interacting drugs. RESULTS One hundred and thirty-four patients were identified. Median (IQR) age and BMI were 49.7 years (45-56) and 23.4 kg/m2 (20.8-26.3) and 78 were male (58.2%). Despite small groups, we observed no major effect on antiretroviral exposure, even when considering highly protein-bound compounds (such as etravirine), with the exception of dolutegravir trough concentrations [median (IQR) = 132 ng/mL (62-227) in individuals on valproic acid versus 760 ng/mL (333-1407) in those not receiving valproic acid]. CONCLUSIONS Valproic acid does not have a major effect on antiretrovirals other than dolutegravir. The mechanism of this unexpected drug-drug interaction may be the combination of protein displacement, reduced absorption and CYP3A4 induction.
Collapse
Affiliation(s)
- A Calcagno
- Unit of Infectious Diseases, Department of Medical Sciences, University of Torino, Torino, Italy
| | - J Cusato
- Unit of Infectious Diseases, Department of Medical Sciences, University of Torino, Torino, Italy
| | - M Ferrara
- Unit of Infectious Diseases, Department of Medical Sciences, University of Torino, Torino, Italy
| | - A De Nicolò
- Unit of Infectious Diseases, Department of Medical Sciences, University of Torino, Torino, Italy
| | - A Lazzaro
- Unit of Infectious Diseases, Department of Medical Sciences, University of Torino, Torino, Italy
| | - A Manca
- Unit of Infectious Diseases, Department of Medical Sciences, University of Torino, Torino, Italy
| | - A D'Avolio
- Unit of Infectious Diseases, Department of Medical Sciences, University of Torino, Torino, Italy
| | - G Di Perri
- Unit of Infectious Diseases, Department of Medical Sciences, University of Torino, Torino, Italy
| | - S Bonora
- Unit of Infectious Diseases, Department of Medical Sciences, University of Torino, Torino, Italy
| |
Collapse
|
29
|
Martinec O, Biel C, de Graaf IAM, Huliciak M, de Jong KP, Staud F, Cecka F, Olinga P, Vokral I, Cerveny L. Rifampicin Induces Gene, Protein, and Activity of P-Glycoprotein (ABCB1) in Human Precision-Cut Intestinal Slices. Front Pharmacol 2021; 12:684156. [PMID: 34177592 PMCID: PMC8220149 DOI: 10.3389/fphar.2021.684156] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/18/2021] [Indexed: 12/20/2022] Open
Abstract
P-glycoprotein (ABCB1), an ATP-binding cassette efflux transporter, limits intestinal absorption of its substrates and is a common site of drug–drug interactions. Drug-mediated induction of intestinal ABCB1 is a clinically relevant phenomenon associated with significantly decreased drug bioavailability. Currently, there are no well-established human models for evaluating its induction, so drug regulatory authorities provide no recommendations for in vitro/ex vivo testing drugs’ ABCB1-inducing activity. Human precision-cut intestinal slices (hPCISs) contain cells in their natural environment and express physiological levels of nuclear factors required for ABCB1 induction. We found that hPCISs incubated in William’s Medium E for 48 h maintained intact morphology, ATP content, and ABCB1 efflux activity. Here, we asked whether rifampicin (a model ligand of pregnane X receptor, PXR), at 30 μM, induces functional expression of ABCB1 in hPCISs over 24- and 48-h incubation (the time to allow complete induction to occur). Rifampicin significantly increased gene expression, protein levels, and efflux activity of ABCB1. Moreover, we described dynamic changes in ABCB1 transcript levels in hPCISs over 48 h incubation. We also observed that peaks of induction are achieved among donors at different times, and the extent of ABCB1 gene induction is proportional to PXR mRNA levels in the intestine. In conclusion, we showed that hPCISs incubated in conditions comparable to those used for inhibition studies can be used to evaluate drugs’ ABCB1-inducing potency in the human intestine. Thus, hPCISs may be valuable experimental tools that can be prospectively used in complex experimental evaluation of drug–drug interactions.
Collapse
Affiliation(s)
- Ondrej Martinec
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czechia.,Department of Medical Biochemistry, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czechia
| | - Carin Biel
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Science and Engineering, Groningen Research Institute of Pharmacy, Groningen, Netherlands
| | - Inge A M de Graaf
- Graduate School of Science, Faculty of Science and Engineering, University of Groningen, Groningen, Netherlands
| | - Martin Huliciak
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czechia
| | - Koert P de Jong
- Department of Hepato-Pancreato-Biliary Surgery and Liver Transplantation, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Frantisek Staud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czechia
| | - Filip Cecka
- Department of Surgery, University Hospital Hradec Kralove, Hradec Kralove, Czechia
| | - Peter Olinga
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Science and Engineering, Groningen Research Institute of Pharmacy, Groningen, Netherlands
| | - Ivan Vokral
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czechia
| | - Lukas Cerveny
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czechia
| |
Collapse
|
30
|
Yan L, Yang K, Wang S, Xie Y, Zhang L, Tian X. PXR-mediated expression of FABP4 promotes valproate-induced lipid accumulation in HepG2 cells. Toxicol Lett 2021; 346:47-56. [PMID: 33901630 DOI: 10.1016/j.toxlet.2021.04.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/15/2021] [Accepted: 04/21/2021] [Indexed: 01/13/2023]
Abstract
Valproate (valproic acid, VPA) is widely used in the therapy of epilepsy. However, adverse effect like hepatic steatosis has been reported in patients receiving VPA treatment. But whether nuclear receptor pregnane X receptor (PXR) and fatty acid binding protein 4 (FABP4) are involved in the regulation of VPA-induced steatosis or not is still unknown. In this study, the roles of PXR and FABP4 in VPA-induced lipid accumulation in HepG2 cells were investigated. We found that the expression of PXR and FABP4 were increased by VPA in a dose-dependent manner. Knockdown of PXR not only reduced lipid accumulation but also impaired the induction of FABP4 by VPA. While overexpression of PXR enhanced both lipid accumulation and FABP4 expression. Moreover, exogenous expression of FABP4 increased triglyceride levels and enhanced lipid accumulation caused by VPA. Taken together, these results suggest that PXR-mediated expression of FABP4 is responsible for lipid accumulation caused by VPA.
