1
|
Whitehead CE, Ziemke EK, Frankowski-McGregor CL, Mumby RA, Chung J, Li J, Osher N, Coker O, Baladandayuthapani V, Kopetz S, Sebolt-Leopold JS. A first-in-class selective inhibitor of EGFR and PI3K offers a single-molecule approach to targeting adaptive resistance. NATURE CANCER 2024; 5:1250-1266. [PMID: 38992135 PMCID: PMC11357990 DOI: 10.1038/s43018-024-00781-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 05/09/2024] [Indexed: 07/13/2024]
Abstract
Despite tremendous progress in precision oncology, adaptive resistance mechanisms limit the long-term effectiveness of molecularly targeted agents. Here we evaluated the pharmacological profile of MTX-531 that was computationally designed to selectively target two key resistance drivers, epidermal growth factor receptor and phosphatidylinositol 3-OH kinase (PI3K). MTX-531 exhibits low-nanomolar potency against both targets with a high degree of specificity predicted by cocrystal structural analyses. MTX-531 monotherapy uniformly resulted in tumor regressions of squamous head and neck patient-derived xenograft (PDX) models. The combination of MTX-531 with mitogen-activated protein kinase kinase or KRAS-G12C inhibitors led to durable regressions of BRAF-mutant or KRAS-mutant colorectal cancer PDX models, resulting in striking increases in median survival. MTX-531 is exceptionally well tolerated in mice and uniquely does not lead to the hyperglycemia commonly seen with PI3K inhibitors. Here, we show that MTX-531 acts as a weak agonist of peroxisome proliferator-activated receptor-γ, an attribute that likely mitigates hyperglycemia induced by PI3K inhibition. This unique feature of MTX-531 confers a favorable therapeutic index not typically seen with PI3K inhibitors.
Collapse
Affiliation(s)
- Christopher E Whitehead
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
- MEKanistic Therapeutics, Inc., Ann Arbor, MI, USA
| | | | | | - Rachel A Mumby
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - June Chung
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Jinju Li
- Department of Biostatistics, The University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Nathaniel Osher
- Department of Biostatistics, The University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Oluwadara Coker
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Veerabhadran Baladandayuthapani
- Department of Biostatistics, The University of Michigan School of Public Health, Ann Arbor, MI, USA
- University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Scott Kopetz
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Judith S Sebolt-Leopold
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA.
- MEKanistic Therapeutics, Inc., Ann Arbor, MI, USA.
- University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA.
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
2
|
Gaona-López C, Méndez-Álvarez D, Moreno-Rodríguez A, Bautista-Martínez JL, De Fuentes-Vicente JA, Nogueda-Torres B, García-Torres I, López-Velázquez G, Rivera G. TATA-Binding Protein-Based Virtual Screening of FDA Drugs Identified New Anti-Giardiasis Agents. Int J Mol Sci 2024; 25:6238. [PMID: 38892424 PMCID: PMC11172525 DOI: 10.3390/ijms25116238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/27/2024] [Accepted: 06/01/2024] [Indexed: 06/21/2024] Open
Abstract
Parasitic diseases, predominantly prevalent in developing countries, are increasingly spreading to high-income nations due to shifting migration patterns. The World Health Organization (WHO) estimates approximately 300 million annual cases of giardiasis. The emergence of drug resistance and associated side effects necessitates urgent research to address this growing health concern. In this study, we evaluated over eleven thousand pharmacological compounds sourced from the FDA database to assess their impact on the TATA-binding protein (TBP) of the early diverging protist Giardia lamblia, which holds medical significance. We identified a selection of potential pharmacological compounds for combating this parasitic disease through in silico analysis, employing molecular modeling techniques such as homology modeling, molecular docking, and molecular dynamics simulations. Notably, our findings highlight compounds DB07352 and DB08399 as promising candidates for inhibiting the TBP of Giardia lamblia. Also, these compounds and DB15584 demonstrated high efficacy against trophozoites in vitro. In summary, this study identifies compounds with the potential to combat giardiasis, offering the prospect of specific therapies and providing a robust foundation for future research.
Collapse
Affiliation(s)
- Carlos Gaona-López
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico;
| | - Domingo Méndez-Álvarez
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico;
| | - Adriana Moreno-Rodríguez
- Laboratorio de Estudios Epidemiológicos, Clínicos, Diseños Experimentales e Investigación, Facultad de Ciencias Químicas, Universidad Autónoma “Benito Juárez” de Oaxaca, Oaxaca 68120, Mexico; (A.M.-R.); (J.L.B.-M.)
| | - Juan Luis Bautista-Martínez
- Laboratorio de Estudios Epidemiológicos, Clínicos, Diseños Experimentales e Investigación, Facultad de Ciencias Químicas, Universidad Autónoma “Benito Juárez” de Oaxaca, Oaxaca 68120, Mexico; (A.M.-R.); (J.L.B.-M.)
| | | | - Benjamín Nogueda-Torres
- Departamento de Parasitología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico;
| | - Itzhel García-Torres
- Laboratorio de Biomoléculas y Salud Infantil, Instituto Nacional de Pediatría, Ciudad de México 04530, Mexico; (I.G.-T.); (G.L.-V.)
| | - Gabriel López-Velázquez
- Laboratorio de Biomoléculas y Salud Infantil, Instituto Nacional de Pediatría, Ciudad de México 04530, Mexico; (I.G.-T.); (G.L.-V.)
| | - Gildardo Rivera
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico;
| |
Collapse
|
3
|
Ahmad K, Shaikh S, Lim JH, Ahmad SS, Chun HJ, Lee EJ, Choi I. Therapeutic application of natural compounds for skeletal muscle-associated metabolic disorders: A review on diabetes perspective. Biomed Pharmacother 2023; 168:115642. [PMID: 37812896 DOI: 10.1016/j.biopha.2023.115642] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/19/2023] [Accepted: 10/03/2023] [Indexed: 10/11/2023] Open
Abstract
Skeletal muscle (SM) plays a vital role in energy and glucose metabolism by regulating insulin sensitivity, glucose uptake, and blood glucose homeostasis. Impaired SM metabolism is strongly linked to several diseases, particularly type 2 diabetes (T2D). Insulin resistance in SM may result from the impaired activities of insulin receptor tyrosine kinase, insulin receptor substrate 1, phosphoinositide 3-kinase, and AKT pathways. This review briefly discusses SM myogenesis and the critical roles that SM plays in insulin resistance and T2D. The pharmacological targets of T2D which are associated with SM metabolism, such as DPP4, PTB1B, SGLT, PPARγ, and GLP-1R, and their potential modulators/inhibitors, especially natural compounds, are discussed in detail. This review highlights the significance of SM in metabolic disorders and the therapeutic potential of natural compounds in targeting SM-associated T2D targets. It may provide novel insights for the future development of anti-diabetic drug therapies. We believe that scientists working on T2D therapies will benefit from this review by enhancing their knowledge and updating their understanding of the subject.
Collapse
Affiliation(s)
- Khurshid Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, South Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, South Korea
| | - Sibhghatulla Shaikh
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, South Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, South Korea
| | - Jeong Ho Lim
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, South Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, South Korea
| | - Syed Sayeed Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, South Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, South Korea
| | - Hee Jin Chun
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, South Korea
| | - Eun Ju Lee
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, South Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, South Korea
| | - Inho Choi
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, South Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, South Korea.
| |
Collapse
|
4
|
Shehnaz SI, Roy A, Vijayaraghavan R, Sivanesan S, Pazhanivel N. Modulation of PPAR-γ, SREBP-1c and inflammatory mediators by luteolin ameliorates β-cell dysfunction and renal damage in a rat model of type-2 diabetes mellitus. Mol Biol Rep 2023; 50:9129-9142. [PMID: 37749346 DOI: 10.1007/s11033-023-08804-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/06/2023] [Indexed: 09/27/2023]
Abstract
BACKGROUND Natural products have been recommended as a complementary therapy for type 2 diabetes mellitus (T2DM) due to constraints of safety and tolerability of existing anti-diabetic agents. Luteolin exhibits anti-diabetic and anti-inflammatory effects. Hence, the impact of luteolin on glucose homoeostasis and organ damage was investigated in high-fat diet (HFD) and streptozotocin (STZ) induced T2DM in rats. METHODS AND RESULTS Male Wistar rats were maintained on HFD (provided 55% energy as fat) for 10 days. Subsequently, a single dose of 40 mg/kg STZ was injected intraperitoneally on the 11th day. Seventy-two hours after STZ administration, diabetic rats with established hyperglycemia (fasting serum glucose > 200 mg/dL) were randomized into different groups having six rats each and orally administered either 0.5% hydroxy propyl cellulose or pioglitazone (10 mg/kg) or luteolin (50 mg/kg or 100 mg/kg) once daily for 28 days, while continuing HFD for respective groups. Luteolin significantly reduced hyperglycaemia, homoeostasis model assessment (HOMA) of insulin resistance (HOMA-IR) levels, and improved hypoinsulinemia and HOMA of b-cell function (HOMA-B) in a dose-dependent manner. Increased TNF-α, IL-6 and NFκB levels in diabetic rats were significantly regulated. Additionally, luteolin significantly augmented PPAR-γ expression while attenuating sterol regulatory element binding protein-1c (SREBP-1c) expression. Histopathological scrutiny validated that luteolin effectively attenuated HFD-STZ-induced injury in pancreatic β-cells and kidneys to near normalcy. CONCLUSION Our study showed that luteolin ameliorated hyperglycemia and improved hypoinsulinemia, β-cell dysfunction, and renal impairment in HFD-STZ-induced diabetic rats by attenuating inflammation and dysregulated cytokine secretion through modulation of PPAR-γ, TNF-α, IL-6 and NF-kB expression and down-regulation of SREBP-1c.
Collapse
Affiliation(s)
- Syed Ilyas Shehnaz
- Department of Pharmacology, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha Nagar, Thandalam, Chennai, Tamil Nadu, 602105, India.
| | - Anitha Roy
- Department of Pharmacology, Center for Transdisciplinary Research, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, 600077, India
| | - Rajagopalan Vijayaraghavan
- Department of Research and Development, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, 602105, India
| | - Senthilkumar Sivanesan
- Department of Research and Development, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, 602105, India
- Department of Biosciences, Institute of Biotechnology, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, 602105, India
| | - Natesan Pazhanivel
- Department of Veterinary Pathology, Madras Veterinary College, Chennai, Tamil Nadu, 600 007, India
| |
Collapse
|
5
|
An S, Ko H, Jang H, Park IG, Ahn S, Hwang SY, Gong J, Oh S, Kwak SY, Lee Y, Kim H, Noh M. Prenylated Chrysin Derivatives as Partial PPARγ Agonists with Adiponectin Secretion-Inducing Activity. ACS Med Chem Lett 2023; 14:425-431. [PMID: 37077388 PMCID: PMC10107909 DOI: 10.1021/acsmedchemlett.2c00511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Decreased circulating adiponectin levels are associated with an increased risk of human metabolic diseases. The chemical-mediated upregulation of adiponectin biosynthesis has been proposed as a novel therapeutic approach to managing hypoadiponectinemia-associated diseases. In preliminary screening, the natural flavonoid chrysin (1) exhibited adiponectin secretion-inducing activity during adipogenesis in human bone marrow mesenchymal stem cells (hBM-MSCs). Here, we provide the 7-prenylated chrysin derivatives, chrysin 5-benzyl-7-prenylether compound 10 and chrysin 5,7-diprenylether compound 11, with the improved pharmacological profile compared with chrysin (1). Nuclear receptor binding and ligand-induced coactivator recruitment assays revealed that compounds 10 and 11 functioned as peroxisome proliferator-activated receptor (PPAR)γ partial agonists. These findings were supported by molecular docking simulation, followed by experimental validation. Notably, compound 11 showed PPARγ binding affinity as potent as that of the PPARγ agonists pioglitazone and telmisartan. This study presents a novel PPARγ partial agonist pharmacophore and suggests that prenylated chrysin derivatives have therapeutic potential in various human diseases associated with hypoadiponectinemia.
Collapse
Affiliation(s)
- Seungchan An
- Natural
Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Hyejin Ko
- Natural
Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Hongjun Jang
- Research
Institute of Pharmaceutical Science and Technology, College of Pharmacy, Ajou University, 206 World cup-ro, Yeongtong-gu, Suwon, Gyeonggi-do 16499, Republic of Korea
| | - In Guk Park
- Natural
Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Sungjin Ahn
- Natural
Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Seok Young Hwang
- Natural
Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Junpyo Gong
- Natural
Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Soyeon Oh
- Natural
Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Soo Yeon Kwak
- Research
Institute of Pharmaceutical Science and Technology, College of Pharmacy, Ajou University, 206 World cup-ro, Yeongtong-gu, Suwon, Gyeonggi-do 16499, Republic of Korea
| | - Yeonjin Lee
- Natural
Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Hyoungsu Kim
- Research
Institute of Pharmaceutical Science and Technology, College of Pharmacy, Ajou University, 206 World cup-ro, Yeongtong-gu, Suwon, Gyeonggi-do 16499, Republic of Korea
| | - Minsoo Noh
- Natural
Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| |
Collapse
|
6
|
Luteolin protects against adipogenic and lipogenic potency induced by human relevant mixtures of persistent organic pollutants (POPs) in the 3T3-L1 model. Food Chem Toxicol 2023; 173:113608. [PMID: 36639049 DOI: 10.1016/j.fct.2023.113608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/16/2022] [Accepted: 01/09/2023] [Indexed: 01/12/2023]
Abstract
Human exposure to persistent organic pollutants (POPs) may contribute to obesogenic effects. We have previously shown that POP mixtures modelled on blood levels relevant to the Scandinavian population induces adipogenic effects in the mouse 3T3-L1 cell line. Luteolin is a flavone that has shown anti-lipogenic and anti-adipogenic effects on adipogenesis in in vitro models. In this study, luteolin has been applied to inhibit adipocyte formation and intracellular lipid content increase induced by a human relevant mixture of POPs. 3T3-L1 cells were exposed to a POP mixture consisting of 29 chemicals, including amongst others polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), perfluoroalkylated acids (PFAAs), and polybrominated diphenyl ethers (PBDEs). Rosiglitazone was applied as a positive lipogenic control. Luteolin was tested between 0.5 and 10 μM. High content analysis was used to assess changes in adipocyte formation and intracellular lipid content in the 3T3-L1 cell line. Luteolin significantly reduced POP-induced adipocyte formation at 2, 5 and 10 μM, and lipid accumulation at 10 μM. Interestingly, luteolin did not affect rosiglitazone induced adipo- and lipogenic effects, suggesting differences in mechanisms of action. In conclusion, this in vitro study shows that dietary polyphenols such as luteolin may protect against POP induced adipo- and lipogenic effects.
