1
|
Dodd S, Harper J, Berk M. Current Pharmacotherapies for Smoking Cessation and Promising Emerging Drugs. Curr Rev Clin Exp Pharmacol 2024; 19:259-268. [PMID: 38708918 DOI: 10.2174/0127724328274939231121114142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 05/07/2024]
Abstract
OBJECTIVE Pharmacotherapy is commonly used during quit attempts and has shown an increase in the likelihood of achieving abstinence. However, with established pharmacotherapies, abstinence rates following a quit attempt remain low, and relapse is common. This review aims to investigate the efficacy and harm profiles of current and emerging pharmacotherapies. METHODS Literature review of current and emerging pharmacotherapies for smoking cessation and tobacco use disorder. RESULTS Emerging pharmacotherapies include new formulations of existing therapies, drug repurposing and some new treatments. New treatments are welcome and may incorporate different mechanisms of action or different safety and tolerability profiles compared to existing treatments. However, emerging pharmacotherapies have yet to demonstrate greater efficacy compared to existing treatments. The emergence of Electronic Nicotine Delivery Systems (ENDS) or 'vaping' is a feature of the current debate around tobacco use disorder. ENDS appear to facilitate switching but not quitting and are controversial as a harm minimisation strategy. LIMITATIONS Studies included a broad range of therapies and trial designs that should be compared with their differences taken into consideration. CONCLUSION Strategies to successfully quit smoking vary between individuals and may extend beyond pharmacotherapy and involve complex psychosocial factors and pathways.
Collapse
Affiliation(s)
- Seetal Dodd
- IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Barwon Health, P.O. Box 281, Geelong, 3220, Australia
- Orygen, The National Centre of Excellence in Youth Mental Health, the Department of Psychiatry, The University of Melbourne, Parkville, Australia
| | - Jodie Harper
- School of Medicine, Deakin University, Geelong, Australia
| | - Michael Berk
- IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Barwon Health, P.O. Box 281, Geelong, 3220, Australia
- Orygen, The National Centre of Excellence in Youth Mental Health, the Department of Psychiatry, The University of Melbourne, Parkville, Australia
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
| |
Collapse
|
2
|
Goyal N, Do C, Sridhar J, Shaik S, Thompson A, Perry T, Carter L, Foroozesh M. Design, Synthesis, and Biological Studies of Flavone-Based Esters and Acids as Potential P450 2A6 Inhibitors. Chem Res Toxicol 2023; 36:1973-1979. [PMID: 37963190 PMCID: PMC10731637 DOI: 10.1021/acs.chemrestox.3c00249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/16/2023]
Abstract
As a potential means for smoking cessation and consequently prevention of smoking-related diseases and mortality, in this study, our goal was to investigate the inhibition of nicotine metabolism by P450 2A6. Smoking is the main cause of many diseases and disabilities and harms nearly every organ of the body. As reported by the Centers for Disease Control and Prevention (CDC), more than 16 million Americans are living with diseases caused by smoking. On average, the life expectancy of a smoker is about 10 years less than a nonsmoker. Smoking cessation can substantially reduce the incidence of smoking-related diseases, including cancer. At least, 70 of the more than 7000 cigarette smoke components, including polycyclic aromatic hydrocarbons, N-nitrosamines, and aromatic amines, are known carcinogens. Nicotine is the compound responsible for the addictive and psychopharmacological effects of tobacco. Cytochrome P450 enzymes are responsible for the phase I metabolism of many tobacco components, including nicotine. Nicotine is mainly metabolized by cytochrome P450s 2A6 and 2A13 to cotinine. This metabolism decreases the amount of available nicotine in the bloodstream, leading to increased smoking behavior and thus exposure to tobacco toxicants and carcinogens. Here, we report the syntheses and P450 2A6 inhibitory activities of a number of new flavone-based esters and acids. Three of the flavone derivatives studied were found to be potent competitive inhibitors of the enzyme. Docking studies were used to determine the possible mechanisms of the activity of these inhibitors.
Collapse
Affiliation(s)
- Navneet Goyal
- Department
of Chemistry, Xavier University of Louisiana, New Orleans, Louisiana 70125, United States
| | - Camilla Do
- Department
of Chemistry, Xavier University of Louisiana, New Orleans, Louisiana 70125, United States
| | - Jayalakshmi Sridhar
- Department
of Chemistry, Xavier University of Louisiana, New Orleans, Louisiana 70125, United States
| | - Shahensha Shaik
- Cell
and Molecular Biology and Bioinformatic Core, College of Pharmacy, Xavier University of Louisiana, New Orleans, Louisiana 70125, United States
| | - Anthony Thompson
- Department
of Chemistry, Xavier University of Louisiana, New Orleans, Louisiana 70125, United States
| | - Timothy Perry
- Department
of Chemistry, Xavier University of Louisiana, New Orleans, Louisiana 70125, United States
| | - Loren Carter
- Department
of Chemistry, Xavier University of Louisiana, New Orleans, Louisiana 70125, United States
| | - Maryam Foroozesh
- Department
of Chemistry, Xavier University of Louisiana, New Orleans, Louisiana 70125, United States
| |
Collapse
|
3
|
Yaghoobi A, Seyedmirzaei H, Ala M. Genome- and Exome-Wide Association Studies Revealed Candidate Genes Associated with DaTscan Imaging Features. PARKINSON'S DISEASE 2023; 2023:2893662. [PMID: 37664790 PMCID: PMC10468272 DOI: 10.1155/2023/2893662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/02/2023] [Accepted: 08/16/2023] [Indexed: 09/05/2023]
Abstract
Introduction Despite remarkable progress in identifying Parkinson's disease (PD) genetic risk loci, the genetic basis of PD remains largely unknown. With the help of the endophenotype approach and using data from dopamine transporter single-photon emission computerized tomography (DaTscan), we identified potentially involved genes in PD. Method We conducted an imaging genetic study by performing exome-wide association study (EWAS) and genome-wide association study (GWAS) on the specific binding ratio (SBR) of six DaTscan anatomical areas between 489 and 559 subjects of Parkinson's progression markers initiative (PPMI) cohort and 83,623 and 36,845 single-nucleotide polymorphisms (SNPs)/insertion-deletion mutations (INDELs). We also investigated the association of cerebrospinal fluid (CSF) protein concentration of our significant genes with PD progression using PPMI CSF proteome data. Results Among 83,623 SNPs/INDELs in EWAS, one SNP (rs201465075) on 1 q32.1 locus was significantly (P value = 4.03 × 10-7) associated with left caudate DaTscan SBR, and 33 SNPs were suggestive. Among 36,845 SNPs in GWAS, one SNP (rs12450112) on 17 p.12 locus was significantly (P value = 1.34 × 10-6) associated with right anterior putamen DaTscan SBR, and 39 SNPs were suggestive among which 8 SNPs were intergenic. We found that rs201465075 and rs12450112 are most likely related to IGFN1 and MAP2K4 genes. The protein level of MAP2K4 in the CSF was significantly associated with PD progression in the PPMI cohort; however, proteomic data were not available for the IGFN1 gene. Conclusion We have shown that particular variants of IGFN1 and MAP2K4 genes may be associated with PD. Since DaTscan imaging could be positive in other Parkinsonian syndromes, caution should be taken when interpreting our results. Future experimental studies are also needed to verify these findings.
Collapse
Affiliation(s)
- Arash Yaghoobi
- Institute for Research in Fundamental Sciences (IPM), School of Biological Sciences, Tehran, Iran
| | - Homa Seyedmirzaei
- Interdisciplinary Neuroscience Research Program (INRP), Tehran University of Medical Sciences, Tehran, Iran
- Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Moein Ala
- Experimental Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Yamaguchi Y, Nishizono N, Kobayashi D, Yoshimura T, Wada K, Kobayashi K, Oda K. Synthesis and biological evaluation of coumarin derivatives as selective CYP2A6 inhibitors. Bioorg Med Chem Lett 2023; 86:129206. [PMID: 36889653 DOI: 10.1016/j.bmcl.2023.129206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/16/2023] [Accepted: 02/24/2023] [Indexed: 03/08/2023]
Abstract
Cytochrome P450 2A6 (CYP2A6) inhibitors are expected to be suitable as smoking cessation aids and for cancer prevention. Because the typical coumarin-based CYP2A6 inhibitor methoxsalen also inhibits CYP3A4, unintended drug-drug interactions are still a concern. Therefore, the development of selective CYP2A6 inhibitors is desirable. In this study, we synthesized coumarin-based molecules, determined the IC50 values for CYP2A6 inhibition, verified the possibility of mechanism-based inhibition, and compared the selectivity for CYP2A6 versus CYP3A4. The results demonstrated that we developed CYP2A6 inhibitors that were more potent and selective than methoxsalen.