Collapse
Affiliation(s)
- Liang Yan
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China; Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, 450052, China.
| | - Kun Yang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Suhua Wang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China; Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, 450052, China
| | - Yinfei Xie
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Lirong Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Xin Tian
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China; Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
31
|
Chen ML, Huang X, Wang H, Hegner C, Liu Y, Shang J, Eliason A, Diao H, Park H, Frey B, Wang G, Mosure SA, Solt LA, Kojetin DJ, Rodriguez-Palacios A, Schady DA, Weaver CT, Pipkin ME, Moore DD, Sundrud MS. CAR directs T cell adaptation to bile acids in the small intestine. Nature 2021; 593:147-151. [PMID: 33828301 DOI: 10.1038/s41586-021-03421-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 03/04/2021] [Indexed: 12/11/2022]
Abstract
Bile acids are lipid-emulsifying metabolites synthesized in hepatocytes and maintained in vivo through enterohepatic circulation between the liver and small intestine1. As detergents, bile acids can cause toxicity and inflammation in enterohepatic tissues2. Nuclear receptors maintain bile acid homeostasis in hepatocytes and enterocytes3, but it is unclear how mucosal immune cells tolerate high concentrations of bile acids in the small intestine lamina propria (siLP). CD4+ T effector (Teff) cells upregulate expression of the xenobiotic transporter MDR1 (encoded by Abcb1a) in the siLP to prevent bile acid toxicity and suppress Crohn's disease-like small bowel inflammation4. Here we identify the nuclear xenobiotic receptor CAR (encoded by Nr1i3) as a regulator of MDR1 expression in T cells that can safeguard against bile acid toxicity and inflammation in the mouse small intestine. Activation of CAR induced large-scale transcriptional reprogramming in Teff cells that infiltrated the siLP, but not the colon. CAR induced the expression of not only detoxifying enzymes and transporters in siLP Teff cells, as in hepatocytes, but also the key anti-inflammatory cytokine IL-10. Accordingly, CAR deficiency in T cells exacerbated bile acid-driven ileitis in T cell-reconstituted Rag1-/- or Rag2-/- mice, whereas pharmacological activation of CAR suppressed it. These data suggest that CAR acts locally in T cells that infiltrate the small intestine to detoxify bile acids and resolve inflammation. Activation of this program offers an unexpected strategy to treat small bowel Crohn's disease and defines lymphocyte sub-specialization in the small intestine.
Collapse
Affiliation(s)
- Mei Lan Chen
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, USA.,The Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, Jupiter, FL, USA
| | - Xiangsheng Huang
- Section of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Hongtao Wang
- Section of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Courtney Hegner
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, USA.,The Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, Jupiter, FL, USA
| | - Yujin Liu
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, USA
| | - Jinsai Shang
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, FL, USA.,Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Amber Eliason
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, USA
| | - Huitian Diao
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, USA.,The Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, Jupiter, FL, USA
| | - HaJeung Park
- X-ray Crystallography Core Facility, The Scripps Research Institute, Jupiter, FL, USA
| | - Blake Frey
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Guohui Wang
- Section of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Sarah A Mosure
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, USA.,The Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, Jupiter, FL, USA.,Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, FL, USA.,Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, USA
| | - Laura A Solt
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, USA.,The Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, Jupiter, FL, USA.,Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, USA
| | - Douglas J Kojetin
- The Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, Jupiter, FL, USA.,Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, FL, USA.,Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, USA
| | - Alex Rodriguez-Palacios
- Division of Gastroenterology and Liver Disease, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.,University Hospitals Research and Education Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Deborah A Schady
- Department of Pathology and Immunology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Casey T Weaver
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Matthew E Pipkin
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, USA.,The Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, Jupiter, FL, USA
| | - David D Moore
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA. .,Department of Nutritional Sciences and Toxicology, University of California Berkeley, Berkeley, CA, USA.
| | - Mark S Sundrud
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, USA. .,The Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, Jupiter, FL, USA.
| |
Collapse
|
32
|
Weiss J, Bajraktari-Sylejmani G, Haefeli WE. Low risk of the TMPRSS2 inhibitor camostat mesylate and its metabolite GBPA to act as perpetrators of drug-drug interactions. Chem Biol Interact 2021; 338:109428. [PMID: 33647240 PMCID: PMC9748837 DOI: 10.1016/j.cbi.2021.109428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 02/23/2021] [Indexed: 01/16/2023]
Abstract
Camostat mesylate, a potent inhibitor of the human transmembrane protease, serine 2 (TMPRSS2), is currently under investigation for its effectiveness in COVID-19 patients. For its safe application, the risks of camostat mesylate to induce pharmacokinetic drug-drug interactions with co-administered drugs should be known. We therefore tested in vitro the potential inhibition of important efflux (P-glycoprotein (P-gp, ABCB1), breast cancer resistance protein (BCRP, ABCG2)), and uptake transporters (organic anion transporting polypeptides OATP1B1, OATP1B3, OATP2B1) by camostat mesylate and its active metabolite 4-(4-guanidinobenzoyloxy)phenylacetic acid (GBPA). Transporter inhibition was evaluated using fluorescent probe substrates in transporter over-expressing cell lines and compared to the respective parental cell lines. Moreover, possible mRNA induction of pharmacokinetically relevant genes regulated by the nuclear pregnane X receptor (PXR) and aryl hydrocarbon receptor (AhR) was analysed in LS180 cells by quantitative real-time PCR. The results of our study for the first time demonstrated that camostat mesylate and GBPA do not relevantly inhibit P-gp, BCRP, OATP1B1 or OATP1B3. Only OATP2B1 was profoundly inhibited by GBPA with an IC50 of 11 μM. Induction experiments in LS180 cells excluded induction of PXR-regulated genes such as cytochrome P450 3A4 (CYP3A4) and ABCB1 and AhR-regulated genes such as CYP1A1 and CYP1A2 by camostat mesylate and GBPA. Together with the summary of product characteristics of camostat mesylate indicating no inhibition of CYP1A2, 2C9, 2C19, 2D6, and 3A4 in vitro, our data suggest a low potential of camostat mesylate to act as a perpetrator in pharmacokinetic drug-drug interactions. Only inhibition of OATP2B1 by GBPA warrants further investigation.
Collapse
Affiliation(s)
- Johanna Weiss
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.
| | - Gzona Bajraktari-Sylejmani
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Walter Emil Haefeli
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| |
Collapse
|
33
|
The Impact of Smoking, Sex, Infection, and Comedication Administration on Oral Olanzapine: A Population Pharmacokinetic Model in Chinese Psychiatric Patients. Eur J Drug Metab Pharmacokinet 2021; 46:353-371. [PMID: 33677821 DOI: 10.1007/s13318-021-00673-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND OBJECTIVE: Prior olanzapine population pharmacokinetic (PPK) models have focused on the effects of sex and smoking on olanzapine clearance. This PPK model in Chinese adult psychiatric patients also investigated the influence of comedications and co-occurrence of infections on olanzapine clearance, and explored how to personalize oral olanzapine dosage in the clinical setting. METHODS A total of 1546 serum concentrations from 354 patients were collected in this study. A one-compartment model with first-order absorption was employed to develop the PPK model using a nonlinear mixed-effects modeling approach. Covariates included demographic parameters, co-occurrence of infection and concomitant medications (including dangguilonghui tablets, a Chinese herbal medicine for constipation). Bootstrap validation (1000 runs) and external validation of 50 patients were employed to evaluate the final model. Simulations were performed to explore the personalization of olanzapine dosing after stratification by sex, smoking, and comedication with valproate. RESULTS Typical estimates for the absorption rate constant (Ka), apparent clearance (CL/F), and apparent distribution volume (V/F) were 0.30 h-1, 12.88 L/h, and 754.41 L, respectively. Olanzapine clearance was increased by the following variables: 1.23-fold by male sex, 1.23-fold by smoking, 1.23-fold by comedication with valproate, 1.16-fold by sertraline, and 2.01-fold by dangguilonghui tablets. Olanzapine clearance was decreased by the following variables: 0.75-fold by co-occurrence of infection, 0.70-fold by fluvoxamine, and 0.78-fold by perphenazine. The model evaluation indicated that the final model's performance was good, stable, and precise. CONCLUSION This study contributes to the personalization of oral olanzapine dosing, but further studies should be performed to verify the effects of infection and comedications, including valproate and dangguilonghui.