Collapse
|
7
|
Lan Z, Zhang K, He J, Kang Q, Meng W, Wang S. Pectolinarigenin shows lipid-lowering effects by inhibiting fatty acid biosynthesis in vitro and in vivo. Phytother Res 2023; 37:913-925. [PMID: 36415143 DOI: 10.1002/ptr.7679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/21/2022] [Accepted: 11/06/2022] [Indexed: 11/24/2022]
Abstract
Pectolinarigenin is the main flavonoid compound and presents in Linaria vulgaris and Cirsium chanroenicum. In this study, RNA sequencing (RNA-seq) was applied to dissect the effect of pectolinarigenin on the transcriptome changes in the high lipid Huh-7 cells induced by oleic acid. RNA-seq results revealed that 15 pathways enriched by downregulated genes are associated with cell metabolism including cholesterol metabolism, glycerophospholipid metabolism, steroid biosynthesis, steroid hormone biosynthesis, fatty acid biosynthesis, etc. Moreover, 13 key genes related to lipid metabolism were selected. Among them, PPARG coactivator 1 beta (PPARGC1B) and carnitine palmitoyltransferase 1A (CPT1A) were found to be upregulated, solute carrier family 27 member 1(SLC27A1), acetyl-CoA carboxylase alpha (ACACA), fatty-acid synthase (FASN), 3-Hydroxy-3-Methylglutaryl-CoA Reductase (HMGCR), etc. were found to be downregulated. Glycolysis/gluconeogenesis, steroid hormone biosynthesis, and fatty acid biosynthesis were all significantly downregulated, according to gene set variation analysis and gene set enrichment analysis. Besides, protein levels of FASN, ACACA, and SLC27A1 were all decreased, whereas PPARγ and CPT1A were increased. Docking models showed that PPARγ may be a target for pectolinarigenin. Furthermore, pectolinarigenin reduced serum TG and hepatic TG, and improved insulin sensitivity in vivo. Our findings suggest that pectolinarigenin may target PPARγ and prevent fatty acid biosynthesis.
Collapse
Affiliation(s)
- Zhou Lan
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Kun Zhang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Jianhui He
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Qiong Kang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Wei Meng
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Songhua Wang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, China
| |
Collapse
|
8
|
Combined Network Pharmacology and Molecular Docking to Verify the Treatment of Type 2 Diabetes with Pueraria Lobata Radix and Salviae Miltiorrhizae Radix. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2023; 2023:9150324. [PMID: 36820318 PMCID: PMC9938769 DOI: 10.1155/2023/9150324] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/27/2022] [Accepted: 11/24/2022] [Indexed: 02/13/2023]
Abstract
Objective To explore the potential molecular mechanism of Pueraria Lobata Radix (RP) and Salviae Miltiorrhizae Radix (RS) in the treatment of type 2 diabetes mellitus (T2DM) based on network pharmacology and molecular docking. Methods The chemical constituents and core targets of RP and RS were searched by Traditional Chinese Medicine System Pharmacology (TCMSP); target genes related to T2DM were obtained through GeneCards database, component target network diagram was constructed, intersection genes of active compounds and T2DM were synthesized, protein-protein interaction (PPI) relationship was obtained, and core targets were screened by using Cytoscape 3.7.2. Gene Ontology (GO) biological process and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway were analyzed utilizing R studio 4.0.4 according to David database. Based on molecular docking, the screened active components of RP and RS were verified by molecular docking with the core target using Discovery Studio 2019. Results There were totally 92 components and 29 corresponding targets in the component target network of RP and RS drug pair, of which 6 were the core targets of RP and RS in the treatment of T2DM. Molecular docking results showed that the active compounds of puerarin, formononetin, tanshinone iia, and luteolin had better binding activity with AKT1, VEGFA, NOS3, PPARG, MMP9, and VCAM1, respectively. Among them, puerarin showed significant effects in activating NOS3 pathway and luteolin exhibited significant effects in activating MMP9 pathway, respectively. The main biological processes mainly including xenobiotic stimulus, response to peptide, gland development, response to radiation, cellular response to chemical stress, response to oxygen levels, and the main signal pathways include response to xenobiotic stimulus, cellular response to chemical stress, response to peptide, gland development, and response to oxygen levels. Conclusion Network pharmacology is an effective tool to explain the action mechanism of Traditional Chinese Medicine (TCM) from the overall perspective. RP and RS pair could alleviate T2DM via the molecular mechanism predicted by the network pharmacology, which provided new ideas and further research on the molecular mechanism of T2DM.
Collapse
|
9
|
Boeing T, Speca S, de Souza P, Mena AM, Bertin B, Desreumax P, Mota da Silva L, Faloni de Andrade S, Dubuqoy L. The PPARγ-dependent effect of flavonoid luteolin against damage induced by the chemotherapeutic irinotecan in human intestinal cells. Chem Biol Interact 2021; 351:109712. [PMID: 34699766 DOI: 10.1016/j.cbi.2021.109712] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/01/2021] [Accepted: 10/20/2021] [Indexed: 01/25/2023]
Abstract
Irinotecan (CPT-11) is one of the main agents used to treat colorectal cancer; unfortunately, it is associated with increased intestinal mucositis developing. Luteolin has been shown to prevent damage induced by this chemotherapeutic in mice; thus, in this research, we have investigated luteolin's action mechanism in human intestinal epithelial cells. The potential of luteolin in reducing inflammation and oxidative stress induced by irinotecan in Caco-2 cells was evaluated by PCR through mRNA expression of inflammatory and oxidative genes and by ELISA at the protein level. To assess whether luteolin's ability to control irinotecan-induced damage occurs in a PPARγ dependent manner, experiments were performed on PPARγ downregulated cells. Irinotecan downregulated PPARγ expression and upregulated inflammatory and oxidative genes, while luteolin upregulated PPARγ, HO-1, SOD and decreased expression of IL-1β and iNOS. Interestingly, when the cells were co-stimulated with luteolin and irinotecan, the flavonoid reversed the inflammation and oxidative imbalance evoked by the chemotherapeutic. However, when these experiments were performed in cells downregulated for PPARγ, luteolin lost the capacity to increase PPARγ and reverse the effect of irinotecan in all tested genes, except by IL-1β. The present study showed that the protective effect of luteolin against irinotecan is PPARγ dependent.
Collapse
Affiliation(s)
- Thaise Boeing
- Postgraduate Program in Pharmaceutical Sciences (PPGCF), Nucleus for Chemical-Pharmaceutical Investigations (NIQFAR), University of Vale do Itajaí (UNIVALI), Itajaí-SC, Brazil; Université Lille 2, CHRU de Lille, Inserm, Lille Inflammation Research International Center (LIRIC), U995, Lille, France.
| | - Silvia Speca
- Université Lille 2, CHRU de Lille, Inserm, Lille Inflammation Research International Center (LIRIC), U995, Lille, France
| | - Priscila de Souza
- Postgraduate Program in Pharmaceutical Sciences (PPGCF), Nucleus for Chemical-Pharmaceutical Investigations (NIQFAR), University of Vale do Itajaí (UNIVALI), Itajaí-SC, Brazil
| | - Anthony Martin Mena
- Université Lille 2, CHRU de Lille, Inserm, Lille Inflammation Research International Center (LIRIC), U995, Lille, France
| | - Benjamin Bertin
- Université Lille 2, CHRU de Lille, Inserm, Lille Inflammation Research International Center (LIRIC), U995, Lille, France
| | - Pierre Desreumax
- Université Lille 2, CHRU de Lille, Inserm, Lille Inflammation Research International Center (LIRIC), U995, Lille, France
| | - Luisa Mota da Silva
- Postgraduate Program in Pharmaceutical Sciences (PPGCF), Nucleus for Chemical-Pharmaceutical Investigations (NIQFAR), University of Vale do Itajaí (UNIVALI), Itajaí-SC, Brazil
| | - Sérgio Faloni de Andrade
- Postgraduate Program in Pharmaceutical Sciences (PPGCF), Nucleus for Chemical-Pharmaceutical Investigations (NIQFAR), University of Vale do Itajaí (UNIVALI), Itajaí-SC, Brazil; CBIOS, Research Center for Biosciences and Health Technologies, Universidade Lusófona, Lisboa, Portugal
| | - Laurent Dubuqoy
- Université Lille 2, CHRU de Lille, Inserm, Lille Inflammation Research International Center (LIRIC), U995, Lille, France
| |
Collapse
|
10
|
Miyamae Y. Insights into Dynamic Mechanism of Ligand Binding to Peroxisome Proliferator-Activated Receptor γ toward Potential Pharmacological Applications. Biol Pharm Bull 2021; 44:1185-1195. [PMID: 34471046 DOI: 10.1248/bpb.b21-00263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ) is a member of the nuclear receptor superfamily, which regulates the transcription of a variety of genes involved in lipid and glucose metabolism, inflammation, and cell proliferation. These functions correlate with the onset of type-2 diabetes, obesity, and immune disorders, which makes PPARγ a promising target for drug development. The majority of PPARγ functions are regulated by binding of small molecule ligands, which cause conformational changes of PPARγ followed by coregulator recruitment. The ligand-binding domain (LBD) of PPARγ contains a large Y-shaped cavity that can be occupied by various classes of compounds such as full agonists, partial agonists, natural lipids, and in some cases, a combination of multiple molecules. Several crystal structure studies have revealed the binding modes of these compounds in the LBD and insight into the resulting conformational changes. Notably, the apo form of the PPARγ LBD contains a highly mobile region that can be stabilized by ligand binding. Furthermore, recent biophysical investigations have shed light on the dynamic mechanism of how ligands induce conformational changes in PPARγ and result in functional output. This information may be useful for the design of new and repurposed structures of ligands that serve a different function from original compounds and more potent pharmacological effects with less undesirable clinical outcomes. This review provides an overview of the peculiar characteristics of the PPARγ LBD by examining a series of structural studies focused on the dynamic mechanism of binding and the potential applications of strategies for ligand screening and chemical labeling.
Collapse
Affiliation(s)
- Yusaku Miyamae
- Faculty of Life and Environmental Sciences, University of Tsukuba.,Alliance for Research on the Mediterranean and North Africa, University of Tsukuba
| |
Collapse
|
11
|
Two Types of PPARγ Ligands Identified in the Extract of Artemisia campestris. CHEMISTRY 2021. [DOI: 10.3390/chemistry3020045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The 70% ethanol extract of Artemisia campestris was screened to find PPARγ ligands using the PPARγ ligand-responsive chimera luciferase reporter system. Capillartemisin B was identified as a PPARγ ligand that stimulated lipid accumulation in 3T3-L1 cells. By further purification of PPARγ ligands from a large-scale preparation of the methanol extract of Artemisia campestris, we isolated and identified eupatilin and santaflavone as PPARγ ligands. Weak PPARγ ligand activity of eupatilin or santaflavone in reporter assay was enhanced by a PPARγ antagonist, GW9662, suggesting that santaflavone or eupatilin and GW9662 bound simultaneously to the multiple sub-pockets of the PPARγ ligand-binding domain (LBD) and cooperatively activated PPARγ. Docking simulation suggested that eupatilin binds to the Ω-pocket but not to the AF-2 pocket of Y-shaped PPARγ LBD where artepillin C that differs from capillartemisin B at the C-5′ position without hydroxy group binds. Eupatilin or santaflavone with or without GW9662 did not stimulate lipid accumulation in differentiated 3T3-L1 cells, suggesting that binding of each compound alone or with GW9662 to the Ω-pocket which stimulated the PPARγ-responsive reporter expression was not enough to stimulate lipid accumulation. The PPARγ ligands found in this study have a potential to design the fragment-based drug design of a novel PPARγ ligand that cover the Y-shaped PPARγ LBD.
Collapse
|
12
|
de Paula K, Santos JC, Mafud AC, Nascimento AS. Tetrazoles as PPARγ ligands: A structural and computational investigation. J Mol Graph Model 2021; 106:107932. [PMID: 33946041 DOI: 10.1016/j.jmgm.2021.107932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/17/2021] [Accepted: 04/19/2021] [Indexed: 11/18/2022]
Abstract
Diabetes is an important chronic disease affecting about 10% of the adult population in the US and over 420 million people worldwide, resulting in 1.6 million deaths every year, according to the World Health Organization. The most common type of the disease, type 2 diabetes, can be pharmacologically managed using oral hypoglycemic agents or thiazolidinediones (TZDs), such as pioglitazone, which act by activating the Peroxisome Proliferated-Activated Receptor γ. Despite their beneficial effects in diabetes treatment, TZDs like rosiglitazone and troglitazone were withdrawn due to safety reasons, creating a void in the pharmacological options for the treatment of this important disease. Here, we explored a structure-based approach in the screening for new chemical probes for a deeper investigation of the effects of PPARγ activation. A class of tetrazole compounds was identified and the compounds named T1, T2 and T3 were purchased and evaluated for their ability to interact with the PPARγ ligand binding domain (LBD). The compounds were binders with micromolar range affinity, as determined by their IC50 values. A Monte Carlo simulation of the compound T2 revealed that the tetrazole ring makes favorable interaction with the polar arm of the receptor binding pocket. Finally, the crystal structure of the PPARγ-LBD-T2 complex was solved at 2.3 Å, confirming the binding mode for this compound. The structure also revealed that, when the helix H12 is mispositioned, an alternative binding conformation is observed for the ligand suggesting an H12-dependent binding conformation for the tetrazole compound.