Collapse
Affiliation(s)
- Yuki Yamaguchi
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Tobetsu-cho, Ishikari-gun, Hokkaido 061-0293, Japan.
| | - Naozumi Nishizono
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Tobetsu-cho, Ishikari-gun, Hokkaido 061-0293, Japan
| | - Daisuke Kobayashi
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Tobetsu-cho, Ishikari-gun, Hokkaido 061-0293, Japan
| | - Teruki Yoshimura
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Tobetsu-cho, Ishikari-gun, Hokkaido 061-0293, Japan
| | - Keiji Wada
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Tobetsu-cho, Ishikari-gun, Hokkaido 061-0293, Japan
| | - Kenichi Kobayashi
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Tobetsu-cho, Ishikari-gun, Hokkaido 061-0293, Japan
| | - Kazuaki Oda
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Tobetsu-cho, Ishikari-gun, Hokkaido 061-0293, Japan
| |
Collapse
|
5
|
Nasrin S, Coates S, Bardhi K, Watson C, Muscat JE, Lazarus P. Inhibition of Nicotine Metabolism by Cannabidiol (CBD) and 7-Hydroxycannabidiol (7-OH-CBD). Chem Res Toxicol 2023; 36:177-187. [PMID: 36626330 PMCID: PMC9945182 DOI: 10.1021/acs.chemrestox.2c00259] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Indexed: 01/11/2023]
Abstract
Cannabis-based products have experienced notable increases in co-usage alongside tobacco products. Several cannabinoids exhibit inhibition of a number of cytochrome P450 (CYP) and UDP glucuronosyltransferase (UGT) enzymes, but few studies have examined their inhibition of enzymes involved in nicotine metabolism. The goal of the present study was to examine potential drug-drug interactions occurring in the nicotine metabolism pathway perpetrated by cannabidiol (CBD) and its active metabolite, 7-hydroxy-CBD (7-OH-CBD). The inhibitory effects of CBD and 7-OH-CBD were tested in microsomes from HEK293 cells overexpressing individual metabolizing enzymes and from human liver tissue. Assays with overexpressing microsomes demonstrated that CBD and 7-OH-CBD inhibited CYP-mediated nicotine metabolism. Binding-corrected IC50,u values for CBD inhibition of nicotine metabolism to cotinine and nornicotine, and cotinine metabolism to trans-3'-hydroxycotinine (3HC), were 0.27 ± 0.060, 0.23 ± 0.14, and 0.21 ± 0.14 μM, respectively, for CYP2A6; and 0.26 ± 0.17 and 0.029 ± 0.0050 μM for cotinine and nornicotine formation, respectively, for CYP2B6. 7-OH-CBD IC50,u values were 0.45 ± 0.18, 0.16 ± 0.08, and 0.78 ± 0.23 μM for cotinine, nornicotine, and 3HC formation, respectively, for CYP2A6, and 1.2 ± 0.44 and 0.11 ± 0.030 μM for cotinine and nornicotine formation, respectively, for CYP2B6. Similar IC50,u values were observed in HLM. Inhibition (IC50,u = 0.37 ± 0.06 μM) of 3HC to 3HC-glucuronide formation by UGT1A9 was demonstrated by CBD. Significant inhibition of nicotine metabolism pathways by CBD and 7-OH-CBD suggests that cannabinoids may inhibit nicotine metabolism, potentially impacting tobacco addiction and cessation.
Collapse
Affiliation(s)
- Shamema Nasrin
- Department
of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical
Sciences, Washington State University, Spokane, Washington99223, United States
| | - Shelby Coates
- Department
of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical
Sciences, Washington State University, Spokane, Washington99223, United States
| | - Keti Bardhi
- Department
of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical
Sciences, Washington State University, Spokane, Washington99223, United States
| | - Christy Watson
- Department
of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical
Sciences, Washington State University, Spokane, Washington99223, United States
| | - Joshua E. Muscat
- Penn
State Cancer Institute, Department of Public Health Sciences, Penn State University College of Medicine, Hershey, Pennsylvania17033, United States
| | - Philip Lazarus
- Department
of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical
Sciences, Washington State University, Spokane, Washington99223, United States
| |
Collapse
|
6
|
Kahma H, Aurinsalo L, Neuvonen M, Katajamäki J, Paludetto MN, Viinamäki J, Launiainen T, Filppula AM, Tornio A, Niemi M, Backman JT. An automated cocktail method for in vitro assessment of direct and time-dependent inhibition of nine major cytochrome P450 enzymes - application to establishing CYP2C8 inhibitor selectivity. Eur J Pharm Sci 2021; 162:105810. [PMID: 33753217 DOI: 10.1016/j.ejps.2021.105810] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/26/2021] [Accepted: 03/16/2021] [Indexed: 12/12/2022]
Abstract
We developed an in vitro high-throughput cocktail assay with nine major drug-metabolizing CYP enzymes, optimized for screening of time-dependent inhibition. The method was applied to determine the selectivity of the time-dependent CYP2C8 inhibitors gemfibrozil 1-O-β-glucuronide and clopidogrel acyl-β-D-glucuronide. In vitro incubations with CYP selective probe substrates and pooled human liver microsomes were conducted in 96-well plates with automated liquid handler techniques and metabolite concentrations were measured with quantitative UHPLC-MS/MS analysis. After determination of inter-substrate interactions and Km values for each reaction, probe substrates were divided into cocktails I (tacrine/CYP1A2, bupropion/CYP2B6, amodiaquine/CYP2C8, tolbutamide/CYP2C9 and midazolam/CYP3A4/5) and II (coumarin/CYP2A6, S-mephenytoin/CYP2C19, dextromethorphan/CYP2D6 and astemizole/CYP2J2). Time-dependent inhibitors (furafylline/CYP1A2, selegiline/CYP2A6, clopidogrel/CYP2B6, gemfibrozil 1-O-β-glucuronide/CYP2C8, tienilic acid/CYP2C9, ticlopidine/CYP2C19, paroxetine/CYP2D6 and ritonavir/CYP3A) and direct inhibitor (terfenadine/CYP2J2) showed similar inhibition with single substrate and cocktail methods. Established time-dependent inhibitors caused IC50 fold shifts ranging from 2.2 to 30 with the cocktail method. Under time-dependent inhibition conditions, gemfibrozil 1-O-β-glucuronide was a strong (>90% inhibition) and selective (<< 20% inhibition of other CYPs) inhibitor of CYP2C8 at concentrations ranging from 60 to 300 μM, while the selectivity of clopidogrel acyl-β-D-glucuronide was limited at concentrations above its IC80 for CYP2C8. The time-dependent IC50 values of these glucuronides for CYP2C8 were 8.1 and 38 µM, respectively. In conclusion, a reliable cocktail method including the nine most important drug-metabolizing CYP enzymes was developed, optimized and validated for detecting time-dependent inhibition. Moreover, gemfibrozil 1-O-β-glucuronide was established as a selective inhibitor of CYP2C8 for use as a diagnostic inhibitor in in vitro studies.
