1
|
Dettori I, Bulli I, Venturini M, Magni G, Cherchi F, Rossi F, Lee H, Pedata F, Jacobson KA, Pugliese AM, Coppi E. MRS3997, a dual adenosine A 2A/A 2B receptor agonist, reduces brain ischemic damage and alleviates neuroinflammation in rats. Neuropharmacology 2025; 262:110214. [PMID: 39522676 PMCID: PMC11789432 DOI: 10.1016/j.neuropharm.2024.110214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/30/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
The endogenous neuromodulator adenosine is massively released during hypoxic/ischemic insults and differentially modulates post-ischemic damage depending on the expression and recruitment of its four metabotropic receptor subtypes, namely A1, A2A, A2B and A3 receptors (A1Rs, A2ARs, A2BRs and A3Rs). We previously demonstrated, by using a model of transient middle cerebral artery occlusion (tMCAo) in rats, that selective activation of A2ARs, as well as A2BRs, ameliorates post-ischemic brain damage in contrast to neuroinflammation. In the present study, we investigated whether the multitarget nucleoside MRS3997, a full agonist at both A2ARs and A2BRs, would afford higher neuroprotection in post-ischemic damage. Chronic systemic treatment with MRS3997 reduced neurological deficit, body weight loss and infarct volume in the cortex and striatum measured 7 days after ischemia. The dual agonist counteracted neuronal loss, reduced myelin damage, and prevented morphological changes indicative of microglia and astrocyte activation. Finally, MRS3997 shifted plasma cytokine levels to an anti-inflammatory profile. These effects were preceded, at 2 days after the insult, by a reduced granulocyte infiltration in the ischemic cortex and, differently from what was observed with selective A2AR or A2BR agonism, also in striatum. In summary, we demonstrate here that MRS3997, systemically administered for 7 days after tMCAO, protects ischemic areas from neuronal and glial damage and inhibits neuroinflammation, therefore representing an attractive strategy to ameliorate post-stroke damage and neurological symptoms.
Collapse
Affiliation(s)
- Ilaria Dettori
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Division of Pharmacology and Toxicology, University of Florence, Florence, Italy.
| | - Irene Bulli
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Division of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Martina Venturini
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Division of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Giada Magni
- Institute of Applied Physics "Nello Carrara", National Research Council (IFAC-CNR), Sesto Fiorentino, Florence, Italy
| | - Federica Cherchi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Division of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Francesca Rossi
- Institute of Applied Physics "Nello Carrara", National Research Council (IFAC-CNR), Sesto Fiorentino, Florence, Italy
| | - Hobin Lee
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabe-tes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Felicita Pedata
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Division of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabe-tes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Anna Maria Pugliese
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Division of Pharmacology and Toxicology, University of Florence, Florence, Italy.
| | - Elisabetta Coppi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Division of Pharmacology and Toxicology, University of Florence, Florence, Italy
| |
Collapse
|
2
|
Vuerich M, Nguyen DH, Ferrari D, Longhi MS. Adenosine-mediated immune responses in inflammatory bowel disease. Front Cell Dev Biol 2024; 12:1429736. [PMID: 39188525 PMCID: PMC11345147 DOI: 10.3389/fcell.2024.1429736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/16/2024] [Indexed: 08/28/2024] Open
Abstract
Extracellular ATP and its derivates mediate a signaling pathway that might be pharmacologically targeted to treat inflammatory conditions. Extracellular adenosine, the product of ATP hydrolysis by ectonucleotidase enzymes, plays a key role in halting inflammation while promoting immune tolerance. The rate-limiting ectoenzyme ENTPD1/CD39 and the ecto-5'-nucleotidase/CD73 are the prototype members of the ectonucleotidase family, being responsible for ATP degradation into immunosuppressive adenosine. The biological effects of adenosine are mediated via adenosine receptors, a family of G protein-coupled receptors largely expressed on immune cells where they modulate innate and adaptive immune responses. Inflammatory bowel disease (IBD) is a serious inflammatory condition of the gastrointestinal tract, associated with substantial morbidity and often refractory to currently available medications. IBD is linked to altered interactions between the gut microbiota and the immune system in genetically predisposed individuals. A wealth of studies conducted in patients and animal models highlighted the role of various adenosine receptors in the modulation of chronic inflammatory diseases like IBD. In this review, we will discuss the most recent findings on adenosine-mediated immune responses in different cell types, with a focus on IBD and its most common manifestations, Crohn's disease and ulcerative colitis.
Collapse
Affiliation(s)
- Marta Vuerich
- Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Du Hanh Nguyen
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
- Department of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Davide Ferrari
- Department of Life Science and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Maria Serena Longhi
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
3
|
Zhang C, Wang K, Wang H. Adenosine in cancer immunotherapy: Taking off on a new plane. Biochim Biophys Acta Rev Cancer 2023; 1878:189005. [PMID: 37913941 DOI: 10.1016/j.bbcan.2023.189005] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 10/16/2023] [Accepted: 10/16/2023] [Indexed: 11/03/2023]
Abstract
As a new pillar of cancer therapy, tumor immunotherapy has brought irreplaceable durable responses in tumors. Considering its low response rate, additional immune regulatory mechanisms will be critical for the development of next-generation immune therapeutics. As a key regulatory mechanism, adenosine (ADO) protects tissues from excessive immune responses, but as a metabolite highly concentrated in tumor microenvironments, extracellular adenosine acts on adenosine receptors (mainly A2A receptors) expressed on MDSCs, Tregs, NK cells, effector T cells, DCs, and macrophages to promote tumor cell escape from immune surveillance by inhibiting the immune response. Amounting preclinical studies have demonstrated the adenosine pathway as a novel checkpoint for immunotherapy. Large number of adenosine pathway targeting clinical trials are now underway, including antibodies against CD39 and CD73 as well as A2A receptor inhibitors. There has been evidence of antitumor efficacy of these inhibitors in early clinical trials among a variety of tumors such as breast cancer, prostate cancer, non-small cell lung cancer, etc. As more clinical trial results are published, the combination of blockade of this pathway with immune checkpoint inhibitors, targeted drugs, traditional chemotherapy medications, radiotherapy and endocrine therapy will provide cancer patients with better clinical outcomes. We would elaborate on the role of CD39-CD73-A2AR pathway in the contribution of tumor microenvironment and the targeting of the adenosinergic pathway for cancer therapy in the review.
Collapse
Affiliation(s)
- Chenyue Zhang
- Department of Integrated Therapy, Fudan University Shanghai Cancer Center, Shanghai Medical College, Shanghai, China
| | - Kai Wang
- Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Haiyong Wang
- Department of Internal Medicine-Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.
| |
Collapse
|
4
|
Massold T, Ibrahim F, Niemann V, Steckel B, Becker K, Schrader J, Stegbauer J, Temme S, Grandoch M, Flögel U, Bouvain P. CD73 deficiency does not aggravate angiotensin II-induced aortic inflammation in mice. Sci Rep 2023; 13:17125. [PMID: 37816827 PMCID: PMC10564884 DOI: 10.1038/s41598-023-44361-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 10/06/2023] [Indexed: 10/12/2023] Open
Abstract
Vascular inflammation plays a key role in the development of aortic diseases. A potential novel target for treatment might be CD73, an ecto-5'-nucleotidase that generates anti-inflammatory adenosine in the extracellular space. Here, we investigated whether a lack of CD73 results in enhanced aortic inflammation. To this end, angiotensin II was infused into wildtype and CD73-/- mice over 10 days. Before and after infusion, mice were analyzed using magnetic resonance imaging, ultrasound, flow cytometry, and histology. The impact of age and gender was investigated using female and male mice of three and six months of age, respectively. Angiotensin II infusion led to increased immune cell infiltration in both genotypes' aortae, but depletion of CD73 had no impact on immune cell recruitment. These findings were not modified by age or sex. No substantial difference in morphological or functional characteristics could be detected between wildtype and CD73-/- mice. Interestingly, the expression of CD73 on neutrophils decreased significantly in wildtype mice during treatment. In summary, we have found no evidence that CD73 deficiency affects the onset of aortic inflammation. However, as CD73 expression decreased during disease induction, an increase in CD73 by pharmaceutical intervention might result in lower vascular inflammation and less vascular disease.
Collapse
Affiliation(s)
- Timo Massold
- Experimental Cardiovascular Imaging, Department of Molecular Cardiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Fady Ibrahim
- Experimental Cardiovascular Imaging, Department of Molecular Cardiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Viola Niemann
- Institute for Translational Pharmacology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Bodo Steckel
- Department of Molecular Cardiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Katrin Becker
- Department of Cardiology, Pulmonology, and Angiology, University Hospital Düsseldorf, Düsseldorf, Germany
- Institute for Cardiovascular Sciences, Endothelial Signaling and Metabolism, University Hospital Bonn, Bonn, Germany
| | - Jürgen Schrader
- Department of Molecular Cardiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Johannes Stegbauer
- Department of Nephrology, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany
| | - Sebastian Temme
- Department of Anesthesiology, University Hospital Düsseldorf, Düsseldorf, Germany
- CARID, Cardiovascular Research Institute Düsseldorf, Düsseldorf, Germany
| | - Maria Grandoch
- Institute for Translational Pharmacology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- CARID, Cardiovascular Research Institute Düsseldorf, Düsseldorf, Germany
| | - Ulrich Flögel
- Experimental Cardiovascular Imaging, Department of Molecular Cardiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
- CARID, Cardiovascular Research Institute Düsseldorf, Düsseldorf, Germany.
| | - Pascal Bouvain
- Experimental Cardiovascular Imaging, Department of Molecular Cardiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
5
|
Zhang T, Yu-Jing L, Ma T. The immunomodulatory function of adenosine in sepsis. Front Immunol 2022; 13:936547. [PMID: 35958599 PMCID: PMC9357910 DOI: 10.3389/fimmu.2022.936547] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/06/2022] [Indexed: 12/03/2022] Open
Abstract
Sepsis is an unsolved clinical condition with a substantial mortality rate in the hospital. Despite decades of research, no effective treatments for sepsis exists. The role of adenosine in the pathogenesis of sepsis is discussed in this paper. Adenosine is an essential endogenous molecule that activates the A1, A2a, A2b, and A3 adenosine receptors to regulate tissue function. These receptors are found on a wide range of immune cells and bind adenosine, which helps to control the immune response to inflammation. The adenosine receptors have many regulatory activities that determine the onset and progression of the disease, which have been discovered via the use of animal models. A greater understanding of the role of adenosine in modulating the immune system has sparked hope that an adenosine receptor-targeted treatment may be used one day to treat sepsis.
Collapse
Affiliation(s)
- Teng Zhang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Li Yu-Jing
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Tao Ma
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- *Correspondence: Tao Ma,
| |
Collapse
|
6
|
Pacini ESA, Satori NA, Jackson EK, Godinho RO. Extracellular cAMP-Adenosine Pathway Signaling: A Potential Therapeutic Target in Chronic Inflammatory Airway Diseases. Front Immunol 2022; 13:866097. [PMID: 35479074 PMCID: PMC9038211 DOI: 10.3389/fimmu.2022.866097] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/21/2022] [Indexed: 12/25/2022] Open
Abstract
Adenosine is a purine nucleoside that, via activation of distinct G protein-coupled receptors, modulates inflammation and immune responses. Under pathological conditions and in response to inflammatory stimuli, extracellular ATP is released from damaged cells and is metabolized to extracellular adenosine. However, studies over the past 30 years provide strong evidence for another source of extracellular adenosine, namely the “cAMP-adenosine pathway.” The cAMP-adenosine pathway is a biochemical mechanism mediated by ATP-binding cassette transporters that facilitate cAMP efflux and by specific ectoenzymes that convert cAMP to AMP (ecto-PDEs) and AMP to adenosine (ecto-nucleotidases such as CD73). Importantly, the cAMP-adenosine pathway is operative in many cell types, including those of the airways. In airways, β2-adrenoceptor agonists, which are used as bronchodilators for treatment of asthma and chronic respiratory diseases, stimulate cAMP efflux and thus trigger the extracellular cAMP-adenosine pathway leading to increased concentrations of extracellular adenosine in airways. In the airways, extracellular adenosine exerts pro-inflammatory effects and induces bronchoconstriction in patients with asthma and chronic obstructive pulmonary diseases. These considerations lead to the hypothesis that the cAMP-adenosine pathway attenuates the efficacy of β2-adrenoceptor agonists. Indeed, our recent findings support this view. In this mini-review, we will highlight the potential role of the extracellular cAMP-adenosine pathway in chronic respiratory inflammatory disorders, and we will explore how extracellular cAMP could interfere with the regulatory effects of intracellular cAMP on airway smooth muscle and innate immune cell function. Finally, we will discuss therapeutic possibilities targeting the extracellular cAMP-adenosine pathway for treatment of these respiratory diseases.