Collapse
Affiliation(s)
- Karina de Paula
- Grupo de Biotecnologia Molecular, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, SP, 13566-590, Brazil
| | - Jademilson C Santos
- Grupo de Biotecnologia Molecular, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, SP, 13566-590, Brazil
| | - Ana Carolina Mafud
- Grupo de Biotecnologia Molecular, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, SP, 13566-590, Brazil
| | - Alessandro S Nascimento
- Grupo de Biotecnologia Molecular, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, SP, 13566-590, Brazil.
| |
Collapse
|
13
|
Zhang Y, Wang Y, Li X, Gu K, Li M, Zhang Y, Zhang Z, Wang S, Li Z. WSF-7 Inhibits Obesity-Mediated PPARγ Phosphorylation and Improves Insulin Sensitivity in 3T3-L1 Adipocytes. Biol Pharm Bull 2020; 43:526-532. [PMID: 32115511 DOI: 10.1248/bpb.b19-00986] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ), the molecular target for antidiabetic thiazolidinediones (TZDs), is a master regulator of preadipocyte differentiation and lipid metabolism. The adverse side effects of TZDs, arising from their potent agonistic activity, can be minimized by PPARγ partial agonists or PPARγ non-agonists without loss of insulin sensitization. In this study, we reported that WSF-7, a synthetic chemical derived from natural monoterpene α-pinene, is a partial PPARγ agonist. We found that WSF-7 binds directly to PPARγ. Activation of PPARγ by WSF-7 promotes adipogenesis, adiponectin oligomerization and insulin-induced glucose uptake. WSF-7 also inhibits obesity-mediated PPARγ phosphorylation at serine (Ser)273 and improves insulin sensitivity of 3T3-L1 adipocytes. Our study suggested that WSF-7 activates PPARγ transcription by a mechanism different from that of rosiglitazone or luteolin. Therefore, WSF-7 might be a potential therapeutic drug to treat type 2 diabetes.
Collapse
Affiliation(s)
- Yudian Zhang
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University
| | - Yunyun Wang
- College of Chemical Engineering, Nanjing Forestry University
| | - Xiaochuan Li
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University
| | - Kerui Gu
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University
| | - Mingxin Li
- College of Chemical Engineering, Nanjing Forestry University
| | - Yan Zhang
- College of Chemical Engineering, Nanjing Forestry University
| | - Zhijie Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences
| | - Shifa Wang
- College of Chemical Engineering, Nanjing Forestry University
| | - Zhen Li
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University
| |
Collapse
|
14
|
Augimeri G, Giordano C, Gelsomino L, Plastina P, Barone I, Catalano S, Andò S, Bonofiglio D. The Role of PPARγ Ligands in Breast Cancer: From Basic Research to Clinical Studies. Cancers (Basel) 2020; 12:cancers12092623. [PMID: 32937951 PMCID: PMC7564201 DOI: 10.3390/cancers12092623] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/11/2020] [Accepted: 09/12/2020] [Indexed: 02/06/2023] Open
Abstract
Peroxisome proliferator-activated receptor gamma (PPARγ), belonging to the nuclear receptor superfamily, is a ligand-dependent transcription factor involved in a variety of pathophysiological conditions such as inflammation, metabolic disorders, cardiovascular disease, and cancers. In this latter context, PPARγ is expressed in many tumors including breast cancer, and its function upon binding of ligands has been linked to the tumor development, progression, and metastasis. Over the last decade, much research has focused on the potential of natural agonists for PPARγ including fatty acids and prostanoids that act as weak ligands compared to the strong and synthetic PPARγ agonists such as thiazolidinedione drugs. Both natural and synthetic compounds have been implicated in the negative regulation of breast cancer growth and progression. The aim of the present review is to summarize the role of PPARγ activation in breast cancer focusing on the underlying cellular and molecular mechanisms involved in the regulation of cell proliferation, cell cycle, and cell death, in the modulation of motility and invasion as well as in the cross-talk with other different signaling pathways. Besides, we also provide an overview of the in vivo breast cancer models and clinical studies. The therapeutic effects of natural and synthetic PPARγ ligands, as antineoplastic agents, represent a fascinating and clinically a potential translatable area of research with regards to the battle against cancer.
Collapse
Affiliation(s)
- Giuseppina Augimeri
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende (CS), Italy; (G.A.); (C.G.); (L.G.); (P.P.); (I.B.); (S.C.); (S.A.)
| | - Cinzia Giordano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende (CS), Italy; (G.A.); (C.G.); (L.G.); (P.P.); (I.B.); (S.C.); (S.A.)
- Centro Sanitario, University of Calabria, 87036 Arcavacata di Rende (CS), Italy
| | - Luca Gelsomino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende (CS), Italy; (G.A.); (C.G.); (L.G.); (P.P.); (I.B.); (S.C.); (S.A.)
| | - Pierluigi Plastina
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende (CS), Italy; (G.A.); (C.G.); (L.G.); (P.P.); (I.B.); (S.C.); (S.A.)
| | - Ines Barone
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende (CS), Italy; (G.A.); (C.G.); (L.G.); (P.P.); (I.B.); (S.C.); (S.A.)
- Centro Sanitario, University of Calabria, 87036 Arcavacata di Rende (CS), Italy
| | - Stefania Catalano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende (CS), Italy; (G.A.); (C.G.); (L.G.); (P.P.); (I.B.); (S.C.); (S.A.)
- Centro Sanitario, University of Calabria, 87036 Arcavacata di Rende (CS), Italy
| | - Sebastiano Andò
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende (CS), Italy; (G.A.); (C.G.); (L.G.); (P.P.); (I.B.); (S.C.); (S.A.)
| | - Daniela Bonofiglio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende (CS), Italy; (G.A.); (C.G.); (L.G.); (P.P.); (I.B.); (S.C.); (S.A.)
- Centro Sanitario, University of Calabria, 87036 Arcavacata di Rende (CS), Italy
- Correspondence: ; Tel.: +39-0984-496208
| |
Collapse
|
15
|
Kaupang Å, Hansen TV. The PPAR Ω Pocket: Renewed Opportunities for Drug Development. PPAR Res 2020; 2020:9657380. [PMID: 32695150 PMCID: PMC7351019 DOI: 10.1155/2020/9657380] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 05/13/2020] [Indexed: 12/13/2022] Open
Abstract
The past decade of PPARγ research has dramatically improved our understanding of the structural and mechanistic bases for the diverging physiological effects of different classes of PPARγ ligands. The discoveries that lie at the heart of these developments have enabled the design of a new class of PPARγ ligands, capable of isolating central therapeutic effects of PPARγ modulation, while displaying markedly lower toxicities than previous generations of PPARγ ligands. This review examines the emerging framework around the design of these ligands and seeks to unite its principles with the development of new classes of ligands for PPARα and PPARβ/δ. The focus is on the relationships between the binding modes of ligands, their influence on PPAR posttranslational modifications, and gene expression patterns. Specifically, we encourage the design and study of ligands that primarily bind to the Ω pockets of PPARα and PPARβ/δ. In support of this development, we highlight already reported ligands that if studied in the context of this new framework may further our understanding of the gene programs regulated by PPARα and PPARβ/δ. Moreover, recently developed pharmacological tools that can be utilized in the search for ligands with new binding modes are also presented.
Collapse
Affiliation(s)
- Åsmund Kaupang
- Section for Pharmaceutical Chemistry, Department of Pharmacy, University of Oslo, 0316 Oslo, Norway
| | - Trond Vidar Hansen
- Section for Pharmaceutical Chemistry, Department of Pharmacy, University of Oslo, 0316 Oslo, Norway
| |
Collapse
|
16
|
Stalin A, Kandhasamy S, Kannan BS, Verma RS, Ignacimuthu S, Kim Y, Shao Q, Chen Y, Palani P. Synthesis of a 1,2,3-bistriazole derivative of embelin and evaluation of its effect on high-fat diet fed-streptozotocin-induced type 2 diabetes in rats and molecular docking studies. Bioorg Chem 2020; 96:103579. [DOI: 10.1016/j.bioorg.2020.103579] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/19/2019] [Accepted: 01/10/2020] [Indexed: 12/27/2022]
|
17
|
Boeing T, de Souza P, Speca S, Somensi LB, Mariano LNB, Cury BJ, Ferreira Dos Anjos M, Quintão NLM, Dubuqoy L, Desreumax P, da Silva LM, de Andrade SF. Luteolin prevents irinotecan-induced intestinal mucositis in mice through antioxidant and anti-inflammatory properties. Br J Pharmacol 2020; 177:2393-2408. [PMID: 31976547 DOI: 10.1111/bph.14987] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 11/21/2019] [Accepted: 01/08/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE Intestinal mucositis refers to mucosal damage caused by cancer treatment, and irinotecan is one of the agents most associated with this condition. Focusing on the development of alternatives to prevent this important adverse effect, we evaluated the activity of the flavonoid luteolin, which has never been tested for this purpose despite its biological potential. EXPERIMENTAL APPROACH The effects of luteolin were examined on irinotecan-induced intestinal mucositis in mice. Clinical signs were evaluated. Moreover, histological, oxidative, and inflammatory parameters were analysed, as well as the possible interference of luteolin in the anti-tumour activity of irinotecan. KEY RESULTS Luteolin (30 mg·kg-1 ; p.o. or i.p.) prevented irinotecan-induced intestinal damage by reducing weight loss and diarrhoea score and attenuating the shortening of the duodenum and colon. Histological analysis confirmed that luteolin (p.o.) prevented villous shortening, vacuolization, and apoptosis of cells and preserved mucin production in the duodenum and colon. Moreover, luteolin treatment mitigated irinotecan-induced oxidative stress, by reducing the levels of ROS and LOOH and augmenting endogenous antioxidants, and inflammation by decreasing MPO enzymic activity, TNF, IL-1β, and IL-6 levels and increasing IL-4 and IL-10. Disruption of the tight junctions ZO-1 and occludin was also prevented by luteolin treatment. Importantly, luteolin did not interfere with the anti-tumour activity of irinotecan. CONCLUSION AND IMPLICATIONS Luteolin prevents intestinal mucositis induced by irinotecan and therefore could be a potential adjunct in anti-tumour therapy to control this adverse effect, increasing treatment adherence and consequently the chances of cancer remission.
Collapse
Affiliation(s)
- Thaise Boeing
- Programa de Pós-Graduação em Ciências Farmacêuticas (PPGCF), Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Universidade do Vale do Itajaí (UNIVALI), Itajaí, Brazil
| | - Priscila de Souza
- Programa de Pós-Graduação em Ciências Farmacêuticas (PPGCF), Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Universidade do Vale do Itajaí (UNIVALI), Itajaí, Brazil
| | - Silvia Speca
- CHRU de Lille, Inserm, Lille Inflammation Research International Center (LIRIC), Université Lille 2, Lille, France
| | - Lincon Bordignon Somensi
- Programa de Pós-Graduação em Ciências Farmacêuticas (PPGCF), Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Universidade do Vale do Itajaí (UNIVALI), Itajaí, Brazil
| | - Luisa Nathália Bolda Mariano
- Programa de Pós-Graduação em Ciências Farmacêuticas (PPGCF), Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Universidade do Vale do Itajaí (UNIVALI), Itajaí, Brazil
| | - Benhur Judah Cury
- Programa de Pós-Graduação em Ciências Farmacêuticas (PPGCF), Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Universidade do Vale do Itajaí (UNIVALI), Itajaí, Brazil
| | - Mariana Ferreira Dos Anjos
- Programa de Pós-Graduação em Ciências Farmacêuticas (PPGCF), Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Universidade do Vale do Itajaí (UNIVALI), Itajaí, Brazil
| | - Nara Lins Meira Quintão
- Programa de Pós-Graduação em Ciências Farmacêuticas (PPGCF), Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Universidade do Vale do Itajaí (UNIVALI), Itajaí, Brazil
| | - Laurent Dubuqoy
- CHRU de Lille, Inserm, Lille Inflammation Research International Center (LIRIC), Université Lille 2, Lille, France
| | - Pierre Desreumax
- CHRU de Lille, Inserm, Lille Inflammation Research International Center (LIRIC), Université Lille 2, Lille, France
| | - Luisa Mota da Silva
- Programa de Pós-Graduação em Ciências Farmacêuticas (PPGCF), Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Universidade do Vale do Itajaí (UNIVALI), Itajaí, Brazil
| | - Sérgio Faloni de Andrade
- Programa de Pós-Graduação em Ciências Farmacêuticas (PPGCF), Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Universidade do Vale do Itajaí (UNIVALI), Itajaí, Brazil
| |
Collapse
|
18
|
Wu L, Guo C, Wu J. Therapeutic potential of PPARγ natural agonists in liver diseases. J Cell Mol Med 2020; 24:2736-2748. [PMID: 32031298 PMCID: PMC7077554 DOI: 10.1111/jcmm.15028] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 11/17/2019] [Accepted: 01/13/2020] [Indexed: 12/11/2022] Open
Abstract
Peroxisome proliferator‐activated receptor gamma (PPARγ) is a vital subtype of the PPAR family. The biological functions are complex and diverse. PPARγ plays a significant role in protecting the liver from inflammation, oxidation, fibrosis, fatty liver and tumours. Natural products are a promising pool for drug discovery, and enormous research effort has been invested in exploring the PPARγ‐activating potential of natural products. In this manuscript, we will review the research progress of PPARγ agonists from natural products in recent years and probe into the application potential and prospects of PPARγ natural agonists in the therapy of various liver diseases, including inflammation, hepatic fibrosis, non‐alcoholic fatty liver and liver cancer.
Collapse
Affiliation(s)
- Liwei Wu
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chuanyong Guo
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jianye Wu
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
19
|
Lin Y, Yang N, Bao B, Wang L, Chen J, Liu J. Luteolin reduces fat storage inCaenorhabditis elegansby promoting the central serotonin pathway. Food Funct 2020; 11:730-740. [DOI: 10.1039/c9fo02095k] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Luteolin promotes central serotonin signaling to induce fat loss.
