1
|
Jones LP, Bergeron HC, Martin DE, Murray J, Sancilio FD, Tripp RA. Probenecid Inhibits Extracellular Signal-Regulated Kinase and c-Jun N-Terminal Kinase Mitogen-Activated Protein Kinase Pathways in Regulating Respiratory Syncytial Virus Response. Int J Mol Sci 2024; 25:12452. [PMID: 39596517 PMCID: PMC11594929 DOI: 10.3390/ijms252212452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/06/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
We examined the effect of probenecid in regulating the ERK and JNK downstream MAPK pathways affecting respiratory syncytial virus replication. BACKGROUND We have previously shown that probenecid inhibits RSV, influenza virus, and SARS-CoV-2 replication in vitro in preclinical animal models and in humans. In a Phase two randomized, placebo-controlled, single-blind, dose range-finding study using probenecid to treat non-hospitalized patients with symptomatic, mild-to-moderate COVID-19, we previously showed that a 1000 mg twice daily treatment for 5 days reduced the median time to viral clearance from 11 to 7 days, and a 500 mg twice daily treatment for 5 days reduced the time to viral clearance from 11 to 9 days more than the placebo. METHODS In this study, we sought to determine the mechanism of action of the probenecid inhibition of RSV replication in human respiratory epithelial (A549) cells. RESULTS We show that probenecid inhibits the RSV-induced phosphorylation of JNKs and ERKs and the downstream phosphorylation of c-jun, a component of the AP-1 transcription complex needed for virus replication. The inhibition of JNKs by probenecid reversed the repression of transcription factor HNF-4. CONCLUSION The probenecid inhibition of JNK and ERK phosphorylation involves the MAPK pathway that precludes virus replication.
Collapse
Affiliation(s)
- Les P. Jones
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA; (L.P.J.); (H.C.B.); (J.M.)
| | - Harrison C. Bergeron
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA; (L.P.J.); (H.C.B.); (J.M.)
| | | | - Jackelyn Murray
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA; (L.P.J.); (H.C.B.); (J.M.)
| | - Fred D. Sancilio
- Department of Chemistry and Biochemistry, Florida Atlantic University, Jupiter, FL 33431, USA;
| | - Ralph A. Tripp
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA; (L.P.J.); (H.C.B.); (J.M.)
- TrippBio, Inc., Jacksonville, FL 32256, USA;
| |
Collapse
|
2
|
Tang Z, Chen G, Chen S, Yao J, You L, Chen CYC. Modal-nexus auto-encoder for multi-modality cellular data integration and imputation. Nat Commun 2024; 15:9021. [PMID: 39424861 PMCID: PMC11489673 DOI: 10.1038/s41467-024-53355-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 10/02/2024] [Indexed: 10/21/2024] Open
Abstract
Heterogeneous feature spaces and technical noise hinder the cellular data integration and imputation. The high cost of obtaining matched data across modalities further restricts analysis. Thus, there's a critical need for deep learning approaches to effectively integrate and impute unpaired multi-modality single-cell data, enabling deeper insights into cellular behaviors. To address these issues, we introduce the Modal-Nexus Auto-Encoder (Monae). Leveraging regulatory relationships between modalities and employing contrastive learning within modality-specific auto-encoders, Monae enhances cell representations in the unified space. The integration capability of Monae furnishes it with modality-complementary cellular representations, enabling the generation of precise intra-modal and cross-modal imputation counts for extensive and complex downstream tasks. In addition, we develop Monae-E (Monae-Extension), a variant of Monae that can converge rapidly and support biological discoveries. Evaluations on various datasets have validated Monae and Monae-E's accuracy and robustness in multi-modality cellular data integration and imputation.
Collapse
Affiliation(s)
- Zhenchao Tang
- Artificial Intelligence Medical Research Center, School of Intelligent Systems Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
- AI for Science (AI4S)-Preferred Program, School of Electronic and Computer Engineering, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Guanxing Chen
- Artificial Intelligence Medical Research Center, School of Intelligent Systems Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
- AI for Science (AI4S)-Preferred Program, School of Electronic and Computer Engineering, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Shouzhi Chen
- Artificial Intelligence Medical Research Center, School of Intelligent Systems Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
- AI for Science (AI4S)-Preferred Program, School of Electronic and Computer Engineering, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | | | - Linlin You
- Artificial Intelligence Medical Research Center, School of Intelligent Systems Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China.
| | - Calvin Yu-Chian Chen
- AI for Science (AI4S)-Preferred Program, School of Electronic and Computer Engineering, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
- Department of Medical Research, China Medical University Hospital, Taichung, 40447, Taiwan.
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, 41354, Taiwan.
- Guangdong L-Med Biotechnology Co., Ltd., Meizhou, 514699, China.
| |
Collapse
|
3
|
Pernecker M, Ciarimboli G. Regulation of renal organic cation transporters. FEBS Lett 2024; 598:2328-2347. [PMID: 38831380 DOI: 10.1002/1873-3468.14943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/30/2024] [Accepted: 05/21/2024] [Indexed: 06/05/2024]
Abstract
Transporters for organic cations (OCs) facilitate exchange of positively charged molecules through the plasma membrane. Substrates for these transporters encompass neurotransmitters, metabolic byproducts, drugs, and xenobiotics. Consequently, these transporters actively contribute to the regulation of neurotransmission, cellular penetration and elimination process for metabolic products, drugs, and xenobiotics. Therefore, these transporters have significant physiological, pharmacological, and toxicological implications. In cells of renal proximal tubules, the vectorial secretion pathways for OCs involve expression of organic cation transporters (OCTs) and multidrug and toxin extrusion proteins (MATEs) on basolateral and apical membrane domains, respectively. This review provides an overview of documented regulatory mechanisms governing OCTs and MATEs. Additionally, regulation of these transporters under various pathological conditions is summarized. The expression and functionality of OCTs and MATEs are subject to diverse pre- and post-translational modifications, providing insights into their regulation in various pathological conditions. Typically, in diseases, downregulation of transporter expression is observed, probably as a protective mechanism to prevent additional damage to kidney tissue. This regulation may be attributed to the intricate network of modifications these transporters undergo, shedding light on their dynamic responses in pathological contexts.
Collapse
Affiliation(s)
- Moritz Pernecker
- Experimental Nephrology, Department of Internal Medicine D, University Hospital Münster, Germany
| | - Giuliano Ciarimboli
- Experimental Nephrology, Department of Internal Medicine D, University Hospital Münster, Germany
| |
Collapse
|
4
|
Marumo T, Yoshida N, Inoue N, Yamanouchi M, Ubara Y, Urakami S, Fujii T, Takazawa Y, Ohashi K, Kawarazaki W, Nishimoto M, Ayuzawa N, Hirohama D, Nagae G, Fujimoto M, Arai E, Kanai Y, Hoshino J, Fujita T. Aberrant proximal tubule DNA methylation underlies phenotypic changes related to kidney dysfunction in patients with diabetes. Am J Physiol Renal Physiol 2024; 327:F397-F411. [PMID: 38961842 DOI: 10.1152/ajprenal.00124.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/17/2024] [Accepted: 06/25/2024] [Indexed: 07/05/2024] Open
Abstract
Epigenetic mechanisms are considered to contribute to diabetic nephropathy by maintaining memory of poor glycemic control during the early stages of diabetes. However, DNA methylation changes in the human kidney are poorly characterized, because of the lack of cell type-specific analysis. We examined DNA methylation in proximal tubules (PTs) purified from patients with diabetic nephropathy and identified differentially methylated CpG sites, given the critical role of proximal tubules in the kidney injury. Hypermethylation was observed at CpG sites annotated to genes responsible for proximal tubule functions, including gluconeogenesis, nicotinamide adenine dinucleotide synthesis, transporters of glucose, water, phosphate, and drugs, in diabetic kidneys, whereas genes involved in oxidative stress and the cytoskeleton exhibited demethylation. Methylation levels of CpG sites annotated to ACTN1, BCAR1, MYH9, UBE4B, AFMID, TRAF2, TXNIP, FOXO3, and HNF4A were correlated with the estimated glomerular filtration rate, whereas methylation of the CpG site in RUNX1 was associated with interstitial fibrosis and tubular atrophy. Hypermethylation of G6PC and HNF4A was accompanied by decreased expression in diabetic kidneys. Proximal tubule-specific hypomethylation of metabolic genes related to HNF4A observed in control kidneys was compromised in diabetic kidneys, suggesting a role for aberrant DNA methylation in the dedifferentiation process. Multiple genes with aberrant DNA methylation in diabetes overlapped genes with altered expressions in maladaptive proximal tubule cells, including transcription factors PPARA and RREB1. In conclusion, DNA methylation derangement in the proximal tubules of patients with diabetes may drive phenotypic changes, characterized by inflammatory and fibrotic features, along with impaired function in metabolism and transport.NEW & NOTEWORTHY Cell type-specific DNA methylation patterns in the human kidney are not known. We examined DNA methylation in proximal tubules of patients with diabetic nephropathy and revealed that oxidative stress, cytoskeleton, and metabolism genes were aberrantly methylated. The results indicate that aberrant DNA methylation in proximal tubules underlies kidney dysfunction in diabetic nephropathy. Aberrant methylation could be a target for reversing memory of poor glycemic control.
Collapse
Affiliation(s)
- Takeshi Marumo
- Department of Pharmacology, School of Medicine, International University of Health and Welfare, Chiba, Japan
- Division of Clinical Epigenetics, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Naoto Yoshida
- Department of Pharmacology, School of Medicine, International University of Health and Welfare, Chiba, Japan
| | - Noriko Inoue
- Nephrology Center, Toranomon Hospital, Tokyo, Japan
| | | | | | | | - Takeshi Fujii
- Department of Pathology, Toranomon Hospital, Tokyo, Japan
| | | | - Kenichi Ohashi
- Department of Human Pathology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Wakako Kawarazaki
- Department of Pharmacology, School of Medicine, International University of Health and Welfare, Chiba, Japan
- Division of Clinical Epigenetics, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Mitsuhiro Nishimoto
- Division of Clinical Epigenetics, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Nobuhiro Ayuzawa
- Division of Clinical Epigenetics, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Daigoro Hirohama
- Division of Clinical Epigenetics, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Genta Nagae
- Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Mao Fujimoto
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Eri Arai
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Yae Kanai
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Junichi Hoshino
- Nephrology Center, Toranomon Hospital, Tokyo, Japan
- Deparment of Nephrology, Tokyo Women's Medical University, Tokyo, Japan
| | - Toshiro Fujita
- Division of Clinical Epigenetics, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
5
|
Meijer T, da Costa Pereira D, Klatt OC, Buitenhuis J, Jennings P, Wilmes A. Characterization of Organic Anion and Cation Transport in Three Human Renal Proximal Tubular Epithelial Models. Cells 2024; 13:1008. [PMID: 38920639 PMCID: PMC11202273 DOI: 10.3390/cells13121008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024] Open
Abstract
The polarised expression of specific transporters in proximal tubular epithelial cells is important for the renal clearance of many endogenous and exogenous compounds. Thus, ideally, the in vitro tools utilised for predictions would have a similar expression of apical and basolateral xenobiotic transporters as in vivo. Here, we assessed the functionality of organic cation and anion transporters in proximal tubular-like cells (PTL) differentiated from human induced pluripotent stem cells (iPSC), primary human proximal tubular epithelial cells (PTEC), and telomerase-immortalised human renal proximal tubular epithelial cells (RPTEC/TERT1). Organic cation and anion transport were studied using the fluorescent substrates 4-(4-(dimethylamino)styryl)-N-methylpyridinium iodide (ASP) and 6-carboxyfluorescein (6-CF), respectively. The level and rate of intracellular ASP accumulation in PTL following basolateral application were slightly lower but within a 3-fold range compared to primary PTEC and RPTEC/TERT1 cells. The basolateral uptake of ASP and its subsequent apical efflux could be inhibited by basolateral exposure to quinidine in all models. Of the three models, only PTL showed a modest preferential basolateral-to-apical 6-CF transfer. These results show that organic cation transport could be demonstrated in all three models, but more research is needed to improve and optimise organic anion transporter expression and functionality.
Collapse
Affiliation(s)
- Tamara Meijer
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands; (T.M.); (D.d.C.P.); (O.C.K.); (P.J.)
- Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Daniel da Costa Pereira
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands; (T.M.); (D.d.C.P.); (O.C.K.); (P.J.)
- Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Olivia C. Klatt
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands; (T.M.); (D.d.C.P.); (O.C.K.); (P.J.)
- Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Joanne Buitenhuis
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands; (T.M.); (D.d.C.P.); (O.C.K.); (P.J.)
- Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Paul Jennings
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands; (T.M.); (D.d.C.P.); (O.C.K.); (P.J.)
- Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Anja Wilmes
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands; (T.M.); (D.d.C.P.); (O.C.K.); (P.J.)
- Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| |
Collapse
|
6
|
Tsugawa H, Ishihara T, Ogasa K, Iwanami S, Hori A, Takahashi M, Yamada Y, Satoh-Takayama N, Ohno H, Minoda A, Arita M. A lipidome landscape of aging in mice. NATURE AGING 2024; 4:709-726. [PMID: 38609525 DOI: 10.1038/s43587-024-00610-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 03/07/2024] [Indexed: 04/14/2024]
Abstract
Understanding the molecular mechanisms of aging is crucial for enhancing healthy longevity. We conducted untargeted lipidomics across 13 biological samples from mice at various life stages (2, 12, 19 and 24 months) to explore the potential link between aging and lipid metabolism, considering sex (male or female) and microbiome (specific pathogen-free or germ-free) dependencies. By analyzing 2,704 molecules from 109 lipid subclasses, we characterized common and tissue-specific lipidome alterations associated with aging. For example, the levels of bis(monoacylglycero)phosphate containing polyunsaturated fatty acids increased in various organs during aging, whereas the levels of other phospholipids containing saturated and monounsaturated fatty acids decreased. In addition, we discovered age-dependent sulfonolipid accumulation, absent in germ-free mice, correlating with Alistipes abundance determined by 16S ribosomal RNA gene amplicon sequencing. In the male kidney, glycolipids such as galactosylceramides, galabiosylceramides (Gal2Cer), trihexosylceramides (Hex3Cer), and mono- and digalactosyldiacylglycerols were detected, with two lipid classes-Gal2Cer and Hex3Cer-being significantly enriched in aged mice. Integrated analysis of the kidney transcriptome revealed uridine diphosphate galactosyltransferase 8A (UGT8a), alkylglycerone phosphate synthase and fatty acyl-coenzyme A reductase 1 as potential enzymes responsible for the male-specific glycolipid biosynthesis in vivo, which would be relevant to sex dependency in kidney diseases. Inhibiting UGT8 reduced the levels of these glycolipids and the expression of inflammatory cytokines in the kidney. Our study provides a valuable resource for clarifying potential links between lipid metabolism and aging.