Collapse
Affiliation(s)
- Enio Setsuo Arakaki Pacini
- Division of Cellular Pharmacology, Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Naiara Ayako Satori
- Division of Cellular Pharmacology, Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Edwin Kerry Jackson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Rosely Oliveira Godinho
- Division of Cellular Pharmacology, Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, Brazil
- *Correspondence: Rosely Oliveira Godinho,
| |
Collapse
|
7
|
Wang J, Wang D, Zheng X, Li Y, Li Y, Ma T, Li J, Sun J, Wang Y, Ma Q. A 2B Adenosine Receptor Inhibition Ameliorates Hypoxic-Ischemic Injury in Neonatal Mice via PKC/Erk/Creb/HIF-1α Signaling Pathway. Brain Res 2022; 1782:147837. [PMID: 35182571 DOI: 10.1016/j.brainres.2022.147837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 02/12/2022] [Accepted: 02/14/2022] [Indexed: 12/29/2022]
Abstract
Periventricular leukomalacia (PVL), the dominant cerebral white matter injury disease, is induced by hypoxia-ischemia and inflammation in premature infants. The activation of A2B adenosine receptor (A2BAR) is shown to involve into inflammation, ischemia, and other typical stress reactions, but its exact function in PVL has not been clarified. We gained initial insight from PVL mouse model (P9) by the induction of hypoxia-ischemia with right carotid ligation followed by exposure to hypoxia and intraperitoneal (i.p.) injection of Lipopolysaccharide (LPS). The results showed that treatment of PSB-603, an A2BAR selective antagonist, greatly ameliorated cerebral ischemic injury by increasing bodyweights, reducing infarct volume, brain injury,inflammation andcontributing to long-term learning memory functionalrecoveryof the PVL mice. Meanwhile, PSB-603 treatment suppressed neurons apoptosis as characterized byreducing of Caspase-3 level, inhibited microglia activation and attenuated hypomyelination through promoting MBP expression and oligodendrocytes differentiation. A2BAR inhibition also augmented PKC expression, the activity of PKC downstream signaling molecules were then explored . Erk expression and Creb phosphorylation exhibited upregulation in PSB-603 treatment group compared with the control group. Hypoxia Inducible Factor-1α (HIF-1α), a direct target of hypoxia, which is a key regulator of adenosine signaling by binding to the A2BAR promoter to induce expression of A2BAR, was shown to be decreased by PSB-603. Taken together, A2BAR inhibition can ameliorate hypoxic-ischemic injury in PVL mice maybe through PKC/Erk/Creb/HIF-1α signaling pathway.
Collapse
Affiliation(s)
- Junyan Wang
- Basic Medical School, Ningxia Medical University,Yinchuan, Ningxia 750004, P.R. China
| | - Dan Wang
- Basic Medical School, Ningxia Medical University,Yinchuan, Ningxia 750004, P.R. China
| | - Xiaomin Zheng
- Department of Pediatric Neurorehabilitation, People' s Hospital of Ningxia Hui Autonomous Region, Yinchuan 750004, P.R. China
| | - Yunhong Li
- Basic Medical School, Ningxia Medical University,Yinchuan, Ningxia 750004, P.R. China
| | - Yilu Li
- Basic Medical School, Ningxia Medical University,Yinchuan, Ningxia 750004, P.R. China
| | - Teng Ma
- Basic Medical School, Ningxia Medical University,Yinchuan, Ningxia 750004, P.R. China
| | - Jinxia Li
- Basic Medical School, Ningxia Medical University,Yinchuan, Ningxia 750004, P.R. China
| | - Jinping Sun
- Basic Medical School, Ningxia Medical University,Yinchuan, Ningxia 750004, P.R. China
| | - Yin Wang
- Basic Medical School, Ningxia Medical University,Yinchuan, Ningxia 750004, P.R. China.
| | - Quanrui Ma
- Basic Medical School, Ningxia Medical University,Yinchuan, Ningxia 750004, P.R. China.
| |
Collapse
|
8
|
Zhao N, Xia GQ, Cai JN, Li ZX, Lv XW. Adenosine receptor A2B mediates alcoholic hepatitis by regulating cAMP levels and the NF-KB pathway. Toxicol Lett 2022; 359:84-95. [DOI: 10.1016/j.toxlet.2022.01.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 01/15/2022] [Accepted: 01/24/2022] [Indexed: 12/16/2022]
|
9
|
Antonioli L, Pacher P, Haskó G. Adenosine and inflammation: it's time to (re)solve the problem. Trends Pharmacol Sci 2021; 43:43-55. [PMID: 34776241 DOI: 10.1016/j.tips.2021.10.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/14/2021] [Accepted: 10/20/2021] [Indexed: 02/07/2023]
Abstract
Resolution of inflammation requires proresolving molecular pathways triggered as part of the host response during the inflammatory phase. Adenosine and its receptors, which are collectively called the adenosine system, shape inflammatory cell activity during the active phase of inflammation, leading these immune cells toward a functional repolarization, thus contributing to the onset of resolution. Strategies based on the resolution of inflammation have shaped a new area of pharmacology referred to as 'resolution pharmacology' and in this regard, the adenosine system represents an interesting target to design novel pharmacological tools to 'resolve' the inflammatory process. In this review, we outline the role of the adenosine system in driving the events required for an effective transition from the proinflammatory phase to the onset and establishment of resolution.
Collapse
Affiliation(s)
- Luca Antonioli
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Pál Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health/NIAAA, Bethesda, MD 20892, USA
| | - György Haskó
- Department of Anesthesiology, Columbia University, New York, NY, 10032, USA.
| |
Collapse
|
10
|
Hasan D, Shono A, van Kalken CK, van der Spek PJ, Krenning EP, Kotani T. A novel definition and treatment of hyperinflammation in COVID-19 based on purinergic signalling. Purinergic Signal 2021; 18:13-59. [PMID: 34757513 PMCID: PMC8578920 DOI: 10.1007/s11302-021-09814-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 07/18/2021] [Indexed: 12/15/2022] Open
Abstract
Hyperinflammation plays an important role in severe and critical COVID-19. Using inconsistent criteria, many researchers define hyperinflammation as a form of very severe inflammation with cytokine storm. Therefore, COVID-19 patients are treated with anti-inflammatory drugs. These drugs appear to be less efficacious than expected and are sometimes accompanied by serious adverse effects. SARS-CoV-2 promotes cellular ATP release. Increased levels of extracellular ATP activate the purinergic receptors of the immune cells initiating the physiologic pro-inflammatory immune response. Persisting viral infection drives the ATP release even further leading to the activation of the P2X7 purinergic receptors (P2X7Rs) and a severe yet physiologic inflammation. Disease progression promotes prolonged vigorous activation of the P2X7R causing cell death and uncontrolled ATP release leading to cytokine storm and desensitisation of all other purinergic receptors of the immune cells. This results in immune paralysis with co-infections or secondary infections. We refer to this pathologic condition as hyperinflammation. The readily available and affordable P2X7R antagonist lidocaine can abrogate hyperinflammation and restore the normal immune function. The issue is that the half-maximal effective concentration for P2X7R inhibition of lidocaine is much higher than the maximal tolerable plasma concentration where adverse effects start to develop. To overcome this, we selectively inhibit the P2X7Rs of the immune cells of the lymphatic system inducing clonal expansion of Tregs in local lymph nodes. Subsequently, these Tregs migrate throughout the body exerting anti-inflammatory activities suppressing systemic and (distant) local hyperinflammation. We illustrate this with six critically ill COVID-19 patients treated with lidocaine.
Collapse
Affiliation(s)
| | - Atsuko Shono
- Department of Anaesthesiology and Critical Care Medicine, School of Medicine, Showa University, Tokyo, 142-8666, Japan
| | | | - Peter J van der Spek
- Department of Pathology & Clinical Bioinformatics, Erasmus MC, Erasmus Universiteit Rotterdam, 3015 CE, Rotterdam, The Netherlands
| | | | - Toru Kotani
- Department of Anaesthesiology and Critical Care Medicine, School of Medicine, Showa University, Tokyo, 142-8666, Japan
| |
Collapse
|
11
|
Jennings MR, Munn D, Blazeck J. Immunosuppressive metabolites in tumoral immune evasion: redundancies, clinical efforts, and pathways forward. J Immunother Cancer 2021; 9:e003013. [PMID: 34667078 PMCID: PMC8527165 DOI: 10.1136/jitc-2021-003013] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2021] [Indexed: 01/04/2023] Open
Abstract
Tumors accumulate metabolites that deactivate infiltrating immune cells and polarize them toward anti-inflammatory phenotypes. We provide a comprehensive review of the complex networks orchestrated by several of the most potent immunosuppressive metabolites, highlighting the impact of adenosine, kynurenines, prostaglandin E2, and norepinephrine and epinephrine, while discussing completed and ongoing clinical efforts to curtail their impact. Retrospective analyses of clinical data have elucidated that their activity is negatively associated with prognosis in diverse cancer indications, though there is a current paucity of approved therapies that disrupt their synthesis or downstream signaling axes. We hypothesize that prior lukewarm results may be attributed to redundancies in each metabolites' synthesis or signaling pathway and highlight routes for how therapeutic development and patient stratification might proceed in the future.
Collapse
Affiliation(s)
- Maria Rain Jennings
- Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - David Munn
- Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - John Blazeck
- Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
12
|
Pasquini S, Contri C, Borea PA, Vincenzi F, Varani K. Adenosine and Inflammation: Here, There and Everywhere. Int J Mol Sci 2021; 22:7685. [PMID: 34299305 PMCID: PMC8304851 DOI: 10.3390/ijms22147685] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/16/2021] [Accepted: 07/16/2021] [Indexed: 02/06/2023] Open
Abstract
Adenosine is a ubiquitous endogenous modulator with the main function of maintaining cellular and tissue homeostasis in pathological and stress conditions. It exerts its effect through the interaction with four G protein-coupled receptor (GPCR) subtypes referred as A1, A2A, A2B, and A3 adenosine receptors (ARs), each of which has a unique pharmacological profile and tissue distribution. Adenosine is a potent modulator of inflammation, and for this reason the adenosinergic system represents an excellent pharmacological target for the myriad of diseases in which inflammation represents a cause, a pathogenetic mechanism, a consequence, a manifestation, or a protective factor. The omnipresence of ARs in every cell of the immune system as well as in almost all cells in the body represents both an opportunity and an obstacle to the clinical use of AR ligands. This review offers an overview of the cardinal role of adenosine in the modulation of inflammation, showing how the stimulation or blocking of its receptors or agents capable of regulating its extracellular concentration can represent promising therapeutic strategies for the treatment of chronic inflammatory pathologies, neurodegenerative diseases, and cancer.
Collapse
Affiliation(s)
- Silvia Pasquini
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (S.P.); (C.C.); (K.V.)
| | - Chiara Contri
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (S.P.); (C.C.); (K.V.)
| | | | - Fabrizio Vincenzi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (S.P.); (C.C.); (K.V.)
| | - Katia Varani
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (S.P.); (C.C.); (K.V.)
| |
Collapse
|
13
|
Asano T, Noda Y, Tanaka KI, Yamakawa N, Wada M, Mashimo T, Fukunishi Y, Mizushima T, Takenaga M. A 2B adenosine receptor inhibition by the dihydropyridine calcium channel blocker nifedipine involves colonic fluid secretion. Sci Rep 2020; 10:3555. [PMID: 32103051 PMCID: PMC7044278 DOI: 10.1038/s41598-020-60147-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 01/28/2020] [Indexed: 11/26/2022] Open
Abstract
The adenosine A2B receptor is a critical protein in intestinal water secretion. In the present study, we screened compound libraries to identify inhibitors of the A2B receptor and evaluated their effect on adenosine-induced intestinal fluid secretion. The screening identified the dihydropyridine calcium antagonists nifedipine and nisoldipine. Their respective affinities for the A2B receptor (Ki value) were 886 and 1,399 nM. Nifedipine and nisoldipine, but not amlodipine or nitrendipine, inhibited both calcium mobilization and adenosine-induced cAMP accumulation in cell lines. Moreover, adenosine injection into the lumen significantly increased fluid volume in the colonic loop of wild-type mice but not A2B receptor-deficient mice. PSB-1115, a selective A2B receptor antagonist, and nifedipine prevented elevated adenosine-stimulated fluid secretion in mice. Our results may provide useful insights into the structure–activity relationship of dihydropyridines for A2B receptor. As colonic fluid secretion by adenosine seems to rely predominantly on the A2B receptor, nifedipine could be a therapeutic candidate for diarrhoea-related diseases.