Collapse
Affiliation(s)
- Yan Lin
- School of Food and Biological Engineering
- Hefei University of Technology
- Hefei
- China
| | - Nan Yang
- School of Food and Biological Engineering
- Hefei University of Technology
- Hefei
- China
| | - Bin Bao
- School of Food and Biological Engineering
- Hefei University of Technology
- Hefei
- China
| | - Lu Wang
- School of Food and Biological Engineering
- Hefei University of Technology
- Hefei
- China
| | - Juan Chen
- School of Food and Biological Engineering
- Hefei University of Technology
- Hefei
- China
| | - Jian Liu
- School of Food and Biological Engineering
- Hefei University of Technology
- Hefei
- China
- Engineering Research Center of Bio-process
| |
Collapse
|
20
|
Jack BU, Malherbe CJ, Mamushi M, Muller CJF, Joubert E, Louw J, Pheiffer C. Adipose tissue as a possible therapeutic target for polyphenols: A case for Cyclopia extracts as anti-obesity nutraceuticals. Biomed Pharmacother 2019; 120:109439. [PMID: 31590126 DOI: 10.1016/j.biopha.2019.109439] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/29/2019] [Accepted: 09/06/2019] [Indexed: 02/07/2023] Open
Abstract
Obesity is a significant contributor to increased morbidity and premature mortality due to increasing the risk of many chronic metabolic diseases such as type 2 diabetes, cardiovascular disease and certain types of cancer. Lifestyle modifications such as energy restriction and increased physical activity are highly effective first-line treatment strategies used in the management of obesity. However, adherence to these behavioral changes is poor, with an increased reliance on synthetic drugs, which unfortunately are plagued by adverse effects. The identification of new and safer anti-obesity agents is thus of significant interest. In recent years, plants and their phenolic constituents have attracted increased attention due to their health-promoting properties. Amongst these, Cyclopia, an endemic South African plant commonly consumed as a herbal tea (honeybush), has been shown to possess modulating properties against oxidative stress, hyperglycemia, and obesity. Likewise, several studies have reported that some of the major phenolic compounds present in Cyclopia spp. exhibit anti-obesity effects, particularly by targeting adipose tissue. These phenolic compounds belong to the xanthone, flavonoid and benzophenone classes. The aim of this review is to assess the potential of Cyclopia extracts as an anti-obesity nutraceutical as underpinned by in vitro and in vivo studies and the underlying cellular mechanisms and biological pathways regulated by their phenolic compounds.
Collapse
Affiliation(s)
- Babalwa U Jack
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa.
| | - Christiaan J Malherbe
- Plant Bioactives Group, Post-Harvest and Agro-processing Technologies, Agricultural Research Council, Infruitec-Nietvoorbij, Stellenbosch, South Africa
| | - Mokadi Mamushi
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa; Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Christo J F Muller
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa; Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa; Department of Biochemistry and Microbiology, University of Zululand, Kwa-Dlangezwa, South Africa
| | - Elizabeth Joubert
- Plant Bioactives Group, Post-Harvest and Agro-processing Technologies, Agricultural Research Council, Infruitec-Nietvoorbij, Stellenbosch, South Africa; Department of Food Science, Stellenbosch University, Stellenbosch, South Africa
| | - Johan Louw
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa; Department of Biochemistry and Microbiology, University of Zululand, Kwa-Dlangezwa, South Africa
| | - Carmen Pheiffer
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa; Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| |
Collapse
|
21
|
Laghezza A, Piemontese L, Tortorella P, Loiodice F. An update about the crucial role of stereochemistry on the effects of Peroxisome Proliferator-Activated Receptor ligands. Eur J Med Chem 2019; 176:326-342. [PMID: 31112893 DOI: 10.1016/j.ejmech.2019.05.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/16/2019] [Accepted: 05/06/2019] [Indexed: 10/26/2022]
Abstract
Peroxisome Proliferator-Activated Receptors (PPARs) are ligand-activated transcription factors that govern lipid and glucose homeostasis playing a central role in cardiovascular disease, obesity, and diabetes. These receptors show a high degree of stereoselectivity towards several classes of drugs. This review covers the most relevant findings that have been made in the last decade and takes into consideration only those compounds in which stereochemistry led to unexpected results or peculiar interactions with the receptors. These cases are reviewed and discussed with the aim to show how enantiomeric recognition originates at the molecular level. The structural characterization by crystallographic methods and docking experiments of complexes formed by PPARs with their ligands turns out to be an essential tool to explain receptor stereoselectivity.
Collapse
Affiliation(s)
- Antonio Laghezza
- Dipartimento Farmacia-Scienze Del Farmaco, Università Degli Studi di Bari "Aldo Moro", Via Orabona 4, 70125, Bari, Italy.
| | - Luca Piemontese
- Dipartimento Farmacia-Scienze Del Farmaco, Università Degli Studi di Bari "Aldo Moro", Via Orabona 4, 70125, Bari, Italy.
| | - Paolo Tortorella
- Dipartimento Farmacia-Scienze Del Farmaco, Università Degli Studi di Bari "Aldo Moro", Via Orabona 4, 70125, Bari, Italy.
| | - Fulvio Loiodice
- Dipartimento Farmacia-Scienze Del Farmaco, Università Degli Studi di Bari "Aldo Moro", Via Orabona 4, 70125, Bari, Italy.
| |
Collapse
|
22
|
Wang J, Wang B, Zhang Y. Agonism activities of lyso-phosphatidylcholines (LPC) Ligands binding to peroxisome proliferator-activated receptor gamma (PPARγ). J Biomol Struct Dyn 2019; 38:398-409. [PMID: 31025599 DOI: 10.1080/07391102.2019.1577175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PPARγ is an isoform of peroxisome proliferator-activated receptor (PPAR) belonging to a super family of nuclear receptors and is a primary target of the effective drug to treat the type II diabetes. The experiments found that Lyso-phosphatidylcholines (LPC) could bind to PPARγ, but the binding modes remain unknown. We used the Molecular Docking and Molecular Dynamic (MD) simulations to study the binding of four LPC ligands (LPC16:0, LPC18:0, LPC18:1-1 and LPC18:1-2) to PPARγ. The two-step MD simulations were employed to determine the final binding modes. The 20 ns MD simulations for four final LPC-PPARγ complexes were performed to analyze their structures, the binding key residues, and agonism activities. The results reveal that three LPC ligands (LPC16:0, LPC18:0 and LPC18:1-1) bind to Arm II and III regions of the Ligand Binding Domain (LBD) pocket, whereas they do not interact with Tyr473 of Helix 12 (H12). In contrast, LPC18:1-2 can form the hydrogen bonds with Tyr473 and bind into Arm I and II regions. Comparing with the paradigm systems of the full agonist (Rosiglitazone-PPARγ) and the partial agonist (MRL24-PPARγ), our results indicate that LPC16:0, LPC18:0 and LPC18:1-1 could be the potential partial agonists and LPC18:1-2 could be a full agonist. The in-depth analysis of the residue fluctuations and structure alignment confirm the present prediction of the LPC agonism activities.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Jiayue Wang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics (DICP) Chinese Academy of Sciences, Dalian, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Bohong Wang
- University of Chinese Academy of Sciences, Beijing, China.,CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics (DICP) Chinese Academy of Sciences, Dalian, China
| | - Yan Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics (DICP) Chinese Academy of Sciences, Dalian, China.,Institute of Molecular Sciences and Engineering, Shandong University, Qingdao, China
| |
Collapse
|
23
|
Silva AR, Grosso C, Delerue-Matos C, Rocha JM. Comprehensive review on the interaction between natural compounds and brain receptors: Benefits and toxicity. Eur J Med Chem 2019; 174:87-115. [PMID: 31029947 DOI: 10.1016/j.ejmech.2019.04.028] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 04/10/2019] [Accepted: 04/11/2019] [Indexed: 02/06/2023]
Abstract
Given their therapeutic activity, natural products have been used in traditional medicines throughout the centuries. The growing interest of the scientific community in phytopharmaceuticals, and more recently in marine products, has resulted in a significant number of research efforts towards understanding their effect in the treatment of neurodegenerative diseases, such as Alzheimer's (AD), Parkinson (PD) and Huntington (HD). Several studies have shown that many of the primary and secondary metabolites of plants, marine organisms and others, have high affinities for various brain receptors and may play a crucial role in the treatment of diseases affecting the central nervous system (CNS) in mammalians. Actually, such compounds may act on the brain receptors either by agonism, antagonism, allosteric modulation or other type of activity aimed at enhancing a certain effect. The current manuscript comprehensively reviews the state of the art on the interactions between natural compounds and brain receptors. This information is of foremost importance when it is intended to investigate and develop cutting-edge drugs, more effective and with alternative mechanisms of action to the conventional drugs presently used for the treatment of neurodegenerative diseases. Thus, we reviewed the effect of 173 natural products on neurotransmitter receptors, diabetes related receptors, neurotrophic factor related receptors, immune system related receptors, oxidative stress related receptors, transcription factors regulating gene expression related receptors and blood-brain barrier receptors.
Collapse
Affiliation(s)
- Ana R Silva
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology (DB), University of Minho (UM), Campus Gualtar, P-4710-057, Braga, Portugal
| | - Clara Grosso
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, P-4249-015, Porto, Portugal.
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, P-4249-015, Porto, Portugal
| | - João M Rocha
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology (DB), University of Minho (UM), Campus Gualtar, P-4710-057, Braga, Portugal; REQUIMTE/LAQV, Grupo de investigação de Química Orgânica Aplicada (QUINOA), Laboratório de polifenóis alimentares, Departamento de Química e Bioquímica (DQB), Faculdade de Ciências da Universidade do Porto (FCUP), Rua do Campo Alegre, s/n, P-4169-007, Porto, Portugal
| |
Collapse
|
24
|
Meijer FA, Leijten-van de Gevel IA, de Vries RMJM, Brunsveld L. Allosteric small molecule modulators of nuclear receptors. Mol Cell Endocrinol 2019; 485:20-34. [PMID: 30703487 DOI: 10.1016/j.mce.2019.01.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/23/2019] [Accepted: 01/25/2019] [Indexed: 02/08/2023]
Abstract
Nuclear Receptors (NRs) are multi-domain proteins, whose natural regulation occurs via ligands for a classical, orthosteric, binding pocket and via intra- and inter-domain allosteric mechanisms. Allosteric modulation of NRs via synthetic small molecules has recently emerged as an interesting entry to address the need for small molecules targeting NRs in pathology, via novel modes of action and with beneficial profiles. In this review the general concept of allosteric modulation in drug discovery is first discussed, serving as a background and inspiration for NRs. Subsequently, the review focuses on examples of small molecules that allosterically modulate NRs, with a strong focus on structural information and the ligand binding domain. Recently discovered nanomolar potent allosteric site NR modulators are catapulting allosteric targeting of NRs to the center of attention. The obtained insights serve as a basis for recommendations for the next steps to take in allosteric small molecular targeting of NRs.
Collapse
Affiliation(s)
- Femke A Meijer
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Technische Universiteit Eindhoven, Den Dolech 2, 5612AZ, Eindhoven, the Netherlands
| | - Iris A Leijten-van de Gevel
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Technische Universiteit Eindhoven, Den Dolech 2, 5612AZ, Eindhoven, the Netherlands
| | - Rens M J M de Vries
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Technische Universiteit Eindhoven, Den Dolech 2, 5612AZ, Eindhoven, the Netherlands
| | - Luc Brunsveld
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Technische Universiteit Eindhoven, Den Dolech 2, 5612AZ, Eindhoven, the Netherlands.
| |
Collapse
|
25
|
Aranaz P, Navarro-Herrera D, Zabala M, Miguéliz I, Romo-Hualde A, López-Yoldi M, Martínez JA, Vizmanos JL, Milagro FI, González-Navarro CJ. Phenolic Compounds Inhibit 3T3-L1 Adipogenesis Depending on the Stage of Differentiation and Their Binding Affinity to PPARγ. Molecules 2019; 24:molecules24061045. [PMID: 30884812 PMCID: PMC6470710 DOI: 10.3390/molecules24061045] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/12/2019] [Accepted: 03/13/2019] [Indexed: 12/12/2022] Open
Abstract
Phenolic compounds might modulate adiposity. Here, we report our observation that polyphenols and phenolic acids inhibit adipogenesis in 3T3-L1 with different intensity depending on the family and the stage of differentiation. While quercetin and resveratrol inhibited lipid accumulation along the whole process of differentiation, apigenin and myricetin were active during the early and latest stages, but not intermediate, contrary to hesperidin. The activity of phenolic acids was limited to the early stages of the differentiation process, except p-coumaric and ellagic acids. This anti-adipogenic effect was accompanied by down-regulation of Scd1 and Lpl. Molecular docking analysis revealed that the inhibitory activity of these phenolic compounds over the early stages of adipogenesis exhibits a significant correlation (r = 0.7034; p = 0.005) with their binding affinity to the ligand-binding domain of PPARγ. Results show that polyphenols and phenolic acids would interact with specific residues of the receptor, which could determine their potential anti-adipogenic activity during the early stages of the differentiation. Residues Phe264, His266, Ile281, Cys285 and Met348 are the most frequently involved in these interactions, which might suggest a crucial role for these amino acids modulating the activity of the receptor. These data contribute to elucidate the possible mechanisms of phenolic compounds in the control of adipogenesis.
Collapse
Affiliation(s)
- Paula Aranaz
- Centre for Nutrition Research, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain.
| | - David Navarro-Herrera
- Centre for Nutrition Research, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain.
- Department of Biochemistry and Genetics, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain.
| | - María Zabala
- Centre for Nutrition Research, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain.
| | - Itziar Miguéliz
- Centre for Nutrition Research, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain.
| | - Ana Romo-Hualde
- Centre for Nutrition Research, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain.
| | - Miguel López-Yoldi
- Centre for Nutrition Research, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain.
| | - J Alfredo Martínez
- Centre for Nutrition Research, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain.
- Department of Nutrition, Food Science and Physiology, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain.