Collapse
|
34
|
Ho CJ, Chen SH, Lin CH, Lu YT, Hsu CW, Tsai MH. Non-vitamin K Oral Anticoagulants and Anti-seizure Medications: A Retrospective Cohort Study. Front Neurol 2021; 11:588053. [PMID: 33732201 PMCID: PMC7959808 DOI: 10.3389/fneur.2020.588053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 12/28/2020] [Indexed: 01/16/2023] Open
Abstract
Purpose: Concerns of drug-drug interactions (DDIs) between anti-seizure medications (ASMs) and non-vitamin K oral anticoagulants (NOACs) have emerged in recent case reports and guidelines. Theoretically, the induction of hepatic cytochrome P450 3A4 (CYP3A4) enzyme and permeability glycoprotein (P-GP) efflux transporter protein systems may reduce the effect of NOACs. We aimed to investigate whether such DDIs are clinically relevant in a real-world situation. Methods: We retrospectively reviewed 320 ischemic stroke patients with atrial fibrillation (Af) and grouped them according to different potential interactions with CYP3A4 and P-GP. Ischemic stroke events, transient ischemic attack (TIA) events, follow-up duration, baseline characteristics, concomitant ASMs, and stroke risk factors were collected. Statistical analysis included Kaplan-Meier survival curves and the log-rank test. Results: Overall, 320 ischemic stroke with Af patients received NOACs. Among the NOAC users, 75 also took ASMs, including 56 that have potential DDIs: 43 (13.4%) were categorized as potential CYP and P-GP DDIs and 13 (4.1%) as P-GP-only DDIs. The remaining 264 (82.5%) patients were used as controls including 19 exposed to nonsignificant DDI ASMs and 245 patients without ASM exposure. The incidence rates of recurrent stroke/TIA events in both CYP3A4 and P-GP DDIs, P-GP DDIs only, and no DDIs were 7.5, 2.1, and 8.4/100 person-years, respectively. Kaplan-Meier survival curves and the log-rank test did not show significant differences among the groups. Conclusions: The recurrent stroke rate of NOAC users with potential DDIs was not higher than in those without potential DDIs in this single-institute study. Our results suggest that theoretical interactions between ASMs and NOACs may not be as severe as previously thought in a real-world situation.
Collapse
Affiliation(s)
- Chen-Jui Ho
- Department of Neurology, College of Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University, Kaohsiung, Taiwan
| | - Shih-Hsuan Chen
- Department of Neurology, College of Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University, Kaohsiung, Taiwan
| | - Chih-Hsiang Lin
- Department of Neurology, College of Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University, Kaohsiung, Taiwan
| | - Yan-Ting Lu
- Department of Neurology, College of Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University, Kaohsiung, Taiwan
| | - Che-Wei Hsu
- Department of Neurology, College of Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University, Kaohsiung, Taiwan
| | - Meng-Han Tsai
- Department of Neurology, College of Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University, Kaohsiung, Taiwan.,School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
35
|
Bae SDW, Nguyen R, Qiao L, George J. Role of the constitutive androstane receptor (CAR) in human liver cancer. Biochim Biophys Acta Rev Cancer 2021; 1875:188516. [PMID: 33529650 DOI: 10.1016/j.bbcan.2021.188516] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/22/2021] [Accepted: 01/22/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND The constitutive androstane receptor (CAR) is a member of the nuclear receptor superfamily (subfamily 1, group I, member 3, also known as NR1I3) that is almost exclusively expressed in the liver. CAR interacts with key signalling pathways such as those involved in drug, energy and bilirubin metabolism. In mouse models, activation of CAR leads to tumorigenesis by inducing pro-proliferative and anti-apoptotic signalling. However, many previous reports have shown species differences between CAR activity in animal models and humans. Recent studies have demonstrated that the mode of action of CAR in rodent liver tumorigenesis is not applicable to humans. Despite this, many studies still continue to study the role of CAR in animal models, hence, there is a need to further explore the role of CAR in human diseases particularly cancers. While there is limited evidence for a role of CAR in human cancers, some studies have proposed a tumour-suppressive role of CAR in liver cancer. In addition, recent studies exploring CAR in human livers demonstrated a hepato-protective role for CAR in and more specifically, its ability to drive differentiation and liver regeneration. This review will discuss the role of CAR in liver cancer, with a focus on species differences and its emerging, tumour-suppressive role in liver cancer and its role in the regulation of liver cancer stem cells.
Collapse
Affiliation(s)
- Sarah Da Won Bae
- Storr Liver Centre, Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Westmead, NSW 2145, Australia
| | - Romario Nguyen
- Storr Liver Centre, Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Westmead, NSW 2145, Australia
| | - Liang Qiao
- Storr Liver Centre, Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Westmead, NSW 2145, Australia.
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Westmead, NSW 2145, Australia.
| |
Collapse
|
36
|
Concomitant Use of Direct Oral Anticoagulants and Antiepileptic Drugs: A Prospective Cohort Study in Patients with Atrial Fibrillation. Clin Drug Investig 2020; 41:43-51. [PMID: 33284370 PMCID: PMC7815539 DOI: 10.1007/s40261-020-00982-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2020] [Indexed: 10/25/2022]
Abstract
BACKGROUND European guidelines do not recommend the use of carbamazepine, levetiracetam, phenobarbital, phenytoin, topiramate and valproic acid in patients taking direct oral anticoagulants (DOACs). Little is known regarding the clinical relevance of the interaction between DOACs and antiepileptic drugs. OBJECTIVES To evaluate the incidence of thromboembolic and bleeding events in patients with non-valvular atrial fibrillation (AF) concurrently treated with DOACs and antiepileptic drugs. METHODS This is a prospective multicentre cohort study of patients with non-valvular AF concurrently treated with DOACs and antiepileptic drugs. The primary outcome was ischaemic stroke/transient ischaemic attack (TIA)/systemic embolism (SE). Secondary outcome was major bleeding (MB). Incidence rates (% patient-year) were evaluated for the study outcomes. RESULTS Overall, 91 patients were included. Mean age was 78 ± 9.5 years, 49.5% were female. Mean CHA2DS2-VASc score was 4.76 ± 1.59 and mean HAS-BLED was 2.67 ± 1.26. Overall, 41, 20, 11, 10 and 9 out of 91 patients were treated with levetiracetam, valproic acid, phenobarbital, carbamazepine and other antiepileptic drugs, respectively. During a median follow-up of 17.5 ± 14.5 months, stroke/TIA/SE occurred in 9 patients (5.7% patient-year) and MB in 3 patients (1.9% patient-year). Ischaemic stroke was fatal in 3 patients (1.9% patient-year) and MB in one patient (0.6% patient-year). CONCLUSION In this cohort, patients with non-valvular AF treated with DOACs and antiepileptic drugs appear to have a relatively high rate of thromboembolic events.
