1
|
Phanish MK, Heidebrecht F, Jackson M, Rigo F, Dockrell MEC. Targeting alternative splicing of fibronectin in human renal proximal tubule epithelial cells with antisense oligonucleotides to reduce EDA+ fibronectin production and block an autocrine loop that drives renal fibrosis. Exp Cell Res 2024; 442:114186. [PMID: 39098465 DOI: 10.1016/j.yexcr.2024.114186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/14/2024] [Accepted: 07/25/2024] [Indexed: 08/06/2024]
Abstract
TGFβ1 is a powerful regulator of fibrosis; secreted in a latent form, it becomes active after release from the latent complex. During tissue fibrosis, the EDA + isoform of cellular fibronectin is overexpressed. In pulmonary fibrosis it has been proposed that the fibronectin splice variant including an EDA domain (FN EDA+) activates latent TGFβ. Our work investigates the potential of blocking the 'splicing in' of EDA with antisense oligonucleotides to inhibit TGFβ1-induced EDA + fibronectin and to prevent the cascade of events initiated by TGFβ1 in human renal proximal tubule cells (PTEC). Human primary PTEC were treated with TGFβ1 for 48 h, medium removed and the cells transfected with RNase H-independent antisense oligonucleotides (ASO) designed to block EDA exon inclusion (ASO5). The efficacy of ASO to block EDA exon inclusion was assessed by EDA + fibronectin RNA and protein expression; the expression of TGFβ, αSMA (α smooth muscle actin), MMP2 (matrix metalloproteinse-2), MMP9 (matrix metalloproteinse-9), Collagen I, K Cadherin and connexin 43 was analysed. Targeting antisense oligonucleotides designed to block EDA exon inclusion in fibronectin pre mRNA were effective in reducing the amount of TGFβ1 -induced cellular EDA + fibronectin RNA and secreted EDA + fibronectin protein (assessed by western immunoblotting and immunocytochemistry) in human proximal tubule cells in an in vitro cell culture model. The effect was selective for EDA + exon with no effect on EDB + fibronectin RNA and total fibronectin mRNA. Exogenous TGFβ1 induced endogenous TGFβ, αSMA, MMP2, MMP9 and Col I mRNA. TGFβ1 treatment for 48h reduced the expression of K-Cadherin and increased the expression of connexin-43. These TGFβ1-induced pro-fibrotic changes were attenuated by ASO5 treatment. 48 h after the removal of exogenous TGFβ, further increases in αSMA, MMP2, MMP9 was observed; ASO5 significantly inhibited this subsequent increase. ASO5 treatment also significantly inhibited ability of the cell culture medium harvested at the end of the experiment (96h) to stimulate SMAD3 reporter cells. The role of endogenous TGFβ1 was confirmed by the use of a TGFβ receptor inhibitor. Our results demonstrate a critical role of FN EDA+ in a cycle of TGFβ driven pro-fibrotic responses in human PTEC and blocking its production with ASO technology offers a potential therapy to interrupt this vicious circle and hence limit the progression of renal fibrosis.
Collapse
Affiliation(s)
- Mysore Keshavmurthy Phanish
- SWT Institute for Renal Research, Renal Unit, St Helier Hospital, Epsom and St Helier University Hospitals NHS Trust, London, UK; St Georges' University of London, London, UK.
| | - Felicia Heidebrecht
- SWT Institute for Renal Research, Renal Unit, St Helier Hospital, Epsom and St Helier University Hospitals NHS Trust, London, UK
| | - Michaela Jackson
- IONIS Pharmaceuticals, 2855, Gazelle Ct, Carlsbad, CA 92010, USA
| | - Frank Rigo
- IONIS Pharmaceuticals, 2855, Gazelle Ct, Carlsbad, CA 92010, USA
| | - Mark Edward Carl Dockrell
- SWT Institute for Renal Research, Renal Unit, St Helier Hospital, Epsom and St Helier University Hospitals NHS Trust, London, UK; St Georges' University of London, London, UK.
| |
Collapse
|
2
|
Mehta P, Chattopadhyay P, Ravi V, Tarai B, Budhiraja S, Pandey R. SARS-CoV-2 infection severity and mortality is modulated by repeat-mediated regulation of alternative splicing. Microbiol Spectr 2023; 11:e0135123. [PMID: 37604131 PMCID: PMC10580830 DOI: 10.1128/spectrum.01351-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/16/2023] [Indexed: 08/23/2023] Open
Abstract
Like single-stranded RNA viruses, SARS-CoV-2 hijacks the host transcriptional machinery for its own replication. Numerous traditional differential gene expression-based investigations have examined the diverse clinical symptoms caused by SARS-CoV-2 infection. The virus, on the other hand, also affects the host splicing machinery, causing host transcriptional dysregulation, which can lead to diverse clinical outcomes. Hence, in this study, we performed host transcriptome sequencing of 125 hospital-admitted COVID-19 patients to understand the transcriptomic differences between the severity sub-phenotypes of mild, moderate, severe, and mortality. We performed transcript-level differential expression analysis, investigated differential isoform usage, looked at the splicing patterns within the differentially expressed transcripts (DET), and elucidated the possible genome regulatory features. Our DTE analysis showed evidence of diminished transcript length and diversity as well as altered promoter site usage in the differentially expressed protein-coding transcripts in the COVID-19 mortality patients. We also investigated the potential mechanisms driving the alternate splicing and discovered a compelling differential enrichment of repeats in the promoter region and a specific enrichment of SINE (Alu) near the splicing sites of differentially expressed transcripts. These findings suggested a repeat-mediated plausible regulation of alternative splicing as a potential modulator of COVID-19 disease severity. In this work, we emphasize the role of scarcely elucidated functional role of alternative splicing in influencing COVID-19 disease severity sub-phenotypes, clinical outcomes, and its putative mechanism. IMPORTANCE The wide range of clinical symptoms reported during the COVID-19 pandemic inherently highlights the numerous factors that influence the progression and prognosis of SARS-CoV-2 infection. While several studies have investigated the host response and discovered immunological dysregulation during severe infection, most of them have the common theme of focusing only up to the gene level. Viruses, especially RNA viruses, are renowned for hijacking the host splicing machinery for their own proliferation, which inadvertently puts pressure on the host transcriptome, exposing another side of the host response to the pathogen challenge. Therefore, in this study, we examine host response at the transcript-level to discover a transcriptional difference that culminates in differential gene-level expression. Importantly, this study highlights diminished transcript diversity and possible regulation of transcription by differentially abundant repeat elements near the promoter region and splicing sites in COVID-19 mortality patients, which together with differentially expressed isoforms hold the potential to elaborate disease severity and outcome.
Collapse
Affiliation(s)
- Priyanka Mehta
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Partha Chattopadhyay
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Varsha Ravi
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
| | - Bansidhar Tarai
- Max Super Speciality Hospital (A Unit of Devki Devi Foundation), Max Healthcare, Delhi, India
| | - Sandeep Budhiraja
- Max Super Speciality Hospital (A Unit of Devki Devi Foundation), Max Healthcare, Delhi, India
| | - Rajesh Pandey
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
3
|
Network-based method for drug target discovery at the isoform level. Sci Rep 2019; 9:13868. [PMID: 31554914 PMCID: PMC6761107 DOI: 10.1038/s41598-019-50224-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 09/06/2019] [Indexed: 02/06/2023] Open
Abstract
Identification of primary targets associated with phenotypes can facilitate exploration of the underlying molecular mechanisms of compounds and optimization of the structures of promising drugs. However, the literature reports limited effort to identify the target major isoform of a single known target gene. The majority of genes generate multiple transcripts that are translated into proteins that may carry out distinct and even opposing biological functions through alternative splicing. In addition, isoform expression is dynamic and varies depending on the developmental stage and cell type. To identify target major isoforms, we integrated a breast cancer type-specific isoform coexpression network with gene perturbation signatures in the MCF7 cell line in the Connectivity Map database using the ‘shortest path’ drug target prioritization method. We used a leukemia cancer network and differential expression data for drugs in the HL-60 cell line to test the robustness of the detection algorithm for target major isoforms. We further analyzed the properties of target major isoforms for each multi-isoform gene using pharmacogenomic datasets, proteomic data and the principal isoforms defined by the APPRIS and STRING datasets. Then, we tested our predictions for the most promising target major protein isoforms of DNMT1, MGEA5 and P4HB4 based on expression data and topological features in the coexpression network. Interestingly, these isoforms are not annotated as principal isoforms in APPRIS. Lastly, we tested the affinity of the target major isoform of MGEA5 for streptozocin through in silico docking. Our findings will pave the way for more effective and targeted therapies via studies of drug targets at the isoform level.