- Navarra Institute of Health Research (IdiSNA), 31008 Pamplona, Spain.
- Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERObn); Instituto de Salud Carlos III, Monforte de Lemos 3-5, 28029 Madrid, Spain.
| | - José Luis Vizmanos
- Department of Biochemistry and Genetics, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain.
| | - Fermín I Milagro
- Centre for Nutrition Research, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain.
- Navarra Institute of Health Research (IdiSNA), 31008 Pamplona, Spain.
- Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERObn); Instituto de Salud Carlos III, Monforte de Lemos 3-5, 28029 Madrid, Spain.
| | | |
Collapse
|
26
|
Shang J, Brust R, Mosure SA, Bass J, Munoz-Tello P, Lin H, Hughes TS, Tang M, Ge Q, Kamenekca TM, Kojetin DJ. Cooperative cobinding of synthetic and natural ligands to the nuclear receptor PPARγ. eLife 2018; 7:43320. [PMID: 30575522 PMCID: PMC6317912 DOI: 10.7554/elife.43320] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 12/18/2018] [Indexed: 12/16/2022] Open
Abstract
Crystal structures of peroxisome proliferator-activated receptor gamma (PPARγ) have revealed overlapping binding modes for synthetic and natural/endogenous ligands, indicating competition for the orthosteric pocket. Here we show that cobinding of a synthetic ligand to the orthosteric pocket can push natural and endogenous PPARγ ligands (fatty acids) out of the orthosteric pocket towards an alternate ligand-binding site near the functionally important omega (Ω)-loop. X-ray crystallography, NMR spectroscopy, all-atom molecular dynamics simulations, and mutagenesis coupled to quantitative biochemical functional and cellular assays reveal that synthetic ligand and fatty acid cobinding can form a 'ligand link' to the Ω-loop and synergistically affect the structure and function of PPARγ. These findings contribute to a growing body of evidence indicating ligand binding to nuclear receptors can be more complex than the classical one-for-one orthosteric exchange of a natural or endogenous ligand with a synthetic ligand.
Collapse
Affiliation(s)
- Jinsai Shang
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, United States
| | - Richard Brust
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, United States
| | - Sarah A Mosure
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, United States.,Summer Undergraduate Research Fellows (SURF) program, The Scripps Research Institute, Jupiter, United States.,Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, Jupiter, United States
| | - Jared Bass
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, United States
| | - Paola Munoz-Tello
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, United States
| | - Hua Lin
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, United States
| | - Travis S Hughes
- Center for Biomolecular Structure and Dynamics, The University of Montana, Missoula, United States.,Department of Biomedical and Pharmaceutical Sciences, The University of Montana, Missoula, United States
| | - Miru Tang
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, United States
| | - Qingfeng Ge
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, United States
| | - Theodore M Kamenekca
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, United States
| | - Douglas J Kojetin
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, United States.,Department of Molecular Medicine, The Scripps Research Institute, Jupiter, United States
| |
Collapse
|
27
|
Takahashi S, Waki N, Mohri S, Takahashi H, Ara T, Aizawa K, Suganuma H, Kawada T, Goto T. Apo-12'-lycopenal, a Lycopene Metabolite, Promotes Adipocyte Differentiation via Peroxisome Proliferator-Activated Receptor γ Activation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:13152-13161. [PMID: 30449105 DOI: 10.1021/acs.jafc.8b04736] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Apo-lycopenals, lycopene metabolites produced by an initial cleavage by β,β-carotene-9',10'-oxygenase, exhibit diverse biologically active effects. In this study, we investigated the effect of apo-lycopenals on the activation of nuclear receptors involved in glucose and lipid metabolism. Only apo-12'-lycopenal exhibited selective and dose-dependent transactivation activity for peroxisome proliferator-activated receptor γ (PPARγ), whereas neither apo-6'- nor apo-8'-lycopenals displayed this activity ((7.83 ± 0.66)-, (1.32 ± 0.10)-, and (1.31 ± 0.37)-fold higher activity relative to control, respectively). Additionally, apo-12'-lycopenal promoted adipocyte differentiation of 3T3-L1 cells and subsequently increased the mRNA levels of PPARγ (a (2.36 ± 0.07)-fold increase relative to control; p < 0.01) and its target genes, as well as enhanced adiponectin secretion (a (3.25 ± 0.27)-fold increase relative to control; p < 0.01) and insulin-stimulated glucose uptake (1486 ± 85 pmol/well; p < 0.001) in 3T3-L1 cells. Our results indicated that apo-12'-lycopenal promoted adipocyte differentiation by direct binding and activation of PPARγ.
Collapse
Affiliation(s)
- Shingo Takahashi
- Nature & Wellness Department, Innovation Division , Kagome Co., Ltd. , Nasushiobara , Tochigi 329-2762 , Japan
| | - Naoko Waki
- Nature & Wellness Department, Innovation Division , Kagome Co., Ltd. , Nasushiobara , Tochigi 329-2762 , Japan
| | - Shinsuke Mohri
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture , Kyoto University , Uji , Kyoto 611-0011 , Japan
| | - Haruya Takahashi
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture , Kyoto University , Uji , Kyoto 611-0011 , Japan
| | - Takeshi Ara
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture , Kyoto University , Uji , Kyoto 611-0011 , Japan
| | - Koichi Aizawa
- Nature & Wellness Department, Innovation Division , Kagome Co., Ltd. , Nasushiobara , Tochigi 329-2762 , Japan
| | - Hiroyuki Suganuma
- Nature & Wellness Department, Innovation Division , Kagome Co., Ltd. , Nasushiobara , Tochigi 329-2762 , Japan
| | - Teruo Kawada
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture , Kyoto University , Uji , Kyoto 611-0011 , Japan
| | - Tsuyoshi Goto
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture , Kyoto University , Uji , Kyoto 611-0011 , Japan
| |
Collapse
|
28
|
Calabrese EJ, Giordano JJ, Kozumbo WJ, Leak RK, Bhatia TN. Hormesis mediates dose-sensitive shifts in macrophage activation patterns. Pharmacol Res 2018; 137:236-249. [DOI: 10.1016/j.phrs.2018.10.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/09/2018] [Accepted: 10/09/2018] [Indexed: 02/07/2023]
|
29
|
Laghezza A, Piemontese L, Cerchia C, Montanari R, Capelli D, Giudici M, Crestani M, Tortorella P, Peiretti F, Pochetti G, Lavecchia A, Loiodice F. Identification of the First PPARα/γ Dual Agonist Able To Bind to Canonical and Alternative Sites of PPARγ and To Inhibit Its Cdk5-Mediated Phosphorylation. J Med Chem 2018; 61:8282-8298. [DOI: 10.1021/acs.jmedchem.8b00835] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Antonio Laghezza
- Dipartimento Farmacia-Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, Via Orabona 4, 70125 Bari, Italy
| | - Luca Piemontese
- Dipartimento Farmacia-Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, Via Orabona 4, 70125 Bari, Italy
| | - Carmen Cerchia
- Dipartimento di Farmacia, “Drug Discovery” Laboratory, Università degli Studi di Napoli “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy
| | - Roberta Montanari
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Montelibretti, 00015 Monterotondo Stazione, Roma, Italy
| | - Davide Capelli
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Montelibretti, 00015 Monterotondo Stazione, Roma, Italy
| | - Marco Giudici
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy
| | - Maurizio Crestani
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy
| | - Paolo Tortorella
- Dipartimento Farmacia-Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, Via Orabona 4, 70125 Bari, Italy
| | - Franck Peiretti
- Aix Marseille Université, INSERM 1263, INRA 1260, C2VN, 13005 Marseille, France
| | - Giorgio Pochetti
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Montelibretti, 00015 Monterotondo Stazione, Roma, Italy
| | - Antonio Lavecchia
- Dipartimento di Farmacia, “Drug Discovery” Laboratory, Università degli Studi di Napoli “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy
| | - Fulvio Loiodice
- Dipartimento Farmacia-Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, Via Orabona 4, 70125 Bari, Italy
| |
Collapse
|
30
|
Liu F, Xu K, Xu Z, de Las Rivas M, Wang C, Li X, Lu J, Zhou Y, Delso I, Merino P, Hurtado-Guerrero R, Zhang Y, Wu F. The small molecule luteolin inhibits N-acetyl-α-galactosaminyltransferases and reduces mucin-type O-glycosylation of amyloid precursor protein. J Biol Chem 2017; 292:21304-21319. [PMID: 29061849 PMCID: PMC5766936 DOI: 10.1074/jbc.m117.814202] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 10/20/2017] [Indexed: 12/29/2022] Open
Abstract
Mucin-type O-glycosylation is the most abundant type of O-glycosylation. It is initiated by the members of the polypeptide N-acetyl-α-galactosaminyltransferase (ppGalNAc-T) family and closely associated with both physiological and pathological conditions, such as coronary artery disease or Alzheimer's disease. The lack of direct and selective inhibitors of ppGalNAc-Ts has largely impeded research progress in understanding the molecular events in mucin-type O-glycosylation. Here, we report that a small molecule, the plant flavonoid luteolin, selectively inhibits ppGalNAc-Ts in vitro and in cells. We found that luteolin inhibits ppGalNAc-T2 in a peptide/protein-competitive manner but not promiscuously (e.g. via aggregation-based activity). X-ray structural analysis revealed that luteolin binds to the PXP motif-binding site found in most protein substrates, which was further validated by comparing the interactions of luteolin with wild-type enzyme and with mutants using 1H NMR-based binding experiments. Functional studies disclosed that luteolin at least partially reduced production of β-amyloid protein by selectively inhibiting the activity of ppGalNAc-T isoforms. In conclusion, our study provides key structural and functional details on luteolin inhibiting ppGalNAc-T activity, opening up the way for further optimization of more potent and specific ppGalNAc-T inhibitors. Moreover, our findings may inform future investigations into site-specific O-GalNAc glycosylation and into the molecular mechanism of luteolin-mediated ppGalNAc-T inhibition.
Collapse
Affiliation(s)
- Feng Liu
- From the Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Kai Xu
- From the Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- the Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Zhijue Xu
- From the Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Matilde de Las Rivas
- the Instituto de Biocomputación y Fisica de Sistemas Complejos (BIFI), BIFI-IQFR (CSIC) Joint Unit, Universidad de Zaragoza, 50009, Zaragoza, Spain
| | - Congrong Wang
- From the Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- the School of Basic Medical Sciences, Shanghai University of Medicine and Health Sciences, 279 Zhouzhu Road, Shanghai 201318, China
| | - Xing Li
- From the Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jishun Lu
- From the Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yueyang Zhou
- From the Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Ignacio Delso
- the Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Universidad de Zaragoza, CSIC, E-50009 Zaragoza, Aragón, Spain
| | - Pedro Merino
- the Instituto de Biocomputación y Fisica de Sistemas Complejos (BIFI), BIFI-IQFR (CSIC) Joint Unit, Universidad de Zaragoza, 50009, Zaragoza, Spain
| | - Ramon Hurtado-Guerrero
- the Instituto de Biocomputación y Fisica de Sistemas Complejos (BIFI), BIFI-IQFR (CSIC) Joint Unit, Universidad de Zaragoza, 50009, Zaragoza, Spain,
- the Fundación ARAID, 50018 Zaragoza, Spain, and
| | - Yan Zhang
- From the Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China,
| | - Fang Wu
- From the Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China,
| |
Collapse
|
31
|
Yasmin S, Capone F, Laghezza A, Piaz FD, Loiodice F, Vijayan V, Devadasan V, Mondal SK, Atlı Ö, Baysal M, Pattnaik AK, Jayaprakash V, Lavecchia A. Novel Benzylidene Thiazolidinedione Derivatives as Partial PPARγ Agonists and their Antidiabetic Effects on Type 2 Diabetes. Sci Rep 2017; 7:14453. [PMID: 29089569 PMCID: PMC5663708 DOI: 10.1038/s41598-017-14776-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 10/12/2017] [Indexed: 12/22/2022] Open
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ) has received significant attention as a key regulator of glucose and lipid homeostasis. In this study, we synthesized and tested a library of novel 5-benzylidene-thiazolidin-2,4-dione (BTZD) derivatives bearing a substituent on nitrogen of TZD nucleus (compounds 1a-1k, 2i-10i, 3a, 6a, and 8a-10a). Three compounds (1a, 1i, and 3a) exhibited selectivity towards PPARγ and were found to be weak to moderate partial agonists. Surface Plasmon Resonance (SPR) results demonstrated binding affinity of 1a, 1i and 3a towards PPARγ. Furthermore, docking experiments revealed that BTZDs interact with PPARγ through a distinct binding mode, forming primarily hydrophobic contacts with the ligand-binding pocket (LBD) without direct H-bonding interactions to key residues in H12 that are characteristic of full agonists. In addition, 1a, 1i and 3a significantly improved hyperglycemia and hyperlipidaemia in streptozotocin-nicotinamide (STZ-NA)-induced diabetic rats at a dose of 36 mg/kg/day administered orally for 15 days. Histopathological investigations revealed that microscopic architecture of pancreatic and hepatic cells improved in BTZDs-treated diabetic rats. These findings suggested that 1a, 1i and 3a are very promising pharmacological agents by selectively targeting PPARγ for further development in the clinical treatment of type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Sabina Yasmin
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835 215, India
| | - Fabio Capone
- Department of Pharmacy, "Drug Discovery" Laboratory, University of Napoli "Federico II", Via D. Montesano, 49, 80131, Napoli, Italy
| | - Antonio Laghezza
- Department of Pharmacy & Drug Sciences, University of Bari "Aldo Moro", via Orabona 4, 70125, Bari, Italy
| | - Fabrizio Dal Piaz
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, Italy
| | - Fulvio Loiodice
- Department of Pharmacy & Drug Sciences, University of Bari "Aldo Moro", via Orabona 4, 70125, Bari, Italy
| | - Viswanathan Vijayan
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Maraimalai (Guindy) Campus, 600 025, Chennai, India
| | - Velmurugan Devadasan
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Maraimalai (Guindy) Campus, 600 025, Chennai, India
| | - Susanta K Mondal
- TCG Lifesciences Ltd, Block-EP&GP, BIPL, Tower-B, Saltlake, Sector-V, Kolkata, 700091, West Bengal, India
| | - Özlem Atlı
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Anadolu University, Yunus Emre Kampüsü, 26470, Eskişehir, Turkey
| | - Merve Baysal
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Anadolu University, Yunus Emre Kampüsü, 26470, Eskişehir, Turkey
| | - Ashok K Pattnaik
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835 215, India
| | - Venkatesan Jayaprakash
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835 215, India.