Collapse
|
37
|
Association of clozapine-related metabolic disturbances with CYP3A4 expression in patients with schizophrenia. Sci Rep 2020; 10:21283. [PMID: 33277605 PMCID: PMC7718230 DOI: 10.1038/s41598-020-78474-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/25/2020] [Indexed: 11/09/2022] Open
Abstract
Clozapine is effective in treatment-resistant schizophrenia; however, adverse effects often result in discontinuation of clozapine therapy. Many of the side-effects are associated with pharmacokinetic variations; therefore, the expression of major clozapine-metabolizing enzymes (CYP1A2, CYP3A4) in patients may predict development of adverse effects. In patients with schizophrenia (N = 96), development of clozapine concentration-dependent metabolic side-effects was found to be associated with pharmacokinetic variability related to CYP3A4 but not to CYP1A2 expression. In low CYP3A4 expressers, significant correlation was detected between fasting glucose level and clozapine concentration; moreover, the incidence of abnormal glucose level was associated with exaggerated clozapine concentrations (> 600 ng/ml). In low CYP3A4 expressers, exaggerated concentrations were more frequently observed than in normal/high expressers. Moderate/high risk obesity (BMI ≥ 35) more frequently occurred in low CYP3A4 expresser patients than in normal/high expressers. In patients with normal/high CYP3A4 expression and consequently with extensive clozapine-metabolizing capacity, norclozapine/clozapine ratio correlated with fasting glucose levels, triglyceride concentrations and BMI. Low CYP3A4 expression often resulting in exaggerated clozapine concentrations was considered to be as an important risk factor for some concentration-dependent adverse effects as normal/high CYP3A4 expression evoking high norclozapine/clozapine ratios. CYP3A4-status can identify patients with increased risk for metabolic side-effects and prevent their development by careful therapeutic strategy.
Collapse
|
38
|
Oliviero F, Lukowicz C, Boussadia B, Forner-Piquer I, Pascussi JM, Marchi N, Mselli-Lakhal L. Constitutive Androstane Receptor: A Peripheral and a Neurovascular Stress or Environmental Sensor. Cells 2020; 9:E2426. [PMID: 33171992 PMCID: PMC7694609 DOI: 10.3390/cells9112426] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/27/2020] [Accepted: 11/02/2020] [Indexed: 12/11/2022] Open
Abstract
Xenobiotic nuclear receptors (NR) are intracellular players involved in an increasing number of physiological processes. Examined and characterized in peripheral organs where they govern metabolic, transport and detoxification mechanisms, accumulating data suggest a functional expression of specific NR at the neurovascular unit (NVU). Here, we focus on the Constitutive Androstane Receptor (CAR), expressed in detoxifying organs such as the liver, intestines and kidneys. By direct and indirect activation, CAR is implicated in hepatic detoxification of xenobiotics, environmental contaminants, and endogenous molecules (bilirubin, bile acids). Importantly, CAR participates in physiological stress adaptation responses, hormonal and energy homeostasis due to glucose and lipid sensing. We next analyze the emerging evidence supporting a role of CAR in NVU cells including the blood-brain barrier (BBB), a key vascular interface regulating communications between the brain and the periphery. We address the emerging concept of how CAR may regulate specific P450 cytochromes at the NVU and the associated relevance to brain diseases. A clear understanding of how CAR engages during pathological conditions could enable new mechanistic, and perhaps pharmacological, entry-points within a peripheral-brain axis.
Collapse
Affiliation(s)
- Fabiana Oliviero
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France; (F.O.); (C.L.)
| | - Céline Lukowicz
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France; (F.O.); (C.L.)
| | - Badreddine Boussadia
- Cerebrovascular and Glia Research, Institute of Functional Genomics (UMR 5203 CNRS–U 1191 INSERM, University of Montpellier), 34094 Montpellier, France; (B.B.); (I.F.-P.); (J.-M.P.)
| | - Isabel Forner-Piquer
- Cerebrovascular and Glia Research, Institute of Functional Genomics (UMR 5203 CNRS–U 1191 INSERM, University of Montpellier), 34094 Montpellier, France; (B.B.); (I.F.-P.); (J.-M.P.)
| | - Jean-Marc Pascussi
- Cerebrovascular and Glia Research, Institute of Functional Genomics (UMR 5203 CNRS–U 1191 INSERM, University of Montpellier), 34094 Montpellier, France; (B.B.); (I.F.-P.); (J.-M.P.)
| | - Nicola Marchi
- Cerebrovascular and Glia Research, Institute of Functional Genomics (UMR 5203 CNRS–U 1191 INSERM, University of Montpellier), 34094 Montpellier, France; (B.B.); (I.F.-P.); (J.-M.P.)
| | - Laila Mselli-Lakhal
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France; (F.O.); (C.L.)
| |
Collapse
|
39
|
Interaction of Hydroxychloroquine with Pharmacokinetically Important Drug Transporters. Pharmaceutics 2020; 12:pharmaceutics12100919. [PMID: 32992777 PMCID: PMC7600351 DOI: 10.3390/pharmaceutics12100919] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/08/2020] [Accepted: 09/23/2020] [Indexed: 12/14/2022] Open
Abstract
(1) Background: Hydroxychloroquine is used to treat malaria and autoimmune diseases, and its potential use against COVID-19 is currently under investigation. Thus far, information on interactions of hydroxychloroquine with drug transporters mediating drug-drug interactions is limited. We assessed the inhibition of important efflux (P-glycoprotein (P-gp), breast cancer resistance protein (BCRP)) and uptake transporters (organic anion transporting polypeptide (OATP)-1B1, OATP1B3, OATP2B1) by hydroxychloroquine, tested its P-gp and BCRP substrate characteristics, and evaluated the induction of pharmacokinetically relevant genes regulated by the nuclear pregnane X (PXR) (CYP3A4, ABCB1) and aryl hydrocarbon receptor (AhR) (CYP1A1, CYP1A2). (2) Methods: Transporter inhibition was evaluated in transporter over-expressing cell lines using fluorescent probe substrates. P-gp and BCRP substrate characteristics were assessed by comparing growth inhibition of over-expressing and parental cell lines. Possible mRNA induction was analysed in LS180 cells by quantitative real-time PCR. (3) Results: Hydroxychloroquine did not inhibit BCRP or the OATPs tested but inhibited P-gp at concentrations exceeding 10 µM. P-gp overexpressing cells were 5.2-fold more resistant to hydroxychloroquine than control cells stressing its substrate characteristics. Hydroxychloroquine did not induce genes regulated by PXR or AhR. (4) Conclusions: This is the first evidence that hydroxychloroquine’s interaction potential with drug transporters is low, albeit bioavailability of simultaneously orally administered P-gp substrates might be increased by hydroxychloroquine.
