1
|
Wang G, Peng S, Reyes Mendez M, Keramidas A, Castellano D, Wu K, Han W, Tian Q, Dong L, Li Y, Lu W. The TMEM132B-GABA A receptor complex controls alcohol actions in the brain. Cell 2024:S0092-8674(24)01024-9. [PMID: 39357522 DOI: 10.1016/j.cell.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 07/19/2024] [Accepted: 09/04/2024] [Indexed: 10/04/2024]
Abstract
Alcohol is the most consumed and abused psychoactive drug globally, but the molecular mechanisms driving alcohol action and its associated behaviors in the brain remain enigmatic. Here, we have discovered a transmembrane protein TMEM132B that is a GABAA receptor (GABAAR) auxiliary subunit. Functionally, TMEM132B promotes GABAAR expression at the cell surface, slows receptor deactivation, and enhances the allosteric effects of alcohol on the receptor. In TMEM132B knockout (KO) mice or TMEM132B I499A knockin (KI) mice in which the TMEM132B-GABAAR interaction is specifically abolished, GABAergic transmission is decreased and alcohol-induced potentiation of GABAAR-mediated currents is diminished in hippocampal neurons. Behaviorally, the anxiolytic and sedative/hypnotic effects of alcohol are markedly reduced, and compulsive, binge-like alcohol consumption is significantly increased. Taken together, these data reveal a GABAAR auxiliary subunit, identify the TMEM132B-GABAAR complex as a major alcohol target in the brain, and provide mechanistic insights into alcohol-related behaviors.
Collapse
Affiliation(s)
- Guohao Wang
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shixiao Peng
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Miriam Reyes Mendez
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Angelo Keramidas
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, St Lucia, Brisbane, QLD 4072, Australia
| | - David Castellano
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kunwei Wu
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wenyan Han
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Qingjun Tian
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lijin Dong
- Genetic Engineering Core, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yan Li
- Proteomics Core Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wei Lu
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
2
|
Mukai A, Irifune M, Shimizu Y, Doi M, Kikuchi Y, Katayama S, Oue K, Yoshida M, Ago Y, Okada Y, Morioka N, Nakata Y, Sakai N. N-methyl-d-aspartate receptors and glycinergic transmission, respectively, mediate muscle relaxation and immobility of pentobarbital in mice. Neurosci Lett 2023; 802:137175. [PMID: 36907265 DOI: 10.1016/j.neulet.2023.137175] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 03/01/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023]
Abstract
Pentobarbital-induced anesthesia is believed to be mediated by enhancement of the inhibitory action of γ-aminobutyric acid (GABA)ergic neurons in the central nervous system. However, it is unclear whether all components of anesthesia induced by pentobarbital, such as muscle relaxation, unconsciousness, and immobility in response to noxious stimuli, are mediated only through GABAergic neurons. Thus, we examined whether the indirect GABA and glycine receptor agonists gabaculine and sarcosine, respectively, the neuronal nicotinic acetylcholine receptor antagonist mecamylamine, or the N-methyl-d-aspartate receptor channel blocker MK-801 could enhance pentobarbital-induced components of anesthesia. Muscle relaxation, unconsciousness, and immobility were evaluated by grip strength, the righting reflex, and loss of movement in response to nociceptive tail clamping, respectively, in mice. Pentobarbital reduced grip strength, impaired the righting reflex, and induced immobility in a dose-dependent manner. The change in each behavior induced by pentobarbital was roughly consistent with that in electroencephalographic power. A low dose of gabaculine, which significantly increased endogenous GABA levels in the central nervous system but had no effect on behaviors alone, potentiated muscle relaxation, unconsciousness, and immobility induced by low pentobarbital doses. A low dose of MK-801 augmented only the masked muscle-relaxing effects of pentobarbital among these components. Sarcosine enhanced only pentobarbital-induced immobility. Conversely, mecamylamine had no effect on any behavior. These findings suggest that each component of anesthesia induced by pentobarbital is mediated through GABAergic neurons and that pentobarbital-induced muscle relaxation and immobility may partially be associated with N-methyl-d-aspartate receptor antagonism and glycinergic neuron activation, respectively.
Collapse
Affiliation(s)
- Akari Mukai
- Department of Dental Anesthesiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.
| | - Masahiro Irifune
- Department of Dental Anesthesiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.
| | - Yoshitaka Shimizu
- Department of Dental Anesthesiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.
| | - Mitsuru Doi
- Department of Dental Anesthesiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.
| | - Yuka Kikuchi
- Section of Dental Anesthesiology, Department of Oral & Maxillofacial Surgery and Oral Medicine, Hiroshima University Hospital, Hiroshima, Japan
| | - Sotaro Katayama
- Section of Dental Anesthesiology, Department of Oral & Maxillofacial Surgery and Oral Medicine, Hiroshima University Hospital, Hiroshima, Japan.
| | - Kana Oue
- Section of Dental Anesthesiology, Department of Oral & Maxillofacial Surgery and Oral Medicine, Hiroshima University Hospital, Hiroshima, Japan.
| | - Mitsuhiro Yoshida
- Section of Dental Anesthesiology, Department of Oral & Maxillofacial Surgery and Oral Medicine, Hiroshima University Hospital, Hiroshima, Japan.
| | - Yukio Ago
- Department of Cellular and Molecular Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.
| | - Yoshiyuki Okada
- Department of Special Care Dentistry, Hiroshima University Hospital, Hiroshima, Japan.
| | - Norimitsu Morioka
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.
| | - Yoshihiro Nakata
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.
| | - Norio Sakai
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.
| |
Collapse
|
3
|
Helman TJ, Headrick JP, Peart JN, Stapelberg NJC. Central and cardiac stress resiliences consistently linked to integrated immuno-neuroendocrine responses across stress models in male mice. Eur J Neurosci 2022; 56:4333-4362. [PMID: 35763309 DOI: 10.1111/ejn.15747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 11/29/2022]
Abstract
Stress resilience, and behavioural and cardiovascular impacts of chronic stress, are theorised to involve integrated neuro-endocrine/inflammatory/transmitter/trophin signalling. We tested for this integration, and whether behaviour/emotionality, together with myocardial ischaemic tolerance, are consistently linked to these pathways across diverse conditions in male C57Bl/6 mice. This included: Restraint Stress (RS), 1 hr restraint/day for 14 days; Chronic Unpredictable Mild Stress (CUMS), 7 stressors randomised over 21 days; Social Stress (SS), 35 days social isolation with brief social encounters in final 13 days; and Control conditions (CTRL; un-stressed mice). Behaviour was assessed via open field (OFT) and sucrose preference (SPT) tests, and neurobiology from frontal cortex (FC) and hippocampal transcripts. Endocrine factors, and function and ischaemic tolerance in isolated hearts, were also measured. Model characteristics ranged from no behavioural or myocardial changes with homotypic RS, to increased emotionality and cardiac ischaemic injury (with apparently distinct endocrine/neurobiological profiles) in CUMS and SS models. Highly integrated expression of HPA axis, neuro-inflammatory, BDNF, monoamine, GABA, cannabinoid and opioid signalling genes was confirmed across conditions, and consistent/potentially causal correlations identified for: i) Locomotor activity (noradrenaline, ghrelin; FC Crhr1, Tnfrsf1b, Il33, Nfkb1, Maoa, Gabra1; hippocampal Il33); ii) Thigmotaxis (adrenaline, leptin); iii) Anxiety-like behaviour (adrenaline, leptin; FC Tnfrsf1a; hippocampal Il33); iv) Depressive-like behaviour (ghrelin; FC/hippocampal s100a8); and v) Cardiac stress-resistance (noradrenaline, leptin; FC Il33, Tnfrsf1b, Htr1a, Gabra1, Gabrg2; hippocampal Il33, Tnfrsf1a, Maoa, Drd2). Data support highly integrated pathway responses to stress, and consistent adipokine, sympatho-adrenergic, inflammatory and monoamine involvement in mood and myocardial disturbances across diverse conditions.
Collapse
Affiliation(s)
- Tessa J Helman
- School of Pharmacy and Medical Science, Griffith University, Southport, Australia
| | - John P Headrick
- School of Pharmacy and Medical Science, Griffith University, Southport, Australia
| | - Jason N Peart
- School of Pharmacy and Medical Science, Griffith University, Southport, Australia
| | - Nicolas J C Stapelberg
- Faculty of Health Sciences and Medicine, Bond University, Robina, Australia.,Gold Coast Hospital and Health Service, Southport, Australia
| |
Collapse
|
4
|
Daack CW, Yeh D, Busch M, Kliethermes CL. GABAergic regulation of locomotion before and during an ethanol exposure in Drosophila melanogaster. Behav Brain Res 2021; 410:113369. [PMID: 34015397 DOI: 10.1016/j.bbr.2021.113369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/30/2021] [Accepted: 05/14/2021] [Indexed: 11/17/2022]
Abstract
Ethanol at low doses induces a locomotor stimulant response across a range of phylogenetically diverse species. In rodents, this response is commonly used as an index of ethanol's disinhibitory, anxiolytic, or reinforcing effects, and its expression is regulated by signaling through a number of conserved neurotransmitter systems. In the current experiments, we asked whether ethanol-induced locomotor stimulation in the fruit fly Drosophila melanogaster might be mediated by ionotropic GABA receptors. We measured basal and ethanol-stimulated locomotion in flies expressing RNAi directed against three known subunits of ionotropic GABA receptors, and also examined the effects of picrotoxin feeding on these behaviors. We found that RNAi-mediated knockdown of a subunit of fly ionotropic GABA receptors, RDL, in all neurons resulted in an increased ethanol-induced locomotor stimulant response, while knockdown of two other subunits, LCCH3 and GRD, did not affect the responses. The effect of pan neuronal RDL knockdown was recapitulated with selective RDL knockdown in cholinergic neurons, and increased ethanol-induced locomotor stimulation was also seen by feeding the GABAA antagonist picrotoxin to flies prior to behavioral testing. However, the increase in ethanol-stimulated locomotion in each of these experiments was largely accounted for by decreased baseline activity. Our results indicate that ionotropic GABA receptors might be a conserved mediator of the locomotor stimulant effects of ethanol, but that alternative experimental approaches will be necessary to disentangle effects of GABAergic manipulations on baseline and ethanol-stimulated locomotion in flies.
Collapse
Affiliation(s)
- Calvin W Daack
- Drake University, 318 Olin Hall, 1344 27thStreet, Des Moines, IA, 50311, United States
| | - Derek Yeh
- Drake University, 318 Olin Hall, 1344 27thStreet, Des Moines, IA, 50311, United States
| | - Marc Busch
- Drake University, 318 Olin Hall, 1344 27thStreet, Des Moines, IA, 50311, United States
| | | |
Collapse
|
5
|
Nietz A, Krook-Magnuson C, Gutierrez H, Klein J, Sauve C, Hoff I, Christenson Wick Z, Krook-Magnuson E. Selective loss of the GABA Aα1 subunit from Purkinje cells is sufficient to induce a tremor phenotype. J Neurophysiol 2020; 124:1183-1197. [PMID: 32902350 DOI: 10.1152/jn.00100.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Previously, an essential tremor-like phenotype has been noted in animals with a global knockout of the GABAAα1 subunit. Given the hypothesized role of the cerebellum in tremor, including essential tremor, we used transgenic mice to selectively knock out the GABAAα1 subunit from cerebellar Purkinje cells. We examined the resulting phenotype regarding impacts on inhibitory postsynaptic currents, survival rates, gross motor abilities, and expression of tremor. Purkinje cell specific knockout of the GABAAα1 subunit abolished all GABAA-mediated inhibition in Purkinje cells, while leaving GABAA-mediated inhibition to cerebellar molecular layer interneurons intact. Selective loss of GABAAα1 from Purkinje cells did not produce deficits on the accelerating rotarod, nor did it result in decreased survival rates. However, a tremor phenotype was apparent, regardless of sex or background strain. This tremor mimicked the tremor seen in animals with a global knockout of the GABAAα1 subunit, and, like essential tremor in patients, was responsive to ethanol. These findings indicate that reduced inhibition to Purkinje cells is sufficient to induce a tremor phenotype, highlighting the importance of the cerebellum, inhibition, and Purkinje cells in tremor.NEW & NOTEWORTHY Animals with a global knockout of the GABAAα1 subunit show a tremor phenotype reminiscent of essential tremor. Here we show that selective knockout of GABAAα1 from Purkinje cells is sufficient to produce a tremor phenotype, although this tremor is less severe than seen in animals with a global knockout. These findings illustrate that the cerebellum can play a key role in the genesis of the observed tremor phenotype.