Collapse
|
4
|
Singh RN, Singh NN. A novel role of U1 snRNP: Splice site selection from a distance. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:634-642. [PMID: 31042550 DOI: 10.1016/j.bbagrm.2019.04.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 04/15/2019] [Accepted: 04/18/2019] [Indexed: 12/23/2022]
Abstract
Removal of introns by pre-mRNA splicing is fundamental to gene function in eukaryotes. However, understanding the mechanism by which exon-intron boundaries are defined remains a challenging endeavor. Published reports support that the recruitment of U1 snRNP at the 5'ss marked by GU dinucleotides defines the 5'ss as well as facilitates 3'ss recognition through cross-exon interactions. However, exceptions to this rule exist as U1 snRNP recruited away from the 5'ss retains the capability to define the splice site, where the cleavage takes place. Independent reports employing exon 7 of Survival Motor Neuron (SMN) genes suggest a long-distance effect of U1 snRNP on splice site selection upon U1 snRNP recruitment at target sequences with or without GU dinucleotides. These findings underscore that sequences distinct from the 5'ss may also impact exon definition if U1 snRNP is recruited to them through partial complementarity with the U1 snRNA. In this review we discuss the expanded role of U1 snRNP in splice-site selection due to U1 ability to be recruited at more sites than predicted solely based on GU dinucleotides.
Collapse
Affiliation(s)
- Ravindra N Singh
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States of America.
| | - Natalia N Singh
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States of America
| |
Collapse
|
5
|
Voltage-Dependent Sarcolemmal Ion Channel Abnormalities in the Dystrophin-Deficient Heart. Int J Mol Sci 2018; 19:ijms19113296. [PMID: 30360568 PMCID: PMC6274787 DOI: 10.3390/ijms19113296] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/18/2018] [Accepted: 10/19/2018] [Indexed: 12/28/2022] Open
Abstract
Mutations in the gene encoding for the intracellular protein dystrophin cause severe forms of muscular dystrophy. These so-called dystrophinopathies are characterized by skeletal muscle weakness and degeneration. Dystrophin deficiency also gives rise to considerable complications in the heart, including cardiomyopathy development and arrhythmias. The current understanding of the pathomechanisms in the dystrophic heart is limited, but there is growing evidence that dysfunctional voltage-dependent ion channels in dystrophin-deficient cardiomyocytes play a significant role. Herein, we summarize the current knowledge about abnormalities in voltage-dependent sarcolemmal ion channel properties in the dystrophic heart, and discuss the potentially underlying mechanisms, as well as their pathophysiological relevance.
Collapse
|
6
|
Safikhani Z, Smirnov P, Thu KL, Silvester J, El-Hachem N, Quevedo R, Lupien M, Mak TW, Cescon D, Haibe-Kains B. Gene isoforms as expression-based biomarkers predictive of drug response in vitro. Nat Commun 2017; 8:1126. [PMID: 29066719 PMCID: PMC5655668 DOI: 10.1038/s41467-017-01153-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 08/23/2017] [Indexed: 01/09/2023] Open
Abstract
Next-generation sequencing technologies have recently been used in pharmacogenomic studies to characterize large panels of cancer cell lines at the genomic and transcriptomic levels. Among these technologies, RNA-sequencing enable profiling of alternatively spliced transcripts. Given the high frequency of mRNA splicing in cancers, linking this feature to drug response will open new avenues of research in biomarker discovery. To identify robust transcriptomic biomarkers for drug response across studies, we develop a meta-analytical framework combining the pharmacological data from two large-scale drug screening datasets. We use an independent pan-cancer pharmacogenomic dataset to test the robustness of our candidate biomarkers across multiple cancer types. We further analyze two independent breast cancer datasets and find that specific isoforms of IGF2BP2, NECTIN4, ITGB6, and KLHDC9 are significantly associated with AZD6244, lapatinib, erlotinib, and paclitaxel, respectively. Our results support isoform expressions as a rich resource for biomarkers predictive of drug response.
Collapse
Affiliation(s)
- Zhaleh Safikhani
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, ON, Canada, M5G1L7
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON, Canada, M5G1L7
| | - Petr Smirnov
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, ON, Canada, M5G1L7
| | - Kelsie L Thu
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, ON, Canada, M5G1L7
- Institut de Recherches Cliniques de Montréal, 110 Pine Avenue West, Montreal, QC, Canada, H2W 1R7
| | - Jennifer Silvester
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, ON, Canada, M5G1L7
- Institut de Recherches Cliniques de Montréal, 110 Pine Avenue West, Montreal, QC, Canada, H2W 1R7
| | - Nehme El-Hachem
- Institut de Recherches Cliniques de Montréal, 110 Pine Avenue West, Montreal, QC, Canada, H2W 1R7
| | - Rene Quevedo
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, ON, Canada, M5G1L7
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON, Canada, M5G1L7
| | - Mathieu Lupien
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, ON, Canada, M5G1L7
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON, Canada, M5G1L7
| | - Tak W Mak
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, ON, Canada, M5G1L7
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON, Canada, M5G1L7
- Campbell Family Institute for Breast Cancer Research, 620 University Avenue, Toronto, ON, Canada, M5G2C1
| | - David Cescon
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, ON, Canada, M5G1L7
- Campbell Family Institute for Breast Cancer Research, 620 University Avenue, Toronto, ON, Canada, M5G2C1
- Division of Medical Oncology and Hematology, Department of Medicine, University of Toronto, 27 King's College Circle, Toronto, ON, Canada, M5S 1A1
| | - Benjamin Haibe-Kains
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, ON, Canada, M5G1L7.
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON, Canada, M5G1L7.
- Department of Computer Science, University of Toronto, 10 King's College Road, Toronto, ON, Canada, M5S 3G4.
- Ontario Institute of Cancer Research, 661 University Avenue, Suite 510, Toronto, ON, Canada, M5G 0A3.
| |
Collapse
|
7
|
Smith RM. Advancing psychiatric pharmacogenomics using drug development paradigms. Pharmacogenomics 2017; 18:1459-1467. [PMID: 28975860 DOI: 10.2217/pgs-2017-0104] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Drugs used to treat psychiatric disorders, even when taken as directed, fail to provide adequate relief for a sizeable proportion of patients. Despite our advancements in understanding human genetics and development of high-throughput tools to probe variation, pharmacogenomics has yielded marginal ability to predict drug response for psychiatric disorders. Here, I review the current pharmacogenomics paradigm, identifying opportunities to incorporate drug development strategies designed to increase the probability of delivering a successful molecule to the clinic. This includes using in-depth pharmacokinetic profiles, clear measures of target engagement and target-specific pharmacodynamic responses orthogonal to clinical response. The complex pharmacological profiles psychiatric drugs require re-examination of simplified clinical response-oriented pharmacogenetic hypotheses, in favor of a more complete patient profile.