Collapse
Affiliation(s)
- Hiroshi Tsugawa
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo, Japan.
- Metabolome Informatics Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Japan.
- Molecular and Cellular Epigenetics Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan.
| | - Tomoaki Ishihara
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Pharmacy, Nagasaki International University, Sasebo, Japan
| | - Kota Ogasa
- Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, Japan
| | - Seigo Iwanami
- Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, Japan
| | - Aya Hori
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Mikiko Takahashi
- Metabolome Informatics Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Yutaka Yamada
- Metabolome Informatics Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Naoko Satoh-Takayama
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Hiroshi Ohno
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Aki Minoda
- Laboratory for Cellular Epigenomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, the Netherlands
| | - Makoto Arita
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.
- Molecular and Cellular Epigenetics Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan.
- Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, Japan.
- Human Biology-Microbiome-Quantum Research Center (WPI-Bio2Q), Keio University, Tokyo, Japan.
| |
Collapse
|
7
|
Clotet-Freixas S, Zaslaver O, Kotlyar M, Pastrello C, Quaile AT, McEvoy CM, Saha AD, Farkona S, Boshart A, Zorcic K, Neupane S, Manion K, Allen M, Chan M, Chen X, Arnold AP, Sekula P, Steinbrenner I, Köttgen A, Dart AB, Wicklow B, McGavock JM, Blydt-Hansen TD, Barrios C, Riera M, Soler MJ, Isenbrandt A, Lamontagne-Proulx J, Pradeloux S, Coulombe K, Soulet D, Rajasekar S, Zhang B, John R, Mehrotra A, Gehring A, Puhka M, Jurisica I, Woo M, Scholey JW, Röst H, Konvalinka A. Sex differences in kidney metabolism may reflect sex-dependent outcomes in human diabetic kidney disease. Sci Transl Med 2024; 16:eabm2090. [PMID: 38446901 DOI: 10.1126/scitranslmed.abm2090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 01/24/2024] [Indexed: 03/08/2024]
Abstract
Diabetic kidney disease (DKD) is the main cause of chronic kidney disease (CKD) and progresses faster in males than in females. We identify sex-based differences in kidney metabolism and in the blood metabolome of male and female individuals with diabetes. Primary human proximal tubular epithelial cells (PTECs) from healthy males displayed increased mitochondrial respiration, oxidative stress, apoptosis, and greater injury when exposed to high glucose compared with PTECs from healthy females. Male human PTECs showed increased glucose and glutamine fluxes to the TCA cycle, whereas female human PTECs showed increased pyruvate content. The male human PTEC phenotype was enhanced by dihydrotestosterone and mediated by the transcription factor HNF4A and histone demethylase KDM6A. In mice where sex chromosomes either matched or did not match gonadal sex, male gonadal sex contributed to the kidney metabolism differences between males and females. A blood metabolomics analysis in a cohort of adolescents with or without diabetes showed increased TCA cycle metabolites in males. In a second cohort of adults with diabetes, females without DKD had higher serum pyruvate concentrations than did males with or without DKD. Serum pyruvate concentrations positively correlated with the estimated glomerular filtration rate, a measure of kidney function, and negatively correlated with all-cause mortality in this cohort. In a third cohort of adults with CKD, male sex and diabetes were associated with increased plasma TCA cycle metabolites, which correlated with all-cause mortality. These findings suggest that differences in male and female kidney metabolism may contribute to sex-dependent outcomes in DKD.
Collapse
Affiliation(s)
- Sergi Clotet-Freixas
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada
- Soham and Shaila Ajmera Family Transplant Centre, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Olga Zaslaver
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Max Kotlyar
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, Toronto, ON M5G 2C4, Canada
- Data Science Discovery Centre for Chronic Diseases, Krembil Research Institute, University Health Network, Toronto, ON M5T 0S8, Canada
| | - Chiara Pastrello
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, Toronto, ON M5G 2C4, Canada
- Data Science Discovery Centre for Chronic Diseases, Krembil Research Institute, University Health Network, Toronto, ON M5T 0S8, Canada
| | - Andrew T Quaile
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Caitriona M McEvoy
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada
- Soham and Shaila Ajmera Family Transplant Centre, University Health Network, Toronto, ON M5G 2C4, Canada
- Division of Nephrology, Tallaght University Hospital, Dublin D24, Ireland
- Trinity Kidney Centre, Trinity College Dublin, Dublin D8, Ireland
| | - Aninda D Saha
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada
- Soham and Shaila Ajmera Family Transplant Centre, University Health Network, Toronto, ON M5G 2C4, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Sofia Farkona
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada
- Soham and Shaila Ajmera Family Transplant Centre, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Alex Boshart
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada
- Soham and Shaila Ajmera Family Transplant Centre, University Health Network, Toronto, ON M5G 2C4, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Katarina Zorcic
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada
- Soham and Shaila Ajmera Family Transplant Centre, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Slaghaniya Neupane
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada
- Soham and Shaila Ajmera Family Transplant Centre, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Kieran Manion
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada
- Soham and Shaila Ajmera Family Transplant Centre, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Maya Allen
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada
- Soham and Shaila Ajmera Family Transplant Centre, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Michael Chan
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada
- Soham and Shaila Ajmera Family Transplant Centre, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Xuqi Chen
- Department of Integrative Biology & Physiology, University of California, Los Angeles, CA 90095, USA
| | - Arthur P Arnold
- Department of Integrative Biology & Physiology, University of California, Los Angeles, CA 90095, USA
| | - Peggy Sekula
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg 79085, Germany
| | - Inga Steinbrenner
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg 79085, Germany
| | - Anna Köttgen
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg 79085, Germany
| | - Allison B Dart
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB R3A 1S1, Canada
- Diabetes Research Envisioned and Accomplished in Manitoba Research Team, Children's Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada
| | - Brandy Wicklow
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB R3A 1S1, Canada
- Diabetes Research Envisioned and Accomplished in Manitoba Research Team, Children's Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada
| | - Jon M McGavock
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB R3A 1S1, Canada
- Diabetes Research Envisioned and Accomplished in Manitoba Research Team, Children's Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada
| | - Tom D Blydt-Hansen
- Department of Pediatrics, University of British Columbia, Vancouver, BC V6H 0B3, Canada
| | - Clara Barrios
- Kidney Research Group, Hospital del Mar Medical Research Institute, IMIM, Barcelona 08003, Spain
| | - Marta Riera
- Kidney Research Group, Hospital del Mar Medical Research Institute, IMIM, Barcelona 08003, Spain
| | - María José Soler
- Hospital Universitari Vall d'Hebron, Division of Nephrology Autonomous University of Barcelona, Barcelona 08035, Spain
| | - Amandine Isenbrandt
- Neurosciences Axis, CHU de Quebec Research Center - Université Laval, Québec, QC G1V 4G2, Canada
- Faculty of Pharmacy, Université Laval, Québec, QC G1V 0A6, Canada
| | - Jérôme Lamontagne-Proulx
- Neurosciences Axis, CHU de Quebec Research Center - Université Laval, Québec, QC G1V 4G2, Canada
- Faculty of Pharmacy, Université Laval, Québec, QC G1V 0A6, Canada
| | - Solène Pradeloux
- Neurosciences Axis, CHU de Quebec Research Center - Université Laval, Québec, QC G1V 4G2, Canada
- Faculty of Pharmacy, Université Laval, Québec, QC G1V 0A6, Canada
| | - Katherine Coulombe
- Neurosciences Axis, CHU de Quebec Research Center - Université Laval, Québec, QC G1V 4G2, Canada
| | - Denis Soulet
- Neurosciences Axis, CHU de Quebec Research Center - Université Laval, Québec, QC G1V 4G2, Canada
- Faculty of Pharmacy, Université Laval, Québec, QC G1V 0A6, Canada
| | - Shravanthi Rajasekar
- Department of Chemical Engineering, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Boyang Zhang
- Department of Chemical Engineering, McMaster University, Hamilton, ON L8S 4L8, Canada
- School of Biomedical Engineering, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Rohan John
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Aman Mehrotra
- Toronto Centre for Liver Disease, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Adam Gehring
- Toronto Centre for Liver Disease, University Health Network, Toronto, ON M5G 2C4, Canada
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Maija Puhka
- Institute for Molecular Medicine Finland FIMM, HiLIFE, University of Helsinki, Helsinki 00014, Finland
| | - Igor Jurisica
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, Toronto, ON M5G 2C4, Canada
- Data Science Discovery Centre for Chronic Diseases, Krembil Research Institute, University Health Network, Toronto, ON M5T 0S8, Canada
- Departments of Medical Biophysics and Computer Science, and Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1X3, Canada
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava 845 10, Slovakia
| | - Minna Woo
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada
- Department of Medicine, Division of Endocrinology, University Health Network, University of Toronto, Toronto, ON M5S 3H2, Canada
| | - James W Scholey
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Medicine, Division of Nephrology, University Health Network, Toronto, ON M5S 3H2, Canada
| | - Hannes Röst
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Ana Konvalinka
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada
- Soham and Shaila Ajmera Family Transplant Centre, University Health Network, Toronto, ON M5G 2C4, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Medicine, Division of Nephrology, University Health Network, Toronto, ON M5S 3H2, Canada
| |
Collapse
|
8
|
Wen Y, Su E, Xu L, Menez S, Moledina DG, Obeid W, Palevsky PM, Mansour SG, Devarajan P, Cantley LG, Cahan P, Parikh CR. Analysis of the human kidney transcriptome and plasma proteome identifies markers of proximal tubule maladaptation to injury. Sci Transl Med 2023; 15:eade7287. [PMID: 38091407 PMCID: PMC11405121 DOI: 10.1126/scitranslmed.ade7287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/20/2023] [Indexed: 12/18/2023]
Abstract
Acute kidney injury (AKI) is a major risk factor for long-term adverse outcomes, including chronic kidney disease. In mouse models of AKI, maladaptive repair of the injured proximal tubule (PT) prevents complete tissue recovery. However, evidence for PT maladaptation and its etiological relationship with complications of AKI is lacking in humans. We performed single-nucleus RNA sequencing of 120,985 nuclei in kidneys from 17 participants with AKI and seven healthy controls from the Kidney Precision Medicine Project. Maladaptive PT cells, which exhibited transcriptomic features of dedifferentiation and enrichment in pro-inflammatory and profibrotic pathways, were present in participants with AKI of diverse etiologies. To develop plasma markers of PT maladaptation, we analyzed the plasma proteome in two independent cohorts of patients undergoing cardiac surgery and a cohort of marathon runners, linked it to the transcriptomic signatures associated with maladaptive PT, and identified nine proteins whose genes were specifically up- or down-regulated by maladaptive PT. After cardiac surgery, both cohorts of patients had increased transforming growth factor-β2 (TGFB2), collagen type XXIII-α1 (COL23A1), and X-linked neuroligin 4 (NLGN4X) and had decreased plasminogen (PLG), ectonucleotide pyrophosphatase/phosphodiesterase 6 (ENPP6), and protein C (PROC). Similar changes were observed in marathon runners with exercise-associated kidney injury. Postoperative changes in these markers were associated with AKI progression in adults after cardiac surgery and post-AKI kidney atrophy in mouse models of ischemia-reperfusion injury and toxic injury. Our results demonstrate the feasibility of a multiomics approach to discovering noninvasive markers and associating PT maladaptation with adverse clinical outcomes.
Collapse
Affiliation(s)
- Yumeng Wen
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Emily Su
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Leyuan Xu
- Section of Nephrology, Department of Medicine, Yale School of Medicine, New Haven, CT 06504, USA
| | - Steven Menez
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Dennis G Moledina
- Section of Nephrology, Department of Medicine, Yale School of Medicine, New Haven, CT 06504, USA
| | - Wassim Obeid
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Paul M Palevsky
- Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Kidney Medicine Section, Medical Service, VA Pittsburgh Healthcare System, Pittsburgh, PA 15240, USA
| | - Sherry G Mansour
- Section of Nephrology, Department of Medicine, Yale School of Medicine, New Haven, CT 06504, USA
| | - Prasad Devarajan
- Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Lloyd G Cantley
- Section of Nephrology, Department of Medicine, Yale School of Medicine, New Haven, CT 06504, USA
| | - Patrick Cahan
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Chirag R Parikh
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
9
|
Ermakov VS, Granados JC, Nigam SK. Remote effects of kidney drug transporter OAT1 on gut microbiome composition and urate homeostasis. JCI Insight 2023; 8:e172341. [PMID: 37937647 PMCID: PMC10721261 DOI: 10.1172/jci.insight.172341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/12/2023] [Indexed: 11/09/2023] Open
Abstract
The organic anion transporter OAT1 (SLC22A6, originally identified as NKT) is a multispecific transporter responsible for the elimination by the kidney of small organic anions that derive from the gut microbiome. Many are uremic toxins associated with chronic kidney disease (CKD). OAT1 is among a group of "drug" transporters that act as hubs in a large homeostatic network regulating interorgan and interorganismal communication via small molecules. The Remote Sensing and Signaling Theory predicts that genetic deletion of such a key hub in the network results in compensatory interorganismal communication (e.g., host-gut microbe dynamics). Recent metabolomics data from Oat1-KO mice indicate that some of the most highly affected metabolites derive from bacterial tyrosine, tryptophan, purine, and fatty acid metabolism. Functional metagenomic analysis of fecal 16S amplicon and whole-genome sequencing revealed that loss of OAT1 was impressively associated with microbial pathways regulating production of urate, gut-derived p-cresol, tryptophan derivatives, and fatty acids. Certain changes, such as alterations in gut microbiome urate metabolism, appear compensatory. Thus, Oat1 in the kidney appears to mediate remote interorganismal communication by regulating the gut microbiome composition and metabolic capability. Since OAT1 function in the proximal tubule is substantially affected in CKD, our results may shed light on the associated alterations in gut-microbiome dynamics.