Collapse
Affiliation(s)
- Helinä Kahma
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland; Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Department of Clinical Pharmacology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Laura Aurinsalo
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland; Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Mikko Neuvonen
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland; Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jani Katajamäki
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland; Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Marie-Noëlle Paludetto
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland; Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jenni Viinamäki
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland
| | - Terhi Launiainen
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland
| | - Anne M Filppula
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland; Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Aleksi Tornio
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland; Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Department of Clinical Pharmacology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Mikko Niemi
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland; Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Department of Clinical Pharmacology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Janne T Backman
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland; Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Department of Clinical Pharmacology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland.
| |
Collapse
|
7
|
Li Y, Meng Q, Yang M, Liu D, Hou X, Tang L, Wang X, Lyu Y, Chen X, Liu K, Yu AM, Zuo Z, Bi H. Current trends in drug metabolism and pharmacokinetics. Acta Pharm Sin B 2019; 9:1113-1144. [PMID: 31867160 PMCID: PMC6900561 DOI: 10.1016/j.apsb.2019.10.001] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 08/23/2019] [Accepted: 09/09/2019] [Indexed: 12/15/2022] Open
Abstract
Pharmacokinetics (PK) is the study of the absorption, distribution, metabolism, and excretion (ADME) processes of a drug. Understanding PK properties is essential for drug development and precision medication. In this review we provided an overview of recent research on PK with focus on the following aspects: (1) an update on drug-metabolizing enzymes and transporters in the determination of PK, as well as advances in xenobiotic receptors and noncoding RNAs (ncRNAs) in the modulation of PK, providing new understanding of the transcriptional and posttranscriptional regulatory mechanisms that result in inter-individual variations in pharmacotherapy; (2) current status and trends in assessing drug-drug interactions, especially interactions between drugs and herbs, between drugs and therapeutic biologics, and microbiota-mediated interactions; (3) advances in understanding the effects of diseases on PK, particularly changes in metabolizing enzymes and transporters with disease progression; (4) trends in mathematical modeling including physiologically-based PK modeling and novel animal models such as CRISPR/Cas9-based animal models for DMPK studies; (5) emerging non-classical xenobiotic metabolic pathways and the involvement of novel metabolic enzymes, especially non-P450s. Existing challenges and perspectives on future directions are discussed, and may stimulate the development of new research models, technologies, and strategies towards the development of better drugs and improved clinical practice.
Collapse
Affiliation(s)
- Yuhua Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510275, China
- The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Qiang Meng
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Mengbi Yang
- School of Pharmacy, the Chinese University of Hong Kong, Hong Kong, China
| | - Dongyang Liu
- Drug Clinical Trial Center, Peking University Third Hospital, Beijing 100191, China
| | - Xiangyu Hou
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Lan Tang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xin Wang
- School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yuanfeng Lyu
- School of Pharmacy, the Chinese University of Hong Kong, Hong Kong, China
| | - Xiaoyan Chen
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Kexin Liu
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Ai-Ming Yu
- UC Davis School of Medicine, Sacramento, CA 95817, USA
| | - Zhong Zuo
- School of Pharmacy, the Chinese University of Hong Kong, Hong Kong, China
| | - Huichang Bi
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
8
|
Liu Y, Zhang D, Du J, Qin Y, Zhao Z, Shi Y, Mei S, Liu Y. Simultaneous determination of plasma nicotine and cotinine by UHPLC–MS/MS in C57BL/6 mice and its application in a pharmacokinetic study. Biomed Chromatogr 2019; 33:e4634. [PMID: 31257625 DOI: 10.1002/bmc.4634] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/20/2019] [Accepted: 06/26/2019] [Indexed: 01/27/2023]
Affiliation(s)
- Yang Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function ReconstructionSchool of Stomatology, Capital Medical University 4 Tiantanxili Beijing P. R. China
| | - Dongjie Zhang
- Department of Pharmacy, Beijing Tiantan HospitalCapital Medical University 119 Nansihuan West Road, Fengtai District Beijing P. R. China
| | - Juan Du
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function ReconstructionSchool of Stomatology, Capital Medical University 4 Tiantanxili Beijing P. R. China
| | - Ying Qin
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function ReconstructionSchool of Stomatology, Capital Medical University 4 Tiantanxili Beijing P. R. China
| | - Zhigang Zhao
- Department of Pharmacy, Beijing Tiantan HospitalCapital Medical University 119 Nansihuan West Road, Fengtai District Beijing P. R. China
- Department of Clinical Pharmacology, College of Pharmaceutical SciencesCapital Medical University Beijing P. R. China
| | - Yanjun Shi
- Department of Clinical Pharmacology, College of Pharmaceutical SciencesCapital Medical University Beijing P. R. China
- Department of Pharmacy, Beijing Tongren HospitalCapital Medical University Beijing P. R. China
| | - Shenghui Mei
- Department of Pharmacy, Beijing Tiantan HospitalCapital Medical University 119 Nansihuan West Road, Fengtai District Beijing P. R. China
- Department of Clinical Pharmacology, College of Pharmaceutical SciencesCapital Medical University Beijing P. R. China
| | - Yi Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function ReconstructionSchool of Stomatology, Capital Medical University 4 Tiantanxili Beijing P. R. China
| |
Collapse
|
9
|
Ortiz de Montellano PR. Acetylenes: cytochrome P450 oxidation and mechanism-based enzyme inactivation. Drug Metab Rev 2019; 51:162-177. [PMID: 31203694 DOI: 10.1080/03602532.2019.1632891] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The oxidation of carbon-carbon triple bonds by cytochrome P450 produces ketene metabolites that are hydrolyzed to acetic acid derivatives or are trapped by nucleophiles. In the special case of 17α-ethynyl sterols, D-ring expansion and de-ethynylation have been observed as competing pathways. The oxidation of acetylenic groups is also associated with mechanism-based inactivation of cytochrome P450 enzymes. One mechanism for this inactivation is reaction of the ketene metabolite with cytochrome P450 residues essential for substrate binding or catalysis. However, in the case of monosubstituted acetylenes, inactivation can also occur by addition of the oxidized acetylenic function to a nitrogen of the heme prosthetic group. This addition reaction is not mediated by the ketene metabolite, but rather occurs during oxygen transfer to the triple bond. In some instances, a detectable intermediate is formed that is most consistent with a ketocarbene-iron heme complex. This complex can progress to the N-alkylated heme or revert back to the unmodified enzyme. The ketocarbene complex may intervene in the formation of all the N-alkyl heme adducts, but is normally too unstable to be detected.
