1
|
Minegishi G, Kobayashi Y, Fujikura M, Sano A, Kazuki Y, Kobayashi K. Induction of hepatic CYP3A4 expression by cholesterol and cholic acid: Alterations of gene expression, microsomal activity, and pharmacokinetics. Pharmacol Res Perspect 2024; 12:e1197. [PMID: 38644590 PMCID: PMC11033495 DOI: 10.1002/prp2.1197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/26/2024] [Indexed: 04/23/2024] Open
Abstract
Human cytochrome P450 3A4 (CYP3A4) is a drug-metabolizing enzyme that is abundantly expressed in the liver and intestine. It is an important issue whether compounds of interest affect the expression of CYP3A4 because more than 30% of commercially available drugs are metabolized by CYP3A4. In this study, we examined the effects of cholesterol and cholic acid on the expression level and activity of CYP3A4 in hCYP3A mice that have a human CYP3A gene cluster and show human-like regulation of the coding genes. A normal diet (ND, CE-2), CE-2 with 1% cholesterol and 0.5% cholic acid (HCD) or CE-2 with 0.5% cholic acid was given to the mice. The plasma concentrations of cholesterol, cholic acid and its metabolites in HCD mice were higher than those in ND mice. In this condition, the expression levels of hepatic CYP3A4 and the hydroxylation activities of triazolam, a typical CYP3A4 substrate, in liver microsomes of HCD mice were higher than those in liver microsomes of ND mice. Furthermore, plasma concentrations of triazolam in HCD mice were lower than those in ND mice. In conclusion, our study suggested that hepatic CYP3A4 expression and activity are influenced by the combination of cholesterol and cholic acid in vivo.
Collapse
Affiliation(s)
- Genki Minegishi
- Department of Biopharmaceutics, Graduate School of Clinical PharmacyMeiji Pharmaceutical UniversityKiyoseJapan
| | - Yuka Kobayashi
- Department of Biopharmaceutics, Graduate School of Clinical PharmacyMeiji Pharmaceutical UniversityKiyoseJapan
| | - Mayu Fujikura
- Department of Biopharmaceutics, Graduate School of Clinical PharmacyMeiji Pharmaceutical UniversityKiyoseJapan
| | - Ayane Sano
- Department of Biopharmaceutics, Graduate School of Clinical PharmacyMeiji Pharmaceutical UniversityKiyoseJapan
| | - Yasuhiro Kazuki
- Chromosome Engineering Research Center (CERC)Tottori UniversityTottoriJapan
- Department of Chromosome Biomedical Engineering, Faculty of Medicine, School of Life ScienceTottori UniversityTottoriJapan
| | - Kaoru Kobayashi
- Department of Biopharmaceutics, Graduate School of Clinical PharmacyMeiji Pharmaceutical UniversityKiyoseJapan
| |
Collapse
|
2
|
Florke Gee RR, Huber AD, Chen T. Regulation of PXR in drug metabolism: chemical and structural perspectives. Expert Opin Drug Metab Toxicol 2024; 20:9-23. [PMID: 38251638 PMCID: PMC10939797 DOI: 10.1080/17425255.2024.2309212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/19/2024] [Indexed: 01/23/2024]
Abstract
INTRODUCTION Pregnane X receptor (PXR) is a master xenobiotic sensor that transcriptionally controls drug metabolism and disposition pathways. PXR activation by pharmaceutical drugs, natural products, environmental toxins, etc. may decrease drug efficacy and increase drug-drug interactions and drug toxicity, indicating a therapeutic value for PXR antagonists. However, PXR's functions in physiological events, such as intestinal inflammation, indicate that PXR activators may be useful in certain disease contexts. AREAS COVERED We review the reported roles of PXR in various physiological and pathological processes including drug metabolism, cancer, inflammation, energy metabolism, and endobiotic homeostasis. We then highlight specific cellular and chemical routes that modulate PXR activity and discuss the functional consequences. Databases searched and inclusive dates: PubMed, 1 January 1980 to 10 January 2024. EXPERT OPINION Knowledge of PXR's drug metabolism function has helped drug developers produce small molecules without PXR-mediated metabolic liabilities, and further understanding of PXR's cellular functions may offer drug development opportunities in multiple disease settings.
Collapse
Affiliation(s)
- Rebecca R. Florke Gee
- Graduate School of Biomedical Sciences, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Andrew D. Huber
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
3
|
Kim H, Park C, Kim TH. Targeting Liver X Receptors for the Treatment of Non-Alcoholic Fatty Liver Disease. Cells 2023; 12:cells12091292. [PMID: 37174692 PMCID: PMC10177243 DOI: 10.3390/cells12091292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 04/29/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) refers to a range of conditions in which excess lipids accumulate in the liver, possibly leading to serious hepatic manifestations such as steatohepatitis, fibrosis/cirrhosis and cancer. Despite its increasing prevalence and significant impact on liver disease-associated mortality worldwide, no medication has been approved for the treatment of NAFLD yet. Liver X receptors α/β (LXRα and LXRβ) are lipid-activated nuclear receptors that serve as master regulators of lipid homeostasis and play pivotal roles in controlling various metabolic processes, including lipid metabolism, inflammation and immune response. Of note, NAFLD progression is characterized by increased accumulation of triglycerides and cholesterol, hepatic de novo lipogenesis, mitochondrial dysfunction and augmented inflammation, all of which are highly attributed to dysregulated LXR signaling. Thus, targeting LXRs may provide promising strategies for the treatment of NAFLD. However, emerging evidence has revealed that modulating the activity of LXRs has various metabolic consequences, as the main functions of LXRs can distinctively vary in a cell type-dependent manner. Therefore, understanding how LXRs in the liver integrate various signaling pathways and regulate metabolic homeostasis from a cellular perspective using recent advances in research may provide new insights into therapeutic strategies for NAFLD and associated metabolic diseases.
Collapse
Affiliation(s)
- Hyejin Kim
- College of Pharmacy, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Chaewon Park
- College of Pharmacy, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Tae Hyun Kim
- College of Pharmacy, Sookmyung Women's University, Seoul 04310, Republic of Korea
- Drug Information Research Institute, Sookmyung Women's University, Seoul 04310, Republic of Korea
- Muscle Physiome Research Center, Sookmyung Women's University, Seoul 04310, Republic of Korea
| |
Collapse
|
4
|
Brown AJ, Sharpe LJ, Rogers MJ. Oxysterols: From physiological tuners to pharmacological opportunities. Br J Pharmacol 2020; 178:3089-3103. [PMID: 32335907 DOI: 10.1111/bph.15073] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/11/2020] [Accepted: 04/14/2020] [Indexed: 02/06/2023] Open
Abstract
Oxysterols are oxygenated forms of cholesterol generated via autooxidation by free radicals and ROS, or formed enzymically by a variety of enzymes such as those involved in the synthesis of bile acids. Although found at very low concentrations in vivo, these metabolites play key roles in health and disease, particularly in development and regulating immune cell responses, by binding to effector proteins such as LXRα, RORγ and Insig and directly or indirectly regulating transcriptional programmes that affect cell metabolism and function. In this review, we summarise the routes by which oxysterols can be generated and subsequently modified to other oxysterol metabolites and highlight their diverse and profound biological functions and opportunities to alter their levels using pharmacological approaches. LINKED ARTICLES: This article is part of a themed issue on Oxysterols, Lifelong Health and Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.16/issuetoc.
Collapse
Affiliation(s)
- Andrew J Brown
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | - Laura J Sharpe
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | - Michael J Rogers
- Garvan Institute of Medical Research and St Vincent's Clinical School, UNSW Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
5
|
Nikolaou N, Arvaniti A, Appanna N, Sharp A, Hughes BA, Digweed D, Whitaker MJ, Ross R, Arlt W, Penning TM, Morris K, George S, Keevil BG, Hodson L, Gathercole LL, Tomlinson JW. Glucocorticoids regulate AKR1D1 activity in human liver in vitro and in vivo. J Endocrinol 2020; 245:207-218. [PMID: 32106090 PMCID: PMC7182088 DOI: 10.1530/joe-19-0473] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 02/27/2020] [Indexed: 12/14/2022]
Abstract
Steroid 5β-reductase (AKR1D1) is highly expressed in human liver where it inactivates endogenous glucocorticoids and catalyses an important step in bile acid synthesis. Endogenous and synthetic glucocorticoids are potent regulators of metabolic phenotype and play a crucial role in hepatic glucose metabolism. However, the potential of synthetic glucocorticoids to be metabolised by AKR1D1 as well as to regulate its expression and activity has not been investigated. The impact of glucocorticoids on AKR1D1 activity was assessed in human liver HepG2 and Huh7 cells; AKR1D1 expression was assessed by qPCR and Western blotting. Genetic manipulation of AKR1D1 expression was conducted in HepG2 and Huh7 cells and metabolic assessments were made using qPCR. Urinary steroid metabolite profiling in healthy volunteers was performed pre- and post-dexamethasone treatment, using gas chromatography-mass spectrometry. AKR1D1 metabolised endogenous cortisol, but cleared prednisolone and dexamethasone less efficiently. In vitro and in vivo, dexamethasone decreased AKR1D1 expression and activity, further limiting glucocorticoid clearance and augmenting action. Dexamethasone enhanced gluconeogenic and glycogen synthesis gene expression in liver cell models and these changes were mirrored by genetic knockdown of AKR1D1 expression. The effects of AKR1D1 knockdown were mediated through multiple nuclear hormone receptors, including the glucocorticoid, pregnane X and farnesoid X receptors. Glucocorticoids down-regulate AKR1D1 expression and activity and thereby reduce glucocorticoid clearance. In addition, AKR1D1 down-regulation alters the activation of multiple nuclear hormone receptors to drive changes in gluconeogenic and glycogen synthesis gene expression profiles, which may exacerbate the adverse impact of exogenous glucocorticoids.