Collapse
|
40
|
Pena MÁ, Muriel J, Saiz-Rodríguez M, Borobia AM, Abad-Santos F, Frías J, Peiró AM. Effect of Cytochrome P450 and ABCB1 Polymorphisms on Imatinib Pharmacokinetics After Single-Dose Administration to Healthy Subjects. Clin Drug Investig 2020; 40:617-628. [PMID: 32415468 DOI: 10.1007/s40261-020-00921-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Validated genomic biomarkers for oncological drugs are expanding to improve targeted therapies. Pharmacogenetics research focusing on the mechanisms underlying imatinib suboptimal response might help to explain the different treatment outcomes and drug safety profiles. OBJECTIVE To investigate whether polymorphisms in genes encoding cytochrome P450 (CYP) enzymes and ABCB1 transporter affect imatinib pharmacokinetic parameters. METHODS A prospective, multicenter, pharmacogenetic pilot study was performed in the context of two separate oral imatinib bioequivalence clinical trials, which included 26 healthy volunteers. DNA was extracted in order to analyze polymorphisms in genes CYP2B6, CYP2C9, CYP2C19, CYP2D6, CYP3A4, CYP3A5 and ABCB1. Imatinib plasma concentrations were measured by HPLC-MS/MS. Pharmacokinetic parameters were calculated by non-compartmental methods using WinNonlin software. RESULTS Volunteers (n = 26; aged 24 ± 3 years; 69% male) presented regular pharmacokinetic imatinib data (concentration at 24 h, 436 ± 140 ng/mL and at 72 h, 40 ± 26 ng/mL; AUC0-72 32,868 ± 10,713 ng/mL⋅h; and Cmax 2074 ± 604 ng/mL). CYP2B6 516GT carriers showed a significant reduction of imatinib concentration at 24 h (23%, 391 ng/dL vs 511 ng/dL in 516GG carriers, p = 0.005) and elimination half-life (11%, 12.6 h vs 14.1 h in 516GG carriers, p = 0.041). Carriers for CYP3A4 (*22/*22, *1/*20 and *1/*22 variants) showed a reduced frequency of adverse events compared to *1/*1 carriers (0 vs 64%, p = 0.033). The other polymorphisms analyzed did not influence pharmacokinetics or drug toxicity. CONCLUSION CYP2B6 G516T and CYP3A4 *20,*22 polymorphisms could influence imatinib plasma concentrations and safety profile, after single-dose administration to healthy subjects. This finding needs to be confirmed before it is implemented in clinical practice in oncological patients under treatment with imatinib.
Collapse
Affiliation(s)
- María Ángeles Pena
- Alicante Clinical Trials Unit, Department of Health, Alicante-General Hospital, Alicante, Spain.,Clinical Pharmacology Service, Department of Health, Alicante-General Hospital, c/Pintor Baeza, 12, 03010, Alicante, Spain
| | - Javier Muriel
- Alicante Institute for Health and Biomedical Research (ISABIAL Foundation), Alicante, Spain
| | - Miriam Saiz-Rodríguez
- Clinical Pharmacology Service, University Hospital La Princesa, Autonomous University of Madrid, Madrid, Spain
| | - Alberto M Borobia
- Clinical Pharmacology Department, La Paz University Hospital, Universidad Autónoma de Madrid. IdiPAZ, Madrid, Spain
| | - Francisco Abad-Santos
- Clinical Pharmacology Service, University Hospital La Princesa, Autonomous University of Madrid, Madrid, Spain.,Institute Teófilo Hernando for Drug I+D, School of Medicine, Autonomous University of Madrid, Madrid, Spain
| | - Jesús Frías
- Clinical Pharmacology Department, La Paz University Hospital, Universidad Autónoma de Madrid. IdiPAZ, Madrid, Spain
| | - Ana M Peiró
- Alicante Clinical Trials Unit, Department of Health, Alicante-General Hospital, Alicante, Spain. .,Clinical Pharmacology Service, Department of Health, Alicante-General Hospital, c/Pintor Baeza, 12, 03010, Alicante, Spain.
| |
Collapse
|
41
|
Dalpiaz A, Paganetto G, Botti G, Pavan B. Cancer stem cells and nanomedicine: new opportunities to combat multidrug resistance? Drug Discov Today 2020; 25:1651-1667. [PMID: 32763499 DOI: 10.1016/j.drudis.2020.07.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/09/2020] [Accepted: 07/29/2020] [Indexed: 12/20/2022]
Abstract
'Multidrug resistance' (MDR) is a difficult challenge for cancer treatment. The combined role of cytochrome P450 enzymes (CYPs) and active efflux transporters (AETs) in cancer cells appears relevant in inducing MDR. Chemotherapeutic drugs can be substrates of both CYPs and AETs and CYP inducers or inhibitors can produce the same effects on AETs. In addition, a small subpopulation of cancer stem-like cells (CSCs) appears to survive conventional chemotherapy, leading to recurrent disease. Natural products appear efficacious against CSCs; their combinational treatments with standard chemotherapy are promising for cancer eradication, in particular when supported by nanotechnologies.
Collapse
Affiliation(s)
- Alessandro Dalpiaz
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| | - Guglielmo Paganetto
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Giada Botti
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| | - Barbara Pavan
- Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, Ferrara, Italy.
| |
Collapse
|
42
|
Langenbruch L, Meuth SG, Wiendl H, Mesters R, Möddel G. Clinically relevant interaction of rivaroxaban and valproic acid – A case report. Seizure 2020; 80:46-47. [DOI: 10.1016/j.seizure.2020.05.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 02/07/2023] Open
|
43
|
Yu X, Li H, Hu P, Qing Y, Wang X, Zhu M, Wang H, Wang Z, Xu J, Guo Q, Hui H. Natural HDAC-1/8 inhibitor baicalein exerts therapeutic effect in CBF-AML. Clin Transl Med 2020; 10:e154. [PMID: 32898337 PMCID: PMC7449246 DOI: 10.1002/ctm2.154] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 08/02/2020] [Accepted: 08/05/2020] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Although targeting histone deacetylases (HDACs) may be an effective strategy for core binding factor-acute myeloid leukemia (CBF-AML) harboring t(8;21) or inv(16), HDAC inhibitors are reported to be limited by drug-resistant characteristic. Our purpose is to evaluate the anti-leukemia effects of Baicalein on CBF-AML and clarify its underlying mechanism. METHODS Enzyme activity assay was used to measure the activity inhibition of HDACs. Rhodamine123 and RT-qPCR were employed to evaluate the distribution of drugs and the change of ATP-binding cassette (ABC) transporter genes. CCK8, Annexin V/PI, and FACS staining certified the effects of Baicalein on cell growth, apoptosis, and differentiation. Duolink and IP assay assessed the interaction between HDAC-1 and ubiquitin, HSP90 and AML1-ETO, and Ac-p53 and CBFβ-MYH11. AML cell lines and primary AML cells-bearing NOD/SCID mice models were used to evaluate the anti-leukemic efficiency and potential mechanism of Baicalein in vivo. RESULTS Baicalein showed HDAC-1/8 inhibition to trigger growth suppression and differentiation induction of AML cell lines and primary AML cells. Although the inhibitory action on HDAC-1 was mild, Baicalein could induce the degradation of HDAC-1 via ubiquitin proteasome pathway, thereby upregulating the acetylation of Histone H3 without promoting ABC transporter genes expression. Meanwhile, Baicalein increased the acetylation of HSP90 and lessened its connection to AML1/ETO, consequently leading to degradation of AML1-ETO in t(8;21)q(22;22) AML cells. In inv(16) AML cells, Baicalein possessed the capacity of apoptosis induction accompanied with p53-mediated apoptosis genes expression. Moreover, CBFβ-MYH11-bound p53 acetylation was restored via HDAC-8 inhibition induced by Baicalein contributing the diminishing of survival of CD34+ inv(16) AML cells. CONCLUSIONS These findings improved the understanding of the epigenetic regulation of Baicalein, and warrant therapeutic potential of Baicalein for CBF-AML.