Collapse
|
10
|
Chen L, Shen B, Wang S, Yu Y, Yan H, Shi Y, Duan G, Xiang P. Pharmacokinetics of selegiline, R‐methamphetamine, R‐amphetamine, and desmethylselegiline in oral fluid after a single oral administration of selegiline. Drug Test Anal 2019; 11:898-905. [DOI: 10.1002/dta.2568] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/27/2018] [Accepted: 01/02/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Lizhu Chen
- Department of Forensic Toxicology, Academy of Forensic Science, Ministry of JusticeShanghai Key Laboratory of Forensic Medicine No.1347 Guangfu Xi Road Shanghai 200063 China
- Department of Pharmaceutical Analysis, School of PharmacyFudan University No. 826 Zhangheng Road Shanghai 201203 China
| | - Baohua Shen
- Department of Forensic Toxicology, Academy of Forensic Science, Ministry of JusticeShanghai Key Laboratory of Forensic Medicine No.1347 Guangfu Xi Road Shanghai 200063 China
| | - Songtao Wang
- Criminal Investigation Police University of China No. 83 Tawan Street, Huanggu District Shenyang City Liaoning Province China
| | - Yingjia Yu
- Department of Pharmaceutical Analysis, School of PharmacyFudan University No. 826 Zhangheng Road Shanghai 201203 China
| | - Hui Yan
- Department of Forensic Toxicology, Academy of Forensic Science, Ministry of JusticeShanghai Key Laboratory of Forensic Medicine No.1347 Guangfu Xi Road Shanghai 200063 China
| | - Yan Shi
- Department of Forensic Toxicology, Academy of Forensic Science, Ministry of JusticeShanghai Key Laboratory of Forensic Medicine No.1347 Guangfu Xi Road Shanghai 200063 China
| | - Gengli Duan
- Department of Pharmaceutical Analysis, School of PharmacyFudan University No. 826 Zhangheng Road Shanghai 201203 China
| | - Ping Xiang
- Department of Forensic Toxicology, Academy of Forensic Science, Ministry of JusticeShanghai Key Laboratory of Forensic Medicine No.1347 Guangfu Xi Road Shanghai 200063 China
| |
Collapse
|
11
|
Chen L, Yu Y, Wang Y, Xiang P, Duan G. Simultaneous determination of selegiline, desmethylselegiline, R/S-methamphetamine, and R/S-amphetamine in oral fluid by LC/MS/MS. Forensic Toxicol 2018. [DOI: 10.1007/s11419-018-0443-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
12
|
Tanner JA, Tyndale RF. Variation in CYP2A6 Activity and Personalized Medicine. J Pers Med 2017; 7:jpm7040018. [PMID: 29194389 PMCID: PMC5748630 DOI: 10.3390/jpm7040018] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 11/17/2017] [Accepted: 11/27/2017] [Indexed: 12/16/2022] Open
Abstract
The cytochrome P450 2A6 (CYP2A6) enzyme metabolizes several clinically relevant substrates, including nicotine-the primary psychoactive component in cigarette smoke. The gene that encodes the CYP2A6 enzyme is highly polymorphic, resulting in extensive interindividual variation in CYP2A6 enzyme activity and the rate of metabolism of nicotine and other CYP2A6 substrates including cotinine, tegafur, letrozole, efavirenz, valproic acid, pilocarpine, artemisinin, artesunate, SM-12502, caffeine, and tyrosol. CYP2A6 expression and activity are also impacted by non-genetic factors, including induction or inhibition by pharmacological, endogenous, and dietary substances, as well as age-related changes, or interactions with other hepatic enzymes, co-enzymes, and co-factors. As variation in CYP2A6 activity is associated with smoking behavior, smoking cessation, tobacco-related lung cancer risk, and with altered metabolism and resulting clinical responses for several therapeutics, CYP2A6 expression and enzyme activity is an important clinical consideration. This review will discuss sources of variation in CYP2A6 enzyme activity, with a focus on the impact of CYP2A6 genetic variation on metabolism of the CYP2A6 substrates.
Collapse
Affiliation(s)
- Julie-Anne Tanner
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON M5T 1R8, Canada.
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada.
| | - Rachel F Tyndale
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON M5T 1R8, Canada.
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada.
| |
Collapse
|
13
|
Pouyfung P, Sarapusit S, Rongnoparut P. Effects of Vernonia cinerea Compounds on Drug-metabolizing Cytochrome P450s in Human Liver Microsomes. Phytother Res 2017; 31:1916-1925. [PMID: 28994497 DOI: 10.1002/ptr.5939] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 08/27/2017] [Accepted: 09/06/2017] [Indexed: 11/11/2022]
Abstract
Vernonia cinerea has been widely used in traditional medicines for various diseases and shown to aid in smoking abstinence and has anticancer properties. V. cinerea bioactive compounds, including flavonoids and hirsutinolide-type sesquiterpene lactones, have shown an inhibition effect on the nicotine-metabolizing cytochrome P450 2A6 (CYP2A6) enzyme and hirsutinolides reported suppressing cancer growth. In this study, V. cinerea ethanol extract and its bioactive compounds, including four flavonoids and four hirsutinolides, were investigated for an inhibitory effect on human liver microsomal CYPs 1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, 2E1, and 3A4 using cocktail inhibition assays combined with LC-MS/MS analysis. Among tested flavonoids, chrysoeriol was more potent in inhibition on CYP2A6 and CYP1A2 than other liver CYPs, with better binding efficiency toward CYP2A6 than CYP1A2 (Ki values in competitive mode of 1.93 ± 0.05 versus 3.39 ± 0.21 μM, respectively). Hirsutinolides were prominent inhibitors of CYP2A6 and CYP2D6, with IC50 values of 12-23 and 15-41 μM, respectively. These hirsutinolides demonstrated time-dependent inhibition, an indication of mechanism-based inactivation, toward CYP2A6. Quantitative prediction of microsomal metabolism of these flavonoids and hirsutinolides, including half-lives and hepatic clearance rate, was examined. These findings may have implications for further in vivo studies of V. cinerea. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Phisit Pouyfung
- Department of Biochemistry, Faculty of Science, Mahidol University, 272 Rama 6 Rd, Ratchathewi, Bangkok, 10400, Thailand
| | - Songklod Sarapusit
- Department of Biochemistry and Center for Innovation in Chemistry, Faculty of Science, Burapha University, 169 Long-Hard Bangsaen Rd, Muang, Chonburi, 20131, Thailand
| | - Pornpimol Rongnoparut
- Department of Biochemistry, Faculty of Science, Mahidol University, 272 Rama 6 Rd, Ratchathewi, Bangkok, 10400, Thailand
| |
Collapse
|
14
|
Boonruang S, Prakobsri K, Pouyfung P, Srisook E, Prasopthum A, Rongnoparut P, Sarapusit S. Inhibition of human cytochromes P450 2A6 and 2A13 by flavonoids, acetylenic thiophenes and sesquiterpene lactones from Pluchea indica and Vernonia cinerea. J Enzyme Inhib Med Chem 2017; 32:1136-1142. [PMID: 28856944 PMCID: PMC6009911 DOI: 10.1080/14756366.2017.1363741] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The human liver cytochrome P450 (CYP) 2A6 and the respiratory CYP2A13 enzymes play role in nicotine metabolism and activation of tobacco-specific nitrosamine carcinogens. Inhibition of both enzymes could offer a strategy for smoking abstinence and decreased risks of respiratory diseases and lung cancer. In this study, activity-guided isolation identified four flavonoids 1–4 (apigenin, luteolin, chrysoeriol, quercetin) from Vernonia cinerea and Pluchea indica, four hirsutinolide-type sesquiterpene lactones 5–8 from V. cinerea, and acetylenic thiophenes 9–11 from P. indica that inhibited CYP2A6- and CYP2A13-mediated coumarin 7-hydroxylation. Flavonoids were most effective in inhibition against CYP2A6 and CYP2A13, followed by thiophenes, and hirsutinolides. Hirsutinolides and thiophenes exhibited mechanism-based inhibition and in irreversible mode against both enzymes. The inactivation kinetic KI values of hirsutinolides against CYP2A6 and CYP2A13 were 5.32–15.4 and 0.92–8.67 µM, respectively, while those of thiophenes were 0.11–1.01 and 0.67–0.97 µM, respectively.
Collapse
Affiliation(s)
- Supattra Boonruang
- a Bioengineering Program, Faculty of Engineering , Burapha University , Muang , Chonburi , Thailand
| | - Khanistha Prakobsri
- a Bioengineering Program, Faculty of Engineering , Burapha University , Muang , Chonburi , Thailand
| | - Phisit Pouyfung
- b Department of Biochemistry, Faculty of Science , Mahidol University , Ratchathewi , Bangkok , Thailand
| | - Ekaruth Srisook
- c Department of Chemistry and Center for Innovation in Chemistry, Faculty of Science , Burapha University , Muang , Chonburi , Thailand
| | - Aruna Prasopthum
- b Department of Biochemistry, Faculty of Science , Mahidol University , Ratchathewi , Bangkok , Thailand
| | - Pornpimol Rongnoparut
- b Department of Biochemistry, Faculty of Science , Mahidol University , Ratchathewi , Bangkok , Thailand
| | - Songklod Sarapusit
- d Department of Biochemistry and Center for Innovation in Chemistry, Faculty of Science , Burapha University , Muang , Chonburi , Thailand
| |
Collapse
|
15
|
Anderson GD, Chan LN. Pharmacokinetic Drug Interactions with Tobacco, Cannabinoids and Smoking Cessation Products. Clin Pharmacokinet 2016; 55:1353-1368. [PMID: 27106177 DOI: 10.1007/s40262-016-0400-9] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Tobacco smoke contains a large number of compounds in the form of metals, volatile gases and insoluble particles, as well as nicotine, a highly addictive alkaloid. Marijuana is the most widely used illicit drug of abuse in the world, with a significant increase in the USA due to the increasing number of states that allow medical and recreational use. Of the over 70 phytocannabinoids in marijuana, Δ9-tetrahydrocannabinol (Δ9THC), cannabidiol (CBD) and cannibinol are the three main constituents. Both marijuana and tobacco smoking induce cytochrome P450 (CYP) 1A2 through activation of the aromatic hydrocarbon receptor, and the induction effect between the two products is additive. Smoking cessation is associated with rapid downregulation of CYP1A enzymes. On the basis of the estimated half-life of CYP1A2, dose reduction of CYP1A drugs may be necessary as early as the first few days after smoking cessation to prevent toxicity, especially for drugs with a narrow therapeutic index. Nicotine is a substrate of CYP2A6, which is induced by oestrogen, resulting in lower concentrations of nicotine in females than in males, especially in females taking oral contraceptives. The significant effects of CYP3A4 inducers and inhibitors on the pharmacokinetics of Δ9THC/CBD oromucosal spray suggest that CYP3A4 is the primary enzyme responsible for the metabolism of Δ9THC and CBD. Limited data also suggest that CBD may significantly inhibit CYP2C19. With the increasing use of marijuana and cannabis products, clinical studies are needed in order to determine the effects of other drugs on pharmacokinetics and pharmacodynamics.