Collapse
Affiliation(s)
- Nikolaos Nikolaou
- Oxford Centre for Diabetes,
Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre,
University of Oxford, Churchill Hospital, Oxford, UK
| | - Anastasia Arvaniti
- Oxford Centre for Diabetes,
Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre,
University of Oxford, Churchill Hospital, Oxford, UK
- Department of Biological and Medical
Sciences, Oxford Brookes University, Oxford,
UK
| | - Nathan Appanna
- Oxford Centre for Diabetes,
Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre,
University of Oxford, Churchill Hospital, Oxford, UK
| | - Anna Sharp
- Oxford Centre for Diabetes,
Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre,
University of Oxford, Churchill Hospital, Oxford, UK
| | - Beverly A Hughes
- Institute of Metabolism and Systems
Research, University of Birmingham, Edgbaston, Birmingham,
UK
| | | | | | - Richard Ross
- Department of Oncology and
Metabolism, Faculty of Medicine, Dentistry and Health,
University of Sheffield, Sheffield, UK
| | - Wiebke Arlt
- Institute of Metabolism and Systems
Research, University of Birmingham, Edgbaston, Birmingham,
UK
- NIHR Birmingham Biomedical Research
Centre, University Hospitals Birmingham NHS Foundation Trust
and University of Birmingham, Birmingham, UK
| | - Trevor M Penning
- Department of Systems Pharmacology &
Translational Therapeutics, University of Pennsylvania Perelman
School of Medicine, Philadelphia, Pennsylvania, USA
| | - Karen Morris
- Biochemistry Department,
Manchester University NHS Trust, Manchester, UK
| | - Sherly George
- Biochemistry Department,
Manchester University NHS Trust, Manchester, UK
| | - Brian G Keevil
- Biochemistry Department,
Manchester University NHS Trust, Manchester, UK
| | - Leanne Hodson
- Oxford Centre for Diabetes,
Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre,
University of Oxford, Churchill Hospital, Oxford, UK
| | - Laura L Gathercole
- Oxford Centre for Diabetes,
Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre,
University of Oxford, Churchill Hospital, Oxford, UK
- Department of Biological and Medical
Sciences, Oxford Brookes University, Oxford,
UK
| | - Jeremy W Tomlinson
- Oxford Centre for Diabetes,
Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre,
University of Oxford, Churchill Hospital, Oxford, UK
- Correspondence should be addressed to J W Tomlinson:
| |
Collapse
|
6
|
Hansmann E, Mennillo E, Yoda E, Verreault M, Barbier O, Chen S, Tukey RH. Differential Role of Liver X Receptor (LXR) α and LXR β in the Regulation of UDP-Glucuronosyltransferase 1A1 in Humanized UGT1 Mice. Drug Metab Dispos 2020; 48:255-263. [PMID: 31980500 DOI: 10.1124/dmd.119.090068] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 01/14/2020] [Indexed: 12/17/2022] Open
Abstract
Liver X receptors (LXRs), LXRα and LXRβ, are nuclear receptors that regulate the metabolism of cholesterol and bile acids and are activated by oxysterols. Humanized UGT1 (hUGT1) mice express the 9-human UGT1A genes associated with the UGT1 locus in a Ugt1-null background. The expression of UGT1A1 is developmentally delayed in the liver and intestines, resulting in the accumulation of serum bilirubin during the neonatal period. Induction of UGT1A1 in newborn hUGT1 mice leads to rapid reduction in total serum bilirubin (TSB) levels, a phenotype measurement that allows for an accurate prediction on UGT1A1 expression. When neonatal hUGT1 mice were treated by oral gavage with the LXR agonist T0901317, TSB levels were dramatically reduced. To determine the LXR contribution to the induction of UGT1A1 and the lowering of TSB levels, experiments were conducted in neonatal hUGT1/Lxrα -/- , hUGT1/Lxrβ -/- , and hUGT1/Lxrαβ -/- mice treated with T0901317. Induction of liver UGT1A1 was dependent upon LXRα, with the induction pattern paralleling induction of LXRα-specific stearoyl CoA desaturase 1. However, the actions of T0901317 were also shown to display a lack of specificity for LXR, with the induction of liver UGT1A1 in hUGT1/Lxrαβ -/- mice, a result associated with activation of both pregnane X receptor and constitutive androstane receptor. However, the LXR agonist GW3965 was highly selective toward LXRα, showing no impact on lowering TSB values or inducing UGT1A1 in hUGT1/Lxrα -/- mice. An LXR-specific enhancer site on the UGT1A1 gene was identified, along with convincing evidence that LXRα is crucial in maintaining constitutive expression of UGT1A1 in adult hUGT1 mice. SIGNIFICANCE STATEMENT: It has been established that activation of LXRα, and not LXRβ, is responsible for the induction of liver UGT1A1 and metabolism of serum bilirubin in neonatal hUGT1 mice. Although induction of the human UGT1A1 gene is initiated at a newly characterized LXR enhancer site, allelic deletion of the Lxrα gene drastically reduces the constitutive expression of liver UGT1A1 in adult hUGT1 mice. Combined, these findings indicate that LXRα is critical for the developmental expression of UGT1A1.
Collapse
Affiliation(s)
- Eva Hansmann
- Laboratory of Environmental Toxicology, Department of Pharmacology, University of California, San Diego, La Jolla, California (E.H., E.M., E.Y., S.C., R.H.T.); Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, Shinagawa-ku, Tokyo, Japan (E.Y.); and Laboratory of Moléculaire Pharmacology, Centre de Recherche du CHU de Québec, Faculté of Pharmacie, Université Laval Québec, Québec, Canada (M.V., O.B.)
| | - Elvira Mennillo
- Laboratory of Environmental Toxicology, Department of Pharmacology, University of California, San Diego, La Jolla, California (E.H., E.M., E.Y., S.C., R.H.T.); Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, Shinagawa-ku, Tokyo, Japan (E.Y.); and Laboratory of Moléculaire Pharmacology, Centre de Recherche du CHU de Québec, Faculté of Pharmacie, Université Laval Québec, Québec, Canada (M.V., O.B.)
| | - Emiko Yoda
- Laboratory of Environmental Toxicology, Department of Pharmacology, University of California, San Diego, La Jolla, California (E.H., E.M., E.Y., S.C., R.H.T.); Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, Shinagawa-ku, Tokyo, Japan (E.Y.); and Laboratory of Moléculaire Pharmacology, Centre de Recherche du CHU de Québec, Faculté of Pharmacie, Université Laval Québec, Québec, Canada (M.V., O.B.)
| | - Mélanie Verreault
- Laboratory of Environmental Toxicology, Department of Pharmacology, University of California, San Diego, La Jolla, California (E.H., E.M., E.Y., S.C., R.H.T.); Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, Shinagawa-ku, Tokyo, Japan (E.Y.); and Laboratory of Moléculaire Pharmacology, Centre de Recherche du CHU de Québec, Faculté of Pharmacie, Université Laval Québec, Québec, Canada (M.V., O.B.)
| | - Olivier Barbier
- Laboratory of Environmental Toxicology, Department of Pharmacology, University of California, San Diego, La Jolla, California (E.H., E.M., E.Y., S.C., R.H.T.); Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, Shinagawa-ku, Tokyo, Japan (E.Y.); and Laboratory of Moléculaire Pharmacology, Centre de Recherche du CHU de Québec, Faculté of Pharmacie, Université Laval Québec, Québec, Canada (M.V., O.B.)
| | - Shujuan Chen
- Laboratory of Environmental Toxicology, Department of Pharmacology, University of California, San Diego, La Jolla, California (E.H., E.M., E.Y., S.C., R.H.T.); Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, Shinagawa-ku, Tokyo, Japan (E.Y.); and Laboratory of Moléculaire Pharmacology, Centre de Recherche du CHU de Québec, Faculté of Pharmacie, Université Laval Québec, Québec, Canada (M.V., O.B.)
| | - Robert H Tukey
- Laboratory of Environmental Toxicology, Department of Pharmacology, University of California, San Diego, La Jolla, California (E.H., E.M., E.Y., S.C., R.H.T.); Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, Shinagawa-ku, Tokyo, Japan (E.Y.); and Laboratory of Moléculaire Pharmacology, Centre de Recherche du CHU de Québec, Faculté of Pharmacie, Université Laval Québec, Québec, Canada (M.V., O.B.)
| |
Collapse
|
7
|
Ahmadi Y, Karimian R, Panahi Y. Effects of statins on the chemoresistance-The antagonistic drug-drug interactions versus the anti-cancer effects. Biomed Pharmacother 2018; 108:1856-1865. [PMID: 30372891 DOI: 10.1016/j.biopha.2018.09.122] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/16/2018] [Accepted: 09/19/2018] [Indexed: 12/31/2022] Open
Abstract
There has been growing interest in the potential anti-cancer activity of statins based on evidence of their anti-proliferative, pro-apoptotic, and radiosensitizing properties, but no studies have focused on the effects of statins on the chemoresistance. In spite of their direct cytostatic/cytotoxic effects on the cancer cells, statins via drug interactions may affect therapeutic effects of the chemotherapy agents and so cause chemoresistance in cancer cells. Here, we aim to present the molecular mechanisms underlying cytotoxic effects of statins on the cancer cells against those mechanisms by which statins may lead to chemoresistance, in order to clarify whether the positive effects of the co-treatment of statins on the efficiency of chemotherapeutic agents is due to the natural anti-cancer effects of statins or it is due to increasing the cellular concentrations of chemotherapy drugs in cancer cells.
Collapse
Affiliation(s)
- Yasin Ahmadi
- Chemical Injuries Research Center, Systems biology and poisonings institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Ramin Karimian
- Chemical Injuries Research Center, Systems biology and poisonings institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Yunes Panahi
- Chemical Injuries Research Center, Systems biology and poisonings institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Cocci P, Mosconi G, Palermo FA. Pregnane X receptor (PXR) signaling in seabream primary hepatocytes exposed to extracts of seawater samples collected from polycyclic aromatic hydrocarbons (PAHs)-contaminated coastal areas. MARINE ENVIRONMENTAL RESEARCH 2017; 130:181-186. [PMID: 28760623 DOI: 10.1016/j.marenvres.2017.07.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 07/04/2017] [Accepted: 07/18/2017] [Indexed: 06/07/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are persistent organic pollutants damaging to the marine environment and the wildlife. Herein, we investigated the effects of extracts from coastal seawaters (central Adriatic sea, Italy), showing high concentrations of PAHs, on pregnane X receptor (PXR)-transcriptional regulation of the cytochrome P450 3A (CYP3A) gene using seabream primary hepatocytes. The results show that concentrated extracts of seawater with original ΣPAH concentrations above the putative threshold of 30 ng L-1 increased expression of PXR and its main target gene, CYP3A. Similar results were observed for LXR and its target gene SREBP-1c suggesting pathway cross-talk. These data are further supported by the finding of multiple PXR and LXR response elements in the putative promoters of their target genes. Overall, our data indicate the capacity of seawater extracts, containing environmentally relevant levels of PAHs, to affect multiple pathways, including lipid and cholesterol metabolism.
Collapse
Affiliation(s)
- Paolo Cocci
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III Da Varano, I-62032 Camerino, MC, Italy
| | - Gilberto Mosconi
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III Da Varano, I-62032 Camerino, MC, Italy
| | - Francesco Alessandro Palermo
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III Da Varano, I-62032 Camerino, MC, Italy.
| |
Collapse
|
9
|
Tanaka N, Aoyama T, Kimura S, Gonzalez FJ. Targeting nuclear receptors for the treatment of fatty liver disease. Pharmacol Ther 2017; 179:142-157. [PMID: 28546081 DOI: 10.1016/j.pharmthera.2017.05.011] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ligand-activated nuclear receptors, including peroxisome proliferator-activated receptor alpha (PPARα), pregnane X receptor, and constitutive androstane receptor, were first identified as key regulators of the responses against chemical toxicants. However, numerous studies using mouse disease models and human samples have revealed critical roles for these receptors and others, such as PPARβ/δ, PPARγ, farnesoid X receptor (FXR), and liver X receptor (LXR), in maintaining nutrient/energy homeostasis in part through modulation of the gut-liver-adipose axis. Recently, disorders associated with disrupted nutrient/energy homeostasis, e.g., obesity, metabolic syndrome, and non-alcoholic fatty liver disease (NAFLD), are increasing worldwide. Notably, in NAFLD, a progressive subtype exists, designated as non-alcoholic steatohepatitis (NASH) that is characterized by typical histological features resembling alcoholic steatohepatitis (ASH), and NASH/ASH are recognized as major causes of hepatitis virus-unrelated liver cirrhosis and hepatocellular carcinoma. Since hepatic steatosis is basically caused by an imbalance between fat/energy influx and utilization, abnormal signaling of these nuclear receptors contribute to the pathogenesis of fatty liver disease. Standard therapeutic interventions have not been fully established for fatty liver disease, but some new agents that activate or inhibit nuclear receptor signaling have shown promise as possible therapeutic targets. In this review, we summarize recent findings on the roles of nuclear receptors in fatty liver disease and discuss future perspectives to develop promising pharmacological strategies targeting nuclear receptors for NAFLD/NASH.