| | - Antonio Lavecchia
- Department of Pharmacy, "Drug Discovery" Laboratory, University of Napoli "Federico II", Via D. Montesano, 49, 80131, Napoli, Italy.
| |
Collapse
|
32
|
Frkic RL, He Y, Rodriguez BB, Chang MR, Kuruvilla D, Ciesla A, Abell AD, Kamenecka TM, Griffin PR, Bruning JB. Structure-Activity Relationship of 2,4-Dichloro-N-(3,5-dichloro-4-(quinolin-3-yloxy)phenyl)benzenesulfonamide (INT131) Analogs for PPARγ-Targeted Antidiabetics. J Med Chem 2017; 60:4584-4593. [PMID: 28485590 DOI: 10.1021/acs.jmedchem.6b01727] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ) is a nuclear receptor central to fatty acid and glucose homeostasis. PPARγ is the molecular target for type 2 diabetes mellitus (T2DM) therapeutics TZDs (thiazolidinediones), full agonists of PPARγ with robust antidiabetic properties, which are confounded with significant side effects. Partial agonists of PPARγ, such as INT131 (1), have displayed similar insulin-sensitizing efficacy as TZDs, but lack many side effects. To probe the structure-activity relationship (SAR) of the scaffold 1, we synthesized 14 analogs of compound 1 which revealed compounds with higher transcriptional potency for PPARγ and identification of moieties of the scaffold 1 key to high transcriptional potency. The sulfonamide linker is critical to activity, substitutions at position 4 of the benzene ring A were associated with higher transcriptional activity, substitutions at position 2 aided in tighter packing and activity, and the ring type and size of ring A affected the degree of activity.
Collapse
Affiliation(s)
| | - Yuanjun He
- Department of Molecular Medicine, The Scripps Research Institute, Scripps Florida , Jupiter, Florida 33458, United States
| | | | - Mi Ra Chang
- Department of Molecular Medicine, The Scripps Research Institute, Scripps Florida , Jupiter, Florida 33458, United States
| | - Dana Kuruvilla
- Department of Molecular Medicine, The Scripps Research Institute, Scripps Florida , Jupiter, Florida 33458, United States
| | - Anthony Ciesla
- Department of Molecular Medicine, The Scripps Research Institute, Scripps Florida , Jupiter, Florida 33458, United States
| | - Andrew D Abell
- Institute for Photonics and Advanced Sensing, The University of Adelaide , North Tce, Adelaide, South Australia 5005, Australia
| | - Theodore M Kamenecka
- Department of Molecular Medicine, The Scripps Research Institute, Scripps Florida , Jupiter, Florida 33458, United States
| | - Patrick R Griffin
- Department of Molecular Medicine, The Scripps Research Institute, Scripps Florida , Jupiter, Florida 33458, United States
| | - John B Bruning
- Institute for Photonics and Advanced Sensing, The University of Adelaide , North Tce, Adelaide, South Australia 5005, Australia
| |
Collapse
|
33
|
Structural basis for differential activities of enantiomeric PPARγ agonists: Binding of S35 to the alternate site. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:674-681. [PMID: 28342850 DOI: 10.1016/j.bbapap.2017.03.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 03/16/2017] [Accepted: 03/20/2017] [Indexed: 01/11/2023]
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ) is a member of the nuclear receptor superfamily. It functions as a ligand-activated transcription factor and plays important roles in the regulation of adipocyte differentiation, type 2 diabetes mellitus, and inflammation. Many PPARγ agonists bind to the canonical ligand-binding pocket near the activation function-2 (AF-2) helix (i.e., helix H12) of the ligand-binding domain (LBD). More recently, an alternate ligand-binding site was identified in PPARγ LBD; it is located beside the Ω loop between the helices H2' and H3. We reported previously that the chirality of two optimized enantiomeric PPARγ ligands (S35 and R35) differentiates their PPARγ transcriptional activity, binding affinity, and inhibitory activity toward Cdk5 (cyclin-dependent kinase 5)-mediated phosphorylation of PPARγ at Ser245 (in PPARγ1 numbering; Ser273 in PPARγ2 numbering). S35 is a PPARγ phosphorylation inhibitor with promising glucose uptake potential, whereas R35 behaves as a potent conventional PPARγ agonist. To provide a structural basis for understanding the differential activities of these enantiomeric ligands, we have determined crystal structures of the PPARγ LBD in complex with either S35 or R35. S35 and R35 bind to the PPARγ LBD in significantly different manners. The partial agonist S35 occupies the alternate site near the Ω loop, whereas the full agonist R35 binds entirely to the canonical LBP. Alternate site binding of S35 affects the PPARγ transactivation and the inhibitory effect on PPARγ Ser245 phosphorylation. This study provides a useful platform for the development of a new generation of PPARγ ligands as anti-diabetic drug candidates.
Collapse
|
34
|
Styshova ON, Popov AM, Artyukov AA, Klimovich AA. Main constituents of polyphenol complex from seagrasses of the genus Zostera, their antidiabetic properties and mechanisms of action. Exp Ther Med 2017; 13:1651-1659. [PMID: 28565749 DOI: 10.3892/etm.2017.4217] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 11/11/2016] [Indexed: 12/17/2022] Open
Abstract
The present review analyzed the recent experimental studies of the alleviating activity of main constituents of the polyphenol complex from seagrasses of the genus Zostera, namely rosmarinic acid, luteolin and its sulfated derivatives, on carbohydrate and lipid metabolism disorders. A number of studies by our group and others, in which various experimental models of diabetes and hyperlipidemia were used, show a therapeutic action of the polyphenol complex and the abovementioned phenolic constituents, when applied separately and in combination. Based on the analysis of the results of these studies, the probable mechanisms of the therapeutic action of these compounds in diabetes and hyperlipidemia were proposed.
Collapse
Affiliation(s)
- Olga Nikolaevna Styshova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690022, Russia
| | - Alexander Michailovich Popov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690022, Russia.,School of Natural Sciences, Far Eastern Federal University, Vladivostok 690000, Russia
| | - Alexander Alekseevish Artyukov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690022, Russia
| | - Anna Anatolievna Klimovich
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690022, Russia
| |
Collapse
|
35
|
Wang L, Yi W, Ye J, Qin H, Long Y, Yang M, Li Q. Interactions among triphenyltin degradation, phospholipid synthesis and membrane characteristics of Bacillus thuringiensis in the presence of d-malic acid. CHEMOSPHERE 2017; 169:403-412. [PMID: 27886543 DOI: 10.1016/j.chemosphere.2016.10.140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 10/26/2016] [Accepted: 10/31/2016] [Indexed: 06/06/2023]
Abstract
Degradation pathway and surface biosorption of triphenyltin (TPT) by effective microbes have been investigated in the past. However, unclear interactions among membrane components and TPT binding and transport are still obstacles to understanding TPT biotransformation. To reveal the mechanism involved, the phospholipid expression, membrane potential, cellular mechanism and molecular dynamics between TPT and fatty acids (FAs) during the TPT degradation process in the presence of d-malic acid (DMA) were studied. The results show that the degradation efficiency of 1 mg L-1 TPT by Bacillus thuringiensis (1 g L-1) with 0.5 or 1 mg L-1 DMA reached values up to approximately 90% due to the promotion of element metabolism and cellular activity, and the depression of FA synthesis induced by DMA. The addition of DMA caused conversion of more linoleic acid into 10-oxo-12(Z)-octadecenoic acid, increased the membrane permeability, and alleviated the decrease in membrane potential, resulting in TPT transport and degradation. Fluorescence analysis reveals that the endospore of B. thuringiensis could act as an indicator for membrane potential and cellular activities. The current findings are advantageous for acceleration of biosorption, transport and removal of pollutants from natural environments.
Collapse
Affiliation(s)
- Linlin Wang
- Key Laboratory of Environmental Exposure and Health of Guangzhou City, School of Environment, Jinan University, Guangzhou, 510632, Guangdong, China; Joint Genome Institute, Lawrence Berkeley National Laboratory, Walnut Creek, 94598, CA, USA
| | - Wenying Yi
- Key Laboratory of Environmental Exposure and Health of Guangzhou City, School of Environment, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Jinshao Ye
- Key Laboratory of Environmental Exposure and Health of Guangzhou City, School of Environment, Jinan University, Guangzhou, 510632, Guangdong, China; Joint Genome Institute, Lawrence Berkeley National Laboratory, Walnut Creek, 94598, CA, USA.
| | - Huaming Qin
- Key Laboratory of Environmental Exposure and Health of Guangzhou City, School of Environment, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Yan Long
- Key Laboratory of Environmental Exposure and Health of Guangzhou City, School of Environment, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Meng Yang
- Key Laboratory of Environmental Exposure and Health of Guangzhou City, School of Environment, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Qusheng Li
- Key Laboratory of Environmental Exposure and Health of Guangzhou City, School of Environment, Jinan University, Guangzhou, 510632, Guangdong, China
| |
Collapse
|
36
|
A compound-based proteomic approach discloses 15-ketoatractyligenin methyl ester as a new PPARγ partial agonist with anti-proliferative ability. Sci Rep 2017; 7:41273. [PMID: 28117438 PMCID: PMC5259791 DOI: 10.1038/srep41273] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 12/19/2016] [Indexed: 12/22/2022] Open
Abstract
Proteomics based approaches are emerging as useful tools to identify the targets of bioactive compounds and elucidate their molecular mechanisms of action. Here, we applied a chemical proteomic strategy to identify the peroxisome proliferator-activated receptor γ (PPARγ) as a molecular target of the pro-apoptotic agent 15-ketoatractyligenin methyl ester (compound 1). We demonstrated that compound 1 interacts with PPARγ, forms a covalent bond with the thiol group of C285 and occupies the sub-pocket between helix H3 and the β-sheet of the ligand-binding domain (LBD) of the receptor by Surface Plasmon Resonance (SPR), mass spectrometry-based studies and docking experiments. 1 displayed partial agonism of PPARγ in cell-based transactivation assays and was found to inhibit the AKT pathway, as well as its downstream targets. Consistently, a selective PPARγ antagonist (GW9662) greatly reduced the anti-proliferative and pro-apoptotic effects of 1, providing the molecular basis of its action. Collectively, we identified 1 as a novel PPARγ partial agonist and elucidated its mode of action, paving the way for therapeutic strategies aimed at tailoring novel PPARγ ligands with reduced undesired harmful side effects.
Collapse
|
37
|
Mehta V, Malairaman U. Flavonoids. PHARMACEUTICAL SCIENCES 2017. [DOI: 10.4018/978-1-5225-1762-7.ch022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Diabetes Mellitus is one of the major healthcare problems faced by the society today and has become alarmingly epidemic in many parts of the world. Despite enormous knowledge and technology advancement, available diabetes therapeutics only provide symptomatic relief by reducing blood glucose level, thereby, just slows down development and progression of diabetes and its associated complications. Thus, the need of the day is to develop alternate strategies that can not only prevent the progression but also reverse already “set-in” diabetic complications. Many flavonoids are reported, traditionally as well as experimentally, to be beneficial in averting diabetes and lowering risk of its accompanying complications. In the present chapter we have convened different flavonoids beneficial in diabetes and comorbid complications and discussed their mechanisms of action. Further, we conclude that coupling current therapeutics with flavonoids might provide exceptional advantage in the management of diabetes and its complications.
Collapse
Affiliation(s)
- Vineet Mehta
- Jaypee University of Information Technology, India
| | | |
Collapse
|
38
|
Tice CM, Zheng YJ. Non-canonical modulators of nuclear receptors. Bioorg Med Chem Lett 2016; 26:4157-64. [PMID: 27503683 DOI: 10.1016/j.bmcl.2016.07.067] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 07/19/2016] [Accepted: 07/27/2016] [Indexed: 12/13/2022]
Abstract
Like G protein-coupled receptors (GPCRs) and protein kinases, nuclear receptors (NRs) are a rich source of pharmaceutical targets. Over 80 NR-targeting drugs have been approved for 18 NRs. The focus of drug discovery in NRs has hitherto been on identifying ligands that bind to the canonical ligand binding pockets of the C-terminal ligand binding domains (LBDs). Due to the development of drug resistance and selectivity concerns, there has been considerable interest in exploring other, non-canonical ligand binding sites. Unfortunately, the potencies of compounds binding at other sites have generally not been sufficient for clinical development. However, the situation has changed dramatically over the last 3years, as compounds with sufficient potency have been reported for several NR targets. Here we review recent developments in this area from a medicinal chemistry point of view in the hope of stimulating further interest in this area of research.