Collapse
Affiliation(s)
- Gail D Anderson
- Department of Pharmacy, Box 357630, University of Washington, Seattle, WA, 98195, USA.
| | - Lingtak-Neander Chan
- Department of Pharmacy, Box 357630, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
16
|
Hogg RC. Contribution of Monoamine Oxidase Inhibition to Tobacco Dependence: A Review of the Evidence. Nicotine Tob Res 2015; 18:509-23. [PMID: 26508396 DOI: 10.1093/ntr/ntv245] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 10/15/2015] [Indexed: 11/12/2022]
Abstract
BACKGROUND There is a hypothesis that substances present in, or derived from, tobacco smoke inhibit monoamine oxidase (MAO) in the brains of smokers, reducing the degradation of catecholamine neurotransmitters involved in central reward pathways and acting synergistically with nicotine to increase its addictive effects. OBJECTIVE The objective of this review was to evaluate the evidence for a role of MAO inhibition by tobacco-derived substances in tobacco dependence. INVESTIGATIONAL PLAN Relevant studies on the effects of tobacco use on MAO levels or activity in humans were identified by electronic searches. RESULTS The identified data show a clear association between smoking and lower density of MAO-A and MAO-B binding sites in the brains of smokers and strong evidence that MAO is inhibited by a substance or substances in, or derived from, tobacco smoke. There was little evidence to support the hypothesis that low MAO levels/activity is a predictive factor for tobacco use. Substances that inhibit MAO in in vitro assays have been isolated from tobacco leaves and tobacco smoke; however, no single substance has been shown to be absorbed from tobacco smoke and to inhibit MAO in the brains of human smokers. Nevertheless, it is possible that MAO inhibition in smokers could result from additive or synergistic effects of several tobacco-derived substances. MAO inhibition potentiates the reinforcing effects of intravenous nicotine in rodents; however, no data were identified to support the hypothesis that MAO inhibitors in or derived from tobacco or tobacco additives affect tobacco dependence in human smokers. IMPLICATIONS This comprehensive review describes the available evidence for the role of MAO inhibition in tobacco dependence and points the way for further research in this field. In view of the large number of MAO inhibitors identified in tobacco and tobacco smoke, identification of the putative inhibitors responsible for the lower level/activity of MAO in smokers may be impractical. Future studies must address whether the lower level/activity of MAO observed in smokers is also seen in users of other tobacco products and if this change is implicated in their dependence-inducing effects.
Collapse
Affiliation(s)
- Ron C Hogg
- Medical Writing, OmniScience Ltd, Geneva, Switzerland
| |
Collapse
|
17
|
Dubroff JG, Doot RK, Falcone M, Schnoll RA, Ray R, Tyndale RF, Brody AL, Hou C, Schmitz A, Lerman C. Decreased Nicotinic Receptor Availability in Smokers with Slow Rates of Nicotine Metabolism. J Nucl Med 2015; 56:1724-9. [PMID: 26272810 DOI: 10.2967/jnumed.115.155002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 07/14/2015] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED The nicotine metabolite ratio (NMR), a stable measure of hepatic nicotine metabolism via the CYP2A6 pathway and total nicotine clearance, is a predictive biomarker of response to nicotine replacement therapy, with increased quit rates in slower metabolizers. Nicotine binds directly to nicotinic acetylcholine receptors (nAChRs) to exert its psychoactive effects. This study examined the relationship between NMR and nAChR (α4β2* subtype) availability using PET imaging of the radiotracer 2-(18)F-fluoro-3-(2(S)-azetidinylmethoxy)pyridine (2-(18)F-FA-85380, or 2-(18)F-FA). METHODS Twenty-four smokers-12 slow metabolizers (NMR < 0.26) and 12 normal metabolizers (NMR ≥ 0.26)-underwent 2-(18)F-FA-PET brain imaging after overnight nicotine abstinence (18 h before scanning), using a validated bolus-plus-infusion protocol. Availability of nAChRs was compared between NMR groups in a priori volumes of interest, with total distribution volume (VT/fP) being the measure of nAChR availability. Cravings to smoke were assessed before and after the scans. RESULTS Thalamic nAChR α4β2* availability was significantly reduced in slow nicotine metabolizers (P = 0.04). Slow metabolizers exhibited greater reductions in cravings after scanning than normal metabolizers; however, craving was unrelated to nAChR availability. CONCLUSION The rate of nicotine metabolism is associated with thalamic nAChR availability. Additional studies could examine whether altered nAChR availability underlies the differences in treatment response between slow and normal metabolizers of nicotine.
Collapse
Affiliation(s)
- Jacob G Dubroff
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Robert K Doot
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Mary Falcone
- Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Robert A Schnoll
- Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Riju Ray
- Global Medical Affairs, GlaxoSmithKline, Brussels, Belgium
| | - Rachel F Tyndale
- Department of Pharmacology and Toxicology, and Department of Psychiatry, CAMH, University of Toronto, Toronto, Canada
| | - Arthur L Brody
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, California; and Department of Psychiatry, Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, California
| | - Catherine Hou
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Alexander Schmitz
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Caryn Lerman
- Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
18
|
Prasopthum A, Pouyfung P, Sarapusit S, Srisook E, Rongnoparut P. Inhibition effects of Vernonia cinerea active compounds against cytochrome P450 2A6 and human monoamine oxidases, possible targets for reduction of tobacco dependence. Drug Metab Pharmacokinet 2015; 30:174-81. [PMID: 25857233 DOI: 10.1016/j.dmpk.2014.12.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 11/25/2014] [Accepted: 12/21/2014] [Indexed: 12/19/2022]
Abstract
The human cytochrome P450 2A6 (CYP2A6) and monoamine oxidases (MAO-A and MAO-B), catalyzing nicotine and dopamine metabolisms, respectively, are two therapeutic targets of nicotine dependence. Vernonia cinerea, a medicinal plant commonly used for treatment of diseases such as asthma and bronchitis, has been shown reducing tobacco dependence effect among tobacco users. In the present study, we found eight active compounds isolated from V. cinerea that comprise inhibitory activity toward CYP2A6 and MAO-A and MAO-B enzymes using activity-guided assays, with coumarin as substrate of CYP2A6 and kynuramine of MAOs. These compounds were three flavones (apigenin, chrysoeriol, luteolin), one flavonol (quercetin), and four hirsutinolide-type sesquiterpene lactones (8α-(2-methylacryloyloxy)-hirsutinolide-13-O-acetate, 8α-(4-hydroxymethacryloyloxy)-hirsutinolide-13-O-acetate, 8α-tigloyloxyhirsutinolide-13-O-acetate, and 8α-(4-hydroxytigloyloxy)-hirsutinolide-13-O-acetate). Modes and kinetics of inhibition against the three enzymes were determined. Flavonoids possessed strong inhibitory effect on CYP2A6 in reversible mode, while inhibition by hirsutinolides was mechanism-based (NADPH-, concentration-, and time-dependence) and irreversible. Inhibition by hirsutinolides could not be reversed by dialysis and by addition of trapping agents or potassium ferricyanide. Flavonoids inhibited MAOs with variable degrees and were more prominent in inhibition toward MAO-A than hirsutinolides, while two of hirsutinolides inhibited MAO-B approximately comparable to two flavonoids. These results could have implications in combination of drug therapy for smoking cessation.