Collapse
Affiliation(s)
- Teita Asano
- Institute of Medical Science, St. Marianna University School of Medicine, 2-16-1, Sugao, Miyamae-ku, Kawasaki, 216-8512, Japan.
| | - Yuto Noda
- LTT Bio-Pharma Co., Ltd, Shiodome Building 3F, 1-2-20 Kaigan, Minato-ku, Tokyo, 105-0022, Japan
| | - Ken-Ichiro Tanaka
- Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20, Shin-machi, Nishi-Tokyo, 202-8585, Japan
| | - Naoki Yamakawa
- School of Pharmacy, Shujitsu University, 1-6-1, Nishi-kawahara, Naka-ku, Okayama, 703-8516, Japan
| | - Mitsuhito Wada
- Technology Research Association for Next Generation Natural Products Chemistry, 2-3-26, Aomi, Koto-ku, Tokyo, 135-0064, Japan
| | - Tadaaki Mashimo
- Molecular Profiling Research Center for Drug Discovery (molprof), National Institute of Advanced Industrial Science and Technology (AIST), 2-3-26, Aomi, Koto-ku, Tokyo, 135-0064, Japan.,IMSBIO Co., Ltd., Owl Tower, 4-21-1, Higashi-Ikebukuro, Toshima-ku, Tokyo, 170-0013, Japan
| | - Yoshifumi Fukunishi
- Molecular Profiling Research Center for Drug Discovery (molprof), National Institute of Advanced Industrial Science and Technology (AIST), 2-3-26, Aomi, Koto-ku, Tokyo, 135-0064, Japan
| | - Tohru Mizushima
- LTT Bio-Pharma Co., Ltd, Shiodome Building 3F, 1-2-20 Kaigan, Minato-ku, Tokyo, 105-0022, Japan.
| | - Mitsuko Takenaga
- Institute of Medical Science, St. Marianna University School of Medicine, 2-16-1, Sugao, Miyamae-ku, Kawasaki, 216-8512, Japan
| |
Collapse
|
14
|
Tanaka Y, Kitabatake K, Abe R, Tsukimoto M. Involvement of A2B Receptor in DNA Damage Response and Radiosensitizing Effect of A2B Receptor Antagonists on Mouse B16 Melanoma. Biol Pharm Bull 2019; 43:516-525. [PMID: 31866630 DOI: 10.1248/bpb.b19-00976] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It is therapeutically important to elucidate the factors involved in the radiation resistance of tumors. We previously showed that ATP is released from mouse melanoma B16 cells in response to γ-irradiation, but the role of adenosine, a metabolite of ATP, is still unclear. Here, we show that the adenosine A2B receptor is involved in DNA damage repair and radioresistance in mouse melanoma B16 cells. The DNA damage response after γ-irradiation was attenuated by pretreatment with A2B receptor antagonists, such as PSB603, while it was enhanced by pretreatment with A2B receptor agonists, such as BAY60-6583. γ-Irradiation decreased the cell survival rate, and pretreatment with PSB603 further reduced the survival rate. On the other hand, pretreatment with BAY60-6583 increased the cell survival rate after irradiation. The DNA damage response and the cell survival rate after γ-irradiation were both decreased in A2B-knockdown cells. In vivo experiments in mice confirmed that tumor growth was suppressed and delayed in the irradiated group pretreated with PSB603, compared with the irradiation-alone group. Our results indicate that adenosine A2B receptor contributes to radioresistance, and could be a new target for the development of agents to increase the efficacy of radiotherapy.
Collapse
Affiliation(s)
- Yuta Tanaka
- Department of Radiation Biosciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Kazuki Kitabatake
- Department of Radiation Biosciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Ryo Abe
- Research Institute for Biomedical Sciences, Tokyo University of Science.,Strategic Innovation and Research Center, Teikyo University
| | - Mitsutoshi Tsukimoto
- Department of Radiation Biosciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| |
Collapse
|
15
|
Wolska N, Rozalski M. Blood Platelet Adenosine Receptors as Potential Targets for Anti-Platelet Therapy. Int J Mol Sci 2019; 20:ijms20215475. [PMID: 31684173 PMCID: PMC6862090 DOI: 10.3390/ijms20215475] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/31/2019] [Accepted: 11/01/2019] [Indexed: 12/21/2022] Open
Abstract
Adenosine receptors are a subfamily of highly-conserved G-protein coupled receptors. They are found in the membranes of various human cells and play many physiological functions. Blood platelets express two (A2A and A2B) of the four known adenosine receptor subtypes (A1, A2A, A2B, and A3). Agonization of these receptors results in an enhanced intracellular cAMP and the inhibition of platelet activation and aggregation. Therefore, adenosine receptors A2A and A2B could be targets for anti-platelet therapy, especially under circumstances when classic therapy based on antagonizing the purinergic receptor P2Y12 is insufficient or problematic. Apart from adenosine, there is a group of synthetic, selective, longer-lasting agonists of A2A and A2B receptors reported in the literature. This group includes agonists with good selectivity for A2A or A2B receptors, as well as non-selective compounds that activate more than one type of adenosine receptor. Chemically, most A2A and A2B adenosine receptor agonists are adenosine analogues, with either adenine or ribose substituted by single or multiple foreign substituents. However, a group of non-adenosine derivative agonists has also been described. This review aims to systematically describe known agonists of A2A and A2B receptors and review the available literature data on their effects on platelet function.
Collapse
Affiliation(s)
- Nina Wolska
- Department of Haemostasis and Haemostatic Disorders, Chair of Biomedical Science, Medical University of Lodz, 92-215 Lodz, Poland.
| | - Marcin Rozalski
- Department of Haemostasis and Haemostatic Disorders, Chair of Biomedical Science, Medical University of Lodz, 92-215 Lodz, Poland.
| |
Collapse
|
16
|
Xu K, Cooney KA, Shin EY, Wang L, Deppen JN, Ginn SC, Levit RD. Adenosine from a biologic source regulates neutrophil extracellular traps (NETs). J Leukoc Biol 2019; 105:1225-1234. [PMID: 30907983 DOI: 10.1002/jlb.3vma0918-374r] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 02/01/2019] [Accepted: 02/25/2019] [Indexed: 01/27/2023] Open
Abstract
Neutrophil extracellular traps (NETs) are implicated in autoimmune, thrombotic, malignant, and inflammatory diseases; however, little is known of their endogenous regulation under basal conditions. Inflammatory effects of neutrophils are modulated by extracellular purines such as adenosine (ADO) that is inhibitory or ATP that generally up-regulates effector functions. In order to evaluate the effects of ADO on NETs, human neutrophils were isolated from peripheral venous blood from healthy donors and stimulated to make NETs. Treatment with ADO inhibited NET production as quantified by 2 methods: SYTOX green fluorescence and human neutrophil elastase (HNE)-DNA ELISA assay. Specific ADO receptor agonist and antagonist were tested for their effects on NET production. The ADO 2A receptor (A2A R) agonist CSG21680 inhibited NETs to a similar degree as ADO, whereas the A2A R antagonist ZM241385 prevented ADO's NET-inhibitory effects. Additionally, CD73 is a membrane bound ectonucleotidase expressed on mesenchymal stromal cells (MSCs) that allows manipulation of extracellular purines in tissues such as bone marrow. The effects of MSCs on NET formation were evaluated in coculture. MSCs reduced NET formation in a CD73-dependent manner. These results imply that extracellular purine balance may locally regulate NETosis and may be actively modulated by stromal cells to maintain tissue homeostasis.
Collapse
Affiliation(s)
- Kai Xu
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Cardiovascular Medicine, Xiangya Hospital, Changsha, China
| | - Kimberly A Cooney
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Eric Y Shin
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Lanfang Wang
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Juline N Deppen
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Sydney C Ginn
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Rebecca D Levit
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
17
|
Tosh DK, Rao H, Bitant A, Salmaso V, Mannes P, Lieberman DI, Vaughan KL, Mattison JA, Rothwell AC, Auchampach JA, Ciancetta A, Liu N, Cui Z, Gao ZG, Reitman ML, Gavrilova O, Jacobson KA. Design and in Vivo Characterization of A 1 Adenosine Receptor Agonists in the Native Ribose and Conformationally Constrained (N)-Methanocarba Series. J Med Chem 2019; 62:1502-1522. [PMID: 30605331 PMCID: PMC6467784 DOI: 10.1021/acs.jmedchem.8b01662] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
(N)-Methanocarba ([3.1.0]bicyclohexyl) adenosines and corresponding ribosides were synthesized to identify novel A1 adenosine receptor (A1AR) agonists for CNS or peripheral applications. Human and mouse AR binding was determined to assess the constrained ring system's A1AR compatibility. N6-Dicyclobutylmethyl ribose agonist (9, MRS7469, >2000-fold selective for A1AR) and known truncated N6-dicyclopropylmethyl methanocarba 7 (MRS5474) were drug-like. The pure diastereoisomer of known riboside 4 displayed high hA1AR selectivity. Methanocarba modification reduced A1AR selectivity of N6-dicyclopropylmethyl and endo-norbornyladenosines but increased ribavirin selectivity. Most analogues tested (ip) were inactive or weak in inducing mouse hypothermia, despite mA1AR full agonism and variable mA3AR efficacy, but strong hypothermia by 9 depended on A1AR, which reflects CNS activity (determined using A1AR or A3AR null mice). Conserved hA1AR interactions were preserved in modeling of 9 and methanocarba equivalent 24 (∼400-fold A1AR-selective). Thus, we identified, and characterized in vivo, ribose and methanocarba nucleosides, including with A1AR-enhancing N6-dicyclobutylmethyl-adenine and 1,2,4-triazole-3-carboxamide (40, MRS7451) nucleobases.
Collapse
Affiliation(s)
- Dilip K. Tosh
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, 9000 Rockville Pike, Bethesda, MA, USA 20892
| | - Harsha Rao
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, 9000 Rockville Pike, Bethesda, MA, USA 20892
| | - Amelia Bitant
- Department of Pharmacology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, USA 53226
| | - Veronica Salmaso
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, 9000 Rockville Pike, Bethesda, MA, USA 20892
| | - Philip Mannes
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, 9000 Rockville Pike, Bethesda, MA, USA 20892
| | - David I. Lieberman
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, 9000 Rockville Pike, Bethesda, MA, USA 20892
| | - Kelli L. Vaughan
- SoBran BioSciences, SoBran, Inc., 4000 Blackburn Lane, Burtonsville, MD, USA 20866
- Translational Gerontology Branch, National Institute on Aging Intramural Research Program, 16701 Elmer School Rd., Bldg. 103, Dickerson, MD, USA 20842
| | - Julie A. Mattison
- Translational Gerontology Branch, National Institute on Aging Intramural Research Program, 16701 Elmer School Rd., Bldg. 103, Dickerson, MD, USA 20842
| | - Amy C. Rothwell
- Department of Pharmacology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, USA 53226
| | - John A. Auchampach
- Department of Pharmacology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, USA 53226
| | - Antonella Ciancetta
- Queen’s University Belfast, School of Pharmacy, 96 Lisburn Rd, Belfast BT9 7BL, UK
| | - Naili Liu
- Mouse Metabolism Core, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, 9000 Rockville Pike, Bethesda, MA, USA 20892
| | - Zhenzhong Cui
- Mouse Metabolism Core, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, 9000 Rockville Pike, Bethesda, MA, USA 20892
| | - Zhan-Guo Gao
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, 9000 Rockville Pike, Bethesda, MA, USA 20892
| | - Marc L. Reitman
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, 9000 Rockville Pike, Bethesda, MA, USA 20892
| | - Oksana Gavrilova
- Mouse Metabolism Core, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, 9000 Rockville Pike, Bethesda, MA, USA 20892
| | - Kenneth A. Jacobson
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, 9000 Rockville Pike, Bethesda, MA, USA 20892
| |
Collapse
|
18
|
Vecchio EA, White PJ, May LT. The adenosine A 2B G protein-coupled receptor: Recent advances and therapeutic implications. Pharmacol Ther 2019; 198:20-33. [PMID: 30677476 DOI: 10.1016/j.pharmthera.2019.01.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The adenosine A2B receptor (A2BAR) is one of four adenosine receptor subtypes belonging to the Class A family of G protein-coupled receptors (GPCRs). Until recently, the A2BAR remained poorly characterised, in part due to its relatively low affinity for the endogenous agonist adenosine and therefore presumed minor physiological significance. However, the substantial increase in extracellular adenosine concentration, the sensitisation of the receptor and the upregulation of A2BAR expression under conditions of hypoxia and inflammation, suggest the A2BAR as an exciting therapeutic target in a variety of pathological disease states. Here we discuss the pharmacology of the A2BAR and outline its role in pathophysiology including ischaemia-reperfusion injury, fibrosis, inflammation and cancer.