Collapse
Affiliation(s)
- Xiaoxuan Yu
- State Key Laboratory of Natural MedicinesJiangsu Key Laboratory of Carcinogenesis and InterventionKey Laboratory of Drug Quality Control and PharmacovigilanceMinistry of EducationJiangsu Key Laboratory of Drug Design and OptimizationChina Pharmaceutical UniversityChina Pharmaceutical UniversityNanjingJiangsuChina
- Department of PharmacologySchool of medicine & Holostic integrative medicineNanjing University of Chinese MedicineNanjingJiangsuChina
| | - Hui Li
- State Key Laboratory of Natural MedicinesJiangsu Key Laboratory of Carcinogenesis and InterventionKey Laboratory of Drug Quality Control and PharmacovigilanceMinistry of EducationJiangsu Key Laboratory of Drug Design and OptimizationChina Pharmaceutical UniversityChina Pharmaceutical UniversityNanjingJiangsuChina
| | - Po Hu
- State Key Laboratory of Natural MedicinesJiangsu Key Laboratory of Carcinogenesis and InterventionKey Laboratory of Drug Quality Control and PharmacovigilanceMinistry of EducationJiangsu Key Laboratory of Drug Design and OptimizationChina Pharmaceutical UniversityChina Pharmaceutical UniversityNanjingJiangsuChina
| | - Yingjie Qing
- State Key Laboratory of Natural MedicinesJiangsu Key Laboratory of Carcinogenesis and InterventionKey Laboratory of Drug Quality Control and PharmacovigilanceMinistry of EducationJiangsu Key Laboratory of Drug Design and OptimizationChina Pharmaceutical UniversityChina Pharmaceutical UniversityNanjingJiangsuChina
| | - Xiangyuan Wang
- State Key Laboratory of Natural MedicinesJiangsu Key Laboratory of Carcinogenesis and InterventionKey Laboratory of Drug Quality Control and PharmacovigilanceMinistry of EducationJiangsu Key Laboratory of Drug Design and OptimizationChina Pharmaceutical UniversityChina Pharmaceutical UniversityNanjingJiangsuChina
| | - Mengyuan Zhu
- State Key Laboratory of Natural MedicinesJiangsu Key Laboratory of Carcinogenesis and InterventionKey Laboratory of Drug Quality Control and PharmacovigilanceMinistry of EducationJiangsu Key Laboratory of Drug Design and OptimizationChina Pharmaceutical UniversityChina Pharmaceutical UniversityNanjingJiangsuChina
| | - Hongzheng Wang
- State Key Laboratory of Natural MedicinesJiangsu Key Laboratory of Carcinogenesis and InterventionKey Laboratory of Drug Quality Control and PharmacovigilanceMinistry of EducationJiangsu Key Laboratory of Drug Design and OptimizationChina Pharmaceutical UniversityChina Pharmaceutical UniversityNanjingJiangsuChina
| | - Zhanyu Wang
- State Key Laboratory of Natural MedicinesJiangsu Key Laboratory of Carcinogenesis and InterventionKey Laboratory of Drug Quality Control and PharmacovigilanceMinistry of EducationJiangsu Key Laboratory of Drug Design and OptimizationChina Pharmaceutical UniversityChina Pharmaceutical UniversityNanjingJiangsuChina
| | - Jingyan Xu
- Department of HematologyThe Affiliated DrumTower Hospital of Nanjing University Medical SchoolNanjingChina
| | - Qinglong Guo
- State Key Laboratory of Natural MedicinesJiangsu Key Laboratory of Carcinogenesis and InterventionKey Laboratory of Drug Quality Control and PharmacovigilanceMinistry of EducationJiangsu Key Laboratory of Drug Design and OptimizationChina Pharmaceutical UniversityChina Pharmaceutical UniversityNanjingJiangsuChina
| | - Hui Hui
- State Key Laboratory of Natural MedicinesJiangsu Key Laboratory of Carcinogenesis and InterventionKey Laboratory of Drug Quality Control and PharmacovigilanceMinistry of EducationJiangsu Key Laboratory of Drug Design and OptimizationChina Pharmaceutical UniversityChina Pharmaceutical UniversityNanjingJiangsuChina
| |
Collapse
|
44
|
Cui K, Wang Y, Zhu Y, Tao T, Yin F, Guo Y, Liu H, Li F, Wang P, Chen Y, Qin J. Neurodevelopmental impairment induced by prenatal valproic acid exposure shown with the human cortical organoid-on-a-chip model. MICROSYSTEMS & NANOENGINEERING 2020; 6:49. [PMID: 34567661 PMCID: PMC8433196 DOI: 10.1038/s41378-020-0165-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 05/05/2023]
Abstract
Prenatal exposure to environmental insults can increase the risk of developing neurodevelopmental disorders. Administration of the antiepileptic drug valproic acid (VPA) during pregnancy is tightly associated with a high risk of neurological disorders in offspring. However, the lack of an ideal human model hinders our comprehensive understanding of the impact of VPA exposure on fetal brain development, especially in early gestation. Herein, we present the first report indicating the effects of VPA on brain development at early stages using engineered cortical organoids from human induced pluripotent stem cells (hiPSCs). Cortical organoids were generated on micropillar arrays in a controlled manner, recapitulating the critical features of human brain development during early gestation. With VPA exposure, cortical organoids exhibited neurodevelopmental dysfunction characterized by increased neuron progenitors, inhibited neuronal differentiation and altered forebrain regionalization. Transcriptome analysis showed new markedly altered genes (e.g., KLHL1, LHX9, and MGARP) and a large number of differential expression genes (DEGs), some of which are related to autism. In particular, comparison of transcriptome data via GSEA and correlation analysis revealed the high similarity between VPA-exposed organoids with the postmortem ASD brain and autism patient-derived organoids, implying the high risk of autism with prenatal VPA exposure, even in early gestation. These new findings facilitate a better understanding of the cellular and molecular mechanisms underlying postnatal brain disorders (such as autism) with prenatal VPA exposure. This established cortical organoid-on-a-chip platform is valuable for probing neurodevelopmental disorders under environmental exposure and can be extended to applications in the study of diseases and drug testing.