Collapse
Affiliation(s)
- Aruna Prasopthum
- Department of Biochemistry, Faculty of Science, Mahidol University, 272 Rama 6 Rd., Ratchathewi, Bangkok 10400, Thailand
| | - Phisit Pouyfung
- Department of Biochemistry, Faculty of Science, Mahidol University, 272 Rama 6 Rd., Ratchathewi, Bangkok 10400, Thailand
| | - Songklod Sarapusit
- Department of Biochemistry, Faculty of Science, Burapha University, 169 Long-Hard Bangsaen Rd., Mueang, Chonburi 20131, Thailand
| | - Ekaruth Srisook
- Department of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Burapha University, 169 Long-Hard Bangsaen Rd., Mueang, Chonburi 20131, Thailand
| | - Pornpimol Rongnoparut
- Department of Biochemistry, Faculty of Science, Mahidol University, 272 Rama 6 Rd., Ratchathewi, Bangkok 10400, Thailand.
| |
Collapse
|
19
|
Tani N, Juvonen RO, Raunio H, Fashe M, Leppänen J, Zhao B, Tyndale RF, Rahnasto-Rilla M. Rational design of novel CYP2A6 inhibitors. Bioorg Med Chem 2014; 22:6655-6664. [PMID: 25458499 DOI: 10.1016/j.bmc.2014.10.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 10/02/2014] [Indexed: 02/06/2023]
Abstract
Inhibition of CYP2A6-mediated nicotine metabolism can reduce cigarette smoking. We sought potent and selective CYP2A6 inhibitors to be used as leads for drugs useful in smoking reduction therapy, by evaluating CYP2A6 inhibitory effect of novel formyl, alkyl amine or carbonitrile substituted aromatic core structures. The most potent CYP2A6 inhibitors were thienopyridine-2-carbaldehyde, benzothienophene-3-ylmethanamine, benzofuran-5-carbaldehyde and indole-5-carbaldehyde, with IC50 values below 0.5 μM for coumarin 7-hydroxylation. Nicotine oxidation was effectively inhibited in vitro by two alkyl amine compounds and benzofuran-5-carbonitrile. Some of these molecules could serve as potential lead molecules when designing CYP2A6 inhibitory drugs for smoking reduction therapy.
Collapse
Affiliation(s)
- Niina Tani
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, POB 1627, 70211 Kuopio, Finland.
| | - Risto O Juvonen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, POB 1627, 70211 Kuopio, Finland
| | - Hannu Raunio
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, POB 1627, 70211 Kuopio, Finland
| | - Muluneh Fashe
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, POB 1627, 70211 Kuopio, Finland
| | - Jukka Leppänen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, POB 1627, 70211 Kuopio, Finland
| | - Bin Zhao
- Departments of Pharmacology and Toxicology and Psychiatry, University of Toronto, Campbell Family Mental Health Research Institute, M5S 1A8 Toronto, Ontario, Canada
| | - Rachel F Tyndale
- Departments of Pharmacology and Toxicology and Psychiatry, University of Toronto, Campbell Family Mental Health Research Institute, M5S 1A8 Toronto, Ontario, Canada
| | - Minna Rahnasto-Rilla
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, POB 1627, 70211 Kuopio, Finland.
| |
Collapse
|
20
|
Bullen C. Impact of tobacco smoking and smoking cessation on cardiovascular risk and disease. Expert Rev Cardiovasc Ther 2014; 6:883-95. [DOI: 10.1586/14779072.6.6.883] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
21
|
Pearce RE, Cohen-Wolkowiez M, Sampson MR, Kearns GL. The role of human cytochrome P450 enzymes in the formation of 2-hydroxymetronidazole: CYP2A6 is the high affinity (low Km) catalyst. Drug Metab Dispos 2013; 41:1686-94. [PMID: 23813797 DOI: 10.1124/dmd.113.052548] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Despite metronidazole's widespread clinical use since the 1960s, the specific enzymes involved in its biotransformation have not been previously identified. Hence, in vitro studies were conducted to identify and characterize the cytochrome P450 enzymes involved in the formation of the major metabolite, 2-hydroxymetronidazole. Formation of 2-hydroxymetronidazole in human liver microsomes was consistent with biphasic, Michaelis-Menten kinetics. Although several cDNA-expressed P450 enzymes catalyzed 2-hydroxymetronidazole formation at a supratherapeutic concentration of metronidazole (2000 μM), at a "therapeutic concentration" of 100 μM only CYPs 2A6, 3A4, 3A5, and 3A7 catalyzed metronidazole 2-hydroxylation at rates substantially greater than control vector, and CYP2A6 catalyzed 2-hydroxymetronidazole formation at rates 6-fold higher than the next most active enzyme. Kinetic studies with these recombinant enzymes revealed that CYP2A6 has a Km = 289 μM which is comparable to the Km for the high-affinity (low-Km) enzyme in human liver microsomes, whereas the Km values for the CYP3A enzymes corresponded with the low-affinity (high-Km) component. The sample-to-sample variation in 2-hydroxymetronidazole formation correlated significantly with CYP2A6 activity (r ≥ 0.970, P < 0.001) at substrate concentrations of 100 and 300 μM. Selective chemical inhibitors of CYP2A6 inhibited metronidazole 2-hydroxylation in a concentration-dependent manner and inhibitory antibodies against CYP2A6 virtually eliminated metronidazole 2-hydroxylation (>99%). Chemical and antibody inhibitors of other P450 enzymes had little or no effect on metronidazole 2-hydroxylation. These results suggest that CYP2A6 is the primary catalyst responsible for the 2-hydroxylation of metronidazole, a reaction that may function as a marker of CYP2A6 activity both in vitro and in vivo.
Collapse
Affiliation(s)
- Robin E Pearce
- Section of Developmental Pharmacology and Experimental Therapeutics, Division of Pediatric Clinical Pharmacology and Therapeutic Innovation, The Children's Mercy Hospitals, Kansas City, MO 64108, USA.
| | | | | | | |
Collapse
|
22
|
Switch from selegiline to rasagiline is beneficial in patients with Parkinson's disease. J Neural Transm (Vienna) 2012. [PMID: 23196982 DOI: 10.1007/s00702-012-0927-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The objective of this study is to demonstrate that application of rasagiline instead of selegiline with concomitant determination of L-amphetamine and L-methamphetamine in plasma is safe and well tolerated and influences sleep, mood, and motor behavior in patients with Parkinson's disease on a stable drug therapy. 30 patients, who took 7.5 mg selegiline daily for at least 3 months, were switched to 1 mg rasagiline. Then they were followed over an interval of 4 months. The remaining drug therapy remained stable. This changeover was safe and well tolerated. L-Amphetamine and L-methamphetamine only appeared during selegiline treatment. Motor behavior, motor complications, mood and sleep improved during rasagiline administration. Amphetamine-like derivatives of selegiline could contribute to sleep disturbances, which may be involved in worsening of mood. Motor behavior and motor complications probably became better due to the additional glutamate receptor antagonizing properties of rasagiline in this open label study.