Collapse
Affiliation(s)
- Elizabeth A Vecchio
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; Heart Failure Pharmacology, Baker Heart & Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Paul J White
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Lauren T May
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia.
| |
Collapse
|
19
|
Carlin JL, Jain S, Duroux R, Suresh RR, Xiao C, Auchampach JA, Jacobson KA, Gavrilova O, Reitman ML. Activation of adenosine A 2A or A 2B receptors causes hypothermia in mice. Neuropharmacology 2018; 139:268-278. [PMID: 29548686 PMCID: PMC6067974 DOI: 10.1016/j.neuropharm.2018.02.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 01/26/2018] [Accepted: 02/28/2018] [Indexed: 12/25/2022]
Abstract
Extracellular adenosine is a danger/injury signal that initiates protective physiology, such as hypothermia. Adenosine has been shown to trigger hypothermia via agonism at A1 and A3 adenosine receptors (A1AR, A3AR). Here, we find that adenosine continues to elicit hypothermia in mice null for A1AR and A3AR and investigated the effect of agonism at A2AAR or A2BAR. The poorly brain penetrant A2AAR agonists CGS-21680 and PSB-0777 caused hypothermia, which was not seen in mice lacking A2AAR. MRS7352, a likely non-brain penetrant A2AAR antagonist, inhibited PSB-0777 hypothermia. While vasodilation is probably a contributory mechanism, A2AAR agonism also caused hypometabolism, indicating that vasodilation is not the sole mechanism. The A2BAR agonist BAY60-6583 elicited hypothermia, which was lost in mice null for A2BAR. Low intracerebroventricular doses of BAY60-6583 also caused hypothermia, indicating a brain site of action, with neuronal activation in the preoptic area and paraventricular nucleus of the hypothalamus. Thus, agonism at any one of the canonical adenosine receptors, A1AR, A2AAR, A2BAR, or A3AR, can cause hypothermia. This four-fold redundancy in adenosine-mediated initiation of hypothermia may reflect the centrality of hypothermia as a protective response.
Collapse
Affiliation(s)
- Jesse Lea Carlin
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Shalini Jain
- Mouse Metabolism Core, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Romain Duroux
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - R Rama Suresh
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Cuiying Xiao
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - John A Auchampach
- Department of Pharmacology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Oksana Gavrilova
- Mouse Metabolism Core, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA.
| | - Marc L Reitman
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
20
|
Ratajczak MZ, Adamiak M, Kucia M, Tse W, Ratajczak J, Wiktor-Jedrzejczak W. The Emerging Link Between the Complement Cascade and Purinergic Signaling in Stress Hematopoiesis. Front Immunol 2018; 9:1295. [PMID: 29922299 PMCID: PMC5996046 DOI: 10.3389/fimmu.2018.01295] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 05/24/2018] [Indexed: 01/08/2023] Open
Abstract
Innate immunity plays an important role in orchestrating the immune response, and the complement cascade (ComC) is a major component of this ancient defense system, which is activated by the classical-, alternative-, or mannan-binding lectin (MBL) pathways. However, the MBL-dependent ComC-activation pathway has been somewhat underappreciated for many years; recent evidence indicates that it plays a crucial role in regulating the trafficking of hematopoietic stem/progenitor cells (HSPCs) by promoting their egress from bone marrow (BM) into peripheral blood (PB). This process is initiated by the release of danger-associated molecular patterns (DAMPs) from BM cells, including the most abundant member of this family, adenosine triphosphate (ATP). This nucleotide is well known as a ubiquitous intracellular molecular energy source, but when secreted becomes an important extracellular nucleotide signaling molecule and mediator of purinergic signaling. What is important for the topic of this review, ATP released from BM cells is recognized as a DAMP by MBL, and the MBL-dependent pathway of ComC activation induces a state of "sterile inflammation" in the BM microenvironment. This activation of the ComC by MBL leads to the release of several potent mediators, including the anaphylatoxins C5a and desArgC5a, which are crucial for egress of HSPCs into the circulation. In parallel, as a ligand for purinergic receptors, ATP affects mobilization of HSPCs by activating other pro-mobilizing pathways. This emerging link between the release of ATP, which on the one hand is an activator of the MBL pathway of the ComC and on the other hand is a purinergic signaling molecule, will be discussed in this review. This mechanism plays an important role in triggering defense mechanisms in response to tissue/organ injury but may also have a negative impact by triggering autoimmune disorders, aging of HSPCs, induction of myelodysplasia, and graft-versus-host disease after transplantation of histoincompatible hematopoietic cells.
Collapse
Affiliation(s)
- Mariusz Z Ratajczak
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, United States.,Department of Regenerative Medicine, Center for Preclinical Research and Technology, Warsaw Medical University, Warsaw, Poland
| | - Mateusz Adamiak
- Department of Regenerative Medicine, Center for Preclinical Research and Technology, Warsaw Medical University, Warsaw, Poland
| | - Magda Kucia
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, United States.,Department of Regenerative Medicine, Center for Preclinical Research and Technology, Warsaw Medical University, Warsaw, Poland
| | - William Tse
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, United States
| | - Janina Ratajczak
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, United States
| | | |
Collapse
|
21
|
Bessa-Gonçalves M, Bragança B, Martins-Dias E, Correia-de-Sá P, Fontes-Sousa AP. Is the adenosine A 2B 'biased' receptor a valuable target for the treatment of pulmonary arterial hypertension? Drug Discov Today 2018; 23:1285-1292. [PMID: 29747005 DOI: 10.1016/j.drudis.2018.05.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 03/25/2018] [Accepted: 05/02/2018] [Indexed: 12/12/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a maladaptive disorder characterized by increased pulmonary vascular resistance leading to right ventricular failure and death. Adenosine released by injured tissues, such as the lung and heart, influences tissue remodeling through the activation of adenosine receptors. Evidence regarding activation of the low-affinity A2BAR by adenosine points towards pivotal roles of this receptor in processes associated with both acute and chronic lung diseases. Conflicting results exist concerning the beneficial or detrimental roles of the A2B 'biased' receptor in right ventricular failure secondary to PAH. In this review, we discuss the pros and cons of manipulating A2BARs as a putative therapeutic target in PAH.
Collapse
Affiliation(s)
- Mafalda Bessa-Gonçalves
- Laboratório de Farmacologia e Neurobiologia, Centro de Investigação Farmacológica e Inovação Medicamentosa (MedInUP), Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (ICBAS-UP), Porto, Portugal
| | - Bruno Bragança
- Laboratório de Farmacologia e Neurobiologia, Centro de Investigação Farmacológica e Inovação Medicamentosa (MedInUP), Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (ICBAS-UP), Porto, Portugal
| | - Eduardo Martins-Dias
- Laboratório de Farmacologia e Neurobiologia, Centro de Investigação Farmacológica e Inovação Medicamentosa (MedInUP), Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (ICBAS-UP), Porto, Portugal
| | - Paulo Correia-de-Sá
- Laboratório de Farmacologia e Neurobiologia, Centro de Investigação Farmacológica e Inovação Medicamentosa (MedInUP), Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (ICBAS-UP), Porto, Portugal
| | - Ana Patrícia Fontes-Sousa
- Laboratório de Farmacologia e Neurobiologia, Centro de Investigação Farmacológica e Inovação Medicamentosa (MedInUP), Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (ICBAS-UP), Porto, Portugal.
| |
Collapse
|
22
|
Antonioli L, Fornai M, Blandizzi C, Pacher P, Haskó G. Adenosine signaling and the immune system: When a lot could be too much. Immunol Lett 2018; 205:9-15. [PMID: 29702147 DOI: 10.1016/j.imlet.2018.04.006] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 04/23/2018] [Indexed: 02/07/2023]
Abstract
Adenosine is increasingly recognized as a key mediator of the immune response. Signals delivered by extracellular adenosine are detected and transduced by G-protein-coupled cell-surface receptors, classified into four subtypes: A1, A2A, A2B and A3. These receptors, expressed virtually on all immune cells, modulate all aspects of immune/inflammatory responses. These immunoregulatory effects, which are mostly anti-inflammatory, contribute to the general tissue protective effects of adenosine and its receptors. In some instances, however, the effect of adenosine on the immune system is deleterious, as prolonged adenosine signaling can hinder anti-tumor and antibacterial immunity, thereby promoting cancer development and progression and sepsis, respectively.
Collapse
Affiliation(s)
- Luca Antonioli
- Department of Clinical and Experimental Medicine, University of Pisa, 56126, Pisa, Italy; Department of Anesthesiology, Columbia University, New York, NY, 10032, USA.
| | - Matteo Fornai
- Department of Clinical and Experimental Medicine, University of Pisa, 56126, Pisa, Italy
| | - Corrado Blandizzi
- Department of Clinical and Experimental Medicine, University of Pisa, 56126, Pisa, Italy
| | - Pál Pacher
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, 20892, USA
| | - György Haskó
- Department of Anesthesiology, Columbia University, New York, NY, 10032, USA
| |
Collapse
|
23
|
Betti M, Catarzi D, Varano F, Falsini M, Varani K, Vincenzi F, Dal Ben D, Lambertucci C, Colotta V. The aminopyridine-3,5-dicarbonitrile core for the design of new non-nucleoside-like agonists of the human adenosine A 2B receptor. Eur J Med Chem 2018. [PMID: 29525433 DOI: 10.1016/j.ejmech.2018.02.081] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A new series of amino-3,5-dicyanopyridines (3-28) as analogues of the adenosine hA2B receptor agonist BAY60-6583 (compound 1) was synthesized. All the compounds that interact with the hA2B adenosine receptor display EC50 values in the range 9-350 nM behaving as partial agonists, with the only exception being the 2-{[4-(4-acetamidophenyl)-6-amino-3,5-dicyanopyridin-2-yl]thio}acetamide (8) which shows a full agonist profile. Moreover, the 2-[(1H-imidazol-2-yl)methylthio)]-6-amino-4-(4-cyclopropylmethoxy-phenyl)pyridine-3,5-dicarbonitrile (15) turns out to be 3-fold more active than 1 although less selective. This result can be considered a real breakthrough due to the currently limited number of non-adenosine hA2B AR agonists reported in literature. To simulate the binding mode of nucleoside and non-nucleoside agonists at the hA2B AR, molecular docking studies were performed at homology models of this AR subtype developed by using two crystal structures of agonist-bound A2A AR as templates. These investigations allowed us to represent a hypothetical binding mode of hA2B receptor agonists belonging to the amino-3,5-dicyanopyridine series and to rationalize the observed SAR.
Collapse
Affiliation(s)
- Marco Betti
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Sezione di Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via Ugo Schiff, 6, 50019 Sesto Fiorentino, Italy
| | - Daniela Catarzi
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Sezione di Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via Ugo Schiff, 6, 50019 Sesto Fiorentino, Italy.
| | - Flavia Varano
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Sezione di Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via Ugo Schiff, 6, 50019 Sesto Fiorentino, Italy
| | - Matteo Falsini
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Sezione di Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via Ugo Schiff, 6, 50019 Sesto Fiorentino, Italy
| | - Katia Varani
- Dipartimento di Scienze Mediche, Sezione di Farmacologia, Università degli Studi di Ferrara, Via Fossato di Mortara 17-19, 44121 Ferrara, Italy
| | - Fabrizio Vincenzi
- Dipartimento di Scienze Mediche, Sezione di Farmacologia, Università degli Studi di Ferrara, Via Fossato di Mortara 17-19, 44121 Ferrara, Italy
| | - Diego Dal Ben
- Scuola di Scienze del Farmaco e dei Prodotti della Salute, Università degli Studi di Camerino, Via S. Agostino 1, 62032 Camerino, MC, Italy
| | - Catia Lambertucci
- Scuola di Scienze del Farmaco e dei Prodotti della Salute, Università degli Studi di Camerino, Via S. Agostino 1, 62032 Camerino, MC, Italy
| | - Vittoria Colotta
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Sezione di Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via Ugo Schiff, 6, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
24
|
Wang X, Chen D. Purinergic Regulation of Neutrophil Function. Front Immunol 2018; 9:399. [PMID: 29545806 PMCID: PMC5837999 DOI: 10.3389/fimmu.2018.00399] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 02/13/2018] [Indexed: 12/28/2022] Open
Abstract
Purinergic signaling, which utilizes nucleotides (particularly ATP) and adenosine as transmitter molecules, plays an essential role in immune system. In the extracellular compartment, ATP predominantly functions as a pro-inflammatory molecule through activation of P2 receptors, whereas adenosine mostly functions as an anti-inflammatory molecule through activation of P1 receptors. Neutrophils are the most abundant immune cells in circulation and have emerged as an important component in orchestrating a complex series of events during inflammation. However, because of the destructive nature of neutrophil-derived inflammatory agents, neutrophil activation is fine-tuned, and purinergic signaling is intimately involved in this process. Indeed, shifting the balance between P2 and P1 signaling is critical for neutrophils to appropriately exert their immunologic activity. Here, we review the role of purinergic signaling in regulating neutrophil function, and discuss the potential of targeting purinergic signaling for the treatment of neutrophil-associated infectious and inflammatory diseases.