Collapse
Affiliation(s)
- Colin M Tice
- Vitae Pharmaceuticals, Inc., 502 West Office Center Drive, Fort Washington, PA 19034, United States
| | - Ya-Jun Zheng
- Vitae Pharmaceuticals, Inc., 502 West Office Center Drive, Fort Washington, PA 19034, United States
| |
Collapse
|
39
|
Identifying potential PPARγ agonist/partial agonist from plant molecules to control type 2 diabetes using in silico and in vivo models. Med Chem Res 2016. [DOI: 10.1007/s00044-016-1621-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
40
|
Zhou Y, Wu Y, Qin Y, Liu L, Wan J, Zou L, Zhang Q, Zhu J, Mi M. Ampelopsin Improves Insulin Resistance by Activating PPARγ and Subsequently Up-Regulating FGF21-AMPK Signaling Pathway. PLoS One 2016; 11:e0159191. [PMID: 27391974 PMCID: PMC4938387 DOI: 10.1371/journal.pone.0159191] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 06/28/2016] [Indexed: 12/24/2022] Open
Abstract
Ampelopsin (APL), a major bioactive constituent of Ampelopsis grossedentata, exerts a number of biological effects. Here, we explored the anti-diabetic activity of APL and elucidate the underlying mechanism of this action. In palmitate-induced insulin resistance of L6 myotubes, APL treatment markedly up- regulated phosphorylated insulin receptor substrate-1 and protein kinase B, along with a corresponding increase of glucose uptake capacity. APL treatment also increased expressions of fibroblast growth factor (FGF21) and phosphorylated adenosine 5’-monophosphate -activated protein kinase (p-AMPK), however inhibiting AMPK by Compound C or AMPK siRNA, or blockage of FGF21 by FGF21 siRNA, obviously weakened APL -induced increases of FGF21 and p-AMPK as well as glucose uptake capacity in palmitate -pretreated L6 myotubes. Furthermore, APL could activate PPAR γ resulting in increases of glucose uptake capacity and expressions of FGF21 and p-AMPK in palmitate -pretreated L6 myotubes, whereas all those effects were obviously abolished by addition of GW9662, a specific inhibitor of peroxisome proliferator- activated receptor –γ (PPARγ), and PPARγsiRNA. Using molecular modeling and the luciferase reporter assays, we observed that APL could dock with the catalytic domain of PPARγ and dose-dependently up-regulate PPARγ activity. In summary, APL maybe a potential agonist of PPARγ and promotes insulin sensitization by activating PPARγ and subsequently regulating FGF21- AMPK signaling pathway. These results provide new insights into the protective health effects of APL, especially for the treatment of Type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Yong Zhou
- Research Center for Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing Key Laboratory of Nutrition and Food Safety, Research Center for Medical Nutrition, Chongqing, 400038, China
| | - Ying Wu
- Research Center for Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing Key Laboratory of Nutrition and Food Safety, Research Center for Medical Nutrition, Chongqing, 400038, China
| | - Yu Qin
- Research Center for Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing Key Laboratory of Nutrition and Food Safety, Research Center for Medical Nutrition, Chongqing, 400038, China
| | - Lei Liu
- Research Center for Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing Key Laboratory of Nutrition and Food Safety, Research Center for Medical Nutrition, Chongqing, 400038, China
| | - Jing Wan
- Research Center for Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing Key Laboratory of Nutrition and Food Safety, Research Center for Medical Nutrition, Chongqing, 400038, China
| | - Lingyun Zou
- College of Basic Medical Sciences, Third Military Medical University, Chongqing, 400038, China
| | - Qianyong Zhang
- Research Center for Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing Key Laboratory of Nutrition and Food Safety, Research Center for Medical Nutrition, Chongqing, 400038, China
| | - Jundong Zhu
- Research Center for Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing Key Laboratory of Nutrition and Food Safety, Research Center for Medical Nutrition, Chongqing, 400038, China
| | - Mantian Mi
- Research Center for Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing Key Laboratory of Nutrition and Food Safety, Research Center for Medical Nutrition, Chongqing, 400038, China
- * E-mail:
| |
Collapse
|
41
|
Waltenberger B, Mocan A, Šmejkal K, Heiss EH, Atanasov AG. Natural Products to Counteract the Epidemic of Cardiovascular and Metabolic Disorders. Molecules 2016; 21:807. [PMID: 27338339 PMCID: PMC4928700 DOI: 10.3390/molecules21060807] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 06/09/2016] [Accepted: 06/13/2016] [Indexed: 12/18/2022] Open
Abstract
Natural products have always been exploited to promote health and served as a valuable source for the discovery of new drugs. In this review, the great potential of natural compounds and medicinal plants for the treatment or prevention of cardiovascular and metabolic disorders, global health problems with rising prevalence, is addressed. Special emphasis is laid on natural products for which efficacy and safety have already been proven and which are in clinical trials, as well as on plants used in traditional medicine. Potential benefits from certain dietary habits and dietary constituents, as well as common molecular targets of natural products, are also briefly discussed. A glimpse at the history of statins and biguanides, two prominent representatives of natural products (or their derivatives) in the fight against metabolic disease, is also included. The present review aims to serve as an "opening" of this special issue of Molecules, presenting key historical developments, recent advances, and future perspectives outlining the potential of natural products for prevention or therapy of cardiovascular and metabolic disease.
Collapse
Affiliation(s)
- Birgit Waltenberger
- Institute of Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria;
| | - Andrei Mocan
- Department of Pharmaceutical Botany, Iuliu Haţieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Karel Šmejkal
- Department of Natural Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, 612 42 Brno, Czech Republic;
| | - Elke H Heiss
- Department of Pharmacognosy, University of Vienna, 1090 Vienna, Austria;
| | - Atanas G Atanasov
- Department of Pharmacognosy, University of Vienna, 1090 Vienna, Austria;
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, 05-552 Jastrzebiec, Poland
| |
Collapse
|
42
|
Francisco V, Figueirinha A, Costa G, Liberal J, Ferreira I, Lopes MC, García-Rodríguez C, Cruz MT, Batista MT. The Flavone Luteolin Inhibits Liver X Receptor Activation. JOURNAL OF NATURAL PRODUCTS 2016; 79:1423-1428. [PMID: 27135143 DOI: 10.1021/acs.jnatprod.6b00146] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Luteolin is a dietary flavonoid with medicinal properties including antioxidant, antimicrobial, anticancer, antiallergic, and anti-inflammatory. However, the effect of luteolin on liver X receptors (LXRs), oxysterol sensors that regulate cholesterol homeostasis, lipogenesis, and inflammation, has yet to be studied. To unveil the potential of luteolin as an LXRα/β modulator, we investigated by real-time RT-PCR the expression of LXR-target genes, namely, sterol regulatory element binding protein 1c (SREBP-1c) in hepatocytes and ATP-binding cassette transporter (ABC)A1 in macrophages. The lipid content of hepatocytes was evaluated by Oil Red staining. The results demonstrated, for the first time, that luteolin abrogated the LXRα/β agonist-induced LXRα/β transcriptional activity and, consequently, inhibited SREBP-1c expression, lipid accumulation, and ABCA1 expression. Therefore, luteolin could abrogate hypertriglyceridemia associated with LXR activation, thus presenting putative therapeutic effects in diseases associated with deregulated lipid metabolism, such as hepatic steatosis, cardiovascular diseases, and diabetes.
Collapse
Affiliation(s)
- Vera Francisco
- Center for Neurosciences and Cell Biology, University of Coimbra , 3000-214 Coimbra, Portugal
- Center for Pharmaceutical Studies, Faculty of Pharmacy, University of Coimbra , Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Artur Figueirinha
- Center for Neurosciences and Cell Biology, University of Coimbra , 3000-214 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra , Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Gustavo Costa
- Center for Neurosciences and Cell Biology, University of Coimbra , 3000-214 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra , Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Joana Liberal
- Center for Neurosciences and Cell Biology, University of Coimbra , 3000-214 Coimbra, Portugal
- Center for Pharmaceutical Studies, Faculty of Pharmacy, University of Coimbra , Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Isabel Ferreira
- Center for Pharmaceutical Studies, Faculty of Pharmacy, University of Coimbra , Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Maria C Lopes
- Center for Neurosciences and Cell Biology, University of Coimbra , 3000-214 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra , Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Carmen García-Rodríguez
- Instituto de Biología y Genética Molecular, Universidad de Valladolid-CSIC , C/Sanz y Forés 3, 47003 Valladolid, Spain
| | - Maria T Cruz
- Center for Neurosciences and Cell Biology, University of Coimbra , 3000-214 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra , Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Maria T Batista
- Center for Neurosciences and Cell Biology, University of Coimbra , 3000-214 Coimbra, Portugal
- Center for Pharmaceutical Studies, Faculty of Pharmacy, University of Coimbra , Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra , Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| |
Collapse
|
43
|
Puhl AC, Webb P, Polikarpov I. Structural dataset for the PPARγ V290M mutant. Data Brief 2016; 7:1430-1437. [PMID: 27761505 PMCID: PMC5063799 DOI: 10.1016/j.dib.2016.03.082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 03/19/2016] [Accepted: 03/24/2016] [Indexed: 11/07/2022] Open
Abstract
Loss-of-function mutation V290M in the ligand-binding domain of the peroxisome proliferator activated receptor γ (PPARγ) is associated with a ligand resistance syndrome (PLRS), characterized by partial lipodystrophy and severe insulin resistance. In this data article we discuss an X-ray diffraction dataset that yielded the structure of PPARγ LBD V290M mutant refined at 2.3 Å resolution, that allowed building of 3D model of the receptor mutant with high confidence and revealed continuous well-defined electron density for the partial agonist diclofenac bound to hydrophobic pocket of the PPARγ. These structural data provide significant insights into molecular basis of PLRS caused by V290M mutation and are correlated with the receptor disability of rosiglitazone binding and increased affinity for corepressors. Furthermore, our structural evidence helps to explain clinical observations which point out to a failure to restore receptor function by the treatment with a full agonist of PPARγ, rosiglitazone.
Collapse
Affiliation(s)
- Ana C Puhl
- Instituto de Física de São Carlos, Universidade de São Paulo, Av. Trabalhador Saocarlense 400, São Carlos, SP 13560-970, Brazil
| | - Paul Webb
- Genomic Medicine Program, Houston Methodist Research Institute, Houston, TX, United States
| | - Igor Polikarpov
- Instituto de Física de São Carlos, Universidade de São Paulo, Av. Trabalhador Saocarlense 400, São Carlos, SP 13560-970, Brazil
| |
Collapse
|
44
|
Ricci CG, Silveira RL, Rivalta I, Batista VS, Skaf MS. Allosteric Pathways in the PPARγ-RXRα nuclear receptor complex. Sci Rep 2016; 6:19940. [PMID: 26823026 PMCID: PMC4731802 DOI: 10.1038/srep19940] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 12/07/2015] [Indexed: 02/08/2023] Open
Abstract
Understanding the nature of allostery in DNA-nuclear receptor (NR) complexes is of fundamental importance for drug development since NRs regulate the transcription of a myriad of genes in humans and other metazoans. Here, we investigate allostery in the peroxisome proliferator-activated/retinoid X receptor heterodimer. This important NR complex is a target for antidiabetic drugs since it binds to DNA and functions as a transcription factor essential for insulin sensitization and lipid metabolism. We find evidence of interdependent motions of Ω-loops and PPARγ-DNA binding domain with contacts susceptible to conformational changes and mutations, critical for regulating transcriptional functions in response to sequence-dependent DNA dynamics. Statistical network analysis of the correlated motions, observed in molecular dynamics simulations, shows preferential allosteric pathways with convergence centers comprised of polar amino acid residues. These findings are particularly relevant for the design of allosteric modulators of ligand-dependent transcription factors.
Collapse
Affiliation(s)
- Clarisse G Ricci
- Institute of Chemistry, University of Campinas-UNICAMP, Cx. P. 6154, Campinas SP 13084-862, Brazil
| | - Rodrigo L Silveira
- Institute of Chemistry, University of Campinas-UNICAMP, Cx. P. 6154, Campinas SP 13084-862, Brazil
| | - Ivan Rivalta
- Université de Lyon, CNRS, Laboratoire de Chimie, École Normale Supérieure de Lyon, UMR 5182, 46 Allée d'Italie, 69364 Lyon, Cedex 07, France.,Department of Chemistry, Yale University, P.O. Box 208107, New Haven, CT 06520-8167, United States
| | - Victor S Batista
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, CT 06520-8167, United States
| | - Munir S Skaf
- Institute of Chemistry, University of Campinas-UNICAMP, Cx. P. 6154, Campinas SP 13084-862, Brazil
| |
Collapse
|
45
|
Popov AM, Krivoshapko ON, Klimovich AA, Artyukov AA. [Biological activity and mechanisms of therapeutic action of rosmarinic acid, luteolin and its sulphated derivatives]. BIOMEDITSINSKAIA KHIMIIA 2016; 62:22-30. [PMID: 26973183 DOI: 10.18097/pbmc20166201022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The review considers recent experimental studies of biological activity and mechanisms of therapeutic action of rosmarinic acid, luteolin and its sulfated derivatives in diseases associated with disorders of carbohydrate and lipid metabolism. Particular attention is focused on the results of studies showing a high therapeutic potential of these phenolic compounds in their prophylactic and therapeutic use at experimental modeling of type 2 diabetes and hyperlipidemia. Based on the analysis of our results and the literature data putative mechanisms of therapeutic action of rosmarinic acid, luteolin and its sulfated derivatives have been proposed.
Collapse
Affiliation(s)
- A M Popov
- Elyakov Pacibic Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia; Far Eastern Federal University, Vladivostok, Russia
| | - O N Krivoshapko
- Elyakov Pacibic Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| | - A A Klimovich
- Elyakov Pacibic Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| | - A A Artyukov
- Elyakov Pacibic Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| |
Collapse
|
46
|
Ohtera A, Miyamae Y, Yoshida K, Maejima K, Akita T, Kakizuka A, Irie K, Masuda S, Kambe T, Nagao M. Identification of a New Type of Covalent PPARγ Agonist using a Ligand-Linking Strategy. ACS Chem Biol 2015; 10:2794-804. [PMID: 26414848 DOI: 10.1021/acschembio.5b00628] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ) is a ligand-activated transcription factor that plays an important role in adipogenesis and glucose metabolism. The ligand-binding pocket (LBP) of PPARγ has a large Y-shaped cavity with multiple subpockets where multiple ligands can simultaneously bind and cooperatively activate PPARγ. Focusing on this unique property of the PPARγ LBP, we describe a novel two-step cell-based strategy to develop PPARγ ligands. First, a combination of ligands that cooperatively activates PPARγ was identified using a luciferase reporter assay. Second, hybrid ligands were designed and synthesized. For proof of concept, we focused on covalent agonists, which activate PPARγ through a unique activation mechanism regulated by a covalent linkage with the Cys285 residue in the PPARγ LBP. Despite their biological significance and pharmacological potential, few covalent PPARγ agonists are known except for endogenous fatty acid metabolites. With our strategy, we determined that plant-derived cinnamic acid derivatives cooperatively activated PPARγ by combining with GW9662, an irreversible antagonist. GW9662 covalently reacts with the Cys285 residue. A docking study predicted that a cinnamic acid derivative can bind to the open cavity in GW9662-bound PPARγ LBP. On the basis of the putative binding mode, structures of both ligands were linked successfully to create a potent PPARγ agonist, which enhanced the transactivation potential of PPARγ at submicromolar levels through covalent modification of Cys285. Our approach could lead to the discovery of novel high-potency PPARγ agonists.