Collapse
Affiliation(s)
- Angela Nietz
- University of Minnesota, Department of Neuroscience, Minneapolis, Minnesota
| | | | - Haruna Gutierrez
- University of Minnesota, Department of Neuroscience, Minneapolis, Minnesota
| | - Julia Klein
- University of Minnesota, Department of Neuroscience, Minneapolis, Minnesota
| | - Clarke Sauve
- University of Minnesota, Department of Neuroscience, Minneapolis, Minnesota
| | - Isaac Hoff
- University of Minnesota, Department of Neuroscience, Minneapolis, Minnesota
| | | | | |
Collapse
|
6
|
Goodman AC, Wong RY. Differential effects of ethanol on behavior and GABA A receptor expression in adult zebrafish (Danio rerio) with alternative stress coping styles. Sci Rep 2020; 10:13076. [PMID: 32753576 PMCID: PMC7403336 DOI: 10.1038/s41598-020-69980-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/21/2020] [Indexed: 12/15/2022] Open
Abstract
Variation in stress responses between individuals are linked to factors ranging from stress coping styles to sensitivity of neurotransmitter systems. Many anxiolytic compounds (e.g. ethanol) can increase stressor engagement through modulation of neurotransmitter systems and are used to investigate stress response mechanisms. There are two alternative suites of correlated behavioral and physiological responses to stressors (stress coping styles) that differ in exploration tendencies: proactive and reactive stress coping styles. By chronically treating individuals differing in stress coping style with ethanol, a GABA-acting drug, we assessed the role of the GABAergic system on the behavioral stress response. Specifically, we investigated resulting changes in stress-related behavior (i.e. exploratory behavior) and whole-brain GABAA receptor subunits (gabra1, gabra2, gabrd, & gabrg2) in response to a novelty stressor. We found that ethanol-treated proactive individuals showed lower stress-related behaviors than their reactive counterparts. Proactive individuals showed significantly higher expression of gabra1, gabra2, and gabrg2 compared to reactive individuals and ethanol treatment resulted in upregulation of gabra1 and gabrg2 in both stress coping styles. These results suggest that impacts of ethanol on stress-related behaviors vary by stress coping style and that expression of select GABAA receptor subunits may be one of the underlying mechanisms.
Collapse
Affiliation(s)
- Alexander C Goodman
- Department of Biology, University of Nebraska at Omaha, Omaha, NE, 68182, USA.
| | - Ryan Y Wong
- Department of Biology, University of Nebraska at Omaha, Omaha, NE, 68182, USA.
| |
Collapse
|
7
|
Histone deacetylases mediate GABA A receptor expression, physiology, and behavioral maladaptations in rat models of alcohol dependence. Neuropsychopharmacology 2018; 43. [PMID: 29520058 PMCID: PMC5983537 DOI: 10.1038/s41386-018-0034-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Alcohol use disorders are chronic debilitating diseases characterized by severe withdrawal symptoms that contribute to morbidity and relapse. GABAA receptor (GABAAR) adaptations have long been implicated in the chronic effects of alcohol and contribute to many withdrawal symptoms associated with alcohol dependence. In rodents, GABAAR hypofunction results from decreases in Gabra1 expression, although the underlying mechanism controlling Gabra1 expression after chronic ethanol exposure is still unknown. We found that chronic ethanol exposure using either ethanol gavage or two-bottle choice voluntary access paradigms decreased Gabra1 expression and increased Hdac2 and Hdac3 expression. Administration of the HDAC inhibitor trichostatin A (TSA) after chronic ethanol exposure prevents the decrease in Gabra1 expression and function as well as the increase in Hdac2 and Hdac3 expression in both the cortex and the medial prefrontal cortex (mPFC). Chronic ethanol exposure and withdrawal, but not acute ethanol exposure or acute withdrawal, cause a selective upregulation of HDAC2 and HDAC3 associated with the Gabra1 promoter that accompanies a decrease in H3 acetylation of the Gabra1 promoter and the reduction in GABAAR α1 subunit expression. TSA administration prevented each of these molecular events as well as behavioral manifestations of ethanol dependence, including tolerance to zolpidem-induced loss of righting reflex, reduced open-arm time in the elevated plus maze, reduced center-time and locomotor activity in the open-field assay, and TSA reduced voluntary ethanol consumption. The results show how chronic ethanol exposure regulates the highly prominent GABAAR α1 subunit by an epigenetic mechanism that represents a potential treatment modality for alcohol dependence.
Collapse
|
8
|
Royal W, Can A, Gould TD, Guo M, Huse J, Jackson M, Davis H, Bryant J. Cigarette smoke and nicotine effects on brain proinflammatory responses and behavioral and motor function in HIV-1 transgenic rats. J Neurovirol 2018; 24:246-253. [PMID: 29644536 DOI: 10.1007/s13365-018-0623-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 01/21/2018] [Accepted: 02/15/2018] [Indexed: 01/08/2023]
Abstract
Cognitive impairment in HIV-1 infection is associated with the induction of chronic proinflammatory responses in the brains of infected individuals. The risk of HIV-related cognitive impairment is increased by cigarette smoking, which induces brain inflammation in rodent models. To better understand the role of smoking and the associated immune response on behavioral and motor function in HIV infection, wild-type F344 and HIV-1 transgenic (HIV1Tg) rats were exposed to either smoke from nicotine-containing (regular) cigarettes, smoke from nicotine-free cigarettes, or to nicotine alone. The animals were then tested using the rotarod test (RRT), the novel object recognition test (NORT), and the open field test (OFT). Subsequently, brain frontal cortex from the rats was analyzed for levels of TNF-α, IL-1, and IL-6. On the RRT, impairment was noted for F344 rats exposed to either nicotine-free cigarette smoke or nicotine alone and for F344 and HIV1Tg rats exposed to regular cigarette smoke. Effects from the exposures on the OFT were seen only for HIV1Tg rats, for which function was worse following exposure to regular cigarette smoke as compared to exposure to nicotine alone. Expression levels for all three cytokines were overall higher for HIV1Tg than for F344 rats. For HIV1Tg rats, TNF-α, IL-1, and IL-6 gene expression levels for all exposure groups were higher than for control rats. All F344 rat exposure groups also showed significantly increased TNF-α expression levels. However, for F344 rats, IL-1 expression levels were higher only for rats exposed to nicotine-free and nicotine-containing CS, and no increase in IL-6 gene expression was noted with any of the exposures as compared to controls. These studies, therefore, demonstrate that F344 and HIV1Tg rats show differential behavioral and immune effects from these exposures. These effects may potentially reflect differences in the responsiveness of the various brain regions in the two animal species as well as the result of direct toxicity mediated by the proinflammatory cytokines that are produced by HIV proteins and by other factors that are present in regular cigarette smoke.
Collapse
Affiliation(s)
- Walter Royal
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA. .,Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA. .,Baltimore Veterans Administration Medical Center, Baltimore, MD, USA.
| | - Adem Can
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Todd D Gould
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ming Guo
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Jared Huse
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Myles Jackson
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Harry Davis
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Joseph Bryant
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
9
|
Chuang SH, Reddy DS. Genetic and Molecular Regulation of Extrasynaptic GABA-A Receptors in the Brain: Therapeutic Insights for Epilepsy. J Pharmacol Exp Ther 2017; 364:180-197. [PMID: 29142081 DOI: 10.1124/jpet.117.244673] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 11/13/2017] [Indexed: 12/18/2022] Open
Abstract
GABA-A receptors play a pivotal role in many brain diseases. Epilepsy is caused by acquired conditions and genetic defects in GABA receptor channels regulating neuronal excitability in the brain. The latter is referred to as GABA channelopathies. In the last two decades, major advances have been made in the genetics of epilepsy. The presence of specific GABAergic genetic abnormalities leading to some of the classic epileptic syndromes has been identified. Advances in molecular cloning and recombinant systems have helped characterize mutations in GABA-A receptor subunit genes in clinical neurology. GABA-A receptors are the prime targets for neurosteroids (NSs). However, GABA-A receptors are not static but undergo rapid changes in their number or composition in response to the neuroendocrine milieu. This review describes the recent advances in the genetic and neuroendocrine control of extrasynaptic and synaptic GABA-A receptors in epilepsy and its impact on neurologic conditions. It highlights the current knowledge of GABA genetics in epilepsy, with an emphasis on the neuroendocrine regulation of extrasynaptic GABA-A receptors in network excitability and seizure susceptibility. Recent advances in molecular regulation of extrasynaptic GABA-A receptor-mediated tonic inhibition are providing unique new therapeutic approaches for epilepsy, status epilepticus, and certain brain disorders. The discovery of an extrasynaptic molecular mechanism represents a milestone for developing novel therapies such as NS replacement therapy for catamenial epilepsy.
Collapse
Affiliation(s)
- Shu-Hui Chuang
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas
| | - Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas
| |
Collapse
|
10
|
Raud S, Reimets R, Loomets M, Sütt S, Altpere A, Visnapuu T, Innos J, Luuk H, Plaas M, Volke V, Vasar E. Deletion of the Wolfram syndrome-related gene Wfs1 results in increased sensitivity to ethanol in female mice. Neuropharmacology 2015; 95:59-67. [DOI: 10.1016/j.neuropharm.2015.02.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 02/13/2015] [Accepted: 02/15/2015] [Indexed: 10/23/2022]
|
11
|
Ennaceur A. Tests of unconditioned anxiety - pitfalls and disappointments. Physiol Behav 2014; 135:55-71. [PMID: 24910138 DOI: 10.1016/j.physbeh.2014.05.032] [Citation(s) in RCA: 159] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 04/21/2014] [Accepted: 05/28/2014] [Indexed: 02/05/2023]
Abstract
The plus-maze, the light-dark box and the open-field are the main current tests of unconditioned anxiety for mice and rats. Despite their disappointing achievements, they remain as popular as ever and seem to play an important role in an ever-growing demand for behavioral phenotyping and drug screening. Numerous reviews have repeatedly reported their lack of consistency and reliability but they failed to address the core question of whether these tests do provide unequivocal measures of fear-induced anxiety, that these measurements are not confused with measures of fear-induced avoidance or natural preference responses - i.e. discriminant validity. In the present report, I examined numerous issues that undermine the validity of the current tests, and I highlighted various flaws in the aspects of these tests and the methodologies pursued. This report concludes that the evidence in support of the validity of the plus-maze, the light/dark box and the open-field as anxiety tests is poor and methodologically questionable.
Collapse
Affiliation(s)
- A Ennaceur
- University of Sunderland, Department of Pharmacy, Wharncliffe Street, Sunderland SR1 3SD, UK.
| |
Collapse
|
12
|
Herd MB, Lambert JJ, Belelli D. The general anaesthetic etomidate inhibits the excitability of mouse thalamocortical relay neurons by modulating multiple modes of GABAA receptor-mediated inhibition. Eur J Neurosci 2014; 40:2487-501. [PMID: 24773078 PMCID: PMC4215602 DOI: 10.1111/ejn.12601] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 03/12/2014] [Accepted: 03/26/2014] [Indexed: 12/12/2022]
Abstract
Modulation of thalamocortical (TC) relay neuron function has been implicated in the sedative and hypnotic effects of general anaesthetics. Inhibition of TC neurons is mediated predominantly by a combination of phasic and tonic inhibition, together with a recently described ‘spillover’ mode of inhibition, generated by the dynamic recruitment of extrasynaptic γ-aminobutyric acid (GABA)A receptors (GABAARs). Previous studies demonstrated that the intravenous anaesthetic etomidate enhances tonic and phasic inhibition in TC relay neurons, but it is not known how etomidate may influence spillover inhibition. Moreover, it is unclear how etomidate influences the excitability of TC neurons. Thus, to investigate the relative contribution of synaptic (α1β2γ2) and extrasynaptic (α4β2δ) GABAARs to the thalamic effects of etomidate, we performed whole-cell recordings from mouse TC neurons lacking synaptic (α10/0) or extrasynaptic (δ0/0) GABAARs. Etomidate (3 μm) significantly inhibited action-potential discharge in a manner that was dependent on facilitation of both synaptic and extrasynaptic GABAARs, although enhanced tonic inhibition was dominant in this respect. Additionally, phasic inhibition evoked by stimulation of the nucleus reticularis exhibited a spillover component mediated by δ-GABAARs, which was significantly prolonged in the presence of etomidate. Thus, etomidate greatly enhanced the transient suppression of TC spike trains by evoked inhibitory postsynaptic potentials. Collectively, these results suggest that the deactivation of thalamus observed during etomidate-induced anaesthesia involves potentiation of tonic and phasic inhibition, and implicate amplification of spillover inhibition as a novel mechanism to regulate the gating of sensory information through the thalamus during anaesthetic states.