Collapse
Affiliation(s)
| | | | - Sanjay K. Nigam
- Department of Pediatrics, and
- Department of Medicine, Division of Nephrology, University of California, San Diego (UCSD), La Jolla, California, USA
| |
Collapse
|
10
|
Caetano-Pinto P, Stahl SH. Renal Organic Anion Transporters 1 and 3 In Vitro: Gone but Not Forgotten. Int J Mol Sci 2023; 24:15419. [PMID: 37895098 PMCID: PMC10607849 DOI: 10.3390/ijms242015419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Organic anion transporters 1 and 3 (OAT1 and OAT3) play a crucial role in kidney function by regulating the secretion of multiple renally cleared small molecules and toxic metabolic by-products. Assessing the activity of these transporters is essential for drug development purposes as they can significantly impact drug disposition and safety. OAT1 and OAT3 are amongst the most abundant drug transporters expressed in human renal proximal tubules. However, their expression is lost when cells are isolated and cultured in vitro, which is a persistent issue across all human and animal renal proximal tubule cell models, including primary cells and cell lines. Although it is well known that the overall expression of drug transporters is affected in vitro, the underlying reasons for the loss of OAT1 and OAT3 are still not fully understood. Nonetheless, research into the regulatory mechanisms of these transporters has provided insights into the molecular pathways underlying their expression and activity. In this review, we explore the regulatory mechanisms that govern the expression and activity of OAT1 and OAT3 and investigate the physiological changes that proximal tubule cells undergo and that potentially result in the loss of these transporters. A better understanding of the regulation of these transporters could aid in the development of strategies, such as introducing microfluidic conditions or epigenetic modification inhibitors, to improve their expression and activity in vitro and to create more physiologically relevant models. Consequently, this will enable more accurate assessment for drug development and safety applications.
Collapse
Affiliation(s)
- Pedro Caetano-Pinto
- Department of Urology, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
| | - Simone H. Stahl
- CVRM Safety, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, 310 Darwin Building, Cambridge Science Park, Milton Road, Cambridge CB4 0WG, UK;
| |
Collapse
|
11
|
Soltysova A, Begerova P, Jakic K, Kozics K, Sramkova M, Meese E, Smolkova B, Gabelova A. Genome-wide DNA methylome and transcriptome changes induced by inorganic nanoparticles in human kidney cells after chronic exposure. Cell Biol Toxicol 2023; 39:1939-1956. [PMID: 34973136 PMCID: PMC10547624 DOI: 10.1007/s10565-021-09680-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 11/11/2021] [Indexed: 11/02/2022]
Abstract
The unique physicochemical properties make inorganic nanoparticles (INPs) an exciting tool in diagnosis and disease management. However, as INPs are relatively difficult to fully degrade and excrete, their unintended accumulation in the tissue might result in adverse health effects. Herein, we provide a methylome-transcriptome framework for chronic effects of INPs, commonly used in biomedical applications, in human kidney TH-1 cells. Renal clearance is one of the most important routes of nanoparticle excretion; therefore, a detailed evaluation of nanoparticle-mediated nephrotoxicity is an important task. Integrated analysis of methylome and transcriptome changes induced by INPs (PEG-AuNPs, Fe3O4NPs, SiO2NPs, and TiO2NPs) revealed significantly deregulated genes with functional classification in immune response, DNA damage, and cancer-related pathways. Although most deregulated genes were unique to individual INPs, a relatively high proportion of them encoded the transcription factors. Interestingly, FOS hypermethylation inversely correlating with gene expression was associated with all INPs exposures. Our study emphasizes the need for a more comprehensive investigation of INPs' biological safety, especially after chronic exposure.
Collapse
Affiliation(s)
- Andrea Soltysova
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, 841 04, Bratislava, Slovakia
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia
| | - Patricia Begerova
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia
| | - Kristina Jakic
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia
| | - Katarina Kozics
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia
| | - Monika Sramkova
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia
| | - Eckart Meese
- Institute of Human Genetics, Saarland University, Building 60, 66421, Homburg, Germany
| | - Bozena Smolkova
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia
| | - Alena Gabelova
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia.
| |
Collapse
|
12
|
Hepkema J, Lee NK, Stewart BJ, Ruangroengkulrith S, Charoensawan V, Clatworthy MR, Hemberg M. Predicting the impact of sequence motifs on gene regulation using single-cell data. Genome Biol 2023; 24:189. [PMID: 37582793 PMCID: PMC10426127 DOI: 10.1186/s13059-023-03021-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/21/2023] [Indexed: 08/17/2023] Open
Abstract
The binding of transcription factors at proximal promoters and distal enhancers is central to gene regulation. Identifying regulatory motifs and quantifying their impact on expression remains challenging. Using a convolutional neural network trained on single-cell data, we infer putative regulatory motifs and cell type-specific importance. Our model, scover, explains 29% of the variance in gene expression in multiple mouse tissues. Applying scover to distal enhancers identified using scATAC-seq from the developing human brain, we identify cell type-specific motif activities in distal enhancers. Scover can identify regulatory motifs and their importance from single-cell data where all parameters and outputs are easily interpretable.
Collapse
Affiliation(s)
- Jacob Hepkema
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Nicholas Keone Lee
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
- The Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
| | - Benjamin J Stewart
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
- Cambridge University Hospitals NHS Foundation Trust and NIHR Cambridge Biomedical Research Centre, Cambridge, CB2 0QQ, UK
| | - Siwat Ruangroengkulrith
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Varodom Charoensawan
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
- Integrative Computational BioScience (ICBS) Center, Mahidol University, Nakhon Pathom, 7310, Thailand
- Systems Biology of Diseases Research Unit, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Menna R Clatworthy
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
- Cambridge University Hospitals NHS Foundation Trust and NIHR Cambridge Biomedical Research Centre, Cambridge, CB2 0QQ, UK
| | - Martin Hemberg
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK.
- The Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK.
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
13
|
Martin DE, Pandey N, Chavda P, Singh G, Sutariya R, Sancilio F, Tripp RA. Oral Probenecid for Nonhospitalized Adults with Symptomatic Mild-to-Moderate COVID-19. Viruses 2023; 15:1508. [PMID: 37515194 PMCID: PMC10386418 DOI: 10.3390/v15071508] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/01/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
Probenecid is an orally bioavailable, uricosuric agent that was first approved in 1951 for the treatment of gout, but was later found to have potent, broad-spectrum antiviral activity against several respiratory viruses including SARS-CoV-2. We conducted a phase 2 randomized, placebo-controlled, single-blind, dose-range finding study in non-hospitalized patients with symptomatic, mild-to-moderate COVID-19. Patients were randomly assigned in a 1:1:1 ratio to receive either 500 mg of probenecid, 1000 mg of probenecid, or a matching placebo every 12 h for five days. The patients' COVID-19 viral load hospitalization, or death from any cause through day 28, as well as safety, were evaluated. COVID-19-related symptoms were assessed at baseline, and on days 3, 5, 10, 15, and 28. The primary endpoints of the study were time to first negative SARS-CoV-2 viral test (or viral clearance) and the proportion of patients that were symptom-free at day 5. A total of 75 patients were randomized, with 25 patients in each group. All of the patients completed the study as planned with no hospitalizations or deaths being reported. The median time to viral clearance was significantly shorter for the probenecid 1000 mg group than for placebo (7 days vs. 11 days, respectively; p < 0.0001), and for the probenecid 500 mg group versus placebo (9 days vs. 11 days, respectively; p < 0.0001). In addition, the median time to viral clearance was significantly shorter for the probenecid 1000 mg group than for the probenecid 500 mg group (7 days vs. 9 days, respectively; p < 0.0001). All patients reported at least one COVID-19-related symptom on days 3 and 5; however, on day 10, a significantly greater proportion of patients receiving probenecid 1000 mg reported the complete resolution of symptoms versus placebo (68% vs. 20%, respectively; p = 0.0006), as well as for those receiving probenecid 500 mg versus placebo (56% vs. 20%, respectively, p = 0.0087). The incidence of adverse events during treatment was similar across all groups for any adverse event, and was 12%. All events were mild with no serious adverse events reported and no discontinuations due to an adverse event. The treatment of patients with symptomatic, mild-to-moderate COVID-19 with probenecid resulted in a significant, dose-dependent decrease in the time to viral clearance and a significantly higher proportion of patients reporting complete symptom resolution by day 10. (Supported by TrippBio; ClinicalTrials.gov number, NCT05442983 and Clinical Trials Registry India number CTRI/2022/07/043726).
Collapse
Affiliation(s)
| | - Neelam Pandey
- PCMC's PGI Yashwantrao Chavan Memorial Hospital, Pune 411018, India
| | - Purvi Chavda
- Zenovel Pharma Services LLP, Ahmedabad 380060, India
| | | | | | | | - Ralph A Tripp
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
14
|
Chan JW, Neo CWY, Ghosh S, Choi H, Lim SC, Tai ES, Teo AKK. HNF1A binds and regulates the expression of SLC51B to facilitate the uptake of estrone sulfate in human renal proximal tubule epithelial cells. Cell Death Dis 2023; 14:302. [PMID: 37137894 PMCID: PMC10156747 DOI: 10.1038/s41419-023-05827-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/05/2023]
Abstract
Renal defects in maturity onset diabetes of the young 3 (MODY3) patients and Hnf1a-/- mice suggest an involvement of HNF1A in kidney development and/or its function. Although numerous studies have leveraged on Hnf1α-/- mice to infer some transcriptional targets and function of HNF1A in mouse kidneys, species-specific differences obviate a straightforward extrapolation of findings to the human kidney. Additionally, genome-wide targets of HNF1A in human kidney cells have yet to be identified. Here, we leveraged on human in vitro kidney cell models to characterize the expression profile of HNF1A during renal differentiation and in adult kidney cells. We found HNF1A to be increasingly expressed during renal differentiation, with peak expression on day 28 in the proximal tubule cells. HNF1A ChIP-Sequencing (ChIP-Seq) performed on human pluripotent stem cell (hPSC)-derived kidney organoids identified its genome-wide putative targets. Together with a qPCR screen, we found HNF1A to activate the expression of SLC51B, CD24, and RNF186 genes. Importantly, HNF1A-depleted human renal proximal tubule epithelial cells (RPTECs) and MODY3 human induced pluripotent stem cell (hiPSC)-derived kidney organoids expressed lower levels of SLC51B. SLC51B-mediated estrone sulfate (E1S) uptake in proximal tubule cells was abrogated in these HNF1A-deficient cells. MODY3 patients also exhibit significantly higher excretion of urinary E1S. Overall, we report that SLC51B is a target of HNF1A responsible for E1S uptake in human proximal tubule cells. As E1S serves as the main storage form of nephroprotective estradiol in the human body, lowered E1S uptake and increased E1S excretion may reduce the availability of nephroprotective estradiol in the kidneys, contributing to the development of renal disease in MODY3 patients.
Collapse
Affiliation(s)
- Jun Wei Chan
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Claire Wen Ying Neo
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Soumita Ghosh
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Hyungwon Choi
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Su Chi Lim
- Khoo Teck Puat Hospital, Singapore, 768828, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, 117549, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - E Shyong Tai
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, 117549, Singapore
- Precision Medicine Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Adrian Kee Keong Teo
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore.
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore.
- Precision Medicine Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore.
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117596, Singapore.
| |
Collapse
|
15
|
Chen L, Chou CL, Yang CR, Knepper MA. Multiomics Analyses Reveal Sex Differences in Mouse Renal Proximal Subsegments. J Am Soc Nephrol 2023; 34:829-845. [PMID: 36758122 PMCID: PMC10125651 DOI: 10.1681/asn.0000000000000089] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/04/2023] [Indexed: 02/11/2023] Open
Abstract
SIGNIFICANCE STATEMENT Sex-dependent differences in kidney function are recognized but the underlying molecular mechanisms are largely unexplored. Advances in genomics and proteomic technologies now allow extensive characterization of differences between the same cell types of males and females. Multiomics integrating RNA-seq, ATAC-seq, and proteomics data to investigate differences in gene expression, chromatin accessibility, and protein expression in proximal tubules of male and female mice identified many sex-biased genes and proteins associated with kidney functions, including metabolic and transport processes. Sex differences may also arise from variations of the interaction between transcription factors and accessible chromatin regions. A comprehensive web resource is provided to advance understanding of sex differences in cells of the proximal tubule. BACKGROUND Sex differences have been increasingly recognized as important in kidney physiology and pathophysiology, but limited resources are available for comprehensive interrogation of sex differences. METHODS RNA-seq and ATAC-seq of microdissected mouse proximal tubules and protein mass spectrometry of homogenized perfused mouse kidneys reveal differences in proximal tubule cells of males and females. RESULTS The transcriptomic data indicated that the major differences in the proximal tubules between the sexes were in the S2/S3 segments, and most of the sex-biased transcripts mapped to autosomes rather than to the sex chromosomes. Many of the transcripts exhibiting sex-biased expression are involved in monocarboxylic acid metabolic processes, organic anion transport, and organic acid transport. The ATAC-seq method on microdissected tubules captured chromatin accessibility. Many of the more than 7000 differentially accessible DNA regions identified were in distal regions. Motif analyses revealed a lack of direct involvement of estrogen receptors or the androgen receptor (absence of canonical hormone response elements), suggesting an indirect regulatory role of sex hormones. Instead, analyses identified several transcription factors (TFs) ( Tead1 , Nfia/b , and Pou3f3 ) whose interplay with proximal tubule-specific TFs ( e.g. , Hnf1b , Hnf4a ) may contribute to sex differences. Finally, the whole-kidney proteome was correlated with the transcriptome, and many sex-biased proteins ( e.g. , Cyp2e1, Acsm2/3) were identified. CONCLUSIONS Sex-dependent cis-regulatory elements interact with TFs in ways that lead to sex-biased gene expression in proximal tubule cells. These data are provided as a user-friendly web page at https://esbl.nhlbi.nih.gov/MRECA/PT/ .