Collapse
|
23
|
Wagner L, Zlabek V, Trattner S, Zamaratskaia G. In vitro inhibition of 7-ethoxyresorufin-O-deethylase (EROD) and p-nitrophenol hydroxylase (PNPH) activities by sesamin in hepatic microsomes from two fish species. Mol Biol Rep 2012; 40:457-62. [DOI: 10.1007/s11033-012-2080-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 10/01/2012] [Indexed: 11/29/2022]
|
24
|
Sridar C, Kenaan C, Hollenberg PF. Inhibition of bupropion metabolism by selegiline: mechanism-based inactivation of human CYP2B6 and characterization of glutathione and peptide adducts. Drug Metab Dispos 2012; 40:2256-66. [PMID: 22936314 DOI: 10.1124/dmd.112.046979] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Selegiline, the R-enantiomer of deprenyl, is used in the treatment of Parkinson's disease. Bupropion, an antidepressant, often used to treat patients in conjunction with selegiline, is metabolized primarily by CYP2B6. The effect of selegiline on the enzymatic activity of human cytochrome CYP2B6 in a reconstituted system and its effect on the metabolism of bupropion were examined. Selegiline was found to be a mechanism-based inactivator of the 7-ethoxy-4-(trifluoromethyl)coumarin O-deethylation (7-EFC) activity of CYP2B6 as well as bupropion metabolism. The inactivations were time-, concentration-, and NADPH-dependent and were characterized by K(I) values of 0.14 and 0.6 μM, k(inact) values of 0.022 and 0.029 min⁻¹, and t(½) values of 31.5 and 24 min, respectively. In standard inhibition assays, selegiline increased the K(m) of CYP2B6 for bupropion from 10 to 92 μM and decreased the k(cat) by ∼50%. The reduced carbon-monoxide difference spectrum revealed over a 50% loss in the cytochrome P450 spectrum in the inactivated sample, with no loss in heme, and there was ∼70% loss in enzyme activity. Trapping of the reactive metabolite using GSH led to the identification of a GSH-selegiline conjugate with a m/z 528 that could be explained by hydroxylation of selegiline followed by the addition of glutathione to the propargyl moiety after oxygenation to form the ketene intermediate. Liquid chromatography-tandem mass spectrometry analysis of the labeled protein following digestion with trypsin revealed the peptide ⁶⁴DVFTVHLGPR⁷³ as the peptide modified by the reactive metabolite of selegiline and the site of adduct formation is Asp64.
Collapse
Affiliation(s)
- Chitra Sridar
- Department of Pharmacology, The University of Michigan, Ann Arbor, MI, USA
| | | | | |
Collapse
|
25
|
Characterization of inhibitory effects of perfluorooctane sulfonate on human hepatic cytochrome P450 isoenzymes: Focusing on CYP2A6. Chem Biol Interact 2011; 194:120-6. [DOI: 10.1016/j.cbi.2011.09.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 09/02/2011] [Accepted: 09/09/2011] [Indexed: 11/24/2022]
|
26
|
Yamaori S, Maeda C, Yamamoto I, Watanabe K. Differential inhibition of human cytochrome P450 2A6 and 2B6 by major phytocannabinoids. Forensic Toxicol 2011. [DOI: 10.1007/s11419-011-0112-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
27
|
Khokhar JY, Tyndale RF. Drug metabolism within the brain changes drug response: selective manipulation of brain CYP2B alters propofol effects. Neuropsychopharmacology 2011; 36:692-700. [PMID: 21107310 PMCID: PMC3055692 DOI: 10.1038/npp.2010.202] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Drug-metabolizing cytochrome P450 (CYPs) enzymes are expressed in the liver, as well as in extrahepatic tissues such as the brain. Here we show for the first time that drug metabolism by a CYP within the brain, illustrated using CYP2B and the anesthetic propofol (2, 6-diisopropylphenol, Diprivan), can meaningfully alter the pharmacological response to a CNS acting drug. CYP2B is expressed in the brains of animals and humans, and this CYP isoform is able to metabolize centrally acting substrates such as propofol, ecstasy, and serotonin. Rats were given intracerebroventricularly (i.c.v.) injections of vehicle, C8-xanthate, or 8-methoxypsoralen (CYP2B mechanism-based inhibitors) and then tested for sleep time following propofol (80 mg/kg intraperitoneally). Both inhibitors significantly increased sleep-time (1.8- to 2-fold) and brain propofol levels, while having no effect on plasma propofol levels. Seven days of nicotine treatment can induce the expression of brain, but not hepatic, CYP2B, and this induction reduced propofol sleep times by 2.5-fold. This reduction was reversed in a dose-dependent manner by i.c.v. injections of inhibitor. Sleep times correlated with brain (r=0.76, P=0.0009), but not plasma (r=0.24, P=0.39) propofol concentrations. Inhibitor treatments increased brain, but not plasma, propofol levels, and had no effect on hepatic enzyme activity. These data indicate that brain CYP2B can metabolize neuroactive substrates (eg, propofol) and can alter their pharmacological response. This has wider implications for localized CYP-mediated metabolism of drugs, neurotransmitters, and neurotoxins within the brain by this highly variable enzyme family and other CYP subfamilies expressed in the brain.
Collapse
Affiliation(s)
- Jibran Y Khokhar
- Centre for Addiction and Mental Health (CAMH) and Departments of Pharmacology and Toxicology and Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Rachel F Tyndale
- Centre for Addiction and Mental Health (CAMH) and Departments of Pharmacology and Toxicology and Psychiatry, University of Toronto, Toronto, Ontario, Canada,Department of Pharmacology and Toxicology, 1 King's College Circle, University of Toronto, Medical Sciences Building, Room 4326, Toronto, Ontario M5S 1A8, Canada, Tel: +1 416 978 6374, Fax: +1 416 978 6395, E-mail:
| |
Collapse
|
28
|
Miyazawa M, Kawauchi Y, Okuno Y, Oda Y. The Novel Assay Method for Nicotine Metabolism to Cotinine Using High Performance Liquid Chromatography. Chem Pharm Bull (Tokyo) 2011; 59:295-7. [DOI: 10.1248/cpb.59.295] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Mitsuo Miyazawa
- Department of Applied Chemistry, Faculty of Science and Engineering, Kinki University
| | - Yumi Kawauchi
- Department of Applied Chemistry, Faculty of Science and Engineering, Kinki University
| | - Yoshiharu Okuno
- Department of Strategic Surveillance for Functional Food and Comprehensive Traditional Medicine, Wakayama Medical University
| | - Yoshimitsu Oda
- Department of Applied Chemistry, Faculty of Science and Engineering, Kinki University
| |
Collapse
|
29
|
Abstract
Cigarette smoking represents the most important source of preventable morbidity and premature mortality worldwide. Approximately 100 million deaths were caused by tobacco use in the 20th century. There are >1 billion smokers worldwide, and globally the use of tobacco products is increasing, with the epidemic shifting to the developing world. Tobacco dependence is a chronic condition that often requires repeated intervention for success. Just informing a patient about health risks, although necessary, is usually not sufficient for a decision to change. Smokers should be provided with counseling when attempting to quit. Pharmacologic smoking cessation aids are recommended for all smokers who are trying to quit, unless contraindicated. Evidence-based guidelines recommend nicotine replacement therapy, bupropion SR, and varenicline as effective alternatives for smoking cessation therapy, especially when combined with behavioral interventions. Combination pharmacotherapy is indicated for highly nicotine-dependent smokers, patients who have failed with monotherapy, and patients with breakthrough cravings. An additional form of nicotine replacement therapy or an addition of a non-nicotine replacement therapy oral medication (bupropion or varenicline) may be helpful. The rate of successful smoking cessation at 1 year is 3% to 5% when the patient simply tries to stop, 7% to 16% if the smoker undergoes behavioral intervention, and up to 24% when receiving pharmacological treatment and behavioral support.