Collapse
Affiliation(s)
- Murray B Herd
- Division of Neuroscience, Medical Research Institute, University of Dundee, Ninewells Hospital and Medical School, Dundee, DD1 9SY, UK
| | | | | |
Collapse
|
13
|
Wyatt LR, Finn DA, Khoja S, Yardley MM, Asatryan L, Alkana RL, Davies DL. Contribution of P2X4 receptors to ethanol intake in male C57BL/6 mice. Neurochem Res 2014; 39:1127-39. [PMID: 24671605 DOI: 10.1007/s11064-014-1271-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 02/15/2014] [Accepted: 02/26/2014] [Indexed: 11/26/2022]
Abstract
P2X receptors (P2XRs) are a family of cation-permeable ligand-gated ion channels activated by synaptically released extracellular adenosine 5'-triphosphate. The P2X4 subtype is abundantly expressed in the central nervous system and is sensitive to low intoxicating ethanol concentrations. Genetic meta-analyses identified the p2rx4 gene as a candidate gene for innate alcohol intake and/or preference. The current study used mice lacking the p2rx4 gene (knockout, KO) and wildtype (WT) C57BL/6 controls to test the hypothesis that P2X4Rs contribute to ethanol intake. The early acquisition and early maintenance phases of ethanol intake were measured with three different drinking procedures. Further, we tested the effects of ivermectin (IVM), a drug previously shown to reduce ethanol's effects on P2X4Rs and to reduce ethanol intake and preference, for its ability to differentially alter stable ethanol intake in KO and WT mice. Depending on the procedure and the concentration of the ethanol solution, ethanol intake was transiently increased in P2X4R KO versus WT mice during the acquisition of 24-h and limited access ethanol intake. IVM significantly reduced ethanol intake in P2X4R KO and WT mice, but the degree of reduction was 50 % less in the P2X4R KO mice. Western blot analysis identified significant changes in γ-aminobutyric acidA receptor α1 subunit expression in brain regions associated with the regulation of ethanol behaviors in P2X4R KO mice. These findings add to evidence that P2X4Rs contribute to ethanol intake and indicate that there is a complex interaction between P2X4Rs, ethanol, and other neurotransmitter receptor systems.
Collapse
Affiliation(s)
- Letisha R Wyatt
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA, 90033, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Iyer SV, Chandra D, Homanics GE. GABAA-R α4 subunits are required for the low dose locomotor stimulatory effect of alphaxalone, but not for several other behavioral responses to alphaxalone, etomidate or propofol. Neurochem Res 2013; 39:1048-56. [PMID: 24062179 DOI: 10.1007/s11064-013-1148-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 08/26/2013] [Accepted: 08/30/2013] [Indexed: 10/26/2022]
Abstract
γ-Aminobutyric acid type A receptors (GABAA-Rs) are considered to be the primary molecular targets of injectable anesthetics such as propofol, etomidate and the neurosteriod, alphaxalone. A number of studies have sought to understand the specific GABAA-R subtypes involved in the mechanism of action of these three drugs. Here, we investigated the role of α4-subunit containing GABAA-Rs in the neurobehavioral responses to these drugs. Drug responses in α4 subunit knockout (KO) mice were compared to wild type (WT) littermate controls. While etomidate and propofol are currently used as injectable anesthetics, alphaxalone belongs to the class of neurosteroid drugs having anesthetic effects. Low dose effects of etomidate and alphaxalone were studied using an open field assay. The moderate and high dose effects of all three anesthetics were measured using the rotarod and loss of righting reflex assays, respectively. The locomotor stimulatory effect of alphaxalone was reduced significantly in α4 KO mice compared to WT controls. Neither the low dose sedating effect of etomidate, nor the moderate/high dose effect of any of the drugs differed between genotypes. These results suggest that α4 subunit-containing GABAA-Rs are required for the low dose, locomotor stimulatory effect of alphaxalone but are not required for the sedating effect of etomidate or the moderate/high dose effects of etomidate, propofol or alphaxalone on motor ataxia and loss of righting reflex.
Collapse
Affiliation(s)
- Sangeetha V Iyer
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | |
Collapse
|
15
|
Bidirectional regulation of intravenous general anesthetic actions by α3-containing γ-aminobutyric acid A receptors. Anesthesiology 2013; 118:562-76. [PMID: 23303487 DOI: 10.1097/aln.0b013e3182800d76] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND γ-aminobutyric acid A (GABAA) receptors mediate the actions of several intravenous general anesthetics. However, the contribution of α3-containing GABAA receptors to the action of these drugs is unknown. METHODS The authors compared anesthetic endpoints (hypnosis, immobility, hypothermia) in response to various intravenous anesthetics in mice lacking the α3 subunit of the GABAA receptor (α3 knockout) and in wild-type mice. Furthermore, the authors generated and analyzed conditional mutant mice expressing the GABAA receptor α3 subunit exclusively in noradrenergic neurons. RESULTS α3 knockout mice displayed decreased hypnotic and hypothermic responses to etomidate and midazolam, but an increased response to pentobarbital. The hypnotic response to ketamine was unaltered, whereas the hypothermic response was increased. In contrast, the hypnotic but not the hypothermic response to medetomidine was increased. The combination of ketamine/xylazine displayed increased hypnotic, immobilizing, and hypothermic effects in α3 knockout mice. Mice expressing the α3 subunit exclusively in noradrenergic neurons were generated to assess whether the lack of α3 subunits on noradrenergic neurons may be responsible for this effect. In these mice, the increases of the hypnotic and immobilizing actions induced by ketamine/xylazine were largely absent, whereas the increase in the hypothermic action was still present. CONCLUSION α3-containing GABAA receptors bidirectionally regulate essential anesthetic actions: they mediate anesthetic actions of etomidate and midazolam, known to selectively act at GABAA receptors, and they negatively constrain anesthetic actions of compounds with targets partly or exclusively distinct from GABAA receptors such as medetomidine, ketamine, and pentobarbital. Furthermore, our results indicate that α3-containing GABAA receptors on noradrenergic neurons may contribute to this constraint.
Collapse
|
16
|
Blednov YA, Benavidez JM, Black M, Chandra D, Homanics GE, Rudolph U, Harris RA. Linking GABA(A) receptor subunits to alcohol-induced conditioned taste aversion and recovery from acute alcohol intoxication. Neuropharmacology 2012; 67:46-56. [PMID: 23147414 DOI: 10.1016/j.neuropharm.2012.10.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Revised: 10/12/2012] [Accepted: 10/28/2012] [Indexed: 10/27/2022]
Abstract
GABA type A receptors (GABA(A)-R) are important for ethanol actions and it is of interest to link individual subunits with specific ethanol behaviors. We studied null mutant mice for six different GABA(A)-R subunits (α1, α2, α3, α4, α5 and δ). Only mice lacking the α2 subunit showed reduction of conditioned taste aversion (CTA) to ethanol. These results are in agreement with data from knock-in mice with mutation of the ethanol-sensitive site in the α2-subunit (Blednov et al., 2011). All together, they indicate that aversive property of ethanol is dependent on ethanol action on α2-containing GABA(A)-R. Deletion of the α2-subunit led to faster recovery whereas absence of the α3-subunit slowed recovery from ethanol-induced incoordination (rotarod). Deletion of the other four subunits did not affect this behavior. Similar changes in this behavior for the α2 and α3 null mutants were found for flurazepam motor incoordination. However, no differences in recovery were found in motor-incoordinating effects of an α1-selective modulator (zolpidem) or an α4-selective agonist (gaboxadol). Therefore, recovery of rotarod incoordination is under control of two GABA(A)-R subunits: α2 and α3. For motor activity, α3 null mice demonstrated higher activation by ethanol (1 g/kg) whereas both α2 (-/-) and α3 (-/Y) knockout mice were less sensitive to ethanol-induced reduction of motor activity (1.5 g/kg). These studies demonstrate that the effects of ethanol at GABAergic synapses containing α2 subunit are important for specific behavioral effects of ethanol which may be relevant to the genetic linkage of the α2 subunit with human alcoholism.
Collapse
Affiliation(s)
- Y A Blednov
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, 1 University Station, A4800, Austin, TX 78712, USA.
| | | | | | | | | | | | | |
Collapse
|
17
|
June HL, Tzeng Yang ARS, Bryant JL, Jones O, Royal W. Vitamin A deficiency and behavioral and motor deficits in the human immunodeficiency virus type 1 transgenic rat. J Neurovirol 2010; 15:380-9. [PMID: 19995129 DOI: 10.3109/13550280903350200] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The human immunodeficiency virus type 1 (HIV-1) transgenic (Tg) rat model incorporates a noninfectious viral genome that is under similar regulatory control mechanisms in vivo as those that exist with natural infection in humans. Vitamin A (VA) deficiency in humans has been associated with progressive systemic HIV disease and with impaired cognition in rodent models. The effects on of VA deficiency on the development of behavioral abnormalities with HIV infection have not been previously described. In these studies, wild-type (Wt) and Tg rats maintained on either a normal (VA+) or a VA-deficient (VA-) diet were examined for activity in an open field (horizontal activity, total distance, vertical activity, and rearing) and on rotarod testing. On both open field and rotarod testing, the Tg rats performed worse than the Wt rats, with the most severe deficits noted in the TgVA- animals. Analysis of the specific effects of the presence of the HIV transgene and the diet on the performance on the open field tests showed a dominant effect from the transgene on all of the tests, with an effect from the diet on only the number of rearings. On rotarod testing, effects form both the diet and the transgene were observed at lower speeds, at the highest speeds, and on the accelerating rotarod. These studies therefore demonstrate that behavioral and motor abnormalities can be detected in this model and are likely due to similar mechanisms by which humans infected with HIV might develop cognitive-motor impairment in association with VA deficiency.
Collapse
Affiliation(s)
- Harry L June
- Department of Neurology, The University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | |
Collapse
|
18
|
Linsenbardt DN, Boehm SL. Ethanol-induced locomotor sensitization in DBA/2J mice is associated with alterations in GABA(A) subunit gene expression and behavioral sensitivity to GABA(A) acting drugs. Pharmacol Biochem Behav 2010; 95:359-66. [PMID: 20219525 DOI: 10.1016/j.pbb.2010.02.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Revised: 02/16/2010] [Accepted: 02/22/2010] [Indexed: 11/19/2022]
Abstract
Repeated exposure to ethanol may produce increased sensitivity to its acute locomotor stimulant actions, a process referred to as locomotor sensitization. Neuroadaptation within certain brain circuits, including those possessing GABA(A) receptors, may underlie locomotor sensitization to ethanol. Indeed, GABA(A) receptors are documented mediators of ethanol's cellular and behavioral actions. Moreover, because subunit composition of this receptor is predictive of its pharmacology, it is possible that alterations in subunit composition contribute to the expression of locomotor sensitization to ethanol. The goal of the present study was to determine if alterations in GABA(A) subunit composition are associated with the expression of locomotor sensitization in DBA/2J mice, a strain known to be particularly susceptible to the development of this behavioral phenomenon. Following a modified 14day sensitization procedure (Phillips et al., 1994) relative changes in GABA(A) subunit gene expression were assessed in discrete mesolimbic brain regions. To determine if the observed changes in gene expression produced functional changes in the locomotor responses to drugs known to either preferentially or generally activate GABA(A) receptors normally possessing the significantly altered subunits, separate cohorts of animals were challenged with one of several low doses of zolpidem (alpha1-selective), etomidate (beta2/3-selective), or flurazepam (gamma2-directed) and assessed for locomotor alterations. Sensitized animals displayed increased expression of the alpha1, beta2, and gamma2 (v1) subunits in the Nucleus Accumbens (NAc) but not Ventral Tegmental Area (VTA). Additionally, sensitized animals displayed altered sensitivity to the locomotor actions of etomidate and flurazepam. These results support the hypothesis that neuroadaptive changes in GABA(A) subunit composition participate in the expression of locomotor sensitization.