Collapse
Affiliation(s)
- Kangli Cui
- Division of Biotechnology, CAS Key Laboratory of SSAC, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Yaqing Wang
- Division of Biotechnology, CAS Key Laboratory of SSAC, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Yujuan Zhu
- Division of Biotechnology, CAS Key Laboratory of SSAC, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Tingting Tao
- Division of Biotechnology, CAS Key Laboratory of SSAC, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Fangchao Yin
- Division of Biotechnology, CAS Key Laboratory of SSAC, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Yaqiong Guo
- Division of Biotechnology, CAS Key Laboratory of SSAC, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Haitao Liu
- Division of Biotechnology, CAS Key Laboratory of SSAC, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Fei Li
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Peng Wang
- Division of Biotechnology, CAS Key Laboratory of SSAC, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023 China
| | - Yuejun Chen
- University of Chinese Academy of Sciences, Beijing, 100049 China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031 China
| | - Jianhua Qin
- Division of Biotechnology, CAS Key Laboratory of SSAC, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031 China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
45
|
Ravegnini G, Valori G, Zhang Q, Ricci R, Hrelia P, Angelini S. Pharmacogenetics in the treatment of gastrointestinal stromal tumors - an updated review. Expert Opin Drug Metab Toxicol 2020; 16:797-808. [PMID: 32597248 DOI: 10.1080/17425255.2020.1789589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
INTRODUCTION Gastrointestinal stromal tumors (GIST) are the best example of a targeted therapy in solid tumors. The introduction of tyrosine kinase inhibitors (TKIs) deeply improved the prognosis of this tumor. However, a degree of inter-patient variability is still reported in response rates and pharmacogenetics may play an important role in the final clinical outcome. AREAS COVERED In this review, the authors provide an updated overview of the pharmacogenetic literature analyzing the role of polymorphisms in both GIST treatment efficacy and toxicity. EXPERT OPINION Besides the primary role of somatic DNA in dictating the clinical response to TKIs, several polymorphisms influencing their pharmacokinetics and pharmacodynamics have been identified as being potentially involved. In the last 10 years, many potential biomarkers have been proposed to predict clinical response and toxicity after TKI administration. However, the evidence is still too limited to promote a clinical translation. To date, the somatic mutational status represents the main player in clinical response to TKIs in GIST treatment; however, pharmacogenetics could still explain the degree of inter-patient variability observed in GIST patients. A combination of different theoretical approaches, experimental model systems, and statistical methods is clearly needed, in order to translate pharmacogenetics to clinical practice in the near future.
Collapse
Affiliation(s)
- Gloria Ravegnini
- Department of Pharmacy and Biotechnology, University of Bologna , Bologna, Italy
| | - Giorgia Valori
- Department of Pharmacy and Biotechnology, University of Bologna , Bologna, Italy
| | - Qianqian Zhang
- UOC di Anatomia Patologica, Fondazione Policlinico Universitario 'A. Gemelli' IRCCS , Rome, Italy
| | - Riccardo Ricci
- UOC di Anatomia Patologica, Fondazione Policlinico Universitario 'A. Gemelli' IRCCS , Rome, Italy.,Department of Pathology, Universita Cattolica del Sacro Cuore , Rome, Italy
| | - Patrizia Hrelia
- Department of Pharmacy and Biotechnology, University of Bologna , Bologna, Italy
| | - Sabrina Angelini
- Department of Pharmacy and Biotechnology, University of Bologna , Bologna, Italy
| |
Collapse
|
46
|
Park H, Shin J, Choi H, Cho B, Kim J. Valproic Acid Significantly Improves CRISPR/Cas9-Mediated Gene Editing. Cells 2020; 9:cells9061447. [PMID: 32532133 PMCID: PMC7349485 DOI: 10.3390/cells9061447] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 12/26/2022] Open
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system has emerged as a powerful technology, with the potential to generate transgenic animals. Particularly, efficient and precise genetic editing with CRISPR/Cas9 offers immense prospects in various biotechnological applications. Here, we report that the histone deacetylase inhibitor valproic acid (VPA) significantly increases the efficiency of CRISPR/Cas9-mediated gene editing in mouse embryonic stem cells and embryos. This effect may be caused through globally enhanced chromatin accessibility, as indicate by histone hyperacetylation. Taken together, our results suggest that VPA can be used to increase the efficacy of CRISPR/Cas9 in generating transgenic systems.
Collapse
Affiliation(s)
- Hanseul Park
- Department of Biomedical Engineering (BK21 Plus), Dongguk University, Seoul 04620, Korea; (H.P.); (J.S.); (H.C.); (B.C.)
- Laboratory of Cell reprogramming and Gene editing, Department of Chemistry, Dongguk University, Seoul 04620, Korea
| | - Jaein Shin
- Department of Biomedical Engineering (BK21 Plus), Dongguk University, Seoul 04620, Korea; (H.P.); (J.S.); (H.C.); (B.C.)
- Laboratory of Cell reprogramming and Gene editing, Department of Chemistry, Dongguk University, Seoul 04620, Korea
| | - Hwan Choi
- Department of Biomedical Engineering (BK21 Plus), Dongguk University, Seoul 04620, Korea; (H.P.); (J.S.); (H.C.); (B.C.)
- Laboratory of Cell reprogramming and Gene editing, Department of Chemistry, Dongguk University, Seoul 04620, Korea
| | - Byounggook Cho
- Department of Biomedical Engineering (BK21 Plus), Dongguk University, Seoul 04620, Korea; (H.P.); (J.S.); (H.C.); (B.C.)
- Laboratory of Cell reprogramming and Gene editing, Department of Chemistry, Dongguk University, Seoul 04620, Korea
| | - Jongpil Kim
- Department of Biomedical Engineering (BK21 Plus), Dongguk University, Seoul 04620, Korea; (H.P.); (J.S.); (H.C.); (B.C.)
- Laboratory of Cell reprogramming and Gene editing, Department of Chemistry, Dongguk University, Seoul 04620, Korea
- Correspondence: ; Tel.: +82-031-961-5153
| |
Collapse
|
47
|
Torres-Vergara P, Ho YS, Espinoza F, Nualart F, Escudero C, Penny J. The constitutive androstane receptor and pregnane X receptor in the brain. Br J Pharmacol 2020; 177:2666-2682. [PMID: 32201941 DOI: 10.1111/bph.15055] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 12/16/2022] Open
Abstract
Since their discovery, the orphan nuclear receptors constitutive androstane receptor (CAR;NR1I3) and pregnane X receptor (PXR;NR1I2) have been regarded as master regulators of drug disposition and detoxification mechanisms. They regulate the metabolism and transport of endogenous mediators and xenobiotics in organs including the liver, intestine and brain. However, with proposals of new physiological functions for NR1I3 and NR1I2, there is increasing interest in the role of these receptors in influencing brain function. This review will summarise key findings regarding the expression and function of NR1I3 and NR1I2 in the brain, hereby highlighting the need for further research in this field.