Collapse
|
30
|
Weinberger AH, Reutenauer EL, Jatlow PI, O'Malley SS, Potenza MN, George TP. A double-blind, placebo-controlled, randomized clinical trial of oral selegiline hydrochloride for smoking cessation in nicotine-dependent cigarette smokers. Drug Alcohol Depend 2010; 107:188-95. [PMID: 19939587 PMCID: PMC2822098 DOI: 10.1016/j.drugalcdep.2009.10.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 10/16/2009] [Accepted: 10/19/2009] [Indexed: 11/24/2022]
Abstract
AIM The primary aim of this study was to determine the safety and efficacy of the monoamine oxidase-B (MAO-B) inhibitor selegiline hydrochloride (SEL, l-Deprenyl; Eldepryl) as an aid for smoking cessation in cigarette smokers. METHODS One hundred and one nicotine-dependent adult cigarette smokers without current psychiatric or substance use disorders participated in this 8-week randomized, double-blind, placebo-controlled trial. Participants received either SEL (5mg bid, n=51) or placebo (PLO, n=50), in combination with brief (<10 min) manualized smoking cessation counseling. The main smoking outcome measures were 7-day point prevalence abstinence at end of trial (EOT), 4-week continuous smoking abstinence at end of trial (CA), and 7-day point prevalence abstinence at 6-month follow-up (6MFU). Abstinence was determined by an absence of self-reported cigarette smoking and biochemically verified by expired breath carbon monoxide and plasma cotinine levels. RESULTS Rates of smoking abstinence did not differ by medication group (EOT: SEL=16%, PLO=20%, p=0.57; CA: SEL=14%, PLO=18%, p=0.56; 6MFU: SEL=12%, PLO=16%, p=0.54). Adverse events were modest and comparable between medication groups. Participants receiving SEL were more likely than those receiving PLO to report dry mouth (25.5% versus 8.2%, p<0.05). CONCLUSIONS Our results suggest that SEL was safe and well-tolerated by adult cigarette smokers, but did not improve smoking abstinence rates compared to PLO.
Collapse
Affiliation(s)
- Andrea H. Weinberger
- Program for Research in Smokers with Mental Illness (PRISM), Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519 USA
- Substance Abuse Center (SAC), Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519 USA
| | - Erin L. Reutenauer
- Program for Research in Smokers with Mental Illness (PRISM), Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519 USA
- Substance Abuse Center (SAC), Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519 USA
| | - Peter I. Jatlow
- Departments of Laboratory Medicine and Psychiatry, Yale University School of Medicine, New Haven, CT 06519 USA
| | - Stephanie S. O'Malley
- Substance Abuse Center (SAC), Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519 USA
| | - Marc N. Potenza
- Substance Abuse Center (SAC), Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519 USA
- Child Study Center, Yale University School of Medicine, New Haven, CT 06519 USA
| | - Tony P. George
- Program for Research in Smokers with Mental Illness (PRISM), Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519 USA
- Substance Abuse Center (SAC), Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519 USA
- Division of Addiction Psychiatry, Department of Psychiatry, University of Toronto and Schizophrenia Program, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, M5T 1R8 Canada
| |
Collapse
|
31
|
Edens E, Massa A, Petrakis I. Novel pharmacological approaches to drug abuse treatment. Curr Top Behav Neurosci 2010; 3:343-86. [PMID: 21161760 DOI: 10.1007/7854_2009_29] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The field of pharmacologic addiction treatment is expanding rapidly. While there are currently several FDA-approved medications for nicotine, alcohol, and opiate dependence, research into novel pharmacological approaches for these and additional substances is legion. Each drug of abuse, while sharing a common final neural pathway of increasing dopaminergic tone, has unique and individual characteristics that are important in developing improved and varied treatments. In this chapter, we discuss such research and present the neurobiological underpinnings of these explorations. In general, addiction treatment is focused on four areas: (1) reducing withdrawal discomfort, (2) diminishing cravings, (3) blocking rewarding effects of the drug, and (4) treating comorbidities, such as depression or ADHD. We present current ideas in pharmacologic research for nicotine, alcohol, cannabis, stimulants, and opiates.
Collapse
Affiliation(s)
- Ellen Edens
- West Haven Veterans Administration Medical Center, West Haven, CT 06516, USA
| | | | | |
Collapse
|
32
|
Ray R, Tyndale RF, Lerman C. Nicotine dependence pharmacogenetics: role of genetic variation in nicotine-metabolizing enzymes. J Neurogenet 2009; 23:252-61. [PMID: 19169923 PMCID: PMC3772540 DOI: 10.1080/01677060802572887] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Nicotine-dependence pharmacogenetics research is an emerging field, and a number of studies have begun to characterize the clinical relevance and predictive power of genetic variation in drug-metabolizing enzymes and drug target genes for response to medication. The present paper focuses on evidence for the role of nicotine-metabolizing enzymes in smoking behavior and response to treatment. Nicotine metabolism is mediated primarily by cytochrome P450 2A6 (CYP2A6). Genetic variation in the CYP2A6 gene has been linked with several smoking behavior phenotypes. Individuals who carry null or reduced activity alleles for CYP2A6 smoke fewer cigarettes per day, are less dependent on nicotine, and may have an easier time quitting smoking. A phenotypic measure of CYP2A6 enzyme activity, defined as the ratio of the nicotine metabolites 3'hydroxycotinine/cotinine, also predicts successful quitting with the transdermal nicotine patch, and counseling alone. Faster metabolizers of nicotine respond more poorly to these treatments; however, they may be excellent candidates for non-nicotine therapies, such as bupropion. Inherited variation in the CYP2B6 enzyme is also associated with response to bupropion treatment and counseling alone for smoking cessation. Inhibition of the CYP2A6 enzyme to slow nicotine metabolism is a promising approach to increase nicotine availability and potentially reduce harm from tobacco smoking.
Collapse
Affiliation(s)
- Riju Ray
- Abramson Cancer Center and Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rachel F. Tyndale
- Centre for Addiction and Mental Health and Department of Pharmacology, Toronto, Ontario, Canada
| | - Caryn Lerman
- Abramson Cancer Center and Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
33
|
Laniado-Laborín R. Smoking and chronic obstructive pulmonary disease (COPD). Parallel epidemics of the 21 century. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2009; 6:209-24. [PMID: 19440278 PMCID: PMC2672326 DOI: 10.3390/ijerph6010209] [Citation(s) in RCA: 217] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Accepted: 01/07/2009] [Indexed: 11/16/2022]
Abstract
One hundred million deaths were caused by tobacco in the 20(th) century, and it is estimated that there will be up to one billion deaths attributed to tobacco use in the 21(st) century. Chronic obstructive pulmonary disease (COPD) is rapidly becoming a global public health crisis with smoking being recognized as its most important causative factor. The most effective available treatment for COPD is smoking cessation. There is mounting evidence that the rate of progression of COPD can be reduced when patients at risk of developing the disease stop smoking, while lifelong smokers have a 50% probability of developing COPD during their lifetime. More significantly, there is also evidence that the risk of developing COPD falls by about half with smoking cessation. Several pharmacological interventions now exist to aid smokers in cessation; these include nicotine replacement therapy, bupropion, and varenicline. All pharmacotherapies for smoking cessation are more efficacious than placebo, with odds ratios of about 2. Pharmacologic therapy should be combined with nonpharmacologic (behavioral) therapy. Unfortunately, despite the documented efficacy of these agents, the absolute number of patients who are abstinent from smoking at 12 months of follow-up is low.
Collapse
|
34
|
Sharma G, Vijayaraghavan S. Nicotinic Receptors: Role in Addiction and Other Disorders of the Brain. SUBSTANCE ABUSE: RESEARCH AND TREATMENT 2008. [DOI: 10.1177/117822180800100005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
Nicotine, the addictive component of cigarette smoke has profound effects on the brain. Activation of its receptors by nicotine has complex consequences for network activity throughout the brain, potentially contributing to the addictive property of the drug. Nicotinic receptors have been implicated in psychiatric illnesses like schizophrenia and are also neuroprotective, potentially beneficial for neurodegenerative diseases. These effects of nicotine serve to emphasize the multifarious roles the drug, acting through multiple nicotinic acetylcholine receptor subtypes. The findings also remind us of the complexity of signaling mechanisms and stress the risks of unintended consequences of drugs designed to combat nicotine addiction.
Collapse
Affiliation(s)
- Geeta Sharma
- Department of Physiology and Biophysics and the Neuroscience Program, University of Colorado, Denver, School of Medicine Aurora CO 80045
| | - Sukumar Vijayaraghavan
- Department of Physiology and Biophysics and the Neuroscience Program, University of Colorado, Denver, School of Medicine Aurora CO 80045
| |
Collapse
|