Collapse
Affiliation(s)
- Naoki Tanaka
- Department of Metabolic Regulation, Shinshu University Graduate School of Medicine, Matsumoto, Nagano, Japan.
| | - Toshifumi Aoyama
- Department of Metabolic Regulation, Shinshu University Graduate School of Medicine, Matsumoto, Nagano, Japan
| | - Shioko Kimura
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Frank J Gonzalez
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
10
|
Cave MC, Clair HB, Hardesty JE, Falkner KC, Feng W, Clark BJ, Sidey J, Shi H, Aqel BA, McClain CJ, Prough RA. Nuclear receptors and nonalcoholic fatty liver disease. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:1083-1099. [PMID: 26962021 DOI: 10.1016/j.bbagrm.2016.03.002] [Citation(s) in RCA: 208] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 02/29/2016] [Accepted: 03/01/2016] [Indexed: 02/08/2023]
Abstract
Nuclear receptors are transcription factors which sense changing environmental or hormonal signals and effect transcriptional changes to regulate core life functions including growth, development, and reproduction. To support this function, following ligand-activation by xenobiotics, members of subfamily 1 nuclear receptors (NR1s) may heterodimerize with the retinoid X receptor (RXR) to regulate transcription of genes involved in energy and xenobiotic metabolism and inflammation. Several of these receptors including the peroxisome proliferator-activated receptors (PPARs), the pregnane and xenobiotic receptor (PXR), the constitutive androstane receptor (CAR), the liver X receptor (LXR) and the farnesoid X receptor (FXR) are key regulators of the gut:liver:adipose axis and serve to coordinate metabolic responses across organ systems between the fed and fasting states. Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease and may progress to cirrhosis and even hepatocellular carcinoma. NAFLD is associated with inappropriate nuclear receptor function and perturbations along the gut:liver:adipose axis including obesity, increased intestinal permeability with systemic inflammation, abnormal hepatic lipid metabolism, and insulin resistance. Environmental chemicals may compound the problem by directly interacting with nuclear receptors leading to metabolic confusion and the inability to differentiate fed from fasting conditions. This review focuses on the impact of nuclear receptors in the pathogenesis and treatment of NAFLD. Clinical trials including PIVENS and FLINT demonstrate that nuclear receptor targeted therapies may lead to the paradoxical dissociation of steatosis, inflammation, fibrosis, insulin resistance, dyslipidemia and obesity. Novel strategies currently under development (including tissue-specific ligands and dual receptor agonists) may be required to separate the beneficial effects of nuclear receptor activation from unwanted metabolic side effects. The impact of nuclear receptor crosstalk in NAFLD is likely to be profound, but requires further elucidation. This article is part of a Special Issue entitled: Xenobiotic nuclear receptors: New Tricks for An Old Dog, edited by Dr. Wen Xie.
Collapse
Affiliation(s)
- Matthew C Cave
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, KY 40202, USA; Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA; The Robley Rex Veterans Affairs Medical Center, Louisville, KY 40206, USA; The KentuckyOne Health Jewish Hospital Liver Transplant Program, Louisville, KY 40202, USA.
| | - Heather B Clair
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Josiah E Hardesty
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - K Cameron Falkner
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Wenke Feng
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Barbara J Clark
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Jennifer Sidey
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Hongxue Shi
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Bashar A Aqel
- Department of Medicine, Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Scottsdale, AZ 85054, USA
| | - Craig J McClain
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA; The Robley Rex Veterans Affairs Medical Center, Louisville, KY 40206, USA; The KentuckyOne Health Jewish Hospital Liver Transplant Program, Louisville, KY 40202, USA
| | - Russell A Prough
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| |
Collapse
|
11
|
Sandoval-Hernández A, Contreras MJ, Jaramillo J, Arboleda G. Regulation of Oligodendrocyte Differentiation and Myelination by Nuclear Receptors: Role in Neurodegenerative Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 949:287-310. [DOI: 10.1007/978-3-319-40764-7_14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
12
|
Nian S, Gan X, Tan X, Yu Z, Wang P, Chen X, Wang G. Discovery and Synthesis of a Novel Series of Liver X Receptor Antagonists. Chem Pharm Bull (Tokyo) 2015; 63:628-35. [PMID: 26062802 DOI: 10.1248/cpb.c15-00261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fourteen novel compounds were prepared and their antagonistic activities against liver X receptors (LXR) α/β were tested in vitro. Compound 26 had an IC50 value of 6.4 µM against LXRα and an IC50 value of 5.6 µM against LXRβ. Docking studies and the results of structure-activity relationships support the further development of this chemical series as LXRα/β antagonists.
Collapse
Affiliation(s)
- Siyun Nian
- Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry
| | | | | | | | | | | | | |
Collapse
|
13
|
Irwin RW, Solinsky CM, Brinton RD. Frontiers in therapeutic development of allopregnanolone for Alzheimer's disease and other neurological disorders. Front Cell Neurosci 2014; 8:203. [PMID: 25126056 PMCID: PMC4115668 DOI: 10.3389/fncel.2014.00203] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 07/04/2014] [Indexed: 01/08/2023] Open
Abstract
Allopregnanolone (Allo), a neurosteroid, has emerged as a promising promoter of endogenous regeneration in brain. In a mouse model of Alzheimer’s disease, Allo induced neurogenesis, oligodendrogenesis, white matter generation and cholesterol homeostasis while simultaneously reducing β-amyloid and neuroinflammatory burden. Allo activates signaling pathways and gene expression required for regeneration of neural stem cells and their differentiation into neurons. In parallel, Allo activates systems to sustain cholesterol homeostasis and reduce β-amyloid generation. To advance Allo into studies for chronic human neurological conditions, we examined translational and clinical parameters: dose, regimen, route, formulation, outcome measures, and safety regulations. A treatment regimen of once per week at sub-sedative doses of Allo was optimal for regeneration and reduction in Alzheimer’s pathology. This regimen had a high safety profile following chronic exposure in aged normal and Alzheimer’s mice. Formulation of Allo for multiple routes of administration has been developed for both preclinical and clinical testing. Preclinical evidence for therapeutic efficacy of Allo spans multiple neurological diseases including Alzheimer’s, Parkinson’s, multiple sclerosis, Niemann-Pick, diabetic neuropathy, status epilepticus, and traumatic brain injury. To successfully translate Allo as a therapeutic for multiple neurological disorders, it will be necessary to tailor dose and regimen to the targeted therapeutic mechanisms and disease etiology. Treatment paradigms conducted in accelerated disease models in young animals have a low probability of successful translation to chronic diseases in adult and aged humans. Gender, genetic risks, stage and burden of disease are critical determinants of efficacy. This review focuses on recent advances in development of Allo for Alzheimer’s disease (AD) that have the potential to accelerate therapeutic translation for multiple unmet neurological needs.
Collapse
Affiliation(s)
- Ronald W Irwin
- Department of Pharmacology and Pharmaceutical Sciences, Pharmaceutical Sciences Center, School of Pharmacy, University of Southern California Los Angeles, CA, USA
| | - Christine M Solinsky
- Clinical and Experimental Therapeutics Program, School of Pharmacy, University of Southern California Los Angeles, CA, USA
| | - Roberta Diaz Brinton
- Department of Pharmacology and Pharmaceutical Sciences, Pharmaceutical Sciences Center, School of Pharmacy, University of Southern California Los Angeles, CA, USA ; Department of Neurology, Keck School of Medicine, University of Southern California Los Angeles, CA, USA
| |
Collapse
|
14
|
Tuntland T, Ethell B, Kosaka T, Blasco F, Zang RX, Jain M, Gould T, Hoffmaster K. Implementation of pharmacokinetic and pharmacodynamic strategies in early research phases of drug discovery and development at Novartis Institute of Biomedical Research. Front Pharmacol 2014; 5:174. [PMID: 25120485 PMCID: PMC4112793 DOI: 10.3389/fphar.2014.00174] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 07/05/2014] [Indexed: 12/20/2022] Open
Abstract
Characterizing the relationship between the pharmacokinetics (PK, concentration vs. time) and pharmacodynamics (PD, effect vs. time) is an important tool in the discovery and development of new drugs in the pharmaceutical industry. The purpose of this publication is to serve as a guide for drug discovery scientists toward optimal design and conduct of PK/PD studies in the research phase. This review is a result of the collaborative efforts of DMPK scientists from various Metabolism and Pharmacokinetic (MAP) departments of the global organization Novartis Institute of Biomedical Research (NIBR). We recommend that PK/PD strategies be implemented in early research phases of drug discovery projects to enable successful transition to drug development. Effective PK/PD study design, analysis, and interpretation can help scientists elucidate the relationship between PK and PD, understand the mechanism of drug action, and identify PK properties for further improvement and optimal compound design. Additionally, PK/PD modeling can help increase the translation of in vitro compound potency to the in vivo setting, reduce the number of in vivo animal studies, and improve translation of findings from preclinical species into the clinical setting. This review focuses on three important elements of successful PK/PD studies, namely partnership among key scientists involved in the study execution; parameters that influence study designs; and data analysis and interpretation. Specific examples and case studies are highlighted to help demonstrate key points for consideration. The intent is to provide a broad PK/PD foundation for colleagues in the pharmaceutical industry and serve as a tool to promote appropriate discussions on early research project teams with key scientists involved in PK/PD studies.
Collapse
Affiliation(s)
- Tove Tuntland
- Metabolism and Pharmacokinetics, Genomics Institute of Novartis Research Foundation San Diego, CA, USA
| | - Brian Ethell
- Metabolism and Pharmacokinetics, Novartis Institute of Biomedical Research Horsham, West Sussex, UK
| | - Takatoshi Kosaka
- Metabolism and Pharmacokinetics, Novartis Institute of Biomedical Research Horsham, West Sussex, UK
| | - Francesca Blasco
- Metabolism and Pharmacokinetics, Novartis Institute of Tropical Diseases Singapore, Singapore
| | - Richard Xu Zang
- Metabolism and Pharmacokinetics, Novartis Institute of Biomedical Research Emeryville, CA, USA
| | - Monish Jain
- Metabolism and Pharmacokinetics, Novartis Institute of Biomedical Research Cambridge, MA, USA
| | - Ty Gould
- Metabolism and Pharmacokinetics, Novartis Institute of Biomedical Research Cambridge, MA, USA
| | - Keith Hoffmaster
- Metabolism and Pharmacokinetics, Novartis Institute of Biomedical Research Cambridge, MA, USA
| |
Collapse
|
15
|
Irwin RW, Brinton RD. Allopregnanolone as regenerative therapeutic for Alzheimer's disease: Translational development and clinical promise. Prog Neurobiol 2014; 113:40-55. [PMID: 24044981 PMCID: PMC10124616 DOI: 10.1016/j.pneurobio.2013.08.004] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 08/22/2013] [Accepted: 08/25/2013] [Indexed: 10/26/2022]
Abstract
Herein, we review a translational development plan to advance allopregnanolone to the clinic as a regenerative therapeutic for neurodegenerative diseases, in particular Alzheimer's. Allopregnanolone, an endogenous neurosteroid that declines with age and neurodegenerative disease, was exogenously administered and assessed for safety and efficacy to promote neuro-regeneration, cognitive function and reduction of Alzheimer's pathology. Allopregnanolone-induced neurogenesis correlated with restoration of learning and memory function in a mouse model of Alzheimer's disease and was comparably efficacious in aged normal mice. Critical to success was a dosing and treatment regimen that was consistent with the temporal requirements of systems biology of regeneration in brain. A treatment regimen that adhered to regenerative requirements of brain was also efficacious in reducing Alzheimer's pathology. With an optimized dosing and treatment regimen, chronic allopregnanolone administration promoted neurogenesis, oligodendrogenesis, reduced neuroinflammation and beta-amyloid burden while increasing markers of white matter generation and cholesterol homeostasis. Allopregnanolone meets three of the four drug-like physicochemical properties described by Lipinski's rule that predict the success rate of drugs in development for clinical trials. Pharmacokinetic and pharmacodynamic outcomes, securing GMP material, development of clinically translatable formulations and acquiring regulatory approval are discussed. Investigation of allopregnanolone as a regenerative therapeutic has provided key insights into mechanistic targets for neurogenesis and disease modification, dosing requirements, optimal treatment regimen, route of administration and the appropriate formulation necessary to advance to proof of concept clinical studies to determine efficacy of allopregnanolone as a regenerative and disease modifying therapeutic for Alzheimer's disease.