Collapse
Affiliation(s)
- David N Linsenbardt
- Center for Development and Behavioral Neuroscience, Department of Psychology, Binghamton University, Binghamton, NY 13902, United States.
| | | |
Collapse
|
19
|
Sun YP, Liu Q, Luo J, Guo P, Chen F, Lawrence AJ, Liang JH. Systemic administration of arecoline reduces ethanol-induced sleeping through activation of central muscarinic receptor in mice. Alcohol Clin Exp Res 2009; 34:150-7. [PMID: 19860797 DOI: 10.1111/j.1530-0277.2009.01076.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Epidemiological evidence of co-use of alcohol and areca nuts suggests a potential central interaction between arecoline, a major alkaloid of areca and a muscarinic receptor agonist, and ethanol. Moreover, the central cholinergic system plays an important role in the depressant action of ethanol and barbiturates. The purpose of this study was to investigate the effects of arecoline on pentobarbital- and ethanol-induced hypnosis in mice. METHODS Male ICR mice were tested for locomotor activity following acute systemic administration of ethanol alone, arecoline alone, or ethanol plus arecoline. For the loss of the righting reflex (LORR) induced by pentobarbital and ethanol, sleep latency and sleeping duration were evaluated in mice treated with arecoline alone or the combination of arecoline and scopolamine or methscopolamine. RESULTS Ethanol (1.0 to 3.0 g/kg, i.p.) reduced locomotor activity significantly and a declining trend was observed after treatment with arecoline (0.25 to 1.0 mg/kg, i.p.), but there were no synergistic effects of ethanol and arecoline on locomotor activity. The experiments on LORR demonstrated that arecoline (0.125 to 1.0 mg/kg, s.c.) shortened the duration of sleeping induced by ethanol (4.0 g/kg, i.p.), but not pentobarbital (45 mg/kg, i.p.). In addition, alterations of sleep latency were not obvious in both pentobarbital- and ethanol-induced LORR. Statistical analyses revealed that scopolamine (centrally acting), but not methscopolamine (peripherally acting), could antagonize the effect of arecoline on the duration of ethanol-induced LORR in mice. CONCLUSIONS These results suggest that central muscarinic receptor is a pharmacological target for the action of arecoline to modulate ethanol-induced hypnosis.
Collapse
Affiliation(s)
- Yan-Ping Sun
- National Institute on Drug Dependence, Peking University, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
20
|
Kumar S, Porcu P, Werner DF, Matthews DB, Diaz-Granados JL, Helfand RS, Morrow AL. The role of GABA(A) receptors in the acute and chronic effects of ethanol: a decade of progress. Psychopharmacology (Berl) 2009; 205:529-64. [PMID: 19455309 PMCID: PMC2814770 DOI: 10.1007/s00213-009-1562-z] [Citation(s) in RCA: 342] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Accepted: 04/30/2009] [Indexed: 12/12/2022]
Abstract
The past decade has brought many advances in our understanding of GABA(A) receptor-mediated ethanol action in the central nervous system. We now know that specific GABA(A) receptor subtypes are sensitive to ethanol at doses attained during social drinking while other subtypes respond to ethanol at doses attained by severe intoxication. Furthermore, ethanol increases GABAergic neurotransmission through indirect effects, including the elevation of endogenous GABAergic neuroactive steroids, presynaptic release of GABA, and dephosphorylation of GABA(A) receptors promoting increases in GABA sensitivity. Ethanol's effects on intracellular signaling also influence GABAergic transmission in multiple ways that vary across brain regions and cell types. The effects of chronic ethanol administration are influenced by adaptations in GABA(A) receptor function, expression, trafficking, and subcellular localization that contribute to ethanol tolerance, dependence, and withdrawal hyperexcitability. Adolescents exhibit altered sensitivity to ethanol actions, the tendency for higher drinking and longer lasting GABAergic adaptations to chronic ethanol administration. The elucidation of the mechanisms that underlie adaptations to ethanol exposure are leading to a better understanding of the regulation of inhibitory transmission and new targets for therapies to support recovery from ethanol withdrawal and alcoholism.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Psychiatry, Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, 3027 Thurston-Bowles Building, CB #7178, Chapel Hill, NC 27599-7178, USA
| | - Patrizia Porcu
- Department of Psychiatry, Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, 3027 Thurston-Bowles Building, CB #7178, Chapel Hill, NC 27599-7178, USA
| | - David F. Werner
- Department of Psychiatry, Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, 3027 Thurston-Bowles Building, CB #7178, Chapel Hill, NC 27599-7178, USA
| | | | | | - Rebecca S. Helfand
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, USA
| | - A. Leslie Morrow
- Department of Psychiatry, Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, 3027 Thurston-Bowles Building, CB #7178, Chapel Hill, NC 27599-7178, USA, Department of Pharmacology, Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, 3027 Thurston-Bowles Building, CB #7178, Chapel Hill, NC 27599-7178, USA
| |
Collapse
|
21
|
Vinkers CH, Klanker M, Groenink L, Korte SM, Cook JM, Van Linn ML, Hopkins SC, Olivier B. Dissociating anxiolytic and sedative effects of GABAAergic drugs using temperature and locomotor responses to acute stress. Psychopharmacology (Berl) 2009; 204:299-311. [PMID: 19169673 PMCID: PMC2752628 DOI: 10.1007/s00213-009-1460-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Accepted: 12/31/2008] [Indexed: 11/25/2022]
Abstract
RATIONALE The stress-induced hyperthermia (SIH) model is an anxiety model that uses the transient rise in body temperature in response to acute stress. Benzodiazepines produce anxiolytic as well as sedative side effects through nonselective binding to GABA(A) receptor subunits. The GABA(A) receptor alpha(1) subunit is associated with sedation, whereas the GABA(A) receptor alpha(2) and alpha(3) subunits are involved in anxiolytic effects. OBJECTIVES We therefore examined the effects of (non)subunit-selective GABA(A) receptor agonists on temperature and locomotor responses to novel cage stress. RESULTS Using telemetric monitoring of temperature and locomotor activity, we found that nonsubunit-selective GABA(A) receptor agonist diazepam as well as the alpha(3) subunit-selective receptor agonist TP003 dose-dependently attenuated SIH and locomotor responses. Administration of GABA(A) receptor alpha(1)-selective agonist zolpidem resulted in profound hypothermia and locomotor sedation. The GABA(A) receptor alpha(1)-selective antagonist betaCCt antagonized the hypothermia, but did not reverse the SIH response attenuation caused by diazepam and zolpidem. These results suggest an important regulating role for the alpha(1) subunit in thermoregulation and sedation. Ligands of extrasynaptic GABA(A) receptors such as alcohol and nonbenzodiazepine THIP attenuated the SIH response only at high doses. CONCLUSIONS The present study confirms a putative role for the GABA(A) receptor alpha(1) subunit in hypothermia and sedation and supports a role for alpha(2/3) subunit GABA(A) receptor agonists in anxiety processes. In conclusion, we show that home cage temperature and locomotor responses to novel home cage stress provide an excellent tool to assess both anxiolytic and sedative effects of various (subunit-selective) GABA(A)ergic compounds.
Collapse
Affiliation(s)
- Christiaan H Vinkers
- Department of Psychopharmacology, Utrecht Institute for Pharmaceutical Sciences and Rudolf Magnus Institute of Neuroscience, Utrecht University, Sorbonnelaan 16, 3584 CA Utrecht, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Zheng G, Zhang W, Zhang Y, Chen Y, Liu M, Yao T, Yang Y, Zhao F, Li J, Huang C, Luo W, Chen J. γ-aminobutyric acidA (GABAA) receptor regulates ERK1/2 phosphorylation in rat hippocampus in high doses of Methyl Tert-Butyl Ether (MTBE)-induced impairment of spatial memory. Toxicol Appl Pharmacol 2009; 236:239-45. [DOI: 10.1016/j.taap.2009.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Revised: 01/13/2009] [Accepted: 01/15/2009] [Indexed: 10/21/2022]
|
23
|
Werner DF, Swihart AR, Ferguson C, Lariviere WR, Harrison NL, Homanics GE. Alcohol-induced tolerance and physical dependence in mice with ethanol insensitive alpha1 GABA A receptors. Alcohol Clin Exp Res 2008; 33:289-99. [PMID: 19032579 DOI: 10.1111/j.1530-0277.2008.00832.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Although many people consume alcohol (ethanol), it remains unknown why some become addicted. Elucidating the molecular mechanisms of tolerance and physical dependence (withdrawal) may provide insight into alcohol addiction. While the exact molecular mechanisms of ethanol action are unclear, gamma-aminobutyric acid type A receptors (GABA(A)-Rs) have been extensively implicated in ethanol action. The alpha1 GABA(A)-R subunit is associated with tolerance and physical dependence, but its exact role remains unknown. In this report, we tested the hypothesis that alpha1-GABA(A)-Rs mediate in part these effects of ethanol. METHODS Ethanol-induced behavioral responses related to tolerance and physical dependence were investigated in knockin (KI) mice that have ethanol-insensitive alpha1 GABA(A)-Rs and wildtype (WT) controls. Acute functional tolerance (AFT) was assessed using the stationary dowel and loss of righting reflex (LORR) assays. Chronic tolerance was assessed on the LORR, fixed speed rotarod, hypothermia, and radiant tail-flick assays following 10 consecutive days of ethanol exposure. Withdrawal-related hyperexcitability was assessed by handling-induced convulsions following 3 cycles of ethanol vapor exposure/withdrawal. Immunoblots were used to assess alpha1 protein levels. RESULTS Compared with controls, KI mice displayed decreased AFT and chronic tolerance to ethanol-induced motor ataxia, and also displayed heightened ethanol-withdrawal hyperexcitability. No differences between WT and KI mice were seen in other ethanol-induced behavioral measures. Following chronic exposure to ethanol, control mice displayed reductions in alpha1 protein levels, but KIs did not. CONCLUSIONS We conclude that alpha1-GABA(A)-Rs play a role in tolerance to ethanol-induced motor ataxia and withdrawal-related hyperexcitability. However, other aspects of behavioral tolerance and physical dependence do not rely on alpha1-containing GABA(A)-Rs.
Collapse
Affiliation(s)
- David F Werner
- Departments of Anesthesiology and Pharmacology, Weill Medical College of Cornell University, New York, NY, USA
| | | | | | | | | | | |
Collapse
|
24
|
The time-dependent effects of midazolam on regional cerebral glucose metabolism in rats. Anesth Analg 2008; 106:1516-23, table of contents. [PMID: 18420870 DOI: 10.1213/ane.0b013e31816a64a8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Midazolam has hypnotic and sedative activities, which may be mediated by different neuronal structures. We investigated the time course effect of a hypnotic dose of midazolam on conscious motor behavior and on patterns of brain metabolism. METHODS Loss of nociceptive reflexes and impairment of spontaneous locomotor activity were used as indices for the hypnotic and sedative effects of midazolam, and the regional cerebral metabolic rates for glucose (rCMRglc) were used as indices of neuronal effects of midazolam. Locomotor activity was measured with a monitor and rCMRglc were measured with the quantitative autoradiographic [(14)C]2-deoxyglucose procedure in 62 brain regions of Fischer-344 rats at 2, 30, 60, 120, and 180 min after i.v. administration of saline or midazolam 5 mg/kg. RESULTS After midazolam administration, rats were anesthetized at 2 min, awake but severely impaired at 30 min and slowly recovering motor activity thereafter. Anesthesia was associated with widespread rCMRglc decreases (59 areas affected, 38% mean decrease). Recovery of consciousness was associated with normalizing rCMRglc in visual, auditory, and somatosensory cortices and in the locus coeruleus (47 regions affected, 31% decrease). Recovery of motor activity was paralleled by slow rCMRglc normalization in the frontal motor, limbic, and thalamic regions (at 60, 120, and 180 min 31, 17, 4 areas affected, 26, 20, and 15% decreases from control values). CONCLUSIONS Whereas the hypnotic effects of midazolam may result from inhibition of brain structures involved in arousal and sensory processing, its sedative effects may result from inhibition of subcortical motor and limbic regions.