Collapse
Affiliation(s)
- Xu Wang
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Deyu Chen
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
25
|
Hasan D, Blankman P, Nieman GF. Purinergic signalling links mechanical breath profile and alveolar mechanics with the pro-inflammatory innate immune response causing ventilation-induced lung injury. Purinergic Signal 2017; 13:363-386. [PMID: 28547381 PMCID: PMC5563293 DOI: 10.1007/s11302-017-9564-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 04/26/2017] [Indexed: 02/06/2023] Open
Abstract
Severe pulmonary infection or vigorous cyclic deformation of the alveolar epithelial type I (AT I) cells by mechanical ventilation leads to massive extracellular ATP release. High levels of extracellular ATP saturate the ATP hydrolysis enzymes CD39 and CD73 resulting in persistent high ATP levels despite the conversion to adenosine. Above a certain level, extracellular ATP molecules act as danger-associated molecular patterns (DAMPs) and activate the pro-inflammatory response of the innate immunity through purinergic receptors on the surface of the immune cells. This results in lung tissue inflammation, capillary leakage, interstitial and alveolar oedema and lung injury reducing the production of surfactant by the damaged AT II cells and deactivating the surfactant function by the concomitant extravasated serum proteins through capillary leakage followed by a substantial increase in alveolar surface tension and alveolar collapse. The resulting inhomogeneous ventilation of the lungs is an important mechanism in the development of ventilation-induced lung injury. The high levels of extracellular ATP and the upregulation of ecto-enzymes and soluble enzymes that hydrolyse ATP to adenosine (CD39 and CD73) increase the extracellular adenosine levels that inhibit the innate and adaptive immune responses rendering the host susceptible to infection by invading microorganisms. Moreover, high levels of extracellular adenosine increase the expression, the production and the activation of pro-fibrotic proteins (such as TGF-β, α-SMA, etc.) followed by the establishment of lung fibrosis.
Collapse
Affiliation(s)
- Djo Hasan
- Department of Adult ICU, University Hospital Erasmus MC Rotterdam, 's-Gravendijkwal 230 3015 CE, Rotterdam, the Netherlands.
| | - Paul Blankman
- Department of Adult ICU, University Hospital Erasmus MC Rotterdam, 's-Gravendijkwal 230 3015 CE, Rotterdam, the Netherlands
| | - Gary F Nieman
- Department of Surgery, Upstate Medical University, 750 E Adams St, Syracuse, NY, 13210, USA
| |
Collapse
|
26
|
Borg N, Alter C, Görldt N, Jacoby C, Ding Z, Steckel B, Quast C, Bönner F, Friebe D, Temme S, Flögel U, Schrader J. CD73 on T Cells Orchestrates Cardiac Wound Healing After Myocardial Infarction by Purinergic Metabolic Reprogramming. Circulation 2017; 136:297-313. [PMID: 28432149 DOI: 10.1161/circulationaha.116.023365] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 04/04/2017] [Indexed: 12/29/2022]
Abstract
BACKGROUND T cells are required for proper healing after myocardial infarction. The mechanism of their beneficial action, however, is unknown. The proinflammatory danger signal ATP, released from damaged cells, is degraded by the ectonucleotidases CD39 and CD73 to the anti-inflammatory mediator adenosine. Here, we investigate the contribution of CD73-derived adenosine produced by T cells to cardiac remodeling after ischemia/reperfusion and define its mechanism of action. METHODS Myocardial ischemia (50 minutes followed by reperfusion) was induced in global CD73-/- and CD4-CD73-/- mice. Tissue injury, T-cell purinergic signaling, cytokines, and cardiac function (magnetic resonance tomography at 9.4 T over 4 weeks) were analyzed. RESULTS Changes in functional parameters of CD4-CD73-/- mice were identical to those in global CD73 knockouts (KOs). T cells infiltrating the injured heart significantly upregulated at the gene (quantitative polymerase chain reaction) and protein (enzymatic activity) levels critical transporters and enzymes (connexin43, connexin37, pannexin-1, equilibrative nucleoside transporter 1, CD39, CD73, ecto-nucleotide pyrophosphatase/phosphodiesterases 1 and 3, CD157, CD38) for the accelerated release and hydrolysis of ATP, cAMP, AMP, and NAD to adenosine. It is surprising that a lack of CD39 on T cells (from CD39-/- mice) did not alter ATP hydrolysis and very likely involves pyrophosphatases (ecto-nucleotide pyrophosphatase/phosphodiesterases 1 and 3). Circulating T cells predominantly expressed A2a receptor (A2aR) transcripts. After myocardial infarction, A2b receptor (A2bR) transcription was induced in both T cells and myeloid cells in the heart. Thus, A2aR and A2bR signaling may contribute to myocardial responses after myocardial infarction. In the case of T cells, this was associated with an accelerated secretion of proinflammatory and profibrotic cytokines (interleukin-2, interferon-γ, and interleukin-17) when CD73 was lacking. Cytokine production by T cells from peripheral lymph nodes was inhibited by A2aR activation (CGS-21680). The A2bR agonist BAY 60-6583 showed off-target effects. The adenosine receptor agonist NECA inhibited interferon-γ and stimulated interleukin-6 production, each of which was antagonized by a specific A2bR antagonist (PSB-603). CONCLUSIONS This work demonstrates that CD73 on T cells plays a crucial role in the cardiac wound healing process after myocardial infarction. The underlying mechanism involves a profound increase in the hydrolysis of ATP/NAD and AMP, resulting primarily from the upregulation of pyrophosphatases and CD73. We also define A2bR/A2aR-mediated autacoid feedback inhibition of proinflammatory/profibrotic cytokines by T cell-derived CD73.
Collapse
Affiliation(s)
- Nadine Borg
- From Institute of Molecular Cardiology (N.B., C.A., N.G., Z.D., B.S., D.F., S.T., U.F., J.S.) and Department of Cardiology, Pneumology and Angiology (C.J., C.Q., F.B.), Heinrich-Heine-University of Düsseldorf, Germany
| | - Christina Alter
- From Institute of Molecular Cardiology (N.B., C.A., N.G., Z.D., B.S., D.F., S.T., U.F., J.S.) and Department of Cardiology, Pneumology and Angiology (C.J., C.Q., F.B.), Heinrich-Heine-University of Düsseldorf, Germany
| | - Nicole Görldt
- From Institute of Molecular Cardiology (N.B., C.A., N.G., Z.D., B.S., D.F., S.T., U.F., J.S.) and Department of Cardiology, Pneumology and Angiology (C.J., C.Q., F.B.), Heinrich-Heine-University of Düsseldorf, Germany
| | - Christoph Jacoby
- From Institute of Molecular Cardiology (N.B., C.A., N.G., Z.D., B.S., D.F., S.T., U.F., J.S.) and Department of Cardiology, Pneumology and Angiology (C.J., C.Q., F.B.), Heinrich-Heine-University of Düsseldorf, Germany
| | - Zhaoping Ding
- From Institute of Molecular Cardiology (N.B., C.A., N.G., Z.D., B.S., D.F., S.T., U.F., J.S.) and Department of Cardiology, Pneumology and Angiology (C.J., C.Q., F.B.), Heinrich-Heine-University of Düsseldorf, Germany
| | - Bodo Steckel
- From Institute of Molecular Cardiology (N.B., C.A., N.G., Z.D., B.S., D.F., S.T., U.F., J.S.) and Department of Cardiology, Pneumology and Angiology (C.J., C.Q., F.B.), Heinrich-Heine-University of Düsseldorf, Germany
| | - Christine Quast
- From Institute of Molecular Cardiology (N.B., C.A., N.G., Z.D., B.S., D.F., S.T., U.F., J.S.) and Department of Cardiology, Pneumology and Angiology (C.J., C.Q., F.B.), Heinrich-Heine-University of Düsseldorf, Germany
| | - Florian Bönner
- From Institute of Molecular Cardiology (N.B., C.A., N.G., Z.D., B.S., D.F., S.T., U.F., J.S.) and Department of Cardiology, Pneumology and Angiology (C.J., C.Q., F.B.), Heinrich-Heine-University of Düsseldorf, Germany
| | - Daniela Friebe
- From Institute of Molecular Cardiology (N.B., C.A., N.G., Z.D., B.S., D.F., S.T., U.F., J.S.) and Department of Cardiology, Pneumology and Angiology (C.J., C.Q., F.B.), Heinrich-Heine-University of Düsseldorf, Germany
| | - Sebastian Temme
- From Institute of Molecular Cardiology (N.B., C.A., N.G., Z.D., B.S., D.F., S.T., U.F., J.S.) and Department of Cardiology, Pneumology and Angiology (C.J., C.Q., F.B.), Heinrich-Heine-University of Düsseldorf, Germany
| | - Ulrich Flögel
- From Institute of Molecular Cardiology (N.B., C.A., N.G., Z.D., B.S., D.F., S.T., U.F., J.S.) and Department of Cardiology, Pneumology and Angiology (C.J., C.Q., F.B.), Heinrich-Heine-University of Düsseldorf, Germany
| | - Jürgen Schrader
- From Institute of Molecular Cardiology (N.B., C.A., N.G., Z.D., B.S., D.F., S.T., U.F., J.S.) and Department of Cardiology, Pneumology and Angiology (C.J., C.Q., F.B.), Heinrich-Heine-University of Düsseldorf, Germany.
| |
Collapse
|
27
|
Xu X, Zheng S, Xiong Y, Wang X, Qin W, Zhang H, Sun B. Adenosine effectively restores endotoxin-induced inhibition of human neutrophil chemotaxis via A1 receptor-p38 pathway. Inflamm Res 2017; 66:353-364. [PMID: 28074216 DOI: 10.1007/s00011-016-1021-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Revised: 12/17/2016] [Accepted: 12/20/2016] [Indexed: 12/20/2022] Open
Abstract
Neutrophil chemotaxis plays an essential role in recruiting neutrophils to sites of inflammation. Neutrophil chemotaxis is suppressed both after exposure to lipopolysaccharide (LPS) in vitro and during clinical and experimental endotoxemia, leading to serious consequences. Adenosine (ADO) is a potent anti-inflammatory agent that acts on a variety of neutrophil functions. However, its effects on human neutrophil chemotaxis during infection have been less well characterized. In the present study, we investigated the effect of ADO and its receptor-specific antagonist and agonist on neutrophil chemotaxis in an in vitro LPS-stimulated model. The results showed that increasing the concentration of ADO effectively restored the LPS-inhibited neutrophil chemotaxis to IL-8. A similar phenomenon occurred after intervention with a selective A1 receptor agonist but not with a selective antagonist. Pre-treatment with cAMP antagonist failed to restore LPS-inhibited chemotaxis. Furthermore, protein array and western blot analysis showed that the activation of A1 receptor significantly decreased LPS-induced p38 MAPK phosphorylation. However, the surface expression of the A1 receptor in LPS-stimulated neutrophils was not significantly changed. Taken together, these data indicated that ADO restored the LPS-inhibited chemotaxis via the A1 receptor, which downregulated the phosphorylation level of p38 MAPK, making this a promising new therapeutic strategy for infectious diseases.