Collapse
|
16
|
Gährs M, Roos R, Andersson PL, Schrenk D. Role of the nuclear xenobiotic receptors CAR and PXR in induction of cytochromes P450 by non-dioxinlike polychlorinated biphenyls in cultured rat hepatocytes. Toxicol Appl Pharmacol 2013; 272:77-85. [DOI: 10.1016/j.taap.2013.05.034] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 05/28/2013] [Accepted: 05/29/2013] [Indexed: 12/12/2022]
|
17
|
De Boussac H, Alioui A, Viennois E, Dufour J, Trousson A, Vega A, Guy L, Volle DH, Lobaccaro JMA, Baron S. Oxysterol receptors and their therapeutic applications in cancer conditions. Expert Opin Ther Targets 2013; 17:1029-38. [PMID: 23875732 DOI: 10.1517/14728222.2013.820708] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Oxysterols are implicated in various cellular processes. Among their target proteins, liver X receptors (LXRs) α and β modulate the cell cycle in a large range of cancer cell lines. Besides their role as cholesterol sensors, LXRs are also involved in the proliferation/apoptosis balance regulation in various types of cancers. AREAS COVERED This review covers oxysterols and derivatives of cholesterol as well as synthetic or natural ligands (agonist/antagonist) of LXRs. Most tumor cell lines are sensitive to LXR activation. Indeed various cancers are concerned such as prostate, breast, glioblastoma, colorectal, and ovary tumors, and leukemia. EXPERT OPINION Developing the use of LXR ligands in human health, especially in the field of cancer, represents a novel and promising strategy. Despite a wide spectrum of applications, numerous adverse effects of LXR activation need to be solved before genuine clinical trials in humans. Future directions will be based on the engineering of selective LXRs modulators (SLiMs) as already done for nuclear steroid receptors.
Collapse
Affiliation(s)
- Hugues De Boussac
- Clermont Université, Université Blaise Pascal, Génétique Reproduction et Développement, BP 10448, F-63000 Clermont-Ferrand, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Xu P, Li D, Tang X, Bao X, Huang J, Tang Y, Yang Y, Xu H, Fan X. LXR Agonists: New Potential Therapeutic Drug for Neurodegenerative Diseases. Mol Neurobiol 2013; 48:715-28. [DOI: 10.1007/s12035-013-8461-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 04/09/2013] [Indexed: 01/04/2023]
|
19
|
Nagy ZS, Czimmerer Z, Nagy L. Nuclear receptor mediated mechanisms of macrophage cholesterol metabolism. Mol Cell Endocrinol 2013; 368:85-98. [PMID: 22546548 DOI: 10.1016/j.mce.2012.04.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 04/05/2012] [Accepted: 04/10/2012] [Indexed: 10/28/2022]
Abstract
Macrophages comprise a family of multi-faceted phagocytic effector cells that differentiate "in situ" from circulating monocytes to exert various functions including clearance of foreign pathogens as well as debris derived from host cells. Macrophages also possess the ability to engulf and metabolize lipids and this way connect lipid metabolism and inflammation. The molecular link between these processes is provided by certain members of the nuclear receptor family. For instance, peroxisome proliferator activated receptors (PPAR) and liver X receptors (LXR) are able to sense the dynamically changing lipid environment and translate it to gene expression changes in order to modulate the cellular phenotype. Atherosclerosis embodies both sides of this coin: it is a disease in which macrophages with altered cholesterol metabolism keep the arteries in a chronically inflamed state. A large body of publications has accumulated during the past few decades describing the role of nuclear receptors in the regulation of macrophage cholesterol homeostasis, their contribution to the formation of atherosclerotic plaques and their crosstalk with inflammatory pathways. This review will summarize the most recent findings from this field narrowly focusing on the contribution of various nuclear receptors to macrophage cholesterol metabolism.
Collapse
Affiliation(s)
- Zsuzsanna S Nagy
- Department of Biochemistry and Molecular Biology, Research Center for Molecular Medicine, University of Debrecen Medical and Health Science Center, H-4032 Debrecen, Nagyerdei krt 98, Hungary.
| | | | | |
Collapse
|
20
|
Burris TP, Solt LA, Wang Y, Crumbley C, Banerjee S, Griffett K, Lundasen T, Hughes T, Kojetin DJ. Nuclear receptors and their selective pharmacologic modulators. Pharmacol Rev 2013; 65:710-78. [PMID: 23457206 PMCID: PMC11060414 DOI: 10.1124/pr.112.006833] [Citation(s) in RCA: 187] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Nuclear receptors are ligand-activated transcription factors and include the receptors for steroid hormones, lipophilic vitamins, sterols, and bile acids. These receptors serve as targets for development of myriad drugs that target a range of disorders. Classically defined ligands that bind to the ligand-binding domain of nuclear receptors, whether they are endogenous or synthetic, either activate receptor activity (agonists) or block activation (antagonists) and due to the ability to alter activity of the receptors are often termed receptor "modulators." The complex pharmacology of nuclear receptors has provided a class of ligands distinct from these simple modulators where ligands display agonist/partial agonist/antagonist function in a tissue or gene selective manner. This class of ligands is defined as selective modulators. Here, we review the development and pharmacology of a range of selective nuclear receptor modulators.
Collapse
Affiliation(s)
- Thomas P Burris
- The Scripps Research Institute, 130 Scripps Way 2A1, Jupiter, FL 33458, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Sodhi RK, Singh N. Liver X receptors: emerging therapeutic targets for Alzheimer's disease. Pharmacol Res 2013; 72:45-51. [PMID: 23542729 DOI: 10.1016/j.phrs.2013.03.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 03/11/2013] [Accepted: 03/21/2013] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder, typified by the pathological accumulation of ß-amyloid peptides (Aß) and neurofibrillary tangles within the brain, culminating to cognitive impairment. Epidemiological and biochemical data have suggested a link between cholesterol content, APP (amyloid precursor protein) processing, Aß, inflammation and AD. The intricacy of the disease presents considerable challenges for the development of newer therapeutic agents. Liver X receptors (LXRa and LXRß) are oxysterol activated nuclear receptors that play essential role in lipid and glucose homeostasis, steroidogenesis and inflammatory responses. LXR signalling impacts the development of AD pathology through multiple pathways. Reports indicate that genetic loss of either lxra or lxrß in APP/PS1 transgenic mice results in increased amyloid plaque load. Studies also suggest that ligand activation of LXRs in Tg2576 mice enhanced, the expression of genes linked with cholesterol efflux e.g. apoe, abca-1, down regulated APP processing and Aß production with significant improvement in memory functions. LXR agonists have also depicted to inhibit neuroinflammation through modulation of microglial phagocytosis and by repressing the expression of cox2, mcp1 and iNos in glial cells. This review summarizes in brief the biology of LXRs, with an emphasis on their probable pathophysiological mechanisms that may elicit the defending role of these receptors in brains of AD patients.
Collapse
Affiliation(s)
- Rupinder K Sodhi
- Pharmacology Division, Department of Pharmaceutical Sciences and Drug Research, Faculty of Medicine, Punjabi University, Patiala 147002, Punjab, India
| | | |
Collapse
|
22
|
Caiozzi G, Wong BS, Ricketts ML. Dietary modification of metabolic pathways via nuclear hormone receptors. Cell Biochem Funct 2012; 30:531-51. [PMID: 23027406 DOI: 10.1002/cbf.2842] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 04/07/2012] [Accepted: 05/09/2012] [Indexed: 12/17/2022]
Abstract
Nuclear hormone receptors (NHRs), as ligand-dependent transcription factors, have emerged as important mediators in the control of whole body metabolism. Because of the promiscuous nature of several members of this superfamily that have been found to bind ligand with lower affinity than the classical steroid NHRs, they consequently display a broader ligand selectivity. This promiscuous nature has facilitated various bioactive dietary components being able to act as agonist ligands for certain members of the NHR superfamily. By binding to these NHRs, bioactive dietary components are able to mediate changes in various metabolic pathways, including, glucose, cholesterol and triglyceride homeostasis among others. This review will provide a general overview of the nuclear hormone receptors that have been shown to be activated by dietary components. The physiological consequences of such receptor activation by these dietary components will then be discussed in more detail.
Collapse
Affiliation(s)
- Gianella Caiozzi
- Department of Agriculture, Nutrition and Veterinary Sciences, University of Nevada Reno, Reno, NV 89557, USA
| | | | | |
Collapse
|
23
|
Viennois E, Mouzat K, Dufour J, Morel L, Lobaccaro JM, Baron S. Selective liver X receptor modulators (SLiMs): what use in human health? Mol Cell Endocrinol 2012; 351:129-41. [PMID: 21907760 DOI: 10.1016/j.mce.2011.08.036] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 08/23/2011] [Accepted: 08/27/2011] [Indexed: 11/28/2022]
Abstract
Liver X receptors (LXR) are members of the nuclear receptor family. As activated transcription factors, their putative association with human diseases makes them promising pharmacological targets because of the large potential to develop ligands. LXR are mainly considered as intracellular cholesterol "sensors" whose activation leads to decreased plasma cholesterol. They also modulate numerous physiological functions: fatty acid synthesis and metabolism, glucose homeostasis, steroidogenesis, immunity, and neurological homeostasis. LXR-deficiency in mouse results in several phenotypes mimicking pathological conditions in humans. This review will be focused on the various natural and synthetic LXR agonists and antagonists. Putative clinical targets including atherosclerosis, diabetes, Alzheimer's disease, skin disorders, and cancer will be covered.
Collapse
Affiliation(s)
- Emilie Viennois
- Clermont Université, Université Blaise Pascal, Génétique Reproduction et Développement, BP 10448, F-63000 Clermont-Ferrand, France
| | | | | | | | | | | |
Collapse
|
24
|
Saini SP, Zhang B, Niu Y, Jiang M, Gao J, Zhai Y, Lee JH, Uppal H, Tian H, Tortorici MA, Poloyac SM, Qin W, Venkataramanan R, Xie W. Activation of liver X receptor increases acetaminophen clearance and prevents its toxicity in mice. Hepatology 2011; 54:2208-17. [PMID: 21898498 PMCID: PMC3230770 DOI: 10.1002/hep.24646] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
UNLABELLED Overdose of acetaminophen (APAP), the active ingredient of Tylenol, is the leading cause of drug-induced acute liver failure in the United States. As such, it is necessary to develop novel strategies to prevent or manage APAP toxicity. In this report, we reveal a novel function of the liver X receptor (LXR) in preventing APAP-induced hepatotoxicity. Activation of LXR in transgenic (Tg) mice or by an LXR agonist conferred resistance to the hepatotoxicity of APAP, whereas the effect of LXR agonist on APAP toxicity was abolished in LXR-deficient mice. The increased APAP resistance in LXR Tg mice was associated with increased APAP clearance, increased APAP sulfation, and decreased formation of toxic APAP metabolites. The hepatoprotective effect of LXR may have resulted from the induction of antitoxic phase II conjugating enzymes, such as Gst and Sult2a1, as well as the suppression of protoxic phase I P450 enzymes, such as Cyp3a11 and Cyp2e1. Promoter analysis suggested the mouse Gst isoforms as novel transcriptional targets of LXR. The suppression of Cyp3a11 may be accounted for by the inhibitory effect of LXR on the PXR-responsive transactivation of Cyp3a11. The protective effect of LXR in preventing APAP toxicity is opposite to the sensitizing effect of pregnane X receptor, constitutive androstane receptor, and retinoid X receptor alpha. CONCLUSION We conclude that LXR represents a potential therapeutic target for the prevention and treatment of Tylenol toxicity.