Collapse
|
25
|
GABA Effects During Neuronal Differentiation of Stem Cells. Neurochem Res 2008; 33:1546-57. [DOI: 10.1007/s11064-008-9642-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Accepted: 02/21/2008] [Indexed: 12/18/2022]
|
26
|
Krall CM, Richards JB, Rabin RA, Winter JC. Marked decrease of LSD-induced stimulus control in serotonin transporter knockout mice. Pharmacol Biochem Behav 2007; 88:349-57. [PMID: 17935763 DOI: 10.1016/j.pbb.2007.09.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Revised: 09/06/2007] [Accepted: 09/07/2007] [Indexed: 02/05/2023]
Abstract
RATIONALE Based upon extensive studies in the rat, it has been suggested that stimulus control by LSD is mediated by 5-HT2A receptors, with serotonergic receptors of the 5-HT1A and 5-HT2C subtypes playing modulatory roles. In genetically modified mice lacking the serotonin transporter (SERT), 5-HT2A receptor density is decreased and, at a functional level, the head-twitch response following the administration of DOI, an index of activation of 5-HT2A receptors, is reduced. Taken together, these studies led us to hypothesize that the efficacy of LSD in establishing stimulus control is diminished or abolished in mice lacking the serotonin transporter. OBJECTIVE Determine the efficacy of LSD for establishing stimulus control in SERT knockout (KO) mice. METHODS SERT KO mice and wildtype (WT) littermates were trained in a visual discrimination on a progressive fixed ratio (FR) water-reinforced task and subsequently trained on a FR10 schedule with LSD (0.17 or 0.30 mg/kg) or vehicle. To control for general deficiencies in drug discrimination, mice were trained with pentobarbital (15 or 30 mg/kg) or vehicle. RESULTS The visual stimulus exerted control in both genotypes. LSD-induced stimulus control in 90% of WT mice but only 31% of SERT KO mice. In contrast, pentobarbital-induced stimulus control in 80% of WT mice and 54% of knockout mice. CONCLUSIONS Although SERT KO mice exhibited stimulus control by the non-serotonergic drug, pentobarbital, the efficacy of LSD in these animals was markedly decreased, suggesting that reduced density of 5-HT1A and/or 5-HT2A receptors underlies the absence of stimulus control by LSD.
Collapse
Affiliation(s)
- C M Krall
- Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, University at Buffalo, 102 Farber Hall, SUNY-Buffalo, NY 14214-3000, USA
| | | | | | | |
Collapse
|
27
|
Zheng G, Zhang X, Chen Y, Zhang Y, Luo W, Chen J. Evidence for a role of GABAA receptor in the acute restraint stress-induced enhancement of spatial memory. Brain Res 2007; 1181:61-73. [PMID: 17916335 DOI: 10.1016/j.brainres.2007.08.077] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2007] [Revised: 08/16/2007] [Accepted: 08/26/2007] [Indexed: 11/17/2022]
Abstract
Stress exerts complex effects on learning and memory; however, the understanding of the molecular mechanisms involved in stress effects on brain and behavior is rather limited. In this study, we investigated the regulation of the activation of MAPK (mitogen-activated protein kinase) cascades in the rat brain by GABAA receptor in a learning and memory task under acute restraint stress conditions. We found that the acute restraint stress improved the performance of the rats in the Morris water maze. Furthermore, the acute restraint stress significantly increased the phosphorylation of ERK and JNK in the hippocampus and prefrontal cortex (PFC), but not in the striatum. The increase paralleled the time course of the decrease of the level of GABAA receptor alpha1 subunit. The increase of P-ERK levels was inhibited by the agonist of GABAA receptor, muscimol, and further increased by the antagonist of the receptor, bicuculline. However, neither muscimol nor bicuculline affected the levels of P-JNK and P-p38. Finally, injection of muscimol partly reversed the acute restraint stress-induced enhancement of performance in the Morris water maze, and injection of bicuculline improved it. These results demonstrated that the changes in ERK phosphorylation in hippocampus and PFC were regulated by GABAA receptor in a learning and memory paradigm under acute restraint stress conditions.
Collapse
Affiliation(s)
- Gang Zheng
- Department of Occupational and Environmental Health, Fourth Military Medical University, 17 Changlexi Road, Xi'an 710032, China
| | | | | | | | | | | |
Collapse
|
28
|
Xu Y, Cai Y, Gong N, Chen C, Wu Y, Zhang-Nunes S, Wang Z, Xu T, Fei J. Homeostatic plasticity of GABAergic synaptic transmission in mice lacking GAT1. Biochem Biophys Res Commun 2007; 361:499-504. [PMID: 17655829 DOI: 10.1016/j.bbrc.2007.07.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Accepted: 07/12/2007] [Indexed: 10/23/2022]
Abstract
GABA transporter-1 (GAT1) plays a key role in GABA reuptake, and deletion of GAT1 leads to a largely increased GABA-induced tonic conductance in the GAT1(-/-) mice. We hypothesized that homeostatic plasticity of GABA(A) receptor-mediated inhibition takes place to balance the increased tonic inhibition and maintains stability of the nervous system. In this study, we employed the loss of righting reflex assay and compared the behavioral difference of three animal models, mice with acute, partial, and permanent GAT1 deficiency, to confirm our hypothesis. Our data demonstrated that both acute and partial block of GAT1 increased the sensitivity of mice to GABAergic sedative/hypnotic drugs, whereas permanent GAT1 dysfunction in the GAT1(-/-) mice decreased the sensitivity to some extent. These results confirmed our presumption about the down-regulation of phasic GABAergic transmission in the GAT1 knockout mice. Moreover, electrophysiological measurements performed on slices from motor cortex suggested that it was the reduced GABA release, but not change of postsynaptic GABA receptors, which led to the down-regulation of phasic inhibition in GAT1(-/-) mice.
Collapse
Affiliation(s)
- Yinfang Xu
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, SIBS, CAS, Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Korpi ER, Debus F, Linden AM, Malécot C, Leppä E, Vekovischeva O, Rabe H, Böhme I, Aller MI, Wisden W, Lüddens H. Does ethanol act preferentially via selected brain GABAA receptor subtypes? the current evidence is ambiguous. Alcohol 2007; 41:163-76. [PMID: 17591542 DOI: 10.1016/j.alcohol.2007.03.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Revised: 03/17/2007] [Accepted: 03/19/2007] [Indexed: 12/28/2022]
Abstract
In rodent models, gamma-aminobutyric acid A (GABAA) receptors with the alpha6 and delta subunits, expressed in the cerebellar and cochlear nucleus granule cells, have been linked to ethanol sensitivity and voluntary ethanol drinking. Here, we review the findings. When considering both in vivo contributions and data on cloned receptors, the evidence for direct participation of the alpha6-containing receptors to increased ethanol sensitivity is poor. The alpha6 subunit-knockout mouse lines do not have any changed sensitivity to ethanol, although these mice do display increased benzodiazepine sensitivity. However, in general the compensations occurring in knockout mice (regardless of which particular gene is knocked out) tend to fog interpretations of drug actions at the systems level. For example, the alpha6 knockout mice have increased TASK-1 channel expression in their cerebellar granule cells, which could influence sensitivity to ethanol in the opposite direction to that obtained with the alpha6 knockouts. Indeed, TASK-1 knockout mice are more impaired than wild types in motor skills when given ethanol; this might explain why GABAA receptor alpha6 knockout mice have unchanged ethanol sensitivities. As an alternative to studying knockout mice, we examined the claimed delta subunit-dependent/gamma2 subunit-independent ethanol/[3H]Ro 15-4513 binding sites on GABAA receptors. We looked at [3H]Ro 15-4513 binding in HEK 293 cell membrane homogenates containing rat recombinant alpha6/4beta3delta receptors and in mouse brain sections. Specific high-affinity [3H]Ro 15-4513 binding could not be detected under any conditions to the recombinant receptors or to the cerebellar sections of gamma2(F77I) knockin mice, nor was this binding to brain sections of wild-type C57BL/6 inhibited by 1-100 mM ethanol. Since ethanol may act on many receptor and channel protein targets in neuronal membranes, we consider the alpha6 (and alpha4) subunit-containing GABAA receptors unlikely to be directly responsible for any major part of ethanol's actions. Therefore, we finish the review by discussing more generally alcohol and GABAA receptors and by suggesting potential future directions for this research.
Collapse
Affiliation(s)
- Esa R Korpi
- Institute of Biomedicine, Pharmacology, Biomedicum Helsinki, FI-00014 University of Helsinki, Helsinki, Finland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Kim J, Atherley R, Werner DF, Homanics GE, Carstens E, Antognini JF. Isoflurane depression of spinal nociceptive processing and minimum alveolar anesthetic concentration are not attenuated in mice expressing isoflurane resistant gamma-aminobutyric acid type-A receptors. Neurosci Lett 2007; 420:209-12. [PMID: 17543455 PMCID: PMC3045261 DOI: 10.1016/j.neulet.2007.04.057] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2007] [Revised: 04/24/2007] [Accepted: 04/24/2007] [Indexed: 01/04/2023]
Abstract
Anesthetics produce immobility and depress spinal nociceptive processing, but the exact sites and mechanisms of anesthetic action are unknown. The gamma-aminobutyric acid type-A (GABAA) receptor is thought to be important to anesthetic action. We studied knock-in mice that had mutations in the alpha1 subunit of the GABAA receptor that imparts resistance to isoflurane in in vitro systems. We determined the isoflurane minimum alveolar concentration (MAC) that produces immobility in 50% of subjects and responses of lumbar neurons (single-unit recordings) to noxious stimulation (5 s pinch) of the hindpaw. Isoflurane MAC did not differ between wild-type (1.1+/-0.1%) and knock-in (1.1+/-0.1%) mice. Isoflurane depressed neuronal responses to noxious stimulation (60 s period during and after pinch) similarly in both wild-type and knock-in mice (555+/-133 and 636+/-106 impulses/min, respectively, at 0.8 MAC and 374+/-81 and 409+/-85 impulses/min at 1.2 MAC). We conclude that isoflurane enhancement of alpha1-containing GABAA receptors is not required to produce immobility or depress spinal nociceptive processing.