Collapse
Affiliation(s)
- Lihe Chen
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | | | | | | |
Collapse
|
16
|
Wu Y, Terekhanova NV, Caravan W, Naser Al Deen N, Lal P, Chen S, Mo CK, Cao S, Li Y, Karpova A, Liu R, Zhao Y, Shinkle A, Strunilin I, Weimholt C, Sato K, Yao L, Serasanambati M, Yang X, Wyczalkowski M, Zhu H, Zhou DC, Jayasinghe RG, Mendez D, Wendl MC, Clark D, Newton C, Ruan Y, Reimers MA, Pachynski RK, Kinsinger C, Jewell S, Chan DW, Zhang H, Chaudhuri AA, Chheda MG, Humphreys BD, Mesri M, Rodriguez H, Hsieh JJ, Ding L, Chen F. Epigenetic and transcriptomic characterization reveals progression markers and essential pathways in clear cell renal cell carcinoma. Nat Commun 2023; 14:1681. [PMID: 36973268 PMCID: PMC10042888 DOI: 10.1038/s41467-023-37211-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 03/07/2023] [Indexed: 03/29/2023] Open
Abstract
Identifying tumor-cell-specific markers and elucidating their epigenetic regulation and spatial heterogeneity provides mechanistic insights into cancer etiology. Here, we perform snRNA-seq and snATAC-seq in 34 and 28 human clear cell renal cell carcinoma (ccRCC) specimens, respectively, with matched bulk proteogenomics data. By identifying 20 tumor-specific markers through a multi-omics tiered approach, we reveal an association between higher ceruloplasmin (CP) expression and reduced survival. CP knockdown, combined with spatial transcriptomics, suggests a role for CP in regulating hyalinized stroma and tumor-stroma interactions in ccRCC. Intratumoral heterogeneity analysis portrays tumor cell-intrinsic inflammation and epithelial-mesenchymal transition (EMT) as two distinguishing features of tumor subpopulations. Finally, BAP1 mutations are associated with widespread reduction of chromatin accessibility, while PBRM1 mutations generally increase accessibility, with the former affecting five times more accessible peaks than the latter. These integrated analyses reveal the cellular architecture of ccRCC, providing insights into key markers and pathways in ccRCC tumorigenesis.
Collapse
Affiliation(s)
- Yige Wu
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Nadezhda V Terekhanova
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Wagma Caravan
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Nataly Naser Al Deen
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Preet Lal
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Siqi Chen
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Chia-Kuei Mo
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Song Cao
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Yize Li
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Alla Karpova
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Ruiyang Liu
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Yanyan Zhao
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Andrew Shinkle
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Ilya Strunilin
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Cody Weimholt
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Kazuhito Sato
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Lijun Yao
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Mamatha Serasanambati
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Xiaolu Yang
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Matthew Wyczalkowski
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Houxiang Zhu
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Daniel Cui Zhou
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Reyka G Jayasinghe
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Daniel Mendez
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Michael C Wendl
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
- Department of Genetics, Washington University in St. Louis, St. Louis, MO, 63110, USA
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - David Clark
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21231, USA
| | | | - Yijun Ruan
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT, 06032, USA
| | - Melissa A Reimers
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Russell K Pachynski
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Chris Kinsinger
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Scott Jewell
- Van Andel Institutes, Grand Rapids, MI, 49503, USA
| | - Daniel W Chan
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21231, USA
| | - Hui Zhang
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21231, USA
| | - Aadel A Chaudhuri
- Department of Genetics, Washington University in St. Louis, St. Louis, MO, 63110, USA
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Milan G Chheda
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Benjamin D Humphreys
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Mehdi Mesri
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Henry Rodriguez
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - James J Hsieh
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Li Ding
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA.
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA.
- Department of Genetics, Washington University in St. Louis, St. Louis, MO, 63110, USA.
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, 63110, USA.
| | - Feng Chen
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA.
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, 63110, USA.
| |
Collapse
|
17
|
Łapczuk-Romańska J, Droździk M, Oswald S, Droździk M. Kidney Drug Transporters in Pharmacotherapy. Int J Mol Sci 2023; 24:ijms24032856. [PMID: 36769175 PMCID: PMC9917665 DOI: 10.3390/ijms24032856] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/19/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
The kidney functions not only as a metabolite elimination organ but also plays an important role in pharmacotherapy. The kidney tubule epithelia cells express membrane carriers and transporters, which play an important role in drug elimination, and can determine drug nephrotoxicity and drug-drug interactions, as well as constituting direct drug targets. The above aspects of kidney transport proteins are discussed in the review.
Collapse
Affiliation(s)
- Joanna Łapczuk-Romańska
- Department of Pharmacology, Pomeranian Medical University, Powstancow Wlkp 72, 70-111 Szczecin, Poland
| | - Maria Droździk
- Medical Faculty, Medical University of Lodz, Tadeusza Kościuszki 4, 90-419 Lodz, Poland
| | - Stefan Oswald
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, 18051 Rostock, Germany
| | - Marek Droździk
- Department of Pharmacology, Pomeranian Medical University, Powstancow Wlkp 72, 70-111 Szczecin, Poland
- Correspondence:
| |
Collapse
|
18
|
Granados JC, Watrous JD, Long T, Rosenthal SB, Cheng S, Jain M, Nigam SK. Regulation of Human Endogenous Metabolites by Drug Transporters and Drug Metabolizing Enzymes: An Analysis of Targeted SNP-Metabolite Associations. Metabolites 2023; 13:171. [PMID: 36837791 PMCID: PMC9958903 DOI: 10.3390/metabo13020171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/26/2023] Open
Abstract
Drug transporters and drug-metabolizing enzymes are primarily known for their role in the absorption, distribution, metabolism, and excretion (ADME) of small molecule drugs, but they also play a key role in handling endogenous metabolites. Recent cross-tissue co-expression network analyses have revealed a "Remote Sensing and Signaling Network" of multispecific, oligo-specific, and monospecific transporters and enzymes involved in endogenous metabolism. This includes many proteins from families involved in ADME (e.g., SLC22, SLCO, ABCC, CYP, UGT). Focusing on the gut-liver-kidney axis, we identified the endogenous metabolites potentially regulated by this network of ~1000 proteins by associating SNPs in these genes with the circulating levels of thousands of small, polar, bioactive metabolites, including free fatty acids, eicosanoids, bile acids, and other signaling metabolites that act in part via G-protein coupled receptors (GPCRs), nuclear receptors, and kinases. We identified 77 genomic loci associated with 7236 unique metabolites. This included metabolites that were associated with multiple, distinct loci, indicating coordinated regulation between multiple genes (including drug transporters and drug-metabolizing enzymes) of specific metabolites. We analyzed existing pharmacogenomic data and noted SNPs implicated in endogenous metabolite handling (e.g., rs4149056 in SLCO1B1) also affecting drug ADME. The overall results support the existence of close relationships, via interactions with signaling metabolites, between drug transporters and drug-metabolizing enzymes that are part of the Remote Sensing and Signaling Network, and with GPCRs and nuclear receptors. These analyses highlight the potential for drug-metabolite interactions at the interfaces of the Remote Sensing and Signaling Network and the ADME protein network.
Collapse
Affiliation(s)
- Jeffry C. Granados
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Jeramie D. Watrous
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA 92093, USA
| | - Tao Long
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA 92093, USA
| | - Sara Brin Rosenthal
- Center for Computational Biology and Bioinformatics, University of California San Diego, La Jolla, CA 92093, USA
| | - Susan Cheng
- Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Mohit Jain
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA 92093, USA
| | - Sanjay K. Nigam
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
19
|
Nigam SK, Granados JC. OAT, OATP, and MRP Drug Transporters and the Remote Sensing and Signaling Theory. Annu Rev Pharmacol Toxicol 2023; 63:637-660. [PMID: 36206988 DOI: 10.1146/annurev-pharmtox-030322-084058] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The coordinated movement of organic anions (e.g., drugs, metabolites, signaling molecules, nutrients, antioxidants, gut microbiome products) between tissues and body fluids depends, in large part, on organic anion transporters (OATs) [solute carrier 22 (SLC22)], organic anion transporting polypeptides (OATPs) [solute carrier organic (SLCO)], and multidrug resistance proteins (MRPs) [ATP-binding cassette, subfamily C (ABCC)]. Depending on the range of substrates, transporters in these families can be considered multispecific, oligospecific, or (relatively) monospecific. Systems biology analyses of these transporters in the context of expression patterns reveal they are hubs in networks involved in interorgan and interorganismal communication. The remote sensing and signaling theory explains how the coordinated functions of drug transporters, drug-metabolizing enzymes, and regulatory proteins play a role in optimizing systemic and local levels of important endogenous small molecules. We focus on the role of OATs, OATPs, and MRPs in endogenous metabolism and how their substrates (e.g., bile acids, short chain fatty acids, urate, uremic toxins) mediate interorgan and interorganismal communication and help maintain and restore homeostasis in healthy and disease states.
Collapse
Affiliation(s)
- Sanjay K Nigam
- Department of Pediatrics and Medicine (Nephrology), University of California San Diego, La Jolla, California, USA;
| | - Jeffry C Granados
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
20
|
Zhao Y, Wang J, Liu L, Wu Y, Hu Q, Zhao R. Vinegar-baked Radix Bupleuri enhances the liver-targeting effect of rhein on liver injury rats by regulating transporters. J Pharm Pharmacol 2022; 74:1588-1597. [PMID: 36181768 DOI: 10.1093/jpp/rgac062] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022]
Abstract
OBJECTIVE This study aimed to explore whether the liver-targeting enhancing effect of vinegar-baked Radix Bupleuri (VBRB) on rhein was achieved by affecting transporters, metabolism enzymes as well as hepatocyte nuclear factor 1α/4α (HNF1α/HNF4α) in liver injury. METHODS The effect of VBRB on the efficacy of rhein was performed with the LPS-induced acute liver injury rat model. Aspartate aminotransferase (AST), alanine transaminase (ALT) and superoxide dismutase (SOD) levels were determined and histopathological examination was taken. Drug concentrations in tissues were determined by high performance liquid chromatography (HPLC). The protein expressions of drug transporters, metabolic enzymes and hepatic nuclear factors were determined by Western blotting and ELISA assays. KEY FINDING VBRB improved the liver protecting effect of rhein, which was consistent with its promoting effect on targeted enrichment of rhein in the liver. VBRB or in combination with rhein inhibited P-glycoprotein (Pgp) and multi-resistance related protein 2 (MRP2), while increased organic anion transporting polypeptide 2 (OATP2), which might be the reason why VBRB promoted liver-targeting effect of rhein. CONCLUSION VBRB enhances the liver-protecting effect of rhein by down-regulating Pgp, MRP2, and up-regulating OATP2.
Collapse
Affiliation(s)
- Ya Zhao
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Neihuan Xilu, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Jinqiu Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Waihuan Donglu, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Lijuan Liu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Neihuan Xilu, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Yayun Wu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Neihuan Xilu, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Qiaohong Hu
- School of Pharmacy, Guangdong Pharmaceutical University, Waihuan Donglu, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Ruizhi Zhao
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Neihuan Xilu, Guangzhou Higher Education Mega Center, Guangzhou 510006, China.,Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Neihuan Xilu, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| |
Collapse
|
21
|
Tan Y, Liu Q, Wang Z, Pu Q, Shi S, Su J. Plateau zokors (Eospalax baileyi) respond to secondary metabolites from the roots of Stellera chamaejasme by enhancing hepatic inflammatory factors and metabolic pathway genes. Comp Biochem Physiol C Toxicol Pharmacol 2022; 258:109368. [PMID: 35589064 DOI: 10.1016/j.cbpc.2022.109368] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 05/01/2022] [Accepted: 05/08/2022] [Indexed: 11/19/2022]
Abstract
Herbivores rarely consume toxic plants. An increase in the proportion of toxic plant secondary metabolites (PSMs) in poisonous plants can promote detoxification and related metabolic capacity of animals. Poisonous plants with thick taproots like Stellera chamaejasme (SC) are important stored food for the plateau zokor (Eospalax baileyi) during the winter and promote the development of detoxification mechanisms in this animal. In this study, plateau zokors were administered gavages of 0.2, 1.05, and 2.10 ml/kg SC water extracts. Serum samples were collected from plateau zokors to measure the levels of transaminases and oxidative stress. Transcriptome analysis was conducted to evaluate the differential genes of multiple metabolic pathways to investigate the relationship between the physiological processes and metabolic adaptation capacity of these animals in response to SC. After SC administration, plateau zokors showed significant hepatic granular degeneration and inflammatory reactions in the liver and aspartate aminotransferase, alanine aminotransferase, and malondialdehyde levels increased in a dose-dependent manner. Further, differential expression was also found in the plateau zokor livers, with most enrichment in inflammation and detoxification metabolism pathways. The metabolic adaptation responses in P450 xenobiotic clearance, bile secretion, and pancreatic secretion (Gusb, Hmgcr, Gstm1, Gstp1, and Eobag004630005095) were verified by mRNA network analysis as key factors related to the mechanism. Plateau zokors respond to SC PSMs through changes in liver physiology, biochemistry, and genes in multiple metabolic pathways, validating our hypothesis that plateau zokors can metabolize PSMs when they ingest toxic plants.