Collapse
Affiliation(s)
- Simrat P.S. Saini
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261
| | - Bin Zhang
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261
| | - Yongdong Niu
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261,State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Mengxi Jiang
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261
| | - Jie Gao
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261
| | - Yonggong Zhai
- Key Laboratory for Cell Proliferation and Regulation Biology, Ministry of Education, Beijing Normal University, Beijing 100875, China
| | - Jung Hoon Lee
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261
| | - Hirdesh Uppal
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261
| | - Hui Tian
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261
| | - Michael A. Tortorici
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261
| | - Samuel M. Poloyac
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261
| | - Wenxin Qin
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Raman Venkataramanan
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261
| | - Wen Xie
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261
| |
Collapse
|
25
|
Allopregnanolone promotes regeneration and reduces β-amyloid burden in a preclinical model of Alzheimer's disease. PLoS One 2011; 6:e24293. [PMID: 21918687 PMCID: PMC3168882 DOI: 10.1371/journal.pone.0024293] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Accepted: 08/04/2011] [Indexed: 11/20/2022] Open
Abstract
Previously, we demonstrated that allopregnanolone (APα) promoted proliferation of rodent and human neural progenitor cells in vitro. Further, we demonstrated that APα promoted neurogenesis in the hippocampal subgranular zone (SGZ) and reversed learning and memory deficits in the male triple transgenic mouse model of Alzheimer's (3xTgAD). In the current study, we determined the efficacy of APα to promote the survival of newly generated neural cells while simultaneously reducing Alzheimer's disease (AD) pathology in the 3xTgAD male mouse model. Comparative analyses between three different APα treatment regimens indicated that APα administered 1/week for 6 months was maximally efficacious for simultaneous promotion of neurogenesis and survival of newly generated cells and reduction of AD pathology. We further investigated the efficacy of APα to impact Aβ burden. Treatment was initiated either prior to or post intraneuronal Aβ accumulation. Results indicated that APα administered 1/week for 6 months significantly increased survival of newly generated neurons and simultaneously reduced Aβ pathology with greatest efficacy in the pre-pathology treatment group. APα significantly reduced Aβ generation in hippocampus, cortex, and amygdala, which was paralleled by decreased expression of Aβ-binding-alcohol-dehydrogenase. In addition, APα significantly reduced microglia activation as indicated by reduced expression of OX42 while increasing CNPase, an oligodendrocyte myelin marker. Mechanistic analyses indicated that pre-pathology treatment with APα increased expression of liver-X-receptor, pregnane-X-receptor, and 3-hydroxy-3-methyl-glutaryl-CoA-reductase (HMG-CoA-R), three proteins that regulate cholesterol homeostasis and clearance from brain. Together these findings provide preclinical evidence for the optimal treatment regimen of APα to achieve efficacy as a disease modifying therapeutic to promote regeneration while simultaneously decreasing the pathology associated with Alzheimer's disease.
Collapse
|
26
|
Liver X Receptor: an oxysterol sensor and a major player in the control of lipogenesis. Chem Phys Lipids 2011; 164:500-14. [PMID: 21693109 DOI: 10.1016/j.chemphyslip.2011.06.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 06/04/2011] [Accepted: 06/06/2011] [Indexed: 01/12/2023]
Abstract
De novo fatty acid biosynthesis is also called lipogenesis. It is a metabolic pathway that provides the cells with fatty acids required for major cellular processes such as energy storage, membrane structures and lipid signaling. In this article we will review the role of the Liver X Receptors (LXRs), nuclear receptors that sense oxysterols, in the transcriptional regulation of genes involved in lipogenesis.
Collapse
|
27
|
Režen T. The impact of cholesterol and its metabolites on drug metabolism. Expert Opin Drug Metab Toxicol 2011; 7:387-98. [PMID: 21320036 DOI: 10.1517/17425255.2011.558083] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Global prevalence of Western-type diet has increased in the last decades resulting in occurrence of certain chronic diseases. This type of diet is also linked to high-cholesterol intake and increase in blood cholesterol. Many of the molecular mechanisms of dealing with increased levels of cholesterol and its metabolites have been elucidated in animal models and humans. It is also evident that cholesterol metabolism is closely connected to drug metabolism. Cholesterol/bile acids and drugs share many transporters, enzymes and regulatory proteins which are key points in the crosstalk. AREAS COVERED This review presents an overview of the effect of cholesterol and its metabolites on drug metabolism with special emphasis on species-specific differences. The article focuses on the role of nuclear receptors farnesoid X receptor, vitamin D receptor and liver X receptor in the regulation of drug metabolism genes and the role of cholesterol biosynthesis intermediates, oxysterols and bile acids in the induction of drug metabolism through pregnane X receptor. EXPERT OPINION Studies show that the regulation of drug metabolism by sterols is multileveled. Many species-dependent differences were observed which hinder the transfer of findings from model animals to humans. As of now, there is little evidence available for cholesterol impact on drug metabolism in vivo in humans. There is also the need to confirm the results obtained in animal models and in vitro analyses in human cells but this is very difficult given the current lack of tools.
Collapse
Affiliation(s)
- Tadeja Režen
- Faculty of Medicine, University of Ljubljana, Institute of Biochemistry, Vrazov Trg 2, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
28
|
Feig JE, Pineda-Torra I, Sanson M, Bradley MN, Vengrenyuk Y, Bogunovic D, Gautier EL, Rubinstein D, Hong C, Liu J, Wu C, van Rooijen N, Bhardwaj N, Garabedian M, Tontonoz P, Fisher EA. LXR promotes the maximal egress of monocyte-derived cells from mouse aortic plaques during atherosclerosis regression. J Clin Invest 2011; 120:4415-24. [PMID: 21041949 DOI: 10.1172/jci38911] [Citation(s) in RCA: 150] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Accepted: 09/15/2010] [Indexed: 12/20/2022] Open
Abstract
We have previously shown that mouse atherosclerosis regression involves monocyte-derived (CD68+) cell emigration from plaques and is dependent on the chemokine receptor CCR7. Concurrent with regression, mRNA levels of the gene encoding LXRalpha are increased in plaque CD68+ cells, suggestive of a functional relationship between LXR and CCR7. To extend these results, atherosclerotic Apoe-/- mice sufficient or deficient in CCR7 were treated with an LXR agonist, resulting in a CCR7-dependent decrease in plaque CD68+ cells. To test the requirement for LXR for CCR7-dependent regression, we transplanted aortic arches from atherosclerotic Apoe-/- mice, or from Apoe-/- mice with BM deficiency of LXRalpha or LXRbeta, into WT recipients. Plaques from both LXRalpha and LXRbeta-deficient Apoe-/- mice exhibited impaired regression. In addition, the CD68+ cells displayed reduced emigration and CCR7 expression. Using an immature DC line, we found that LXR agonist treatment increased Ccr7 mRNA levels. This increase was blunted when LXRalpha and LXRbeta levels were reduced by siRNAs. Moreover, LXR agonist treatment of primary human immature DCs resulted in functionally significant upregulation of CCR7. We conclude that LXR is required for maximal effects on plaque CD68+ cell expression of CCR7 and monocyte-derived cell egress during atherosclerosis regression in mice.
Collapse
Affiliation(s)
- Jonathan E Feig
- Department of Medicine, Division of Cardiology, New York University School of Medicine, New York, New York, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Viennois E, Pommier AJC, Mouzat K, Oumeddour A, Hajjaji FZE, Dufour J, Caira F, Volle DH, Baron S, Lobaccaro JMA. Targeting liver X receptors in human health: deadlock or promising trail? Expert Opin Ther Targets 2011; 15:219-32. [DOI: 10.1517/14728222.2011.547853] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
30
|
Irwin RW, Wang JM, Chen S, Brinton RD. Neuroregenerative mechanisms of allopregnanolone in Alzheimer's disease. Front Endocrinol (Lausanne) 2011; 2:117. [PMID: 22654847 PMCID: PMC3356095 DOI: 10.3389/fendo.2011.00117] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 12/27/2011] [Indexed: 11/25/2022] Open
Abstract
The proliferative pool and regenerative potential of neural stem cells diminishes with age, a phenomenon that may be exacerbated in prodromal and mild Alzheimer's disease (AD) brains. In parallel, the neuroactive progesterone metabolite, allopregnanolone (APα), along with a host of other factors, is decreased in the AD brain. Results of preclinical analyses demonstrate that APα is a potent inducer of neural progenitor proliferation of both rodent and human derived neural progenitor cells in vitro. In vivo, APα significantly increased neurogenesis within the subgranular zone of the dentate gyrus and subventricular zone of the 3xTgAD mouse model. Functionally, APα reversed the learning and memory deficits of 3xTgAD mice prior to and following the onset of AD pathology and was comparably efficacious in aged normal mice. In addition to inducing regenerative responses in mouse models of AD, APα significantly reduced beta-amyloid burden, beta-amyloid binding alcohol dehydrogenase load, and microglial activation. In parallel, APα increased markers of white matter generation and cholesterol homeostasis. Analyses to determine the optimal treatment regimen in the 3xTgAD mouse brain indicated that a treatment regimen of APα once per week was optimal for both inducing neurogenesis and reducing AD pathology. Pharmacokinetic analyses indicated that APα is rapidly increased in both plasma and brain following a single dose. APα is most efficacious when administered once per week which will contribute to its margin of safety. Further, analyses in both animals and humans have provided parameters for safe APα dosage exposure in humans. From a translational perspective, APα is a small molecular weight, blood brain barrier penetrant molecule with substantial preclinical efficacy data as a potential Alzheimer's therapeutic with existing safety data in animals and humans. To our knowledge, APα is the only small molecule that both promotes neural progenitor regeneration in brain and simultaneously reduces AD pathology burden.