Collapse
Affiliation(s)
- Xiaohan Xu
- Department of Burn and Plastic Surgery, Affiliated Hospital, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Shuyun Zheng
- Department of Critical Care Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuyun Xiong
- Department of Clinical Laboratory, Affiliated Hospital, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xu Wang
- Department of Burn and Plastic Surgery, Affiliated Hospital, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Weiting Qin
- Department of Burn and Plastic Surgery, Affiliated Hospital, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Huafeng Zhang
- Department of Burn and Plastic Surgery, Affiliated Hospital, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Bingwei Sun
- Department of Burn and Plastic Surgery, Affiliated Hospital, Jiangsu University, Zhenjiang, Jiangsu, China.
| |
Collapse
|
28
|
Nayak S, Khan MAH, Wan TC, Pei H, Linden J, Dwinell MR, Geurts AM, Imig JD, Auchampach JA. Characterization of Dahl salt-sensitive rats with genetic disruption of the A2B adenosine receptor gene: implications for A2B adenosine receptor signaling during hypertension. Purinergic Signal 2015; 11:519-31. [PMID: 26385692 PMCID: PMC4648794 DOI: 10.1007/s11302-015-9470-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 09/11/2015] [Indexed: 01/13/2023] Open
Abstract
The A(2B) adenosine receptor (AR) has emerged as a unique member of the AR family with contrasting roles during acute and chronic disease states. We utilized zinc-finger nuclease technology to create A(2B)AR gene (Adora2b)-disrupted rats on the Dahl salt-sensitive (SS) genetic background. This strategy yielded a rat strain (SS-Adora2b mutant rats) with a 162-base pair in-frame deletion of Adora2b that included the start codon. Disruption of A(2B)AR function in SS-Adora2b mutant rats was confirmed by loss of agonist (BAY 60-6583 or NECA)-induced cAMP accumulation and loss of interleukin-6 release from isolated fibroblasts. In addition, BAY 60-6583 produced a dose-dependent increase in glucose mobilization that was absent in SS-Adora2b mutants. Upon initial characterization, SS-Adora2b mutant rats were found to exhibit increased body weight, a transient delay in glucose clearance, and reduced proinflammatory cytokine production following challenge with lipopolysaccharide (LPS). In addition, blood pressure was elevated to a greater extent (∼15-20 mmHg) in SS-Adora2b mutants as they aged from 7 to 21 weeks. In contrast, hypertension augmented by Ang II infusion was attenuated in SS-Adora2b mutant rats. Despite differences in blood pressure, indices of renal and cardiac injury were similar in SS-Adora2b mutants during Ang II-augmented hypertension. We have successfully created and validated a new animal model that will be valuable for investigating the biology of the A(2B)AR. Our data indicate varying roles for A(2B)AR signaling in regulating blood pressure in SS rats, playing both anti- and prohypertensive roles depending on the pathogenic mechanisms that contribute to blood pressure elevation.
Collapse
Affiliation(s)
- Shraddha Nayak
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Md Abdul H Khan
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Tina C Wan
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Hong Pei
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Joel Linden
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Melinda R Dwinell
- Department of Physiology and Human Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Aron M Geurts
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Physiology and Human Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - John D Imig
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - John A Auchampach
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
29
|
Eisenstein A, Patterson S, Ravid K. The Many Faces of the A2b Adenosine Receptor in Cardiovascular and Metabolic Diseases. J Cell Physiol 2015; 230:2891-7. [PMID: 25975415 DOI: 10.1002/jcp.25043] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 05/08/2015] [Indexed: 01/09/2023]
Abstract
Modulation of the low affinity adenosine receptor subtype, the A2b adenosine receptor (A2bAR), has gained interest as a therapeutic target in various pathologic areas associated with cardiovascular disease. The actions of the A2bAR are diverse and at times conflicting depending on cell and tissue type and the timing of activation or inhibition of the receptor. The A2bAR is a promising and exciting pharmacologic target, however, a thorough understanding of A2bAR action is necessary to reach the therapeutic potential of this receptor. This review will focus on the role of the A2bAR in various cardiovascular and metabolic pathologies in which the receptor is currently being studied. We will illustrate the complexities of A2bAR signaling and highlight areas of research with potential for therapeutic development.
Collapse
Affiliation(s)
- Anna Eisenstein
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts.,Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts
| | - Shenia Patterson
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts.,Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts
| | - Katya Ravid
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts.,Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts.,Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts.,Evans Center for Interdisciplinary Biomedical Research, Boston University School of Medicine, Boston, Massachusetts
| |
Collapse
|
30
|
Alnouri MW, Jepards S, Casari A, Schiedel AC, Hinz S, Müller CE. Selectivity is species-dependent: Characterization of standard agonists and antagonists at human, rat, and mouse adenosine receptors. Purinergic Signal 2015; 11:389-407. [PMID: 26126429 PMCID: PMC4529847 DOI: 10.1007/s11302-015-9460-9] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 06/17/2015] [Indexed: 12/14/2022] Open
Abstract
Adenosine receptors (ARs) have emerged as new drug targets. The majority of data on affinity/potency and selectivity of AR ligands described in the literature has been obtained for the human species. However, preclinical studies are mostly performed in mouse or rat, and standard AR agonists and antagonists are frequently used for studies in rodents without knowing their selectivity in the investigated species. In the present study, we selected a set of frequently used standard AR ligands, 8 agonists and 16 antagonists, and investigated them in radioligand binding studies at all four AR subtypes, A1, A2A, A2B, and A3, of three species, human, rat, and mouse. Recommended, selective agonists include CCPA (for A1AR of rat and mouse), CGS-21680 (for A2A AR of rat), and Cl-IB-MECA (for A3AR of all three species). The functionally selective partial A2B agonist BAY60-6583 was found to additionally bind to A1 and A3AR and act as an antagonist at both receptor subtypes. The antagonists PSB-36 (A1), preladenant (A2A), and PSB-603 (A2B) displayed high selectivity in all three investigated species. MRS-1523 acts as a selective A3AR antagonist in human and rat, but is only moderately selective in mouse. The comprehensive data presented herein provide a solid basis for selecting suitable AR ligands for biological studies.
Collapse
MESH Headings
- Adenosine A1 Receptor Agonists/metabolism
- Adenosine A1 Receptor Agonists/pharmacology
- Adenosine A1 Receptor Antagonists/metabolism
- Adenosine A1 Receptor Antagonists/pharmacology
- Adenosine A2 Receptor Agonists/metabolism
- Adenosine A2 Receptor Agonists/pharmacology
- Adenosine A2 Receptor Antagonists/metabolism
- Adenosine A2 Receptor Antagonists/pharmacology
- Adenosine A3 Receptor Agonists/metabolism
- Adenosine A3 Receptor Agonists/pharmacology
- Adenosine A3 Receptor Antagonists/metabolism
- Adenosine A3 Receptor Antagonists/pharmacology
- Animals
- Arrestin/metabolism
- Binding, Competitive/drug effects
- CHO Cells
- Cell Membrane/drug effects
- Cell Membrane/metabolism
- Cricetinae
- Cricetulus
- Cyclic AMP/metabolism
- DNA, Complementary/drug effects
- DNA, Complementary/genetics
- Humans
- Mice
- Rats
- Receptor, Adenosine A2A/drug effects
- Receptor, Adenosine A2A/genetics
- Receptor, Adenosine A2A/metabolism
- Receptor, Adenosine A2B/drug effects
- Receptor, Adenosine A2B/genetics
- Receptor, Adenosine A2B/metabolism
- Receptors, Purinergic P1/drug effects
- Receptors, Purinergic P1/genetics
- Receptors, Purinergic P1/metabolism
- Species Specificity
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Mohamad Wessam Alnouri
- Pharma Center Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Stephan Jepards
- Pharma Center Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Alessandro Casari
- Pharma Center Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Anke C. Schiedel
- Pharma Center Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Sonja Hinz
- Pharma Center Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Christa E. Müller
- Pharma Center Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| |
Collapse
|
31
|
Bernareggi A, Luin E, Pavan B, Parato G, Sciancalepore M, Urbani R, Lorenzon P. Adenosine enhances acetylcholine receptor channel openings and intracellular calcium 'spiking' in mouse skeletal myotubes. Acta Physiol (Oxf) 2015; 214:467-80. [PMID: 25683861 DOI: 10.1111/apha.12473] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 10/23/2014] [Accepted: 02/11/2015] [Indexed: 12/26/2022]
Abstract
AIMS The autocrine activity of the embryonic isoform of the nicotinic acetylcholine receptor is crucial for the correct differentiation and trophism of skeletal muscle cells before innervation. The functional activity of extracellular adenosine and adenosine receptor subtypes expressed in differentiating myotubes is still unknown. In this study, we performed a detailed analysis of the role of adenosine receptor-mediated effects on the autocrine-mediated nicotinic acetylcholine receptor channel openings and the associated spontaneous intracellular calcium 'spikes' generated in differentiating mouse myotubes in vitro. METHODS Cell-attached patch-clamp recordings and intracellular calcium imaging experiments were performed in contracting myotubes derived from mouse satellite cells. RESULTS The endogenous extracellular adenosine and the adenosine receptor-mediated activity modulated the properties of the embryonic isoform of the nicotinic acetylcholine receptor in myotubes in vitro, by increasing the mean open time and the open probability of the ion channel, and sustaining nicotinic acetylcholine receptor-driven intracellular [Ca(2+) ]i 'spikes'. The pharmacological characterization of the adenosine receptor-mediated effects suggested a prevalent involvement of the A2B adenosine receptor subtype. CONCLUSION We propose that the interplay between endogenous adenosine and nicotinic acetylcholine receptors represents a potential novel strategy to improve differentiation/regeneration of skeletal muscle.
Collapse
Affiliation(s)
- A. Bernareggi
- Department of Life Sciences; University of Trieste; via A. Fleming 22 Trieste I-34127 Italy
- B.R.A.I.N. Centre for Neuroscience; via Fleming 22 Trieste I-34127 Italy
| | - E. Luin
- Department of Life Sciences; University of Trieste; via A. Fleming 22 Trieste I-34127 Italy
- B.R.A.I.N. Centre for Neuroscience; via Fleming 22 Trieste I-34127 Italy
| | - B. Pavan
- Department of Life Sciences and Biotechnology; University of Ferrara; Via L. Borsari 46 Ferrara I-44121 Italy
| | - G. Parato
- Department of Life Sciences; University of Trieste; via A. Fleming 22 Trieste I-34127 Italy
- B.R.A.I.N. Centre for Neuroscience; via Fleming 22 Trieste I-34127 Italy
| | - M. Sciancalepore
- Department of Life Sciences; University of Trieste; via A. Fleming 22 Trieste I-34127 Italy
- B.R.A.I.N. Centre for Neuroscience; via Fleming 22 Trieste I-34127 Italy
| | - R. Urbani
- Department of Life Sciences; University of Trieste; via A. Fleming 22 Trieste I-34127 Italy
| | - P. Lorenzon
- Department of Life Sciences; University of Trieste; via A. Fleming 22 Trieste I-34127 Italy
- B.R.A.I.N. Centre for Neuroscience; via Fleming 22 Trieste I-34127 Italy
| |
Collapse
|
32
|
Seo SW, Koeppen M, Bonney S, Gobel M, Thayer M, Harter PN, Ravid K, Eltzschig HK, Mittelbronn M, Walker L, Eckle T. Differential Tissue-Specific Function of Adora2b in Cardioprotection. THE JOURNAL OF IMMUNOLOGY 2015; 195:1732-43. [PMID: 26136425 DOI: 10.4049/jimmunol.1402288] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 06/03/2015] [Indexed: 01/18/2023]
Abstract
The adenosine A2b receptor (Adora2b) has been implicated in cardioprotection from myocardial ischemia. As such, Adora2b was found to be critical in ischemic preconditioning (IP) or ischemia/reperfusion (IR) injury of the heart. Whereas Adora2b is present on various cells types, the tissue-specific role of Adora2b in cardioprotection is still unknown. To study the tissue-specific role of Adora2b signaling on inflammatory cells, endothelia, or myocytes during myocardial ischemia in vivo, we intercrossed floxed Adora2b mice with Lyz2-Cre(+), VE-cadherin-Cre(+), or myosin-Cre(+) transgenic mice, respectively. Mice were exposed to 60 min of myocardial ischemia with or without IP (four times for 5 min) followed by 120 min of reperfusion. Cardioprotection by IP was abolished in Adora2b(f/f)-VE-cadherin-Cre(+) or Adora2b(f/f)-myosin-Cre(+), indicating that Adora2b signaling on endothelia or myocytes mediates IP. In contrast, primarily Adora2b signaling on inflammatory cells was necessary to provide cardioprotection in IR injury, indicated by significantly larger infarcts and higher troponin levels in Adora2b(f/f)-Lyz2-Cre(+) mice only. Cytokine profiling of IR injury in Adora2b(f/f)-Lyz2-Cre(+) mice pointed toward polymorphonuclear neutrophils (PMNs). Analysis of PMNs from Adora2b(f/f)-Lyz2-Cre(+) confirmed PMNs as one source of identified tissue cytokines. Finally, adoptive transfer of Adora2b(-/-) PMNs revealed a critical role of Adora2b on PMNs in cardioprotection from IR injury. Adora2b signaling mediates different types of cardioprotection in a tissue-specific manner. These findings have implications for the use of Adora2b agonists in the treatment or prevention of myocardial injury by ischemia.