Collapse
Affiliation(s)
- Ryan M Smith
- Division of Pharmaceutics & Translational Therapeutics, Department of Pharmaceutical Sciences & Experimental Therapeutics, The University of Iowa, College of Pharmacy, 115 South Grand Avenue, S427 Pharmacy Building, Iowa City, IA 52242, USA
| |
Collapse
|
8
|
Sá ACC, Sadee W, Johnson JA. Whole Transcriptome Profiling: An RNA-Seq Primer and Implications for Pharmacogenomics Research. Clin Transl Sci 2017; 11:153-161. [PMID: 28945944 PMCID: PMC5866981 DOI: 10.1111/cts.12511] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/03/2017] [Indexed: 12/16/2022] Open
Affiliation(s)
- Ana Caroline C Sá
- Center for Pharmacogenomics & Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, Florida, USA.,Genetics & Genomic Graduate Program, Genetics Institute, University of Florida, Gainesville, Florida, USA
| | - Wolfgang Sadee
- Center for Pharmacogenomics, Department of Cancer Biology and Genetic, College of Medicine, Ohio State University, Columbus, Ohio, USA
| | - Julie A Johnson
- Center for Pharmacogenomics & Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, Florida, USA.,Genetics & Genomic Graduate Program, Genetics Institute, University of Florida, Gainesville, Florida, USA.,Division of Cardiovascular Medicine, Colleges of Pharmacy and Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
9
|
Hassani D, Khalid M, Bilal M, Zhang YD, Huang D. Pentatricopeptide Repeat-directed RNA Editing and Their Biomedical Applications. INT J PHARMACOL 2017. [DOI: 10.3923/ijp.2017.762.772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
10
|
Steward CA, Parker APJ, Minassian BA, Sisodiya SM, Frankish A, Harrow J. Genome annotation for clinical genomic diagnostics: strengths and weaknesses. Genome Med 2017; 9:49. [PMID: 28558813 PMCID: PMC5448149 DOI: 10.1186/s13073-017-0441-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The Human Genome Project and advances in DNA sequencing technologies have revolutionized the identification of genetic disorders through the use of clinical exome sequencing. However, in a considerable number of patients, the genetic basis remains unclear. As clinicians begin to consider whole-genome sequencing, an understanding of the processes and tools involved and the factors to consider in the annotation of the structure and function of genomic elements that might influence variant identification is crucial. Here, we discuss and illustrate the strengths and weaknesses of approaches for the annotation and classification of important elements of protein-coding genes, other genomic elements such as pseudogenes and the non-coding genome, comparative-genomic approaches for inferring gene function, and new technologies for aiding genome annotation, as a practical guide for clinicians when considering pathogenic sequence variation. Complete and accurate annotation of structure and function of genome features has the potential to reduce both false-negative (from missing annotation) and false-positive (from incorrect annotation) errors in causal variant identification in exome and genome sequences. Re-analysis of unsolved cases will be necessary as newer technology improves genome annotation, potentially improving the rate of diagnosis.
Collapse
Affiliation(s)
- Charles A Steward
- Congenica Ltd, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1DR, UK. .,The Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.
| | | | - Berge A Minassian
- Department of Pediatrics (Neurology), University of Texas Southwestern, Dallas, TX, USA.,Program in Genetics and Genome Biology and Department of Paediatrics (Neurology), The Hospital for Sick Children and University of Toronto, Toronto, Canada
| | - Sanjay M Sisodiya
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, WC1N 3BG, UK.,Chalfont Centre for Epilepsy, Chesham Lane, Chalfont St Peter, Buckinghamshire, SL9 0RJ, UK
| | - Adam Frankish
- The Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.,European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Jennifer Harrow
- The Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.,Illumina Inc, Great Chesterford, Essex, CB10 1XL, UK
| |
Collapse
|
11
|
Hiding in the Shadows: CPOX Expression and 5-ALA Induced Fluorescence in Human Glioma Cells. Mol Neurobiol 2016; 54:5699-5708. [PMID: 27644131 DOI: 10.1007/s12035-016-0109-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 09/06/2016] [Indexed: 10/21/2022]
Abstract
Protoporphyrin IX (PpIX) is widely used in photodynamic diagnosis. To date, the details of molecular mechanisms underlying PpIX accumulation in malignant cells after 5-ALA administration remain unclear. The fluorescence of PpIX was studied in human glioma cells. Several cell cultures were established from glioma tumor tissue to study the differences between fluorescence-positive and fluorescence-negative human glioma tumors. The cell cultures demonstrated fluorescence profiles similar to those of source tumor tissues, which allows us to use these cultures in experimental research. Dynamics of the rates of synthesis and degradation of fluorescent protoporphyrin IX was studied in the cultures obtained. In addition, the expression of CPOX, an enzyme involved in PpIX synthesis, was evaluated. mRNA levels of heme biosynthesis enzymes were analyzed, and PpIX fluorescence proved to correlate with the CPOX protein level, whereas no such correlation was observed at the mRNA level. Fluorescence intensity decreased at low levels of the enzyme, which indicates its critical role in PpIX fluorescence. Finally, the fluorescence intensity proved to correlate with the proliferative activity.
Collapse
|
12
|
Regan PM, Langford TD, Khalili K. Regulation and Functional Implications of Opioid Receptor Splicing in Opioid Pharmacology and HIV Pathogenesis. J Cell Physiol 2016; 231:976-85. [PMID: 26529364 PMCID: PMC4728022 DOI: 10.1002/jcp.25237] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 11/02/2015] [Indexed: 12/18/2022]
Abstract
Despite the identification and characterization of four opioid receptor subtypes and the genes from which they are encoded, pharmacological data does not conform to the predications of a four opioid receptor model. Instead, current studies of opioid pharmacology suggest the existence of additional receptor subtypes; however, no additional opioid receptor subtype has been identified to date. It is now understood that this discrepancy is due to the generation of multiple isoforms of opioid receptor subtypes. While several mechanisms are utilized to generate these isoforms, the primary mechanism involves alternative splicing of the pre-mRNA transcript. Extensive alternative splicing patterns for opioid receptors have since been identified and discrepancies in opioid pharmacology are now partially attributed to variable expression of these isoforms. Recent studies have been successful in characterizing the localization of these isoforms as well as their specificity in ligand binding; however, the regulation of opioid receptor splicing specificity is poorly characterized. Furthermore, the functional significance of individual receptor isoforms and the extent to which opioid- and/or HIV-mediated changes in the opioid receptor isoform profile contributes to altered opioid pharmacology or the well-known physiological role of opioids in the exacerbation of HIV neurocognitive dysfunction is unknown. As such, the current review details constitutive splicing mechanisms as well as the specific architecture of opioid receptor genes, transcripts, and receptors in order to highlight the current understanding of opioid receptor isoforms, potential mechanisms of their regulation and signaling, and their functional significance in both opioid pharmacology and HIV-associated neuropathology.
Collapse
Affiliation(s)
- Patrick M. Regan
- Department of Neuroscience and Center for Neurovirology, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - T. Dianne Langford
- Department of Neuroscience and Center for Neurovirology, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Kamel Khalili
- Department of Neuroscience and Center for Neurovirology, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
13
|
Camacho Londoño J, Philipp SE. A reliable method for quantification of splice variants using RT-qPCR. BMC Mol Biol 2016; 17:8. [PMID: 26979160 PMCID: PMC4793508 DOI: 10.1186/s12867-016-0060-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 03/03/2016] [Indexed: 12/19/2022] Open
Abstract
Background The majority of protein isoforms arise from alternative splicing of the encoding primary RNA transcripts. To understand the significance of single splicing events, reliable techniques are needed to determine their incidence. However, existing methods are labour-intensive, error-prone or of limited use. Results Here, we present an improved method to determine the relative incidence of transcripts that arise from alternative splicing at a single site. Splice variants were quantified within a single sample using one-step reverse transcription quantitative PCR. Amplification products obtained with variant specific primer pairs were compared to those obtained with primer pairs common to both variants. The identities of variant specific amplicons were simultaneously verified by melt curve analysis. Independent calculations of the relative incidence of each variant were performed. Since the relative incidences of variants have to add upto 100 %, the method provides an internal control to monitor experimental errors and uniform reverse transcription. The reliability of the method was tested using mixtures of cDNA templates as well as RNA samples from different sources. Conclusion The method described here, is easy to set up and does not need unrelated reference genes and time consuming, error-prone standard curves. It provides a reliable and precise technique to distinguish small differences of the relative incidence of two splice variants.