Collapse
Affiliation(s)
- Yuchen Tan
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University, Lanzhou 730070, China; Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou 730070, China
| | - Qianqian Liu
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University, Lanzhou 730070, China; Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhicheng Wang
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University, Lanzhou 730070, China; Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou 730070, China
| | - Qiangsheng Pu
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University, Lanzhou 730070, China; Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou 730070, China
| | - Shangli Shi
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University, Lanzhou 730070, China; Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou 730070, China; Gansu Qilianshan Grassland Ecosystem Observation and Research Station, Wuwei 733200, China
| | - Junhu Su
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University, Lanzhou 730070, China; Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou 730070, China; Gansu Qilianshan Grassland Ecosystem Observation and Research Station, Wuwei 733200, China.
| |
Collapse
|
22
|
Differentiated kidney tubular cell-derived extracellular vesicles enhance maturation of tubuloids. J Nanobiotechnology 2022; 20:326. [PMID: 35841001 PMCID: PMC9284832 DOI: 10.1186/s12951-022-01506-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/09/2022] [Indexed: 12/04/2022] Open
Abstract
The prevalence of end-stage kidney disease (ESKD) is rapidly increasing with the need for regenerative therapies. Adult stem cell derived kidney tubuloids have the potential to functionally mimic the adult kidney tubule, but still lack the expression of important transport proteins needed for waste removal. Here, we investigated the potential of extracellular vesicles (EVs) obtained from matured kidney tubular epithelial cells to modulate in vitro tubuloids functional maturation. We focused on organic anion transporter 1 (OAT1), one of the most important proteins involved in endogenous waste excretion. First, we show that EVs from engineered proximal tubule cells increased the expression of several transcription factors and epithelial transporters, resulting in improved OAT1 transport capacity. Next, a more in-depth proteomic data analysis showed that EVs can trigger various biological pathways, including mesenchymal-to-epithelial transition, which is crucial in the tubular epithelial maturation. Moreover, we demonstrated that the combination of EVs and tubuloid-derived cells can be used as part of a bioartificial kidney to generate a tight polarized epithelial monolayer with formation of dense cilia structures. In conclusion, EVs from kidney tubular epithelial cells can phenotypically improve in vitro tubuloid maturation, thereby enhancing their potential as functional units in regenerative or renal replacement therapies.
Collapse
|
23
|
Zhou S, Shu Y. Transcriptional Regulation of Solute Carrier (SLC) Drug Transporters. Drug Metab Dispos 2022; 50:DMD-MR-2021-000704. [PMID: 35644529 PMCID: PMC9488976 DOI: 10.1124/dmd.121.000704] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 05/02/2022] [Accepted: 05/16/2022] [Indexed: 09/03/2023] Open
Abstract
Facilitated transport is necessitated for large size, charged, and/or hydrophilic drugs to move across the membrane. The drug transporters in the solute carrier (SLC) superfamily, mainly including organic anion-transporting polypeptides (OATPs), organic anion transporters (OATs), organic cation transporters (OCTs), organic cation/carnitine transporters (OCTNs), peptide transporters (PEPTs), and multidrug and toxin extrusion proteins (MATEs), are critical facilitators of drug transport and distribution in human body. The expression of these SLC drug transporters is found in tissues throughout the body, with high abundance in the epithelial cells of major organs for drug disposition, such as intestine, liver, and kidney. These SLC drug transporters are clinically important in drug absorption, metabolism, distribution, and excretion. The mechanisms underlying their regulation have been revealing in recent years. Epigenetic and nuclear receptor-mediated transcriptional regulation of SLC drug transporters have particularly attracted much attention. This review focuses on the transcriptional regulation of major SLC drug transporter genes. Revealing the mechanisms underlying the transcription of those critical drug transporters will help us understand pharmacokinetics and pharmacodynamics, ultimately improving drug therapeutic effectiveness while minimizing drug toxicity. Significance Statement It has become increasingly recognized that solute carrier (SLC) drug transporters play a crucial, and sometimes determinative, role in drug disposition and response, which is reflected in decision-making during not only clinical drug therapy but also drug development. Understanding the mechanisms accounting for the transcription of these transporters is critical to interpret their abundance in various tissues under different conditions, which is necessary to clarify the pharmacological response, adverse effects, and drug-drug interactions for clinically used drugs.
Collapse
Affiliation(s)
- Shiwei Zhou
- Pharmaceutical Sciences, University of Maryland, United States
| | - Yan Shu
- Pharmaceutical Sciences, University of Maryland, United States
| |
Collapse
|
24
|
Logan M, Rinas K, McConkey B, Aucoin MG. Vero cells gain renal tubule markers in low-calcium and magnesium chemically defined media. Sci Rep 2022; 12:6180. [PMID: 35418617 PMCID: PMC9008052 DOI: 10.1038/s41598-022-10221-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 03/28/2022] [Indexed: 11/17/2022] Open
Abstract
In this study, a chemically defined, animal component-free media was developed to promote Vero growth in suspension. Key media compounds were screened using Plackett–Burman styled experiments to create a media formulation to support suspension growth. Vero cells remained viable in suspension, but their growth rate was extremely low, conversely, other cell types such as CHO-K1, MDCK and HEK293T were able to grow in single cell suspension in the same media. To investigate the slow growth of Vero cells, RNA-seq analysis was conducted. Vero cells were cultured in three different conditions: adherently in serum-containing medium, adherently in in-house medium, and in suspension in low calcium and magnesium in-house medium. This study illustrates that adherent cells maintain similar gene expression, while the suspension phenotype tends to overexpress genes related to renal tubules.
Collapse
Affiliation(s)
- Megan Logan
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Karsten Rinas
- Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Brendan McConkey
- Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Marc G Aucoin
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.
| |
Collapse
|
25
|
A potent HNF4α agonist reveals that HNF4α controls genes important in inflammatory bowel disease and Paneth cells. PLoS One 2022; 17:e0266066. [PMID: 35385524 PMCID: PMC8985954 DOI: 10.1371/journal.pone.0266066] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 03/11/2022] [Indexed: 11/19/2022] Open
Abstract
HNF4α has been implicated in IBD through a number of genome-wide association studies. Recently, we developed potent HNF4α agonists, including N-trans caffeoyltyramine (NCT). NCT was identified by structural similarity to previously the previously identified but weak HNF4α agonists alverine and benfluorex. Here, we administered NCT to mice fed a high fat diet, with the goal of studying the role of HNF4α in obesity-related diseases. Intestines from NCT-treated mice were examined by RNA-seq to determine the role of HNF4α in that organ. Surprisingly, the major classes of genes altered by HNF4α were involved in IBD and Paneth cell biology. Multiple genes downregulated in IBD were induced by NCT. Paneth cells identified by lysozyme expression were reduced in high fat fed mice. NCT reversed the effect of high fat diet on Paneth cells, with multiple markers being induced, including a number of defensins, which are critical for Paneth cell function and intestinal barrier integrity. NCT upregulated genes that play important role in IBD and that are downregulated in that disease. It reversed the loss of Paneth cell markers that occurred in high fat diet fed mice. These data suggest that HNF4α could be a therapeutic target for IBD and that the agonists that we have identified could be candidate therapeutics.
Collapse
|
26
|
Xu L, Chen W, Chen J, Jin Y, Ma W, Qi G, Sun X, Luo J, Li C, Zhao K, Zheng Y, Yu D. PIWI-interacting RNA-23210 protects against acetaminophen-induced liver injury by targeting HNF1A and HNF4A. Biochem Pharmacol 2021; 197:114897. [PMID: 34968487 DOI: 10.1016/j.bcp.2021.114897] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 11/19/2022]
Abstract
Acetaminophen (APAP) overdose is one of the leading causes of acute liver failure in the US and other developed countries, the molecular mechanisms of APAP-induced hepatotoxicity remain speculative. PIWI-interacting RNAs (piRNAs), a novel class of small non-coding RNAs, have been identified as epigenetic regulators of transposon silencing, mRNA deadenylation, and elimination. However, the functional role of piRNAs in APAP-induced liver injury remains unclear. In the current study, the piRNA profiles were constructed in HepaRG cells after APAP exposure, and the roles of piR-23210 in regulating nuclear receptors (NRs) expression, metabolizing enzymes expression, and consequently APAP-induced liver injury were systematically investigated. As a result, 57 upregulated piRNAs were identified after APAP exposure, indicating the stress-response characteristic of piRNA molecules. Subsequent in vitro and in vivo experiments proved that piR-23210 is a novel self-protective molecule that targets HNF1A and HNF4A transcripts by interacting with RNA binding protein Nucleolin (NCL), suppresses downstream CYPs (CYP2E1, CYP3A4, and CYP1A2) expression, and protects against APAP-induced liver injury. In conclusion, our findings provided new mechanistic clues revealing potential protective role of a piRNA against the hepatoxicity of APAP.
Collapse
Affiliation(s)
- Lin Xu
- School of Public Health, Qingdao University, Qingdao, China
| | - Wendi Chen
- School of Public Health, Qingdao University, Qingdao, China
| | - Jing Chen
- School of Public Health, Qingdao University, Qingdao, China
| | - Yuan Jin
- School of Public Health, Qingdao University, Qingdao, China
| | - Wanli Ma
- School of Public Health, Qingdao University, Qingdao, China
| | - Guangshuai Qi
- School of Public Health, Qingdao University, Qingdao, China
| | - Xueying Sun
- School of Public Health, Qingdao University, Qingdao, China
| | - Jiao Luo
- School of Public Health, Qingdao University, Qingdao, China
| | - Chuanhai Li
- School of Public Health, Qingdao University, Qingdao, China
| | - Kunming Zhao
- School of Public Health, Qingdao University, Qingdao, China
| | - Yuxin Zheng
- School of Public Health, Qingdao University, Qingdao, China
| | - Dianke Yu
- School of Public Health, Qingdao University, Qingdao, China.
| |
Collapse
|
27
|
Pou Casellas C, Rookmaaker MB, Verhaar MC. Controlling cellular plasticity to improve in vitro models for kidney regeneration. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2021. [DOI: 10.1016/j.cobme.2021.100345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
28
|
The genetic basis of urate control and gout: Insights into molecular pathogenesis from follow-up study of genome-wide association study loci. Best Pract Res Clin Rheumatol 2021; 35:101721. [PMID: 34732286 DOI: 10.1016/j.berh.2021.101721] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review focuses on the post-genome-wide association study (GWAS) era in gout, i.e., the translation of GWAS genetic association signals into biologically informative knowledge. Analytical and experimental follow-up of individual loci, based on the identification of causal genetic variants, reveals molecular pathogenic pathways. We summarize in detail the largest GWAS in urate to date, then we review follow-up studies and molecular insights from ABCG2, HNF4A, PDZK1, MAF, GCKR, ALDH2, ALDH16A1, SLC22A12, SLC2A9, ABCC4, and SLC22A13, including the role of insulin signaling. One common factor in these pathways is the importance of transcriptional control, including the HNF4α transcription factor. The new molecular knowledge reveals new targets for intervention to manage urate levels and prevent gout.
Collapse
|
29
|
Pou Casellas C, Jansen K, Rookmaaker MB, Clevers H, Verhaar MC, Masereeuw R. Regulation of Solute Carriers OCT2 and OAT1/3 in the Kidney: A Phylogenetic, Ontogenetic and Cell Dynamic Perspective. Physiol Rev 2021; 102:993-1024. [PMID: 34486394 DOI: 10.1152/physrev.00009.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Over the course of more than 500 million years, the kidneys have undergone a remarkable evolution from primitive nephric tubes to intricate filtration-reabsorption systems that maintain homeostasis and remove metabolic end products from the body. The evolutionarily conserved solute carriers Organic Cation Transporter 2 (OCT2), and Organic Anion Transporters 1 and 3 (OAT1/3) coordinate the active secretion of a broad range of endogenous and exogenous substances, many of which accumulate in the blood of patients with kidney failure despite dialysis. Harnessing OCT2 and OAT1/3 through functional preservation or regeneration could alleviate the progression of kidney disease. Additionally, it would improve current in vitro test models that lose their expression in culture. With this review, we explore OCT2 and OAT1/3 regulation using different perspectives: phylogenetic, ontogenetic and cell dynamic. Our aim is to identify possible molecular targets to both help prevent or compensate for the loss of transport activity in patients with kidney disease, and to enable endogenous OCT2 and OAT1/3 induction in vitro in order to develop better models for drug development.
Collapse
Affiliation(s)
- Carla Pou Casellas
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, Netherlands.,Hubrecht Institute - Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands
| | - Katja Jansen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Maarten B Rookmaaker
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, Netherlands
| | - Hans Clevers
- Hubrecht Institute - Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands
| | - Marianne C Verhaar
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, Netherlands
| | - Rosalinde Masereeuw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
30
|
Droździk M, Oswald S, Droździk A. Impact of kidney dysfunction on hepatic and intestinal drug transporters. Biomed Pharmacother 2021; 143:112125. [PMID: 34474348 DOI: 10.1016/j.biopha.2021.112125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/11/2021] [Accepted: 08/24/2021] [Indexed: 12/16/2022] Open
Abstract
Emerging information suggests that pathology of the kidney may not only affect expression and function of membrane transporters in the organ, but also in the gastrointestinal tract and the liver. Transporter dysfunction may cause effects on handling of drug as well as endogenous compounds with subsequent clinical consequences. A literature search was conducted on Ovid and PubMed databases to select relevant in vitro, animal and human studies that have reported expression, protein abundance and function of the gastrointestinal and liver localized ABC transporters and SLC carriers in kidney dysfunction or uremia states. The altered function of drug transporters in the liver and intestines in kidney failure subjects may provide compensatory activity in handling endogenous compounds (e.g. uremic toxins), which is expected to affect drug pharmacokinetics and local drug actions.