Collapse
Affiliation(s)
- Seong-wook Seo
- Department of Anesthesiology, University of Colorado Denver, Aurora, CO 80045; Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Michael Koeppen
- Department of Anesthesiology, University of Colorado Denver, Aurora, CO 80045; Department of Anesthesiology, Ludwig Maximilians University Munich, 80336 Munich, Germany
| | - Stephanie Bonney
- Department of Anesthesiology, University of Colorado Denver, Aurora, CO 80045
| | - Merit Gobel
- Department of Anesthesiology, University of Colorado Denver, Aurora, CO 80045
| | - Molly Thayer
- Department of Anesthesiology, University of Colorado Denver, Aurora, CO 80045
| | - Patrick N Harter
- Institute of Neurology (Edinger Institute), University of Frankfurt, 60528 Frankfurt, Germany
| | - Katya Ravid
- Department of Medicine, Boston University School of Medicine, Boston, MA 02118; Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118; and
| | - Holger K Eltzschig
- Department of Anesthesiology, University of Colorado Denver, Aurora, CO 80045
| | - Michel Mittelbronn
- Institute of Neurology (Edinger Institute), University of Frankfurt, 60528 Frankfurt, Germany
| | - Lori Walker
- Division of Cardiology, University of Colorado Denver, Aurora, CO 80045
| | - Tobias Eckle
- Department of Anesthesiology, University of Colorado Denver, Aurora, CO 80045;
| |
Collapse
|
33
|
Adenosine 2B Receptor Activation Reduces Myocardial Reperfusion Injury by Promoting Anti-Inflammatory Macrophages Differentiation via PI3K/Akt Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:585297. [PMID: 26161239 PMCID: PMC4486757 DOI: 10.1155/2015/585297] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 12/09/2014] [Accepted: 12/11/2014] [Indexed: 11/17/2022]
Abstract
BACKGROUND Activation of the adenosine A2B receptor (A2BR) can reduce myocardial ischemia/reperfusion (IR) injury. However, the mechanism underlying the A2BR-mediated cardioprotection is less clear. The present study was designed to investigate the potential mechanisms of cardioprotection mediated by A2BR. METHODS AND RESULTS C57BL/6 mice underwent 40-minute ischemia and 60-minute reperfusion. ATL-801, a potent selective A2BR antagonist, could not block ischemic preconditioning induced protection. BAY 60-6583, a highly selective A2BR agonist, significantly reduced myocardial infarct size, and its protective effect could be blocked by either ATL-801 or wortmannin. BAY 60-6583 increased phosphorylated Akt (p-Akt) levels in the heart at 10 min of reperfusion, and this phosphorylation could also be blocked by ATL-801 or wortmannin. Furthermore, BAY 60-6583 significantly increased M2 macrophages and decreased M1 macrophage and neutrophils infiltration in reperfused hearts, which also could be blocked by wortmannin. Meanwhile, confocal imaging studies showed that the majority of Akt phosphorylation in the heart was colocalized to CD206+ cells in both control and BAY 60-6583 pretreated hearts. CONCLUSION Our results indicated that pretreatment with BAY 60-6583 protects the heart against myocardial IR injury by its anti-inflammatory effects, probably by modulating macrophages phenotype switching via a PI3K/Akt pathway.
Collapse
|
34
|
Boros D, Thompson J, Larson DF. Adenosine regulation of the immune response initiated by ischemia reperfusion injury. Perfusion 2015; 31:103-10. [PMID: 25987550 DOI: 10.1177/0267659115586579] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
It is clinically established that adenosine has negative chronotropic, antiarrhythmic effects and reduces arterial blood pressure. Adenosine addition to cardioplegic solutions used in cardiac operations is clinically well tolerated and has been shown to improve myocardial protection in several studies. However, the mechanism of action remains unclear. Therefore, it is important to define the effect of adenosine on the inflammatory cascade as immune cell activation occurs early during ischemia reperfusion injury. Adenosine appears to mediate the initial steps of the inflammatory cascade via its four G-coupled protein receptors: A1, A2A, A2B, and A3, expressed on neutrophils, lymphocytes and macrophages. The adenosine receptor isotype dictates the immune response. More specifically, the A1 and A3 receptors stimulate a pro-inflammatory immune response whereas the A2A and A2B are immunosuppressive. As the adenosine receptors are important for cardiac pre-conditioning and post-conditioning, adenosine may regulate the inflammatory responses initiated during ischemia-mediated immune injury related to myocardial protection.
Collapse
Affiliation(s)
- D Boros
- Sarver Heart Center, College of Medicine, The University of Arizona, Tucson, AZ, USA
| | - J Thompson
- Sarver Heart Center, College of Medicine, The University of Arizona, Tucson, AZ, USA
| | - D F Larson
- Sarver Heart Center, College of Medicine, The University of Arizona, Tucson, AZ, USA
| |
Collapse
|
35
|
Burnstock G, Boeynaems JM. Purinergic signalling and immune cells. Purinergic Signal 2014; 10:529-64. [PMID: 25352330 PMCID: PMC4272370 DOI: 10.1007/s11302-014-9427-2] [Citation(s) in RCA: 232] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 09/12/2013] [Indexed: 11/28/2022] Open
Abstract
This review article provides a historical perspective on the role of purinergic signalling in the regulation of various subsets of immune cells from early discoveries to current understanding. It is now recognised that adenosine 5'-triphosphate (ATP) and other nucleotides are released from cells following stress or injury. They can act on virtually all subsets of immune cells through a spectrum of P2X ligand-gated ion channels and G protein-coupled P2Y receptors. Furthermore, ATP is rapidly degraded into adenosine by ectonucleotidases such as CD39 and CD73, and adenosine exerts additional regulatory effects through its own receptors. The resulting effect ranges from stimulation to tolerance depending on the amount and time courses of nucleotides released, and the balance between ATP and adenosine. This review identifies the various receptors involved in the different subsets of immune cells and their effects on the function of these cells.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK,
| | | |
Collapse
|
36
|
Gao ZG, Balasubramanian R, Kiselev E, Wei Q, Jacobson KA. Probing biased/partial agonism at the G protein-coupled A(2B) adenosine receptor. Biochem Pharmacol 2014; 90:297-306. [PMID: 24853985 PMCID: PMC4128710 DOI: 10.1016/j.bcp.2014.05.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 05/12/2014] [Accepted: 05/13/2014] [Indexed: 10/25/2022]
Abstract
G protein-coupled A(2B) adenosine receptor (AR) regulates numerous important physiological functions, but its activation by diverse A(2B)AR agonists is poorly profiled. We probed potential partial and/or biased agonism in cell lines expressing variable levels of endogenous or recombinant A(2B)AR. In cAMP accumulation assays, both 5'-substituted NECA and C2-substituted MRS3997 are full agonists. However, only 5'-substituted adenosine analogs are full agonists in calcium mobilization, ERK1/2 phosphorylation and β-arrestin translocation. A(2B)AR overexpression in HEK293 cells markedly increased the agonist potency and maximum effect in cAMP accumulation, but less in calcium and ERK1/2. A(2B)AR siRNA silencing was more effective in reducing the maximum cAMP effect of non-nucleoside agonist BAY60-6583 than NECA's. A quantitative 'operational model' characterized C2-substituted MRS3997 as either balanced (cAMP accumulation, ERK1/2) or strongly biased agonist (against calcium, β-arrestin). N⁶-substitution biased against ERK1/2 (weakly) and calcium and β-arrestin (strongly) pathways. BAY60-6583 is ERK1/2-biased, suggesting a mechanism distinct from adenosine derivatives. BAY60-6583, as A(2B)AR antagonist in MIN-6 mouse pancreatic β cells expressing low A(2B)AR levels, induced insulin release. This is the first relatively systematic study of structure-efficacy relationships of this emerging drug target.
Collapse
Affiliation(s)
- Zhan-Guo Gao
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, Blg. 8A, Rm B1 A-17, NDDK 8 Center Dr., 9000 Rockville Pike, Bethesda, MD 20892-0810, USA.
| | - Ramachandran Balasubramanian
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, Blg. 8A, Rm B1 A-17, NDDK 8 Center Dr., 9000 Rockville Pike, Bethesda, MD 20892-0810, USA
| | - Evgeny Kiselev
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, Blg. 8A, Rm B1 A-17, NDDK 8 Center Dr., 9000 Rockville Pike, Bethesda, MD 20892-0810, USA
| | - Qiang Wei
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, Blg. 8A, Rm B1 A-17, NDDK 8 Center Dr., 9000 Rockville Pike, Bethesda, MD 20892-0810, USA
| | - Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, Blg. 8A, Rm B1 A-17, NDDK 8 Center Dr., 9000 Rockville Pike, Bethesda, MD 20892-0810, USA.
| |
Collapse
|
37
|
Hinz S, Lacher SK, Seibt BF, Müller CE. BAY60-6583 acts as a partial agonist at adenosine A2B receptors. J Pharmacol Exp Ther 2014; 349:427-36. [PMID: 24633424 DOI: 10.1124/jpet.113.210849] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BAY60-6583 [2-({6-amino-3,5-dicyano-4-[4-(cyclopropylmethoxy)phenyl]pyridin-2-yl}sulfanyl)acetamide] is the most potent and selective adenosine A2B receptor (A2B AR) agonist known to date. Therefore, it has been widely used for in vitro and in vivo experiments. In the present study, we investigated the binding and functional properties of BAY60-6583 in various native and recombinant cell lines with different A2B AR expression levels. In cAMP accumulation and calcium mobilization assays, BAY60-6583 was found to be significantly less efficacious than adenosine or the adenosine derivative NECA. When it was tested in human embryonic kidney (HEK)293 cells, its efficacy correlated with the A2B expression level of the cells. In Jurkat T cells, BAY60-6583 antagonized the agonistic effect of NECA and adenosine as determined in cAMP accumulation assays. On the basis of these results, we conclude that BAY60-6583 acts as a partial agonist at adenosine A2B receptors. At high levels of the physiologic agonist adenosine, BAY60-6583 may act as an antagonist and block the effects of adenosine at A2B receptors. This has to be considered when applying the A2B-selective "agonist" BAY60-6583 in pharmacological studies, and previous research results may have to be reinterpreted.
Collapse
Affiliation(s)
- Sonja Hinz
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, Bonn, Germany
| | | | | | | |
Collapse
|
38
|
Dal Ben D, Buccioni M, Lambertucci C, Thomas A, Volpini R. Simulation and comparative analysis of binding modes of nucleoside and non-nucleoside agonists at the A2B adenosine receptor. In Silico Pharmacol 2013; 1:24. [PMID: 25505666 PMCID: PMC4215817 DOI: 10.1186/2193-9616-1-24] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 12/11/2013] [Indexed: 11/10/2022] Open
Abstract
PURPOSE A2B receptor agonists are studied as possible therapeutic tools for a variety of pathological conditions. Unfortunately, medicinal chemistry efforts have led to the development of a limited number of potent agonists of this receptor, in most cases with a low or no selectivity versus the other adenosine receptor subtypes. Among the developed molecules, two structural families of compounds have been identified based on nucleoside and non-nucleoside (pyridine) scaffolds. The aim of this work is to analyse the binding mode of these molecules at 3D models of the human A2B receptor to identify possible common interaction features and the key receptor residues involved in ligand interaction. METHODS The A2B receptor models are built by using two recently published crystal structures of the human A2A receptor in complex with two different agonists. The developed models are used as targets for molecular docking studies of nucleoside and non-nucleoside agonists. The generated docking conformations are subjected to energy minimization and rescoring by using three different scoring functions. Further analysis of top-score conformations are performed with a tool evaluating the interaction energy between the ligand and the binding site residues. RESULTS Results suggest a set of common interaction points between the two structural families of agonists and the receptor binding site, as evidenced by the superimposition of docking conformations and by analysis of interaction energy with the receptor residues. CONCLUSIONS The obtained results show that there is a conserved pattern of interaction between the A2B receptor and its agonists. These information and can provide useful data to support the design and the development of A2B receptor agonists belonging to nucleoside or non-nucleoside structural families.