Collapse
Affiliation(s)
- Julia Camacho Londoño
- Experimentelle und Klinische Pharmakologie und Toxikologie, Universität des Saarlandes, 66421, Homburg, Germany
| | - Stephan E Philipp
- Experimentelle und Klinische Pharmakologie und Toxikologie, Universität des Saarlandes, 66421, Homburg, Germany.
| |
Collapse
|
14
|
Experimental approaches to studying the nature and impact of splicing variation in zebrafish. Methods Cell Biol 2016; 135:259-88. [PMID: 27443930 DOI: 10.1016/bs.mcb.2016.02.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
From a fixed number of genes carried in all cells, organisms create considerable diversity in cellular phenotype through differential regulation of gene expression. One prevalent source of transcriptome diversity is alternative pre-mRNA splicing, which is manifested in many different forms. Zebrafish models of splicing dysfunction due to mutated spliceosome components provide opportunity to link biochemical analyses of spliceosome structure and function with whole organism phenotypic outcomes. Drawing from experience with two zebrafish mutants: cephalophŏnus (a prpf8 mutant, isolated for defects in granulopoiesis) and caliban (a rnpc3 mutant, isolated for defects in digestive organ development), we describe the use of glycerol gradient sedimentation and native gel electrophoresis to resolve components of aberrant splicing complexes. We also describe how RNAseq can be employed to examine relatively rare alternative splicing events including intron retention. Such experimental approaches in zebrafish can promote understanding of how splicing variation and dysfunction contribute to phenotypic diversity and disease pathogenesis.
Collapse
|
15
|
Ohya S, Kito H, Hatano N, Muraki K. Recent advances in therapeutic strategies that focus on the regulation of ion channel expression. Pharmacol Ther 2016; 160:11-43. [PMID: 26896566 DOI: 10.1016/j.pharmthera.2016.02.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A number of different ion channel types are involved in cell signaling networks, and homeostatic regulatory mechanisms contribute to the control of ion channel expression. Profiling of global gene expression using microarray technology has recently provided novel insights into the molecular mechanisms underlying the homeostatic and pathological control of ion channel expression. It has demonstrated that the dysregulation of ion channel expression is associated with the pathogenesis of neural, cardiovascular, and immune diseases as well as cancers. In addition to the transcriptional, translational, and post-translational regulation of ion channels, potentially important evidence on the mechanisms controlling ion channel expression has recently been accumulated. The regulation of alternative pre-mRNA splicing is therefore a novel therapeutic strategy for the treatment of dominant-negative splicing disorders. Epigenetic modification plays a key role in various pathological conditions through the regulation of pluripotency genes. Inhibitors of pre-mRNA splicing and histone deacetyalase/methyltransferase have potential as potent therapeutic drugs for cancers and autoimmune and inflammatory diseases. Moreover, membrane-anchoring proteins, lysosomal and proteasomal degradation-related molecules, auxiliary subunits, and pharmacological agents alter the protein folding, membrane trafficking, and post-translational modifications of ion channels, and are linked to expression-defect channelopathies. In this review, we focused on recent insights into the transcriptional, spliceosomal, epigenetic, and proteasomal regulation of ion channel expression: Ca(2+) channels (TRPC/TRPV/TRPM/TRPA/Orai), K(+) channels (voltage-gated, KV/Ca(2+)-activated, KCa/two-pore domain, K2P/inward-rectifier, Kir), and Ca(2+)-activated Cl(-) channels (TMEM16A/TMEM16B). Furthermore, this review highlights expression of these ion channels in expression-defect channelopathies.
Collapse
Affiliation(s)
- Susumu Ohya
- Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan.
| | - Hiroaki Kito
- Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Noriyuki Hatano
- Laboratory of Cellular Pharmacology, School of Pharmacy, Aichi-Gakuin University, Nagoya 464-8650, Japan
| | - Katsuhiko Muraki
- Laboratory of Cellular Pharmacology, School of Pharmacy, Aichi-Gakuin University, Nagoya 464-8650, Japan.
| |
Collapse
|
16
|
Transcriptomic variation of pharmacogenes in multiple human tissues and lymphoblastoid cell lines. THE PHARMACOGENOMICS JOURNAL 2016; 17:137-145. [PMID: 26856248 PMCID: PMC4980276 DOI: 10.1038/tpj.2015.93] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 11/06/2015] [Accepted: 11/13/2015] [Indexed: 12/15/2022]
Abstract
Variation in the expression level and activity of genes involved in drug disposition and action (‘pharmacogenes') can affect drug response and toxicity, especially when in tissues of pharmacological importance. Previous studies have relied primarily on microarrays to understand gene expression differences, or have focused on a single tissue or small number of samples. The goal of this study was to use RNA-sequencing (RNA-seq) to determine the expression levels and alternative splicing of 389 Pharmacogenomics Research Network pharmacogenes across four tissues (liver, kidney, heart and adipose) and lymphoblastoid cell lines, which are used widely in pharmacogenomics studies. Analysis of RNA-seq data from 139 different individuals across the 5 tissues (20–45 individuals per tissue type) revealed substantial variation in both expression levels and splicing across samples and tissue types. Comparison with GTEx data yielded a consistent picture. This in-depth exploration also revealed 183 splicing events in pharmacogenes that were previously not annotated. Overall, this study serves as a rich resource for the research community to inform biomarker and drug discovery and use.
Collapse
|
17
|
Cooper-DeHoff RM, Johnson JA. Hypertension pharmacogenomics: in search of personalized treatment approaches. Nat Rev Nephrol 2016; 12:110-22. [PMID: 26592190 PMCID: PMC4778736 DOI: 10.1038/nrneph.2015.176] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cardiovascular and renal diseases are associated with many risk factors, of which hypertension is one of the most prevalent. Worldwide, blood pressure control is only achieved in ∼50% of those treated for hypertension, despite the availability of a considerable number of antihypertensive drugs from different pharmacological classes. Although many reasons exist for poor blood pressure control, a likely contributor is the inability to predict to which antihypertensive drug an individual is most likely to respond. Hypertension pharmacogenomics and other 'omics' technologies have the potential to identify genetic signals that are predictive of response or adverse outcome to particular drugs, and guide selection of hypertension treatment for a given individual. Continued research in this field will enhance our understanding of how to maximally deploy the various antihypertensive drug classes to optimize blood pressure response at the individual level. This Review summarizes the available literature on the most convincing genetic signals associated with antihypertensive drug responses and adverse cardiovascular outcomes. Future research in this area will be facilitated by enhancing collaboration between research groups through consortia such as the International Consortium for Antihypertensives Pharmacogenomics Studies, with the goal of translating replicated findings into clinical implementation.