Collapse
Affiliation(s)
- Pablo Torres-Vergara
- Departamento de Farmacia, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile.,Centro de Microscopía Avanzada, CMA-BIO BIO, Laboratorio de Neurobiología y Células Madres NeuroCellT, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile.,Group of Research and Innovation in Vascular Health (GRIVAS Health), Universidad del Bío Bío, Chillán, Chile
| | - Yu Siong Ho
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Health and Medicine, The University of Manchester, Manchester, UK
| | - Francisca Espinoza
- Centro de Microscopía Avanzada, CMA-BIO BIO, Laboratorio de Neurobiología y Células Madres NeuroCellT, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Francisco Nualart
- Centro de Microscopía Avanzada, CMA-BIO BIO, Laboratorio de Neurobiología y Células Madres NeuroCellT, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Carlos Escudero
- Laboratorio de FisiologíaVascular, Departamento de Ciencias Básicas, Facultad de Ciencias Básicas, Universidad del Bío-Bío, Chillán, Chile.,Group of Research and Innovation in Vascular Health (GRIVAS Health), Universidad del Bío Bío, Chillán, Chile
| | - Jeffrey Penny
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Health and Medicine, The University of Manchester, Manchester, UK
| |
Collapse
|
48
|
The Effect of Valproic Acid on Olanzapine Serum Concentration: A Study Including 2791 Patients Treated With Olanzapine Tablets or Long-Acting Injections. J Clin Psychopharmacol 2020; 39:561-566. [PMID: 31688390 DOI: 10.1097/jcp.0000000000001126] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND The combination of olanzapine and valproic acid (VPA) is regularly prescribed in the treatment of bipolar or schizoaffective disorders. The VPA has been shown to reduce olanzapine concentration, but the mechanism behind this interaction remains unknown. We aimed to investigate the effect of VPA on olanzapine concentration during oral versus long-acting injectable (LAI) formulation in a real-life setting. METHODS From a therapeutic drug monitoring service, prescribed doses and serum concentrations from 2791 olanzapine-treated patients (9433 measurements) were included. RESULTS The number of patients on olanzapine-LAI treatment was 328, whereas 2463 were using oral olanzapine. The frequency of patients comedicated with VPA was 9.4% for olanzapine tablets and 5.8% for olanzapine-LAI. The VPA had no effect on olanzapine dose-adjusted concentrations in LAI users (1.6 vs 1.7 [ng/mL]/[mg/d]; P = 0.38), whereas in the oral group the dose-adjusted olanzapine concentration was lower in VPA users (2.2 vs 2.7 [ng/mL]/[mg/d]; P < 0.001). For smokers in the oral olanzapine group using VPA, 8.7% of the measurements were in the subtherapeutic range (<10 ng/mL) compared with 6.0% in nonusers (P = 0.003). IMPLICATIONS These findings show that the VPA-olanzapine interaction involves a presystemic mechanism and is therefore restricted to oral olanzapine treatment. For oral treatment of olanzapine, comedication with VPA implies a risk of insufficient effect, which may be of clinical relevance in smokers in particular. Thus, it is important to be aware of the interaction potential with VPA during oral olanzapine use, whereas for LAI-treated patients fewer precautions are required from a pharmacokinetic point of view.
Collapse
|
49
|
Hiebl V, Schachner D, Ladurner A, Heiss EH, Stangl H, Dirsch VM. Caco-2 Cells for Measuring Intestinal Cholesterol Transport - Possibilities and Limitations. Biol Proced Online 2020; 22:7. [PMID: 32308567 PMCID: PMC7149936 DOI: 10.1186/s12575-020-00120-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 04/01/2020] [Indexed: 12/19/2022] Open
Abstract
Background The human Caco-2 cell line is a common in vitro model of the intestinal epithelial barrier. As the intestine is a major interface in cholesterol turnover and represents a non-biliary pathway for cholesterol excretion, Caco-2 cells are also a valuable model for studying cholesterol homeostasis, including cholesterol uptake and efflux. Currently available protocols are, however, either sketchy or not consistent among different laboratories. Our aim was therefore to generate a collection of optimized protocols, considering the different approaches of the different laboratories and to highlight possibilities and limitations of measuring cholesterol transport with this cell line. Results We developed comprehensive and quality-controlled protocols for the cultivation of Caco-2 cells on filter inserts in a single tight monolayer. A cholesterol uptake as well as a cholesterol efflux assay is described in detail, including suitable positive controls. We further show that Caco-2 cells can be efficiently transfected for luciferase reporter gene assays in order to determine nuclear receptor activation, main transcriptional regulators of cholesterol transporters (ABCA1, ABCB1, ABCG5/8, NPC1L1). Detection of protein and mRNA levels of cholesterol transporters in cells grown on filter inserts can pose challenges for which we highlight essential steps and alternative approaches for consideration. A protocol for viability assays with cells differentiated on filter inserts is provided for the first time. Conclusions The Caco-2 cell line is widely used in the scientific community as model for the intestinal epithelium, although with highly divergent protocols. The herein provided information and protocols can be a common basis for researchers intending to use Caco-2 cells in the context of cellular cholesterol homeostasis.
Collapse
Affiliation(s)
- Verena Hiebl
- 1Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Daniel Schachner
- 1Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Angela Ladurner
- 1Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Elke H Heiss
- 1Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Herbert Stangl
- 2Institute of Medical Chemistry, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Verena M Dirsch
- 1Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| |
Collapse
|
50
|
Yuan X, Lu H, Zhao A, Ding Y, Min Q, Wang R. Transcriptional regulation of CYP3A4 by nuclear receptors in human hepatocytes under hypoxia. Drug Metab Rev 2020; 52:225-234. [PMID: 32270716 DOI: 10.1080/03602532.2020.1733004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The human hepatic cytochrome P-450 3A4 (CYP3A4), recognized as a multifunctional enzyme, has a wide range of substrates including commonly used drugs. Previous investigations demonstrated that the expression of CYP3A4 in human hepatocytes could be regulated by some nuclear receptors (NRs) at transcriptional level under diverse situations. The significance of oxygen on CYP3A4-mediated metabolism seems notable while the regulatory mode of CYP3A4 in the particular case still remains elusive. Recently, striking evidence has emerged that both CYP3A4 and its regulator NR could be inhibited by exposure to hypoxia. Therefore, it is of great importance to elucidate whether and how these NRs act in the transcriptional regulation of CYP3A4 in human hepatocytes under hypoxic conditions. In this review, we mainly summarized transcriptional regulation of the pivotal enzyme CYP3A4 by NRs and explored the possible regulatory pathways of CYP3A4 via these major NRs under hypoxia, expecting to provide favorable evidence for further clinical guidance under such pathological situations.
Collapse
Affiliation(s)
- Xuechun Yuan
- Key Laboratory of the Plateau Environmental Damage Control, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, China.,College of Pharmacy, Lanzhou University, Lanzhou, China
| | - Hui Lu
- Key Laboratory of the Plateau Environmental Damage Control, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, China
| | - Anpeng Zhao
- Key Laboratory of the Plateau Environmental Damage Control, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, China
| | - Yidan Ding
- Key Laboratory of the Plateau Environmental Damage Control, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, China.,College of Pharmacy, Lanzhou University, Lanzhou, China
| | - Qiong Min
- Pharmacy department, Gansu Provincial Cancer Hospital, Lanzhou, China
| | - Rong Wang
- Key Laboratory of the Plateau Environmental Damage Control, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, China.,College of Pharmacy, Lanzhou University, Lanzhou, China
| |
Collapse
|