Collapse
Affiliation(s)
- Diego Dal Ben
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, via S. Agostino 1, Camerino, MC 62032 Italy
| | - Michela Buccioni
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, via S. Agostino 1, Camerino, MC 62032 Italy
| | - Catia Lambertucci
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, via S. Agostino 1, Camerino, MC 62032 Italy
| | - Ajiroghene Thomas
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, via S. Agostino 1, Camerino, MC 62032 Italy
| | - Rosaria Volpini
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, via S. Agostino 1, Camerino, MC 62032 Italy
| |
Collapse
|
39
|
Thimm D, Schiedel AC, Sherbiny FF, Hinz S, Hochheiser K, Bertarelli DCG, Maass A, Müller CE. Ligand-specific binding and activation of the human adenosine A(2B) receptor. Biochemistry 2013; 52:726-40. [PMID: 23286920 DOI: 10.1021/bi3012065] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Adenosine A(2B) receptors, which play a role in inflammation and cancer, are of considerable interest as novel drug targets. To gain deeper insights into ligand binding and receptor activation, we exchanged amino acids predicted to be close to the binding pocket. The alanine mutants were stably expressed in CHO cells and characterized by radioligand binding and cAMP assays using three structural classes of ligands: xanthine (antagonist), adenosine, and aminopyridine derivatives (agonists). Asn282(7.45) and His280(7.43) were found to stabilize the binding site by intramolecular hydrogen bond formation as in the related A(2A) receptor subtype. Trp247(6.48), Val250(6.51), and particularly Ser279(7.42) were shown to be important for binding of nucleosidic agonists. Leu81(3.28), Asn186(5.42), and Val250(6.51) were discovered to be crucial for binding of the xanthine-derived antagonist PSB-603. Leu81(3.28), which is not conserved among adenosine receptor subtypes, may be important for the high selectivity of PSB-603. The N186(5.42)A mutant resulted in an increased potency for agonists. The interactions of the non-nucleosidic agonist BAY60-6583 were different from those of the nucleosides: while BAY60-6583 appeared not to interact with Ser279(7.42), its interactions with Trp247(6.48) and Val250(6.51) were significantly weaker compared to those of NECA. Moreover, our results discount the hypothesis of Trp247(6.48) serving as a "toogle switch" because BAY60-6583 was able to activate the corresponding mutant. This study reveals distinct interactions of structurally diverse ligands with the human A(2B) receptor and differences between closely related receptor subtypes (A(2B) and A(2A)). It will contribute to the understanding of G protein-coupled receptor function and advance A(2B) receptor ligand design.
Collapse
Affiliation(s)
- Dominik Thimm
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, An der Immenburg 4, 53121 Bonn, Germany
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Zhou J, Alvarez-Elizondo MB, Botvinick E, George SC. Adenosine A(1) and prostaglandin E receptor 3 receptors mediate global airway contraction after local epithelial injury. Am J Respir Cell Mol Biol 2012; 48:299-305. [PMID: 23221044 DOI: 10.1165/rcmb.2012-0174oc] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Epithelial injury and airway hyperresponsiveness are prominent features of asthma. We have previously demonstrated that laser ablation of single epithelial cells immediately induces global airway constriction through Ca(2+)-dependent smooth muscle shortening. The response is mediated by soluble mediators released from wounded single epithelial cells; however, the soluble mediators and signaling mechanisms have not been identified. In this study, we investigated the nature of the epithelial-derived soluble mediators and the associated signaling pathways that lead to the L-type voltage-dependent Ca(2+) channel (VGCC)-mediated Ca(2+) influx. We found that inhibition of adenosine A1 receptors (or removal of adenosine with adenosine deaminase), cyclooxygenase (COX)-2 or prostaglandin E receptor 3 (EP3) receptors, epidermal growth factor receptor (EGFR), or platelet-derived growth factor receptor (PDGFR) all significantly blocked Ca(2+) oscillations in smooth muscle cells and airway contraction induced by local epithelial injury. Using selective agonists to activate the receptors in the presence and absence of selective receptor antagonists, we found that adenosine activated the signaling pathway A1R→EGFR/PDGFR→COX-2→EP3→VGCCs→calcium-induced calcium release, leading to intracellular Ca(2+) oscillations in airway smooth muscle cells and airway constriction.
Collapse
Affiliation(s)
- Jian Zhou
- Department of Biomedical Engineering, 2420 Engineering Hall, University of California, Irvine, CA 92697-2715, USA
| | | | | | | |
Collapse
|
41
|
Barletta KE, Cagnina RE, Burdick MD, Linden J, Mehrad B. Adenosine A(2B) receptor deficiency promotes host defenses against gram-negative bacterial pneumonia. Am J Respir Crit Care Med 2012; 186:1044-50. [PMID: 22997203 PMCID: PMC3530209 DOI: 10.1164/rccm.201204-0622oc] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 08/31/2012] [Indexed: 12/14/2022] Open
Abstract
RATIONALE Activation of the adenosine A(2B) receptor (A(2B)R) promotes antiinflammatory effects in diverse biological settings, but the role of this receptor in antimicrobial host defense in the lung has not been established. Gram-negative bacillary pneumonia is a common and serious illness associated with high morbidity and mortality, the treatment of which is complicated by increasing rates of antibiotic resistance. OBJECTIVES To test the hypothesis that absence of adenosine A(2B) receptor signaling promotes host defense against bacterial pneumonia. METHODS We used a model of Klebsiella pneumoniae pneumonia in wild-type mice and mice with targeted deletion of the A(2B)R. Host responses were compared in vivo and leukocyte responses to the bacteria were examined in vitro. MEASUREMENTS AND MAIN RESULTS A(2B)R(-/-) mice demonstrated enhanced bacterial clearance from the lung and improved survival after infection with K. pneumoniae compared with wild-type controls, an effect that was mediated by bone marrow-derived cells. Leukocyte recruitment to the lungs and expression of inflammatory cytokines did not differ between A(2B)R(-/-) and wild-type mice, but A(2B)R(-/-) neutrophils exhibited sixfold greater bactericidal activity and enhanced production of neutrophil extracellular traps compared with wild-type neutrophils when incubated with K. pneumoniae. Consistent with this finding, bronchoalveolar lavage fluid from A(2B)R(-/-) mice with Klebsiella pneumonia contained more extracellular DNA compared with wild-type mice with pneumonia. CONCLUSIONS These data suggest that the absence of A(2B)R signaling enhances antimicrobial activity in gram-negative bacterial pneumonia.
Collapse
Affiliation(s)
| | - R. Elaine Cagnina
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Virginia, Charlottesville, Virginia
| | - Marie D. Burdick
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Virginia, Charlottesville, Virginia
| | - Joel Linden
- La Jolla Institute of Allergy and Immunology, La Jolla, California
| | - Borna Mehrad
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Virginia, Charlottesville, Virginia
- Department of Microbiology and
- Carter Center for Immunology, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
42
|
Grenz A, Kim JH, Bauerle JD, Tak E, Eltzschig HK, Clambey ET. Adora2b adenosine receptor signaling protects during acute kidney injury via inhibition of neutrophil-dependent TNF-α release. THE JOURNAL OF IMMUNOLOGY 2012; 189:4566-73. [PMID: 23028059 DOI: 10.4049/jimmunol.1201651] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Renal ischemia is among the leading causes of acute kidney injury (AKI). Previous studies have shown that extracellular adenosine is a prominent tissue-protective cue elicited during ischemia, including signaling events through the adenosine receptor 2b (Adora2b). To investigate the functional role of Adora2b signaling in cytokine-mediated inflammatory pathways, we screened wild-type and Adora2b-deficient mice undergoing renal ischemia for expression of a range of inflammatory cytokines. These studies demonstrated a selective and robust increase of TNF-α levels in Adora2b-deficient mice following renal ischemia and reperfusion. Based on these findings, we next sought to understand the contribution of TNF-α on ischemic AKI through a combination of loss- and gain-of-function studies. Loss of TNF-α, through either Ab blockade or study of Tnf-α-deficient animals, resulted in significantly attenuated tissue injury and improved kidney function following renal ischemia. Conversely, transgenic mice with overexpression of TNF-α had significantly pronounced susceptibility to AKI. Furthermore, neutrophil depletion or reconstitution of Adora2b(-/-) mice with Tnf-α-deficient neutrophils rescued their phenotype. In total, these data demonstrate a critical role of adenosine signaling in constraining neutrophil-dependent production of TNF-α and implicate therapies targeting TNF-α in the treatment of ischemic AKI.
Collapse
Affiliation(s)
- Almut Grenz
- Mucosal Inflammation Program, Department of Anesthesiology, University of Colorado Denver, Aurora, CO 80045, USA
| | | | | | | | | | | |
Collapse
|
43
|
Bot I, de Vries H, Korporaal SJA, Foks AC, Bot M, van Veldhoven J, Ter Borg MND, van Santbrink PJ, van Berkel TJC, Kuiper J, Ijzerman AP. Adenosine A₂B receptor agonism inhibits neointimal lesion development after arterial injury in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 2012; 32:2197-205. [PMID: 22743060 DOI: 10.1161/atvbaha.112.252924] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE The A(2B) adenosine receptor (A(2B)R) is highly expressed in macrophages and vascular smooth muscle cells and has been established as an important regulator of inflammation and vascular adhesion. Recently, it has been demonstrated that A(2B)R deficiency enhances neointimal lesion formation after vascular injury. Therefore, we hypothesize that A(2B)R agonism protects against injury-induced intimal hyperplasia. METHODS AND RESULTS Apolipoprotein E-deficient mice were fed a Western-type diet for 1 week, after which the left common carotid artery was denuded. Mice were treated with the A(2B) receptor agonist BAY60-6583 or vehicle control for 18 days. Interestingly, lumen stenosis as defined by the neointima/lumen ratio was inhibited by treatment with the A(2B) receptor agonist, caused by reduced smooth muscle cell proliferation. Collagen content was significantly increased in the BAY60-6583-treated mice, whereas macrophage content remained unchanged. In vitro, vascular smooth muscle cell proliferation decreased dose dependently whereas collagen content of cultured smooth muscle cells was increased by BAY60-6583. CONCLUSIONS Our data show that activation of the adenosine A(2B) receptor protects against vascular injury, while it also enhances plaque stability as indicated by increased collagen content. These outcomes thus point to A(2B) receptor agonism as a new therapeutic approach in the prevention of restenosis.
Collapse
Affiliation(s)
- Ilze Bot
- Division of Biopharmaceutics, Leiden/Amsterdam Center for Drug Research, Gorlaeus Laboratories, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Barletta KE, Ley K, Mehrad B. Regulation of neutrophil function by adenosine. Arterioscler Thromb Vasc Biol 2012; 32:856-64. [PMID: 22423037 DOI: 10.1161/atvbaha.111.226845] [Citation(s) in RCA: 191] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Adenosine is an endogenously released purine nucleoside that signals via 4 widely expressed G protein-coupled receptors: A(1), A(2A), A(2B), and A(3). In the setting of inflammation, the generation and release of adenosine is greatly enhanced. Neutrophils play an important role in host defense against invading pathogens and are the cellular hallmark of acute inflammation. Neutrophils both release adenosine and can respond to it via expression of all 4 adenosine receptor subtypes. At low concentrations, adenosine can act via the A(1) and A(3) adenosine receptor subtypes to promote neutrophil chemotaxis and phagocytosis. At higher concentrations, adenosine acts at the lower-affinity A(2A) and A(2B) receptors to inhibit neutrophil trafficking and effector functions such as oxidative burst, inflammatory mediator production, and granule release. Modulation of neutrophil function by adenosine is relevant in a broad array of disease models, including ischemia reperfusion injury, sepsis, and noninfectious acute lung injury. This review will summarize relevant research in order to provide a framework for understanding how adenosine directly regulates various elements of neutrophil function.
Collapse
Affiliation(s)
- Kathryn E Barletta
- Department of Pharmacology, University of Virginia, Charlottesville, USA
| | | | | |
Collapse
|
45
|
Buchheiser A, Ebner A, Burghoff S, Ding Z, Romio M, Viethen C, Lindecke A, Köhrer K, Fischer JW, Schrader J. Inactivation of CD73 promotes atherogenesis in apolipoprotein E-deficient mice. Cardiovasc Res 2011; 92:338-47. [PMID: 21955554 DOI: 10.1093/cvr/cvr218] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
AIMS CD73 (ecto-5'-nucleotidase) is expressed by a broad range of immune cells and attenuates inflammation in several acute disease models. This study therefore explored the role of CD73-derived adenosine in a model of chronic vascular inflammation such as atherogenesis. METHODS AND RESULTS CD73(-/-) mice were backcrossed into the apolipoprotein E (ApoE(-/-)) background. In CD73(-/-)/ApoE(-/-) double mutants, atherosclerotic lesion formation was increased by ∼50% compared with ApoE(-/-). However, the cellular composition and extracellular matrix of the plaques did not differ. Surprisingly, we found significant activity and expression of CD73 in the plaque of ApoE(-/-) mice which increased over time. CD73 co-localized with macrophages, Tregs, and cells of mesenchymal origin. Genome-wide microarray analysis of the aorta lacking CD73 revealed upregulation of endothelin-1 (Edn1) mRNA together with changes of genes in lipid metabolism and the Wnt and nuclear factor kappa B pathways. Measurement of plasma levels verified the upregulation of Edn1 in CD73(-/-) and double mutants. Plasma triglycerides (TG) were also found to be significantly elevated in the CD73(-/-)/ApoE(-/-) mice compared with ApoE(-/-) controls. CONCLUSION Lack of CD73 promotes atherogenesis most likely by de-inhibition of resident macrophages and T cells. Elevated Edn1 and TG levels may have contributed. This establishes CD73-derived adenosine as a direct or indirect regulator of atherogenesis.
Collapse
Affiliation(s)
- Anja Buchheiser
- Department of Cardiovascular Physiology, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|