Collapse
Affiliation(s)
| | | | | | | | - Toru Akita
- Nippon Shinyaku CO., LTD., Kyoto 601-8550, Japan
| | | | | | | | | | | |
Collapse
|
47
|
Puhl AC, Milton FA, Cvoro A, Sieglaff DH, Campos JCL, Bernardes A, Filgueira CS, Lindemann JL, Deng T, Neves FAR, Polikarpov I, Webb P. Mechanisms of peroxisome proliferator activated receptor γ regulation by non-steroidal anti-inflammatory drugs. NUCLEAR RECEPTOR SIGNALING 2015; 13:e004. [PMID: 26445566 PMCID: PMC4594550 DOI: 10.1621/nrs.13004] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 08/10/2015] [Indexed: 12/31/2022]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) display anti-inflammatory, antipyretic and analgesic properties by inhibiting cyclooxygenases and blocking prostaglandin production. Previous studies, however, suggested that some NSAIDs also modulate peroxisome proliferator activated receptors (PPARs), raising the possibility that such off target effects contribute to the spectrum of clinically relevant NSAID actions. In this study, we set out to understand how peroxisome proliferator activated receptor-γ (PPARγ/PPARG) interacts with NSAIDs using X-ray crystallography and to relate ligand binding modes to effects on receptor activity. We find that several NSAIDs (sulindac sulfide, diclofenac, indomethacin and ibuprofen) bind PPARγ and modulate PPARγ activity at pharmacologically relevant concentrations. Diclofenac acts as a partial agonist and binds to the PPARγ ligand binding pocket (LBP) in typical partial agonist mode, near the β-sheets and helix 3. By contrast, two copies of indomethacin and sulindac sulfide bind the LBP and, in aggregate, these ligands engage in LBP contacts that resemble agonists. Accordingly, both compounds, and ibuprofen, act as strong partial agonists. Assessment of NSAID activities in PPARγ-dependent 3T3-L1 cells reveals that NSAIDs display adipogenic activities and exclusively regulate PPARγ-dependent target genes in a manner that is consistent with their observed binding modes. Further, PPARγ knockdown eliminates indomethacin activities at selected endogenous genes, confirming receptor-dependence of observed effects. We propose that it is important to consider how individual NSAIDs interact with PPARγ to understand their activities, and that it will be interesting to determine whether high dose NSAID therapies result in PPAR activation.
Collapse
Affiliation(s)
- Ana C Puhl
- Instituto de Física de São Carlos, Universidade de São Paulo, Av. Trabalhador Saocarlense 400, São Carlos, SP, 13560-970, Brazil (ACP, JCLC, AB, IP)
| | - Flora A Milton
- Instituto de Física de São Carlos, Universidade de São Paulo, Av. Trabalhador Saocarlense 400, São Carlos, SP, 13560-970, Brazil (ACP, JCLC, AB, IP)
| | - Aleksandra Cvoro
- Instituto de Física de São Carlos, Universidade de São Paulo, Av. Trabalhador Saocarlense 400, São Carlos, SP, 13560-970, Brazil (ACP, JCLC, AB, IP)
| | - Douglas H Sieglaff
- Instituto de Física de São Carlos, Universidade de São Paulo, Av. Trabalhador Saocarlense 400, São Carlos, SP, 13560-970, Brazil (ACP, JCLC, AB, IP)
| | - Jéssica C L Campos
- Instituto de Física de São Carlos, Universidade de São Paulo, Av. Trabalhador Saocarlense 400, São Carlos, SP, 13560-970, Brazil (ACP, JCLC, AB, IP)
| | - Amanda Bernardes
- Instituto de Física de São Carlos, Universidade de São Paulo, Av. Trabalhador Saocarlense 400, São Carlos, SP, 13560-970, Brazil (ACP, JCLC, AB, IP)
| | - Carly S Filgueira
- Instituto de Física de São Carlos, Universidade de São Paulo, Av. Trabalhador Saocarlense 400, São Carlos, SP, 13560-970, Brazil (ACP, JCLC, AB, IP)
| | - Jan Lammel Lindemann
- Instituto de Física de São Carlos, Universidade de São Paulo, Av. Trabalhador Saocarlense 400, São Carlos, SP, 13560-970, Brazil (ACP, JCLC, AB, IP)
| | - Tuo Deng
- Instituto de Física de São Carlos, Universidade de São Paulo, Av. Trabalhador Saocarlense 400, São Carlos, SP, 13560-970, Brazil (ACP, JCLC, AB, IP)
| | - Francisco A R Neves
- Instituto de Física de São Carlos, Universidade de São Paulo, Av. Trabalhador Saocarlense 400, São Carlos, SP, 13560-970, Brazil (ACP, JCLC, AB, IP)
| | - Igor Polikarpov
- Instituto de Física de São Carlos, Universidade de São Paulo, Av. Trabalhador Saocarlense 400, São Carlos, SP, 13560-970, Brazil (ACP, JCLC, AB, IP)
| | - Paul Webb
- Instituto de Física de São Carlos, Universidade de São Paulo, Av. Trabalhador Saocarlense 400, São Carlos, SP, 13560-970, Brazil (ACP, JCLC, AB, IP)
| |
Collapse
|
48
|
Li J, Inoue J, Choi JM, Nakamura S, Yan Z, Fushinobu S, Kamada H, Kato H, Hashidume T, Shimizu M, Sato R. Identification of the Flavonoid Luteolin as a Repressor of the Transcription Factor Hepatocyte Nuclear Factor 4α. J Biol Chem 2015; 290:24021-35. [PMID: 26272613 DOI: 10.1074/jbc.m115.645200] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Indexed: 01/14/2023] Open
Abstract
Hepatocyte nuclear factor 4α (HNF4α) is a nuclear receptor that regulates the expression of genes involved in the secretion of apolipoprotein B (apoB)-containing lipoproteins and in glucose metabolism. In the present study, we identified a naturally occurring flavonoid, luteolin, as a repressor of HNF4α by screening for effectors of the human microsomal triglyceride transfer protein (MTP) promoter. Luciferase reporter gene assays revealed that the activity of the MTP gene promoter was suppressed by luteolin and that the mutation of HNF4α-binding element abolished luteolin responsiveness. Luteolin treatment caused a significant decrease in the mRNA levels of HNF4α target genes in HepG2 cells and inhibited apoB-containing lipoprotein secretion in HepG2 and differentiated Caco2 cells. The interaction between luteolin and HNF4α was demonstrated using absorption spectrum analysis and luteolin-immobilized beads. Luteolin did not affect the DNA binding of HNF4α to the promoter region of its target genes but suppressed the acetylation level of histone H3 in the promoter region of certain HNF4α target genes. Short term treatment of mice with luteolin significantly suppressed the expression of HNF4α target genes in the liver. In addition, long term treatment of mice with luteolin significantly suppressed their diet-induced obesity and improved their serum glucose and lipid parameters. Importantly, long term luteolin treatment lowered serum VLDL and LDL cholesterol and serum apoB protein levels, which was not accompanied by fat accumulation in the liver. These results suggest that the flavonoid luteolin ameliorates an atherogenic lipid profile in vivo that is likely to be mediated through the inactivation of HNF4α.
Collapse
Affiliation(s)
- Juan Li
- From the Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 1-1-1 Yayoi, 113-8657, Japan
| | - Jun Inoue
- From the Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 1-1-1 Yayoi, 113-8657, Japan,
| | - Jung-Min Choi
- From the Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 1-1-1 Yayoi, 113-8657, Japan
| | - Shugo Nakamura
- the Department of Biotechnology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - Zhen Yan
- the Department of Biotechnology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - Shinya Fushinobu
- the Department of Biotechnology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - Haruhiko Kamada
- the Laboratory of Biopharmaceutical Research, National Institute of Biomedical Innovation, Osaka 567-0085, Japan
| | - Hisanori Kato
- From the Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 1-1-1 Yayoi, 113-8657, Japan, the Corporate Sponsored Research Program "Food for Life," Organization for Interdisciplinary Research Projects, University of Tokyo, Tokyo, 113-8657, Japan, and
| | - Tsutomu Hashidume
- the Institute of Gerontology, University of Tokyo, Tokyo 113-8656, Japan
| | - Makoto Shimizu
- From the Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 1-1-1 Yayoi, 113-8657, Japan
| | - Ryuichiro Sato
- From the Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 1-1-1 Yayoi, 113-8657, Japan,
| |
Collapse
|
49
|
dos Santos JC, Bernardes A, Giampietro L, Ammazzalorso A, De Filippis B, Amoroso R, Polikarpov I. Different binding and recognition modes of GL479, a dual agonist of Peroxisome Proliferator-Activated Receptor α/γ. J Struct Biol 2015; 191:332-40. [PMID: 26185032 DOI: 10.1016/j.jsb.2015.07.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Revised: 06/30/2015] [Accepted: 07/13/2015] [Indexed: 01/06/2023]
Abstract
Peroxisome Proliferator-Activated Receptors (PPARs) are ligand-dependent transcription factors that control various functions in human organism, including the control of glucose and lipid metabolism. PPARγ is a target of TZD agonists, clinically used to improve insulin sensitivity whereas fibrates, PPARα ligands, lower serum triglyceride levels. We report here the structural studies of GL479, a synthetic dual PPARα/γ agonist, designed by a combination of clofibric acid skeleton and a phenyldiazenyl moiety, as bioisosteric replacement of stilbene group, in complex with both PPARα and PPARγ receptors. GL479 was previously reported as a partial agonist of PPARγ and a full agonist of PPARα with high affinity for both PPARs. Our structural studies reveal different binding modes of GL479 to PPARα and PPARγ, which may explain the distinct activation behaviors observed for each receptor. In both cases the ligand interacts with a Tyr located at helix 12 (H12), resulting in the receptor active conformation. In the complex with PPARα, GL479 occupies the same region of the ligand-binding pocket (LBP) observed for other full agonists, whereas GL479 bound to PPARγ displays a new binding mode. Our results indicate a novel region of PPARs LBP that may be explored for the design of partial agonists as well dual PPARα/γ agonists that combine, simultaneously, the therapeutic effects of the treatment of insulin resistance and dyslipidemia.
Collapse
Affiliation(s)
- Jademilson Celestino dos Santos
- Grupo de Biotecnologia Molecular, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, SP 13566-590, Brazil
| | - Amanda Bernardes
- Grupo de Biotecnologia Molecular, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, SP 13566-590, Brazil
| | - Letizia Giampietro
- Dipartimento di Farmacia, Università degli Studi 'G. d'Annunzio', via dei Vestini 31, 66100 Chieti, Italy
| | - Alessandra Ammazzalorso
- Dipartimento di Farmacia, Università degli Studi 'G. d'Annunzio', via dei Vestini 31, 66100 Chieti, Italy
| | - Barbara De Filippis
- Dipartimento di Farmacia, Università degli Studi 'G. d'Annunzio', via dei Vestini 31, 66100 Chieti, Italy
| | - Rosa Amoroso
- Dipartimento di Farmacia, Università degli Studi 'G. d'Annunzio', via dei Vestini 31, 66100 Chieti, Italy
| | - Igor Polikarpov
- Grupo de Biotecnologia Molecular, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, SP 13566-590, Brazil.
| |
Collapse
|
50
|
Ashida H, Harada K, Mishima S, Mitani T, Yamashita Y, Matsumura F. Luteolin suppresses TCDD-induced wasting syndrome in a cultured adipocyte model. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2015; 120:14-20. [PMID: 25987215 DOI: 10.1016/j.pestbp.2014.11.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 11/12/2014] [Accepted: 11/12/2014] [Indexed: 06/04/2023]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) causes various toxic effects, including wasting syndrome, through activation of an aryl hydrocarbon receptor (AhR). Our previous report demonstrated that certain flavonoids inhibit the activation of AhR and suppress its DNA binding activity. In this study, we searched for an active compound among 13 flavonoids that suppressed TCDD-induced loss of lipid accumulation using 3T3-L1 adipocytes as a cell culture model for wasting syndrome. Two flavonoids, luteolin and epigallocatechin gallate, suppressed TCDD-induced loss of lipid accumulation in this model. We further investigated luteolin to clarify the underlying molecular mechanism and confirmed that luteolin inhibited nuclear translocation of AhR caused by TCDD. Luteolin also inhibited the TCDD-driven decrease in protein expression of peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer-binding protein α (C/EBPα). Although TCDD alone did not change protein expression of C/EBPβ and C/EBPδ, luteolin and TCDD up-regulated C/EBPδ expression in a dose-dependent manner. On the other hand, TCDD significantly decreased DNA binding of C/EBPβ and C/EBPδ, and luteolin completely canceled TCDD-decreased DNA binding of them. We conclude that luteolin suppresses the TCDD-induced loss of lipid accumulation in 3T3-L1 adipocytes by preventing a decrease in protein expression of PPARγ and C/EBPα, the master regulators of adipocyte differentiation and in DNA binding of C/EBPβ and C/EBPδ. Moreover, luteolin was rapidly incorporated and accumulated in 3T3-L1 adipocytes. Thus, luteolin is an attractive compound for the prevention of TCDD-induced wasting syndrome.
Collapse
Affiliation(s)
- Hitoshi Ashida
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan.
| | - Kiyonari Harada
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Sakiho Mishima
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Takakazu Mitani
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Yoko Yamashita
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Fumio Matsumura
- Department of Environmental Toxicology, University of California Davis, One Shields Avenue, CA 95616, USA
| |
Collapse
|