Collapse
Affiliation(s)
- Rhonda M Cooper-DeHoff
- Department of Pharmacotherapy and Translational Research and Division of Cardiovascular Medicine, Colleges of Pharmacy and Medicine, University of Florida, PO Box 100484, 1600 SW Archer Road, Gainesville, Florida 32610-0484, USA
| | - Julie A Johnson
- Department of Pharmacotherapy and Translational Research and Division of Cardiovascular Medicine, Colleges of Pharmacy and Medicine, University of Florida, PO Box 100484, 1600 SW Archer Road, Gainesville, Florida 32610-0484, USA
| |
Collapse
|
18
|
Ruble CL, Smith RM, Calley J, Munsie L, Airey DC, Gao Y, Shin JH, Hyde TM, Straub RE, Weinberger DR, Nisenbaum LK. Genomic structure and expression of the human serotonin 2A receptor gene (HTR2A) locus: identification of novel HTR2A and antisense (HTR2A-AS1) exons. BMC Genet 2016; 17:16. [PMID: 26738766 PMCID: PMC4702415 DOI: 10.1186/s12863-015-0325-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 12/22/2015] [Indexed: 01/16/2023] Open
Abstract
Background The serotonin 2A receptor is widely implicated in genetic association studies and remains an important drug target for psychiatric, neurological, and cardiovascular conditions. RNA sequencing redefined the architecture of the serotonin 2A receptor gene (HTR2A), revealing novel mRNA transcript isoforms utilizing unannotated untranslated regions of the gene. Expression of these untranslated regions is modulated by common single nucleotide polymorphisms (SNPs), namely rs6311. Previous studies did not fully capture the complexity of the sense- and antisense-encoded transcripts with respect to novel exons in the HTR2A gene locus. Here, we comprehensively catalogued exons and RNA isoforms for both HTR2A and HTR2A-AS1 using RNA-Seq from human prefrontal cortex and multiple mouse tissues. We subsequently tested associations between expression of newfound gene features and common SNPs in humans. Results We find that the human HTR2A gene spans ~66 kilobases and consists of 7, rather than 4 exons. Furthermore, the revised human HTR2A-AS1 gene spans ~474 kilobases and consists of 18, rather than 3 exons. Three HTR2A exons directly overlap with HTR2A-AS1 exons, suggesting potential for complementary nucleotide interactions. The repertoire of possible mouse Htr2a splice isoforms is remarkably similar to humans and we also find evidence for overlapping sense-antisense transcripts in the same relative positions as the human transcripts. rs6311 and SNPs in high linkage disequilibrium are associated with HTR2A-AS1 expression, in addition to previously described associations with expression of the extended 5’ untranslated region of HTR2A. Conclusions Our proposed HTR2A and HTR2A-AS1 gene structures dramatically differ from current annotations, now including overlapping exons on the sense and anti-sense strands. We also find orthologous transcript isoforms expressed in mice, providing opportunities to elucidate the biological roles of the human isoforms using a model system. Associations between rs6311 and expression of HTR2A and HTR2A-AS1 suggest this polymorphism is capable of modulating the expression of the sense or antisense transcripts. Still unclear is whether these SNPs act directly on the expression of the sense or antisense transcripts and whether overlapping exons are capable of interacting through complimentary base-pairing. Additional studies are necessary to determine the extent and nature of interactions between the SNPs and the transcripts prior to interpreting these findings in the context of phenotypes associated with HTR2A. Electronic supplementary material The online version of this article (doi:10.1186/s12863-015-0325-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cara L Ruble
- Tailored Therapeutics, Lilly Corporate Center, Eli Lilly and Company, Indianapolis, IN, ᅟ.
| | - Ryan M Smith
- Tailored Therapeutics, Lilly Corporate Center, Eli Lilly and Company, Indianapolis, IN, ᅟ.
| | - John Calley
- Tailored Therapeutics, Lilly Corporate Center, Eli Lilly and Company, Indianapolis, IN, ᅟ.
| | - Leanne Munsie
- Tailored Therapeutics, Lilly Corporate Center, Eli Lilly and Company, Indianapolis, IN, ᅟ.
| | - David C Airey
- Tailored Therapeutics, Lilly Corporate Center, Eli Lilly and Company, Indianapolis, IN, ᅟ.
| | - Yuan Gao
- Lieber Institute for Brain Development, Baltimore, MD, ᅟ.
| | - Joo Heon Shin
- Lieber Institute for Brain Development, Baltimore, MD, ᅟ.
| | - Thomas M Hyde
- Lieber Institute for Brain Development, Baltimore, MD, ᅟ. .,Departments of Neurology, Psychiatry and Behavioral Sciences, John Hopkins University School of Medicine, Baltimore, MD, ᅟ.
| | | | - Daniel R Weinberger
- Lieber Institute for Brain Development, Baltimore, MD, ᅟ. .,Departments of Psychiatry, Neurology, Neuroscience, and the Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, ᅟ.
| | - Laura K Nisenbaum
- Tailored Therapeutics, Lilly Corporate Center, Eli Lilly and Company, Indianapolis, IN, ᅟ.
| |
Collapse
|
19
|
Endo K, Kurokawa N, Kito H, Nakakura S, Fujii M, Ohya S. Molecular identification of the dominant-negative, splicing isoform of the two-pore domain K(+) channel K(2P)5.1 in lymphoid cells and enhancement of its expression by splicing inhibition. Biochem Pharmacol 2015; 98:440-52. [PMID: 26475531 DOI: 10.1016/j.bcp.2015.10.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 10/01/2015] [Indexed: 12/20/2022]
Abstract
The two-pore domain background K(+) channel K2P5.1 is expected as a possible therapeutic target for autoimmune and inflammatory disorders and cancers because it plays an important role in maintaining the resting membrane potential and regulation of Ca(2+) signaling in T lymphocytes and cancer cells. However, the lack of selective K2P5.1 blockers has led to difficulties conducting experimental studies on this K(+) channel. We identified a novel splicing isoform of K2P5.1, K2P5.1B from the mammalian spleen, which lacked the N-terminus of full-length K2P5.1A. A co-immunoprecipitation assay using mice spleen lysates revealed an interaction between K2P5.1A and K2P5.1B in the cytoplasmic C-terminal domain. In a heterologous HEK293 expression system, K2P5.1B inhibited the trafficking of K2P5.1A to the plasma membrane. The alkaline pHe-induced hyperpolarizing response was significantly suppressed in K2P5.1B-transfected human leukemia K562 cells. Enhancement in cell proliferation by the overexpression of K2P5.1A in K562 was significantly prevented by the transfection of K2P5.1B. The spliceosome inhibitor pladienolide B significantly enhanced the relative expression of K2P5.1B in K562, resulting in decreases in the activity of K2P5.1A. K2P5.1B suppresses the function of the K2P5.1 K(+) channel in a dominant-negative manner, suggesting that the mRNA splicing mechanisms underlying the transcriptional regulation of K2P5.1B may be a new therapeutic strategy for autoimmune and inflammatory disorders and cancers.
Collapse
Affiliation(s)
- Kyoko Endo
- Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan.
| | - Natsumi Kurokawa
- Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan.
| | - Hiroaki Kito
- Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan.
| | - Sawa Nakakura
- Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan.
| | - Masanori Fujii
- Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan.
| | - Susumu Ohya
- Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan.
| |
Collapse
|
20
|
Iancu OD, Colville A, Oberbeck D, Darakjian P, McWeeney SK, Hitzemann R. Cosplicing network analysis of mammalian brain RNA-Seq data utilizing WGCNA and Mantel correlations. Front Genet 2015; 6:174. [PMID: 26029240 PMCID: PMC4429622 DOI: 10.3389/fgene.2015.00174] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 04/21/2015] [Indexed: 01/06/2023] Open
Abstract
Across species and tissues and especially in the mammalian brain, production of gene isoforms is widespread. While gene expression coordination has been previously described as a scale-free coexpression network, the properties of transcriptome-wide isoform production coordination have been less studied. Here we evaluate the system-level properties of cosplicing in mouse, macaque, and human brain gene expression data using a novel network inference procedure. Genes are represented as vectors/lists of exon counts and distance measures sensitive to exon inclusion rates quantifies differences across samples. For all gene pairs, distance matrices are correlated across samples, resulting in cosplicing or cotranscriptional network matrices. We show that networks including cosplicing information are scale-free and distinct from coexpression. In the networks capturing cosplicing we find a set of novel hubs with unique characteristics distinguishing them from coexpression hubs: heavy representation in neurobiological functional pathways, strong overlap with markers of neurons and neuroglia, long coding lengths, and high number of both exons and annotated transcripts. Further, the cosplicing hubs are enriched in genes associated with autism spectrum disorders. Cosplicing hub homologs across eukaryotes show dramatically increasing intronic lengths but stable coding region lengths. Shared transcription factor binding sites increase coexpression but not cosplicing; the reverse is true for splicing-factor binding sites. Genes with protein-protein interactions have strong coexpression and cosplicing. Additional factors affecting the networks include shared microRNA binding sites, spatial colocalization within the striatum, and sharing a chromosomal folding domain. Cosplicing network patterns remain relatively stable across species.