Collapse
Affiliation(s)
- JongBun Kim
- Department of Anesthesiology, The Catholic University of Korea, Seoul, Korea
| | - Richard Atherley
- Department of Anesthesiology and Pain Medicine, University of California, Davis, Davis, California 95616 United States
| | - David F. Werner
- Department of Anesthesiology, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Gregg E. Homanics
- Department of Anesthesiology, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Earl Carstens
- Section of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, California 95616 United States
| | - Joseph F. Antognini
- Department of Anesthesiology and Pain Medicine, University of California, Davis, Davis, California 95616 United States
- Section of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, California 95616 United States
- Correspondence to: Joseph F. Antognini, M.D., Department of Anesthesiology and Pain Medicine, University of California, Davis, TB-170, Davis, California 95616, FAX 530-752-7807,
| |
Collapse
|
31
|
Sukhotinsky I, Zalkind V, Lu J, Hopkins DA, Saper CB, Devor M. Neural pathways associated with loss of consciousness caused by intracerebral microinjection of GABAA-active anesthetics. Eur J Neurosci 2007; 25:1417-36. [PMID: 17425568 DOI: 10.1111/j.1460-9568.2007.05399.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Anesthesia, slow-wave sleep, syncope, concussion and reversible coma are behavioral states characterized by loss of consciousness, slow-wave cortical electroencephalogram, and motor and sensory suppression. We identified a focal area in the rat brainstem, the mesopontine tegmental anesthesia area (MPTA), at which microinjection of pentobarbital and other GABA(A) receptor (GABA(A)-R) agonists reversibly induced an anesthesia-like state. This effect was attenuated by local pre-treatment with the GABA(A)-R antagonist bicuculline. Using neuroanatomical tracing we identified four pathways ascending from the MPTA that are positioned to mediate electroencephalographic synchronization and loss of consciousness: (i) projections to the intralaminar thalamic nuclei that, in turn, project to the cortex; (ii) projections to several pontomesencephalic, diencephalic and basal forebrain nuclei that project cortically and are considered parts of an ascending "arousal system"; (iii) a projection to other parts of the subcortical forebrain, including the septal area, hypothalamus, zona incerta and striato-pallidal system, that may indirectly affect cortical arousal and hippocampal theta rhythm; and (iv) modest projections directly to the frontal cortex. Several of these areas have prominent reciprocal projections back to the MPTA, notably the zona incerta, lateral hypothalamus and frontal cortex. We hypothesize that barbiturate anesthetics and related agents microinjected into the MPTA enhance the inhibitory response of local GABA(A)-R-bearing neurons to endogenous GABA released at baseline during wakefulness. This modulates activity in one or more of the identified ascending neural pathways, ultimately leading to loss of consciousness.
Collapse
Affiliation(s)
- I Sukhotinsky
- Department of Cell and Animal Biology, Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | | | | | | | |
Collapse
|
32
|
Boyce-Rustay JM, Cameron HA, Holmes A. Chronic swim stress alters sensitivity to acute behavioral effects of ethanol in mice. Physiol Behav 2007; 91:77-86. [PMID: 17363014 DOI: 10.1016/j.physbeh.2007.01.024] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2006] [Revised: 01/09/2007] [Accepted: 01/31/2007] [Indexed: 11/28/2022]
Abstract
Epidemiological data support a strong link between stress, stress-related disorders and risk for alcoholism. However, precisely how stress might impact sensitivity to the intoxicating effects of ethanol or the willingness to voluntary consume ethanol remains unclear. The present study assessed the effects of daily exposure to forced swim stress on subsequent sensitivity to the sedative/hypnotic, hypothermic, ataxic (measured using accelerating rotarod), and anxiolytic-like (measured using elevated plus-maze) effects of ethanol, and ethanol consumption and preference in a two-bottle choice paradigm, in male C57BL/6J mice. Stress effects on the sedative/hypnotic effects of the barbiturate pentobarbital were also tested. Results showed that chronic (fourteen days) but not acute (one or three days) swim stress significantly potentiated the sedative/hypnotic and hypothermic effects of 4 g/kg, but not 3 g/kg, ethanol. The sedative/hypnotic effects of pentobarbital were attenuated by chronic swim stress. Irrespective of chronicity, swim stress did not alter the ataxic or anxiolytic-like effects of ethanol, or alter ethanol self-administration either during or after stress. These data provide further evidence that stress alters the intoxicating effects of high doses of ethanol in a behaviorally selective manner.
Collapse
Affiliation(s)
- Janel M Boyce-Rustay
- Section on Behavioral Science and Genetics, Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, Rockville, MD, United States.
| | | | | |
Collapse
|
33
|
Fritschy JM, Panzanelli P. Molecular and synaptic organization of GABAA receptors in the cerebellum: Effects of targeted subunit gene deletions. THE CEREBELLUM 2007; 5:275-85. [PMID: 17134990 DOI: 10.1080/14734220600962805] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
GABAA receptors form heteromeric GABA-gated chloride channels assembled from a large family of subunit genes. In cerebellum, distinct GABAA receptor subtypes, differing in subunit composition, are segregated between cell types and synaptic circuits. The cerebellum therefore represents a useful system to investigate the significance of GABAA receptor heterogeneity. For instance, studies of mice carrying targeted deletion of major GABAA receptor subunit genes revealed the role of alpha subunit variants for receptor assembly, synaptic targeting, and functional properties. In addition, these studies unraveled mandatory association between certain subunits and demonstrated distinct pharmacology of receptors mediating phasic and tonic inhibition. Although some of these mutants have a profound loss of GABAA receptors, they exhibit only minor impairment of motor function, suggesting activation of compensatory mechanisms to preserve inhibitory networks in the cerebellum. These adaptations include an altered balance between phasic and tonic inhibition, activation of voltage-independent K+ conductances, and upregulation of GABAA receptors in interneurons that are not affected directly by the mutation. Deletion of the alpha1 subunit gene leads to complete loss of GABAA receptors in Purkinje cells. A striking alteration occurs in these mice, whereby presynaptic GABAergic terminals are preserved in the molecular layer but make heterologous synapses with spines, characterized by a glutamatergic-like postsynaptic density. During development of alpha1(0/0) mice, GABAergic synapses are initially formed but are replaced upon spine maturation. These findings suggest that functional GABAA receptors are required for long-term maintenance of GABAergic synapses in Purkinje cells.
Collapse
Affiliation(s)
- Jean-Marc Fritschy
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland.
| | | |
Collapse
|
34
|
June HL, Foster KL, Eiler WJA, Goergen J, Cook JB, Johnson N, Mensah-Zoe B, Simmons JO, June HL, Yin W, Cook JM, Homanics GE. Dopamine and benzodiazepine-dependent mechanisms regulate the EtOH-enhanced locomotor stimulation in the GABAA alpha1 subunit null mutant mice. Neuropsychopharmacology 2007; 32:137-52. [PMID: 16710315 DOI: 10.1038/sj.npp.1301097] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The present study investigated the role of the alpha1-containing GABA(A) receptors in the neurobehavioral actions of alcohol. In Experiment 1, mice lacking the alpha1 subunit (alpha1 (-/-)) were tested for their capacity to initiate operant-lever press responding for alcohol or sucrose. Alcohol intake in the home cage was also measured. In Experiment 2, the alpha1 (-/-) mice were injected with a range of alcohol doses (0.875-4.0 g/kg; i.p.) to evaluate the significance of the alpha1 subunit in alcohol's stimulant actions. In Experiment 3, we determined if the alcohol-induced stimulant effects were regulated via dopaminergic (DA) or benzodiazepine (BDZ)-dependent mechanisms. To accomplish this, we investigated the capacity of DA (eticlopride, SCH 23390) and BDZ (flumazenil, betaCCt) receptor antagonists to attenuate the alcohol-induced stimulant actions. Compared with wild-type mice (alpha1 (+/+)), the null mutants showed marked reductions in both EtOH and sucrose-maintained responding, and home-cage alcohol drinking. The null mutants also showed significant increases in locomotor behaviors after injections of low-moderate alcohol doses (1.75-3.0 g/kg). betaCCt, flumazenil, eticlopride, and SCH 23390 were able to attenuate the alcohol-induced stimulation in mutant mice, in the absence of intrinsic effects. These data suggest the alpha1 receptor plays an important role in alcohol-motivated behaviors; however, it also appears crucial in regulating the reinforcing properties associated with normal ingestive behaviors. Deleting the alpha1 subunit of the GABA(A) receptor appears to unmask alcohol's stimulatory effects; these effects appear to be regulated via an interaction of both DA- and GABA(A) BDZ-dependent mechanisms.
Collapse
Affiliation(s)
- Harry L June
- Division of Alcohol and Drug Abuse, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Akk G, Li P, Manion BD, Evers AS, Steinbach JH. Ethanol Modulates the Interaction of the Endogenous Neurosteroid Allopregnanolone with the α1β2γ2L GABAA Receptor. Mol Pharmacol 2006; 71:461-72. [PMID: 17105870 DOI: 10.1124/mol.106.029942] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have examined alpha1beta2gamma2L GABAA receptor modulation by the endogenous steroids allopregnanolone (3alpha5alphaP), pregnenolone sulfate, and beta-estradiol in the absence and presence of ethanol. Coapplication of 0.1 to 1% (17-170 mM) ethanol influenced receptor modulation by 3alpha5alphaP but not that by pregnenolone sulfate or beta-estradiol. One of the three kinetic effects evident in channel potentiation by 3alpha5alphaP, prolongation of the longest-lived open time component (OT3), was affected by ethanol with the midpoint of its dose-response curve moved to lower steroid concentrations by 2 orders of magnitude without significantly affecting the maximal effect. Manipulations designed to affect the ability of 3alpha5alphaP to prolong OT3 also affected OT3 prolongation in the presence of ethanol. A mutation to the gamma2 subunit, which reduces the ability of 3alpha5alphaP to prolong OT3, also reduces the interaction between ethanol and 3alpha5alphaP. And the presence of the competitive steroid antagonist (3alpha,5alpha)-17-phenylandrost-16-en-3-ol (17-PA) diminishes the positive interaction between ethanol and 3alpha5alphaP on the GABAA receptor. Together, the findings suggest that steroid interactions with the classic steroid binding site underlie the effect seen in the presence of ethanol, and that ethanol acts by increasing the affinity of 3alpha5alphaP for the site. Tadpole behavioral assays showed that the presence of 3alpha5alphaP at a concentration ineffective at causing changes in tadpole behavior shifted the ethanol dose-response curve for loss of righting reflex to lower concentrations and that this effect was neutralized by coapplication of 17-PA with 3alpha5alphaP.
Collapse
Affiliation(s)
- Gustav Akk
- Department of Anesthesiology, Washington University in St Louis, Campus Box 8054, 660 S. Euclid Ave, St Louis, MO 63110, USA.
| | | | | | | | | |
Collapse
|
36
|
Van Bogaert M, Oosting R, Toth M, Groenink L, van Oorschot R, Olivier B. Effects of genetic background and null mutation of 5-HT1A receptors on basal and stress-induced body temperature: modulation by serotonergic and GABAA-ergic drugs. Eur J Pharmacol 2006; 550:84-90. [PMID: 17022970 DOI: 10.1016/j.ejphar.2006.08.058] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2006] [Revised: 08/20/2006] [Accepted: 08/23/2006] [Indexed: 11/20/2022]
Abstract
The stress-induced hyperthermia procedure, in which effects of drugs on basal (T(1)) and stress-induced body temperature (T(2)) are measured, predicts anxiolytic drug effect. Serotonergic drugs alter these responses and here, we studied the role of 5-HT(1A) receptors in stress-induced hyperthermia by using 5-HT(1A) receptor knockout mice. Three strains (129/Sv, Swiss Webster and C57Bl6) were used because genetic background can significantly modulate the null phenotype. We found that GABA-ergic drugs with an anxiolytic profile and stimulate alpha(2) subunit containing GABA(A) receptors, including diazepam and L838,417, result in reduced DeltaT (DeltaT=T(2)-T(1)). The alpha(1) subunit containing GABA(A) receptor was found to be primarily involved in regulation of basal body temperature T(1) and its stimulation can induce hypothermia. In addition, stimulation of 5-HT(1A) receptors by buspirone results in a reduced DeltaT, while stimulation of 5-HT(7) receptors primarily results in hypothermia. The null mutation of 5-HT(1A) receptors resulted in differences in drug-sensitivity that was further modulated by the genetic background. In particular, the null mutation on the SW and C57Bl6 backgrounds resulted in differential diazepam/L838,417 and 5-CT responses respectively. This indicates an interaction between the 5-HT(1A) receptor and genetic background and demonstrates the importance of selecting the background strain in a receptor knockout model.