Collapse
Affiliation(s)
- Ronald W. Irwin
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern CaliforniaLos Angeles, CA, USA
| | - Jun Ming Wang
- Department of Pathology, University of Mississippi Medical CenterJackson, MS, USA
| | - Shuhua Chen
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern CaliforniaLos Angeles, CA, USA
| | - Roberta Diaz Brinton
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern CaliforniaLos Angeles, CA, USA
- Department of Neurology, Keck School of Medicine, University of Southern CaliforniaLos Angeles, CA, USA
- *Correspondence: Roberta Diaz Brinton, Department of Pharmacology and Pharmaceutical Sciences, Pharmaceutical Sciences Center, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA 90089-9121, USA. e-mail:
| |
Collapse
|
31
|
Evaluation of an in vitro toxicogenetic mouse model for hepatotoxicity. Toxicol Appl Pharmacol 2010; 249:208-16. [PMID: 20869979 DOI: 10.1016/j.taap.2010.09.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 09/03/2010] [Accepted: 09/16/2010] [Indexed: 01/15/2023]
Abstract
Numerous studies support the fact that a genetically diverse mouse population may be useful as an animal model to understand and predict toxicity in humans. We hypothesized that cultures of hepatocytes obtained from a large panel of inbred mouse strains can produce data indicative of inter-individual differences in in vivo responses to hepato-toxicants. In order to test this hypothesis and establish whether in vitro studies using cultured hepatocytes from genetically distinct mouse strains are feasible, we aimed to determine whether viable cells may be isolated from different mouse inbred strains, evaluate the reproducibility of cell yield, viability and functionality over subsequent isolations, and assess the utility of the model for toxicity screening. Hepatocytes were isolated from 15 strains of mice (A/J, B6C3F1, BALB/cJ, C3H/HeJ, C57BL/6J, CAST/EiJ, DBA/2J, FVB/NJ, BALB/cByJ, AKR/J, MRL/MpJ, NOD/LtJ, NZW/LacJ, PWD/PhJ and WSB/EiJ males) and cultured for up to 7 days in traditional 2-dimensional culture. Cells from B6C3F1, C57BL/6J, and NOD/LtJ strains were treated with acetaminophen, WY-14,643 or rifampin and concentration-response effects on viability and function were established. Our data suggest that high yield and viability can be achieved across a panel of strains. Cell function and expression of key liver-specific genes of hepatocytes isolated from different strains and cultured under standardized conditions are comparable. Strain-specific responses to toxicant exposure have been observed in cultured hepatocytes and these experiments open new opportunities for further developments of in vitro models of hepatotoxicity in a genetically diverse population.
Collapse
|
32
|
Trousson A, Makoukji J, Petit PX, Bernard S, Slomianny C, Schumacher M, Massaad C. Cross-talk between oxysterols and glucocorticoids: differential regulation of secreted phopholipase A2 and impact on oligodendrocyte death. PLoS One 2009; 4:e8080. [PMID: 19956653 PMCID: PMC2779104 DOI: 10.1371/journal.pone.0008080] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Accepted: 11/05/2009] [Indexed: 11/19/2022] Open
Abstract
Background Oxysterols are oxidized forms of cholesterol. They have been shown to be implicated in cholesterol turnover, inflammation and in neurodegenerative diseases such as Alzheimer's disease and multiple sclerosis. Glial cells are targets of oxysterols: they inhibit astrocyte proliferation after brain injury, and we have previously shown that 25-hydroxycholesterol (25OH) provokes oligodendrocyte apoptosis and stimulates the expression of sPLA2 type IIA (sPLA2-IIA), which has a protective effect. Methodology/Principal Findings As glucocorticoids are well-known for their anti-inflammatory effects, our aim was to understand their direct effects on oxysterol-induced responses in oligodendrocytes (sPLA2-IIA stimulation and apoptosis). We demonstrate that the synthetic glucocorticoid dexamethasone (Dex) abolishes the stimulation of sPLA2-IIA by 25-hydroxycholesterol (25-OH). This inhibition is mediated by the glucocorticoid receptor (GR), which decreases the expression of the oxysterol receptor Pregnane X Receptor (PXR) and interferes with oxysterol signaling by recruiting a common limiting coactivator PGC1α. Consistent with the finding that sPLA2-IIA can partially protect oligodendrocytes against oxysterol-triggered apoptosis, we demonstrate here that the inhibition of sPLA2-IIA by Dex accelerates the apoptotic phenomenon, leading to a shift towards necrosis. We have shown by atomic force microscopy and electron microscopy that 25-OH and Dex alters oligodendrocyte shape and disorganizes the cytoplasm. Conclusions/Significance Our results provide a new understanding of the cross-talk between oxysterol and glucocorticoid signaling pathways and their respective roles in apoptosis and oligodendrocyte functions.
Collapse
Affiliation(s)
- Amalia Trousson
- UMR788, Inserm and University Paris-Sud 11, IFR 93, Le Kremlin-Bicêtre, France
- UPR 2228, CNRS and University Paris Descartes, IFR95, Paris, France
| | - Joelle Makoukji
- UPR 2228, CNRS and University Paris Descartes, IFR95, Paris, France
| | - Patrice X. Petit
- Cancer, Apoptosis, and Mitochondria Team, UMR8104 CNRS, Institut Cochin, Paris, France
| | - Sophie Bernard
- UPR 2228, CNRS and University Paris Descartes, IFR95, Paris, France
| | | | - Michael Schumacher
- UMR788, Inserm and University Paris-Sud 11, IFR 93, Le Kremlin-Bicêtre, France
| | - Charbel Massaad
- UMR788, Inserm and University Paris-Sud 11, IFR 93, Le Kremlin-Bicêtre, France
- UPR 2228, CNRS and University Paris Descartes, IFR95, Paris, France
- * E-mail:
| |
Collapse
|
33
|
Liu MJ, Takahashi Y, Wada T, He J, Gao J, Tian Y, Li S, Xie W. The aldo-keto reductase Akr1b7 gene is a common transcriptional target of xenobiotic receptors pregnane X receptor and constitutive androstane receptor. Mol Pharmacol 2009; 76:604-11. [PMID: 19542321 DOI: 10.1124/mol.109.057455] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Aldo-keto reductase (AKR) family 1, member 7 (AKR1B7), a member of the AKR superfamily, has been suggested to play an important role in the detoxification of lipid peroxidation by-products. The nuclear receptors pregnane X receptor (PXR) and constitutive androstane receptor (CAR) are xenosensors postulated to alleviate xeno- and endobiotic chemical insults. In this study, we show that the mouse Akr1b7 is a shared transcriptional target of PXR and CAR in the liver and intestine. Treatment of wild-type mice with the PXR agonist pregnenolone-16alpha-carbonitrile (PCN) activated Akr1b7 gene expression, whereas the effect was abrogated in PXR(-/-) mice. Similarly, the activation of Akr1b7 gene expression by the CAR agonist 1,4-bis[2-(3,5-dichlorpyridyloxyl)]-benzene, seen in wild-type mice, was abolished in CAR(-/-) mice. The promoter of Akr1b7 gene was activated by PXR and CAR, and this activation was achieved through the binding of PXR-retinoid X receptor (RXR) or CAR-RXR heterodimers to direct repeat-4 type nuclear receptor-binding sites found in the Akr1b7 gene promoter. At the functional level, treatment with PCN in wild-type mice, but not PXR(-/-) mice, led to a decreased intestinal accumulation of malondialdehyde, a biomarker of lipid peroxidation. The regulation of Akr1b7 by PXR was independent of the liver X receptor (LXR), another nuclear receptor known to regulate this AKR isoform. Because a major function of Akr1b7 is to detoxify lipid peroxidation, the PXR-, CAR-, and LXR-controlled regulatory network of Akr1b7 may have contributed to alleviate toxicity associated with lipid peroxidation.
Collapse
Affiliation(s)
- Ming-Jie Liu
- Center for Pharmacogenetics, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Goetz AK, Dix DJ. Mode of Action for Reproductive and Hepatic Toxicity Inferred from a Genomic Study of Triazole Antifungals. Toxicol Sci 2009; 110:449-62. [DOI: 10.1093/toxsci/kfp098] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
35
|
Lauer B, Tuschl G, Kling M, Mueller SO. Species-specific toxicity of diclofenac and troglitazone in primary human and rat hepatocytes. Chem Biol Interact 2009; 179:17-24. [DOI: 10.1016/j.cbi.2008.10.031] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Revised: 10/06/2008] [Accepted: 10/11/2008] [Indexed: 11/25/2022]
|
36
|
Trousson A, Bernard S, Petit PX, Liere P, Pianos A, El Hadri K, Lobaccaro JMA, Ghandour MS, Raymondjean M, Schumacher M, Massaad C. 25-hydroxycholesterol provokes oligodendrocyte cell line apoptosis and stimulates the secreted phospholipase A2 type IIA via LXR beta and PXR. J Neurochem 2009; 109:945-58. [PMID: 19250336 DOI: 10.1111/j.1471-4159.2009.06009.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In several neurodegenerative diseases of the CNS, oligodendrocytes are implicated in an inflammatory process associated with altered levels of oxysterols and inflammatory enzymes such as secreted phospholipase A2 (sPLA2). In view of the scarce literature related to this topic, we investigated oxysterol effects on these myelinating glial cells. Natural oxysterol 25-hydroxycholesterol (25-OH; 1 and 10 microM) altered oligodendrocyte cell line (158N) morphology and triggered apoptosis (75% of apoptosis after 72 h). These effects were mimicked by 22(S)-OH (1 and 10 microM) which does not activate liver X receptor (LXR) but not by a synthetic LXR ligand (T0901317). Therefore, oxysterol-induced apoptosis appears to be independent of LXR. Interestingly, sPLA2 type IIA (sPLA2-IIA) over-expression partially rescued 158N cells from oxysterol-induced apoptosis. In fact, 25-OH, 24(S)-OH, and T0901317 stimulated sPLA2-IIA promoter and sPLA2 activity in oligodendrocyte cell line. Accordingly, administration of T0901317 to mice enhanced sPLA2 activity in brain extracts by twofold. Short interfering RNA strategy allowed to establish that stimulation of sPLA2-IIA is mediated by pregnane X receptor (PXR) at high oxysterol concentration (10 microM) and by LXR beta at basal oxysterol concentration. Finally, GC coupled to mass spectrometry established that oligodendrocytes contain oxysterols and express their biosynthetic enzymes, suggesting that they may act through autocrine/paracrine mechanism. Our results show the diversity of oxysterol signalling in the CNS and highlight the positive effects of the LXR/PXR pathway which may open new perspectives in the treatment of demyelinating and neurodegenerative diseases.
Collapse
Affiliation(s)
- Amalia Trousson
- UMR788, INSERM and University Paris-Sud 11, IFR 93, Le Kremlin-Bicêtre Cedex, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Duniec-Dmuchowski Z, Fang HL, Strom SC, Ellis E, Runge-Morris M, Kocarek TA. Human pregnane X receptor activation and CYP3A4/CYP2B6 induction by 2,3-oxidosqualene:lanosterol cyclase inhibition. Drug Metab Dispos 2009; 37:900-8. [PMID: 19158313 DOI: 10.1124/dmd.108.025130] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The effects of [4'-(6-allyl-methyl-amino-hexyloxy)-2'-fluoro-phenyl]-(4-bromophenyl)-methanone fumarate (Ro 48-8071), an inhibitor of 2,3-oxidosqualene:lanosterol cyclase (cyclase), were evaluated on CYP3A4 and CYP2B6 mRNA content in primary cultured human hepatocytes. In seven hepatocyte culture preparations, 24-h treatment with 3, 10, or 30 microM Ro 48-8071 produced median increases in CYP3A4 mRNA content that were 2.2-, 7.1-, and 8.5-fold greater than untreated control, respectively, and produced increases in CYP2B6 mRNA content that were 3.0-, 4.6-, and 3.4-fold greater than control, respectively. Increases in CYP3A4 immunoreactive protein content were also measured in Ro 48-8071-treated hepatocytes. To evaluate the effects of cyclase inhibitor treatments further, a pregnane X receptor (PXR)-responsive transactivation assay in HepG2 cells was used. Ro 48-8071, trans-N-(4-chlorobenzoyl)-N-methyl-(4-dimethylaminomethylphenyl)-cyclohexylamine (BIBX 79), and 3beta-(2-diethylaminoethoxy)androst-5-en-17-one HCl (U18666A) induced luciferase expression from a PXR-responsive reporter with EC(50)s of 0.113, 0.916, and 0.294 microM, respectively. Treatment of the HepG2 system with (E)N-ethyl-N-(6,6-dimethyl-2-hepten-4-ynyl)-3-[(3,3'-bithiophen-5-yl)methoxy]benzenemethanamine (NB-598), an inhibitor of squalene monooxygenase, at concentrations sufficient to achieve cholesterol biosynthesis inhibition significantly inhibited cyclase inhibitor-mediated, but not rifampicin-mediated, reporter induction. Direct treatment of the HepG2 system with 1 to 10 microM squalene 2,3:22,23-dioxide, but not squalene 2,3-oxide, significantly activated PXR-responsive reporter expression. Also, squalene 2,3:22,23-dioxide bound to human PXR in vitro with an IC(50) of 3.35 microM. These data indicate that cyclase inhibitors are capable of producing CYP3A4 and CYP2B6 induction in primary cultured human hepatocytes, and that an endogenous squalene metabolite is a conserved intracrine activator of PXR.