Collapse
Affiliation(s)
- Marek Droździk
- Department of Pharmacology, Faculty of Medicine and Dentistry, Pomeranian Medical University, Powstancow Wlkp 72, 70-111 Szczecin, Poland.
| | - Stefan Oswald
- Institute of Pharmacology and Toxicology, Faculty of Medicine, Rostock University Medical Center, 18057 Rostock, Germany.
| | - Agnieszka Droździk
- Department of Integrated Dentistry, Faculty of Medicine and Dentistry, Pomeranian Medical University, Powstancow Wlkp 72, 70-111 Szczecin, Poland.
| |
Collapse
|
31
|
Xu J, Liu Y, Liu J, Shou Y, Xiong Z, Xiong H, Xu T, Wang Q, Liu D, Liang H, Yang H, Yang X, Zhang X. Low Expression Levels of SLC22A12 Indicates a Poor Prognosis and Progresses Clear Cell Renal Cell Carcinoma. Front Oncol 2021; 11:659208. [PMID: 34249694 PMCID: PMC8262335 DOI: 10.3389/fonc.2021.659208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/07/2021] [Indexed: 01/07/2023] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) accounts for approximately 4/5 of all kidney cancers. Accumulation of minor changes in the cellular homeostasis may be one cause of ccRCC. Therefore, we downloaded the RNA sequencing and survival data of the kidney renal cell carcinoma (KIRC) cohort from the Cancer Genome Atlas (TCGA) database. After the univariate and multivariate Cox regression analyses, 19 kidney-specific differentially expressed genes (DEGs) were found. Solute Carrier Family 22 Member 12 (SLC22A12) resulted in an independent prognostic predictor for both overall survival (OS) and disease-free survival (DFS). SLC22A12 expression was lower in tumoral tissue compared to normal tissue. Moreover, patients in the SLC22A12 low expression group had a higher pathological stage and worse survival than the high expression group. Additionally, qRT-PCR assay, immunoblotting test (IBT), and immunohistochemical (IHC) analyses of cancer tissues/cells and the corresponding normal controls verified that SLC22A12 is downregulated in ccRCC. Receiver operator characteristic (ROC) curves showed that the low expression level of SLC22A12 could be a good diagnostic marker for ccRCC (AUC=0.7258; p <0.0001). Gene set enrichment analysis (GSEA) showed that SLC22A12 expression levels are related to metabolism, cell cycle, and tumor-related signaling pathways. GO and KEGG analyses revealed that SLC22A12 transports multiple organic compounds, ions, and hormones and participates in the extracellular structure organization. Furthermore, SLC22A12 over-expression in vitro inhibited the proliferation, migration, and invasion of renal cancer cells by regulating PI3K/Akt pathways. Such effects were reversed when knocking out SLC22A12. In summary, as a transporter for many vital metabolites, SLC22A12 may affect tumor cell survival through its impacts on the mentioned metabolites. In conclusion, this study uncovered that SLC22A12 is a promising prognostic and diagnostic biomarker for ccRCC.
Collapse
Affiliation(s)
- Jiaju Xu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuenan Liu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingchong Liu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Shou
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiyong Xiong
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hairong Xiong
- Department of Pathogenic Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Tianbo Xu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Wang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Di Liu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huageng Liang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongmei Yang
- Department of Pathogenic Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Xiong Yang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoping Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, China
| |
Collapse
|
32
|
Niborski LL, Paces-Fessy M, Ricci P, Bourgeois A, Magalhães P, Kuzma-Kuzniarska M, Lesaulnier C, Reczko M, Declercq E, Zürbig P, Doucet A, Umbhauer M, Cereghini S. Hnf1b haploinsufficiency differentially affects developmental target genes in a new renal cysts and diabetes mouse model. Dis Model Mech 2021; 14:dmm047498. [PMID: 33737325 PMCID: PMC8126479 DOI: 10.1242/dmm.047498] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 03/09/2021] [Indexed: 12/26/2022] Open
Abstract
Heterozygous mutations in HNF1B cause the complex syndrome renal cysts and diabetes (RCAD), characterized by developmental abnormalities of the kidneys, genital tracts and pancreas, and a variety of renal, pancreas and liver dysfunctions. The pathogenesis underlying this syndrome remains unclear as mice with heterozygous null mutations have no phenotype, while constitutive/conditional Hnf1b ablation leads to more severe phenotypes. We generated a novel mouse model carrying an identified human mutation at the intron-2 splice donor site. Unlike heterozygous mice previously characterized, mice heterozygous for the splicing mutation exhibited decreased HNF1B protein levels and bilateral renal cysts from embryonic day 15, originated from glomeruli, early proximal tubules (PTs) and intermediate nephron segments, concurrently with delayed PT differentiation, hydronephrosis and rare genital tract anomalies. Consistently, mRNA sequencing showed that most downregulated genes in embryonic kidneys were primarily expressed in early PTs and the loop of Henle and involved in ion/drug transport, organic acid and lipid metabolic processes, while the expression of previously identified targets upon Hnf1b ablation, including cystic disease genes, was weakly or not affected. Postnatal analyses revealed renal abnormalities, ranging from glomerular cysts to hydronephrosis and, rarely, multicystic dysplasia. Urinary proteomics uncovered a particular profile predictive of progressive decline in kidney function and fibrosis, and displayed common features with a recently reported urine proteome in an RCAD pediatric cohort. Altogether, our results show that reduced HNF1B levels lead to developmental disease phenotypes associated with the deregulation of a subset of HNF1B targets. They further suggest that this model represents a unique clinical/pathological viable model of the RCAD disease.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Cell Polarity
- Central Nervous System Diseases/genetics
- Central Nervous System Diseases/pathology
- Cilia/pathology
- Dental Enamel/abnormalities
- Dental Enamel/pathology
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/pathology
- Disease Models, Animal
- Embryo, Mammalian/pathology
- Gene Dosage
- Gene Expression Profiling
- Genes, Developmental
- Haploinsufficiency/genetics
- Hepatocyte Nuclear Factor 1-beta/genetics
- Heterozygote
- Humans
- Hydronephrosis/complications
- Kidney Diseases, Cystic/genetics
- Kidney Diseases, Cystic/pathology
- Kidney Glomerulus/pathology
- Kidney Tubules/pathology
- Mice, Inbred C57BL
- Mutation/genetics
- Nephrons/pathology
- RNA Splicing/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Severity of Illness Index
- Mice
Collapse
Affiliation(s)
- Leticia L. Niborski
- Sorbonne Université, CNRS, Institut de Biologie Paris Seine, Laboratoire de Biologie du Développement, IBPS, UMR7622, F-75005 Paris, France
| | - Mélanie Paces-Fessy
- Sorbonne Université, CNRS, Institut de Biologie Paris Seine, Laboratoire de Biologie du Développement, IBPS, UMR7622, F-75005 Paris, France
| | - Pierbruno Ricci
- Sorbonne Université, CNRS, Institut de Biologie Paris Seine, Laboratoire de Biologie du Développement, IBPS, UMR7622, F-75005 Paris, France
| | - Adeline Bourgeois
- Sorbonne Université, CNRS, Institut de Biologie Paris Seine, Laboratoire de Biologie du Développement, IBPS, UMR7622, F-75005 Paris, France
| | - Pedro Magalhães
- Mosaiques Diagnostics, 30659 Hannover, Germany
- Department of Pediatric Nephrology, Hannover Medical School, 30625 Hannover, Germany
| | - Maria Kuzma-Kuzniarska
- Sorbonne Université, CNRS, Institut de Biologie Paris Seine, Laboratoire de Biologie du Développement, IBPS, UMR7622, F-75005 Paris, France
| | - Celine Lesaulnier
- Sorbonne Université, CNRS, Institut de Biologie Paris Seine, Laboratoire de Biologie du Développement, IBPS, UMR7622, F-75005 Paris, France
| | - Martin Reczko
- Biomedical Sciences Research Center Alexander Fleming, Institute for Fundamental Biomedical Science, 16672 Athens, Greece
| | - Edwige Declercq
- Sorbonne Université, CNRS, Institut de Biologie Paris Seine, Laboratoire de Biologie du Développement, IBPS, UMR7622, F-75005 Paris, France
| | | | - Alain Doucet
- Sorbonne Université, Université Paris Descartes, UMRS 1138, CNRS, ERL 8228, Centre de Recherche des Cordeliers, F-75006 Paris, France
| | - Muriel Umbhauer
- Sorbonne Université, CNRS, Institut de Biologie Paris Seine, Laboratoire de Biologie du Développement, IBPS, UMR7622, F-75005 Paris, France
| | - Silvia Cereghini
- Sorbonne Université, CNRS, Institut de Biologie Paris Seine, Laboratoire de Biologie du Développement, IBPS, UMR7622, F-75005 Paris, France
| |
Collapse
|
33
|
Lowenstein J, Nigam SK. Uremic Toxins in Organ Crosstalk. Front Med (Lausanne) 2021; 8:592602. [PMID: 33937275 PMCID: PMC8085272 DOI: 10.3389/fmed.2021.592602] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 03/18/2021] [Indexed: 11/13/2022] Open
Abstract
Many putative uremic toxins—like indoxyl sulfate, p-cresol sulfate, kynurenic acid, uric acid, and CMPF—are organic anions. Both inter-organ and inter-organismal communication are involved. For example, the gut microbiome is the main source of indole, which, after modification by liver drug metabolizing enzymes (DMEs), becomes indoxyl sulfate. Various organic anion transporters (organic anion transporters, OATs; organic anion-transporting polypeptides, OATPs; multidrug resistance-associated proteins, MRPs, and other ABC transporters like ABCG2)—often termed “drug transporters”—mediate movement of uremic toxins through cells and organs. In the kidney proximal tubule, critical roles for OAT1 and OAT3 in regulating levels of protein-bound uremic toxins have been established using knock-out mice. OATs are important in maintaining residual tubular function in chronic kidney disease (CKD); as CKD progresses, intestinal transporters like ABCG2, which extrude urate and other organic anions into the gut lumen, seem to help restore homeostasis. Uremic toxins like indoxyl sulfate also regulate signaling and metabolism, potentially affecting gene expression in extra-renal tissues as well as the kidney. Focusing on the history and evolving story of indoxyl sulfate, we discuss how uremic toxins appear to be part of an extensive “remote sensing and signaling” network—involving so-called drug transporters and drug metabolizing enzymes which modulate metabolism and signaling. This systems biology view of uremic toxins is leading to a new appreciation of uremia as partly due to disordered remote sensing and signaling mechanisms–resulting from, and causing, aberrant inter-organ (e.g., gut-liver- kidney-CNS) and inter-organismal (e.g., gut microbiome-host) communication.
Collapse
Affiliation(s)
- Jerome Lowenstein
- Department of Nephrology, New York University School of Medicine, New York, NY, United States
| | - Sanjay K Nigam
- Departments of Pediatrics and Medicine (Nephrology), San Diego School of Medicine, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
34
|
Pácha J, Balounová K, Soták M. Circadian regulation of transporter expression and implications for drug disposition. Expert Opin Drug Metab Toxicol 2020; 17:425-439. [PMID: 33353445 DOI: 10.1080/17425255.2021.1868438] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Introduction: Solute Carrier (SLC) and ATP-binding cassette (ABC) transporters expressed in the intestine, liver, and kidney determine the absorption, distribution, and excretion of drugs. In addition, most molecular and cellular processes show circadian rhythmicity controlled by circadian clocks that leads to diurnal variations in the pharmacokinetics and pharmacodynamics of many drugs and affects their therapeutic efficacy and toxicity.Area covered: This review provides an overview of the current knowledge on the circadian rhythmicity of drug transporters and the molecular mechanisms of their circadian control. Evidence for coupling drug transporters to circadian oscillators and the plausible candidates conveying circadian clock signals to target drug transporters, particularly transcription factors operating as the output of clock genes, is discussed.Expert opinion: The circadian machinery has been demonstrated to interact with the uptake and efflux of various drug transporters. The evidence supports the concept that diurnal changes that affect drug transporters may influence the pharmacokinetics of the drugs. However, more systematic studies are required to better define the timing of pharmacologically important drug transporter regulation and determine tissue- and sex-dependent differences. Finally, the transfer of knowledge based on the results and conclusions obtained primarily from animal models will require careful validation before it is applied to humans.
Collapse
Affiliation(s)
- Jiří Pácha
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Kateřina Balounová
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic.,Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Matúš Soták
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
35
|
Genomic Analysis of Oral Lichen Planus and Related Oral Microbiome Pathogens. Pathogens 2020; 9:pathogens9110952. [PMID: 33207582 PMCID: PMC7697643 DOI: 10.3390/pathogens9110952] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/05/2020] [Accepted: 11/12/2020] [Indexed: 12/17/2022] Open
Abstract
Oral lichen planus (OLP) is a common chronic inflammatory disease affecting the oral mucosa. The pathogenesis of OLP is incompletely understood but is thought to be related to the immune system. As the oral cavity is a major reservoir and transmission gateway for bacteria, viruses, and fungi, the microbial composition of the oral cavity could play a role in the pathogenesis of OLP. However, limited by analytic technology and knowledge of the microbial community in the oral cavity, it is not yet clear which pathogens are associated with OLP. Next generation sequencing (NGS) is a powerful tool to identify pathogens for many infectious diseases. In this study, we compared the host cell gene expression profiles and the microbial profiles between OLP patients and matched healthy individuals. We identified the activation of the hepatocyte nuclear factor alpha (HNF4A) network in OLP patients and potential pathogens, including Corynebacterium matruchotii, Fusobacterium periodonticum, Streptococcus intermedius, Streptococcus oralis, and Prevotella denticola. Prevotella denticola is capable of activating the HNF4A gene network. Our findings shed light on the previously elusive association of OLP with various diseases like hepatitis, and indicate that OLP is a T-helper type 17 (Th17) mediated mucosal inflammatory process. The identified molecular pathways and microbes could be used to inform future investigations into OLP pathogenesis and to develop novel therapeutics for OLP treatment.
Collapse
|
36
|
Molecular detection of maturation stages in the developing kidney. Dev Biol 2020; 470:62-73. [PMID: 33197428 DOI: 10.1016/j.ydbio.2020.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/31/2020] [Accepted: 11/03/2020] [Indexed: 12/21/2022]
Abstract
Recent advances in stem cell biology have enabled the generation of kidney organoids in vitro, and further maturation of these organoids is observed after experimental transplantation. However, the current organoids remain immature and their precise maturation stages are difficult to determine because of limited information on developmental stage-dependent gene expressions in the kidney in vivo. To establish relevant molecular coordinates, we performed single-cell RNA sequencing (scRNA-seq) on developing kidneys at different stages in the mouse. By selecting genes that exhibited upregulation at birth compared with embryonic day 15.5 as well as cell lineage-specific expression, we generated gene lists correlated with developmental stages in individual cell lineages. Application of these lists to transplanted embryonic kidneys revealed that most cell types, other than the collecting ducts, exhibited similar maturation to kidneys at the neonatal stage in vivo, revealing non-synchronous maturation across the cell lineages. Thus, our scRNA-seq data can serve as useful molecular coordinates to assess the maturation of developing kidneys and eventually of kidney organoids.