Collapse
Affiliation(s)
- Ovidiu D Iancu
- Department of Behavioral Neuroscience, Oregon Health & Science University Portland, OR, USA
| | - Alexandre Colville
- Department of Behavioral Neuroscience, Oregon Health & Science University Portland, OR, USA
| | - Denesa Oberbeck
- Department of Behavioral Neuroscience, Oregon Health & Science University Portland, OR, USA
| | - Priscila Darakjian
- Department of Behavioral Neuroscience, Oregon Health & Science University Portland, OR, USA
| | - Shannon K McWeeney
- Division of Biostatistics, Public Health and Preventative Medicine, Oregon Health & Science University Portland, OR, USA
| | - Robert Hitzemann
- Department of Behavioral Neuroscience, Oregon Health & Science University Portland, OR, USA ; Research Service, Veterans Affairs Medical Center Portland, OR, USA
| |
Collapse
|
21
|
Gene–gene interaction and RNA splicing profiles of MAP2K4 gene in rheumatoid arthritis. Clin Immunol 2015; 158:19-28. [DOI: 10.1016/j.clim.2015.02.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 02/04/2015] [Accepted: 02/17/2015] [Indexed: 01/12/2023]
|
22
|
Harrison PJ. The current and potential impact of genetics and genomics on neuropsychopharmacology. Eur Neuropsychopharmacol 2015; 25:671-81. [PMID: 23528807 DOI: 10.1016/j.euroneuro.2013.02.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 01/30/2013] [Accepted: 02/22/2013] [Indexed: 01/19/2023]
Abstract
One justification for the major scientific and financial investments in genetic and genomic studies in medicine is their therapeutic potential, both for revealing novel targets for drugs which treat the disease process, as well as allowing for more effective and safe use of existing medications. This review considers the extent to which this promise has yet been realised within psychopharmacology, how things are likely to develop in the foreseeable future, and the key issues involved. It draws primarily on examples from schizophrenia and its treatments. One observation is that there is evidence for a range of genetic influences on different aspects of psychopharmacology in terms of discovery science, but far less evidence that meets the standards required before such discoveries impact upon clinical practice. One reason is that results reveal complex genetic influences that are hard to replicate and usually of very small effect. Similarly, the slow progress being made in revealing the genes that underlie the major psychiatric syndromes hampers attempts to apply the findings to identify novel drug targets. Nevertheless, there are some intriguing positive findings of various kinds, and clear potential for genetics and genomics to play an increasing and major role in psychiatric drug discovery.
Collapse
Affiliation(s)
- Paul J Harrison
- Department of Psychiatry, University of Oxford, Oxford OX3 7JX, United Kingdom.
| |
Collapse
|
23
|
Kornegay JN, Spurney CF, Nghiem PP, Brinkmeyer-Langford CL, Hoffman EP, Nagaraju K. Pharmacologic management of Duchenne muscular dystrophy: target identification and preclinical trials. ILAR J 2015; 55:119-49. [PMID: 24936034 DOI: 10.1093/ilar/ilu011] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked human disorder in which absence of the protein dystrophin causes degeneration of skeletal and cardiac muscle. For the sake of treatment development, over and above definitive genetic and cell-based therapies, there is considerable interest in drugs that target downstream disease mechanisms. Drug candidates have typically been chosen based on the nature of pathologic lesions and presumed underlying mechanisms and then tested in animal models. Mammalian dystrophinopathies have been characterized in mice (mdx mouse) and dogs (golden retriever muscular dystrophy [GRMD]). Despite promising results in the mdx mouse, some therapies have not shown efficacy in DMD. Although the GRMD model offers a higher hurdle for translation, dogs have primarily been used to test genetic and cellular therapies where there is greater risk. Failed translation of animal studies to DMD raises questions about the propriety of methods and models used to identify drug targets and test efficacy of pharmacologic intervention. The mdx mouse and GRMD dog are genetically homologous to DMD but not necessarily analogous. Subcellular species differences are undoubtedly magnified at the whole-body level in clinical trials. This problem is compounded by disparate cultures in clinical trials and preclinical studies, pointing to a need for greater rigor and transparency in animal experiments. Molecular assays such as mRNA arrays and genome-wide association studies allow identification of genetic drug targets more closely tied to disease pathogenesis. Genes in which polymorphisms have been directly linked to DMD disease progression, as with osteopontin, are particularly attractive targets.
Collapse
|
24
|
Abstract
Over 100 loci are now associated with schizophrenia risk as identified by single nucleotide polymorphisms (SNPs) in genome-wide association studies. These findings mean that 'genes for schizophrenia' have unquestionably been found. However, many questions remain unanswered, including several which affect their therapeutic significance. The SNPs individually have minor effects, and even cumulatively explain only a modest fraction of the genetic predisposition. The remainder likely results from many more loci, from rare variants, and from gene-gene and gene-environment interactions. The risk SNPs are almost all non-coding, meaning that their biological significance is unclear; probably their effects are mediated via an influence on gene regulation, and emerging evidence suggests that some key molecular events occur during early brain development. The loci include novel genes of unknown function as well as genes and pathways previously implicated in the pathophysiology of schizophrenia, e.g. NMDA receptor signalling. Genes in the latter category have the clearer therapeutic potential, although even this will be a challenging process because of the many complexities concerning the genetic architecture and mediating mechanisms. This review summarises recent schizophrenia genetic findings and some key issues they raise, particularly with regard to their implications for identifying and validating novel drug targets.
Collapse
Affiliation(s)
- Paul J Harrison
- University Department of Psychiatry, Warneford Hospital, Oxford, UK
| |
Collapse
|
25
|
Tao R, Cousijn H, Jaffe AE, Burnet PWJ, Edwards F, Eastwood SL, Shin JH, Lane TA, Walker MA, Maher BJ, Weinberger DR, Harrison PJ, Hyde TM, Kleinman JE. Expression of ZNF804A in human brain and alterations in schizophrenia, bipolar disorder, and major depressive disorder: a novel transcript fetally regulated by the psychosis risk variant rs1344706. JAMA Psychiatry 2014; 71:1112-20. [PMID: 25162540 PMCID: PMC5894803 DOI: 10.1001/jamapsychiatry.2014.1079] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
IMPORTANCE The single-nucleotide polymorphism rs1344706 in the zinc finger protein 804A gene (ZNF804A) shows genome-wide association with schizophrenia and bipolar disorder. Little is known regarding the expression of ZNF804A and the functionality of rs1344706. OBJECTIVES To characterize ZNF804A expression in human brain and to investigate how it changes across the life span and how it is affected by rs1344706, schizophrenia, bipolar disorder, and major depressive disorder. DESIGN, SETTING, AND PARTICIPANTS Molecular and immunochemical methods were used to study ZNF804A messenger RNA (mRNA) and ZNF804A protein, respectively. ZNF804A transcripts were investigated using next-generation sequencing and polymerase chain reaction-based methods, and ZNF804A protein was investigated using Western blots and immunohistochemistry. Samples of dorsolateral prefrontal cortex and inferior parietal lobe tissue were interrogated from 697 participants between 14 weeks' gestational age and age 85 years, including patients with schizophrenia, bipolar disorder, or major depressive disorder. MAIN OUTCOMES AND MEASURES Quantitative measurements of ZNF804A mRNA and immunoreactivity, and the effect of diagnosis and rs1344706 genotype. RESULTS ZNF804A was expressed across the life span, with highest expression prenatally. An abundant and developmentally regulated truncated ZNF804A transcript was identified, missing exons 1 and 2 (ZNF804AE3E4) and predicted to encode a protein lacking the zinc finger domain. rs1344706 influenced expression of ZNF804AE3E4 mRNA in fetal brain (P = .02). In contrast, full-length ZNF804A showed no association with genotype (P > .05). ZNF804AE3E4 mRNA expression was decreased in patients with schizophrenia (P = .006) and increased in those with major depressive disorder (P < .001), and there was a genotype-by-diagnosis interaction in bipolar disorder (P = .002). ZNF804A immunoreactivity was detected in fetal and adult human cerebral cortex. It was localized primarily to pyramidal neurons, with cytoplasmic as well as dendritic and nuclear staining. No differences in ZNF804A-immunoreactive neurons were seen in schizophrenia or related to rs1344706 (P > .05). CONCLUSIONS AND RELEVANCE rs1344706 influences the expression of ZNF804AE3E4, a novel splice variant. The effect is limited to fetal brain and to this isoform. It may be part of the mechanism by which allelic variation in ZNF804A affects risk of psychosis. ZNF804A is translated in human brain, where its functions may extend beyond its predicted role as a transcription factor.