Collapse
Affiliation(s)
- Zofia Duniec-Dmuchowski
- Institute of Environmental Health Sciences, 2727 Second Avenue, Room 4000, Detroit, MI 48201, USA
| | | | | | | | | | | |
Collapse
|
38
|
Uno S, Endo K, Jeong Y, Kawana K, Miyachi H, Hashimoto Y, Makishima M. Suppression of beta-catenin signaling by liver X receptor ligands. Biochem Pharmacol 2008; 77:186-95. [PMID: 18983830 DOI: 10.1016/j.bcp.2008.10.007] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Revised: 10/03/2008] [Accepted: 10/03/2008] [Indexed: 12/21/2022]
Abstract
The nuclear receptors liver X receptor (LXR) alpha and LXRbeta serve as oxysterol receptors and play an important role in the regulation of lipid metabolism. We investigated the potential effects of LXRs on pathways of colon carcinogenesis and found that LXR activation suppresses the transactivation activity of beta-catenin, a key molecule in Wnt signaling. LXRalpha and LXRbeta inhibited beta-catenin transactivation of T cell factor-mediated transcription in a ligand-dependent manner. LXR activation suppressed an oncogenic beta-catenin, which has phosphorylation site mutations, and did not change beta-catenin protein expression in cells. In contrast, beta-catenin enhanced LXR transactivation activity. Nuclear LXRs and beta-catenin were coimmunoprecipitated in colon cancer HCT116 cells, and in vitro experiments showed that LXRs bind directly to the Armadillo repeat region of beta-catenin in a ligand-independent manner. LXR ligand decreased mRNA expression of beta-catenin targets, MYC, MMP7 and BMP4, and recruited LXRs to MYC and MMP7 promoters. Transfection of a dominant negative LXR to HCT116 cells and experiments using LXR-null cells showed the involvement of cellular LXRs in beta-catenin suppression and proliferation inhibition. The results show lipid-sensing receptor LXRs regulate the beta-catenin activity and cellular proliferation.
Collapse
Affiliation(s)
- Shigeyuki Uno
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, Itabashi-ku, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
39
|
van den Bout-van den Beukel CJP, Hamza OJM, Moshi MJ, Matee MIN, Mikx F, Burger DM, Koopmans PP, Verweij PE, Schoonen WGEJ, van der Ven AJAM. Evaluation of cytotoxic, genotoxic and CYP450 enzymatic competition effects of Tanzanian plant extracts traditionally used for treatment of fungal infections. Basic Clin Pharmacol Toxicol 2008; 102:515-26. [PMID: 18331392 DOI: 10.1111/j.1742-7843.2008.00225.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
HIV-infected patients in sub-Saharan countries highly depend on traditional medicines for the treatment of opportunistic oral infections as candidiasis. Previous investigations on antifungal activity of medicinal plant extracts utilized by traditional healers in Tanzania have revealed 12 extracts with potent antifungal activity. Although the plants may be good candidates for new treatment opportunities, they can be toxic or genotoxic and could cause pharmacokinetic interactions when used concomitantly with antiretroviral agents. Therefore, we investigated the cytotoxicity, genotoxicity and cytochrome P450 interaction potential of these medicinal plants. Cytotoxicity was tested by Hoechst 33342, Alamar Blue, calcein-AM, glutathione depletion and O(2)-consumption assays and genotoxicity by a Vitotox assay. Competition of the 12 extracts on substrate metabolism by CYP3A4, 2C9, 2C19 and 2D6 was tested with high-throughput CYP inhibition screening. Pregnane X receptor (PXR) activation was tested using Chinese hamster ovary cell lines expressing human PXR. Herbal extracts inducing high human PXR activation were tested for enhanced CYP3A4 mRNA levels with quantitative polymerase chain reaction. Genotoxicity was found for Jatropha multifida, Sterculia africana and Spirostachys africana. All plant extracts showed high cytotoxic effects in almost all tests. Potent competition with CYP3A4, 2D6, 2C9 and 2C19 was found for 75% of the herbal extracts. Spirostachys africana did not affect CYP2D6 and for S. africana and Turraea holstii no effect on CYP2D6 and CYP3A4 (DBF) was found. Nine plant extracts showed significant activation of human PXR, but only Agaura salicifolia, Turraea holstii and S. africana significantly induced CYP3A4 mRNA levels. These results indicate the possibility of potential medicinal plant-antiretroviral interactions.
Collapse
|
40
|
Duniec-Dmuchowski Z, Ellis E, Strom SC, Kocarek TA. Regulation of CYP3A4 and CYP2B6 expression by liver X receptor agonists. Biochem Pharmacol 2007; 74:1535-40. [PMID: 17825266 PMCID: PMC2080783 DOI: 10.1016/j.bcp.2007.07.040] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2007] [Revised: 07/26/2007] [Accepted: 07/26/2007] [Indexed: 02/02/2023]
Abstract
The liver X receptor (LXR) agonists, 24(S),25-epoxycholesterol and T0901317, were previously shown to be capable of inducing CYP3A expression in primary cultured rodent hepatocytes through activation of the pregnane X receptor (PXR). In this study, the abilities of these two LXR agonists to regulate CYP3A4 and CYP2B6 mRNA expression in primary cultures of human hepatocytes were evaluated. Treatment with 10 or 30 microM of the endogenous oxysterol, 24(S),25-epoxycholesterol, had no effect on CYP3A4 mRNA content in five preparations of primary cultured human hepatocytes, while 30 microM 24(S),25-epoxycholesterol treatment increased CYP2B6 mRNA content by approximately two-fold. By comparison, treatment with the synthetic LXR agonist, T0901317, potently increased CYP3A4 and CYP2B6 mRNA levels in the human hepatocyte cultures, producing multi-fold increases at 10nM. Using a HepG2-based transactivation assay, T0901317 activated human PXR with an EC(50) approximately 20nM, which was more than 10-fold lower than that of the potent PXR ligand, SR-12813, while treatment with 24(S),25-epoxycholesterol failed to induce reporter expression in this assay. Therefore, while 24(S),25-epoxycholesterol-mediated PXR activation and CYP3A induction does not appear to be conserved from rodent to human, T0901317 is among the most potent known activators of human PXR.
Collapse
MESH Headings
- Adult
- Aged, 80 and over
- Aryl Hydrocarbon Hydroxylases/genetics
- Cell Line
- Cells, Cultured
- Cholesterol/analogs & derivatives
- Cholesterol/pharmacology
- Cytochrome P-450 CYP2B6
- Cytochrome P-450 CYP3A
- Cytochrome P-450 Enzyme System/genetics
- DNA-Binding Proteins/agonists
- Female
- Gene Expression Regulation, Enzymologic/drug effects
- Hepatocytes/enzymology
- Humans
- Hydrocarbons, Fluorinated
- Infant
- Liver X Receptors
- Male
- Middle Aged
- Orphan Nuclear Receptors
- Oxidoreductases, N-Demethylating/genetics
- Pregnane X Receptor
- RNA, Messenger/metabolism
- Receptors, Cytoplasmic and Nuclear/agonists
- Receptors, Steroid/agonists
- Receptors, Steroid/genetics
- Receptors, Steroid/metabolism
- Sulfonamides/pharmacology
- Transfection
Collapse
Affiliation(s)
| | - Ewa Ellis
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Stephen C. Strom
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Thomas A. Kocarek
- Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
41
|
|
42
|
Venniyoor A. Cholesterol gallstones and cancer of gallbladder (CAGB): molecular links. Med Hypotheses 2007; 70:646-53. [PMID: 17855001 DOI: 10.1016/j.mehy.2007.06.040] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2007] [Accepted: 06/19/2007] [Indexed: 01/11/2023]
Abstract
There is a known association between cholesterol gallstones and cancer of gall bladder (CAGB). However, the exact relation is not clear. It is proposed they are linked at molecular level by the activity of the orphan nuclear receptors (ONRs) and ABC transporter pumps involved in cholesterol and xenobiotic efflux from the liver into bile. There is evidence that these two pathways are closely interlinked and influence each other. Genetic and environmental factors that upregulate these systems can lead to the simultaneous pumping of cholesterol (which precipitate as gallstones) and a food carcinogen into the bile in gall bladder; the latter causes malignant transformation. Aflatoxin B, a potent hepatocarcinogen, could be the culprit in endemic regions such as South America and North India.
Collapse
Affiliation(s)
- Ajit Venniyoor
- Department of Medicine and Medical Oncology, INHS Asvini, Near RC Church, Colaba, Mumbai Bombay, Maharastra 400 005, India.
| |
Collapse
|
43
|
Gong H, Guo P, Zhai Y, Zhou J, Uppal H, Jarzynka MJ, Song WC, Cheng SY, Xie W. Estrogen Deprivation and Inhibition of Breast Cancer Growth in Vivo through Activation of the Orphan Nuclear Receptor Liver X Receptor. Mol Endocrinol 2007; 21:1781-90. [PMID: 17536009 DOI: 10.1210/me.2007-0187] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
AbstractEstrogen plays an important role in normal physiology. It is also a risk factor for breast cancer, and antiestrogen therapies have been shown to be effective in the treatment and prevention of breast cancers. The liver is important for estrogen metabolism, and a compromised liver function has been linked to hyperestrogenism in patients. In this report, we showed that the liver X receptor (LXR) controls estrogen homeostasis by regulating the basal and inducible hepatic expression of estrogen sulfotransferase (Est, or Sult1e1), an enzyme critical for metabolic estrogen deactivation. Genetic or pharmacological activation of LXR resulted in Est induction, which in turn inhibited estrogen-dependent uterine epithelial cell proliferation and gene expression, as well as breast cancer growth in a nude mouse model of tumorigenicity. We further established that Est is a transcriptional target of LXR, and deletion of the Est gene in mice abolished the LXR effect on estrogen deprivation. Interestingly, Est regulation by LXR appeared to be liver specific, further underscoring the role of liver in estrogen metabolism. Activation of LXR failed to induce other major estrogen-metabolizing enzymes, suggesting that the LXR effect on estrogen metabolism is Est specific. In summary, our results have revealed a novel mechanism controlling estrogen homeostasis in vivo and may have implications for drug development in the treatment of breast cancer and other estrogen-related cancerous endocrine disorders.