Collapse
|
37
|
Okuyama S, Kawamura F, Kubiura M, Tsuji S, Osaki M, Kugoh H, Oshimura M, Kazuki Y, Tada M. Real-time fluorometric evaluation of hepatoblast proliferation in vivo and in vitro using the expression of CYP3A7 coding for human fetus-specific P450. Pharmacol Res Perspect 2020; 8:e00642. [PMID: 32886454 PMCID: PMC7507068 DOI: 10.1002/prp2.642] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 12/18/2022] Open
Abstract
The fields of drug discovery and regenerative medicine require large numbers of adult human primary hepatocytes. For this purpose, it is desirable to use hepatocyte-like cells (HLCs) differentiated from human pluripotent stem cells (PSCs). Premature hepatoblast-like cells (HB-LCs) differentiated from PSCs provide an intermediate source and steady supply of newly mature HLCs. To develop an efficient HB-LC induction method, we constructed a red fluorescent reporter, CYP3A7R, in which DsRed is placed under the transcriptional control of CYP3A7 coding for a human fetus-type P450 enzyme. Before using this reporter in human cells, we created transgenic mice using mouse embryonic stem cells (ESCs) carrying a CYP3A7R transgene and confirmed that CYP3A7R was specifically expressed in fetal and newborn livers and reactivated in the adult liver in response to hepatic regeneration. Moreover, we optimized the induction procedure of HB-LCs from transgenic mouse ESCs using semi-quantitative fluorometric evaluation. Activation of Wnt signaling together with chromatin modulation prior to Activin A treatment greatly improved the induction efficiency of HB-LCs. BMP2 and 1.7% dimethyl sulfoxide induced selective proliferation of HB-LCs, which matured to HLCs. Therefore, CYP3A7R will provide a fluorometric evaluation system for high content screening of chemicals that induce HB-LC differentiation, hepatocyte regeneration, and hepatotoxicity when it is introduced into human PSCs.
Collapse
Affiliation(s)
- Shota Okuyama
- Stem Cells & Reprogramming LaboratoryDepartment of BiologyFaculty of ScienceToho UniversityFunabashiJapan
| | - Fumihiko Kawamura
- Stem Cells & Reprogramming LaboratoryDepartment of BiologyFaculty of ScienceToho UniversityFunabashiJapan
- Institute of Regenerative Medicine and BiofunctionGraduate School of Medical ScienceTottori UniversityYonagoJapan
| | - Musashi Kubiura
- Stem Cells & Reprogramming LaboratoryDepartment of BiologyFaculty of ScienceToho UniversityFunabashiJapan
| | - Saori Tsuji
- Chromosome Engineering Research CenterTottori UniversityYonagoJapan
| | - Mitsuhiko Osaki
- Chromosome Engineering Research CenterTottori UniversityYonagoJapan
| | - Hiroyuki Kugoh
- Institute of Regenerative Medicine and BiofunctionGraduate School of Medical ScienceTottori UniversityYonagoJapan
- Chromosome Engineering Research CenterTottori UniversityYonagoJapan
| | - Mitsuo Oshimura
- Chromosome Engineering Research CenterTottori UniversityYonagoJapan
| | - Yasuhiro Kazuki
- Institute of Regenerative Medicine and BiofunctionGraduate School of Medical ScienceTottori UniversityYonagoJapan
- Chromosome Engineering Research CenterTottori UniversityYonagoJapan
| | - Masako Tada
- Stem Cells & Reprogramming LaboratoryDepartment of BiologyFaculty of ScienceToho UniversityFunabashiJapan
| |
Collapse
|
38
|
Marable SS, Chung E, Park JS. Hnf4a Is Required for the Development of Cdh6-Expressing Progenitors into Proximal Tubules in the Mouse Kidney. J Am Soc Nephrol 2020; 31:2543-2558. [PMID: 32764140 DOI: 10.1681/asn.2020020184] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 07/06/2020] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Hepatocyte NF 4α (Hnf4a) is a major regulator of renal proximal tubule (PT) development. In humans, a mutation in HNF4A impairs PT functions and is associated with Fanconi renotubular syndrome (FRTS). In mice, mosaic deletion of Hnf4a in the developing kidney reduces the population of PT cells, leading to FRTS-like symptoms. The molecular mechanisms underlying the role of Hnf4a in PT development remain unclear. METHODS The gene deletion tool Osr2Cre removed Hnf4a in developing nephrons in mice, generating a novel model for FRTS. Immunofluorescence analysis characterized the mutant phenotype, and lineage analysis tested whether Cadherin-6 (Cdh6)-expressing cells are PT progenitors. Genome-wide mapping of Hnf4a binding sites and differential gene analysis of Hnf4a mutant kidneys identified direct target genes of Hnf4a. RESULTS Deletion of Hnf4a with Osr2Cre led to the complete loss of mature PT cells, lethal to the Hnf4a mutant mice. Cdh6high, lotus tetragonolobus lectin-low (LTLlow) cells serve as PT progenitors and demonstrate higher proliferation than Cdh6low, LTLhigh differentiated PT cells. Additionally, Hnf4a is required for PT progenitors to differentiate into mature PT cells. Genomic analyses revealed that Hnf4a directly regulates the expression of genes involved in transmembrane transport and metabolism. CONCLUSIONS Hnf4a promotes the differentiation of PT progenitors into mature PT cells by regulating the expression of genes associated with reabsorption, the major function of PT cells.
Collapse
Affiliation(s)
- Sierra S Marable
- Division of Pediatric Urology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Eunah Chung
- Division of Pediatric Urology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Joo-Seop Park
- Division of Pediatric Urology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio .,Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
39
|
Regulation of organic anion transporters: Role in physiology, pathophysiology, and drug elimination. Pharmacol Ther 2020; 217:107647. [PMID: 32758646 DOI: 10.1016/j.pharmthera.2020.107647] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/27/2020] [Indexed: 12/24/2022]
Abstract
The members of the organic anion transporter (OAT) family are mainly expressed in kidney, liver, placenta, intestine, and brain. These transporters play important roles in the disposition of clinical drugs, pesticides, signaling molecules, heavy metal conjugates, components of phytomedicines, and toxins, and therefore critical for maintaining systemic homeostasis. Alterations in the expression and function of OATs contribute to the intra- and inter-individual variability of the therapeutic efficacy and the toxicity of many drugs, and to many pathophysiological conditions. Consequently, the activity of these transporters must be highly regulated to carry out their normal functions. This review will present an update on the recent advance in understanding the cellular and molecular mechanisms underlying the regulation of renal OATs, emphasizing on the post-translational modification (PTM), the crosstalk among these PTMs, and the remote sensing and signaling network of OATs. Such knowledge will provide significant insights into the roles of these transporters in health and disease.
Collapse
|
40
|
Chen Y, Zhang T, Wu L, Huang Y, Mao Z, Zhan Z, Chen W, Dai F, Cao W, Cao Y, Liu S, Cai Z, Tang L. Metabolism and Toxicity of Emodin: Genome-Wide Association Studies Reveal Hepatocyte Nuclear Factor 4α Regulates UGT2B7 and Emodin Glucuronidation. Chem Res Toxicol 2020; 33:1798-1808. [PMID: 32538071 DOI: 10.1021/acs.chemrestox.0c00047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Emodin is the main toxic component in Chinese medicinal herbs such as rhubarb. Our previous studies demonstrated that genetic polymorphisms of UDP-glucuronosyltransferase 2B7 (UGT2B7) had an effect on the glucuronidation and detoxification of emodin. This study aimed to reveal the transcriptional regulation mechanism of UGT2B7 on emodin glucuronidation and its effect on toxicity. Emodin glucuronic activity and genome and transcriptome data were obtained from 36 clinical human kidney tissues. The genome-wide association studies (GWAS) identified that four single nucleotide polymorphisms (SNPs) (rs6093966, rs2868094, rs2071197, and rs6073433), which were located on the hepatocyte nuclear factor 4α (HNF4A) gene, were significantly associated with the emodin glucuronidation (p < 0.05). Notably, rs2071197 was significantly associated with the gene expression of HNF4A and UGT2B7 and the glucuronidation of emodin. The gene expression of HNF4A showed a high correlation with UGT2B7 (R2 = 0.721, p = 5.83 × 10-11). The luciferase activity was increased 7.68-fold in 293T cells and 2.03-fold in HepG2 cells, confirming a significant transcriptional activation of UGT2B7 promoter by HNF4A. The knockdown of HNF4A in HepG2 cells (36.6%) led to a significant decrease of UGT2B7 (19.8%) and higher cytotoxicity (p < 0.05). The overexpression of HNF4A in HepG2 cells (31.2%) led to a significant increase of UGT2B7 (24.4%) and improved cell viability (p < 0.05). Besides, HNF4A and UGT2B7 were both decreased in HepG2 cells and rats after treatment with emodin. In conclusion, emodin used long term or in high doses could inhibit the expression of HNF4A, thereby reducing the expression of UGT2B7 and causing hepatotoxicity.
Collapse
Affiliation(s)
- Yulian Chen
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Southern Medical University, Guangzhou 510515, China.,Biopharmaceutics, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Tao Zhang
- Biopharmaceutics, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Lili Wu
- Biopharmaceutics, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yilin Huang
- Biopharmaceutics, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhihao Mao
- Biopharmaceutics, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhikun Zhan
- Biopharmaceutics, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Weizhong Chen
- Biopharmaceutics, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Fahong Dai
- Biopharmaceutics, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Wenyu Cao
- Biopharmaceutics, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Shuwen Liu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Southern Medical University, Guangzhou 510515, China.,Biopharmaceutics, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zheng Cai
- Biopharmaceutics, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Lan Tang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Southern Medical University, Guangzhou 510515, China.,Biopharmaceutics, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
41
|
Sex Differences in Urate Handling. Int J Mol Sci 2020; 21:ijms21124269. [PMID: 32560040 PMCID: PMC7349092 DOI: 10.3390/ijms21124269] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 02/07/2023] Open
Abstract
Hyperuricemia, or elevated serum urate, causes urate kidney stones and gout and also increases the incidence of many other conditions including renal disease, cardiovascular disease, and metabolic syndrome. As we gain mechanistic insight into how urate contributes to human disease, a clear sex difference has emerged in the physiological regulation of urate homeostasis. This review summarizes our current understanding of urate as a disease risk factor and how being of the female sex appears protective. Further, we review the mechanisms of renal handling of urate and the significant contributions from powerful genome-wide association studies of serum urate. We also explore the role of sex in the regulation of specific renal urate transporters and the power of new animal models of hyperuricemia to inform on the role of sex and hyperuricemia in disease pathogenesis. Finally, we advocate the use of sex differences in urate handling as a potent tool in gaining a further understanding of physiological regulation of urate homeostasis and for presenting new avenues for treating the constellation of urate related pathologies.
Collapse
|
42
|
Yang M, Zhang M, Liu Q, Xu T, Huang T, Yao D, Wong CW, Liu J, Guan M. 18β-Glycyrrhetinic acid acts through hepatocyte nuclear factor 4 alpha to modulate lipid and carbohydrate metabolism. Pharmacol Res 2020; 157:104840. [PMID: 32353589 DOI: 10.1016/j.phrs.2020.104840] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/30/2020] [Accepted: 04/14/2020] [Indexed: 02/07/2023]
Abstract
Hepatocyte nuclear factor 4 alpha (HNF4α) regulates the expression of essential genes involved in very-low-density lipoprotein (VLDL) homeostasis and gluconeogenesis. 18β-glycyrrhetinic acid (GA) is an active ingredient of Glycyrrhiza uralensis an herbal medicine used for treating liver aliments. In this study, we established that GA functions as a partial antagonist of HNF4α through HNF4α-driven reporter luciferase assay and co-immunoprecipitation experiments with co-activator PGC1α. By virtual docking and site-directed mutagenesis analysis, we confirmed that serine 190 and arginine 235 of HNF4α are both essential for GA to exert its antagonistic action on HNF4α. Importantly, GA suppressed the expression of HNF4α target genes such as apolipoprotein B (ApoB), microsomal triglyceride transfer protein (MTP) and phospholipase A2 G12B (PLA2G12B) modulating hepatic VLDL secretion in mice fed on a high fat diet. In addition, GA also suppressed gluconeogenesis and ameliorated glucose intolerance via down-regulating the expression of HNF4α target genes glucose-6-phosphatase (G6pc) and phosphoenolpyruvate carboxykinase (Pepck). Furthermore, GA significantly lowered blood glucose and improved insulin resistance in db/db mice. In all, we established that GA acts as a partial HNF4α antagonist modulating lipid and carbohydrate metabolism.
Collapse
Affiliation(s)
- Meng Yang
- Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Minyi Zhang
- National Engineering Research Center of Genetic Medicine, Institute of Biomedicine, Jinan University, Guangzhou 510632, Guangdong, China
| | - Qingli Liu
- Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Tingting Xu
- Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Tongling Huang
- Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Dongsheng Yao
- National Engineering Research Center of Genetic Medicine, Institute of Biomedicine, Jinan University, Guangzhou 510632, Guangdong, China
| | - Chi-Wai Wong
- NeuMed Pharmaceuticals Limited, Yuen Long, Hong Kong, China
| | - Jinsong Liu
- Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Min Guan
- Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China.
| |
Collapse
|
43
|
Drosophila SLC22 Orthologs Related to OATs, OCTs, and OCTNs Regulate Development and Responsiveness to Oxidative Stress. Int J Mol Sci 2020; 21:ijms21062002. [PMID: 32183456 PMCID: PMC7139749 DOI: 10.3390/ijms21062002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/11/2020] [Accepted: 03/13/2020] [Indexed: 12/14/2022] Open
Abstract
The SLC22 family of transporters is widely expressed, evolutionarily conserved, and plays a major role in regulating homeostasis by transporting small organic molecules such as metabolites, signaling molecules, and antioxidants. Analysis of transporters in fruit flies provides a simple yet orthologous platform to study the endogenous function of drug transporters in vivo. Evolutionary analysis of Drosophila melanogaster putative SLC22 orthologs reveals that, while many of the 25 SLC22 fruit fly orthologs do not fall within previously established SLC22 subclades, at least four members appear orthologous to mammalian SLC22 members (SLC22A16:CG6356, SLC22A15:CG7458, CG7442 and SLC22A18:CG3168). We functionally evaluated the role of SLC22 transporters in Drosophila melanogaster by knocking down 14 of these genes. Three putative SLC22 ortholog knockdowns-CG3168, CG6356, and CG7442/SLC22A-did not undergo eclosion and were lethal at the pupa stage, indicating the developmental importance of these genes. Additionally, knocking down four SLC22 members increased resistance to oxidative stress via paraquat testing (CG4630: p < 0.05, CG6006: p < 0.05, CG6126: p < 0.01 and CG16727: p < 0.05). Consistent with recent evidence that SLC22 is central to a Remote Sensing and Signaling Network (RSSN) involved in signaling and metabolism, these phenotypes support a key role for SLC22 in handling reactive oxygen species.