Collapse
Affiliation(s)
- Ran Tao
- Lieber Institute for Brain Development, Johns Hopkins University, Baltimore, Maryland
| | - Helena Cousijn
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Andrew E. Jaffe
- Lieber Institute for Brain Development, Johns Hopkins University, Baltimore, Maryland
| | - Philip W J Burnet
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Freya Edwards
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Sharon L Eastwood
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Joo Heon Shin
- Lieber Institute for Brain Development, Johns Hopkins University, Baltimore, Maryland
| | - Tracy A Lane
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Mary A Walker
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Brady J Maher
- Lieber Institute for Brain Development, Johns Hopkins University, Baltimore, Maryland
| | - Daniel R Weinberger
- Lieber Institute for Brain Development, Johns Hopkins University, Baltimore, Maryland
| | - Paul J Harrison
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Thomas M Hyde
- Lieber Institute for Brain Development, Johns Hopkins University, Baltimore, Maryland
| | - Joel E Kleinman
- Lieber Institute for Brain Development, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
26
|
Lee C, Mayfield RD, Harris RA. Altered gamma-aminobutyric acid type B receptor subunit 1 splicing in alcoholics. Biol Psychiatry 2014; 75:765-73. [PMID: 24209778 PMCID: PMC3999301 DOI: 10.1016/j.biopsych.2013.08.028] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 08/27/2013] [Accepted: 08/27/2013] [Indexed: 11/25/2022]
Abstract
BACKGROUND Chronic alcohol exposure can change splice variant expression. The gamma-aminobutyric acid type B (GABAB) receptor undergoes splicing and is an alcoholism treatment target, but there is little information about splicing changes in this receptor in alcoholics. We studied GABAB receptor subunit 1 (GABAB1) splicing in alcoholic postmortem brains. METHODS To maximize GABAB1 splice junction identification, we combined gene specific libraries with RNA-seq. Splice junctions and mapped reads were also found from intronic and intergenic regions. We compared GABAB1 splice junctions in prefrontal cortices from 14 alcoholic and 15 control subjects and introduced new strategies, reads per kilobase of splice junction model per million mapped reads and reads per kilobase of gene model per million mapped reads, for quantitating splice junction and gene expression. RESULTS Novel splice junction detection indicated that the GABAB1 gene is at least two times longer than the previously reported gene length. GABAB1 exon and intron expression data showed low expression at the 5' end exons and exon grouping. This indicated that there are short splicing variants in addition to GABAB receptor subunit GABAB1a, the longest known major transcript. We found that chronic alcohol altered exon/intron expression and splice junction levels. Decreased expression of the gamma-aminobutyric acid binding site, a transmembrane domain and a microRNA binding site may decrease normal GABAB1 transcript population and thereby decrease normal signal transduction in alcoholics. CONCLUSIONS We discovered novel, complex splicing of GABAB1 in human brain and showed that chronic alcohol produces additional splicing complexity.
Collapse
Affiliation(s)
- Changhoon Lee
- Waggoner Center for Alcohol and Addiction Research, Section of Neurobiology and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas.
| | - R Dayne Mayfield
- Waggoner Center for Alcohol and Addiction Research, Section of Neurobiology and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas
| | - R Adron Harris
- Waggoner Center for Alcohol and Addiction Research, Section of Neurobiology and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas
| |
Collapse
|
27
|
Iancu OD, Colville A, Darakjian P, Hitzemann R. Coexpression and cosplicing network approaches for the study of mammalian brain transcriptomes. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2014; 116:73-93. [PMID: 25172472 DOI: 10.1016/b978-0-12-801105-8.00004-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Next-generation sequencing experiments have demonstrated great potential for transcriptome profiling. While transcriptome sequencing greatly increases the level of biological detail, system-level analysis of these high-dimensional datasets is becoming essential. We illustrate gene network approaches to the analysis of transcriptional data, with particular focus on the advantage of RNA-Seq technology compared to microarray platforms. We introduce a novel methodology for constructing cosplicing networks, based on distance measures combined with matrix correlations. We find that the cosplicing network is distinct and complementary to the coexpression network, although it shares the scale-free properties. In the cosplicing network, we find a set of novel hubs that have unique characteristics distinguishing them from coexpression hubs: they are heavily represented in neurobiological functional pathways and have strong overlap with markers of neurons and neuroglia, long-coding lengths, and high number of both exons and annotated transcripts. We also find that gene networks are plastic in the face of genetic and environmental pressures.
Collapse
Affiliation(s)
- Ovidiu Dan Iancu
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, USA.
| | - Alexandre Colville
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, USA
| | - Priscila Darakjian
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, USA
| | - Robert Hitzemann
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, USA; Research Service, Veterans Affairs Medical Center, Portland, Oregon, USA
| |
Collapse
|
28
|
Liu H, Tang L. Mechano-regulation of alternative splicing. Curr Genomics 2013; 14:49-55. [PMID: 23997650 PMCID: PMC3580779 DOI: 10.2174/138920213804999156] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 11/22/2012] [Accepted: 12/23/2012] [Indexed: 01/29/2023] Open
Abstract
Alternative splicing contributes to the complexity of proteome by producing multiple mRNAs from a single gene. Affymetrix exon arrays and experiments in vivo or in vitro demonstrated that alternative splicing was regulated by mechanical stress. Expression of mechano-growth factor (MGF) which is the splicing isoform of insulin-like growth factor 1(IGF-1) and vascular endothelial growth factor (VEGF) splicing variants such as VEGF121, VEGF165, VEGF206, VEGF189, VEGF165 and VEGF145 are regulated by mechanical stress. However, the mechanism of this process is not yet clear. Increasing evidences showed that the possible mechanism is related to Ca2+ signal pathway and phosphorylation signal pathway. This review proposes possible mechanisms of mechanical splicing regulation. This will contribute to the biomechanical study of alternative splicing.
Collapse
Affiliation(s)
- Huan Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | | |
Collapse
|
29
|
Chen K, Deng S, Lu H, Zheng Y, Yang G, Kim D, Cao Q, Wu JQ. RNA-seq characterization of spinal cord injury transcriptome in acute/subacute phases: a resource for understanding the pathology at the systems level. PLoS One 2013; 8:e72567. [PMID: 23951329 PMCID: PMC3739761 DOI: 10.1371/journal.pone.0072567] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 07/13/2013] [Indexed: 12/29/2022] Open
Abstract
Spinal cord injury (SCI) is a devastating neurological disease without effective treatment. To generate a comprehensive view of the mechanisms involved in SCI pathology, we applied RNA-Sequencing (RNA-Seq) technology to characterize the temporal changes in global gene expression after contusive SCI in mice. We sequenced tissue samples from acute and subacute phases (2 days and 7 days after injury) and systematically characterized the transcriptomes with the goal of identifying pathways and genes critical in SCI pathology. The top enriched functional categories include “inflammation response,” “neurological disease,” “cell death and survival” and “nervous system development.” The top enriched pathways include LXR/RXR Activation and Atherosclerosis Signaling, etc. Furthermore, we developed a systems-based analysis framework in order to identify key determinants in the global gene networks of the acute and sub-acute phases. Some candidate genes that we identified have been shown to play important roles in SCI, which demonstrates the validity of our approach. There are also many genes whose functions in SCI have not been well studied and can be further investigated by future experiments. We have also incorporated pharmacogenomic information into our analyses. Among the genes identified, the ones with existing drug information can be readily tested in SCI animal models. Therefore, in this study we have described an example of how global gene profiling can be translated to identifying genes of interest for functional tests in the future and generating new hypotheses. Additionally, the RNA-Seq enables splicing isoform identification and the estimation of expression levels, thus providing useful information for increasing the specificity of drug design and reducing potential side effect. In summary, these results provide a valuable reference data resource for a better understanding of the SCI process in the acute and sub-acute phases.