Collapse
MESH Headings
- Animals
- Body Temperature/drug effects
- Body Temperature/genetics
- Body Temperature/physiology
- Body Temperature Regulation/drug effects
- Buspirone/pharmacology
- Diazepam/pharmacology
- Fever/physiopathology
- Flumazenil/pharmacology
- Fluorobenzenes/pharmacology
- GABA Agonists/pharmacology
- GABA Modulators/pharmacology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Pyridines/pharmacology
- Receptor, Serotonin, 5-HT1A/drug effects
- Receptor, Serotonin, 5-HT1A/genetics
- Receptor, Serotonin, 5-HT1A/physiology
- Receptors, GABA-A/drug effects
- Serotonin/analogs & derivatives
- Serotonin/pharmacology
- Serotonin Agents/pharmacology
- Serotonin Receptor Agonists/pharmacology
- Stress, Psychological/physiopathology
- Triazoles/pharmacology
- Zolpidem
Collapse
Affiliation(s)
- Meg Van Bogaert
- Section of Psychopharmacology, Utrecht Institute of Pharmaceutical Sciences, Utrecht University, The Netherlands.
| | | | | | | | | | | |
Collapse
|
37
|
Crabbe JC, Phillips TJ, Harris RA, Arends MA, Koob GF. Alcohol-related genes: contributions from studies with genetically engineered mice. Addict Biol 2006; 11:195-269. [PMID: 16961758 DOI: 10.1111/j.1369-1600.2006.00038.x] [Citation(s) in RCA: 195] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Since 1996, nearly 100 genes have been studied for their effects related to ethanol in mice using genetic modifications including gene deletion, gene overexpression, gene knock-in, and occasionally by studying existing mutants. Nearly all such studies have concentrated on genes expressed in brain, and the targeted genes range widely in their function, including most of the principal neurotransmitter systems, several neurohormones, and a number of signaling molecules. We review 141 published reports of effects (or lack thereof) of 93 genes on responses to ethanol. While most studies have focused on ethanol self-administration and reward, and/or sedative effects, other responses studied include locomotor stimulation, anxiolytic effects, and neuroadaptation (tolerance, sensitization, withdrawal). About 1/4 of the engineered mutations increase self-administration, 1/3 decrease it, and about 40% have no significant effect. In many cases, the effects on self-administration are rather modest and/or depend on the specific experimental procedures. In some cases, genes in the background strains on which the mutant is placed are important for results. Not surprisingly, review of the systems affected further supports roles for serotonin, gamma-aminobutyric acid, opioids and dopamine, all of which have long been foci of alcohol research. Novel modulatory effects of protein kinase C and G protein-activated inwardly rectifying K+ (GIRK) channels are also suggested. Some newer research with cannabinoid systems is promising, and has led to ongoing clinical trials.
Collapse
Affiliation(s)
- John C Crabbe
- Portland Alcohol Research Center, Department of Behavioral Neuroscience, Oregon Health & Science University, and Department of Veterans Affairs Medical Center, USA
| | | | | | | | | |
Collapse
|
38
|
Thöny B, Gibson KM. Murine models of inherited monoaminergic and GABAergic neurotransmitter disorders. FUTURE NEUROLOGY 2006. [DOI: 10.2217/14796708.1.5.665] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Monoamine and amino acid neurotransmitters perform diverse biological functions in mammals, including the regulation of inhibitory/excitatory neurotransmission in the brain and spinal cord, movement and sleep, autonomic function, mood and reward, and numerous other processes. The primary transmitters involved include dopamine, serotonin, epinephrine, norepinephrine and γ-aminobutyric acid (GABA). With the exception of the amino acid transmitter GABA, the cofactor integrating these systems is tetrahydrobiopterin, an oxidizable intermediate found in high concentrations in dopaminergic neurons. With growing awareness of the clinical phenotypes, expanding numbers of patients with monoaminergic and GABAergic neurotransmitter disorders are being identified. For some people, therapeutic intervention demonstrates remarkably positive benefits; conversely, for most other disorders therapy offers limited efficacy. Decoding of the complete mouse genome, coupled with methodology capable of ablating specific genes, has revolutionized how geneticists understand and treat human genetic disease. This is well-exemplified in the disorders covered in this review, which focuses predominantly on monoaminergic (tetrahydrobiopterin-dependent) and GABAergic signaling neurotransmitter disorders.
Collapse
Affiliation(s)
- Beat Thöny
- Division of Clinical Chemistry & Biochemistry, Department of Pediatrics, University of Zurich, Switzerland
| | - K Michael Gibson
- Children’s Hospital, Department of Pediatrics, Rangos Research Center, Room 2111, 3460 Fifth Avenue, Pittsburgh, PA, USA
| |
Collapse
|
39
|
Suñol C, García DA, Bujons J, Kristofíková Z, Matyás L, Babot Z, Kasal A. Activity of B-nor analogues of neurosteroids on the GABA(A) receptor in primary neuronal cultures. J Med Chem 2006; 49:3225-34. [PMID: 16722640 DOI: 10.1021/jm060002f] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A GABA(A) receptor study of several B-nor analogues of allopregnanolone and pregnanolone has been carried out. B-norallopregnanolone (i.e., 3alpha-hydroxy-7-nor-5alpha-pregnan-20-one) was found comparable to allopregnanolone when measured with labeled TBPS. Analogous results were obtained from their effect on neurons in culture: this time, both 3alpha-hydroxy-7-nor-5xi-pregnan-20-ones (5 and 6) were found to stimulate [3H]flunitrazepam binding and GABA-induced 36Cl- influx. These effects were inhibited by GABA(A) receptor antagonists. Other analogues carrying electronegative substituents (epoxides 9 and 10 and ketone 12) in the B ring were inactive. Similarly, B-normal ketones 17, and 18 and 6-azasteroids 20 and 21 were also inactive. B-Nor analogues 5 and 6 did not induce neurotoxicity at relevant concentrations. A computational analysis of active and inactive neurosteroid analogues allowed the proposal of a 3D pharmacophoric hypothesis of their interaction with the GABA(A) receptor.
Collapse
Affiliation(s)
- Cristina Suñol
- Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas, CSIC-IDIBAPS, Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
40
|
Werner DF, Blednov YA, Ariwodola OJ, Silberman Y, Logan E, Berry RB, Borghese CM, Matthews DB, Weiner JL, Harrison NL, Harris RA, Homanics GE. Knockin Mice with Ethanol-Insensitive α1-Containing γ-Aminobutyric Acid Type A Receptors Display Selective Alterations in Behavioral Responses to Ethanol. J Pharmacol Exp Ther 2006; 319:219-27. [PMID: 16785315 DOI: 10.1124/jpet.106.106161] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Despite the pervasiveness of alcohol (ethanol) use, it is unclear how the multiple molecular targets for ethanol contribute to its many behavioral effects. The function of GABA type A receptors (GABA(A)-Rs) is altered by ethanol, but there are multiple subtypes of these receptors, and thus far, individual subunits have not been definitively linked with specific behavioral actions. The alpha1 subunit of the GABA(A)-R is the most abundant alpha subunit in the brain, and the goal of this study was to determine the role of receptors containing this subunit in alcohol action. We designed an alpha1 subunit with serine 270 to histidine and leucine 277 to alanine mutations that was insensitive to potentiation by ethanol yet retained normal GABA sensitivity and constructed knockin mice containing this mutant subunit. Hippocampal slice recordings from these mice indicated that the mutant receptors were less sensitive to ethanol's potentiating effects. Behaviorally, we observed that mutant mice recovered more quickly from the motor-impairing effects of ethanol and etomidate, but not pentobarbital, and showed increased anxiolytic effects of ethanol. No differences were observed in ethanol-induced hypnosis, locomotor stimulation, cognitive impairment, or in ethanol preference and consumption. Overall, these studies demonstrate that the postsynaptic effects of ethanol at GABAergic synapses containing the alpha1 subunit are important for specific ethanol-induced behavioral effects.
Collapse
Affiliation(s)
- David F Werner
- Department of Pharmacology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Ponomarev I, Maiya R, Harnett MT, Schafer GL, Ryabinin AE, Blednov YA, Morikawa H, Boehm SL, Homanics GE, Berman AE, Berman A, Lodowski KH, Bergeson SE, Harris RA. Transcriptional signatures of cellular plasticity in mice lacking the alpha1 subunit of GABAA receptors. J Neurosci 2006; 26:5673-83. [PMID: 16723524 PMCID: PMC1894896 DOI: 10.1523/jneurosci.0860-06.2006] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
GABAA receptors mediate the majority of inhibitory neurotransmission in the CNS. Genetic deletion of the alpha1 subunit of GABAA receptors results in a loss of alpha1-mediated fast inhibitory currents and a marked reduction in density of GABAA receptors. A grossly normal phenotype of alpha1-deficient mice suggests the presence of neuronal adaptation to these drastic changes at the GABA synapse. We used cDNA microarrays to identify transcriptional fingerprints of cellular plasticity in response to altered GABAergic inhibition in the cerebral cortex and cerebellum of alpha1 mutants. In silico analysis of 982 mutation-regulated transcripts highlighted genes and functional groups involved in regulation of neuronal excitability and synaptic transmission, suggesting an adaptive response of the brain to an altered inhibitory tone. Public gene expression databases permitted identification of subsets of transcripts enriched in excitatory and inhibitory neurons as well as some glial cells, providing evidence for cellular plasticity in individual cell types. Additional analysis linked some transcriptional changes to cellular phenotypes observed in the knock-out mice and suggested several genes, such as the early growth response 1 (Egr1), small GTP binding protein Rac1 (Rac1), neurogranin (Nrgn), sodium channel beta4 subunit (Scn4b), and potassium voltage-gated Kv4.2 channel (Kcnd2) as cell type-specific markers of neuronal plasticity. Furthermore, transcriptional activation of genes enriched in Bergman glia suggests an active role of these astrocytes in synaptic plasticity. Overall, our results suggest that the loss of alpha1-mediated fast inhibition produces diverse transcriptional responses that act to regulate neuronal excitability of individual neurons and stabilize neuronal networks, which may account for the lack of severe abnormalities in alpha1 null mutants.
Collapse
Affiliation(s)
- Igor Ponomarev
- Waggoner Center for Alcohol and Addiction Research, University of Texas, Austin, Texas 78712, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Murphy NP, Sakoori K, Okabe C. Lack of evidence of a role for the neurosteroid allopregnanolone in ethanol-induced reward and c-fos expression in DBA/2 mice. Brain Res 2006; 1094:107-18. [PMID: 16750178 DOI: 10.1016/j.brainres.2006.03.109] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Revised: 03/28/2006] [Accepted: 03/30/2006] [Indexed: 11/16/2022]
Abstract
Previous studies using the 5alpha-reductase inhibitor finasteride suggest that progesterone metabolites, particularly the endogenous neurosteroid allopregnanolone, mediate some of the effects of ethanol. Consequently, we studied the effect of finasteride (2 x 25 mg/kg s.c., 12 h apart) pretreatment on the acquisition and expression of ethanol (2 g/kg i.p.) induced conditioned place preference and c-fos expression in DBA/2 mice; a strain known to be particularly sensitive to ethanol. Ethanol administration induced a clear conditioned place preference and widespread c-fos expression, with elements of the extended amygdala, Edinger-Westphal nucleus and paraventricular nucleus being especially sensitive. However, despite an approximately 99% decrease in whole brain allopregnanolone content, finasteride pretreatment had remarkably little effect on either ethanol-induced conditioned place preference or ethanol-induced c-fos expression. Thus, aside from a general stimulatory effect on c-fos expression in the ventral tegmental area, and generally mild depression of locomotor activity, no other effects of finasteride or interaction with ethanol effects were identifiable. Together, these studies suggest that endogenous allopregnanolone plays little part in mediating acute ethanol-induced reward or neural activation in DBA/2 mice.