Collapse
|
44
|
Bueters R, Bael A, Gasthuys E, Chen C, Schreuder MF, Frazier KS. Ontogeny and Cross-species Comparison of Pathways Involved in Drug Absorption, Distribution, Metabolism, and Excretion in Neonates (Review): Kidney. Drug Metab Dispos 2020; 48:353-367. [DOI: 10.1124/dmd.119.089755] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 02/04/2020] [Indexed: 02/06/2023] Open
|
45
|
Chen L, Wang P, Manautou JE, Zhong XB. Knockdown of Long Noncoding RNAs Hepatocyte Nuclear Factor 1 α Antisense RNA 1 and Hepatocyte Nuclear Factor 4 α Antisense RNA 1 Alters Susceptibility of Acetaminophen-Induced Cytotoxicity in HepaRG Cells. Mol Pharmacol 2020; 97:278-286. [PMID: 32029527 DOI: 10.1124/mol.119.118778] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/27/2020] [Indexed: 01/08/2023] Open
Abstract
Acetaminophen (APAP) is a commonly used over-the-counter drug for its analgesic and antipyretic effects. However, APAP overdose leads to severe APAP-induced liver injury (AILI) and even death as a result of the accumulation of N-acetyl-p-benzoquinone imine, the toxic metabolite of APAP generated by cytochrome P450s (P450s). Long noncoding RNAs HNF1α antisense RNA 1 (HNF1α-AS1) and HNF4α antisense RNA 1 (HNF4α-AS1) are regulatory RNAs involved in the regulation of P450 expression in both mRNA and protein levels. This study aims to determine the impact of HNF1α-AS1 and HNF4α-AS1 on AILI. Small hairpin RNAs were used to knock down HNF1α-AS1 and HNF4α-AS1 in HepaRG cells. Knockdown of these lncRNAs altered APAP-induced cytotoxicity, indicated by MTT and LDH assays. Specifically, HNF1α-AS1 knockdown decreased APAP toxicity with increased cell viability and decreased LDH release, whereas HNF4α-AS1 knockdown exacerbated APAP toxicity, with opposite effects in the MTT and LDH assays. Alterations on gene expression by knockdown of HNF1α-AS1 and HNF4α-AS1 were examined in several APAP metabolic pathways, including CYP1A2, CYP2E1, CYP3A4, UGT1A1, UGT1A9, SULT1A1, GSTP1, and GSTT1. Knockdown of HNF1α-AS1 decreased mRNA expression of CYP1A2, 2E1, and 3A4 by 0.71-fold, 0.35-fold, and 0.31-fold, respectively, whereas knockdown of HNF4α-AS1 induced mRNAs of CYP1A2, 2E1, and 3A4 by 1.3-fold, 1.95-fold, and 1.9-fold, respectively. These changes were also observed in protein levels. Knockdown of HNF1α-AS1 and HNF4α-AS1 had limited effects on the mRNA expression of UGT1A1, UGT1A9, SULT1A1, GSTP1, and GSTT1. Altogether, our study suggests that HNF1α-AS1 and HNF4α-AS1 affected AILI mainly through alterations of P450-mediated APAP biotransformation in HepaRG cells, indicating an important role of the lncRNAs in AILI. SIGNIFICANCE STATEMENT: The current research identified two lncRNAs, hepatocyte nuclear factor 1α antisense RNA 1 and hepatocyte nuclear factor 4α antisense RNA 1, which were able to affect susceptibility of acetaminophen (APAP)-induced liver injury in HepaRG cells, possibly through regulating the expression of APAP-metabolizing cytochrome P450 enzymes. This discovery added new factors, lncRNAs, which can be used to predict cytochrome P450-mediated drug metabolism and drug-induced toxicity.
Collapse
Affiliation(s)
- Liming Chen
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (L.C., P.W., J.E.M., X.-b.Z.) and Department of Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou, Henan, China (P.W.)
| | - Pei Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (L.C., P.W., J.E.M., X.-b.Z.) and Department of Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou, Henan, China (P.W.)
| | - José E Manautou
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (L.C., P.W., J.E.M., X.-b.Z.) and Department of Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou, Henan, China (P.W.)
| | - Xiao-Bo Zhong
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (L.C., P.W., J.E.M., X.-b.Z.) and Department of Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou, Henan, China (P.W.)
| |
Collapse
|
46
|
Boivin FJ, Schmidt-Ott KM. Functional roles of Grainyhead-like transcription factors in renal development and disease. Pediatr Nephrol 2020; 35:181-190. [PMID: 30554362 DOI: 10.1007/s00467-018-4171-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 11/07/2018] [Accepted: 12/06/2018] [Indexed: 12/11/2022]
Abstract
Proper renal function relies on the tightly regulated development of nephrons and collecting ducts. This process, known as tubulogenesis, involves dynamic cellular and molecular changes that instruct cells to form highly organized tubes of epithelial cells which compartmentalize the renal interstitium and tubular lumen via assembly of a selective barrier. The integrity and diversity of the various renal epithelia is achieved via formation of intercellular protein complexes along the apical-basal axis of the epithelial cells. In recent years, the evolutionarily conserved family of Grainyhead-like (GRHL) transcription factors which encompasses three mammalian family members (Grainyhead-like 1, 2, 3) has emerged as a group of critical regulators for organ development, epithelial differentiation, and barrier formation. Evidence from transgenic animal models supports the presence of Grainyhead-like-dependent transcriptional mechanisms that promote formation and maintenance of epithelial barriers in the kidney. In this review, we highlight different Grhl-dependent mechanisms that modulate epithelial differentiation in the kidney. Additionally, we discuss how disruptions in these mechanisms result in impaired renal function later in life.
Collapse
Affiliation(s)
- Felix J Boivin
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Strasse 10, 13125, Berlin, Germany
| | - Kai M Schmidt-Ott
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Strasse 10, 13125, Berlin, Germany. .,Department of Nephrology, Charité Medical University, Berlin, Germany.
| |
Collapse
|
47
|
Interactions of ginseng with therapeutic drugs. Arch Pharm Res 2019; 42:862-878. [PMID: 31493264 DOI: 10.1007/s12272-019-01184-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 08/26/2019] [Indexed: 02/08/2023]
Abstract
Ginseng is the most frequently used herbal medicine for immune system stimulation and as an adjuvant with prescribed drugs owing to its numerous pharmacologic activities. It is important to investigate the beneficial effects and interaction of ginseng with therapeutic drugs. This review comprehensively discusses drug metabolizing enzyme- and transporter-mediated ginseng-drug interaction by analyzing in vitro and clinical results with a focus on ginsenoside, a pharmacologically active marker of ginseng. Impact of ginseng therapy or ginseng combination therapy on diabetic patients and of ginseng interaction with antiplatelets and anticoagulants were evaluated based on ginseng origin and ginsenoside content. Daily administration of Korean red ginseng (0.5-3 g extract; dried ginseng > 60%) did not cause significant herb-drug interaction with drug metabolizing enzymes and transporters. Among various therapeutic drugs administered in combination with ginseng, adjuvant chemotherapy, comprising ginseng (1-3 g extract) and anticancer drugs, was effective for reducing cancer-related fatigue and improving the quality of life and emotional scores. Limited information regarding ginsenoside content in each ginseng product and plasma ginsenoside concentration among patients necessitates standardization of ginseng product and establishment of pharmacokinetic-pharmacodynamic correlation to further understand beneficial effects of ginseng-therapeutic drug interactions in future clinical studies.
Collapse
|
48
|
Rosenthal SB, Bush KT, Nigam SK. A Network of SLC and ABC Transporter and DME Genes Involved in Remote Sensing and Signaling in the Gut-Liver-Kidney Axis. Sci Rep 2019; 9:11879. [PMID: 31417100 PMCID: PMC6695406 DOI: 10.1038/s41598-019-47798-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 07/23/2019] [Indexed: 02/07/2023] Open
Abstract
Genes central to drug absorption, distribution, metabolism and elimination (ADME) also regulate numerous endogenous molecules. The Remote Sensing and Signaling Hypothesis argues that an ADME gene-centered network-including SLC and ABC "drug" transporters, "drug" metabolizing enzymes (DMEs), and regulatory genes-is essential for inter-organ communication via metabolites, signaling molecules, antioxidants, gut microbiome products, uremic solutes, and uremic toxins. By cross-tissue co-expression network analysis, the gut, liver, and kidney (GLK) formed highly connected tissue-specific clusters of SLC transporters, ABC transporters, and DMEs. SLC22, SLC25 and SLC35 families were network hubs, having more inter-organ and intra-organ connections than other families. Analysis of the GLK network revealed key physiological pathways (e.g., involving bile acids and uric acid). A search for additional genes interacting with the network identified HNF4α, HNF1α, and PXR. Knockout gene expression data confirmed ~60-70% of predictions of ADME gene regulation by these transcription factors. Using the GLK network and known ADME genes, we built a tentative gut-liver-kidney "remote sensing and signaling network" consisting of SLC and ABC transporters, as well as DMEs and regulatory proteins. Together with protein-protein interactions to prioritize likely functional connections, this network suggests how multi-specificity combines with oligo-specificity and mono-specificity to regulate homeostasis of numerous endogenous small molecules.
Collapse
Affiliation(s)
- Sara Brin Rosenthal
- Center for Computational Biology and Bioinformatics, University of California at San Diego, La Jolla, CA, 92093-0693, USA
| | - Kevin T Bush
- Departments of Pediatrics, University of California at San Diego, La Jolla, CA, 92093-0693, USA
| | - Sanjay K Nigam
- Departments of Pediatrics, University of California at San Diego, La Jolla, CA, 92093-0693, USA.
- Departments of Medicine, University of California at San Diego, La Jolla, CA, 92093-0693, USA.
| |
Collapse
|
49
|
Nair S, Kim DS, Perricone J, Kundaje A. Integrating regulatory DNA sequence and gene expression to predict genome-wide chromatin accessibility across cellular contexts. Bioinformatics 2019; 35:i108-i116. [PMID: 31510655 PMCID: PMC6612838 DOI: 10.1093/bioinformatics/btz352] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
MOTIVATION Genome-wide profiles of chromatin accessibility and gene expression in diverse cellular contexts are critical to decipher the dynamics of transcriptional regulation. Recently, convolutional neural networks have been used to learn predictive cis-regulatory DNA sequence models of context-specific chromatin accessibility landscapes. However, these context-specific regulatory sequence models cannot generalize predictions across cell types. RESULTS We introduce multi-modal, residual neural network architectures that integrate cis-regulatory sequence and context-specific expression of trans-regulators to predict genome-wide chromatin accessibility profiles across cellular contexts. We show that the average accessibility of a genomic region across training contexts can be a surprisingly powerful predictor. We leverage this feature and employ novel strategies for training models to enhance genome-wide prediction of shared and context-specific chromatin accessible sites across cell types. We interpret the models to reveal insights into cis- and trans-regulation of chromatin dynamics across 123 diverse cellular contexts. AVAILABILITY AND IMPLEMENTATION The code is available at https://github.com/kundajelab/ChromDragoNN. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Surag Nair
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Daniel S Kim
- Department of Biomedical Data Sciences, Stanford University, Stanford, CA, USA
| | - Jacob Perricone
- Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA
| | - Anshul Kundaje
- Department of Computer Science, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| |
Collapse
|
50
|
Nigam SK. The SLC22 Transporter Family: A Paradigm for the Impact of Drug Transporters on Metabolic Pathways, Signaling, and Disease. Annu Rev Pharmacol Toxicol 2019; 58:663-687. [PMID: 29309257 DOI: 10.1146/annurev-pharmtox-010617-052713] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The SLC22 transporter family consists of more than two dozen members, which are expressed in the kidney, the liver, and other tissues. Evolutionary analysis indicates that SLC22 transporters fall into at least six subfamilies: OAT (organic anion transporter), OAT-like, OAT-related, OCT (organic cation transporter), OCTN (organic cation/carnitine transporter), and OCT/OCTN-related. Some-including OAT1 [SLC22A6 or NKT (novel kidney transporter)] and OAT3 (SLC22A8), as well as OCT1 (SLC22A1) and OCT2 (SLC22A2)-are widely studied drug transporters. Nevertheless, analyses of knockout mice and other data indicate that SLC22 transporters regulate key metabolic pathways and levels of signaling molecules (e.g., gut microbiome products, bile acids, tricarboxylic acid cycle intermediates, dietary flavonoids and other nutrients, prostaglandins, vitamins, short-chain fatty acids, urate, and ergothioneine), as well as uremic toxins associated with chronic kidney disease. Certain SLC22 transporters-such as URAT1 (SLC22A12) and OCTN2 (SLC22A5)-are mutated in inherited metabolic diseases. A new systems biology view of transporters is emerging. As proposed in the remote sensing and signaling hypothesis, SLC22 transporters, together with other SLC and ABC transporters, have key roles in interorgan and interorganism small-molecule communication and, together with the neuroendocrine, growth factor-cytokine, and other homeostatic systems, regulate local and whole-body homeostasis.
Collapse
Affiliation(s)
- Sanjay K Nigam
- Departments of Pediatrics and Medicine, University of California, San Diego, La Jolla, California 92093, USA;
| |
Collapse
|