Collapse
Affiliation(s)
- Kenian Chen
- The Vivian L. Smith Department of Neurosurgery, University of Texas Medical School at Houston, Houston, Texas, United States of America
- Center for Stem Cell and Regenerative Medicine, UT Brown Institution of Molecular Medicine, Houston, Texas, United States of America
| | - Shuyun Deng
- The Vivian L. Smith Department of Neurosurgery, University of Texas Medical School at Houston, Houston, Texas, United States of America
- Center for Stem Cell and Regenerative Medicine, UT Brown Institution of Molecular Medicine, Houston, Texas, United States of America
| | - Hezuo Lu
- The Vivian L. Smith Department of Neurosurgery, University of Texas Medical School at Houston, Houston, Texas, United States of America
- Center for Stem Cell and Regenerative Medicine, UT Brown Institution of Molecular Medicine, Houston, Texas, United States of America
| | - Yiyan Zheng
- The Vivian L. Smith Department of Neurosurgery, University of Texas Medical School at Houston, Houston, Texas, United States of America
- Center for Stem Cell and Regenerative Medicine, UT Brown Institution of Molecular Medicine, Houston, Texas, United States of America
| | - Guodong Yang
- The Vivian L. Smith Department of Neurosurgery, University of Texas Medical School at Houston, Houston, Texas, United States of America
- Center for Stem Cell and Regenerative Medicine, UT Brown Institution of Molecular Medicine, Houston, Texas, United States of America
| | - Dong Kim
- The Vivian L. Smith Department of Neurosurgery, University of Texas Medical School at Houston, Houston, Texas, United States of America
- Center for Stem Cell and Regenerative Medicine, UT Brown Institution of Molecular Medicine, Houston, Texas, United States of America
| | - Qilin Cao
- The Vivian L. Smith Department of Neurosurgery, University of Texas Medical School at Houston, Houston, Texas, United States of America
- Center for Stem Cell and Regenerative Medicine, UT Brown Institution of Molecular Medicine, Houston, Texas, United States of America
- * E-mail: ; (JQW) (QC)
| | - Jia Qian Wu
- The Vivian L. Smith Department of Neurosurgery, University of Texas Medical School at Houston, Houston, Texas, United States of America
- Center for Stem Cell and Regenerative Medicine, UT Brown Institution of Molecular Medicine, Houston, Texas, United States of America
- * E-mail: ; (JQW) (QC)
| |
Collapse
|
30
|
Tang JY, Lee JC, Hou MF, Wang CL, Chen CC, Huang HW, Chang HW. Alternative splicing for diseases, cancers, drugs, and databases. ScientificWorldJournal 2013; 2013:703568. [PMID: 23766705 PMCID: PMC3674688 DOI: 10.1155/2013/703568] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 04/30/2013] [Indexed: 01/05/2023] Open
Abstract
Alternative splicing is a major diversification mechanism in the human transcriptome and proteome. Several diseases, including cancers, have been associated with dysregulation of alternative splicing. Thus, correcting alternative splicing may restore normal cell physiology in patients with these diseases. This paper summarizes several alternative splicing-related diseases, including cancers and their target genes. Since new cancer drugs often target spliceosomes, several clinical drugs and natural products or their synthesized derivatives were analyzed to determine their effects on alternative splicing. Other agents known to have modulating effects on alternative splicing during therapeutic treatment of cancer are also discussed. Several commonly used bioinformatics resources are also summarized.
Collapse
Affiliation(s)
- Jen-Yang Tang
- Department of Radiation Oncology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Jin-Ching Lee
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Ming-Feng Hou
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 807, Taiwan
| | - Chun-Lin Wang
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu 300, Taiwan
| | - Chien-Chi Chen
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu 300, Taiwan
| | - Hurng-Wern Huang
- Institute of Biomedical Science, National Sun Yat-Sen University, Kaohsiung 807, Taiwan
| | - Hsueh-Wei Chang
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
31
|
RNA editing and drug discovery for cancer therapy. ScientificWorldJournal 2013; 2013:804505. [PMID: 23737728 PMCID: PMC3655661 DOI: 10.1155/2013/804505] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 04/08/2013] [Indexed: 12/26/2022] Open
Abstract
RNA editing is vital to provide the RNA and protein complexity to regulate the gene expression. Correct RNA editing maintains the cell function and organism development. Imbalance of the RNA editing machinery may lead to diseases and cancers. Recently, RNA editing has been recognized as a target for drug discovery although few studies targeting RNA editing for disease and cancer therapy were reported in the field of natural products. Therefore, RNA editing may be a potential target for therapeutic natural products. In this review, we provide a literature overview of the biological functions of RNA editing on gene expression, diseases, cancers, and drugs. The bioinformatics resources of RNA editing were also summarized.
Collapse
|
32
|
Gimba ER, Tilli TM. Human osteopontin splicing isoforms: known roles, potential clinical applications and activated signaling pathways. Cancer Lett 2012; 331:11-7. [PMID: 23246372 DOI: 10.1016/j.canlet.2012.12.003] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 12/04/2012] [Accepted: 12/04/2012] [Indexed: 12/18/2022]
Abstract
Human osteopontin is subject to alternative splicing, which generates three isoforms, termed OPNa, OPNb and OPNc. These variants show specific expression and roles in different cell contexts. We present an overview of current knowledge of the expression profile of human OPN splicing isoforms (OPN-SIs), their tissue-specific roles, and the pathways mediating their functional properties in different pathophysiological conditions. We also describe their putative application as biomarkers, and their potential use as therapeutic targets by using antibodies, oligonucleotides or siRNA molecules. This synthesis provides new clues for a better understanding of human OPN splice variants, their roles in normal and pathological conditions, and their possible clinical applications.
Collapse
Affiliation(s)
- E R Gimba
- Universidade Federal Fluminense/Polo Universitário de Rio das Ostras, Rua Recife s/n, CEP: 28890-000, Rio das Ostras, RJ, Brazil.
| | | |
Collapse
|
33
|
Abstract
This issue of Molecular Pharmacology is dedicated to Dr. Avram Goldstein, the journal's founding editor and one of the leaders in the development of modern pharmacology. This article focuses on his contributions to the discovery of the dynorphins and evidence that members of this family of opioid peptides are endogenous agonists for the kappa opioid receptor. In his original publication describing the purification and sequencing of dynorphin A, Avram described this peptide as "extraordinarily potent" ("dyn" from the Greek, dynamis = power and "orphin" for endogenous morphine peptide). The name originally referred to its high affinity and great potency in the bioassay that was used to follow its activity during purification, but the name has come to have a second meaning: studies of its physiologic function in brain continue to provide powerful insights to the molecular mechanisms controlling mood disorders and drug addiction. During the 30 years since its discovery, we have learned that the dynorphin peptides are released in brain during stress exposure. After they are released, they activate kappa opioid receptors distributed throughout the brain and spinal cord, where they trigger cellular responses resulting in different stress responses: analgesia, dysphoria-like behaviors, anxiety-like responses, and increased addiction behaviors in experimental animals. Avram predicted that a detailed molecular analysis of opiate drug actions would someday lead to better treatments for drug addiction, and he would be gratified to know that subsequent studies enabled by his discovery of the dynorphins resulted in insights that hold great promise for new treatments for addiction and depressive disorders.
Collapse
Affiliation(s)
- Charles Chavkin
- Department of Pharmacology, Box 357280, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
34
|
Abstract
A new generation of technologies commonly named omics permits assessment of the entirety of the components of biological systems and produces an explosion of data and a major shift in our concepts of disease. These technologies will likely shape the future of health care. One aspect of these advances is that the data generated document the uniqueness of each human being in regard to disease risk and treatment response. These developments have reemphasized the concept of personalized medicine. Here we review the impact of omics technologies on one key aspect of personalized medicine: the individual drug response. We describe how knowledge of different omics may affect treatment decisions, namely drug choice and drug dose, and how it can be used to improve clinical outcomes.
Collapse
Affiliation(s)
- Urs A Meyer
- Division of Pharmacology and Neurobiology, Biozentrum of the University of Basel, CH-4056 Basel, Switzerland.
| | | | | |
Collapse
|