Collapse
Affiliation(s)
- Niall P Murphy
- Neuronal Circuit Mechanisms Research Group, RIKEN Brain Science Institute, 2-1 Hirosawa, Wakoshi, Saitama 351-0198, Japan.
| | | | | |
Collapse
|
43
|
Maas JW, Vogt SK, Chan GCK, Pineda VV, Storm DR, Muglia LJ. Calcium-stimulated adenylyl cyclases are critical modulators of neuronal ethanol sensitivity. J Neurosci 2006; 25:4118-26. [PMID: 15843614 PMCID: PMC6724953 DOI: 10.1523/jneurosci.4273-04.2005] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The importance of the cAMP signaling pathway in the modulation of ethanol sensitivity has been suggested by studies in organisms from Drosophila melanogaster to man. However, the involvement of specific isoforms of adenylyl cyclase (AC), the molecule that converts ATP to cAMP, has not been systemically determined in vivo. Because AC1 and AC8 are the only AC isoforms stimulated by calcium, and ethanol modulates calcium flux by the NMDA receptor, we hypothesized that these ACs would be important in the neural response to ethanol. AC1 knock-out (KO) mice and double knock-out (DKO) mice with genetic deletion of both AC1 and AC8 display substantially increased sensitivity to ethanol-induced sedation compared with wild-type (WT) mice, whereas AC8 KO mice are only minimally more sensitive. In contrast, AC8 KO and DKO mice, but not AC1 KO mice, demonstrate decreased voluntary ethanol consumption compared with WT mice. DKO mice do not display increased sleep time compared with WT mice after administration of ketamine or pentobarbital, indicating that the mechanism of enhanced ethanol sensitivity in these mice is likely distinct from the antagonism of ethanol of the NMDA receptor and potentiation of the GABA(A) receptor. Ethanol does not enhance calcium-stimulated AC activity, but the ethanol-induced phosphorylation of a discrete subset of protein kinase A (PKA) substrates is compromised in the brains of DKO mice. These results indicate that the unique activation of PKA signaling mediated by the calcium-stimulated ACs is an important component of the neuronal response to ethanol.
Collapse
Affiliation(s)
- James W Maas
- Department of Pediatrics and Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | |
Collapse
|
44
|
Boehm SL, Ponomarev I, Blednov YA, Harris RA. From Gene to Behavior and Back Again: New Perspectives on GABAA Receptor Subunit Selectivity of Alcohol Actions1. GABA 2006; 54:171-203. [PMID: 17175815 DOI: 10.1016/s1054-3589(06)54008-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
gamma-Aminobutyric acid A (GABA(A)) receptors are believed to mediate a number of alcohol's behavioral actions. Because the subunit composition of GABA(A) receptors determines receptor pharmacology, behavioral sensitivity to alcohol (ethanol) may depend on which subunits are present (or absent). A number of knockout and/or transgenic mouse models have been developed (alpha1, alpha2, alpha5, alpha6, beta2, beta3, gamma2S, gamma2L, delta) and tested for behavioral sensitivity to ethanol. Here we review the current GABA(A) receptor subunit knockout and transgenic literature for ethanol sensitivity, and integrate these results into those obtained using quantitative trait loci (QTL) analysis and gene expression assays. Converging evidence from these three approaches support the notion that different behavioral actions of ethanol are mediated by specific subunits, and suggest that new drugs that target specific GABA(A subunits may selectively alter some behavioral actions of ethanol without altering others. Current data sets provide stronge)st evidence for a role of alpha1 subunits in ethanol-induced loss of righting reflex and alpha5 subunits in ethanol-stimulated locomotion. Nevertheless, three-way validation is hampered by the incomplete behavioral characterization of many of the mutant mice, and additional subunits are likely to be linked to alcohol actions as behavioral testing progresses.
Collapse
Affiliation(s)
- Stephen L Boehm
- Department of Psychology, State University of New York at Binghamton, New York 13902, USA
| | | | | | | |
Collapse
|
45
|
Ogris W, Lehner R, Fuchs K, Furtmüller B, Höger H, Homanics GE, Sieghart W. Investigation of the abundance and subunit composition of GABAA receptor subtypes in the cerebellum of alpha1-subunit-deficient mice. J Neurochem 2005; 96:136-47. [PMID: 16277610 DOI: 10.1111/j.1471-4159.2005.03509.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In cerebellum, 75% of all GABAA receptors contain alpha1 subunits. Here, we investigated compensatory changes in GABAA receptor subunit expression and composition in alpha1 subunit-knockout mice. In these mice the total number of cerebellar GABAA receptors was reduced by 46%. Whereas the number of receptors containing alpha6 subunits was unchanged, the total amount of alpha6 subunits was significantly elevated. RT-PCR showed no increase of alpha6 mRNA levels, arguing against increased biosynthesis of these subunits. Elevated levels of alpha6 subunits in alpha1 -/- mice might thus have been caused by an increased incorporation of unassembled alpha6 subunits, replacing alpha1 subunits in alpha1alpha6betagamma2 or alpha1alpha6betadelta receptors, thus rescuing alpha6 subunits from degradation. Elevated levels of alpha3 and alpha4 subunits in the cerebellum of alpha1 -/- mice possibly can be explained similarly. Finally, a small amount of receptors containing no gamma or delta subunits was identified in these mice. Results suggest a total loss of GABAA receptors in cell types where alpha1 was the only alpha subunit expressed and a partial compensation for receptor loss in cell types containing other alpha subunits. Our results do not support a significant compensatory synthesis of other GABAA receptor subunits in the cerebellum of alpha1 -/- mice.
Collapse
Affiliation(s)
- Waltraud Ogris
- Division of Biochemistry and Molecular Biology, Center for Brain Research, and Section of Biochemical Psychiatry, University Clinic for Psychiatry, Medical University Vienna, Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
46
|
Criswell HE, Breese GR. A conceptualization of integrated actions of ethanol contributing to its GABAmimetic profile: a commentary. Neuropsychopharmacology 2005; 30:1407-25. [PMID: 15856077 DOI: 10.1038/sj.npp.1300750] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Early behavioral investigations supported the contention that systemic ethanol displays a GABAmimetic profile. Microinjection of GABA agonists into brain and in vivo electrophysiological studies implicated a regionally specific action of ethanol on GABA function. While selectivity of ethanol to enhance the effect of GABA was initially attributed an effect on type-I-benzodiazepine (BZD)-GABA(A) receptors, a lack of ethanol's effect on GABA responsiveness from isolated neurons with this receptor subtype discounted this contention. Nonetheless, subsequent work identified GABA(A) receptor subtypes, with limited distribution in brain, sensitive to enhancement of GABA at relevant ethanol concentrations. In view of these data, it is hypothesized that the GABAmimetic profile for ethanol is due to activation of mechanisms associated with GABA function, distinct from a direct action on the majority of postsynaptic GABA(A) receptors. The primary action proposed to account for ethanol's regional specificity on GABA transmission is its ability to release GABA from some, but not all, presynaptic GABAergic terminals. As systemic administration of ethanol increases neuroactive steroids, which can enhance GABA responsiveness, this elevated level of neurosteroids is proposed to magnify the effect of GABA released by ethanol. Additional factors contributing to the degree to which ethanol interacts with GABA function include an involvement of GABA(B) and other receptors that influence ethanol-induced GABA release, an effect of phosphorylation on GABA responsiveness, and a regional reduction of glutamatergic tone. Thus, an integration of these consequences induced by ethanol is proposed to provide a logical basis for its in vivo GABAmimetic profile.
Collapse
Affiliation(s)
- Hugh E Criswell
- Center For Alcohol Studies, UNC Neuroscience Center, Department of Psychiatry, University of North Carolina, School of Medicine, Chapel Hill, NC 27599-7178, USA.
| | | |
Collapse
|
47
|
Laurén HB, Lopez-Picon FR, Korpi ER, Holopainen IE. Kainic acid-induced status epilepticus alters GABA receptor subunit mRNA and protein expression in the developing rat hippocampus. J Neurochem 2005; 94:1384-94. [PMID: 15992369 DOI: 10.1111/j.1471-4159.2005.03274.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Kainic acid-induced status epilepticus leads to structural and functional changes in inhibitory GABAA receptors in the adult rat hippocampus, but whether similar changes occur in the developing rat is not known. We have used in situ hybridization to study status epilepticus-induced changes in the GABAAalpha1-alpha5, beta1-beta3, gamma1 and gamma2 subunit mRNA expression in the hippocampus of 9-day-old rats during 1 week after the treatment. Immunocytochemistry was applied to detect the alpha1, alpha2 and beta3 subunit proteins in the control and treated rats. In the saline-injected control rats, the alpha1 and alpha4 subunit mRNA expression significantly increased between the postnatal days 9-16, whereas those of alpha2, beta3 and gamma2 subunits decreased. The normal developmental changes in the expression of alpha1, alpha2, beta3 and gamma2 subunit mRNAs were altered after the treatment. The immunostainings with antibodies to alpha1, alpha2 and beta3 subunits confirmed the in situ hybridization findings. No neuronal death was detected in any hippocampal subregion in the treated rats. Our results show that status epilepticus disturbs the normal developmental expression pattern of GABAA receptor subunit in the rat hippocampus during the sensitive postnatal period of brain development. These perturbations could result in altered functional and pharmacological properties of GABAA receptors.
Collapse
Affiliation(s)
- H B Laurén
- Department of Pharmacology and Clinical Pharmacology, University of Turku, Turku, Finland
| | | | | | | |
Collapse
|
48
|
Kralic JE, Criswell HE, Osterman JL, O'Buckley TK, Wilkie ME, Matthews DB, Hamre K, Breese GR, Homanics GE, Morrow AL. Genetic essential tremor in gamma-aminobutyric acidA receptor alpha1 subunit knockout mice. J Clin Invest 2005; 115:774-9. [PMID: 15765150 PMCID: PMC1052003 DOI: 10.1172/jci23625] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2004] [Accepted: 12/21/2004] [Indexed: 12/16/2022] Open
Abstract
Essential tremor is the most common movement disorder and has an unknown etiology. Here we report that gamma-aminobutyric acidA (GABA(A)) receptor alpha1-/- mice exhibit postural and kinetic tremor and motor incoordination that is characteristic of essential tremor disease. We tested mice with essential-like tremor using current drug therapies that alleviate symptoms in essential tremor patients (primidone, propranolol, and gabapentin) and several candidates hypothesized to reduce tremor, including ethanol; the noncompetitive N-methyl-D-aspartate receptor antagonist MK-801; the adenosine A1 receptor agonist 2-chloro-N6-cyclopentyladenosine (CCPA); the GABA(A) receptor modulators diazepam, allopregnanolone, and Ro15-4513; and the L-type Ca2+ channel antagonist nitrendipine. Primidone, propranolol, and gabapentin reduced the amplitude (power) of the pathologic tremor. Nonsedative doses of ethanol eliminated tremor in mice. Diazepam, allopregnanolone, Ro15-4513, and nitrendipine had no effect or enhanced tremor, whereas MK-801 and CCPA reduced tremor. To understand the etiology of tremor in these mice, we studied the electrophysiological properties of cerebellar Purkinje cells. Cerebellar Purkinje cells in GABA(A) receptor alpha1-/- mice exhibited a profound loss of all responses to synaptic or exogenous GABA, but no differences in abundance, gross morphology, or spontaneous synaptic activity were observed. This genetic animal model elucidates a mechanism of GABAergic dysfunction in the major motor pathway and potential targets for pharmacotherapy of essential tremor.
Collapse
Affiliation(s)
- Jason E Kralic
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-7178, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Kralic JE, Criswell HE, Osterman JL, O’Buckley TK, Wilkie ME, Matthews DB, Hamre K, Breese GR, Homanics GE, Morrow AL. Genetic essential tremor in γ-aminobutyric acidA receptor α1 subunit knockout mice. J Clin Invest 2005. [DOI: 10.1172/jci200523625] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
50
|
Abstract
The inhibitory neurotransmitter gamma-aminobutyric acid (GABA) plays an important role in brain development and behavior. GABA(A) receptor subunits knock-out and knock-in mice have proven that GABA(A) receptors are involved in control of motor coordination, learning, and memory and play a role in anxiety, panic, and epileptogenesis. In addition, these receptors are involved in the molecular mechanisms of action of many drugs and participate actively in cortical plasticity. The use of genetically engineered mice has perhaps never been as successful as in understanding the importance of the heterogeneity of GABA(A) receptors. We review these findings and speculate on the new directions that the use of mice with altered expression of GABA(A) receptor subunits may provide.
Collapse
Affiliation(s)
- Stefano Vicini
- Department of Physiology and Biophysics, Georgetown University School of Medicine, Washington, DC 20007, USA.
| | | |
Collapse
|