Collapse
Affiliation(s)
- Haibiao Gong
- Center for Pharmacogenetics, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Westerink WMA, Schoonen WGEJ. Phase II enzyme levels in HepG2 cells and cryopreserved primary human hepatocytes and their induction in HepG2 cells. Toxicol In Vitro 2007; 21:1592-602. [PMID: 17716855 DOI: 10.1016/j.tiv.2007.06.017] [Citation(s) in RCA: 177] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2007] [Revised: 06/06/2007] [Accepted: 06/27/2007] [Indexed: 11/22/2022]
Abstract
The HepG2 cell line is a valuable tool for screening for cytotoxicity in the early phase of pharmaceutical development. Some compounds which produce reactive and toxic metabolites, are classified as being toxic in HepG2 cells. In contrast, other compounds, which are toxic in primary human hepatocytes, are not toxic in HepG2 cells. A difference in metabolism between HepG2 cells and primary human hepatocytes might be the reason. To investigate this, cytochrome P450 and Phase II enzyme levels were characterized. In the present study the focus is on Phase II enzyme metabolism. Transcript levels of UDP-glucuronosyl transferases (UGTs), sulfotransferases (SULTs), glutathione S-transferases (GSTs), N-acetyltransferase-1 (NAT1) and epoxide hydrolase (EPHX1) were measured with quantitative PCR in HepG2 cells and cryopreserved primary human hepatocytes. Levels of SULT1A1, 1A2, 1E1, 1A2, and 2A1, microsomal GST 1, GST mu1, NAT1, and EPHX1 in HepG2 cells were almost similar to levels in primary human hepatocytes. In contrast, levels of UGT1A1 and 1A6 transcripts were between 10- and more than 1000-fold higher in the primary hepatocytes. The regulatory processes of Phase II enzymes by the aryl hydrocarbon receptor, pregnane X receptor and constitutive androstane receptor were studied in HepG2 cells and appeared quite similar to those in primary human hepatocytes. Due to the involvement of Phase II enzymes in the toxication of some compounds, HepG2 cells can be a valuable cellular system to predict toxicity for these compounds. On the other hand, the normal expression of most Phase II enzymes in combination with the lower expression of cytochrome P450 enzymes in HepG2 cells might result in an underestimation of toxicity for several compounds. Compared to primary human hepatocytes, HepG2 cells are a relatively easy-to-handle tool to study the up-regulation of Phase II enzymes.
Collapse
Affiliation(s)
- Walter M A Westerink
- Department of Pharmacology, NV Organon, Molenstraat 110, 5340 BH Oss, The Netherlands
| | | |
Collapse
|
45
|
Westerink WMA, Schoonen WGEJ. Cytochrome P450 enzyme levels in HepG2 cells and cryopreserved primary human hepatocytes and their induction in HepG2 cells. Toxicol In Vitro 2007; 21:1581-91. [PMID: 17637504 DOI: 10.1016/j.tiv.2007.05.014] [Citation(s) in RCA: 309] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2007] [Revised: 05/09/2007] [Accepted: 05/29/2007] [Indexed: 11/28/2022]
Abstract
Early in vitro toxicity screening might improve the success rate of new chemical entities in pharmaceutical development. In previous studies, the advantage of cytotoxicity screening with the HepG2 cell line was shown. Cytotoxicity could be identified for 70% of the compounds in these assays as compared with known toxicity in either in vitro assays in primary hepatocytes, in in vivo assays in rats, or in (pre-)clinical development in humans. The low Phase I and II enzyme levels in HepG2 cells might have been responsible for the fact that 30% of the compounds scored negative. Therefore, we performed two follow-up studies in which Cytochrome P450 (CYP) enzymes and Phase II metabolism were examined. In the present study, the transcript levels of CYP1A1, 1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, 2E1, and 3A4 were measured with quantitative PCR. Results showed that transcripts of all CYPs were present in HepG2 cells, however, mRNA levels of most CYPs were dramatically lower than in primary human hepatocytes. These results were confirmed with luminometric assays which were used to measure the enzyme activities of CYP1A1, 1A2, 2C9, and 3A4. Regulation of CYP1A1, 1A2, 2B6, 2C8, 2D6, 2E1, and 3A4 by the aryl hydrocarbon receptor, pregnane X receptor and constitutive androstane receptor was studied in HepG2 cells at the mRNA and/or enzyme level. Regulation of CYP1A1, 1A2, 2B6, and 3A4 mRNA levels was similar to the regulation in primary human hepatocytes. In contrast, CYP2C8 mRNA levels are inducible in primary human hepatocytes, but not in HepG2 cells, after treatment with PXR/CAR activators. Consistent with other studies, CYP2D6 and 2E1 transcript levels were not changed after treatment with AhR, PXR, and CAR activators. Moreover, CYP1A1 and 1A2 enzyme levels could be induced by AhR agonists and CYP3A4 by PXR agonists. As a consequence of the low levels of CYPs in HepG2 cells, cytotoxicity of several compounds might have been missed or underestimated as compared with cytotoxicity in primary human hepatocytes. Inducing HepG2 cells with particular receptor stimulators might lead to higher toxicity for several of the tested compounds. Compared to primary human hepatocytes, HepG2 cells are a relatively easy-to-handle tool to study the up-regulation of CYP1A1, 1A2, 2B6, and 3A4.
Collapse
Affiliation(s)
- Walter M A Westerink
- Department of Pharmacology, NV Organon, Molenstraat 110, 5340 BH Oss, The Netherlands.
| | | |
Collapse
|
46
|
Delvecchio CJ, Bilan P, Radford K, Stephen J, Trigatti BL, Cox G, Parameswaran K, Capone JP. Liver X receptor stimulates cholesterol efflux and inhibits expression of proinflammatory mediators in human airway smooth muscle cells. Mol Endocrinol 2007; 21:1324-34. [PMID: 17405904 DOI: 10.1210/me.2007-0017] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Human (h) airway smooth muscle (ASM) cells are important mediators of the inflammatory process observed in asthma and other respiratory diseases. We show here that primary hASM cells express liver X receptor (LXR; alpha and beta subtypes), an oxysterol-activated nuclear receptor that controls expression of genes involved in lipid and cholesterol homeostasis, and inflammation. LXR was functional as determined by transient assays using LXR-responsive reporter genes and by analysis of mRNA and protein expression of endogenous LXR target genes in cells exposed to LXR agonists. LXR activation induced expression of the ATP-binding cassette transporters ABCA1 and ABCG1 and increased efflux of cholesterol to apolipoprotein AI and high-density lipoprotein acceptors, pointing to a role for hASM cells in modulating cholesterol homeostasis in the airway. Under inflammatory conditions, hASM cells release a variety of chemokines and cytokines that contribute to inflammatory airway diseases. Activation of LXR inhibited the expression of multiple cytokines in response to proinflammatory mediators and blocked the release of both granulocyte macrophage colony-stimulating factor and granulocyte colony stimulating factor. LXR activation also inhibited proliferation of hASM cells and migration toward platelet-derived growth factor chemoattractant, two important processes that contribute to airway remodeling. Our findings reveal biological roles for LXR in ASM cells and suggest that modulation of LXR activity offers prospects for new therapeutic approaches in the treatment of asthma and other inflammatory respiratory diseases.
Collapse
Affiliation(s)
- Christopher J Delvecchio
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Uppal H, Saini SPS, Moschetta A, Mu Y, Zhou J, Gong H, Zhai Y, Ren S, Michalopoulos GK, Mangelsdorf DJ, Xie W. Activation of LXRs prevents bile acid toxicity and cholestasis in female mice. Hepatology 2007; 45:422-32. [PMID: 17256725 DOI: 10.1002/hep.21494] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
UNLABELLED Liver X receptors (LXRs) have been identified as sterol sensors that regulate cholesterol and lipid homeostasis and macrophage functions. In this study, we found that LXRs also affect sensitivity to bile acid toxicity and cholestasis. Activation of LXRalpha in transgenic mice confers a female-specific resistance to lithocholic acid (LCA)-induced hepatotoxicity and bile duct ligation (BDL)-induced cholestasis. This resistance was also seen in wild-type female mice treated with the synthetic LXR ligand TO1317. In contrast, LXR double knockout (DKO) mice deficient in both the alpha and beta isoforms exhibited heightened cholestatic sensitivity. LCA and BDL resistance in transgenic mice was associated with increased expression of bile acid-detoxifying sulfotransferase 2A (Sult2a) and selected bile acid transporters, whereas basal expression of these gene products was reduced in the LXR DKO mice. Promoter analysis showed that the mouse Sult2a9 gene is a transcriptional target of LXRs. Activation of LXRs a l so suppresses expression of oxysterol 7alpha-hydroxylase (Cyp7b1), which may lead to increased levels of LXR-activating oxysterols. CONCLUSION We propose that LXRs have evolved to have the dual functions of maintaining cholesterol and bile acid homeostasis by increasing cholesterol catabolism and, at the same time, preventing toxicity from bile acid accumulation.
Collapse
Affiliation(s)
- Hirdesh Uppal
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Bennett DJ, Brown LD, Cooke AJ, Edwards AS. An update on non-steroidal liver X receptor agonists and their potential use in the treatment of atherosclerosis. Expert Opin Ther Pat 2006. [DOI: 10.1517/13543776.16.12.1673] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
49
|
Chu K, Miyazaki M, Man WC, Ntambi JM. Stearoyl-coenzyme A desaturase 1 deficiency protects against hypertriglyceridemia and increases plasma high-density lipoprotein cholesterol induced by liver X receptor activation. Mol Cell Biol 2006; 26:6786-98. [PMID: 16943421 PMCID: PMC1592860 DOI: 10.1128/mcb.00077-06] [Citation(s) in RCA: 176] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Stearoyl-coenzyme A desaturase (SCD) is the rate-limiting enzyme necessary for the biosynthesis of monounsaturated fatty acids. In this study, we investigated the regulation of mouse SCD1 by liver X receptor (LXR) and its role in plasma lipoprotein metabolism upon LXR activation. In vivo, the SCD1 gene remained induced upon LXR activation in the absence of sterol regulatory element-binding protein 1c (SREBP-1c), a known transcriptional regulator of SCD1. Serial deletion and point mutation analyses in reporter gene assays, as well as a gel mobility shift assay, identified an LXR response element in the mouse SCD1 promoter. In addition, SCD1 deficiency prevented the hypertriglyceridemic effect and reduced hepatic triglyceride accumulation associated with LXR activation despite induced hepatic expression of SREBP-1c protein and several SREBP1c and LXR target genes involved in lipoprotein metabolism. Unlike wild-type mice, SCD1-deficient mice failed to elevate the hepatic triglyceride monounsaturated acid (MUFA)/saturated fatty acid (SFA) ratio despite induction of the SCD2 gene. Together, these findings suggest that SCD1 plays a pivotal role in the regulation of hepatic and plasma triglyceride accumulation, possibly by modulating the MUFA-to-SFA ratio. In addition, SCD1 deficiency also increased plasma high-density lipoprotein cholesterol levels induced by LXR activation.
Collapse
Affiliation(s)
- Kiki Chu
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
50
|
Stanley LA, Horsburgh BC, Ross J, Scheer N, Wolf CR. PXR and CAR: nuclear receptors which play a pivotal role in drug disposition and chemical toxicity. Drug Metab Rev 2006; 38:515-97. [PMID: 16877263 DOI: 10.1080/03602530600786232] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Xenobiotic metabolism and detoxification is regulated by receptors (e.g., PXR, CAR) whose characterization has contributed significantly to our understanding of drug responses in humans. Technologies facilitating the screening of compounds for receptor interactions provide valuable tools applicable in drug development. Most use in vitro systems or mice humanized for receptors in vivo. In vitro assays are limited by the reporter systems and cell lines chosen and are uninformative about effects in vivo. Humanized mouse models provide novel, exciting ways of understanding the functions of these genes. This article evaluates these technologies and current knowledge on PXR/CAR-mediated regulation of gene expression.
Collapse
Affiliation(s)
- Lesley A Stanley
- Consultant in Investigative Toxicology, St. Andrews, Fife, United Kingdom
| | | | | | | | | |
Collapse
|